
FACULTEIT VAN DE WETENSCHAPPEN
Vakgroep Informatica
Laboratorium voor Programmeerkunde

Modularizing Advanced
Transaction Management
Tackling Tangled Aspect Code

Proefschrift ingediend met het oog op het behalen van de graad van Doctor in de Wetenschappen

Johan Fabry

Academiejaar 2004 - 2005

Promotors: Prof. Dr. Theo D'Hondt, Prof. Dr. Tom Tourwé

To my parents

i

ii

Nederlandstalige Samenvatting

Grootschalige gedistribueerde systemen, bijvoorbeeld internet-applicaties zoals web-
winkels en online banktoepassingen, moeten verzekeren dat gelijktijdig gebruik door
meerdere personen de consistentie van de gegevens van het systeem bewaart. De de-
facto standaard hiervoor is het gebruik van transacties. Transacties zijn echter ont-
wikkeld voor één specifiek geval van het benaderen van gegevens: kortstondige be-
naderingen die weinig gegevens omvatten en geen interne structuur hebben. Boven-
vermelde systemen willen echter vaak de gegevens op een gestructureerde wijze of voor
een lange tijd benaderen en worden dan ook geconfronteerd met de beperkingen van
transacties.

Structurele oplossingen voor de beperkingen van transacties zijn reeds gekend on-
der de naam van ‘geavanceerde transacties’, maar we zien dat geen enkele van deze
oplossingen momenteel in gebruik is. Een belangrijke reden hiervoor is het feit dat
deze geavanceerde mechanismen moeilijk te gebruiken zijn, m.a.w. dat het moeilijk is
voor een programmeur om de code voor het gebruik van deze systemen te schrijven
en te onderhouden.

In deze thesis bieden wij een oplossing aan voor de programmeur door software-
engineering-technieken toe te passen op het gebruik van geavanceerde transactiemecha-
nismen. Meer bepaald passen we de technieken van aspectgeoriënteerd programmeren
en domein-specifieke talen toe om de programmeur toe te staan op een hoog abstrac-
tieniveau met geavanceerde transactiemechanismen om te gaan.

Aspectgeoriënteerd programmeren (AOP) laat toe om de code voor bekommernis-
sen die verspreid zijn over het systeem, zoals het gebruik van transacties, te verzamelen
in één module. Deze module wordt aspect genoemd en de code in deze module wordt
meestal geschreven in een specifieke aspect-programmeertaal. Het belangrijkste voor-
deel van een aspect is dat de aspect-code gemakkelijker te schrijven en te onderhouden
is. Dit is omdat de programmeur zich volledig kan concentreren op die ene bekom-
mernis en niet meer gestoord wordt door andere bekommernissen die dezelfde code

iii

doorweven. AOP is reeds gebruikt om het gebruik van transacties te vereenvoudigen
maar werd nog niet toegepast op geavanceerde transacties.

Als eerste deel in dit onderzoek hebben we dan ook een aspect gemaakt voor ge-
avanceerde transacties. Hier hebben we geobserveerd dat de code voor een aspect zelf
ook kan bestaan uit verschillende door elkaar geweven bekommernissen. Specifiek voor
het aspect van geavanceerde transacties hebben we hiervoor een oplossing ontwikkeld:
de aspect-programmeertaal KALA. KALA is gebaseerd op een bestaand formeel model
voor geavanceerde transacties, genaamd ACTA, en laat toe om het aspect op te split-
sen in de verschillende bekommernissen en deze volledig apart neer te schrijven. Dit
geeft de programmeur niet alleen de mogelijkheid om een grote verscheidenheid van
geavanceerde modellen te gebruiken als een aspect maar ook om nieuwe mechanismen
te creëren als dit nodig is.

De programmeertaal KALA is dus een krachtige aspect-taal voor het beschrijven
van geavanceerde transactiemechanismen die ook toelaat om nieuwe mechanismen
te creëren als het nodig is. Maar deze kracht heeft ook een kostprijs en die is dat
programma’s in KALA complex en langdradig zijn omdat ze werken met elementen
van de onderliggende implementatie van een model. Programmeurs die echter enkel
bestaande mechanismen willen gebruiken hebben geen boodschap aan deze kracht
en wensen de complexiteit en langdradigheid te vermijden. Hiervoor hebben we een
tweede abstractielaag uitgewerkt, met behulp van domeinspecifieke talen.

Het gebruik van domeinspecifieke talen laat toe programma’s te schrijven die
werken met de concepten fundamenteel aan het domein, die dus abstractie maken
van de implementatie van het domein. Toegepast op geavanceerde transactiemecha-
nismen betekent dit dat we een aantal domeinspecifieke talen hebben ontwikkeld voor
een aantal geavanceerde mechanismen. Er is een taal per mechanisme, en programma’s
in elke taal worden vertaald naar equivalente KALA-code. Code in elke domeinspe-
cifieke taal behandelt de concepten inherent aan het model in kwestie. Dit zorgt voor
een hoger abstractieniveau van de code en maakt de code ook summier. Daarenboven
vormen de verschillende talen een familie: concepten die gedeeld worden door verschil-
lende modellen, en dus ook door verschillende talen, worden telkens op dezelfde wijze
neergeschreven.

Als resultaat van onze combinatie van aspectgeoriënteerd programmeren en domein-
specifieke talen is het nu ook mogelijk voor een programmeur het gebruik van een
geavanceerd transactiemechanisme op een summiere wijze neer te schrijven, en dit
volledig apart van de code van het systeem zelf. Naast deze bijdrage in het onder-
zoeksgebied van geavanceerde transactiemechanismen hebben we ook bijgedragen aan
het onderzoeksgebied van AOP. Dit is eerst en vooral de observatie dat een aspect zelf
kan lijden aan het probleem van verschillende door elkaar geweven bekommernissen.
Onze tweede bijdrage is de verwezenlijking van het volledig apart specificeren van de
code van een aspect.

iv

Acknowledgments

A mere 300 pages can not contain all the things I have looked at and all the work
which I have performed in the last five and three quarter years. However, I do have
the opportunity here to thank all the people who have assisted me throughout this
journey.

First of all, I thank my promotor Theo D’Hondt for accepting me as a Ph.D.
student in his lab, giving me the freedom to explore the field and the support I needed
to finish the Ph.D. Also, I am grateful to Tom Tourwé for accepting to co-promote
this work.

I thank the members of my jury; Olga De Troyer, Viviane Jonckers, Awais Rashid
and Peter Van Roy for taking valuable time out of their schedule to read through this
large volume and for giving me feedback. My apologies for being so verbose.

Thanks to Johan Brichau for his invaluable help with Soul. Johan did come first
in our little race but I have more pages, so I propose we call it a draw. Thomas
Cleenewerck was an essential catalyst in the last phase of the thesis and a great
support in the last few months and I thank him for that. Wolfgang De Meuter and
Pascal Constanza have given me valuable insights in the final stages of the Ph.D.
process and have helped me ‘to get it right’. For this I am much obliged.

I distinctly recall a phrase told to me by Werner Van Belle, last year in Tromsoe,
which really forced me to focus: “Look, you have six possible thesises here. Which one
are you going to pick?”. Without that sentence I would probably still be at it. So,
Werner, for this I am forever in your debt.

Many thanks to the proof-readers, in addition to large contributions by Thomas,
Wolf, Pascal and Werner, the following three have also aided in making this text:
Jessie Dedecker, Andy Kellens and Kim Mens.

Thanks to my office-mate Dirk van Deun for switching on pedantic mode for me
when I asked him to (and not forgetting to switch it off).

Stijn Mostinckx, Tom Van Cutsem, and Ellen Van Paesschen covered for me on

v

the CoDAMoS project in these last few months. Not needing to worry about it made
my life much simpler and is greatly appreciated.

I thank all the current and former members of the PROG lab which I have had the
pleasure to count as my colleagues during these years. You all helped me by providing
interesting discussions, food for thought and occasional entertainment. I wish you all
well.

Last but not least, thanks to Sara for coping with me, especially these last few
months, and thanks to my parents for keeping the faith. It took a while, but I made
it!

vi

CONTENTS

Contents

1 Introduction 1
1.1 The Need for Advanced Transaction Management 3
1.2 Outline of the Contributions . 9
1.3 Using Advanced Transaction Management 11
1.4 Application-specific Advanced Transaction Management 14
1.5 Contributions . 19
1.6 Overview of the Dissertation . 22

2 Advanced Transaction Management 25
2.1 Concepts of Transaction Management 26

2.1.1 Schedules and Serializability . 27
2.1.2 Conflict-Serializability and Locking 28
2.1.3 Deadlocks . 30
2.1.4 Transaction Rollbacks and Savepoints 31

2.2 Toward Advanced Transaction Management 33
2.3 Sagas . 35
2.4 Relatively Consistent Schedules . 37
2.5 Split Transactions . 40
2.6 Conclusion . 43

3 Aspect-Oriented Programming and Transactions 45
3.1 Aspect-Oriented Programming . 46

3.1.1 Separation of Concerns . 46
3.1.2 Aspect-Oriented Programming 47

3.2 AOP and Transaction Management . 49
3.3 AOP for ATMS Demarcation code . 55

vii

CONTENTS

3.4 Conclusion . 57

4 Tangled Aspect Code 59
4.1 Concerns in Advanced Transaction Management 60

4.1.1 Concerns within the Sagas ATMS 61
4.1.2 Multiple Concerns in other ATMS 63
4.1.3 Conclusion . 66

4.2 Location of Concerns Within Demarcation Code 67
4.2.1 A Concrete Example of Demarcation Code 68
4.2.2 Skeleton Code . 71
4.2.3 Location of the Rollback Concern in Sagas 74
4.2.4 Location of View and Delegation in Relatively Consistent Schedules 74
4.2.5 Conclusion . 78

4.3 Tangled Aspect Code . 78
4.4 Conclusion . 82

5 Tx Management in Distributed Systems 83
5.1 Multi-Tier Distributed Systems . 84
5.2 TP Monitors and Object Transaction Monitors 86

5.2.1 Transaction Monitors . 86
5.2.2 Object Transaction Monitors . 87
5.2.3 Conclusion . 88

5.3 Enterprise JavaBeans . 88
5.3.1 Enterprise JavaBean and its Deployment Descriptor 89
5.3.2 Container, EJB Objects, Remote Interface and Home Interface . 90
5.3.3 Servers and Clients . 90
5.3.4 Transactions . 91
5.3.5 Critiques on EJB Transactions 93
5.3.6 Conclusion . 99

5.4 Conclusion . 100

6 ACTA 101
6.1 The Formalism . 102

6.1.1 Events and History . 102
6.1.2 Dependencies . 104
6.1.3 Conflicts . 105
6.1.4 View and Access . 107
6.1.5 Delegation . 108
6.1.6 Conclusion . 109

6.2 Formal definitions of ATMS . 109

viii

CONTENTS

6.2.1 Serializability and Correctness . 110
6.2.2 Failure Atomicity . 111
6.2.3 Atomic Transactions . 111
6.2.4 Nested Transactions . 112
6.2.5 Transaction Ordering and Compensating Transactions 115
6.2.6 Conclusion . 115

6.3 Comparing a Formal Model with an Implementation 116
6.4 Conclusion . 120

7 Demarcation Code for an ATMS TP Monitor 121
7.1 ATPMos: A TP Monitor for ATMS . 122

7.1.1 From Classical Transactions to ATMS support 123
7.1.2 Implementing ATMS support . 124
7.1.3 ATPMos Interface . 128
7.1.4 Conclusion . 128

7.2 Demarcation Code for Classical Transactions 129
7.2.1 The Example Application . 131
7.2.2 Making the Transfer Operation Transactional 132
7.2.3 Simplification Through Wrappers 134
7.2.4 Transaction Management as an Aspect 135
7.2.5 Conclusion . 137

7.3 The Transfer Operation as a Saga . 137
7.3.1 Demarcation Code for the Saga 138
7.3.2 Concerns in Demarcation Code for the Saga 142
7.3.3 Conclusion . 145

7.4 Conclusion . 146

8 KALA: Kernel Aspect Language for ATMS 147
8.1 KALA: The Language . 148

8.1.1 Naming and Grouping . 149
8.1.2 Dependencies, Views and Delegation 152
8.1.3 Termination of Transactions . 153
8.1.4 Automatically Starting Secondary Transactions 155
8.1.5 Conclusion . 158

8.2 An Aspect Weaver for KALA . 159
8.2.1 Making a Method Transactional 159
8.2.2 The begin, commit and abort blocks 163
8.2.3 Naming and Groups . 163
8.2.4 Autostarts . 165
8.2.5 Why a New Weaver? . 168

ix

CONTENTS

8.2.6 A Word on Language-Independence 170
8.2.7 Conclusion . 170

8.3 Conclusion . 172

9 Composing ATMS Concerns With KALA 173
9.1 Separate Definition of Concern Code . 174

9.1.1 Sagas: Structure . 175
9.1.2 Sagas: Rollback Handling . 176
9.1.3 Conclusion . 179

9.2 Composing KALA Code . 179
9.2.1 Sagas . 181

9.3 Other ATMS Descriptions . 183
9.3.1 Nested Transactions . 184
9.3.2 Relatively Consistent Schedules 186

9.4 Building a New ATMS: Cooperating Nested Transactions 188
9.5 Programing in KALA: The Problem Statement Revisited 191
9.6 Conclusion . 193

10 Domain-Specific Aspect Languages for ATMS 195
10.1 From KALA to Domain-Specific Aspect Languages for ATMS 196
10.2 Classical Transactions . 199
10.3 Nested Transactions . 200
10.4 Sagas . 204
10.5 Relatively Consistent Schedules . 207
10.6 Cooperating Nested Transactions . 208
10.7 Conclusion . 210

11 Using Domain-Specific Languages for ATMS 211
11.1 Using Sagas . 212
11.2 Using Nested Transactions . 217
11.3 Using Relatively Consistent Schedules 223
11.4 Conclusion . 228

12 Conclusions and Further Research 231
12.1 Research Context . 231

12.1.1 Issues with Transaction Management 232
12.1.2 Demarcation code . 233

12.2 Contributions . 234
12.2.1 AOP to Modularize ATMS . 234
12.2.2 Engineering of DSLs for ATMS 236

x

CONTENTS

12.2.3 Technical Contributions . 238
12.3 Future Work . 238

12.3.1 A Structured Approach to Select an ATMS 239
12.3.2 ATMS for Multi-Database and Workflow Management 239
12.3.3 Tackling All Tangled Aspect Code 242
12.3.4 Tool support for KALA . 243
12.3.5 Extending KALA and ATPMos 244

A ATPMos Implementation 249
A.1 Classical Transaction Management . 249

A.1.1 Class Layout . 250
A.1.2 Interactions . 252
A.1.3 Conclusion . 255

A.2 Naming and Grouping . 256
A.3 Views . 257
A.4 Delegation . 259
A.5 Dependencies . 259

A.5.1 Modeling Dependencies Through Petri Nets 260
A.5.2 Managing Dependencies . 264
A.5.3 Enforcement of Dependencies . 267
A.5.4 Conclusion . 270

A.6 Conclusion . 271

B Demarcation Code for ATMS 275
B.1 The Example Application . 275
B.2 Making the Transfer Operation Transactional 276
B.3 Simplification Through Wrappers . 279
B.4 Transaction Management as an Aspect 281
B.5 The Transfer Operation as a Saga . 282

B.5.1 Saga Top-level . 284
B.5.2 Last Step . 286
B.5.3 First Step . 288
B.5.4 Second Step . 292

C KALA Grammar Specification 297
C.1 KALA Grammar . 297
C.2 KALA Tokens . 303

Index 305

xi

CONTENTS

Bibliography 307

xii

Chapter 1
Introduction

The story so far:
In the beginning the Universe was created.

This has made a lot of people very angry and has been widely regarded as
a bad move.

— Douglas Adams, “The Restaurant at the End of the Universe”

It is telling that the earliest known instance of writing is not a story, nor a poem
or a religious text. The oldest clay tablet that has yet been discovered, records a
commercial transaction. Transactions have always been and still are the cornerstone
of trade and their record-keeping is of vital importance. Therefore, it should come as
no surprise that the concept of transaction management is also present in computer
science, and takes a prominent role in many business-oriented computer systems.

The fundamental concept of transaction management in computer science seems,
relatively speaking, as ancient as the clay tablet mentioned above, as it has been
developed in the early age of computer science. This, however, does not mean that
transactions are obsolete or irrelevant in current systems. On the contrary, transaction
management permeates a large domain of applications, among which a significant
group is the multi-tier distributed systems.

Multi-tier is a particular architecture for distributed systems: systems which do
not consist of one application running on a single computer. Instead these consist of
different, interacting applications distributed over different computers, which are con-
nected by a network. Within the realm of distributed systems, multi-tier distributed
systems are a class of client-server systems conceived specifically to handle a large
amount of clients which work concurrently on shared data, usually kept in a database,

1

CHAPTER 1. INTRODUCTION

and communicating over a wide area network. Typical examples of such systems are
web banking applications and e-commerce applications such as internet shops. The
multi-tier architecture is successful in building such enterprise applications because
it allows the distributed system to cope with a large number of clients connected
over possibly slow network links, can integrate well with legacy applications and al-
lows for reuse of application logic between different systems. Standards for multi-tier
distributed systems are available, and the de facto standard is Enterprise JavaBeans
[MH01]. EJB was created because of the demand for such a standard, and has also
provided an extra impetus to use the three-tiered architecture where possible. As a
result, in general, a large part of the applications accessible through a web browser,
such as the web applications described above, but also web-based airplane reservation
systems, intranet applications and web services, are built as multi-tier systems.

Multi-tier systems evolved out of large-scale mainframe client-server applications
such as banking systems and monolithic airline ticket reservation systems. This evo-
lution was spawned by the need to scale up client-server applications to handle a very
large number of clients, which was caused, amongst others, by the advent of the in-
ternet. This evolution, combined with the growth in numbers of such systems have
led to a change in the profile of the developers of these systems. Where previously the
development of mainframe applications was the province of an elite cadre of expert
programmers, this is no longer the case. Because of the sheer number and diversity of
multi-tier systems currently in use, and being built, a much larger number of devel-
opers are working on these systems, and it follows that developing such systems now
is performed by programmers of an average skill level.

Technologies and standards for multi-tier distributed systems, such as EJB, cater
to this varying skill-set of programmers by aiding development through an offering of
standardized services, such as remote communications, persistency of data and trans-
action management. The presence, in itself, of these services has caused distributed
applications to be built using just these technologies, because they provide relief from
the issues [TCLL03] of remote communications, persistency, transactions, and so on.
Lesser skilled programmers can simply use the provided services, as is, in their appli-
cations, while higher-skilled programmers can tweak these services, or even roll their
own, to obtain better performance.

One of these provided services is transaction management, which is a core theme
of this thesis. As we said above, transaction management as a concept in computer sci-
ence also has a significant history. It has been developed in conjunction with database
technology and it has become the de facto standard for concurrency management
when using databases. A transaction in computer science consists of a sequence of
program instructions that are to be considered as an indivisible block. Such blocks,
when executed concurrently, may not interfere with each other’s data, and will there-
fore maintain global data consistency, i.e. keep the database in a consistent state.

2

1.1. THE NEED FOR ADVANCED TRANSACTION MANAGEMENT

More formally, a transaction is a protected form of program execution which has the
following properties (Also known as the ACID properties) [GR93]:

Atomic: A transaction is an atomic sequence of actions, i.e. either all actions are
executed, or none of them is executed.

Consistent: A transaction takes the database from one consistent state to another
consistent state.

Isolated: The intermediate effects of a running transaction are isolated from the
other transactions.

Durable: The results of a transaction are kept in persistent storage.

At run-time, a transaction monitor, also known as TP Monitor [GR93], ensures
that concurrent transactions do not inadvertently work on each others intermediate
results, and generally prevents the underlying data of a system to become inconsistent.
This effectively prevents race conditions to occur, which is why transaction manage-
ment has become the mainstay for concurrency management when using databases.
This in turn has led to transaction management to be incorporated as a standard
service in multi-tier technologies, which therefore include their own TP Monitor.

To summarize, in multi-tier distributed systems, a de facto standard for concur-
rency management is transaction management, and it is offered as a standard service
in technologies that support multi-tiered systems. Consequently, all programmers who
are implementing multi-tiered distributed systems, including lesser skilled program-
mers, are exposed to transaction management. Because multi-tiered distributed sys-
tems are so large in number, this means that right now, an exceedingly large number
of applications and averagely skilled application programmers need to deal with trans-
action management.

1.1 The Need for Advanced Transaction Management

Transactions are not a silver bullet, and while they are widely successful, they have
an important downside, which is rollbacks. As we see next, such rollbacks must be
handled by the application, which pollutes the application code. Furthermore, there
are limitations to applicability of transaction management, with regard to the way data
is accessed. This is important because transactions are currently being used in multi-
tier distributed systems beyond the original scope for which transaction management
was conceived. When operating beyond the original scope, workarounds are often used
to try and address the mismatch between properties of concurrency management using
transactions and the concurrency management properties required by the application.

3

CHAPTER 1. INTRODUCTION

It is better to have a fundamental approach to address this mismatch, and we find
this in Advanced Transaction Mechanisms.

In the remainder of this section we discuss the above topics, starting with rollbacks,
next discussing the limitations of transaction management, followed by the need to
match transaction management to the design of the application, and we end with
Advanced Transaction Mechanisms.

Handling Transaction Rollbacks

A far reaching consequence and important downside of the use of transactions which is
frequently underestimated is the possibility of rollback of a running transaction. When
a transaction is rolled back, all the modifications performed by that transaction to the
database are undone and the transaction is terminated, the end result being, seen from
the vantage point of the database, that the transaction never occurred. A possible
cause for such a rollback is a deadlock between two or more transactions, which
occurs when these different transactions are all waiting for each other to complete. A
transaction waits for another transaction when the first transaction wants to access
data which is currently being used by the second transaction. Due to the isolation
property, the first transaction can not see these intermediate results until the second
transaction ends. When that happens, the first transaction can continue. However, if
the second transaction is also waiting for the first to finish, because it wants to access
its data, both will wait for each other indefinitely. Such a wait-for cycle is called a
deadlock, and to break this cycle, one of the transactions will need to be rolled back
by the TP Monitor.

A transaction rollback entails that the work performed during this transaction,
with regard to the database, is undone. Side-effects or operations outside of the
database that occurred during the transaction, however, cannot be canceled. This
is because these are not within the scope of control of the TP Monitor. Consequently,
an important restriction for transactional code is that it may not produce such side-
effects.

Furthermore, rollbacks introduce an extra non-functional concern: handling the
rollback. The application issuing this transaction will need to handle this exceptional
situation, for example by re-starting the transaction. Fundamental to this exception
is the fact that it can always occur, even if the application logic does not suggest a
possibility, and this due to the possibility of deadlocks, which we discussed above. Con-
sequently, as a result of using transactions, the application must always be prepared
to handle transactional exceptions, such as rollbacks. This is a prominent consequence
of using transactions, and is a downside because it pollutes the code with application
logic to handle rollbacks, which is not required if no transactions are used.

A less immediately obvious, but still fundamental property of transaction man-

4

1.1. THE NEED FOR ADVANCED TRANSACTION MANAGEMENT

agement is due to the class of applications for which transaction management was
originally conceived. This leads to a number of limitations for transaction manage-
ment, and we discuss these next.

Limitations of Transaction Management

Transactions have been designed to treat small units of work, which only access a few
data items, and take a short time to complete. Therefore, in applications that process
large units of work, needing a long time to complete, or if these units of work have
a complex hierarchical structure, i.e. outside of this domain, the transaction concept
is ill-suited to perform concurrency management. For example, consider the lack of
fine-grained rollbacks in the case of a complex hierarchically structured unit of work.
Aborting just part of the hierarchy can not be mapped to the flat structure of a trans-
action and therefore entails aborting all of the work. As a second example we consider
cooperative activities, such as the cooperative creation of a document. Here we want
the ability to share some data between different cooperating transactions, which is
impossible due to isolation between transactions. The third example we consider is a
well-known drawback of transaction management when using long-lived transactions,
and we outline this in more detail next.

If we extend transaction time to a few seconds or even further, to a few days,
using what is known as long-lived transactions, the speed at which transactions can
be processed by the TP Monitor drops dramatically. Other transactions which need
to access data in use by the long-lived transaction will have to wait for the long-lived
transaction to complete before they can proceed, which reduces processing speed.
Furthermore, long-lived transactions are more likely to be involved in a deadlock
[WR92], possibly leading to their rollback and the loss of all their work. This implies
that the other transactions have been needlessly kept waiting, i.e. needlessly reducing
transaction processing speed, and furthermore the lost work needs to be restarted,
further reducing transaction processing speed as all the work needs to be redone.

Transaction processing speed is an important design element of transaction man-
agement, a testament to which is that standard benchmarks for TP Monitors, the TPC
benchmarks [tpc04], are available. These benchmarks are maintained by a non-profit
corporation, the Transaction Processing Performance Council [tpc01], created solely
for that purpose, and test transaction throughput. The top performer on one of these
tests, the TPC-C test, on 24 november 2004, is an IBM eServer p5, with an IBM DB2
database and a Microsoft COM+ TP Monitor, achieving 3,210,540 transactions per
minute. That amounts to 53,509 transactions per second, or roughly five transactions
per 10,000th of a second. Granted, the hardware is impressive (64 CPUs at 1.9Ghz,
with a system cost of over sixteen and a half million US dollars), but this should not
detract from the goal of the test, which is processing as many transactions per second

5

CHAPTER 1. INTRODUCTION

as possible. Therefore, it is clear that reductions in transaction processing speed due
to the usage of long-lived transactions in the application should be avoided.

Considering transaction execution speed in multi-tier distributed systems, we see
however that the time-frame in which a transaction is executed is of a different order
of magnitude. For example, because in multi-tier systems the application logic can be
spread out over multiple servers connected by a network, the execution of one transac-
tion can involve multiple servers. As a result execution speed of transactions running
in parallel drops significantly, and communication between the different servers over
the network introduces a significant overall slowdown. Also, cases have been reported
where a multi-tier application programmer uses the transaction service but is not fully
aware of the impact of long-lived transactions. This allows the following scenario to
take place: a unit of work is created by the programmer where in the middle of ex-
ecution some information is asked of the user. Asking the user for this information
takes a large amount of time, due to the communication with the client, and the time
required for the user to fill in this information. Furthermore, there is no guarantee
that the user will immediately fill in this information, so this can take an arbitrary
amount of time. As a result, due to the need for user interaction, the programmer
has created a potentially long-lived transaction, which will significantly slow down
the other transactions within the application.

Matching Transaction Management to the Design of the Application

The underlying problem of when an application encounters the limitations of transac-
tion management is that the fundamental properties of the transaction model regard-
ing long-lived transactions, granularity of rollback, sharing of intermediate results,
et cetera, only align well with a limited kind of concurrent behavior of the applica-
tion: accessing a small number of data items in a short and isolated unit of work. If
the concurrent behavior of the application lies beyond the design scope of classical
transactions, there is a mismatch between the properties of the transaction model and
the concurrency management properties requested by the application, i.e. the design
of the application does not match with the design of the concurrency management
scheme of transaction management.

Because of the growing amount and large diversity of multi-tiered distributed sys-
tems we can be certain that a significant subset of these applications are faced with
these transactional issues. A testament to this is that workarounds for the mismatch
in design between transaction management and the application are known to be in use
[GM83]. For example, take the case of a long-lived transaction resulting from user in-
put required in the middle of the unit of work, seen above. In this case, the workaround
is ensuring that all user interaction is performed before the transaction starts. This can
be difficult, however, for example, if the input required from the user depends on some

6

1.1. THE NEED FOR ADVANCED TRANSACTION MANAGEMENT

computation performed in the beginning of the transaction. Other workarounds range
from letting the user resubmit all data if a transaction is rolled back, to skipping the
use of transactions and processing everything in batch. Such workarounds, however,
do not address the crux of the problem, while the demand for multi-tier applications
which overcome this design mismatch increases. Take for example the rise of internet
banking: whereas previously banking operations were performed overnight in batch,
with internet banking such operations are expected to be performed directly, and the
results should be immediately visible to the user. Similarly, a user of a web shop will
not be inclined to resubmit all the information previously entered in case of the roll-
back of her transaction. Instead, she probably will be discouraged, lose faith in the
system or be annoyed with the procedure, and may decide to move to a competitor’s
site.

It is clear that what is needed to address the mismatch in design of the application
with the design of transaction management is, instead of workarounds, a fundamental
approach to extend such classical transaction management with more advanced forms.

Advanced Transaction Mechanisms

To address the above issues of performance, cooperation and fine-grained rollback
handling, among others, a number of advanced transaction mechanisms (ATMS) have
been developed, mostly between 1981 and 1997. An impressive number of alternate
ATMS can be found in the literature, and two books have been published about the
subject [Elm92, JK97]. However, each ATMS usually focuses on one single issue, and
no overall system has been developed which treats a large number of the above issues
of classical transactions. We now briefly introduce the two best known ATMS, as
examples.

The most well-known ATMS is nested transactions [Mos81], which enables a tree
of hierarchically structured transactions to be built. In such a transaction tree, a
child transaction also has access to the data used by its parent transaction, and this
recursively up to the root transaction. Furthermore, when a child transaction commits
its data, this is not committed to the database, but instead to its parent, which is now
responsible for committing this data. Aborting a child does not entail that its parents
are aborted, which gives us a more fine-grained mechanism for handling rollbacks.

A second example of ATMS is Sagas [GMS87]. Sagas relaxes the atomicity re-
quirement of long-term transactions by splitting them into a sequence of atomic sub-
transactions. The sequence of sub-transactions should either be executed completely
or not at all. Splitting the long-term transactions releases intermediate results ear-
lier, which increases concurrency as other transactions can execute concurrently, and
decreases the probability of deadlocks, since after each sub-transaction all data is re-
leased, and each sub-transaction will probably require less resources than the complete

7

CHAPTER 1. INTRODUCTION

Saga. However, to rollback the Saga extra work needs to be done: compensating actions
must be executed to undo the effects of already committed sub-transactions. Hence,
the application programmer should define a compensating transaction for each sub-
transaction, which performs a semantical compensation action. To rollback a Saga,
the TP Monitor aborts the currently running sub-transaction, and subsequently runs
all required compensating transactions in reverse order.

In general, available ATMS differ greatly due to the fact that each ATMS was
designed to address a specific subset of the limitations of classical transaction man-
agement. The above two ATMS, nested transactions and sagas, illustrate this: nested
transactions addresses the granularity and scope of rollbacks, while sagas addresses
the issues with long-lived transactions. While both models are hierarchical, sagas has
only one level, while nested transactions has an unlimited nesting depth. In nested
transactions results are passed to the parent, while in sagas they are written to the
database. Lastly, performing a rollback is quite intricate for the TP Monitor in sagas,
and straightforward in nested transactions.

As we said above, in multi-tier distributed systems transaction management is
used for purposes beyond the original scope for which it was designed. As a result in
some applications, for example, long-lived transactions pop up, drastically reducing
application performance, where it would be better to use sagas, or an inherently tree-
structured computation will be coded as one classical transaction, where it would
be better to use nested transactions. Furthermore, due to the large amount and large
diversity of multi-tiered distributed systems we can be certain that a significant subset
of these applications are faced with these transactional issues, which have already been
solved by an ATMS. Therefore, to address these issues in these systems, we at least
need to be able to use an ATMS the design of which better fits the design of the
application.

Summary

In brief, classical transaction management is designed to perform concurrency man-
agement for small units of work which only access a few data items, and takes a
short time to complete. Not taking this into account results in reduced performance
or is tackled by the use of workarounds which do not address the crux of the issue.
Fundamental approaches to address these issues, in the form of advanced transac-
tion mechanisms have been developed, each mechanism addressing a specific subset
of these issues. Because of the large amount and diversity of multi-tiered distributed
systems, which all use transaction management, we can be sure that these systems
will be faced with these issues, and therefore they should be able to use such advanced
transaction mechanisms where advisable.

8

1.2. OUTLINE OF THE CONTRIBUTIONS

1.2 Outline of the Contributions

In this dissertation, we address the problem of using advanced transaction manage-
ment in multi-tiered distributed systems. Before giving an overview of the problem
and our solution, we provide a brief outline of the work performed. The different topics
we briefly touch here are summarized in the remainder of this chapter, and we also
refer to parts of the text that discuss these different topics in more detail.

To modularize the use of an ATMS in a given application, we have used aspect-
oriented programming (discussed in chapter 3) to describe ATMS as an aspect. We
developed our proper aspect language, named KALA, and aspect weaver (introduced
in chapter 8). KALA allows a wide variety of ATMS to be used in the application,
because it is based on the ACTA formal model for ATMS (discussed in chapter 6).
Furthermore all code for the ATMS concern is written in KALA, making the core
application logic syntactically oblivious of the ATMS concern.

When studying advanced transaction management (outlined in chapter 2), and
more particularly the structure of the code required to use such models, we have
observed the problem of tangled aspect code (introduced in chapter 4). Tangled aspect
code occurs when an aspect itself consists out of multiple cross-cutting sub-concerns.
Current aspect tools provide inadequate support for modularizing these sub-concerns,
forcing the developer to write aspect code which itself is tangled, hence the name
tangled aspect code. KALA was designed to tackle the problem of tangled aspect
code for the ATMS aspect, by providing a modularization mechanism that allows the
different sub-concerns to be expressed in different modules (introduced in chapter 9).

KALA programs describe the inner workings of an ATMS and, as a consequence,
are quite large and complex. To increase ease of use of ATMS for application pro-
grammers, we have added an extra level of abstraction. We have built a number of
domain-specific languages for ATMS (introduced in chapter 10), each language re-
flecting the concepts of a specific ATMS, instead of its inner workings. If a DSL for
a given model is available, the application programmer can write code in the DSL
for that ATMS, working with the concepts of the model (illustrated in chapter 11),
instead of KALA code, which treats the inner workings of the model. The different
DSLs are built on top of KALA: internally the DSL compilers translate DSL code
to the equivalent KALA code before invoking the KALA weaver on that code. This
provides for extensibility as it aids development of a new DSL. For a new ATMS, the
DSL compiler solely needs to translate the DSL code to the equivalent KALA code.

In order to have run-time support for ATMS we built a custom TP Monitor, called
ATPMos (introduced in chapter 7). ATPMos is also based on the ACTA formal model
and provides run-time enforcement of the specifications declared in KALA code.

Figure 1.1 gives an overview of how these different topics are related. The remain-
der of this chapter provides a more extensive summary.

9

CHAPTER 1. INTRODUCTION

Aspect
Weaver

Translator

DSL

KALA

Java

.class
Uses ATPMos

Application Specification

ACTA

Implements

Reifies

Compilation Process

TP MonitorExecutable

Transaction SpecCore Logic

Application Run-Time

Models

ATMS

Describes
internals

Reifies

Figure 1.1: Overview of how the different topics in the thesis are related.

10

1.3. USING ADVANCED TRANSACTION MANAGEMENT

1.3 Using Advanced Transaction Management

In general, when writing an application which uses transactions the application pro-
grammer has to mark the start and end of each transaction in the application code,
and what to do in case of a rollback. In this transaction demarcation code, the pro-
grammer will also associate each data access with a running transaction. At run-time
TP Monitors are steered by this demarcation code, and will mediate concurrent ac-
cesses to the data by the different transactions within the application. Writing such
demarcation code has been recognized as being difficult work [KG02, SLB02, RC03],
and the resulting demarcation code is often found to be incomplete, or even erroneous.
A telling example of this is found in [TCLL03] where in an application for a financial
institution, some transaction rollbacks were simply ignored, leading to a security hole.

Modularizing Transaction Demarcation Code

A fundamental reason why transaction demarcation code is difficult to write, is that
it can not be encapsulated into one module using traditional software engineering
techniques. This observation is not new, it has already been made by several members
of the research community on Aspect-Oriented Programming (AOP) [KLM+97]. In
general, the AOP observation is that in programs that rely on the classical, hierarchical
modularization mechanisms, such as modules, procedures and classes, the code of
certain concerns is always spread out over different modules, instead of grouped into
one module.

An example of such a cross-cutting concern is transaction management. Indeed,
if we let transaction boundaries coincide with method boundaries, as is the norm in
multi-tier technologies, we see that each method which is transactional is tainted with
demarcation code. The method not only addresses the core concern of the application,
but tangled with this code is transaction demarcation code. As a result, transaction
demarcation code is scattered throughout the entire system, crosscutting different
modules, where it is intermingled with the other code.

The problem with such tangling of code addressing different concerns is that, al-
though, conceptually, these concerns can be reasoned about independently, at code
level they become tightly coupled. This runs contrary to the software engineering
principle of separation of concerns [Par72, HVL95] , which states that each concern
of the application should be addressed in one and only one module of the program.
Because of the lack of separation of concerns, integration of a new concern is difficult,
as the programmer must manually add code in the correct locations. Furthermore,
when debugging one concern, the programmer is needlessly faced with the code treat-
ing other concerns, requiring manual extraction of the concern being tackled out of
the multiple concerns present in the code. Maintenance is also affected, as for main-

11

CHAPTER 1. INTRODUCTION

tenance the same concern extraction is required to understand and modify the code,
and when changes are made to one concern this also affects the code for the other con-
cerns, as they have become tightly coupled. In summary, and applied to the concern
of transaction management, the above signifies that adding the concern of transaction
management makes the application code more complicated, making it more difficult
to implement and maintain such code.

AOP is a prominent technique which does allow for modularization of cross-cutting
concerns, by defining them as aspects. Aspects can themselves specify how they cross-
cut other modules and exactly where or at what points they do so, and are described
separately from the main program, in a special-purpose aspect language. At compile-
time, a tool, called the aspect weaver, combines the code from the main program and
the aspect code into one executable. The resulting separation of concerns, not only
at design level but now also at the implementation level, is known to greatly enhance
implementation and maintenance [SLB02, RC03].

AOP has been applied to separate out transaction demarcation code for classical
transactions [KG02, SLB02, RC03] into a module. This work has shown that AOP
succeeds in modularizing transaction demarcation code, providing effective relief from
the difficult task of manually inserting and maintaining transaction demarcation code
all over the application. For advanced transaction management, however, no work has
yet been published which modularizes the concern of ATMS.

Using an ATMS

To use an ATMS in a multi-tier application, the application programmer will also have
to write demarcation code for that ATMS, as in classical transactions. However, using
an ATMS compounds the above problem of complexity of the code, because demar-
cation code for ATMS will be even more complicated than for classical transactions.
Take, for example, the Sagas model, where the programmer does not specify just one
transaction. For Sagas, he needs to specify a sequence of different subtransactions,
and furthermore needs to declare compensating transactions for each sub-transaction.
In other words, the demarcation code now needs to perform much more tasks then
previously. In addition to the start and end of transactions, and marking data ac-
cesses, demarcation code must also include the extra information mentioned above.
Furthermore, compensating transactions must be fired in the correct order, namely
the inverse order of the running of the sub-transactions. Determining this sequence
must therefore also be performed in the demarcation code: logging the sequence of
sub-transactions when they run, and ensuring that at compensation time the compen-
sating transactions are fired in the right order. If we consider another example; nested
transactions, the developer also needs to define extra information in the demarcation
code. A child transaction, when running, must identify which currently running trans-

12

1.3. USING ADVANCED TRANSACTION MANAGEMENT

action is its parent. The child then reuses data accessed by the parent and, at commit
time, delegates all its work to the parent. Again this implies that the demarcation
code will contain these additional tasks, making it more complex.

Put briefly, transaction demarcation code for ATMS will be more complex than
transaction demarcation code for classical transactions, as it must perform more work.
However, the complexity of demarcation code for classical transactions is already con-
sidered to be a problem when considering the impact this code has on ease of im-
plementation and maintenance of the application. As the complexity of demarcation
code for classical transaction is already a known issue, adding extra work only com-
pounds the problem. In other words, writing demarcation code for ATMS is even more
problematic, as this code is more complex. Therefore the relief of a good modulariza-
tion for demarcation code of ATMS will be even greater than the relief of a good
modularization of classical transactions.

Using Multiple ATMS

As a consequence of the large number of multi-tier distributed systems, there will be
a significant amount of systems which can benefit from using ATMS, so many people
should be able to work with an ATMS. However, combine this with the wide variety of
multi-tier distributed systems, which allows many shortcomings of the classical model
to be encountered, and the limited focus of each ATMS, which yields that knowledge
of just one ATMS will only be sufficient to aid in development of a small sub-set of
such distributed systems. Therefore, programmers for multi-tier distributed systems
must be able to use a wide variety of existing ATMS. This allows their knowledge
to be applied in many systems, and for each case the design of the ATMS to fit the
design of the application, i.e. the specific transactional properties of the system being
built are supported by the ATMS.

While a wide variety of ATMS exists, there is, however, no certainty that the
transactional properties required by the system being built are provided by an existing
ATMS. In other words, we cannot be sure that an ATMS exists of which the design fits
the design of the application. Therefore, in such cases, we should allow a programmer
versed in ATMS to design a new ATMS that better fits the design of the application.
This could be performed either by tweaking an existing ATMS, by modifying certain
properties of this ATMS, or by designing a completely new ATMS from scratch. This
new ATMS can then be used not only for that specific application, but also for other
applications which require the same transactional properties.

13

CHAPTER 1. INTRODUCTION

Summary

To recapitulate, transaction demarcation code is difficult to write because it can not
be modularized. This is a known problem for classical transactions, but it is even more
pertinent with ATMS, because the demarcation code for these models is far more com-
plex. What is needed is a solution to modularize demarcation code for ATMS that is
general enough to cover a wide variety of existing ATMS and allows for the tweaking of
an existing ATMS or even the creation of a new ATMS. Also, this modularization must
enable the average multi-tier distributed systems programmer to write demarcation
code for many ATMS. This will allow an application programmer to choose the ATMS
of which the design best fits the design of the application, yielding application-specific
advanced transaction management.

1.4 Application-specific Advanced Transaction Management

The goal of this thesis is to allow an average application programmer (who is not nec-
essarily an expert on ATMS) of a multi-tiered distributed system to use an advanced
transaction model of which the design is best suited to the design of the application,
i.e. to have application-specific advanced transaction management. The application
programmer will be able to chose from a wide variety of ATMS, or even be able to roll
his own ATMS when needed. Furthermore, we increase ease of use of these ATMS by
modularizing transaction demarcation code in such a way that coding skills for one
ATMS are easily transferable to others, where applicable. This will allow an applica-
tion programmer to use many different models without requiring detailed expertise
about ATMS internals. The demarcation code will be gathered in one module, and
abstracted to the level of concepts present in the ATMS. This shields the application
programmer from the technical details involving the inner workings of an ATMS and
the intricacies of manually writing transaction demarcation code.

To attain the goal of application-specific advanced transaction management, we
apply existing techniques from software engineering, marrying Aspect-Oriented Pro-
gramming [KLM+97] and Domain-Specific Languages [vDKV00]. Using these two
techniques allows us to raise ease of implementation and maintenance, but without
losing general applicability. We achieve this through a two step approach, the first
step using Aspect-Oriented Programming and the second step using Domain-Specific
Languages. We now explain each step in more detail.

Using AOP to Modularize ATMS Demarcation Code

As we said above, the goal of Aspect-Oriented Programming (AOP) [KLM+97] is to
modularize cross-cutting concerns as aspects. Work has already been done to modu-

14

1.4. APPLICATION-SPECIFIC ADVANCED TRANSACTION MANAGEMENT

larize classical transactions as an aspect [KG02, SLB02, RC03], but this does not take
ATMS into account.

To modularize advanced transaction management as an aspect, we first concep-
tually analyze different existing ATMS, and determine their properties. From this
analysis, we will see that we should not consider such an ATMS as one monolithic
block, but as a composition of a number of sub-concerns. Examples of such concerns
are the management of rollbacks and allowing intermediate results to be visible to
other transactions. This view on ATMS allows us to change the design and implemen-
tation of one of the constituent concerns, which amounts to tweaking the ATMS to
exhibit a slightly different set of properties. In other words, by changing one of the
concerns constituting an ATMS, we can change the design of the ATMS better to
fit the application. We can also go beyond tweaking, and compose a new ATMS, by
combining existing concerns of different ATMS into one new ATMS. This allows us
to effectively tailor an ATMS to the design of the application at hand.

To facilitate tailoring an ATMS to the design of the application, we should mod-
ularize the different concerns of an ATMS into different modules. This allows easy
modification of the implementation of such a concern, and in general brings all the
benefits of separation of concerns to the design and implementation of an ATMS. We
therefore look at existing solutions for modularization of transaction management us-
ing AOP, to determine their capabilities with respect to composing the ATMS aspect
out of different modules. Up until today, only one aspect language and weaver have
yet been used to modularize transaction management as an aspect: AspectJ [Asp05].
In general, AspectJ is the best known and most used technology to implement aspects,
and many tools with features similar to AspectJ have been created. We find, however,
the composition features of AspectJ to be too weak for our needs. Conceptually, As-
pectJ and similar tools do not allow us to define the different concerns of an ATMS
in separate modules, and combine these into one aspect when weaving. If we use As-
pectJ or similar tools, we are forced to manually compose the different concerns in the
aspect code. We show that this leads to aspect code (which treats different concerns
of the ATMS) that itself consists of multiple tangled concerns, a phenomenon which
we call tangled aspect code.

To our knowledge, we have uncovered the first case in which an aspect, ATMS, is
found to be composed of different subconcerns, and the aspect code itself to be tangled
code.

KALA: An Aspect Language for ATMS

To address the problem of tangled aspect code for ATMS, we use domain information
for this aspect, advanced transaction management, to create an aspect language and
corresponding weaver specifically for ATMS. This language is called KALA, (Kernel

15

CHAPTER 1. INTRODUCTION

Aspect Language for ATMS) and allows for separate specifications of the different
concerns within an ATMS, and for these modules to be merged into one aspect defi-
nition before weaving.

As a basis for the design of KALA, we use an existing formal model for ATMS,
ACTA [CR91]. ACTA was created as a common framework in which it is possible
to specify different ATMS. The purpose of ACTA is to be able to reason about a
wide variety of ATMS, such that commonalities and variabilities between the differ-
ent models can be deduced, and new models can be synthesized by combining features
of different existing ATMS. In ACTA, an ATMS is formally defined by using three low-
level building blocks (called axioms) to describe the properties of an ATMS. A wide
variety of ATMS have been formally described in ACTA, and a number of these de-
scriptions have been published. These descriptions are quite complicated and lengthy:
for example, nested transactions is defined using nineteen axioms, which are not that
straightforward, as can be seen in [CR91]. The underlying cause for this is that the
ACTA axioms work in terms of the fundamental underlying principles of ATMS, in
order to be able to support such a wide variety of ATMS. These axioms are very
fine-grained in comparison with the concepts presented by the ATMS to the transac-
tion programmer. For example, a concept we have already mentioned when discussing
the Sagas ATMS is the compensating transaction, which defines a semantic undo for
a given action. In ACTA, this single concept requires three different axioms to be
specified. In general, the ACTA axioms need to be combined extensively to form the
resulting ATMS concepts. However, the key advantage of ACTA is that it covers a
wide variety of ATMS. Therefore, because we use ACTA as a base for KALA, KALA
programs are able to express many ATMS and allow the application programmer to
use an ATMS the design of which is best fit to the design of the application.

The KALA language uses the ACTA axioms as statements, allowing ACTA speci-
fications to be programmed as KALA code. In other words, KALA allows us to specify
the transactional behavior of the application in terms of the ACTA primitives, which
enables us to use a wide variety of ATMS in multi-tiered distributed systems. If a
formal specification for an ATMS can be given in ACTA, we can also express this
specification as a KALA program. This means that an application programmer can
either use an existing ATMS, if its properties fit the transactional properties required
by the application, or create and use a new ATMS if no existing ATMS fits. Further-
more, KALA allows for modularizing such specifications. As we have said above, an
ATMS is not one monolithic entity, but rather a composition of different concerns. In
KALA, we can write each concern as a separate module, and compose these to form
a full ATMS specification. This brings the known benefits of separation of concerns,
discussed above, to the process of writing and maintaining KALA code, i.e. creation
and usage of an ATMS.

As we said above, the ACTA axioms are, conceptually, at a lower level than the

16

1.4. APPLICATION-SPECIFIC ADVANCED TRANSACTION MANAGEMENT

concepts present in the different ATMS, because different axioms need to be com-
bined to form one ATMS concept. As a result, the programs in KALA describing
ATMS specify the inner-workings of these ATMS and are quite large. So while using
AOP, we have separated out transaction management from the core concern of the
application, when we consider the KALA code we see that it still needs to deal with
many interacting sub-concerns. Clearly this level of complexity is not suitable for the
application programmer as he only needs to reason in terms of the concepts relevant
at that time, i.e. the abstractions offered by an ATMS. Consequently, while we have
enabled application-specific advanced transaction management, it is beneficial to go
one step further, through the use of a Domain-Specific Language for each ATMS.

DSLs: From ATMS Implementation to ATMS Concepts

Domain-Specific Languages (DSL) [vDKV00] are little languages that are specifically
designed to express applications in a particular domain. This entails that the language
constructs of a DSL directly reflect the concepts of the domain and hide the DSL
programmer from non-domain-specific technical issues. As a result, using a DSL for
each ATMS shields the application programmer from the technical details involving
the inner-workings of the ATMS he is currently using. Also, the specifications written
in the DSL are more declarative and are closer to the intended behavior [vDKV00].

We raise the level of abstraction of KALA code to the level of concepts present in
an ATMS, using a number of Domain Specific Languages we have built. We create
specific DSLs for multiple ATMS, each DSL reflecting the abstractions used in that
model, and we illustrate how a DSL can be built for a newly created ATMS. Using
an ATMS DSL to specify how an application uses an ATMS requires much less code
than the equivalent KALA specification. The DSL specification is much more concise
due to the fact that the decomposition of ATMS concepts into ACTA axioms is not
required, as it is automated by the preprocessor. This makes specifying the code in the
DSL less error-prone as less operations need to be considered and combined. Declaring
transactional properties at the level of the concepts of the ATMS therefore makes it
much easier to work with the code, because these concepts are immediately apparent,
instead of the KALA specification, where the programmer must mentally construct
these out of the primitive operations.

We have chosen to create different DSLs over adding abstraction and modulariza-
tion mechanisms to KALA because of two reasons. First, DSLs ensure that we can
completely shield the application programmer from the internals of the ATMS. Sec-
ond, while ensuring correct use of abstraction and modularization mechanisms can be
a tricky task, a DSL can embed such constraints in the language, which eliminates
possible causes for errors.

Creating a DSL for an ATMS is eased by the availability of KALA. KALA can

17

CHAPTER 1. INTRODUCTION

be used as an intermediate representation for transactional specifications. At compile
time, under the hood, a DSL compiler can simply translate the DSL specification into
the equivalent KALA program, instead of having to produce executable code. The
DSL compiler then calls the KALA aspect weaver which combines this code with the
application code to create the final executable. This process in two steps is illustrated
in figure 1.2.

Aspect

Weaver
Translator

1 2

Nested Saga RCS

KALA

Java

.class

Figure 1.2: At compile time first code in the DSL is translated to the equivalent KALA
code, which second is woven into the Java code.

The use of a DSL for each ATMS would seem to imply that programming skills
in one ATMS are non-transferable to other ATMS, but this is not the case. This is
because we do not have a disjoint set of DSLs, but a family of DSLs, where ATMS
concepts are reused as much as possible. For example, the concept of a compensating
transaction can be found in many ATMS, and in each of the DSLs we created for
these models, a compensating transaction is declared in the same way, using the same
syntax. Reusing concepts as much as possible ensures that knowledge of one ATMS
is partially transferable to other ATMS, because common concepts of the ATMS are
simply reused in the DSL. For example, a ATMS we have not yet discussed is Relatively
Consistent Schedules, which can be seen as an extension to Sagas. In the DSL for this
ATMS, all concepts of Sagas are reused, and one new type of declaration is added,
which corresponds to the extension made to Sagas.

Summary

The use of a family of DSLs to raise the abstraction level of KALA code concludes
the description of our approach to enable application-specific transaction manage-
ment. We achieved this by first designing an aspect language, KALA, which allows
for modularization of the ATMS concern as an aspect. In KALA, the transactional
properties of an application are declared using fine-grained constructs taken from the

18

1.5. CONTRIBUTIONS

ACTA formal model for ATMS. KALA code itself can also be modularized, so that
each module reflects one concern of the ATMS being used. KALA code, however is
quite verbose and complex as it treats transactional properties at a very fine-grained
level. To tackle this, we further raise the level of abstraction to the level of concepts
present in the ATMS. We defined a family of DSL’s, one DSL per ATMS. Using these
DSLs completely shields the application programmer from the implementation issues
of an ATMS, and allows the programmer to work at the level of the concepts present
in the ATMS.

Having described our technique to enable application-specific transaction manage-
ment, through the use of AOP and DSLs, from a birds eye perspective, we can now
detail the contribution of and benefits yielded by our approach, as a result of the
union of the advantages both offered by AOP and DSLs.

1.5 Contributions

To the best of our knowledge, this thesis is the first research that has been performed
on the topic of using advanced transaction models that addresses the software engi-
neering perspective of using an ATMS by application programmers. More specifically,
it is the first time the software engineering techniques of AOP and the use of a DSL
have been applied to alleviate the problem of demarcation code for ATMS. This en-
ables these models to be used by a large number of application programmers. We state
that this is the first research on this topic as, to the best of our knowledge, the most
advanced research in this area has been performed by Kienzle and Gerraoui [KG02]
and Procházaka [Pro01]. The former limits itself to considering how optimizations of
classical transaction management can be performed using AOP, while the latter does
not achieve a full modularization, and only supports a select few advanced models. We
go beyond classical transaction management, and systematically treat a wide variety
of advanced forms of transaction management.

The major contribution of this work is the successful modularization of ATMS,
which can be broken down in three different parts. First, we built a general aspect
language, KALA, in which we can express a wide variety of ATMS, separate from
the application logic, and which allows for modularization of the different concerns
contained within such an ATMS. Second, on top of this aspect language a family of
Domain-Specific languages for ATMS has been created, where each language reifies
the concepts exposed by the ATMS for which it has been created. Third, we have
shown the extensibility of this solution by creating a new ATMS and writing KALA
code for it, along with a DSL for that language.

Alongside the above research contributions, two technical contributions have also
been made. First a general TP Monitor supporting a wide variety of ATMS, based on

19

CHAPTER 1. INTRODUCTION

the ACTA formal model has been created. Second, an aspect weaver for KALA has
been implemented, which generates code using this interface.

We shall now discuss all of the above contributions, outlining the benefits that
result from each contribution.

The Kernel Aspect Language for ATMS

KALA is an aspect language, which first and foremost means that the concern of
advanced transaction management is separated out from the core concern of the appli-
cation. This yields separation of concerns not only at the conceptual level, but also at
the level of the code. In our examples we see, as a result, that ease of implementation
of applications when using KALA is much higher than when writing demarcation code
by hand. In these examples the use of KALA not only decreases the amount of demar-
cation code which has to be written, but the complexity of KALA code compared to
manually written demarcation code is also lower. This is because in the correspond-
ing KALA code a number of transaction-related sub-concerns no longer need to be
addressed, which also eases implementation and maintenance.

KALA is not model-specific, but a general aspect language for the domain of
ATMS. As it is based on the ACTA formal model for ATMS, it therefore allows
for a large variety of ATMS to be programmed: KALA programs define transactional
properties of the application at the level of the ACTA formal model. This ensures
that the system is widely applicable because it allows the KALA programmer to write
code using many ATMS, including models for which no model-specific language has
yet been written.

Tangled Aspect Code

In building KALA, we have identified a shortcoming of the aspect language and weaver
which has currently been used to modularize transaction management as an aspect:
AspectJ. AspectJ does not allow us to cleanly modularize the different concerns within
one ATMS. As a result, AspectJ code for an ATMS aspect will handle the different
concerns within the aspect in a tangled way, disallowing the advantages of using
separation of concerns when designing and implementing an ATMS. We name the
phenomenon of aspect code itself being tangled with different concerns tangled aspect
code.

It would be beneficial if AspectJ, specifically, but also other general-purpose as-
pect weavers, were able to tackle the issue of tangled aspect code. This would allow
an aspect which is composed of different concerns to be expressed in different mod-
ules, even though the corresponding aspect code is tangled aspect code. This brings
the benefits of separation of concerns at the aspect level, yielding the advantages in

20

1.5. CONTRIBUTIONS

implementation and maintenance for aspect code.

Model-specific languages

Layered on top of KALA are a number of model-specific languages, each treating one
specific ATMS. These languages reify the concepts specific to the model they treat,
rendering the code in these languages more abstract. Writing code at such a high
level of abstraction has as a first advantage that it has become understandable for
the average application programmer. Using our approach, an application programmer
with a basic understanding of the concepts in the model will be able to use this model
in the application. The second advantage of the high level of abstraction is that this
code is very concise, making it easier to focus on the essentials when developing or
maintaining that code. Unburdened by needless verbosity, the transactional code is
now easily written and adapted, leading to quicker development.

As we provide a family of Domain-Specific Languages, one language per ATMS,
there is as much reuse of language concepts as possible which minimizes the learn-
ing curve when going from one ATMS to another. In our approach, this is possible
because common concepts between different ATMS, such as, for example, the use of
compensating transactions, are specified the same way in the different languages. As
a result, the programmer only needs to learn the different concepts of the new ATMS
to be able to use it.

Extensibility

Our approach is extensible as it has the ability to treat a new ATMS, i.e. an ATMS
for which no model-specific language has yet been created. We have created such
an extensible system thanks to the matrimony of AOP and DSLs and the general
applicability of KALA.

Because KALA is a general aspect language for ATMS, a model not previously
covered but expressible in the ACTA formal model for ATMS should be expressible
in KALA. In other words, to use a new ATMS, a programmer versed in KALA and
the specifics of the new model, can write KALA code to use the new model in the
application. If this model is used frequently, however, it would be advantageous to
also raise the abstraction level for application programmers using this ATMS. To ease
the use of this new ATMS, only a new DSL has to be created which translates the
high-level specification to the equivalent KALA program. Furthermore, in writing this
DSL, the creator of the DSL translator can reuse the concepts already supported by
the existing DSL family, and therefore only needs to focus on the new concepts used
by that ATMS.

21

CHAPTER 1. INTRODUCTION

General TP Monitor for ATMS

All code woven by the KALA weaver uses ATPMos: a general TP Monitor for ATMS
based on the ACTA formal model, which we created. This yields a number of technical
benefits, with regard to run-time behavior. First of all, as the different ATMS use the
same underlying run-time infrastructure, this allows the application, or applications,
that employ ATPMos to use different ATMS at the same time. This enables these
applications to mix and match a virtually unlimited number of ATMS, where needed,
whereas in current ATMS TP Monitors this is simply impossible as these are model-
specific. Furthermore, having a single TP Monitor, instead of many, leverages the
improvements of this TP Monitor to all ATMS in one fell swoop. Advances in speed,
implementation of recovery, adding explicit multi-database support, et cetera, will be
immediately available to all ATMS, instead of to just one model, as is the case with
model-specific TP Monitors.

KALA weaver

Having a source-code weaver for KALA shows, first of all, that KALA specifications are
translatable to the equivalent transaction demarcation code. Also, as we give an outline
of how these specifications are translated, we allow for other weavers to be built for
KALA, which can work through other means, such as e.g. byte-code manipulations.
In the extreme, given a powerful enough general-purpose aspect weaver, it is even
possible to write a library that implements KALA support for that weaver.

1.6 Overview of the Dissertation

In the next chapter we treat transaction management and advanced transaction man-
agement. We start with an introduction to the concepts of transaction management
before talking about advanced transaction management. We detail four representative
ATMS in this chapter: Nested Transactions, Sagas, Relatively Consistent Schedules
and Split Transactions.

After detailing different models for advanced transactions, chapter three considers
the complexity of demarcation code for these models. In this chapter we provide a
brief introduction to separation of concerns and Aspect-Oriented Programming. As
AOP has already been used to modularize demarcation code for classical transactions,
we discuss this work here. We end chapter three by considering the need for a good
separation of concerns for ATMS demarcation code.

Chapter four analyzes the concern of advanced transaction management, and finds
that this concern itself is composed of multiple sub-concerns. We then consider the
location of the code, within the demarcation code, treating these sub-concerns. We see

22

1.6. OVERVIEW OF THE DISSERTATION

that, in such demarcation code, the code for the different sub-concerns is itself tangled
code. Considering existing, popular aspect technology, we observe that these tools do
not allow these sub-concerns themselves to be modularized, and require aspect code
to be written that itself is tangled.

In chapter five, we change the perspective from the application using an ATMS
to the middleware and TP Monitor which provide the support for running the ap-
plication. We first give a brief introduction to multi-tier distributed systems and the
role of TP Monitors in these systems. We then consider one standard architecture for
such systems in more detail: Enterprise JavaBeans (EJB). Of EJB we give a general
overview before discussing how transaction management is performed in this architec-
ture. We end this chapter by giving a number of critiques on transaction management
in EJB, with regard to separation of concerns and support for a wide variety of ATMS.

To be able to support a wide variety of ATMS, we use an existing formal model as
a basis of our TP Monitor and aspect language. Chapter six details this formal model,
named ACTA. We first describe this model in detail before giving a number of formal
specifications of transaction models using ACTA. We end this chapter by considering
how we can go from this formal model to an implementation.

Chapter seven starts with giving an overview of our TP Monitor based on the
ACTA formal model, called ATPMos. We then proceed with showing the difficulty of
writing demarcation code both for classical transaction management and for ATMS.
This is performed by means of an example application. This example confirms the
observations of chapter three and four with regard to the complexity of demarcation
code and tangling of different sub-concerns in this code.

In chapter eight we introduce KALA: the aspect language we created that provides
for a good modularization of the ATMS concern. We first detail the language, giving
some example KALA specifications. Second we outline how our aspect weaver weaves
KALA specifications into Java code.

After having detailed KALA and our weaver, chapter nine discusses the modular-
ization features of KALA. We show how KALA allows the different sub-concerns of
an ATMS to be specified in different modules, and how these modules are combined
to form a complete specification. We show this by defining KALA code for Sagas in
different modules, and giving the equivalent composed code. Furthermore, we give
modular descriptions of the Nested Transactions and Relatively Consistent Schedules
ATMS, and show how we can use KALA to build a new ATMS by changing the
implementation of some modules.

Chapter ten raises the level of abstraction of KALA code by defining a family of
domain-specific languages, one DSL for each ATMS treated in chapter nine. For each
of these ATMS we show the DSL we have built, detailing why this achieves concise
code. Furthermore, we show how the family of DSLs achieves reuse of the language
concepts common to multiple models.

23

CHAPTER 1. INTRODUCTION

Having discussed our approach, chapter eleven illustrates how we ease the usage
of an ATMS of which the design best fits the application being built. We give the
implementation of three example applications, both the Java code for the core concern
and the code in the DSL which specifies the ATMS concern.

The final chapter presents our conclusions and suggests some topics for further
research.

24

Chapter 2
Advanced Transaction Management

‘Alright,’ said Deep Thought. ‘The Answer to the Great Question. . . ’
‘Yes. . . !’

‘Of Life, the Universe and Everything. . . ’ said Deep Thought.
‘Yes. . . !’

‘Is . . . ’ said Deep Thought, and paused.’
‘Yes. . . !’

‘Is . . . ’
‘Yes. . . !!! . . . ?”

‘Forty-two,’ said Deep Thought, with infinite majesty and calm.
— Douglas Adams, unexpected results of a long transaction in

“The Hitch Hiker’s Guide to the Galaxy”

Transactions have been around for a long time. In fact, the oldest known example
of human writing is a record of a transaction: it is a Sumerian tablet from 3300BC,
that records payment of barley, wheat, sheep, and of beer. This tablet is used as an
example by [GR93] : When a farmer came to pay his duties, a clerk would chisel this
fact onto a clay tablet. Going forward to the present, we see transactions primarily
being used in book-keeping operations: A physical operation has to be accounted for
in the books, usually by amending the books at different places, e.g. a move of stock
between inventories entails decreasing the amount on one page, and increasing it in
another page. Within computer science, the books have been replaced by a database,
and so we see the concept of transactions firstly in the domain of databases. The
accountant working with the books has been replaced by an application, and this
application will request the database to perform some work, i.e. reads of and writes
to the data, on its behalf.

25

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

In this thesis we address how the application performs such requests to the data-
base for transaction management and also for advanced forms of transaction man-
agement. Therefore, in this chapter, we provide an introduction to both forms of
transaction management. Given the context of this work, multi-tier distributed sys-
tems, we will only focus on one kind of advanced transaction management, that is
when using a single database, as this is common for these applications. Advanced
forms of transaction management for other application domains have been developed,
but we will only briefly touch on them here.

We start this chapter with an introduction to concepts of transaction management,
in which we go into detail of how transactions are scheduled using locks, the problem of
deadlocks and transaction rollbacks, and the use of savepoints. We then proceed with
advanced transaction management for single-database systems, detailing three such
models, each with its own specific purpose: Sagas, Relatively Consistent Schedules
and Split Transactions.

2.1 Concepts of Transaction Management

As said above, in computer science, books and accountants have been replaced by a
database and an application. The interaction between application and database needs
to be formalized further, because until now we have assumed a number of properties of
transactions that do not necessarily hold in this case: When noting down a transaction,
an accountant will not interrupt this work until all of the required pages have been
amended, because until the work is finished, the books will not correctly reflect reality.
Also, because of this inconsistency, other accountants are not allowed to use these
intermediate figures for their own work.

Formalizing this, we come to the definition of a transaction as a protected form
of program execution that has the following properties (Also known as the ACID
properties)[GR93]:

Atomic: A transaction is an atomic sequence of actions.

Consistent: A transaction takes the database from one consistent state to another
consistent state.

Isolated: The intermediate effects of a running transaction are isolated from the
other transactions.

Durable: The results of a transaction are kept in persistent storage.

When writing an application that uses transactions the transaction programmer
writes demarcation code that marks the start and end of each transaction in the

26

2.1. CONCEPTS OF TRANSACTION MANAGEMENT

application code and that associates each database access with a running transac-
tion [GR93]. At run-time the transaction scheduler software will mediate concurrent
accesses to the database by the different transactions within the application. The se-
quences of interleaved database accesses and transaction starts and ends are known as
schedules. To maintain the ACID properties, the scheduler will ensure the schedules
are serially equivalent: the interleaved operations of different transactions running in
parallel are guaranteed to produce the same results as if the transactions would run
in sequence. In other words, this allows multiple concurrent threads of the same ap-
plication, or multiple concurrent applications, to work on shared data while ensuring
that this data remains consistent.

Having introduced transactions, the remainder of this section discusses some basic
concepts regarding scheduling of transactions and how this is achieved through locking.
Subsequently, we show the problem of deadlocks and lastly we talk about aborting
transactions.

2.1.1 Schedules and Serializability

It is well-known that while a single executing transaction will preserve the consistency
of the database, multiple transactions running in parallel need to be subjected to
some concurrency control to ensure that the database is kept consistent [CDK94,
GMDW00]. This section introduces the basic concepts of schedules and serializability,
which is used later on in the text.

The concurrency control mechanism will consider the relevant operations of the
transactions and the sequence in which these are executed. This time-ordered sequence
of important transaction actions is known as a schedule. Consider the following exam-
ple schedules S1 and S2 for two transactions T1 and T2:

S1 = R1(x)W1(x)R1(y)W1(y)E1R2(x)W2(x)R2(y)W2(y)E2

S2 = R2(x)W2(x)R2(y)W2(y)E2R1(x)W1(x)R1(y)W1(y)E1

Where Ri(a) indicates reading object a by Ti, Wi(a) writing object a by Ti, and
Ei the end of Ti by a commit or an abort. These two example schedules are called
serial schedules [GMDW00]: they execute both transactions in series. It is clear that a
serial schedule preserves database consistency, since it does not allow any concurrently
executing transactions.

As stated above, the goal of the concurrency mechanism of the transaction manager
is to ensure consistency of the database. This is ensured by controlling the schedule
of the transactions: the schedule which results from all transactions being executed
concurrently must leave the database in the same state as if the schedule was serial.
Consider, for example the following schedules:

27

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

S3 = R1(x)W1(x)R2(z)W2(z)R1(y)W1(y)E1R2(y)W2(y)E2

S4 = R1(x)W1(x)R1(y)W1(y)E1R2(z)W2(z)R2(y)W2(y)E2

S3 is not a serial schedule, since T2 starts before T1 has ended. However, S3
is equivalent to S4, as both leave the database in the same state. Such non-serial
schedules that are equivalent to a serial schedule are called serializable[GMDW00].
Creating serializable schedules is the key task of the concurrency manager: by enforcing
that all schedules are serializable, database consistency will be ensured.

Note that in the schedules we do not consider the values read and written from the
database. Consider the following schedule, where we know that x = 10 and y = 30, T1
simply increases values by 100 before writing them back, and T2 doubles the values
before writing them back.

S5 = R1(x)W1(x)R2(x)W2(x)R2(y)W2(y)E2R1(y)W1(y)E1

S5 is not serial, and is not serializable as it does not preserve database consistency:
at the end of S5 x = 220 and y = 160, while for the serial schedules S1 and S2, we
respectively have x = 220, y = 260 and x = 120, y = 160. However, consider what
happens if the semantics of T2 were different. Let T2 write back the exact values
it has read, without any modification. Then the results of S1, S2 and S5 would be
x = 110 and y = 130. In other words S5 would indeed be serializable.

The above shows us that the semantics of the transactions being scheduled play a
role in whether a schedule is serializable or not. Unfortunately, the concurrency man-
ager is not made aware of the semantics of the transactions and therefore must always
assume the worst possible scenario: If a write to the database, within a transaction,
may temporarily render the database inconsistent (until another write from the same
transaction fixes this inconsistency), we must assume that it will, indeed, introduce
such an inconsistency [GMDW00].

Note that this implies that the values of data being read or written are of no
relevance to the concurrency manager, which is why our schedule notation does not
include these values.

We have now introduced the concepts of schedules and serializability. However,
commercial systems do not guarantee serializability as described above, instead a
stronger condition is ensured, which is discussed in the following section.

2.1.2 Conflict-Serializability and Locking

Ensuring serializability is a non-trivial task, which is why most commercial systems
ensure a more conservative condition, called conflict-serializability [GMDW00] through
the use of locks. This section gives an introduction to these mechanisms.

28

2.1. CONCEPTS OF TRANSACTION MANAGEMENT

As can be inferred from the name, conflict-serializability uses the concept of a
conflict: a pair of consecutive actions in a schedule is in conflict if, when their order is
changed, the behavior of at least one of the transactions can change i.e, the database
state can change.

There are three pairs of actions in a schedule that conflict [GMDW00]:

1. Two actions of the same transaction conflict because the sequence of actions
within a transaction may not be modified.

2. Two writes of the same database element by two different transactions conflict.
In other words, Wi(x) and Wj(x) conflict (for i != j). This is because the
contents of the database will contain the last of the two writes (in this case the
value of Tj). So if we change the order, the database will contain another value
(in this case the value of Tj), which may be different.

3. A read and a write of the same database element by different transactions con-
flict. Put differently, Ri(x) and Wj(x) conflict, as do Wi(x) and Rj(x) (for
i != j). Swapping Ri(x) and Wj(x) changes the value of x read by Ti, which
might result in a difference in the actions of Ti somewhere down the line. Sim-
ilarly, swapping Wi(x) and Rj(x) affects the value of x as read by Tj, which
might change the database state.

We may now take any schedule Si and try to make it serial by swapping operations
that do not conflict. If we succeed, Si is equivalent to the serial schedule because we
have not modified the database state through the use of non-conflicting swaps. In that
case, Si is said to be conflict-serializable [GMDW00].

Such a-posteriori determination of the (conflict-) serializability of a schedule, how-
ever, is not an optimal way to perform concurrency control. The concurrency control
mechanism is much more efficient if, while the transactions are running, the schedule
is constructed such that it will be serializable when all transactions are finished. En-
forcing serializability in this manner is usually performed through the use of a locking
scheduler [GMDW00].

Such a scheduler requires that transactions correctly use locks: A transaction can
only read or write an element if it has first obtained the corresponding lock, and
the transaction must at some point unlock the elements it has locked. The locking
scheduler will then ensure that no two transactions Ti and Tj have concurrently
locked the same element x. This is achieved by suspending a transaction Tj that asks
for a lock on x if x is already locked by Ti. Tj will be resumed, with the lock obtained,
when Ti releases the lock on x.

Most, if not all, commercial locking systems place an extra condition on locking:
all lock requests must precede all unlock requests, i.e. once an element is unlocked, no

29

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

further locks may be requested. This condition is called two-phase locking; in the first
phase locks are obtained, and in the second phase locks are released [GMDW00].

It has been proven that schedules of transactions that obey the two-phase locking
condition are conflict-serializable. We do not give this proof here, as it is not relevant
for this thesis, instead we refer to [GMDW00]. Intuitively, it is said that each transac-
tion is said to execute the instant it issues its first unlock request, and the equivalent
serial schedule would be the one where the transactions are ordered in the same order
as their first unlocks.

To summarize: in most commercial systems serializability is enforced through the
use of a locking scheduler and the requirement of two-phase locking. If two-phase lock-
ing is satisfied, the schedule constructed by the scheduler will be conflict-serializable,
which is a more conservative condition than serializability, and therefore the schedule
will be serializable.

2.1.3 Deadlocks

There is one major drawback to locking, which is deadlocks. Consider the following
interleaving of actions of two transactions Ti and Tj:

Wi(x)Wj(y)Wj(x)Wi(y)

Wj(x) will cause Tj to wait for Ti to release its lock on x, and Wi(y) will cause
Ti to wait for Tj to release its lock on y. Both transactions are deadlocked and will
wait for each other forever, if no action is taken by the concurrency manager.

It is generally impossible to recover from deadlock situations without aborting at
least one transaction [GMDW00], which we discuss in detail below. By aborting a
transaction, its locks will be released, which will allow other waiting transactions to
acquire the locks for which they have been waiting, breaking the deadlock.

The simplest way to detect a deadlock is by using a timeout: assume that trans-
actions complete within a given timeframe t. If a transaction Ti has been waiting on
another transaction Tj for more that t, this means that Tj is involved in a deadlock,
and Tj should be aborted.

It is clear that this approach has an important drawback in case of a flexible trans-
action duration. When some transactions complete quickly, while other transactions
may take a very long time, it is not efficient to set t to the longest possible time-
frame. If a quick transaction is deadlocked, it will take a very long time to break that
deadlock, and the performance of the overall system will be degraded significantly.

In such cases it is better to perform active deadlock detection using a wait-for
graph [GMDW00]. In such a system, a graph is constructed while transactions are
executing. Every running transaction is a node, and a directed arc is placed between

30

2.1. CONCEPTS OF TRANSACTION MANAGEMENT

two nodes if the first node waits for the second. Every time an arc is placed, the graph
is checked for cycles. If a cycle occurs, this means that every transaction in the cycle
is waiting for another transaction within that cycle, i.e. we have a deadlock.

Now the question remains what to do with the transaction that has been aborted.
In most cases, an exception will be passed to the application performing the transac-
tion. The burden is placed on the application to perform the needed actions to recover
from this error condition. Usually the application will either restart the transaction,
or report an error to the user.

2.1.4 Transaction Rollbacks and Savepoints

We have just seen that there is an important reason why we must be able to abort
a transaction: to break deadlocks. However, this is not the only reason. Consider the
following, typical, scenario: the system under consideration consists of a database,
running on a database server, and a user application running on a different server. In
this scenario, we must consider what to do with the running transaction when one of
the servers fail when a transaction is in progress.

If the user application fails, the database cannot keep the transaction open, wait-
ing indefinitely for the user application to pick up where it left off. Indeed, there is
no guarantee that this will ever happen. Therefore, the transaction has to be termi-
nated, and the database state will be reverted to the state before the beginning of the
transaction. This operation is known as a transaction abort or a transaction rollback
[GR93].

Database software, however is expected to be able to recover from failures and
usually keeps a log of all activities on the database. If the database server fails, upon
restart the database software will enter a recovery phase, where it will use this log
to recover the database to a known good state [GR93]. Note that this does not nec-
essarily include modifications to the database by all running transactions, in effect,
transactions will be rolled back, and the user application will be informed of this fact
when it attempts to proceed with these transactions.

This, again, shows us that we need to be able to cleanly abort the work of a running
transaction, effectively pretending that the transaction never happened. However, to
allow this in our locking scheduler, some extra requirements are needed, as we show
below:

Consider the following schedule, where we have included unlock actions Ui(x) for
x by transaction Ti, and transaction T1 aborts at A1.

S6 = R1(x)W1(x)U1(x)R2(x)U2(x)E2A1

In this schedule, T2 has read a value for x, as written by T1. But, at the end of the
schedule, T1 aborted, and therefore T2 should not have seen this value, as aborting

31

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

T1 implies that the value never existed. Such situations are known as a dirty read
[CDK94], and must be avoided by placing extra restrictions on the possible schedule.
These restrictions are required because, in S6 we can not simply abort T2 to avoid
the dirty read when T1 aborts, since T2 has already committed.

A possible solution would be to delay commitment in case of a possible dirty read:
T2 has read x, which may become a dirty read if T1 aborts. Therefore, we delay the
possible commitment of T2, until T1 has finished executing. If T1 commits, T2 may
commit, if T1 aborts, T2 has to abort to avoid the dirty write.

This introduces a new issue that has to be dealt with: cascading aborts [CDK94].
Aborting a transaction Ti may imply that a number of other transactions Tj, Tk . . .,
which have been waiting for Ti to commit have to be aborted. This, in turn, may imply
that yet other waiting transactions have to be aborted, and so on . . . It is clear that
this is not a desirable property, as it may significantly impact the running transactions
by forcing a large number to abort. Therefore it is best to avoid cascading aborts by
delaying reads: we only allow a read of x in Tj when Ti has already committed (or
aborted, as may be the case).

Delaying reads is one half of the requirement of strict execution of transactions
[CDK94]: transactions should delay both reads and writes of a data item, until other
transactions that wrote that item have ended1.

We can achieve strict execution of transactions in the locking scheduler by defining
a simple unlock rule: Transactions may not unlock their data items. Instead, the
scheduler will perform unlocking of these resources immediately after a transaction
has ended. This ensures that other transactions will not suffer from dirty reads, and
avoids cascading aborts. This form of locking is known as strict two-phase locking
[CDK94].

Having the ability to cleanly undo the work of a running transaction is, of course,
also useful from an applications’ point of view. At any given time the application
can decide that the currently running transaction has become invalid in some way,
and simply abort it. The work performed in this transaction will be cleanly undone,
without the application needing to intervene.

Considering this undo behavior, it would also be handy if we could not undo the
entire transaction, but undo the work up to a certain point. This is possible when
using savepoints: at any time within a transaction a savepoint can be placed, which is
usually identified by a monotonically rising number [GR93]. When the application now
decides to abort, it can rollback to a given savepoint. This results in the transaction
being returned to the state it was in at that savepoint, and ready to continue.

1We do not discuss the need for delayed writing here, as this may be database-specific, as noted
in [CDK94]. We include delayed writing here for completeness of the definition.

32

2.2. TOWARD ADVANCED TRANSACTION MANAGEMENT

Conclusion

In this section we have given a general introduction on the concepts of transactions and
transaction management. We have shown how serial execution of concurrent transac-
tions can be achieved using the concept of serializability, and seen the most frequent
implementation: conflict-serializability through the use of locks. We have also shown
the major drawback of using locks: deadlocks. To break deadlocks, we need to be able
to abort transactions, so we have discussed how transactions can be safely aborted,
while avoiding cascading aborts. This feature is also explicitly made available to the
application, so that it may itself decide to abort a running transaction, based on an
internal heuristic.

2.2 Toward Advanced Transaction Management

Classical transactions, as described above, have been developed to treat small units
of work that only access a few data items. As a result, as transaction time grows, and
the number of data items accesses becomes larger, the performance of the system will
drop significantly [GR93]. This is due to a number of factors, for example the increased
chance of deadlocks associated with longer transactions, and the large discrepancy
between complex applications and their data requirements and the simple functionality
of transactions.

To increase application performance, and to address additional requirements such
as achieving a more fine-grained rollback structure, and allowing cooperation between
transactions, a number of advanced transaction mechanisms (ATMS) have been de-
veloped. Of these, the most well-known ATMS is Nested Transactions [Mos81]:

Briefly put, Nested Transactions allow for hierarchically structured transactions,
and include rules for nesting the scope of commitment and recovery. More extensively:

• A nested transaction is a tree of transactions, where nodes are nested transac-
tions, and leaves are conventional, flat, transactions.

• A child transaction of a nested transaction is called a subtransaction, the root
transaction is called the top-level transaction.

• The rollback of a transaction in the tree causes all its subtransactions to rollback,
recursively down the tree.

• While rollbacks of subtransactions take effect immediately, a commit will only
take place when its parent transaction commits. Note that this rule is recursive,
therefore subtransactions only commit when the top-level transaction commits.

33

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

• All changes to the database performed by a subtransaction become visible to
its parent when the subtransaction commits. Concurrently executing siblings of
the sub-transaction, however, cannot see these changes.

When the application being built has a tree-like execution structure, Nested Trans-
actions can be used to mimic that structure. In these cases, the scope of a rollback
is fine-tuned to the structure of the application, which prevents unnecessary loss of
work. Gray and Reuter [GR93] comment that there is a strong relationship between
Nested Transactions and the modularization of software, but find few attempts to
capitalize on this relationship.

While Nested Transactions is the most well-known ATMS, an impressive number
of alternate ATMS can be found in the literature. As example ATMS, we cite the
following: Sagas [GMS87], Relatively Consistent Schedules [AFTO89], Split Trans-
actions [PKH88], Altruistic Locking [SGM94], Multilevel Transactions [WS92] and
Open Nested Transactions [MRKN92]. Between 1997 and now no further fundamen-
tal research has been performed in this area. We note, however, that the existing
ATMS recently have been applied in the context of multi-tier distributed systems,
more specifically as a TP Monitor for a select number of ATMS [Pro01] and a specific
implementation in the domain of web services [KS03].

In general, an ATMS will extend the single classical transaction to either form a
combination of transactions, or to establish relationships between different transac-
tions, which is why ATMS are also often called extended transaction models. An ex-
ample of the former are what we call secondary transactions: multiple ATMS require
at certain points, conceptually separate from the main control flow of the application,
secondary transactions to run automatically when some constraints are satisfied.

Each ATMS usually focuses on one single issue of classical transactions, and no
overall system has been developed that treats a large number of the identified draw-
backs of classical transactions. We discuss a small selection of ATMS next, showing
the different drawbacks of classical transactions they address. We restrict the choice
to well-known (within the community) and representative ATMS for classical trans-
actional, single-database applications, as this is the most common usage of a database
in multi-tier distributed applications.

We note that, ATMS, however, are not restricted to this domain only; a signif-
icant amount of research has been performed in the area of multi-database systems
and workflow management systems. A well-known example ATMS for multi-database
systems is Flex Transactions [ELLR90, KPE92], and also well-known, for workflow
management is the ConTracts model [WR92]. As implied above, we do not discuss
these models, as they lie outside the scope of this dissertation.

In the remainder of this chapter, we detail three ATMS for single-database appli-
cations: Sagas, Relatively Consistent Schedules, and Split Transactions.

34

2.3. SAGAS

2.3 Sagas

The first ATMS we detail, after Nested Transactions, is one of the oldest, best-known
and widely referenced ATMS within the community: Sagas [GMS87]. The Sagas ATMS
was introduced as an alternative to Long Lived Transactions (LLT’s). LLT’s are trans-
actions that last significantly longer than usual, such as transactions that process a
large amount of data or that wait for user input at some point.

These transactions can cause a significant drop in performance due to their long
life cycle and the large number of database objects they access. It has been claimed
that the probability of deadlocks increases with the fourth power of transaction size
[WR92], which makes LLT’s extremely likely to incur deadlocks. Also, concurrently
executing transactions are not able to access these objects until the LLT terminates.

In some cases this problem can be addressed by relaxing the atomicity requirement
of LLT’s. A Saga SG is a LLT that has been split into a sequence of sub-transactions
T1, T2, . . . , Tn by the application programmer. Each sub-transaction Ti is a fully
ACID transaction, and the sequence of transactions should either be executed com-
pletely or not at all. Splitting the LLT releases locks earlier, which increases concur-
rency as other transactions can execute concurrently with a Ti, and decreases the
probability of deadlocks, since after each Ti all locks are released and each Ti will
probably require less resources than SG.

Conceptually, Sagas can be used if a LLT consists of a sequence of independent
operations where each step does not necessarily need to see the database in the same
state. As an example, consider a banking application: at the end of the year, we have to
calculate and add interest to all accounts. Instead of doing this all in one LLT, which
would eventually try to obtain locks on all accounts of the bank, we can use a Saga.
One sub-transaction in the saga would simply calculate the interest for one account,
and add it to that account. The Saga then sequentially performs this subtransaction
for all accounts, only locking one account at a time.

Rollback of a Saga

We need to be able to handle roll-backs of the Saga, which implies that the sequence
of sub-transactions is not executed fully. In these cases, compensating actions must be
executed to undo the effects of already committed sub-transactions. To allow this, the
programmer defines a compensating transaction Ci for each sub-transaction Ti. This
transaction performs a semantical compensation action, i.e. it undoes the work of Ti.
Note that the compensating action is not equal to reverting the affected data to the
state before Ti because in the mean time other, concurrent and unrelated, operations
may have occurred on the data. For example, consider a bank application in which a
transaction Tt transfers 100 EUR from account A to B. The compensating transaction

35

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

Ct would be to transfer 100 EUR back from B to A, as opposed to reverting the balance
of both accounts to the original amount. We do not revert to the previous balances
because in the mean time other deposit and withdraw operations may have occurred
on both accounts.

To roll back a Saga, the concurrency manager aborts the currently running sub-
transaction Ti, and subsequently runs the compensating transactions in reverse order
(Ci− 1, Ci− 2, . . . , C1).

Note that compensating transactions are therefore an instance of secondary trans-
actions. They are not contained within the control flow of the application, but are run
by the concurrency manager. Each compensating transaction is constrained to run at
rollback only, and may only run at the correct point in the sequence.

Because aborting a Saga must always succeed, execution of compensating trans-
actions may never fail. To ensure this, the programmer may need to define precon-
ditions PRi for each compensating transaction Ci. In our bank example, a transfer
could have the requirement that the source account contains at least the amount being
transferred, so the precondition for Ct would be that account B contains at least 100
EUR.

The transaction manager must now ensure that preconditions PRi are held when-
ever the sub-transaction Ti completes, until either the Saga commits, or the compen-
sating transaction Ci commits. This could be done, for example, by delaying writes to
data that would cause the precondition to be violated. Ensuring these preconditions
guarantees that all compensating transactions will succeed, i.e. that the saga can be
successfully rolled back.

Note that in case of a Saga rollback, concurrently running transactions and Sagas
may have seen and used the partial results of this Saga. We can not ensure neither that
these concurrent transactions are notified of this change nor that they are aborted,
because they may have already committed.

To summarize, with Sagas a long-lived transaction is split up by the programmer
into a sequence of sub-transactions that are executed in sequence. To allow rollback
of the saga for each sub-transaction, except for the last, a compensating transaction,
i.e. a semantic undo action is defined by the programmer. When the saga is rolled
back, the currently executing sub-transaction is rollbacked, and the compensating
transactions for the already committed sub-transactions are executed, in the reverse
order of the sub-transactions.

This ends our discussion on Sagas, and we now continue with detailing an ex-
ample ATMS which makes extensive use of semantic information to allow for more
concurrency between different transactions.

36

2.4. RELATIVELY CONSISTENT SCHEDULES

2.4 Relatively Consistent Schedules

In traditional transaction managers, database consistency is ensured by conservatively
restricting operations on the data. We can however relax these restrictions, taking the
semantics of the transactions into account, and still semantically preserve consistency
of the database, as we have illustrated in 2.1.1. This allows a larger number of possi-
ble semantically consistent schedules of transactions at a given time, which increases
concurrency.

A number of ATMS have been published which use a form of semantically consis-
tent schedules, and we detail one example ATMS as an illustration. We have chosen
the Relatively Consistent Schedules (RCS) ATMS [AFTO89] as an example because
it is one of the most flexible ATMS using semantic consistency and as it shows the
complexity of some of the published ATMS.

Using RCS, the programmer instructs the scheduler how a transaction may be in-
terleaved with other transactions, selectively decreasing isolation between the different
transactions. This has a first advantage that schedules can easily be verified a priori.
The second advantage is the generally conservative nature of interleavings which eases
management: an interleaving will only take place if it is specifically permitted. This
allows the programmer to selectively focus on groups of transactions to be optimized.
[AFTO89]

We note that in [GM83] the question is addressed if programmers should be bur-
dened with the extra work of providing this semantical information. The authors
consider that this extra work should be avoided if possible, but that “in some ap-
plications the cost of serializable schedules is unacceptably high, so there really is
no choice” [GM83]. Furthermore, the authors claim that in current applications such
semantic knowledge is already implicitly embedded anyway by the programmer. In
other words, some semantic information is used implicitly, and that it is better to
make this information explicit through the use of an ATMS, such as RCS.

Before we detail RCS, however, we need to define the concept of sensitive trans-
actions and semantically consistent schedules. Sensitive transactions are transactions
that need to observe a consistent state of the database. Consider, for example, a
transaction that displays output to the users. While certain database inconsistencies
might be allowed using semantically consistent schedules, the output data of sensitive
transactions must appear as if it is based on a consistent database. A semantically
consistent schedule is then defined as a schedule that transforms the database from
a consistent state to a consistent state, while all sensitive transactions within the
schedule obtain a consistent view of the database.

To obtain such a semantically consistent schedule, in RCS a transaction is subdi-
vided in different steps, and each step may be interleaved with steps of other trans-
actions. To use this ATMS, the programmer performs three extra operations when

37

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

defining the transactions: first splitting the transaction into steps, second and third
defining the semantic types and compatibility sets, and fourth associating possible
interleavings with each step. We now discuss these steps in more detail.

Splitting a Transaction Into Steps

The programmer first declares the steps of each transaction. To allow this, we represent
a transaction Ti as a sequence of steps Sij and a termination command Ei. Each step
consists of a sequence of atomic actions (either a read Ri(x) or a write Wi(x)) and
and a breakpoint Bij . The breakpoints signal the end of each step, the termination
command signals the end of the transaction.

Consider the following example transaction:

T1 = R1(x)W1(y)B11R1(z)B12W1(x)W1(z)B13E1

T1 contains three steps: R1(x)W1(y)B11, R1(z)B12 and W1(x)W1(z)B13.

Defining Semantic Types

Second, semantic types [GM83, AFTO89] are defined by the programmer. He uses his
semantic knowledge to divide the transactions into groups of the same semantic type,
based on the actions they perform and the data they use. For all semantic types he
considers the atomic steps of the transactions (reads or writes on the database), and
determines if the steps of a transaction of one type, TX, may be executed simultane-
ously with the steps of transactions of another type TY . For example, take a customer
report transaction Tb that will report the balance of the checking account and the
savings account for that customer. If we assume that a withdraw Tw or deposit Td
operation will never access both the checking and the saving accounts of the same
customer, we can simultaneously execute Tb and Tw or Tb and Td. To allow this,
let Tb be of type TB and Tw and Td be of type TT (where the second T stands for
Transfer). Now we must allow simultaneous execution of TB and TT .

Simultaneous execution differs from normal concurrent execution in that while
concurrently executing transactions are isolated, simultaneously executing transac-
tions are not. When two transactions are executing simultaneously, they share the
data on which they operate and may therefore see intermediate results from the other
transaction.

Declaring Compatibility Sets

Not all transactions can be executed simultaneously, simultaneous execution is only
possible for transactions which are declared to be compatible. To declare this the

38

2.4. RELATIVELY CONSISTENT SCHEDULES

programmer will define compatibility sets CS for each type [GM83, AFTO89]. Each
element of a compatibility set is a set of types called an interleaving descriptor set.
Interleaving descriptor sets contain transaction types. For the compatibility set CSTX

of the type TX, each interleaving descriptor set defines the types of transactions with
which transactions of type TX may be interleaved.

For our bank transfer example, where transactions of type TB can be executed
simultaneously with transactions of type TT , we would write CSTB = {{TT}}. Con-
versely, in this example, transactions of type TT can be executed simultaneously with
transactions of type TB, so CSTT = {{TB}}.

A more elaborate example, CSTX = {{TY }, {TY, TZ}} consists of two descriptor
sets. The first descriptor set indicates that transactions of type TX may be executed
simultaneously with transactions of type TY . The second descriptor set indicates that
that transactions of type TX may be simultaneously executed with transactions of
type TY and TZ. Since CSTX does not include {TX}, transactions of type TX may
not be executed simultaneously with transactions of the same type. Also note that a
transaction Ti of type TX may not be simultaneously executed with a transaction
Tj of type TZ, unless Tj is simultaneously being executed with a transaction of type
TY .

Declaring Interleaving

After defining compatibility sets the programmer associates such sets with each break-
point of a transaction. This allows transactions of the given types to interleave at this
breakpoint in the transaction, yielding a simultaneous execution of these different
transactions. Note that an interleaving transaction Tj of Ti may itself be interleaved
by other transactions at any breakpoint of Tj where this is allowed by the correspond-
ing interleaving descriptor set.

For example, considering the bank transfer example above, with a report trans-
action Tb of type TB and a withdraw transaction Tw of type TT . If at a certain
breakpoint of Tb the compatibility set CSTB = {{TT}} is defined, Tw may inter-
leave, i.e. perform (a part of) the withdrawal operation while having access to the
data which Tb is using to calculate a balance. Note that we can nest interleavings:
if Tw itself also contains breakpoints, with their associated compatibility sets, other
transactions (the types of which are included in these sets) can interleave at these
points.

The act of splitting each transaction into different atomic steps, and allowing inter-
leavings only at some points, depending on types, significantly modifies the atomicity
of the transaction. Transactions of a given type TX will see a transaction Ti as ei-
ther one atomic whole (if no interleavings are allowed with TX), or as a number of
atomic steps (if interleavings are allowed with TX). Transactions of a different type

39

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

TY will have a different view on the atomicity of Ti. Having different possible views
on the atomicity of a transaction is known as relative atomicity and schedules of these
transactions are called relatively consistent schedules [AFTO89].

We must however still consider what should happen when a transaction is aborted.
The problem here is that all transactions that are simultaneously executing with the
aborted transaction will now work on inconsistent data. This requires us to abort
all these simultaneously running transactions, which can lead to cascading aborts
and a large performance hit. The paper [AFTO89] does not explicitly address this
issue beyond recommending the use of counter-steps. In other words, we could use
compensating transactions, to semantically undo the work of the aborted transaction
without having to abort the other transactions.

To summarize, the relatively consistent schedules ATMS preserves semantic consis-
tency of the database, while allowing specific transaction types to work simultaneously
on the data, i.e. sharing this data as if they were one and the same transaction. Trans-
actions are assigned a type and subdivided in different steps, where each step may
run simultaneously with steps of other transactions, as specified by the programmer.
Rollback of such transactions is not explicitly addressed in the paper, save for the
suggestion of using compensating transactions, as in Sagas.

This concludes our discussion on an example ATMS specifically relying on explicit
semantic information about the transactions it is managing. The last ATMS we discuss
illustrates a different feature, which is delegation of resources.

2.5 Split Transactions

The last extension to the standard transaction model we discuss is split transactions
[PKH88]. This model features, amongst others, the ability for a transaction to gather
a subset of its resources and pass responsibility for them to another transaction. We
call this feature delegation of resources. A number of ATMS have been published
which use delegation of resources, We chose to use Split transactions as an illustration
of delegation of resources as it also shows how a specific class of applications can
influence the design of a transaction model.

Split transactions has been designed to deal with open-ended activities such as
CAD/CAM projects and CASE tools. As described in [PKH88], open-ended activ-
ities are characterized by an uncertain duration (from hours to months), uncertain
developments that can not be foreseen at the beginning, and interaction with other
concurrent activities.

Typically, data access by these open-ended activities is driven by users. This is in
contrast to traditional database accesses through transactions, which are known as the
application is written. Here we have dynamic transaction construction: a transaction

40

2.5. SPLIT TRANSACTIONS

is made at run-time, as a result of actions of the user.
These characteristics have a significant impact on how transactions can behave.

First, due to the uncertain duration the transactions may become LLT’s, with all the
performance problems this implies, as we discussed in 2.3. Second, uncertain devel-
opments require that activities that can be made independently need to be kept in
one transaction. For example: an initial activity may modify data early in the trans-
action, and this data may not be needed further on, and will remain untouched until
the transaction is committed. Conversely, an activity at the end of the transaction
may be independent of previous activities, which are not committed until the entire
transaction has ended.

Splitting Transactions

Split transactions were created to address differing behavior due to open-endedness:
a split transaction divides an ongoing transaction Ti into two fully independent, se-
rializable, transactions Tj and Tk. The database objects accessed by Ti are divided
amongst Tj and Tk into two or more sets. Split-transactions are mainly used to com-
mit a number of objects accessed by Ti, by assigning them all to one transaction Tj,
and committing that transaction.

Note that we also have the inverse operation of split-transaction: join-transaction.
A join-transaction combines two transactions Ti and Tj together by finishing the
transaction Ti and making its results part of the joined transaction Tj. However, we
restrict our discussion only to split-transactions, as they are said to be more widely
applicable [PKH88].

Consider the split of a transaction Ti into Tj and Tk; we can conceptually divide
the objects accessed by Ti into four sets:

• JReadSet: the objects, read by Ti that will belong to Tj

• JWriteSet: the objects, written by Ti that will belong to Tj

• KReadSet: the objects, read by Ti that will belong to Tk

• KWriteSet: the objects written by Ti that will belong to Tk

To allow Tj to be serialized before Tk, we must consider the results of the following
three conceptual intersections of the above sets:

1. JWriteSet ∩KWriteSet := KWriteLast

2. JReadSet ∩KWriteSet = φ

3. JWriteSet ∩KReadSet := ShareSet

41

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

The first intersection defines a set KWriteLast, which are the objects that are
updated last by Tk: updates of Tj to elements in this set will be overwritten by
Tk. The second intersection being empty guarantees that Tj does not see any values
written by Tk. The third intersection defines a set ShareSet that contains updated
objects of Tj that are seen by Tk, and that will not be updated by Tj after the split-
transaction. If these properties hold we can serialize Tj before Tk, and therefore,
because the original transaction Ti was serializable, we can serialize Tj and Tk with
respect to all the other running transactions.

Two classes of split transactions are defined through the contents of KWriteLast
and ShareSet: if both sets are empty, the split transaction is called independent, if
not the split transaction is called serial. In the independent case there are no object
access conflicts between Tj and Tk, i.e. Tj and Tk are independent, therefore they
can be serialized in any order. In the serial case, Tk needs to follow Tj because of
data access dependencies. To avoid Tk using uncommitted data of Tj, Tj may not
write to objects in the ShareSet. Unlike in the independent case, if Tj aborts, Tk
must also abort, because it relies on data that was written by Tj.

Note that in [PKH88] it is not addressed what should happen if at some point the
original transaction Ti, which conceptually still lives on in Tj and Tk, needs to be
rolled back. If either Tj or Tk have already been committed, this rollback will, in a
strict sense, not be possible. This problem might be alleviated by using a compensating
transaction, as described earlier. However, this will not undo the possibility that other
running (and committed) transactions have used the results by the transaction that is
being compensated, as we already have mentioned in 2.3. Therefore rollbacks should
be treated with caution.

Furthermore, due to the nature of the transactions, it is not straightforward to de-
fine compensating transactions. We can not simply define a compensating transaction
for each split transaction, because there are a significant amount of possible actions
for each split transaction, which can not be determined at priori. We can say that
Split transactions virtually require the ability to dynamically form a compensating
transaction for each running transaction, which is non-trivial.

Using Split Transactions

We can use Split transactions to increase transaction processing performance when
dealing with LLT’s, by splitting the LLT at opportune moments, determined by the
user, the application. or the concurrency manager. For example, this would be the
case when it has been determined that a subset of the database objects accessed by
a LLT Ti are no longer needed, and that a concurrent (short) transaction is waiting
for these objects to be released. We can split Ti into a transaction Tj containing the
requested objects, and a transaction Tk containing the remaining objects. Tj immedi-

42

2.6. CONCLUSION

ately commits, which allows the short transaction to execute, increasing concurrency.
To determine the split point, the LLT can either continue operating until a good

opportunity for a split arises, or it can undo its work up to a previously determined
split point. The first case assumes such a point will arise in the future, and could keep
the short transaction waiting for a long time, but places no extra requirements on
the LLT. The second case allows the short transaction to commence immediately, but
requires the LLT to be restarted from the split point.

In [PKH88] it is argued that the second case is more common, and the authors
have defined a framework to facilitate such splits. In this case, it is clear that it
would be desirable to be able to automatically redo the actions that were rolled back,
to effectively undo the rollback. To allow this, the framework considers accesses to
database objects not in isolation, but as a group of operations that are performed
by a single process. Such a group of operations corresponds to the actions of a high-
level tool such as, for example, a compiler, which reads a number of source files and
produces a number of output files.

For each transaction a history is maintained, and for each group of operations on
the data a flag is kept that indicates if the operations can be automatically repeated or
not. In our compiler example, we could repeat the operations automatically. However,
we can consider editing of a source file, for example, as not being able to be repeated
automatically. When a split is required, the history is examined to determine when a
split may occur: we can split the LLT at a given point if all groups of operations that
occurred after this point can be repeated.

In summary, Split transactions was created to address the needs of open-ended
activities that have uncertain duration and developments. Split transactions allows
a transaction to be split in two separate transactions, and in certain cases for one
of these to immediately commit, freeing resources to be used by other transactions.
Rollback of such split transactions is not straightforward however, as some of the data
accesses may already have been committed and therefore compensating actions will
have to be performed.

2.6 Conclusion

In this chapter we treated transaction management, and existing extensions to the
traditional transaction model in the form of Advanced Transaction Models (ATMS).

The chapter started with an introduction of general concepts of transactions and
requirements for correct concurrent execution of transactions. We introduced the well-
known ACID properties for transactions, and have shown how these can be met using
a locking scheduler.

Next, we talked about Advanced Transaction Models. There are well-known lim-

43

CHAPTER 2. ADVANCED TRANSACTION MANAGEMENT

itations to the classical transaction model, especially concerning the length of trans-
actions and cooperation between transactions. To address these issues, a number of
Advanced Transaction Models have been defined in the literature, each focusing on
a specific problem, and providing a possible solution. We have discussed four Ad-
vanced Transaction Models in detail: Nested Transactions, Sagas, Relatively Consis-
tent Schedules and Split Transactions.

Common to many ATMS is the use of secondary transactions: a transaction con-
ceptually separate from the main control flow of the application that automatically
runs when some constraints are met. In the models we discussed we encountered these
in case of a rollback, where compensating transactions perform a semantic ‘undo’ of
already committed work.

A second general remark considering the use of these ATMS is in place here; we
have noted that for Nested Transactions Gray and Reuter [GR93] comment that there
is a strong link between modularization of software and the use of Nested Transactions,
but find few cases of the use of this ATMS. Also, we have seen that Garcia-Molina
[GM83] states that the cost of providing semantic information is high but unavoidable
in some cases. Furthermore he finds that in some cases an ATMS is already used
implicitly, and that it is better to make this explicit. So, while we find convincing
arguments for the use of an ATMS, we also see that application programmers still
stick to using classical transactions in such cases.

In the entire chapter, we have taken a somewhat high-level approach when dis-
cussing the different models, without detailing how an application programmer im-
plements the usage of an ATMS. However, as we mentioned in the introduction, such
transaction demarcation code is required to start and stop transactions and to asso-
ciate data accesses with a transaction. This demarcation code will be spread out over
different parts of the application, which poses some significant problems, as we discuss
in the next chapter.

44

Chapter 3
Aspect-Oriented Programming and

Transactions

Oh no, not again.
—Douglas Adams, petunias can think in

“The Hitch Hiker’s Guide to the Galaxy”

In the previous chapter, we discussed transaction management and talked about
a variety of advanced models for transaction management (ATMS), explaining the
properties of the different models.

We have also briefly stated that to use transaction management, the application
programmer will need to place transaction demarcation code to indicate the beginning
and end of transactions, and what data accesses are included in which transactions.
This entails that the demarcation code will be spread out over the application, because
it will be found everywhere in the application where transactions are used. As we shall
see next, this clashes with the software engineering principle of separation of concerns
[Par72, HVL95].

As a result of this clash, application code which includes transaction demarcation
code is known to be hard to develop and maintain. In this chapter, we talk about a
means to resolve this issue, called Aspect-Oriented programming, and discuss existing
efforts which modularize transaction demarcation code for classical transactions.

The results of the above research in modularization of transaction demarcation
code show that such modularization yields important benefits in ease of development
and maintenance of the application. Therefore, to aid implementation and mainte-
nance of systems using an ATMS, we also modularize this demarcation code using

45

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING AND TRANSACTIONS

Aspect-Oriented programming. At the end of this chapter we outline the technical
approach we have taken to modularize demarcation code for ATMS, which has led us
to the identification of tangled aspect code.

3.1 Aspect-Oriented Programming

Applications which need to fulfill a large number of requirements are generally difficult
to develop. One principle can be used to ease the development of these applications:
separation of concerns. However it is not always easy to separate these concerns at
the level of the code, as some of them have a system-wide impact. A technique to
separate out these system-wide concerns is Aspect-Oriented programming (AOP).

In this section we introduce the principle of separation of concerns, and briefly
discuss AOP as a technique to achieve this separation.

3.1.1 Separation of Concerns

In developing an application, the programmer has to ensure that diverse requirements
are met. To be able to meet such a wide variety of requirements, various techniques
and methodologies have been developed to reduce the complexity of the software, to
increase its comprehensibility, and therefore also to ease its maintenance.

Common to many of the above techniques is the concept of “divide and conquer”.
The software is decomposed into smaller pieces, which individually are easier to com-
prehend and manage, and these pieces are later combined to comprise the full system.

A good decomposition of the software allows each separate piece to address a
specific concern of the application, i.e. a specific subset of related requirements, such
as the core algorithm of the application, management of concurrency, logging, per-
sistence, etc. Conceptually, such a subset corresponds to a design decision for the
application, and a module then “hides such a decision from the others” [Par72]. In
OO programming, we divide into classes, the idea being that each (group of) classes
will address one concern. Handling these concerns separately, not only conceptually
but also at an implementation level, is known to greatly ease coding and maintenance.
This is because the programmer only needs to keep in mind the exact concern cur-
rently being addressed, and can ignore the other concerns, which significantly reduces
the complexity of the task at hand. The above principle is aptly named separation
of concerns [Par72, HVL95]. The ideal of this separation is that each concern of the
application is addressed in one and only one module, or class, of the program.

Having each module address one and only one concern is, however, hard to achieve,
due to an effect known as “the tyranny of the dominant decomposition” [TOHJ99].
This states that, due to the fact that software can only be modularized in one way

46

3.1. ASPECT-ORIENTED PROGRAMMING

at a time, for a sufficiently large problem, there will always be concerns that can-
not be encapsulated into one module, and will therefore be scattered throughout the
system. Typical examples of these difficult concerns are persistence, distribution, and
indeed, transaction management. This is because as these concerns have a system-
wide impact, they can not be added by simply adding a new module to the system
using traditional modularization techniques. Take for example transaction manage-
ment: adding a “Transaction manager” object to the system does not suffice. As we
have said in the previous chapters, demarcation code needs to be inserted into the
application code, indicating the start and end of transactions, and which data accesses
need to be associated to what transactions. In other words, the code in a wide number
of existing classes will have to be adapted, breaking the separation of the concurrency
concern. The special-purpose concerns mentioned above are said to cross-cut the class
structure [KLM+97].

Note that, for a number of such crosscutting concerns, programming languages
have provided constructs that handle these concerns. For example, considering thread-
based concurrency management, in Java such synchronization is handled with the
synchronized keyword and the wait, notify and notifyAll methods. However, it
still proves to be hard to write and understand code using these constructs [HVL95,
Han99], and many patterns have been proposed to tackle this [Lea99]. Also, if the
number of special-purpose concerns in the program increases, it will progressively
become more difficult to comprehend the code, increasing the difficulty of developing
and maintaining the program. This is because, although the different concerns can
be specified independently in an abstract fashion, integrating them into final code
is hard, as is extracting the original concerns from the produced code or modifying
the code of a single concern. This is largely due to the fact that although there is a
loose coupling between the concerns at a conceptual level, at code level this coupling
becomes strong when the concerns have been integrated.

If we can separate the different concerns not only at a conceptual level, but also at a
code level, by e.g. having one class for each concern, we would have a full separation of
concerns. Such a full separation would lead to a higher level of abstraction, making the
code easier to understand and maintain. A number of techniques have been developed
to address the problem of these cross-cutting concerns, achieving a higher separation of
concerns. A flagship technique to modularize cross-cutting concerns is Aspect-Oriented
Programming, which we discuss next.

3.1.2 Aspect-Oriented Programming

In Aspect-Oriented Programming (AOP), the concerns which are known to cross-cut
the class structure of an application are called aspects. Aspects are said to “cut across
both each other and the final executable code” [KLM+97]. As said above, although

47

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING AND TRANSACTIONS

these aspects can be easily separated at a conceptual level, the code which integrates
these aspects is “a tangled mess of aspects” [KLM+97]. This tangling of aspects in-
dicates that in the application code the concerns are not separated, which makes the
program hard to comprehend.

In other words, in AOP a concern is either implemented in a component, or in
an aspect. A concern that cannot be encapsulated cleanly into a module (such as a
class or a group of classes), is called an aspect. In a program, all concerns which are
components are sometimes also called the base aspect. Examples of such aspects are
transaction management, and thread-based concurrency management, as we discussed
above, as none of these concerns can be cleanly encapsulated in a separate module
and added to the program.

The goal of AOP is to achieve a higher degree of separation of concerns by allowing
the programmer not only to reason separately about the aspects, but also to implement
them in separate modules. This is achieved by specifying the code pertaining to an
aspect in a separate aspect specification, in a special aspect language. Once all modules
and aspects are defined, a special tool, called an Aspect Weaver, combines these
specification to achieve the desired application behavior. The weaver is able to do
this because it knows not only how each aspect can be transformed into executable
code, but it also knows the relationships between the different aspects, and the correct
way to combine them. The process of modularizing an aspect in the above fashion is
called aspectisation [KG02, SLB02, RC03].

Initial aspect languages were designed to address one specific concern, and there-
fore to allow the aspect to be easily expressed by the programmer. Some of the first
aspect languages were, for example, languages for concurrency control [VLK97], nu-
merical accuracy [I+97], and space optimization [MKL97]. Because of this specific
nature of the languages, the programmer can express the code in a natural form, lead-
ing to a greater ease of use over general-purpose languages. We feel that these initial
aspect languages give AOP a special appeal over other solutions, such as, for example,
meta-level programming, which do not use such concern-specific languages.

Current AOP research, however, uses more general aspect languages, in which
various aspects can be expressed [Asp05]. The most widely known general aspect
language is AspectJ, out of which some generally accepted terminology with regard to
aspect languages has emerged.Therefore, we outline this terminology below:

• Join Points are conceptual entities that represent certain points in the execution
of a program. Conceptually, it is at these moments at run-time that an aspect
will execute.

• To determine the join points in the code of the program, Pointcuts are defined
by the programmer. A pointcut usually declares the join points by means of

48

3.2. AOP AND TRANSACTION MANAGEMENT

static descriptions of the source code, combined with selected runtime informa-
tion, such as the value of certain variables and the contents of the call stack.
Furthermore, a pointcut may selectively expose some part of this execution con-
text.

• The aspect code, defined by the programmer, that is executed when a join point
is reached is called Advice. This code contains the behavior of the aspect, and
has access to the execution context which was exposed by the pointcut.

• Code for the aspect may also be inserted into different classes statically. Such
code is called Inter-type declarations. This code usually declares extra members
in the class and may even change inheritance relationships between classes.

So, in this terminology, an aspect is considered to be a collection of pointcuts,
advice for that pointcut, and additional inter-type declarations.

As transaction management is a clear example of an aspect, it comes as no surprise
that work has already been performed defining aspects for transaction demarcation,
and we review this work next.

3.2 AOP and Transaction Management

Transaction demarcation code has been found to cut across different modules in the
system: every module which makes use of transactions will have to include demarcation
code to indicate start and end of transactions, and what data accesses are included
in the transaction. Three papers have been published that include proposals of how
to aspectise the concern of classical transaction management [KG02, SLB02, RC03],
and we discuss these in this section.

Although transaction management is generally accepted by the AOP community
as being an aspect, we remark that only few papers have been published about this
subject. We were only able to find three papers about modularizing transaction man-
agement as an aspect, and in two of these papers transaction management is but a
minor topic. Common to the three papers is that they use AspectJ, which implies
that the base aspect is implemented in Java. Furthermore, join points of the begin-
ning of transactions always are the beginning of methods, and join points of the end
of transactions always are the end of these methods, i.e. method boundaries are equal
to transaction boundaries. Therefore, because transactions coincide with methods, we
call these methods transactional methods. Note however, that nested transactions are
not covered, and the papers do not discuss what happens if a transactional method
calls another transactional method, which in nested transactions could straightfor-
wardly be mapped to spawning a child transaction.

49

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING AND TRANSACTIONS

The first paper we review, by Kienzle and Gerraoui [KG02], uses transaction man-
agement, amongst others, to evaluate AOP. Second, the paper by Soares et al. [SLB02]
has transaction management as a side-effect of aspectising distribution and persis-
tence in AspectJ. The third paper, by Rashid and Chichyan [RC03], aspectises per-
sistence, and includes transaction management. Lastly, we discuss some of our own
work [Fab04b], on treating transactions as an aspect and focussing on handling trans-
actional failures.

AOP: Does it make Sense?

Kienzle and Gerraoui [KG02] describe a transaction management aspect using As-
pectJ to explore how AOP can help modularise concurrency in distributed systems.
They describe an AspectJ aspect that interacts with OPTIMA: an object-oriented
framework that supports transaction management. The goal of the paper is to ana-
lyze if transaction semantics can be fully aspectized, and by extension, investigate if
AOP is useful for all concerns, or in their own words: “If AOP makes sense”.

The authors start with the assumption that a first program is written, totally
disregarding transaction management, and subsequently transaction management is
added to that program by use of AOP. This approach, however, fails because of two
reasons: deadlocks and irreversible actions, and we detail these next.

The first problem is the introduction of deadlocks: the use of transactions implies
adding the possibility of deadlocks to the application, as we have seen in 2.1.3. In such
cases, the TP Monitor will rollback a deadlocked transaction to break the deadlock
cycle, and will inform the application of this action. This entails that the application
may not be totally blind to the use of transactions, and that it must be prepared to
handle these exceptional situations.

The second problem is irreversible actions: an important feature of transactions is
the ability to rollback the work which has been performed, for example when aborting
a transaction to break a deadlock. It is clear that, to be able to undo all the work
of a transaction through a rollback, no side-effects or irreversible actions may have
been performed in that transaction. Again, this entails that the application may not
be totally blind to the use of transactions, as the work which will be enclosed in a
transaction must be reversible.

This leads the authors to conclude that transaction management must be kept in
mind throughout the entire application development, that it can not be completely
extracted to a separate aspect. We agree, in general we can say that AOP can not
make up for total neglect of certain concerns, and that the overall design of the
system still needs to take into account these extra concerns. In that respect, AOP
does not make sense, but this is because we can not treat AOP as a silver bullet.
AOP simply gives us the possibility to further separate concerns out at the level of

50

3.2. AOP AND TRANSACTION MANAGEMENT

the code of the application, where previously this was difficult. As we have just seen,
we cannot guarantee a complete separation, but nonetheless an increased separation
of concerns at the code level still increases ease of implementation and maintainability
of the application. This is shown by Soares et al. [SLB02] and Rashid and Chitchyan
[RC03], which we discuss further on

In the case of transaction management, one element is not separated out and
remains in the base code. This element is the non-functional concern of handling roll-
backs. If we take transaction management into account from the onset of building the
application, the design will not include side-effects in transactional operations. There-
fore, the transactions can be fully rolled back by the TP Monitor. The application,
however, will still have to handle these rollbacks. This is not a major issue, as we can
already perform some rollback handling within the aspect, which we discuss later in
this section.

Concerning notification of rollbacks, the authors criticize AspectJ for the inability
to modify the methods signature, as this entails that an explicit declaration of excep-
tions thrown by transactional rollbacks is impossible. Instead these exceptions must
be a subclass of RuntimeException, which has as a result that type checking for these
exceptions at compile time is not performed. The authors note that an application
programmer, “relying on the fact that important application exceptions are checked,
might forget to handle [these exceptions], which results in an incorrect program be-
havior” [KG02]. We agree with this critique and consider this an important downside
of the AspectJ weaver.

Additional criticism by Kienzle and Gerraoui on aspectising transaction manage-
ment with AspectJ is the lack of possibilities for transaction optimization: they note
that it should be possible to define different kinds of interaction with the transaction
manager, depending on the access to the code. For example, if only read access is per-
formed within the transactional code, the transaction manager should be informed of
this read-only access at the start of the transaction by a specific demarcation instruc-
tion. This information then allows the transaction manager to perform optimisations
specific to read-only transactions. The authors, however, have not found the required
support in AspectJ to define an aspect for such optimizations. We agree that this
support is lacking, but note that this is a drawback of the AspectJ language and
weaver, and not necessarily of AOP in general. AspectJ could be extended, or another
language and weaver could be built which investigates the code of the method to
determine if it is read-only, and if so, includes the corresponding demarcation code.

The authors also consider further optimizations of transaction management, on a
per method basis, by declaring specific semantics of the method. As a first example
they consider conflict relationships between methods, and declaring methods that
commute, overriding conflicts generated by operations within the method. A second
example is associating an existing inverse method with each method, if available,

51

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING AND TRANSACTIONS

which is analogous to the concept of compensating transactions. These can then be
used by the TP Monitor to optimize logging. However, such information cannot be
deduced from the source code, similarly to what we proposed above, as noted in
the paper: “Obviously such semantic knowledge about methods can not be guessed
automatically. It must be provided by the application programmer.” This is relevant
for us, as this kind of semantic information is exactly what is required by ATMS, as
we have seen in the previous chapter, and therefore this has to be specified by the
application programmer. Furthermore, we note that inverse methods are considered
to be part of the base aspect, and not the transaction aspect, as the authors note
that these are associated to the transactional method, and not implemented in the
transaction aspect. We agree, as the transaction aspect should concern itself solely
with the transactional behavior of the application. Adding inverse methods consists
of adding base aspect code in the transactional aspect, which is contrary to separation
of concerns.

To conclude, Kienzle and Gerraoui state that to successfully aspectise transaction
management, the use of aspects must be kept in mind throughout the application
development cycle. AOP allows us to further separate concerns out at the level of
the code, but the design of the application must allow for the use of transactions.
Furthermore, the authors critique the lack of possibilities for optimization of read-only
transactions, but we state that this is an AspectJ-specific problem, and not a limitation
of AOP in general. Lastly, the authors consider declaring extra semantic information
for other optimizations, such as associating inverse methods to transactional methods.

Distribution and Persistence with AspectJ

Soares et al.[SLB02] implement a number of persistence and distribution aspects,
which include transaction management, also using AspectJ. They implement a ‘health
watcher system’ first without and afterwards with these aspects, to evaluate the use-
fulness of AOP.

The paper details the implementation of several aspects in AspectJ, including
distribution through Java RMI, persistence through JDBC, transaction control on
the persistent objects and exception handling. The authors state to have successfully
separated distribution and persistence from each other and from the business and
presentation logic, and conclude that the use of aspects indeed assists in producing a
better implementation. In the distribution aspect, the authors consider the AspectJ
implementation to be better than a pure OO solution as the latter would require
about 20% more code which is not separated out at all, and as a consequence is not as
adaptable and extensible. For the transaction management aspect, the authors report
that in the pure OO version “For each [transactional] method there are at least 6 lines
of tangled code to call the transaction life-cycle methods [i.e. demarcation code]” and

52

3.2. AOP AND TRANSACTION MANAGEMENT

that factoring this out into an aspect “avoids tedious work and increases productivity”.
In general, we can state that this is indeed a successful aspectisation of the concern
of transaction management, with a significant increase in separation of concerns.

Note that, while transaction management is indeed treated as an aspect in this
paper, it does not receive as thorough a treatment as by Kienzle and Gerraoui. The dis-
cussion focusses on how they declare methods as transactional, and how optimizations
of read-only methods, deemed impossible in the paper above, have been implemented.
Thorough treatment of rollbacks of transactions, and the need for irreversible actions
within transactional methods is not provided. The authors only indicate that rollback
of a transaction is not notified to the caller of the transactional method and remark
“any exception that is thrown and not handled by a transactional method aborts the
transaction.”

The most notable conclusion of Soares et al. is that aspectisation of transaction
management code does significantly increase separation of concerns and they report
the aspectised version to be more adaptable and extensible.

Persistence as an Aspect

Rashid and Chitchyan [RC03] implement a persistence aspect, which includes a trans-
action management part, also using AspectJ. The paper explores whether persistence
can be aspectized and if this aspect is reusable for other applications.

In modularizing persistence, the authors build a reusable framework of both com-
ponents and aspects. The authors claim that one of the widely misunderstood promises
of AOP is that an aspect equals one single unit of AspectJ-like code, but that this
is not so, except for the most simple cases. Instead, the authors state that aspecti-
sation has different classes and aspects collaborate to modularize one cross-cutting
concern. This also “ensures that aspectisation is not forced and in fact leads to a
natural separation of concerns”.

Also, we must remark that, as in the paper above, transaction management is
not treated as throughly as in [KG02], as it is only considered part of the general
persistence concern. Again, exception handling for transaction management is not
fully addressed. The authors assume that all exceptions thrown in transactional code
are related to database access, and therefore simply rollback the transaction when
these occur, but without further notifying the application, as above.

The authors conclude that separation of concerns at the level of application code
is achieved using AOP, as a highly reusable persistence aspect can be developed.
Caution must be taken, however, that the application and the persistence aspect are
not developed independently. Instead, the concern of persistence must be considered
from the onset of designing the application, as is stated in [KG02].

53

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING AND TRANSACTIONS

Exception Handling for Transactions

A recurring pattern in the above three approaches is the lack of treatment of the
exceptions caused by the transaction aspect. This prompted us to investigate the
topic of exception handling for transactions, which we reported in [Fab04b].

The fact that the non-functional concern of exception handling remains in the
base application makes the separation less clean. A higher degree of separation would
be achieved if this concern could also be tackled in the aspect. The goal of this work
therefore was to centralize transaction declaration and handling of rollbacks due to
exceptions in one location, namely the aspect definition, and exploring the feasibility
of using a concern-specific language for transaction management. We defined a new
aspect language, specifically for declaring transactional methods, which includes the
ability to declare exception handlers for these methods in plain Java. Furthermore,
the aspect language also provides a generic exception handler, which simply restarts
the transaction.

When defining the aspect, the programmer now adds exception handling code to
the declaration of the transactional method in the transaction aspect language. This
improves on the existing work discussed above, as the programmer may now decide
what approach to take upon receiving a transactionally related exception, in contrast
to the ‘do nothing’ approach used above. The programmer can now choose, in the
transaction aspect, which approach to take specifically for each method. As any Java
exception handler may be provided, the possibilities include, but are not limited to,
trying to fix the problem and retry the transaction or notifying the application an
error has occurred by throwing a custom exception.

The concern of rollback handling remains present in the caller of the method,
however, as these exception handlers may not be able to provide a solution for all
exceptions. For example, if the database server is down, the exception handler may
not be able to solve this problem and will have to inform the application of this error.
Less severe exceptions, such as a rollback caused by a deadlock, can however be tackled
by these handlers. As a result, the aspect does allows for a larger degree of separation
of concerns.

Conclusion

In conclusion, we have seen convincing reports that AOP does indeed lead to a signifi-
cant increase in separation of concerns at the level of application code, and specifically
when considering transaction management as an aspect.

As a result of the greater separation of concerns at the code level, AOP aids
in development and maintenance of applications using transactions, as reported in
[SLB02, RC03]. However, it is important to realize that these applications may not

54

3.3. AOP FOR ATMS DEMARCATION CODE

be constructed totally blindly from the concern of transaction management, as is
discussed in [KG02, RC03].

Also, it is observed in [RC03] that one aspect does not necessarily equal one unit
of AspectJ-like code. One aspect may consist of a mix of aspect and module code,
which together treat the intended concern. Lastly, within the confines of classical
transactions, [KG02] also envisions declaring extra semantic information, similar to
the information used in ATMS: declaring compensating methods and overriding con-
flict relationships for operations. This suggests us to consider an aspect for ATMS,
additional to aspects for classical transactions, and leads us to our problem statement,
which is next.

3.3 AOP for ATMS Demarcation code

As we discussed above, an important issue with transaction management is the fact
that demarcation code cross-cuts across the application code. As a consequence, the
application code becomes difficult to write and maintain, due to a low separation of
concerns. This issue has been addressed using AOP, modularizing transaction man-
agement as an aspect.

While classical transaction management has been modularized as an aspect, we see
no such work on ATMS. However, in ATMS the need for a good separation of concerns
is at least as important as in classical transactions, if not higher. If we reflect on the
nature of demarcation code for ATMS, we see that these models in general require
much more information than classical transactions. Consider the following examples:
in nested transactions, a child transaction must reference its parent transaction, in
Sagas, the saga must be subdivided in different steps and each step of the saga must
declare a counter-step, and in Relatively Consistent Schedules each step must declare
an interleaving descriptor set. Such information can not be deduced automatically,
as we observed in 3.2, and therefore needs to be provided by the programmer. This
results in corresponding demarcation code which must contain much more information
and will therefore probably be more complex than demarcation code for classical
transactions, and we return to this in more detail in chapter 7. As a consequence,
we state that for ATMS the need for aspectisation is even greater than for classical
transactions.

In brief, we state that an important problem of ATMS is the high complexity and
cross-cutting nature of the demarcation code. We claim that, therefore, modularizing
ATMS as an aspect will result in code which is easier to write and maintain. Also, as
there are many different ATMS in existence, this aspect must be general and powerful
enough to capture a variety of these ATMS, and not be specific to just one model, or
its usefulness will be too limited.

55

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING AND TRANSACTIONS

As different ATMS address different issues with classical transaction management,
support for only a few ATMS significantly limits applicability of the solution. To
increase applicability, it is important that many ATMS are supported in one general
aspect, such that many of the issues of classical transaction management are addressed.
We need to uncover fundamental underlying principles of ATMS to be able to support
such a wide variety of ATMS. If we choose instead to develop many different aspects,
one for each ATMS, it is not certain that these commonalities between different ATMS
will be found and can be reused. Therefore in developing each new aspect little or no
previous work can be used to speed up development. Furthermore, the list of ATMS
is open-ended, as new models may be developed at any time. So if we have a general
aspect for ATMS, it is likely that support for these models can be added to the aspect
with minimal work.

The generally applicable aspect language for ATMS will not reify the concepts used
by the different ATMS, but work in terms of a common foundation for the different
ATMS. As a consequence, the different ATMS will be expressed based on this common
foundation. This implies that aspect programs, defining the transactional properties
of the application, will be written at a low level: in terms of the common foundation.
As a result, this yields a large volume of aspect code where multiple sub-concerns are
tangled, as we will illustrate in chapter 7, which leads us to the observation of tangled
aspect code.

Considering solely the low level of aspect code, we can already state that it would
be better to have aspect programs define transactional properties at a high level:
in terms of the concepts of the ATMS actually being used in the application. If we
achieve this, the programmer can more easily specify and reason about transactional
definitions, because he reasons in terms of the ATMS, and not in underlying, more
low-level concepts. This is reminiscent of the original aspect languages, where each
language was specific to one concern.

To address the technical issue of modularizing demarcation code we propose a two-
level solution. First we develop a general aspect language for ATMS, which forms the
kernel of our approach, and is therefore called KALA: (Kernel Aspect Language for
ATMS). Second, on top of this kernel, a family of ATMS-specific languages are built,
each reifying the concepts in that ATMS. Programs in the ATMS-specific languages
are translated to the equivalent KALA programs, and woven in the application at
compile time, as illustrated in figure 3.1.

By having a general kernel language, we ensure that a wide variety of ATMS can
be supported, and by building different languages on top of the kernel, we can tailor
each language to the targeted ATMS, so that aspect programs in these languages are
as concise and intentional as possible. Also, by defining a family of such languages,
they share as much similarity as possible, making it easier to learn a new language
for a new ATMS.

56

3.4. CONCLUSION

Aspect

Weaver
Translator

1 2

Nested Saga RCS

KALA

Java

.class

Figure 3.1: At compile time first code in ATMS-specific languages is translated to
equivalent KALA code, which second is woven into the Java code.

3.4 Conclusion

In this chapter we have briefly introduced Aspect-Oriented programming as a promi-
nent technique to modularize cross-cutting concerns, which are concerns of which the
code can be found throughout different modules in the application. The advantage of
modularizing such concerns is that they can now be treated separately, not only con-
ceptually but also at the code level, which is known to greatly enhance implementation
and maintenance [HVL95].

We identified transaction management as an example of such a cross-cutting con-
cern, as demarcation code will be spread out throughout the application, everywhere
transactional data access occurs. We discussed published work on defining transaction
management as an aspect, which has shown that this indeed significantly increases
separation of concern. Also, resulting from this work is the observation that while
transaction management is separated out from the application, the rest of the appli-
cation must still take this concern into account.

This led us to the observation that no work has been performed to modularize
transaction demarcation code for ATMS, and that such an effort is indeed necessary
due to the higher complexity of demarcation code for ATMS, compared to demarcation
code for classical transactions.

The above observation gave rise to the technical problem addressed in this thesis,
which is that to create an aspect for ATMS, this aspect must be general enough
to address many models, while still being straightforward to use by the application
programmer. A general aspect for ATMS is required because of the large variety of
ATMS: supporting only a few significantly limits applicability. Generality, however
may not come at the price of ease of use: application programmers should be able to
write aspect code at the level of the concepts provided by the ATMS being used.

57

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING AND TRANSACTIONS

We briefly outlined the two-level solution we propose, which is to have a general
aspect language for ATMS, and on top of this build different languages, specific to
each ATMS.

Before we can construct this general aspect language for ATMS, however, we need
to further investigate these ATMS from a conceptual point of view. This reveals that
such an ATMS itself should not be considered as one monolithic concern, but in itself
is composed of multiple concerns, which has consequences that are discussed in the
next chapter.

58

Chapter 4
Tangled Aspect Code

They both savored the strange warm glow of being much more ignorant
than ordinary people, who were only ignorant of ordinary things.

— Terry Pratchett, Discworld scientists at work in “Equal Rites”

Having introduced Aspect-Oriented Programming, in the previous chapter, as the
means by which we wish to modularize demarcation code for ATMS, we now further
investigate these ATMS, to see how these can be aspectised. Considering different
ATMS, we see here that a given ATMS cannot be treated as a monolithic block,
but is composed of different concerns. Furthermore, we can tweak the ATMS to the
requirements of the application being developed by modifying the implementation of
such a concern. Therefore, we should be able to implement each of these concerns in a
separate module, and combine these modules into the aspect for ATMS when weaving.
However, the problem is that the demarcation code for the different concerns in this
ATMS will be tangled, i.e. the demarcation code implements the concerns in a tangled
way. Therefore we need to be able to again apply separation of concerns to the aspect
code. In other words, we need to be able to untangle the aspect itself into different
modules.

Investigating AspectJ, which is the most popular technology for aspectising trans-
action management as we have seen in 3.2, we find the aspect composition mechanism
supplied by AspectJ lacking. AspectJ does not allow us to cleanly write the differ-
ent concerns in separate modules, and compose these into an aspect for ATMS when
weaving. Instead, AspectJ forces us to write code, at the aspect level, in which the
multiple concerns present in the ATMS are tangled, a phenomenon we call tangled
aspect code. We therefore need a different solution for the aspect language and weaver,

59

CHAPTER 4. TANGLED ASPECT CODE

avoiding tangled aspect code for ATMS, and we provide for such a solution, discussed
later in the dissertation, from chapter 8 onwards.

We now start with investigating the different concerns present in ATMS, before
identifying where the code for these concerns can be found in the demarcation code.
We conclude this chapter with a discussion of the aspect composition facilities of
AspectJ, which leads us to the observation of tangled aspect code.

4.1 Concerns in Advanced Transaction Management

If we consider different ATMS from a conceptual point of view, we find that these
ATMS are not one monolithic block, but incorporate different design decisions. For
example, consider how rollback is handled in the Sagas ATMS (which we discussed in
2.3): compensating transactions are executed in the inverse sequence of the steps of
the saga. A different design decision could have been taken here, and compensating
transactions could run in a different sequence. For example, we could specify that
compensating transactions run in the same sequence as the steps of the saga, or even
let the compensating transactions run in parallel, to attempt to speed up saga rollback.
With different possible implementations for rollback handling, we should encapsulate
this functionality into a separate module [Par72], in other words, we can consider
rollback handling as a concern in the Sagas ATMS.

Looking at other ATMS, we find that other ATMS, such as Nested Transactions
and Relatively Consistent Schedules, contain multiple of these concerns: not only the
handling of rollbacks, but also two extra concerns, which we call view management
and delegation, as we see in 4.1.2. Each of these concerns can be modified in some
way, by providing an alternative implementation with different properties. Changing
the ATMS in this way allows us to modify the behavior, yielding a different ATMS
with slightly different properties. This then allows an existing ATMS to be tweaked
to better fit the design of a particular class of applications, which is one of the goals
of this dissertation.

In this section, we show how we identified these concerns in multiple ATMS. Sim-
ilarly to the previous research on aspectising transaction management, which we dis-
cussed in 3.2, we assume that transaction boundaries coincide with method bound-
aries, i.e. that a transaction starts at the beginning of a method, and ends when that
method ends. Hence, for classical transactions a transaction is contained within a sin-
gle method. Considering ATMS, however, the demarcation code for a single advanced
transaction may be spread out over different methods. This is because one advanced
transaction may be composed of multiple classical transactions, each contained in a
separate method. For example, in Nested Transactions, a tree of such transactions is
built and a Saga consists of a sequence of transactions. For clarity, therefore, in the

60

4.1. CONCERNS IN ADVANCED TRANSACTION MANAGEMENT

following discussion we will usually focus solely on one transactional method belonging
to the overall advanced transaction.

We start the identification of concerns in ATMS by first discussing the concern of
rollback handling within the Sagas ATMS, and second investigate Nested Transactions
and Relatively Consistent Schedules, which treat multiple concerns. Note that this
discussion is at a conceptual level and does not yet include actual demarcation code
for these ATMS. A Code example is given and discussed later in this chapter, in 4.2.

4.1.1 Concerns within the Sagas ATMS

A saga, as we have seen in 2.3, is an advanced transaction which is composed out of
a sequence of steps, each step corresponding to a classical transaction. To be able to
rollback the execution of a saga, each of these steps has to define a counterstep, i.e. a
semantical undo. When rolling back the saga, the currently active transaction is rolled
back, and the countersteps for the already committed steps are executed, in reverse
order of step sequence. Translated to application code, i.e. methods, each step will
correspond to a method, as is each counterstep. A top-level method which calls the
different steps in sequence can then play the role of the advanced transaction, and also
be transactional. In this discussion, however, we limit ourselves to the demarcation
code for just one step in the saga, and see which concerns we encounter.

If we consider conceptually the tasks that need to be performed by demarcation
code for such a step, we can infer that some parts of this code will treat managing
rollback of the saga. This code will perform the work of defining and starting up
compensating transactions, ensuring that these only begin when the saga aborts, and
that they run in the right sequence. All of these low-level tasks comprise the code for
one concern, which is managing rollback of the saga.

We can indeed consider management of rollbacks a true concern in this demarcation
code, as it is a design decision of the ATMS that lies conceptually at a higher level than
the implementation details of the code, i.e. the different tasks of the code we identified
above. This corresponds to the original consideration of a concern by Parnas [Par72]
where he states that a module, i.e. a concern, corresponds to the implementation of a
design decision.

We claim that management of rollbacks is part of the design of the ATMS, as dif-
ferent implementations of this concern can be easily envisioned. For example, consider
the Sagas example we introduced in 2.3 where calculating and adding the interest to
all accounts of a bank is implemented as a Saga. Each step in the saga consists of
calculating the interest for one account, and adding it to that account. Compensating
this step is performed by removing the calculated interest from that account. There
is no need, however, for the compensating steps to be executed in the reverse order
of step execution. Having the compensating steps execute in the same order as step

61

CHAPTER 4. TANGLED ASPECT CODE

execution would also perform correct rollback of the Saga. Furthermore, we can even
attempt to speed up rollback by executing the compensating steps in parallel. Making
such changes to the order of compensation effectively amounts to tweaking a concern
within the sagas ATMS, creating a new ATMS with a different fit to the design of the
application.

Demarcation code for Sagas will not be limited to code which treats rollbacks,
however, other tasks will also be performed by this code. Each transaction within the
saga has to be started and ended, and the operations performed by the application
on shared data have to be included in the transaction. These tasks are not directly
involved with determining compensating transactions and their sequence. Instead,
these tasks build a general frame in which fits the concern of transaction compensation.
We could also make modifications here, and we take an example from [CR92]: we could
allow each step of the saga to be a saga itself, instead of a transaction.

To summarize, we find demarcation code which does not treat the rollback concern
and which does treat a design decision for which another implementation is possible.
Therefore this code treats a second concern of the saga, which is the management of the
structure of the saga. More generally speaking, we call this concern the management
of the structure of the overall transaction, as defined in the ATMS.

In other words, if we reflect on the different tasks performed by saga demarcation
code, we find that this code treats two different concerns: first the management of
the structure of the overall transaction, and second management of how rollback is
performed. We can consider these two concerns as true concerns, as they are concep-
tually at a higher level than the different tasks within the demarcation code, and that
a different implementation of such a concern is possible, as we have shown above,
leading to a new ATMS.

The conceptual division of the demarcation code for Sagas in two concerns has
an important impact on how we must regard an aspect for advanced transaction
management. The concern of transaction management using the Sagas ATMS is not
one monolithic block, it is itself divided into two concerns. As a consequence, the aspect
that is built for this concern will itself consist out of two concerns, and this aspect will,
conceptually, not treat solely one concern, but multiple concerns. We could propose to
use two aspects to implement the concerns of transaction structure, but conceptually
this is a poor choice. If rollback handling is implemented as a separate aspect, there
is no meaning of adding this concern to the code if the Sagas structure is absent, as
there would be no actual transactions to rollback. Contrariwise, the Sagas structure
is not complete without the rollback handling concern. Therefore, conceptually these
two must be joined at the level of the aspect to form a whole that has meaning and
can be woven into the base code.

We now investigate other ATMS to see if demarcation code for other ATMS also
treats multiple concerns or if Sagas is an exceptional case. We perform this next, where

62

4.1. CONCERNS IN ADVANCED TRANSACTION MANAGEMENT

we look at Nested Transactions and at Relatively Consistent Schedules.

4.1.2 Multiple Concerns in other ATMS

After having discovered two concerns treated by the demarcation code for the sagas
ATMS, we now consider two more ATMS: Nested Transactions and Relatively Consis-
tent Schedules, to see if here also multiple concerns can be found in the demarcation
code. To determine this, we also contemplate the work to be performed by this code
at a conceptual level, and we start by considering Nested Transactions.

Nested Transactions

Considering the concerns of structure management and rollback handling, which we
identified above, for the Nested Transactions ATMS, we find that these also return
here. Nested Transactions build a tree-like structure of multiple transactions, at run-
time, so the concern of structure management will certainly be present here. Regarding
rollback handling, in Nested Transactions the rollback of a child transaction does not
imply rollback of the parent, but if the parent aborts, and some of its children have
not ended, these will need to abort. As a result we find that the concern of rollback
handling is also present in the demarcation code.

Considering the specification of Nested Transactions, we can identify more work
to be performed by the demarcation code. This code will also need to tell the concur-
rency manager to remove isolation between child and parent transaction, i.e. allow a
child to view the intermediate results of the parent. Also, if the child commits, demar-
cation code will tell the concurrency manager to delegate the used resources to the
parent before committing. This work clearly does not pertain to neither the concern
of managing the structure of the transaction, nor performing rollback. Therefore this
code will have to treat different concerns, as we see next.

Allowing a child transaction to view the parents’ intermediate results is an imple-
mentation task, but we can also envisage this at a higher conceptual level. Managing
such views can be much more extensive work than just setting the view to include
one other transaction. We could for example, construct a new ATMS by allowing the
siblings of a child transaction to be in the view and this transaction to be in their
view. This will require not only views to be set and unset, but also some extra man-
agement to be performed to keep track of these siblings. We can therefore regard view
management as a concern in its own right, the implementation of which in the Nested
Transactions ATMS happens to be simple.

This leaves us with transaction demarcation code performing delegation from the
child to the parent when committing. Clearly this does not belong in the concern
of view management, as the concepts are fundamentally different. Instead, delegation

63

CHAPTER 4. TANGLED ASPECT CODE

management is also a concern in its own right, which again happens to have a simple
implementation in the Nested Transactions ATMS. We could, for example, remove
this concern from the ATMS, letting commitment of child transactions write their
results directly to the database, which again creates a new ATMS.

Note that we have now created two new ATMS with some peculiar effects regarding
consistency of the database due to decreased isolation in the example of the view
management concern, and directly writing to the database in the example of the
delegation concern. This does not imply that these are not valid ATMS, since, as
we have said in chapter 2, certain ATMS may decide to forego classical database
consistency criteria in favor of exhibiting a certain behavior. It is the work of the
ATMS creator to identify the peculiarities of the ATMS and the effects they have.
The application designer needs to evaluate the different ATMS, taking into account
their peculiarities, to find the ATMS most suited to the design of the application.

Relatively Consistent Schedules

This ends our discussion on the different concerns present in the Nested Transactions
ATMS, and we now proceed with Relatively Consistent Schedules (RCS, see 2.4),
investigating the different concerns present in this ATMS. If we consider the structure
of such a transaction we see that it consists of a sequence of steps, which is similar to
the structure in Sagas. A significant difference, however, is that at the end of each step,
work is not committed to the database, but instead is kept within the transaction.
We can achieve such behavior in an application by composing the structure concern
of Sagas with the delegation concern. In other words, the different steps of the RCS
are implemented by different methods, all called by a top-level method, which is the
top-level transaction. At commit time of each step, responsibility for operations on
shared data is delegated to the top-level transaction. As in Nested Transactions, this
has as effect that the work performed in this transaction is not committed to the
database. Subsequent steps of the RCS, however, need to have access to this work,
and therefore in the beginning of each step we delegate the work from the top-level
transaction to this step.

RCS specifies more than just this behavior though, in RCS a given class of com-
patible transactions may view the intermediate results in between the execution of the
different steps. We can implement this by setting the view of the top-level transaction
to a collection of transactions which contains the compatible transactions in between
each step.

In 2.4, we have remarked that the authors of the RCS ATMS in [AFTO89] do not
explicitly address the issue of rollback, beyond recommending the use of counter-steps.
In other words, we can state that they have not thoroughly considered the concern of
rollback handling in their ATMS. We can take, as they suggest, the existing imple-

64

4.1. CONCERNS IN ADVANCED TRANSACTION MANAGEMENT

mentation of rollback handling for sagas, and add it here, to achieve the recommended
form of rollback handling.

The above implies that we can summarize the RCS ATMS as being the Sagas
ATMS which two concerns have been added to: view management and delegation. Note
that both of these concerns are heavily coupled, adding only one of these concerns
to Sagas makes no sense. If we only add delegation we, in effect, make one long
transaction and lose the benefits of splitting into steps. If we only add views, the work
of the steps is committed to the database, so in between steps no data remains to be
viewed by compatible transactions.

This concludes our discussion on RCS, where we identified the same concerns as
in Nested Transactions, and have remarked that, considering the concerns, RCS is
an extension of Sagas with an implementation of view management and delegation,
where both concerns are heavily coupled.

Generalization

A somewhat similar observation considering the different concerns within an ATMS
has already been performed by the authors of the ACTA formal model [CR92], which
we discuss in 6.1. The authors do not refer to concerns in the ATMS, but instead
use terms like ‘important notions’ and ‘properties of the model’. Four such ‘notions’
and ‘properties’ are given: visibility, recovery, permanence and consistency. Visibil-
ity corresponds to our view management concern, and recovery corresponds to our
rollback concern. We cannot provide a straightforward match to permanence and con-
sistency. Permanence refers to “the ability of a transaction to record its results in the
database” [CR92]. Consistency is said to pertain “the correctness of the state of the
database” after the transaction commits [CR92]. Permanence could be matched to
the delegation concern we identified above, because after delegation a transaction is
no longer responsible for recording its results to the database. However, we feel that
this is not as good a fit as visibility and recovery. Considering consistency, we do find
it an important feature of an ATMS, but we consider it rather as an outcome of how
the different concerns within the ATMS interact than a concern itself.

In general, we can speculate that the concerns we identified above in Sagas, Nested
Transactions and RCS: rollback, structure management, views and delegation, are
relevant to other ATMS. This not only because some of these concerns have also been
identified in the work on ACTA [CR92], but we can infer this when considering each
concern, as we do below.

Rollbacks A vital property associated with transactions is the ability to perform
rollbacks, as we have seen in 2.1.4. This is confirmed by the identification of the
recovery property in ACTA, which we discussed above. It is therefore almost

65

CHAPTER 4. TANGLED ASPECT CODE

required for an ATMS to provide some kind of rollback support. As a result we
can safely say that the majority of ATMS will contain the rollback concern.

Structure management This concern is not identified by ACTA, but is most prob-
ably present when one advanced transaction is composed of multiple atomic
transactions, such as Sagas or Nested transactions. In these cases, managing
the relationships between the different atomic transactions forms the structure
management concern.

View management As also observed in ACTA, modifying the isolation property
(one of the fundamental ACID properties, as we discussed in 2.1) is recurrent
in different ATMS. We have also seen this above in Nested Transactions and
RCS. Therefore, if an ATMS concerns itself with the isolation property, the
view management concern is present in this ATMS.

Delegation management While related to the ACTA property of permanence, del-
egation management is not as good a match as view management or rollbacks.
We do, however, consider it as a concern which does recur in multiple ATMS: we
identified it in RCS and Nested Transactions above, and is also present in Split
Transactions, which we have introduced in 2.5, and Altruistic Locking [SGM94],
which we have not discussed. Therefore, we can say that it will probably also be
present in other ATMS.

Consistency This is an ATMS property which is identified in the work on ACTA,
but as we said above we consider it rather as a result of the interaction of the
different concerns in an ATMS than a concern in itself. We did not identify this
concern in the ATMS we investigated above, and do not expect this concern to
be explicitly present in any other ATMS.

Note that we consider this list to be open-ended. Although we have identified
multiple concerns in many ATMS, it is possible that a new ATMS contains a concern
which we have not yet treated.

4.1.3 Conclusion

In the previous sections, we identified four different possible concerns within ATMS:
the structure of the transaction, how rollback is handled, management of views and
delegation of results. We made an initial observation on Sagas, and confirmed this for
Nested Transactions and RCS. Furthermore we have generalized our observations to
the presence of these concerns in ATMS we have not treated.

We found multiple instances of ATMS composed out of different concerns, and have
argued for the presence of these concerns in other ATMS, which we have not treated.

66

4.2. LOCATION OF CONCERNS WITHIN DEMARCATION CODE

We can therefore conclude that we may not consider all ATMS as one monolithic
concern. Instead, we must be able to consider an ATMS as a composition of multiple
concerns.

In other words, if we create an aspect for ATMS, we must take into account that
this aspect can itself be composed of different concerns which might be crosscutting
concerns. As we have argued above, conceptually, these concerns must be joined at the
level of the aspect, and not at the base level. This is because at base level separately
they have no meaning, it is only at the level of the aspect that, if different of these
concerns are joined, the aspect can have a meaning.

Furthermore. we have also seen, in Nested Transactions as in the Sagas section
above, that we can modify the different concerns, i.e. provide a different implementa-
tion, which yields a new ATMS with its own peculiarities. The ability to make such
changes is important for the goal of this dissertation, which is to have an ATMS of
which the design fits the design of the application. As an example we have shown how
the rollback concern of the Sagas ATMS can be modified to enable faster rollback of
the saga. By allowing a programmer to tweak an ATMS through a modification of
such a concern, we can enable a better fit between an ATMS and the program that
uses this ATMS. In the example, for the application, the sequence of compensation
was unimportant and this allows for faster rollback to be implemented, which can be
very useful for the application.

Having identified different concerns within the ATMS, and the benefit of being able
to modify the code for such a concern, we now return to the transaction demarcation
code, to locate these concerns within this code.

4.2 Location of Concerns Within Demarcation Code

We have concluded above that the aspect of transaction management using an ATMS
will itself consist of multiple concerns, i.e. the aspect code will treat multiple concerns.
We have furthermore stated that it is important that each of these concerns can be
changed, such that an ATMS can be tweaked to a new form that better fits the design
of a target application.

If we wish to modify concerns of an ATMS, or add implementations for new con-
cerns to an existing ATMS, the aspect that modularizes the ATMS must take into
account this requirement. The aspect code must be structured in such a way that mod-
ification of concerns is easy, enabling easy creation of new ATMS through changes in
the implementation of these concerns. To realize this structuring of the aspect, it
is beneficial to look at the base code that would implement such an ATMS, i.e. the
transaction demarcation code for this ATMS. This allows us to evaluate the feasibility
of different approaches to creating such an aspect with regard to weaving.

67

CHAPTER 4. TANGLED ASPECT CODE

4.2.1 A Concrete Example of Demarcation Code

To support the discussion on location of ATMS concerns within demarcation code,
we discuss here an example of a method containing such code. In this method we
illustrate how such code can be subdivided in five phases and which tasks can be
performed in each phase.

The code we discuss here is part of a larger example, which is discussed in chapter
7 and the full code of which is given in appendix B. The example we discuss in chapter
7 is a banking application, which is part of a multi-tier distributed system, and we
focus on the code for a money transfer operation. This money transfer operation uses
the Sagas ATMS, and is divided in three steps: first the transfer itself, second printing
a receipt to be given to the customer, and last logging the transfer operation. Of these
three steps, we include the code for the transfer operation here.

We do not discuss the code we provide here in detail, as it requires background
knowledge on the design and implementation of the concurrency manager, which has
not yet been provided. Instead, we restrict the discussion below to a more general
description of the different parts within the method code, the tasks performed by this
code and the purpose of these tasks. This code is discussed in detail in 7.3.1 and
appendix B and therefore we refer to these sections for an in depth treatment.

The following code is the implementation of the transfer operation, where trans-
action demarcation code has been emphasized like this.

1 private void transfer
2 (BankAccount from_orig, BankAccount to_orig, int amount)
3 throws TxException
4 {
5 TransactionManager txmgr = TransactionManager.getCurrent();
6 Integer tx_id = txmgr.newID();
7 txmgr.addTransaction(tx_id);
8 Integer saga = txmgr.lookup(Thread.currentThread());
9 txmgr.addToGroup("Saga"+ saga + "Step",tx_id);

10

11 final Integer comp_id = txmgr.newID(); //for compensation
12 txmgr.addTransaction(comp_id);
13 txmgr.addToGroup("Saga"+ comp_id+ "Comp",comp_id);
14 txmgr.bind("Saga"+ comp_id+ "Comp",comp_id);
15

16 final BankAccount compfrom = from_orig; //for inner class
17 final BankAccount compto = to_orig; //for inner class
18 final int compamount = amount; //for inner class

68

4.2. LOCATION OF CONCERNS WITHIN DEMARCATION CODE

19

20 Runnable compensator = new Runnable()
21 {
22 public void run(){
23 undoTransfer(compfrom, compto, compamount, comp_id);
24 }
25 };
26

27 txmgr.addDependency(saga, "ad", tx_id);
28 txmgr.addDependency(tx_id, "wd" ,saga);
29 txmgr.addDependency(comp_id, "bcd" ,tx_id);
30

31 new Thread(compensator).run();
32

33 Forcing bf = txmgr.mayBegin(tx_id);
34 if (bf == null)
35 txmgr.begin(tx_id);
36 else {
37 txmgr.rollback(tx_id);
38 return;
39 }
40

41 try {
42 BankAccountWrap from = new BankAccountWrap(from_orig);
43 BankAccountWrap to = new BankAccountWrap(to_orig);
44 int from_amount = from.getAmount(tx_id);
45 int to_amount = to.getAmount(tx_id);
46 to.setAmount(to_amount + amount, tx_id);
47 from.setAmount(from_amount - amount, tx_id);
48

49 Forcing cf = txmgr.mayCommit(tx_id);
50 if (cf != null)
51 throw new TxAbortedException();
52

53 txmgr.addDependency(comp_id, "cmd" ,saga);
54 txmgr.addDependency(comp_id, "bad" ,saga);
55

56 txmgr.commit(tx_id);
57 }
58 catch (TxException ex){

69

CHAPTER 4. TANGLED ASPECT CODE

59 txmgr.mayAbort(tx_id);//will always succeed
60 txmgr.rollback(tx_id);
61 throw ex;
62 }
63 }

We can subdivide the above code in five different phases: the preliminaries from
line 1 to 25, the begin phase from line 27 to 41, the running phase from line 41 to
47, the commit phase from line 49 to 56, and the abort phase from line 58 to 61. We
treat each of these phases in more detail next, in the above sequence.

Preliminaries

In the preliminaries, general setup is performed, obtaining references to external enti-
ties and building structures for later use. In lines 5 to 7, this transaction is registered
to the transaction scheduler. Lines 8 and 9 link this step of the saga to the actual saga
instance which is executing. The compensating transaction for this step is registered
to the transaction scheduler in lines 11 thru 14. The compensator object, created
in lines 16 to 25 enables the compensating transaction to run as a secondary trans-
action. Note that we do not include the code for the compensating transaction, i.e.
the implementation of the undoTransfer method here, as it is not relevant to this
example.

Begin

The begin phase contains demarcation code for actions that take place at the begin
time of the transaction. Lines 27 and 28 put a relationship in place between this step
and the saga: if this step aborts, the saga aborts, and if the saga aborts, this step
should also abort. A constraint is put on the compensating transaction in line 29: it
may not begin before the transfer step has committed. The compensating transaction
is then spawned as a secondary transaction, in a separate thread in line 31. Lines 33
thru 39 verify that this transaction may indeed begin, which would not be the case
if the saga has aborted, given the relationship placed in lines 27 and 28. In line 35,
if the transaction may indeed begin, the transaction scheduler is informed that the
transaction begins.

Running

The running phase essentially consists of the base application logic of the method, in
which wrappers on shared data are used. These wrappers ensure that the transaction

70

4.2. LOCATION OF CONCERNS WITHIN DEMARCATION CODE

scheduler mediates accesses to this data. This guarantees that the transactional prop-
erties of the model regarding data accesses are adhered to. We do not discuss this
code in further detail.

Commit

In the commit phase, demarcation code for actions that take place when a transaction
commits is located. Lines 49 thru 50 verify that this transaction may indeed commit.
which is the case if the saga has not aborted. Lines 53 and 54 constrain execution of
the compensating transaction (which is a secondary transaction) to only begin if the
saga aborts. In line 56 the transaction scheduler is informed of commitment of this
step, which will commit all accesses to shared data in this step to the database.

Abort

The abort phase treats aborting this step, which entails aborting the transaction. Lines
59 and 60 inform the transaction scheduler of the abortion of this step. This undoes
all the modifications to shared data performed by this step, and will also trigger the
saga to abort. Furthermore, line 61 ensures that the caller of this method is informed
of the abortion of this transaction by throwing an exception

Conclusion

This concludes our discussion of the five different phases within the above demarcation
code. For each phase we discussed the tasks performed by the demarcation code and
the purpose of these tasks

It is important to note that the general sequence of tasks within this demarcation
code is fixed, as a later operation will usually rely on results of an earlier one. For
example, in the begin phase, in line 31 the compensating transaction can only be run
in a separate thread after, in line 29, this transaction is prohibited to immediately
start executing. Therefore, we cannot modify the order of the statements within the
above code, which is important in 4.3.

4.2.2 Skeleton Code

From the concrete example code we have given above, we now take a step back to
perform a more general analysis. Not all methods that include such demarcation code
perform all the tasks we discussed above. Instead, these methods will only perform
the tasks required for the ATMS being used. We can, however, expect a minimum
skeleton of demarcation code to be present in the method: some preliminaries, the
original method code, the decision to commit or abort the transaction, the calls to

71

CHAPTER 4. TANGLED ASPECT CODE

the transaction scheduler to begin, commit and abort and an indication of failure
in case of such an abort. Consider the different parts of this skeleton code. Some
preliminaries will be required to, for example obtain a reference to the transaction
scheduler. The original method code always has to be present, or no work is performed.
Also, demarcation code must include calls to begin, commit and abort, otherwise the
life cycle of the transaction is not complete. Lastly, in case of a transaction abort,
code is needed that notifies the caller of abortion of the transaction. In summary,
the skeleton code ensures a minimum of functionality that must be provided by the
demarcation code, and therefore we expect this code always to be present.

Further considering this skeleton code, we can locate this code in the different
phases outlined above: preliminaries, beginning, running, commit and abort. In other
words, these phases will be found in each transactional method and we illustrate their
flow in figure 4.1. We therefore describe the purpose of each of these phases next, from
a general perspective. We also show how a concrete ATMS adds to this skeleton code
using as examples the demarcation code we discussed above and tasks to be performed
for the Nested Transactions ATMS:

Preliminaries In the preliminaries phase, skeleton code will perform preliminary
setup work, such as obtaining a reference to the transaction scheduler. The ex-
ample code above adds the definition of the compensating transaction to this
skeleton. In Nested Transactions, a reference to the parent of this nested transac-
tion can also be obtained here, to be used later, and the parent can be informed
of this new child.

Beginning In the beginning phase, skeleton code will issue a call to the transaction
scheduler indicating the beginning of the method. In the sagas example above,
the step is linked to the saga instance, and the secondary transaction is restricted
to run only after the step commits. Demarcation code in Nested Transactions
will relax isolation between this transaction and the parent here.

Running In the running phase the original code for the method is contained, with
data accesses made transactional. Also in this phase the decision to either com-
mit or abort the method will be taken. We foresee no other demarcation code
to be required here, for no ATMS.

Commit In the commit phase, the skeleton code informs the transaction scheduler of
transaction commit. In the sagas example above, the compensating transaction
is restricted to run only when the saga aborts. For Nested Transactions, de-
marcation code will first delegate all the work of this transaction to the parent,
before the commit in the skeleton code.

72

4.2. LOCATION OF CONCERNS WITHIN DEMARCATION CODE

Perform setup

Original method

Begin Tx

Commit Tx

End of

method

Beginning of

method

Abort

Abort Tx

Preliminaries

Begin

Running

Commit Abort

Yes

No

Indicate aborted

Figure 4.1: Phases in skeleton transaction demarcation code within one method.

73

CHAPTER 4. TANGLED ASPECT CODE

Abort In the abort phase, the skeleton code informs the transaction scheduler of
transaction abort, and will also inform the caller of this method, for example by
throwing an exception. The example code above adds no further starements. For
Nested Transactions, demarcation code will have to ensure that all the children
of this method also abort.

Given this subdivision of work performed by demarcation code, and tasks per-
formed by the demarcation code in these phases, we can now investigate the different
ATMS we discussed previously in this chapter. This allows us to see where the different
concerns of these ATMS can be found in the demarcation code.

We start by re-evaluating the sagas code above, and identify the location of code
for the rollback concern.

4.2.3 Location of the Rollback Concern in Sagas

Using as a base figure 4.1, outlining the general sequence of phases within one method,
we now indicate in which phases demarcation code is contained for the rollback concern
in the Sagas example code discussed above. We show this in figure 4.2, where the
phases colored red indicate that they will contain demarcation code for this concern,
in addition to the skeleton code.

In figure 4.2 we see that, in addition to the skeleton code, code is placed in the
preliminaries phase, begin phase and commit phase. In the preliminaries phase, the
compensating transaction is specified inline 11 thru 25. In the begin phase, this trans-
action is restricted to run in line 29 and started as a secondary transaction in line 31.
In the commit phase, the compensating transaction is specified to run when the saga
aborts in lines 53 and 54.

Considering the preliminaries and the begin phase and the location of concerns
within this code, we see that code in the beginning of preliminaries phase is skeleton
code and at the end of the phase treats the rollback concern. This is followed by the
begin phase where first the rollback concern is treated and then again we have skeleton
code. In other words, in this part of the demarcation code first we have code for the
skeleton, then for the rollback concern, and then again for the skeleton. This shows
that skeleton code is tangled with code for the rollback concern.

4.2.4 Location of View and Delegation in Relatively Consistent Schedules

Demarcation code for sagas only tackles two concerns; the structure of the advanced
transaction and how to perform rollback. We have identified other ATMS that contain
more concerns above, such as RCS. In RCS, along with the above two, the concerns of
view management and delegation are present. To illustrate the layout of demarcation
code that tackles multiple concerns, in figure 4.3 we provide an indication for the

74

4.2. LOCATION OF CONCERNS WITHIN DEMARCATION CODE

Perform setup

Original method

Begin Tx

Commit Tx

End of

method

Beginning of

method

Abort

Preliminaries

Begin

Running

Commit Abort
No

Abort Tx

Yes

Indicate aborted

Figure 4.2: Flow chart of transaction demarcation code indicating Sagas code for the
rollback concern.

75

CHAPTER 4. TANGLED ASPECT CODE

demarcation code of a step in RCS for the concerns of rollback handling, view man-
agement and delegation. In this figure, we have colored the phases which will contain
demarcation code for the rollback concern in red, the view management concern in
green, and the delegation concern in blue.

Considering figure 4.3, we see that multiple phases have different colors, i.e. mul-
tiple concerns will be treated in those phases. We therefore discuss this code concern
by concern. The red code, for the concern of rollback management is in the same loca-
tions as in the Sagas example above. This is not surprising, as we have already stated
that we can consider RCS as an extension of Sagas in 4.1.2, i.e. the demarcation code
for Sagas is repeated, and therefore we do not discuss it further.

Demarcation code for view management, in green, starts at the preliminaries where
a reference to the top level transaction is obtained, to be used in the following phases.
In the beginning phase, this reference is then used to remove the view of the top-level
transaction. This will be performed before the call to the transaction scheduler to
indicate the transaction begins. As a result, no other transactions see the intermediate
work performed within this step. At commit time, view adding is perforned, i.e. the
inverse operation. The new view of the top level transaction, i.e. the new group of
compatible transactions, is obtained and set right before the the call to the transaction
scheduler to indicate the transaction commits. Returning to the preliminaries and the
begin phase treated above, for Sagas, this entails that within the code which already
tangles skeleton and rollback, an extra concern is added. Furthermore this adds to
the entanglement, as this code is not added at the beginning of the end of the phase,
but has to be added within the begin phase, after the rollback concern is treated and
before the skeleton code.

The delegation concern, in blue, works hand in hand with the viewing concern, tak-
ing intermediate results from the top-level transaction before this step starts, and at
the end of the step delegating all operations back to the top-level transaction. To im-
plement this, first the name of the top-level transaction is retrieved in the preliminaries
phase. Second delegation from the top-level to the step is performed immediately be-
fore the call to the transaction scheduler to indicate the transaction begins. Third and
last, delegation from the step to the top-level is performed immediately before the
call to the transaction scheduler to indicate the transaction commits. Again returning
to the preliminaries and the begin phase, delegation code is also placed within these
phases. This further adds to the entanglement, as the delegation code is placed be-
fore the skeleton code in the begin phase. This results in code which first is skeleton
code, then rollback code (in the preliminaries), followed by code for rollback, view,
delegation and skeleton code (in the begin phase), i.e. this code is tangled.

76

4.2. LOCATION OF CONCERNS WITHIN DEMARCATION CODE

Perform setup

Original method

Begin Tx

Commit Tx

End of

method

Beginning of

method

Abort

Preliminaries

Begin

Running

Commit Abort
No

Abort Tx

Yes

Indicate aborted

Figure 4.3: Flow chart of transaction demarcation code indicating RCS code: rollback
concern in red, views in green and delegation in blue.

77

CHAPTER 4. TANGLED ASPECT CODE

4.2.5 Conclusion

To conclude, we see that with an ATMS containing many concerns, the demarcation
code not only will be placed in different locations. but that these different locations
will treat multiple concerns in a tangled way. In other words, the demarcation code
will contain multiple tangled concerns.

As we have said in 4.1.2 we want to be able to modify the code for these different
concerns, tailoring an ATMS to better fit the design of a given application. This means
that we want to have a modular treatment of concerns at the level of the aspect,
regardless of the tangled nature of the resulting demarcation code. Therefore, the
aspect weaver technology that we want to use must allow these different concerns to
be expressed as different modules at the aspect level, and generate tangled demarcation
code, such as illustrated in figure 4.3, which we address next.

4.3 Tangled Aspect Code

In the previous section, we deduced that we are faced with transaction demarcation
code that treats multiple concerns in a tangled way. We want, however, that these dif-
ferent concerns are separated at the aspect level in separate modules, so we can easily
provide a different implementation for a given concern. In this section we consider
well-known and popular aspect languages and weavers, more specifically AspectJ-like
weavers, to determine if they provide support for such separation. We find that such
support is lacking, resulting in what we call tangled aspect code.

We have found that an ATMS conceptually contains multiple concerns, and that
we want to be able to modify these concerns individually. Therefore, these concerns
should be encapsulated in different modules. These different modules, when merged
together, form the definition for one aspect, to be woven into the application code. As
different modules we consider the three concerns identified above: rollback handling,
view management and delegation. Each of these concerns, however, can expect the
minimum skeleton code to be present in the demarcation code, as we have discussed
above. Therefore, we can consider the skeleton code to be a primary concern to which
the other concerns are added when merging. In other words: to build the aspect
definition of an ATMS, the skeleton concern is merged with a three optional concerns:
rollback handling, view management and delegation.

Concern Composition in AspectJ

There seems to be a consensus in the research community to use AspectJ [Asp05]
as weaver technology to aspectize transaction management, as we have seen in 3.2.
Therefore we now investigate if AspectJ-like weavers provide support for the compo-

78

4.3. TANGLED ASPECT CODE

sition discussed above. We find that AspectJ does not support merging of different
concerns within an aspect into one. Instead AspectJ allows to combine different as-
pect definitions, where each aspect definition is considered as a full-fledged aspect.
AspectJ, however, is not powerful enough to provide for a merge of ATMS concerns,
as we show next.

If we define the different concerns defined above as different aspects, we need to use
the facilities provided by AspectJ to combine these aspect definitions when weaving.
AspectJ provides one combination mechanism, advice precedence, that essentially is
sequencing of aspects [Asp05]. With advice precedence, a precedence relationship be-
tween aspects can be declared. Different aspects can intervene before, after or around
a method definition or method invocation, and the sequence can be set by a declared
precedence relationship. We find it striking that this module composition mechanism
essentially only allows reordering of steps in processing, as this runs completely con-
trary to the observation of Parnas that “modules will not correspond to steps in the
processing” [Par72], and we show below that this mechanism is indeed insufficient.

Let us consider the skeleton code for the method as the first aspect in the composi-
tion, we then apply this aspect around a method definition. We have the preliminaries
and begin phases before the method, and the commit and abort phases after the
method, giving us the structure in figure 4.1. Adding subsequent aspects, for exam-
ple, rollback handling, to this sequence is problematic. We have given an example of
rollback handling code for sagas above, in 4.2, and have seen that this code is placed
within the preliminaries, begin and commit phases, as illustrated by figure 4.2. We can
also split this code in a before the method and after the method part, to aid in compo-
sition. What remains now is to declare precedence for both before parts and both after
parts. This should combine these parts into yield the complete Sagas implementation.

Schematically, we illustrate this as follows: we represent the method as M , the
before and after part of the structure concern as BS and AS, and the before and after
part of the rollback concern as BR and AR. Execution sequence of the different parts
is given by → i.e. BS → M → AS represents the structure concern woven around the
method. To compose this with the rollback concern, precedence can be declared such
that we have four different possibilities:

1 : BR → BS → M → AS → AR
2 : BS → BR → M → AR → AS
3 : BR → BS → M → AR → AS
4 : BS → BR → M → AS → AR

None of the above compositions, provided by AspectJ, are adequate. As we have
seen above, the rollback concern is contained within the skeleton, in the preliminaries
phase. As this means it is not executed before or after the skeleton, the execution
precedence mechanism provided for by AspectJ does not suffice. The same argument

79

CHAPTER 4. TANGLED ASPECT CODE

holds for the demarcation code executed after the method: rollback handling code
is contained within the commit part of the skeleton, and not before or after this
skeleton. In other words, conceptually AspectJ does not provide for a clean way in
which a rollback concern can be merged with the skeleton concern to form one full
aspect definition, in the case of the example, for Sagas.

It could be argued that the inability to cleanly merge the skeleton concern with
a rollback concern in AspectJ is due to the artificial nature of the skeleton concern.
Suppose that no ATMS will only use the skeleton concern, and therefore conceptually
we must consider that at least one concern in a given composition will include the
skeleton code. For example, we can consider the rollback handling concern above to
include the skeleton code, yielding an aspect split in a before and after part, where each
part contains the skeleton in which rollback handling code is placed. The question now
remains of how to combine this aspect definition with a definition of view management
and a definition of delegation, to form demarcation code that uses RCS. Again we see
that the composition functionality provided by AspectJ does not allow for a merge of
these different concerns, as the code for views and delegation must be placed within the
code for rollback handling (which includes the skeleton code), and not before or after
this code. To summarize, we can not provide for a conceptually clean way to compose
the different concerns for ATMS into one aspect using AspectJ, because AspectJ only
allows the different aspects to execute in sequence using advice precedence, and not
for multiple aspects to be tangled into one.

Remark, however, that the above discussion centers on a conceptually clean way in
which the different concerns can be merged into one aspect. We can envision a strategy
in which the skeleton concern is split up into different small concern parts, for example
each part corresponding to a phase given above, and the same to be performed for
the other concerns. These small concern parts can then be sequenced using advice
precedence declarations, which then forms a full aspect definition for a given ATMS.
It is clear, however, that this is conceptually not a clean solution, as firstly it entails
splitting each module for a concern in different sub-modules, and secondly providing an
extensive advice precedence declaration for all these sub-modules. We should be able
to keep each concern as a single module, and have a minimal composition definition.

Tangled Aspect Code

As AspectJ does not allow us to split the different concerns of an ATMS into separate
modules at the level of the aspect and to automatically combine them when weav-
ing the aspect, this entails that we will not be able to write the different concerns
separately. In other words, if we use AspectJ as weaver, in the aspect we define we
will have to manually compose the different concerns to form one AspectJ definition
of an aspect. This aspect code will be tangled code, as we have shown that the dif-

80

4.3. TANGLED ASPECT CODE

ferent concerns can not be composed sequentially. In other words, what we have is a
move from base code that is tangled to aspect code that is still tangled. We call the
phenomenon where aspect code still contains different concerns of which the code is
tangled tangled aspect code.

We note that while the phenomenon of tangled aspect code bears a resemblance to
the idea of aspects on aspects [VC05], we find a fundamental difference between these
two with regard to the completeness of the aspect. In aspects on aspects, multiple
crosscutting concerns at the level of the base code are created as aspects, such as, for
example, a persistence aspect and a logging aspect, and the execution of one aspect is
the join point for another aspect. For example we can combine persistence with logging
such that whenever a persistence operation is performed, this operation is logged. In
our case, however, the different concerns within an ATMS are meaningless without
each other and need to be composed at aspect level: for example in RCS the delegation
concern has to be combined with view management, rollback and the skeleton to
become one complete ATMS. This is in contrast to the examples of persistence and
logging, which already separately provide a complete functionality. In other words,
with tangled aspect code, the different concerns need to be combined at the level
of the aspect to provide functionality, whereas in aspects on aspects the different
concerns can be woven separately into the base level.

Furthermore, conceptually combining the different aspects when weaving becomes
a difficult task if we would have two aspects where each consists of multiple concerns.
If the concerns of both aspects are all simultaneously woven into the base code this
composition can become extremely complex with a combinatorial explosion of pos-
sibilities to combine the different concerns. If, on the other hand, we first allow the
two different aspects to be composed at the aspect level, and then combine these two
concerns when weaving, conceptually the composition of these two aspects is much
more straightforward.

Conclusion

To conclude, in this section we have seen that it is impossible to use AspectJ in a
conceptually clean way to compose the multiple concerns within an ATMS. Instead
we are forced to write aspect level code that itself treats multiple concerns in a tangled
way, a phenomenon we call tangled aspect code. We note that tangled aspect code
is different from the concept of aspects on aspects as in the latter each aspect is a
crosscutting concern at the level of the base code, while in the former each concern
resides at aspect level.

Therefore, if we want to use AspectJ to write an aspect definition for an ATMS,
we cannot divide the different concerns within that ATMS into different modules.
However, we want to have such a modularization, as we want to be able to easily

81

CHAPTER 4. TANGLED ASPECT CODE

modify the implementation of a given concern of an ATMS. To support this, in this
dissertation we provide an aspect language and weaver that allow for such a modu-
larization, taking into account the properties of the specific domain of ATMS. Using
domain information of ATMS allows us to define an aspect language and aspect weaver
that does allow for splitting the concerns within an ATMS in different modules, and
merging them into one aspect definition, which we show in the remainder of this text.

4.4 Conclusion

In this chapter, we deduced that, in general, an ATMS should not be considered as one
monolithic block, but rather as a composition of different concerns. We have identified
four such concerns: the structure of the extended transaction, handling of rollback,
management of views and performing delegation. Furthermore, we have shown that we
can provide a different implementation of a given concern of an ATMS, which yields
an ATMS with different properties with regard to this concern. This can be used to
tweak an existing ATMS to better fit a particular class of applications.

Having an ATMS composed of different concerns implies that the code for each
concern should be contained in a separate module at the level of the aspect. We
first, however, looked at the code at base level, i.e. traditional demarcation code, to
identify what an aspect weaver needs to perform to be able to merge these concerns
into the final code. In this demarcation code, we have seen that these concerns are
crosscutting, i.e. the code for the different concerns is tangled, and therefore, the
aspect weaver needs a composition mechanism that is able to tangle the code for the
different concerns when weaving.

We investigated if AspectJ can be used to compose the different modules for an
ATMS into this tangled code, as AspectJ seems to be the de-facto tool to perform
aspectisation of transaction management. However, we found that the composition
mechanisms in AspectJ are sorely lacking, which forces us to write code at the level
of the aspect that is also tangled, a phenomenon that we name tangled aspect code.

Instead of writing tangled aspect code, it should be possible to define an ATMS as
a composition of different modules, each module addressing one crosscutting concern,
where merging these concerns yields the aspect code for the ATMS. In this dissertation
we show how we achieve this, by taking into account the specific domain for which we
are writing an aspect: ATMS, and using this domain information to create an aspect
language for ATMS.

Before we detail our solution, however, we first investigate the run-time component
of a transaction management system, the TP Monitor. This is required, as to be able
to use a large variety of ATMS, we need this run-time component to provide support
for these models.

82

Chapter 5
Transaction Management in Multi-Tier

Distributed Systems

TP Monitors are like the Rolling Stones:
been around for a long time, but still drawing large crowds.

— David Linthicum

The goal and outline of the work proposed in this dissertation is to develop a
means to modularize demarcation code for a wide variety of ATMS, so that an ATMS
can be chosen, or a new ATMS can be constructed, that best fits the design of the
application being built. In the previous chapter we have further explored this and
found an extra requirement for the modularization of this demarcation code.

This chapter crosses over from demarcation code, and the application using ATMS,
to the server that manages transactions at run-time, ensuring the properties of the
ATMS being used are adhered to, i.e. concurrency control is performed for the ap-
plication. This server is known as the transaction monitor, or TP Monitor, and will
manage all transactions and their associated states, such as, e.g. locks.

In order to be able to use an ATMS in the client application, the TP Monitor
will need to provide support for this ATMS, as it needs to ensure the properties of
the model are adhered to. Consequently, allowing an application programmer to use a
wide variety of ATMS, and even to implement new models, will require support from
the TP Monitor.

Here we discuss how transaction monitors are used in the context of multi-tier
distributed systems, and focus on one popular class of transaction monitors: those
provided by the Enterprise JavaBeans component model. We investigate the ability

83

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

of these TP monitors to support a wide variety of ATMS, and we find this lacking.
Also a significant feature of Enterprise JavaBeans is that it attempts to modularize
demarcation code. However, we show that this turns out to be an inferior solution to
the transaction aspects we discussed in the previous chapter.

5.1 Multi-Tier Distributed Systems

Current-day transaction monitors for large distributed systems, such as banking sys-
tems and airline ticket reservation systems, are meant to be used in a multi-tiered
architecture. Therefore, to provide some relevant context, we discuss these architec-
tures here. For these large systems the preferred architecture has evolved through the
years, from a single mainframe application to 3-tier and multi-tier systems.

The term tier is used to describe how the architecture of a distributed system is
logically partitioned across different clients and servers [Edw99]. In a 3-tier architec-
ture the partitioning is as follows:

• the first tier comprises clients that interact with the users,

• the second tier, also known as middle tier or application tier, contains servers
that execute the business logic,

• and the third tier consists of the persistency layer, usually database servers.

Consider as example of a 3-tier system a high-traffic web shop:

1. The user interface tier consists of the web browser used by clients visiting the
shop. Pages for the web browser are generated dynamically, based on stock
inventory, and may contain forms to be filled out by the shopper.

2. The application tier consists of a web server, combined with a collection of
programs implementing the business logic. Based on the pages requested by the
shopper, or the data filled into a form, the web server calls the corresponding
program, which processes the input and as a result returns a web page to be
displayed by the web browser.

3. The resource tier is a relational database used by the applications in the previous
tier, for example to query the amount of items available for a given product, to
register an order, or to add the shoppers’ information.

As a brief second example, consider an online bank: The user interface tier is a
Java applet, which is downloaded to the customers’ computer. This applet performs

84

5.1. MULTI-TIER DISTRIBUTED SYSTEMS

Java RMI [Sun03b] calls to the application tier: a Java application, located on a cen-
tral server. This application interacts with the bank’s proprietary legacy information
system that manages accounts: the third tier.

The application tier typically consists of a large body of software, which makes
it difficult to maintain. To avoid this, separation of concerns, which we discussed
in 3.1.1, is used and this tier is split up into a number of application components:
each component is responsible for a limited amount of business functionality. Clients
typically interact with multiple components during a business operation, and each
of these components may, themselves, call upon other components to provide some
functionality.

This 3-tier architecture, where the middle tier has been implemented as a collection
of business components is often called Multi-tier or N-tier[Edw99], and provides a
number of advantages over the 3-tier architecture [Edw99, Szy98]:

• Incremental development of the middle tier, by adding new components as
needed, and the ability to incrementally upgrade this tier.

• One component can be reused by multiple applications.

• A component can be deployed on multiple servers of the application tier, for
load-balancing.

• Off-the-shelf components can be bought and used, allowing a compromise be-
tween having the middle tier be fully custom-built and the middle tier consisting
of solely off-the-shelf software.

Using such components, however, requires a specific runtime environment that will
be able to run them. These runtime environments, which are also known as middleware,
provide the ‘glue’ that sticks the components together to form the middle tier[Edw99].
Such middleware is responsible for:

Component communication: providing of inter-component communication capa-
bilities, including support for network communications between components that
are distributed over several servers.

Security: component security policies are enforced, ensuring no client or component
requests services to which it has no rights.

State management: components are dynamically loaded from disk when required,
and unloaded to disk to free up memory.

Transaction Management: transactions for the services implemented by the com-
ponents are managed.

85

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

Database connectivity: a uniform API for a variety of databases may be exposed
to the components.

In this section we have discussed the preferred architectures for large-scale dis-
tributed systems: 3-tier and multi-tier systems. In 3-tier systems the application is
split up in a user interface tier, an application logic tier, and a database tier. In multi-
tier systems, the middle tier is composed out of a number of business logic components,
using middleware glue, which brings the advantages of component-based development
to 3-tier systems.

Having discussed these two architectures, we are now able to describe the role of
the transaction manager in these systems.

5.2 Transaction Monitors and Object Transaction Monitors

When considering multi-tier distributed systems, the middleware will provide a num-
ber of services to the components in the application tier. Of these services, one is
of particular concern to us: transaction management. In this section we will first de-
scribe classical transaction monitors, and second detail how transaction monitors are
integrated into the middleware as object transaction monitors.

5.2.1 Transaction Monitors

A Transaction Monitor, also known as Transaction Processing Monitor, or abbreviated
to TP monitor, is a server application that performs concurrency control at runtime
for its clients. To realise this, the TP monitor will manage all transactions and their
attributes, delay reads and writes when necessary, and signal transaction aborts when
needed, e.g. to break deadlocks.

Since interaction with shared data, e.g. in a database, entails management not only
of that data, but also of the code, processes and memory required to make it available
to the clients, it is common in transactional systems to call the database servers
resource managers. The goal of a TP monitor is to make it easy to build software that
invokes these resource managers, using an extended version of the Remote Procedure
Call (RPC) [GR93].

The traditional RPC needs to be extended because transactional communications
are an enhanced form of communications: transactions need to be started and ended,
and data access needs to be associated with a transaction. To start and end transac-
tions, the program code will include RPC’s to the TP monitor, the canonical examples
being Begin Work() to start a transaction and Commit Work() to commit it [GR93].
As we have already introduced in 2.1, explicitly declaring such transaction boundaries
in the program code is also known as transaction demarcation [GR93].

86

5.2. TP MONITORS AND OBJECT TRANSACTION MONITORS

Conceptually associated to the transaction is the transaction context. All code
between the transaction boundaries, i.e. the code comprising the transaction, is said
to be executed within this context. The transaction context can be referred to by
using a transaction identifier, which is usually returned by the Begin Work() RPC.
Transaction context propagation entails passing this identifier as extra, possibly hid-
den, parameter to procedure calls, so that this code is also executed in that context.
In other words, the code of these procedures is also included in the transaction. The
inverse to this is transaction suspension: if we do not pass the transaction context to
a procedure call, the work of this procedure is not included in the scope of the trans-
action. It is as if the transaction is suspended during the execution of the procedure,
and resumed after the procedure has ended.

5.2.2 Object Transaction Monitors

Whereas previously, TP Monitors were built for use with procedural languages, cur-
rent TP Monitors have grown to support and use object-oriented technology. These
incarnations of the TP Monitor concept are known as an Object Transaction Monitors
(OTM). The underlying technology that enables this transition to object technology is
the Object Request Broker (ORB): we can consider OTM’s as a combination of ORB’s
and TP Monitors [Edw99].

The ORB is a concept that is best known from CORBA [Vin97]: CORBA provides
a standard for interoperability and portability that allows heterogeneous and open
systems to integrate into one coherent system. Communication between the different
systems, which are abstracted as a (collection of) object(s) is performed by means of
remote method calls, which are facilitated by the ORB. The most important feature
of the ORB is that it provides transparency for:

Object location: the location of the target object is not known to the invoker of the
method, the target may reside at any point in the network.

Object implementation: the implementation language and operating environment
of the target object is unknown to the invoker.

Object execution state: the ORB will transparently start or activate the object,
i.e. load it in memory, if necessary, and stop or passivate the object, i.e. offload
it to persistent storage, if it is no longer required.

Object communication mechanisms: the target of the method and the method
invoker are unaware of the underlying network protocol used by the ORB to
perform the remote method invocation.

87

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

Of these features, the last is of special relevance here, since it coincides with a task
performed by traditional TP Monitors: communication management between client
and server is now specialised into management of remote method invocations.

To these features, OTMs add, among other features, transaction management,
resulting in a transaction monitor concept applicable to distributed objects.

These OTMs then, are ideally suited as middleware in multi-tier systems: we can
write components as (a collection of) objects, and the OTM will perform all the
services required of the middleware. Currently, there are three major industry stan-
dards for OTM’s as middleware: Enterprise JavaBeans [Sun05], introduced in 1998 the
CORBA 3.0 standard [Obj04], defined in 2002 and Microsoft’s .net standard [Mic05].
In this dissertation, we have chosen Enterprise JavaBeans as the middleware for our
experiments. We did not opt for .net because no development environment was avail-
able for our platform, and .net is geared specifically towards web services. In the choice
between Enterprise JavaBeans and CORBA 3.0, we chose to use Enterprise JavaBeans
because it is widely used, it provides similar capabilities to CORBA 3.0, with which
it is compatible, and we consider it easier to work with.

5.2.3 Conclusion

In this section we introduced the software entities responsible for managing transac-
tions at run-time: Transaction Monitors a.k.a. TP Monitors. TP Monitors perform
concurrency control at runtime, according to the restrictions placed by the transac-
tion model. We have also seen that to start and end transactions, the client software
explicitly demarcates transactions in the program code, and includes the transaction
identifier in every transactional call.

TP Monitors have been built for procedural programming languages, and to sup-
port object-oriented languages were modified into Object Transaction Monitors. Ob-
ject Transaction Monitors are well-suited as middleware in n-tier distributed systems,
and a number of industry standards have been developed. We have chosen to work with
Enterprise JavaBeans, and therefore, in the next section, we will introduce Enterprise
JavaBeans, paying special attention to its transaction management infrastructure.

5.3 Enterprise JavaBeans

As stated above, in multi-tier distributed systems, middleware glue is needed to pro-
vide a runtime environment for the different components that comprise the application
layer. Enterprise JavaBeans (EJB) [Sun05] is the standard Java component architec-
ture for such middleware applications, and is also CORBA compatible.

The EJB architecture defines a number of parts, which we discuss next:

88

5.3. ENTERPRISE JAVABEANS

Enterprise JavaBean: The complete EJB component that is deployed.

Deployment Descriptor: A declarative description of the attributes of an EJB.

Container: The runtime environment for one component.

Home interface: An interface for management of EJB instances.

Remote Interface: An interface declaring the EJBs’ business methods made avail-
able to users of the EJB.

EJB object: An object representing an instance of a EJB.

First we describe the Enterprise JavaBean and its Deployment Descriptor, after-
wards we describe the container, together with the Home and Remote interface and
the EJB object. This is followed by a section on servers and clients, and we conclude
with a discussion of transaction management.

5.3.1 Enterprise JavaBean and its Deployment Descriptor

The EJB is a component that implements ‘business methods’ i.e. the code that delivers
the ‘business’ functionality. There are two distinct kinds of EJBs: session Beans and
entity Beans [Sun05].

• Session Beans typically are non-persistent objects that implement some business
logic, as Java methods, running on a server. Session Beans execute on behalf of
a single client, they can update data in an underlying database, but do not di-
rectly represent this data. Session Beans only store conversational state between
themselves and the client, they are relatively short-lived and are not recovered
when the server crashes.

• An Entity Bean is a persistent object that represents an object view of some data
stored in a database, or an entity that is implemented by an existing business
application. Entity Beans can be shared by multiple users, are transactional, are
long-lived (e.g. as long as the data exists in the database), and survive crashes
of the EJB server.

Associated with an EJB is its deployment descriptor, the intent of which is twofold:
first, the deployment descriptor declares the beans’ environment properties, and sec-
ond, it also allows the bean to be customized at deployment time. Deployment de-
scriptors include all the declarative attributes associated with an enterprise Bean such
as the type of bean, its name, the names of the home and remote interfaces, trans-
action specification, and method security attributes. This meta-data is used by the

89

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

Container when the EJB is deployed on the server to determine how the EJB should
be managed.

Because this meta-data is separated out from the enterprise Bean class, it can
be changed when an EJB is deployed. This allows the EJB deployer to adapt, for
example, security or some transactional settings to the specific settings relevant for
that deployment of the bean.

5.3.2 Container, EJB Objects, Remote Interface and Home Interface

Because an EJB is a middleware component, it cannot be used on its own, it must
be contained within a Container [Sun05]. Containers contain and manage a number
of EJB classes, i.e. instances of EJBs are created by the container, and the con-
tainer mediates each access by the client to the EJB instances. Containers provide
a standardized number of middleware services to the EJB, such as making the bean
available to clients, performing transaction management, and handling activation and
passivation.

The container exports the two following elements to possible clients: the EJB
objects, through their Remote Interface, and the Home interface.

EJB objects are objects created by the container for a client, they implement the
EJBs Remote interface, which declares the business methods that are callable by a
client. A client never calls methods on an instance of a EJB, instead it calls methods
on an EJB object exported by the container. The EJB object delegates the calls to the
container, which eventually performs the corresponding method on the actual instance
of the EJB. This construct ensures that each method call on the EJB is mediated by
the container, which allows for service management by the container.

The Home interface is an interface provided by the developer of the EJB. This
interface provides for creation, destruction, and lookup (only for entity EJBs) of EJBs.

Creation of EJB objects is achieved by calling one of the create() methods defined
in the home interface. The arguments of this method are typically initialisers for
the EJB object. The EJB class must implement an equal number of ejbCreate()
methods, with signatures equal to the create() methods defined in the interface.
When a create() method is called on the interface exported by the container, the
equivalent ejbCreate() method will be called on the EJB class to create an EJB
object that will be returned to the client.

5.3.3 Servers and Clients

Containers are located on servers that comprise the middle tier of the multi-tier ar-
chitecture. The servers implement the necessary communication protocols between
the client of the EJB and its container and between the container and the back-end

90

5.3. ENTERPRISE JAVABEANS

systems. These protocols primarily include RMI [Sun03b], and CORBA running over
IIOP [Vin97].

The services provided by the EJB server can be called from an arbitrary number
of clients, which might also be other EJBs. Clients locate EJBs by using the Java
Naming and Directory Interface (JNDI) [Sun02] to look up the home interfaces of the
EJB. It is the responsability of the container to make these classes available to the
client through JNDI. Through the use of JNDI, the actual locations of an EJB class
and an EJB container are transparent to the client.

Once a client has located a Home interface for a particular EJB class, it can use
one of the instance creation methods defined in the interface to create an EJB object,
to which it will receive a reference. The client can subsequently call the methods
declared in the EJBs remote interface. Finally, the client can remove the EJB by
using the remove methods defined in the EJBs home interface.

Note that all method invocations of the client to the Home interface and the
EJB object are remote method invocations (either through RMI or CORBA). This
combined with the lookup of EJBs through JNDI makes location and usage of an EJB
location transparent. Recall that the abstraction of object location and communication
are two defining features for an ORB, as we stated in 5.2.2.

5.3.4 Transactions

In EJB, transaction management is provided by the container, and this behavior is
usually determined by the transaction attributes set in the EJB’s deployment descrip-
tor. For every business method of the Bean, the deployment descriptor declaratively
states its transaction requirements. If a method is included in a transaction, all ac-
cesses to shared data in that method, i.e. reads and writes to entity beans, will be
made transactional.

Table 5.1 details the possible transaction requirements that can be declared in
the deployment descriptor and their meaning. If a transaction is created upon ex-
ecution of a method, the Container will commit or rollback this transaction when
the method ends. The decision to rollback the transaction is primarily based on ex-
ceptions thrown. If the method (or a nested method called by this method) throws
a system exception: a RuntimeException, a RemoteException, or a subclass of
these exceptions, the transaction will be rolled back, and the method will throw a
TransactionRolledbackException. Also, a transactional method can mark itself for
rollback by calling the setRollbackOnly() method on the Container, and determine
its rollback flag by calling the getRollbackOnly() method on the Container. When a
transactional method that is marked for rollback ends, the transaction will be rolled
back but no exception will be thrown.

Defining transaction types in the deployment descriptor, and letting the Con-

91

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

Declared Attribute No Trans. Client Trans.
NotSupported - E

Supports - P
Required NP P

RequiresNew NP NP
Mandatory F P

Never - F

Legend:
E: Operations of this method are excluded from the transaction.
P: Transaction context is propagated to this method.
NP: A new transaction is started, enclosing the method.
This new transaction context is propagated to the method.
F: The method immediately fails and throws an exception.

Table 5.1: EJB deployment descriptor transaction declarations.

tainer take care of transaction creation and ending is known as declarative transaction
management [MH01]. This is because we now only need to declare what kind of trans-
action support is required, in contrast to traditional transaction demarcation. As said
in 5.2.1, with transaction demarcation, the method code also includes calls to the TP
monitor to manage the transaction. Because all calls to an EJB Object are mediated
by the Container, this Container can now transparently start and end transactions.

It is said that using declarative transaction management achieves a greater sep-
aration of concerns, resulting in cleaner business method code [MH01], allowing the
method to be oblivious of its transactional behavior. Furthermore, the EJB specifica-
tion [Sun05] claims the main advantage is that this allows the transactional behavior
of the EJB to be modified without needing to change the implementation of the busi-
ness logic. Therefore, the same Bean can be reused over different applications with
different transactional requirements.

Note, however, that we can choose not to use declarative transaction manage-
ment, and perform standard transaction demarcation. For this, the Container provides
an API for explicit transaction management, similar to the transaction management
API’s exported by OTMs [MH01].

Having described the EJB architecture, and its transaction management, we will
now study this transaction management in some more detail, and outline some cri-
tiques on this model.

92

5.3. ENTERPRISE JAVABEANS

5.3.5 Critiques on EJB Transactions

The EJB architecture introduces a new concept in the domain of transaction manage-
ment: declarative transaction management, through the use of transaction attributes
defined in the deployment descriptors. While this is a promising evolution in transac-
tion management, we will now show that this new concept, as implemented in EJB,
has a number of significant drawbacks.

There are three further critiques on this model that are worthwhile to make here:
First we consider the usage of advanced transaction models, and the danger of defin-
ing transaction types in the deployment descriptor. Second we investigate the claim
of separation of concerns. Third we detail an alternative implementation for EJB
transaction management, supporting ATMS: Bourgogne transactions.

On Advanced Transaction Models and Changeable Transaction Attributes

As we specify transaction attributes per method, it seems obvious that some combi-
nations of transactional method invocations, with their associated attributes, imply
the usage of an advanced transaction model. For example, consider the RequiresNew
demarcation attribute: it specifies that a new transaction must always be started by
the container, and the method to run within the scope of that transaction. If we en-
counter the situation where the client is already in a transaction, it would seem logical
that this new transaction is started as a sub-transaction of the running transaction.
In other words, we have a natural mapping to nested transactions.

The EJB architecture, however, specifies that only flat transactions are used
[Sun05]. Therefore, these natural mappings are disregarded, and an alternative in-
terpretation is used: in this case the client transaction is simply suspended during the
execution of the EJB’s method. Instead, it would be worthwhile to allow these natural
mappings.

According to the EJB specification [Sun05], defining transaction types in the de-
ployment descriptor has an important advantage, unrelated to separation of concerns:
Because the deployment descriptor can be modified at deployment time, by the per-
son installing the EJB on the server, the transactional properties of the EJB can be
tweaked. In other words, should the deployer decide that, for example, certain methods
of an EJB whose property is Required, do in fact not need to be transactional, be-
cause this adds too much overhead, he may change the property to Never, eliminating
the overhead.

Changing the transactional properties, however, is a tricky task that may “lead to
incorrect programs” [KG02]. In our example above, this will lead to the throwing of an
exception if the method is not executed within a transaction context. This behavior
was not present in the EJB when developed. Therefore callers of this bean will most

93

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

probably not handle this exception, which results in erroneous application behavior.
Furthermore, if we consider the semantics of the method, we have two more cases
where things can go wrong: First, if the method at some time decides to rollback the
transaction because some application constraints can not be met, this is impossible
as the method is not included in a transaction at all. Second, if multiple instances
of the EJB are concurrently executing, and the EJB relies on isolation between these
instances, errors will occur.

In general, we can say that changing transaction policies should be avoided, and
therefore this EJB feature is of no use. Kienzle and Guerraoui [KG02] aptly summarize
this “feature” of EJB as follows “Based on our experience, changing the transaction
policies [...] is highly error-prone. Only the implementor of the bean knows the exact
semantics of the methods, and is qualified to select the appropriate policies. Allowing
a different program to fiddle with these properties at deployment time will inevitably
lead to incorrect programs.”

Separation of Concerns?

As noted above, declarative transaction management is said to achieve a greater sep-
aration of concerns, resulting in cleaner business method code. This is important, as
separation of concerns is a major factor in our choice to use AOP as a means to mod-
ularize ATMS demarcation code. If declarative transaction management provides a
similar degree of separation of concerns, it should also be considered as a candidate to
modularize ATMS demarcation code. However, if we further investigate how declara-
tive transaction management is currently implemented in EJB, we see that separation
of concerns is not really achieved, and we detail this here.

First, we recall the discussion in 3.2, where we specified that using transaction
management in the application is only possible if the design of the application takes
this into account. Because transactional methods may be rolled back, no side-effects
may occur in these methods and the callers of these methods must be prepared to han-
dle the consequences of such a rollback, i.e. make amends for the lost work. Separation
of concerns of transaction management at the code level, which is what we discuss
here, is therefore only possible if the concern of transaction management has also been
taken into account at design time of the application. Consequently, we assume that
the design does indeed take transaction management into account, and investigate if
separation of concerns at the code level can truly be achieved as in 3.2.

Separation of Concerns: Deciding to Rollback

Consider commits and rollbacks: the decision to commit or rollback a transaction is
made primarily based on exceptions thrown during method execution. If a system

94

5.3. ENTERPRISE JAVABEANS

exception is thrown, the transaction will be rolled back when the method ends, if not,
the transaction will be committed. Also, the method may call the getRollbackOnly()
and setRollbackOnly() methods on the container to obtain and set the rollback flag.

To call the above container methods, or to manually throw a system exception,
however, breaks the separation of concerns aimed for by declarative transaction man-
agement. Since the method now contains code whose concern is to handle a section of
the transaction, transaction management is not cleanly separated out. In other words:
to cleanly use declarative transaction management, the method may never get or set
its’ rollback flag. Manipulating this flag not only taints the method with the transac-
tion management concern, but also splits this concern in two disjoint parts. On the
one hand, we have the declaration in the deployment descriptor that the method is
transactional and, on the other hand, we have the java code within the method which
manipulates the flag.

In contrast, with Aspect-Oriented Programming, as we discussed in chapter 3, it
is possible to keep the concern of transaction management as one entity at the level of
the code, by including manipulation of the rollback flag in the aspect definition. None
of the work we discussed in 3.2 includes this, but nothing prohibits us from adding
support for such a pointcut to the aspect.

Separation of Concerns: Handling a Rollback

Consider what should be done in case of a rollback. Conceptually, handling the roll-
backs of transactions is a part of the concern of transaction management. Therefore,
in order to have a clean separation at code level, such error-handling code should
also be defined when stating the methods’ transaction requirements, as we have dis-
cussed in 3.2. However, where we have been able to create an aspect that includes
such error-handling, in EJB this is not the case. Instead, when a transaction is rolled
back due to a system exception, this will throw a TransactionRolledbackException
to the caller of the method, and when a transaction is rolled back due to the use of
setRollbackOnly() the caller will not be informed of this in any way. So, when using
the setRollbackOnly(), the method needs to additionally signal this to the caller by
either returning an ‘error’ value or throwing an exception.

The above implies that handling a rollback can only be done from within the
method caller’s code. This means not only that the caller is now tainted with the
error-handling part of transaction management, but also that transaction manage-
ment is split up in three disjunct sections: the transaction declaration, manipulation
of the rollback flag and handling of rollbacks. Furthermore, since the callers to the
transactional method need to specify the error-handling code, this can lead to code
duplication if there are multiple callers to the method.

95

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

Inadequate Separation of Concerns

Splitting up transaction management code in three parts when handling rollbacks is an
important issue if we consider larger-scaled systems. In these systems, typically many
transactions will execute concurrently, and therefore we have a significant chance
of a deadlock. Also, we can expect the transactional system to be distributed over
different machines, which implies a possibility for transactional system error, e.g.
due to network failure. Furthermore, an advanced application will probably want, in
some cases, to get and set the rollback flag to manually abort a running transaction,
for example because some application constraints have not been met. In either of
the above three situations, transaction management code will be spread out in three
different places. Therefore we must state that the separation of concerns obtained by
declarative transaction management, as currently implemented in EJB, is inadequate
for larger-scaled systems. Note that this is an important drawback, as a goal of the
EJB architecture is to provide support for these systems.

To conclude, declarative transaction management, as currently implemented in
EJB, only provides a clean separation of concerns in the most trivial cases. This is when
a transaction never rollbacks: no transactional system errors may occur, deadlocks
may not be broken though a rollback, and the application itself may not decide to
perform a rollback. In all non-trivial cases, declarative transaction management, as
currently implemented in EJB, provides a worse separation of concerns than when
using AOP. The transaction concern is forcefully split up in three distinct parts, in
different sections of the application, whereas if we use AOP, we have the ability to keep
this concern as one: inside the transactional method. Therefore, our original choice of
using AOP to modularize ATMS demarcation code remains valid.

An alternative: Bourgogne Transactions

If we consider Table 5.1, we see that we have five different possible entries for each
cell in these columns. As remarked by Procházaka [Pro01], the reason for this is that
multiple criteria are folded into the “No Transaction” and “In Transaction” columns.
In fact, for each of these two columns, three extra criteria are taken into account, as
is shown in Table 5.2:

1. Is the client transaction propagated to the called method? (column 2 of table
5.2)

2. Is a new transaction started for this method? (column 3 of table 5.2)

3. Considering the client transaction, does the method fail and throw an exception?
(column 4 of table 5.2)

96

5.3. ENTERPRISE JAVABEANS

Trans. Prop. New Trans. Exceptions Declared Attribute
No - No In Trans. Never
No - No No Trans. Mandatory
No - No Never NotSupported,Supports
No - Yes In Trans. ?1

No - Yes No Trans. -
No - Yes Never Required,RequiresNew
In Yes No In Trans. -
In Yes No No Trans. Mandatory
In Yes No Never Supports, Required,
In Yes Yes In Trans. -
In Yes Yes No Trans. ?2

In Yes Yes Never ?3

In No No In Trans. -
In No No No Trans. ?4

In No No Never NotSupported

In No Yes In Trans. -
In No Yes No Trans. ?5

In No Yes Never RequiresNew

Table 5.2: Analysis of table 5.1, copied from [Pro01].

If we structure the table according to the presence of a client transaction and the
above criteria, instead of starting from the available declared attributes, we have as
overview Table 5.2, as in [Pro01].

Remark that in this table we see that there are a number of locations for which
no attribute is declared. Of these, the combinations resulting in cells marked with -
can not occur, and the cells marked with ? can, but no attribute has been defined.
For example, the first question mark is the situation where, as a policy we start a
new transaction for the method and throw an exception if the client is already in a
transaction, and this occurs when the client is not in a transaction. This situation is
indeed possible, but EJB does not allow us to specify this behavior. More exotic are
the second and third question mark: while we are already in a client transaction, a
new transaction is started and both contexts are propagated to the method, which is
similar to nested transactions, as seen in 2.2. As we have said above, these kinds of
transactions are not supported in EJB, which is why no attribute has been defined for
these cases. As for the fourth and fifth question marks, it is not clear if these situations

97

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

make sense [Pro01].
A second remark is that, except for the Never attribute, all attributes are dupli-

cated in the table. This is because all the other attributes are applicable both in the
case where a client is in a transaction and when it is not.

NT Attribute EJB Equivalent
ThrowException Mandatory

DoNothing Supports, NotSupported
CreateNew Required,RequiresNew

CT Attribute EJB Equivalent
ThrowException Never

Suspend NotSupported
Propagate Supports, Required, Mandatory

SuspendAndCreateNew RequiresNew
Advanced ?

Table 5.3: NT and CT attributes in Bourgogne Transactions.

Procházaka proposes an extension to the EJB transaction manager, called Bour-
gogne transactions [Pro01] that addresses the above remarks. In Bourgogne transac-
tions, each method has to specify two transaction attributes: an NT and an CT attribute,
which are shown in Table 5.3. The former specifies transactional behavior if the client
is not in a transaction, and the latter if the client is in a transaction. This allows us to
specify a superset of the EJB behavior: the first question mark in Table 5.2 is covered
by declaring NT = CreateNew and CT = ThrowException.

In addition to the above, we can declare CT = Advanced, which implies that we
suspend the running transaction and want to employ an advanced transaction model.
Indeed, Bourgogne transactions contain support for using a fixed number of advanced
transaction models. For this, six extra CT sub-attributes are defined that, accord-
ing to their values declare resource delegation, and introduce a dependency between
transactions. Such a transaction dependency is a relation between two transactions,
linking the beginning or termination of one transaction to the beginning or ending
of the other. We will discuss the concept of transaction dependencies in detail later,
in 6.1.2. For now consider the following example: a “Begin On Commit” dependency
implies that the second transaction will begin when the first commits. With resource
delegation, which we return to in detail in 6.1.5, a transaction T1 delegates a number
of objects to the other transaction T2, as we have seen in 2.5. Recall that, after the
delegation, all the actions performed by T1 on the object will be considered as being
performed by T2. Furthermore, T2 is now responsible for performing the commit or

98

5.3. ENTERPRISE JAVABEANS

abort of the object.
Although Bourgogne transactions are a powerful extension to the EJB transaction

management infrastructure, there are still some downsides to this model:

• As declarative transaction management is performed on method boundaries, we
can not start multiple transactions within one method and declare dependencies
or component delegations between them.

• If we want to perform a kind of advanced transaction management, we are
limited to those models that only use dependencies or delegation. This excludes
models relying on semantic information such as those described in 2.4.

• Only a fixed number of advanced transaction models are supported, as only six
CT sub-attributes are defined. Therefore, we are not able to provide support for
new ATMS, or support for modifications to existing models, as they are not
covered by these attributes.

• The error-handling is still the same as standard EJB error-handling, the down-
sides of which we discussed above. The only change here is that if an advanced
transaction fails, after the rollback a system exception always will be thrown
to the caller. This is in contrast to EJB transaction management, where, if a
transaction indicates failure by setting the rollback flag on the Container, no
exception is thrown when the transaction rolls back.

Because of these downsides, we could not use Bourgogne transactions in this dis-
sertation, and had to develop our own solution, which we detail starting with the next
chapter.

5.3.6 Conclusion

In this section, we introduced the Enterprise JavaBeans (EJB) architecture, the stan-
dard architecture for Java middleware applications, which we use in this thesis.

An EJB is the implementation of a business component. Associated with the EJB is
its deployment descriptor, which declares properties such as the type of bean, its name,
transactional properties and so on. Transaction management for EJBs is performed
by the container, which provides the runtime environment in which EJB’s reside. This
management is steered by declarations placed in the EJB’s deployment descriptor, a
scheme which is called declarative transaction management.

Having discussed the architectural specification, we proceeded with studying the
transaction management provided by the EJB architecture. We have seen that EJB
has no support for advanced transaction models, instead simply limiting support to
flat transactions. Also we have discussed the danger of allowing transaction attributes

99

CHAPTER 5. TX MANAGEMENT IN DISTRIBUTED SYSTEMS

to be modified at deployment time, which might lead to incorrect behavior of the
component. We have seen that declarative transaction management, as implemented
in the EJB architecture actually results in a worse separation of concerns than using
traditional transaction demarcation. This rules out the use of declarative transaction
management in this dissertation. Finally we discussed an existing alternative EJB
transaction manager: Bourgogne transactions [Pro01], which does allow a fixed number
of advanced transaction mechanisms. However, this has its drawbacks in that only a
fixed number of ATMS are supported, and that it inherits the drawbacks inherent to
EJB transaction management. As a result, Bourgogne transactions are also inadequate
for this research.

5.4 Conclusion

In this chapter we talked about how transaction management is performed in multi-
tier distributed systems. We have shown how the theoretical transaction models, in-
troduced in the previous chapter, are enforced in practice: through a Transaction
Processing Monitor (TP Monitor).

We first gave an overview of the architecture for the most common types of large
distributed systems: multi-tier systems. In these systems the application logic has
been implemented as a collection of business components.

Having seen this architecture, we discussed how the TP Monitor fits in this ar-
chitecture. The TP Monitor is server software that will perform concurrency control
according to the constraints imposed by the transaction model. We also detailed how
an application interacts with the TP Monitor. Furthermore, we described how the TP
Monitor is integrated into multi-tier architectures as an Object Transaction Monitor.

Finally, we have discussed the Enterprise JavaBeans architecture, which is the
standard architecture for Java applications for the middle tier, and which we use
further on in this text. We have discussed how transaction management is performed
in this architecture. Although it is claimed that EJB provides for a larger degree of
separation of concerns, we have shown this not to be the case. Combined with the
ability to support only a few ATMS, this rules out the use of the TP Monitor for EJB
in this dissertation.

To be able to allow for customizations of existing models and creation of new
models, a TP Monitor must not only support a wide variety of existing ATMS, but
must also be extensible in some way, and EJB is lacking in both respects. What we
need therefore is a general TP Monitor for ATMS, which not only provides support
for existing models but one which is extensible, so that new models can be supported.
In the following chapter we present a formal model for ATMS, giving us a formal
foundation on which to build such a TP Monitor.

100

Chapter 6
ACTA

They’re specialists, the whole lot of them [...] They limit their own scope to dig in the
depths for details with more concentration. Modern research demands that every special

branch shall dig in its own hole.
— Thor Heyerdahl, a sympathetic scientists’ observation in “The Kon-Tiki

Expedition”

We have now seen a wide variety of Advanced Transaction Models, and also dis-
cussed TP Monitors and the available TP Monitors for EJB that support ATMS. We
found that ATMS TP Monitors for EJBs are lacking, only supporting a small sub-set
of possible ATMS.

If we want to be able to support a wide variety of ATMS and allow extension
of the TP Monitor with new models, we need an analysis of all of these models,
deconstructing them into primitive operations common to multiple models. If we base
a TP Monitor on these primitives, we can ensure support for many ATMS through
reconstruction of the required primitives, and support for new models through a new
combination of these primitive operations, which we show later in the text, in 9.4. We
find such an analysis and deconstruction in ACTA [CR91, CR92], which is an existing
formal model, known within the ATMS community, that allows us to specify a large
number of ATMS. In this chapter we discuss ACTA, starting with the formalism, then
illustrating the use of ACTA by giving formal definitions of a number of ATMS, and
we end with a note on implementation.

101

CHAPTER 6. ACTA

6.1 The Formalism

The ACTA formalism was created as a common framework in which it is possible to
specify different ATMS. The goal of this work is to be able to reason about many
ATMS, to infer the properties of the different models regarding recovery, visibility,
consistency and permanence, which are concepts we discussed in 4.1.2. This allows
for deduction of commonalities and variabilities between the different models, and
synthesis of new models, by combining properties of different existing ATMS [CR91].

In ACTA, an ATMS is formally defined by stating a number of axioms that per-
tain to the transaction history. In this way, the formalism enables the specification of
interactions between different transactions with regard to beginning and ending trans-
actions, and the specification of the allowed operations of transactions on objects at
a given point in time.

Note that ACTA allows us to specify ATMS which do not adhere to the classical
concepts of consistency. ACTA does not provide any guarantees with regard to con-
sistency of the data as a result from using an ATMS defined in ACTA. This is to be
expected, since some ATMS forgo classical consistency in favor of semantically defined
forms of consistency, as we discussed in 2.4.

In this section, we will introduce the ACTA formalism, starting with the fun-
damentals: the definition of events and history. To more easily reason about these
fundamentals, a number of abstractions have been defined, which we will discuss from
the second subsection on. The second subsection introduces dependencies between
transactions, the third talks about conflicts, the fourth deals with view and access
sets, and the fifth concludes with delegation.

6.1.1 Events and History

The fundamental premise of ACTA is the following: “The correctness properties of
different transaction models can be expressed in terms of the properties of the histo-
ries produced by these models” [CR91]. Recall that in 2.1.1 and 2.1.2, we discussed
schedules and how these relate to correctness of transaction execution. In ACTA such
schedules are termed histories and to be able to reason about these histories, ACTA
first defines the concepts of events and history, which we present here.

In ACTA, the transactions work on a database which is considered as a collection
of objects. These objects behave similarly to the objects concept as known from object-
oriented programming: each object contains an encapsulated state and is of a given
type. This type defines a number of operations that can be invoked on an object.
Invoking an operation on an object always produces a return value (which might be
void), and this value is dependent on the state of the object. Furthermore, there are
two operations defined on every object: Commit and Abort, which we will discuss

102

6.1. THE FORMALISM

later.
Transactions access and manipulate the database by invoking operations on these

objects. Such operation invocations are called events, and are subdivided into two
kinds: object events and significant events. Object events are the invocation of an
operation by a transaction, and significant events are the invocation of transaction
management primitives. We discuss both in more detail next.

Definition 1. Operation invocations of an operation p, within a transaction Ti, on
an object ob are called object events and denoted as pTi[ob].

The effects of p, are not automatically persisted in the database, this only happens
when the CommitTi[ob.p] object event occurs. Conversely, the effects of p are destroyed
when the AbortTi[ob.p] object event occurs. Invoked operations which are not yet
committed or aborted are known as ongoing operations. The straightforward use of
the commit and abort operations is to commit or abort a transaction when it has
ended, by committing or aborting all the operations. Furthermore, since commit and
abort are defined at the level of operations, and not at the level of objects, this makes it
possible for an ATMS to selectively commit or abort parts of the performed operations
within a transaction.

Definition 2. A significant event occurs when a transaction management primitive
is invoked. Each ATMS defines the possible significant events that can be invoked by
a transaction Ti, denoted SETi.

The list of significant events for classical transactions consists of the events begin,
commit. and abort. Recall that in chapter 2 we have seen that an advanced transaction
model can define new kinds of primitives, such as the breakpoint in 2.4 and the split
in 2.5.

Both object events and significant events are logged in the sequence in which they
were issued, which is analogous to the concept of schedules, which we detailed in 2.1.1.
ACTA then reasons about such a history H of events of a concurrent execution of a set
of transactions on a database of objects. An interesting projection of H is the history
Hob of an object ob that indicates the order of execution of the different operations
on ob. The state of ob, after executing a number of transactions, then equals the state
produced by applying Hob to the initial state of ob.

To define an ATMS, a number of axioms are usually formally stated which declare
the properties to which the resulting histories adhere [CR91, CR92]. Such properties
of histories are defined by constraints on the events in these histories, which fall in
three different groups:

1. An event ε′ can be constrained to only occur after an event ε, denoted by ε → ε′

103

CHAPTER 6. ACTA

2. An event ε can only occur in a history H if a condition Cond is satisfied, denoted
by (ε ∈ H) ⇒ CondH

3. An event ε has to occur in a history H if a condition Cond is satisfied, denoted
by CondH ⇒ (ε ∈ H)

Using these three kinds of constraints we are able to formally define the advanced
transaction models by specifying the histories which are allowed in a list of axioms.
However, although we are now able to formally specify many ATMS, there is an
important drawback regarding size and complexity of these specifications. Using the
above constraints, specifications are overly large and very complex, and furthermore
many constrains of several distinct kinds are to be found in different specifications.
To address these drawbacks, i.e. to ease the axiomatic specification of an ATMS, a
number of abstractions have been defined in the papers [CR91, CR92], and we will
review these next, starting with dependencies.

6.1.2 Dependencies

If we consider the behavior of multiple, possibly concurrent, transactions in the dif-
ferent ATMS, we see that some types of constraints between the significant events
of these transactions are common to many different models. To facilitate reasoning
about these constraints, a first abstraction was created: dependencies. Twelve kinds of
dependencies have been defined in [CR91, CR92], all of which are constraints resulting
from the structure of the transactions defined by the ATMS. Each of these structural
dependencies places a relationship between two transactions, defined in terms of the
significant events of these transactions. We will not detail all twelve dependencies here,
instead we pick five of them which are relevant to this dissertation:

Commit Dependency (Tj CD Ti) If Ti and Tj commit, Ti must commit before
Tj, or formally: (CommitTj ∈ H) ⇒ ((CommitTi ∈ H) ⇒ (CommitTi →
CommitTj))

Weak-Abort Dependency (Tj WD Ti) If Ti aborts and Tj has not yet committed,
then Tj must abort, or formally: ((AbortTi ∈ H)∧¬(CommitTj → AbortTi)) ⇒
(AbortTj ∈ H)

Begin-on-Commit Dependency (Tj BCD Ti) Tj cannot begin executing until Ti
commits, or formally: (BeginTj ∈ H) ⇒ (CommitTi → BeginTj))

Begin-on-Abort Dependency (Tj BAD Ti) Tj cannot begin executing until Ti
aborts, or formally: (BeginTj ∈ H) ⇒ (AbortTi → BeginTj))

104

6.1. THE FORMALISM

Compensation Dependency (Tj CMD Ti) If Ti aborts, Tj must commit, or for-
mally: (AbortTi ∈ H) ⇒ (CommitTj ∈ H)

The commit and weak-abort dependencies are used in nested transactions: Firstly,
a parent transaction Tp has a commit dependency on each of its children Tc, so that
Tp does not commit before Tc terminates or, vice versa, Tc aborts if Tp commits
before Tc terminates. Secondly, a child transaction Tc has a weak-abort dependency
on its parent Tp which guarantees that if Tp aborts and Tc has not yet terminated,
Tc will abort. Similarly, compensating transactions are formalized by placing begin-
on-commit, begin-on-abort and compensation dependencies between the transaction,
the compensating transaction and the overall action that has to be undone, as we
detail in 6.2.5.

Definition 3. The dependencies that are formed as transactions are executed, are
kept in a dependency set, denoted DepSet.

DepSet is relative to a history H. Of particular interest is the current dependency
set, DepSetct that is relative to the current history, i.e. all events that have occured
until this given point in time.

After considering how the structure of transactions within an ATMS gives rise to
structural dependencies, we now see how the run-time behavior of different transac-
tions over a shared object leads to a different kind of constraints: conflict relationships.

6.1.3 Conflicts

In addition to structural dependencies, ACTA also defines behavioral dependencies,
which are caused by the run-time behavior of different transactions over a shared ob-
ject. Consider, for example, what can happen if we were to use a transaction manager
which does not use locks for concurrency management (such as an optimistic concur-
rency strategy). If first a write access of a value Wi(x) occurs and then a read access
Rj(x) occurs in a different transaction, the concurrency manager should introduce
an abort dependency between Ti and Tj so that if Ti aborts, Tj should also abort
because it has used the value of x which is no longer correct.

More in general, the effects of transactions on objects are formalized in the form
of conflict relationships, which we will discuss here.

The basic building block for formalizing conflicts is the conflict relationship be-
tween two operations p and q, which is similar to the notion of conflicts we introduced
in 2.1.2.

Definition 4. Operations p and q on object ob conflict if their effects on the state
of ob, or their return values, are dependent on the order in which they are executed.
Also, two operations that do not conflict are said to be compatible.

105

CHAPTER 6. ACTA

Since operations have a return value, we can further refine the conflict relationship,
taking into account the return values of operations. This leads to return-value depen-
dent and return-value independent relationships between operations.

Definition 5. Given a conflict relationship between p and q on ob, on a history H,
noted conflict(Hob, p, q), return − value independent(Hob, p, q) is true if the return
value of q is the same wether or not p precedes q in Hob. If this is not the case, then
q is return-value dependent on p, noted as return− value dependent(Hob, p, q).

Note that, since Hob can usually be derived from the context, in [CR91], where
possible, this argument is dropped from compatible, return − value dependent and
return− value independent and we do the same.

Returning to 2.1.1 and 2.1.2, we formalize how the ACTA definition of conflicts
relates to serializability by inducing dependencies between operations. Considering a
sequence of conflicting operations p → q in H (where conflict(p, q) is true), and p
is invoked within Ti, while q is invoked within Tj, two kinds of dependencies can be
introduced, depending on return− value dependent(p, q):

1. If return− value dependent(p, q) is true, Tj must abort q if Ti aborts p(which
is a refinement of the example of the use of the abort dependency we have given
above). Formally this is stated as: (return− value dependent(p, q)∧ (pTi[ob] →
qTj [ob])) ⇒ ((AbortTi[ob.p] ∈ H) ⇒ (AbortTj [ob.q] ∈ H))

2. If return − value independent(p, q) is true, Tj cannot commit q until Ti com-
mits or aborts (because Ti must be serialized before Tj). Formally this is stated
as: (conflict(p, q) ∧ return − value independent(p, q) ∧ (pTi[ob] → qTj [ob])) ⇒
((CommitTi[ob.p] ∈ H) ⇒ ((CommitTj [ob.q] ∈ H) ⇒ (CommitTi[ob.p] →
CommitTj [ob.q])))

To enforce serializability, a concurrency manager ensures that no errors occur by
either keeping track of dependencies as they are formed and guarantee that these con-
straints are met, or by ensuring that they are never formed. The former is the approach
taken by the optimistic concurrency schemes, where at commit time dependencies are
verified which may lead transactions to abort. For the latter, avoiding dependencies
being formed in case of conflicts, we can either immediately abort Tj, or wait until
p terminates, which removes the conflict. This last strategy essentially boils down to
the usage of locks, which we have discussed in 2.1.2.

In ACTA, all conflict relationships are written down in the generalized conflict
relationship form: (pTi[ob] → qTj [ob]) ⇒ ConditionH , where ConditionH typically is
a dependency between Ti and Tj. Therefore, in the remainder of the text we shall
also use this notation.

106

6.1. THE FORMALISM

Straightforward examples of ConditionH are the dependencies introduced in 6.1.2.
Note that nothing precludes ConditionH to also use other significant events, such as,
for example, the split in 2.5 or even object events. This leads to great flexibility in the
definition of conflicts, which allows us to formalize and tailor many different types of
concurrency control [CR91].

One extra condition that recurs often is the case in which isolation between differ-
ent transactions is not strict, and therefore an apparent conflict relationship between
two transactions turns out not to be formed. To treat this, view and access sets have
been defined, which we discuss next.

6.1.4 View and Access

In a number of ATMS, isolation between different transactions is relaxed and it is
possible for one running transaction Ti to see the results of another transaction Tj
while Tj is still executing. This visibility of transactions is formalized in ACTA using
two sets: the view set and the access set.

The view set is a set which contains all the objects which are potentially visible to
the transaction and the access set contains all the objects which have been accessed
or created by the transaction.

Definition 6. AccessSetTi = {ob | ∃p (pTi[ob] ∈ H)}

Definition 7. V iewSetTi = AccessSetTi ∪ {∪AccessSetTj | Tj ∈ TsetTi} ∪ DB
where the contents of TsetTi are defined per ATMS.

If we examine the view set in some more detail, we see that the view set of Ti
is constituted of different other sets: first, the access set of Ti, second, the access
sets of all the transactions which are visible to Ti, and third, the database. While
the inclusion of the database might seem to render the other sets in this relationship
redundant, since all objects in the access sets are also contained in the database, this
is not the case. Consider for example an object ob ∈ DB that has been modified
by a visible transaction Tj. The state of this object visible to Ti will be the state
as modified by Tj, and not the state in DB which is older because Tj has not yet
committed. For example, consider nested transactions: a child transaction Tc can see
all of the intermediate work performed by its parent Tp, recursively all the way up to
the root transaction Tr. We formalize this by defining TsetTc = {Tp, . . . , T r}.

As visibility between transactions allows different transactions to concurrently
work on the same objects as if they were one and the same transaction, this implies
that conflicts between these transactions should not be taken into account. This means
that the conflict relationships from the previous section should be reconsidered, and
we should take the view set into account.

107

CHAPTER 6. ACTA

Definition 8. For operations (pTi → qTj), dependency relationships between Ti and
Tj specified by a conflict condition ConditionH should only be induced if Ti /∈ TsetTj ,
i.e. if there is no visibility from Tj to Ti. Formally, we write the new generalized
conflict relationship as follows: ((pTi[ob] → qTj [ob])∧¬(Ti ∈ TsetTj)) ⇒ ConditionH .

In our nested transaction example, an operation performed by Tc on an object ob
should not conflict with any operations performed on ob by any of its parent transac-
tions Tp, . . . , T r.

Also, we should note that when considering the view set, we have assumed that a
transaction Ti would always want to see the most recent changes to an object made
by a transaction Tj ∈ TsetTi. However, in some ATMS this may not be the case
and a conflict at a deeper level in the tree is ignored if at a higher level it does not
produce a conflict. To enable this, an explicit sequence of traversal of the elements of
TsetTi is taken into account by the definition of an order of conflict checks relation
AccessOrder for the ATMS. In the formal definitions of the ATMS we encountered,
we have however not encountered a real use of this access order, and therefore, we do
not elaborate further on it here.

6.1.5 Delegation

A final feature of ATMS that needs to be considered is delegation, such as, for example,
in nested transactions: If a child transaction Tc commits, its effects are not written
to the database but are instead delegated to its parent Tp, and from there on the
system behaves as if the work was performed by Tp. Only when the root transaction
commits, the effects of Tc will be made permanent (unless Tp or any of its parents
have aborted, in which cases the work of Tc is lost).

In ACTA, this behavior is captured by the delegate operation, where one transac-
tion Ti delegates the responsibility for committing or aborting a specified number of
its objects ob ∈ DelegateSet(Ti, T j), to another transaction Tj1. Note that delegation
is defined on objects and not on operations, contrary to the other features of ACTA.
Delegation is realized by rewriting the history H so that all operations of Ti on ob are
regarded as having been performed by Tj. This has as a consequence that all depen-
dencies toward Ti, induced by operations p[ob], where ob ∈ DelegateSet(Ti, T j), will
now no longer be toward Ti, but toward Tj. Furthermore, all these operations will be
removed from AccessSetTi and placed in AccessSetTj .

In our nested transactions example, when committing the child Tc will delegate all
the objects in its access set to its patent Tp, i.e. DelegateSet(Tc, Tp) = AccessSetTc.

We now have seen all fundamental concepts of ACTA, and we can proceed with
specifying the properties of a number of advanced transaction models.

1Where, of course, ob ∈ AccessSetTi

108

6.2. FORMAL DEFINITIONS OF ATMS

6.1.6 Conclusion

In the preceding subsections, we have introduced the ACTA formalism, that allows for
specification of the properties of ATMS by placing constraints on transaction histories.

Such transaction histories consist of operations on objects, termed events, and
transaction primitive invocations, called significant events. To define an ATMS in
ACTA, a number of axioms are stated to which such a transaction history must
comply. Using simple constraints as axioms, however, leads to overly large and very
complex specifications, with many repetitions. To facilitate the definition of an ATMS,
a number of abstractions have been created.

Constraints between the significant events of different transactions that occur in
multiple ATMS have been abstracted into dependencies. Conflicting operations on
objects and isolation between different transactions also introduce constraints that
can be weakened through the use of view and access sets.

Transaction histories can also, virtually, be re-written through the delegation op-
eration, which delegates a source transactions’ responsibility of the operations on a
number of objects to another, destination, transaction. The result is as if the desti-
nation transaction has performed these operations, and not the source transaction.
This implies that constrains formerly placed on the source transaction due to these
operations will now be placed on the destination transaction.

Using the above ACTA concepts of dependencies, view and access sets and delega-
tion, we can now formally define ATMS, by stating a number of axioms for transaction
histories, as we see in the next section.

6.2 Formal definitions of ATMS

Using all the elements we introduced above, we are now able to proceed with for-
mally defining a number of transaction mechanisms. As we have said, in ACTA, the
specification of an ATMS is performed by stating a number of axioms that relate to
the transaction’s history. These axioms will use the abstractions we defined above:
dependencies, conflicts, view and access sets, and delegation. Note that we will not
concern ourselves here with proving correctness of the ATMS specifications, instead
we refer to [CR91, CR92] for more information regarding the correctness proofs.

In the first and second section, we will define two properties which are common
to many ATMS: the object properties of serializability and correctness and the trans-
action property of failure atomicity. In section three, we will present the first formal
definition, not strictly of an ATMS, but of Atomic Transactions. Section four will dis-
cuss the formal definition of the Nested Transactions ATMS. Finally we will excerpt
some axioms from the definition of Sagas in section five, to demonstrate transaction
sequencing and the use of compensating transactions.

109

CHAPTER 6. ACTA

6.2.1 Serializability and Correctness

Before we formally define the properties which must be met by transaction mecha-
nisms, we first turn our attention to the objects which are contained in the database.
Multiple ATMS expect these objects to have the serializabilty and correctness prop-
erties, and therefore we discuss them here.

Definition 9. Given a history H, operations p and q, transactions Ti and Tj and an
object ob, C is a conflict relation defined as follows:
Ti C Tj ⇒ ∃ob,∃p, q, (conflict(p, q) ∧ (pTi[ob] → qTj [ob]))

Definition 10. The transitive closure of C is denoted C∗: Ti C∗ Tk ⇒ Ti C Tk ∨
(∃Tj, (Ti C∗ Tj ∧ Tj C∗ Tk)

Definition 11. A set of transactions T is serializable ⇔ ∀Ti ∈ T¬(Ti C∗ Ti) i.e. if
no C cycles are present.

Using the above, we can define when an object behaves serializably: this can be
ensured if we can define a commit order between different transactions that invoke
conflicting operations on this object, without forming cycles in the conflict relation-
ship.

Definition 12. ob behaves serializably ⇔

1. ∀Ti, T j T i != Tj ∀p, q(conflict(p, q) ∧ (pTi[ob] → qTj [ob])) ⇒
((CommitTj [ob.q] ∈ Hob) ⇒
((CommitTi[ob.p] ∈ Hob) → (CommitTi[ob.p] → CommitTj [ob.q])))

2. ∀Ti,∀p(CommitTi[ob.p] ∈ Hob) → ¬(Ti C∗ Ti)

Note that the above definitions harken back to 2.1.2 where we introduced conflict-
serializability, as a stricter form of serializability, and indeed is what is formally rede-
fined here.

A second object behavior defined in ACTA is correctness: an object that behaves
correctly ensures that when an operation p aborts, any return-value dependent oper-
ation q that follows p is also aborted.

Definition 13. ob behaves correctly ⇔ ∀Ti, T j T i != Tj ∀p, q,
(return− value dependent(p, q) ∧ (pTi[ob] → qTj [ob])) ⇒
((AbortTi[ob.p] ∈ Hob) ⇒ ((AbortTj [ob.q] ∈ Hob)).

In ACTA, objects that behave serializably and correctly are called atomic objects.
Note that this atomicity property is at the level of objects, and not at the level of
transactions. Atomicity at the level of transactions is called failure atomicity in ACTA,
and we discuss this next.

110

6.2. FORMAL DEFINITIONS OF ATMS

6.2.2 Failure Atomicity

In [CR91], the term failure atomicity is used for what we know as the atomicity
property of classical transactions. In other words, failure atomicity means that either
all or none of the operations of a transaction are executed.

Definition 14. Ti is failure atomic ⇒

1. ∃ob(∃q CommitTi[ob.q] ∈ H) ⇒ (CommitTi ∈ H)

2. (CommitTi ∈ H) ⇔ ∀ob∀q((qTi[ob] ∈ H) ⇒ (CommitTi[ob.q] ∈ H))

3. ∃ob(∃q AbortTi[ob.q] ∈ H) ⇒ (AbortTi ∈ H)

4. (AbortTi ∈ H) ⇔ ∀ob∀q((qTi[ob] ∈ H) ⇒ (AbortTi[ob.q] ∈ H))

In the above definition, (1) and (2) state, respectively, that if one operation com-
mits, the transaction must commit, and that the transaction commits if and only if
all operations in the transaction commit. In other words, if one operation commits,
the transaction must commit, and therefore, all operations must commit. (3) and (4)
are analogous to (1) and (2), showing that the same rules apply to operation and
transaction abort.

Having seen serializabilty and failure atomicity, we can now proceed with the first
formal definition of the classic transaction model: atomic transactions.

6.2.3 Atomic Transactions

Before showing an ACTA definition of an ATMS, it makes sense to first consider
the base level, as it were, which are atomic transactions. Atomic transactions, i.e.
the classical transaction model, is defined in ACTA using 8 axioms for an atomic
transaction Ti:

1. ESTi = {Begin,Commit,Abort}

2. (BeginTi ∈ H) ⇒ (¬(CommitTi → BeginTi) ∧
(¬AbortTi → BeginTi) ∧ ¬(BeginTi → BeginTi))

3. (CommitTi ∈ H) ⇒ ((BeginTi → CommitTi) ∧ ¬(AbortTi ∈ H))

4. (AbortTi ∈ H) ⇒ ((BeginTi → AbortTi) ∧ ¬(CommitTi ∈ H))

5. (CommitTi ∈ H) ⇒ ¬(Ti C∗ Ti)

6. (BeginTi ∈ H) ⇒ ((V iewSetTi = AccessSetTi ∪DB) ∧
(AccessOrderTi = (AccessSetTi, DB)))

111

CHAPTER 6. ACTA

7. Ti is failure atomic

8. ∀ob, (∃p, pTi[ob] ∈ H) ⇒ (ob is atomic)

First, the significant events are defined in (1). (2) states that a transaction must
begin before it commits or aborts, and that it may only begin once. In (3) and (4)
constraints are placed on commit and abort: the transaction must have started and it
must either commit or abort. (5) states that a transaction can not commit if it forms
a C cycle with itself. The view of T is defined in (6) as first the Access set, and then
the database. Failure atomicity is specified in (7), while object atomicity is specified
in (8).

This specification is quite straightforward, with simple axioms, a trivial view set
and no use of delegation. In the next section, we will discuss a more complex ACTA
definition for the example ATMS we have used frequently in this chapter: nested
transactions.

6.2.4 Nested Transactions

In this section we give an example definition of an ATMS, as given in [CR91], to show
the size and form such definitions can have. As an example we have chosen Nested
Transactions, because it uses dependencies, non-trivially defines the view and access
set, uses delegation, and still remains conceptually quite simple.

The formal definition of nested transactions, as given in [CR91] is somewhat longer
than atomic transactions, with nineteen axioms instead of eight. Luckily, however, the
first eight axioms are similar or nearly identical to the axioms for atomic transactions,
as can be seen in the following formal definition, where Tr is the root transaction, Tp
a parent, and Tc a child transaction (i.e. a nested transaction).

1. ESTp = {Begin, Spawn,Commit, Abort}

2. (BeginTr ∈ H) ⇒ (¬(CommitTr → BeginTr) ∧
(¬AbortTr → BeginTr) ∧ ¬(BeginTr → BeginTr))

3. (CommitTr ∈ H) ⇒ ((BeginTr → CommitTr) ∧ ¬(AbortTr ∈ H))

4. (AbortTr ∈ H) ⇒ ((BeginTr → AbortTr) ∧ ¬(CommitTr ∈ H))

5. (CommitTr ∈ H) ⇒ ¬(Tr C∗ Tr)

6. (BeginTr ∈ H) ⇒ ((V iewSetTr = AccessSetTr ∪DB) ∧
(AccessOrderTr = (AccessSetTr, DB)))

7. Tr is failure atomic

112

6.2. FORMAL DEFINITIONS OF ATMS

8. ∀T, T = Tr ∨ T = Tc∀ob(∃p, pT [ob] ∈ H) ⇒ (ob is atomic)

9. ESTc = {Spawn,Commit,Abort}

10. (SpawnTp[Tc] ∈ H) ⇒ (¬(CommitTp → SpawnTp[Tc]) ∧
¬(AbortTp → SpawnTp[Tc]))

11. (CommitTc ∈ H) ⇒ ((SpawnTp[Tc] → CommitTc) ∧
¬(AbortTp[Tc] → CommitTc))

12. (AbortTc ∈ H) ⇒ ((SpawnTp[Tc] → AbortTc) ∧
¬(CommitTc → AbortTc))

13. (SpawnTp[Tc] ∈ H) ⇔ ((Tc WD Tp) ∧ (Tp CD Tc))

14. ((CommitTc ∈ H) ⇔ (DelegateTc[Tp] ∈ H)) ∧
(DelegateSet(Tc, Tp) = AccessSetTc))

15. ∃ob(∃q AbortTc[ob.q] ∈ H) ⇒ (AbortTc ∈ H))

16. (AbortTc ∈ H) ⇒ ∀ob∀q((qTc[ob] ∈ H) ⇒ (AbortTc[ob.q] ∈ H))

17. (SpawnTp[Tc] ∈ H) ⇒ ((V iewSetTc = {∪AccessSetTi|Ti ∈ TsetTc} ∪ DB) ∧
(TsetTc = {Tn, Tn− 1, Tn− 2, . . . , T0}))
where Tn = Tc, T i WD Ti− 1

18. ∀Tn, t, tWD∗ Tn, ∀ob∀p(pt[ob] ∈ H) ⇒
∃/((pT [ob] → qTn[ob]) ∧ conflict(p, q))

19. (CommitTc ∈ H)¬(Tc C∗ Tc)

In the above definition, the first eight axioms define the root transaction as an
atomic transaction, with one extra significant event: the spawn event, which spawns a
child transaction. The remaining axioms define the properties of the child transactions,
which we will discuss next.

The significant events of children, defined in (9), do not include a Begin because
child transactions are spawned by a parent. Also, the Spawn defined here will start
a new child of the current transaction. Because child transactions do not start with
a begin, axiom (10) redefines (2) for child transactions, using Spawn from the parent
instead of Begin as the start of the child transaction: A child transaction may not
be spawned by the parent after it has committed or aborted. Similarly, (11) and (12)
redefine (3) and (4) for child transactions: a child transaction that commits or aborts
must have been spawned by a parent first, and the child either commits or aborts.

113

CHAPTER 6. ACTA

In (13) the structural dependencies between parent and child are defined: The
child has a weak-abort dependency on its parent, so that if the parent aborts and
the child has not yet terminated, the child will also abort. Also, the parent has a
commit dependency on the child, so that it will not commit before the child has
terminated. Note that specifying the presence of a weak-abort dependency between
transactions suffices to indicate that one is a child transaction of the other. Therefore,
in the remaining definitions, the weak-abort dependency is used to identify parent-
child relationships.

Delegation of the resources accessed by a child, if it commits, is defined in (14), by
identifying the parent as delegatee, and the DelegateSet as the AccessSet. Strangely,
this definition does not include any temporal information: according to this definition,
delegation may occur at any time within the transaction, or even before or after the
child transaction has started or ended! This is probably a simple oversight by the
authors of [CR91], and assume that the intent here is for delegation to happen at
commit time.

The abort of a child transaction is defined in (15) and (16), which are essentially the
same axioms as conditions (3) and (4) of failure atomicity. The first two conditions
of failure atomicity are not included here, because at commit time of a child, the
operations are not committed but delegated to the parent. Therefore we can not
simply repeat axiom (7) for child transactions.

Child transactions see all the intermediate work performed by parent transac-
tions, which is defined in (17), where TsetTc includes all parents, up to the root. No
AccessOrder is defined, which means that the elements of TsetTc may be traversed
in any order, i.e. Tc sees the most recent changes made to an object.

Axiom (18) prevents the occurrence of cases where a child transaction causes the
abortion of its parent, or any of its ancestors. Consider the following: if p and q conflict,
and Tp invokes q after Tc invokes p, then Tp would be abort-dependent on Tc, because
otherwise it could keep on working with data that has become invalid. With this
dependency in place, whenever Tc aborts, Tp would also need to abort. This does not
comply with the description of nested transactions, therefore such abort dependencies
may not be formed, which is achieved by (18). Note that WD∗ is nowhere defined in
[CR91], but we assume that it is analogous to the definition of C∗.

Finally, serializabilty for child transactions is specified in (19) by disallowing C
cycles, analogous to (5).

We have now shown and discussed the, quite extensive, formal ACTA definition of
nested transactions. This definition demonstrated the use of dependencies, which link
parent and child transaction, and delegation at commit time of child transactions.
Furthermore, view and access sets were non-trivial, in contrast to the definition of
atomic transactions.

114

6.2. FORMAL DEFINITIONS OF ATMS

6.2.5 Transaction Ordering and Compensating Transactions

Two common techniques of different ATMS are specifying an order or sequence of
transactions, and the use of compensating transactions to perform a semantic undo.
In this section we will show how these two elements can be formalized in ACTA by
placing dependencies.

A good example of the use of these two techniques are Sagas, which we talked about
in 2.3. Recall that a Saga is a sequence of atomic transactions, where each transac-
tion is also associated with a compensating transaction. Saga rollback is achieved by
rolling back the currently executing transaction, and performing the compensating
transactions in the inverse sequence of the committed transactions.

To show how this is formalized using dependencies, we show the axioms taken
from the formal specification of Sagas in [CR92], which we do not include here in
full, as it is not required for this discussion. In these axioms, pre(ε) and post(ε) are
used to specify preconditions or postcondition of an event ε that should hold, S is
the saga that consists of a sequence of transactions T1 . . . Tn and the compensating
transaction for Ti is Ci (i : 1 . . . n).

1. post(BeginS) ⇒ (Ti BCD Ti− 1) ∈ DepSetct

2. post(BeginTi) ⇒ (Ci BCD Ti) ∈ DepSetct

3. post(CommitTi) ⇒ (((Ci BAD S) ∈ DepSetct) ∧ (Ci CMD S) ∈ DepSetct))

We can set a strict partial ordering between two transactions by placing begin-on
commit dependencies between them, as in (1), where this is used to sequence the
different steps Ti of a saga. Compensation of these steps, by a Ci, should only be
executed if Ti did commit, which is specified in (2). Aborting the saga requires the
compensating steps to start, as specified by the begin on abort dependency (BAD) in
(3), and to ensure that the compensating steps commit, a compensation dependency
(CMD) is stated in (3). Note that a strict ordering of compensating transactions can
be achieved by placing begin-on commit dependencies as in (1).

6.2.6 Conclusion

In this section, we have given a formal ACTA definition for two transaction models:
atomic and nested transactions by stating all the axioms that pertain to the transac-
tion history.

Both these models rely on a formal definition of the auxiliary properties of seri-
alizability, serializable behavior and failure atomicity. Serializability and serializable

115

CHAPTER 6. ACTA

behavior were defined by five axioms. Both are, in fact a formalization of the conflict-
serializability concept which we defined in 2.1.2. Failure Atomicity is equivalent to the
atomicity property of classical transactions, and was formally defined in for axioms.

We gave a formal definition for atomic transactions, i.e. the classical transaction
model, to use as a base-line definition, to compare definitions of ATMS to this base-
line. The formal ACTA definition for atomic transactions is stated in eight, quite
straightforward axioms. We have shown the formal definition of nested transactions,
which modifies a few of these definitions, and adds eleven more, resulting in nine-
teen axioms. This shows that although the nested transactions model is conceptually
simple, the formal definition becomes quite extensive.

ACTA can also be used to define an ordering of transactions by using dependencies.
We have illustrated this by taking the relevant axioms from the Saga definition and
showing how the specification of the order of compensating transactions is achieved.

ACTA, however is a purely formal model, and therefore does not concern itself
with possible implementation issues. If we want to provide an implementation of the
model, such issues do indeed arise, as we will discuss next.

6.3 Comparing a Formal Model with an Implementation

Because ACTA allows the formal specification for a wide variety of ATMS, it is worth-
while to use it as a basis for the implementation of a TP Monitor, which then can, in
turn, support a wide variety of ATMS.

ACTA, however, is solely a formal model and was not conceived with such an
implementation in mind. This is evident from the fundamental premise of ACTA as
repeated in 6.1.1: “The correctness properties of different transaction models can be
expressed in terms of the properties of the histories produced by these models” [CR91].
In other words, ACTA is a formal model which verifies a posteriori if the produced
transaction history is correct. This implies that the record of this history is kept for
ever, leading to a potentially infinitely large transaction history. It is clear that an
implementation of a TP Monitor based on ACTA needs to do away with this, to
restrict memory usage to a reasonable amount. Therefore, in general, it is best to
keep as little information about the transaction history as possible, and remove it
from the system when no longer needed.

A common technique to enforce correct transaction histories, without needing to
record them, is the use of locks, as we discussed in 2.1.2. Using locks implies that we
will need to do this verification while the transactions are running, in contrast to the
a posteriori approach of ACTA. If we wish to use locks in a TP Monitor based on
ACTA, we need to take whatever effort we can, while the transaction is running, to
ensure that the resulting history is correct. There are four main topics to consider:

116

6.3. COMPARING A FORMAL MODEL WITH AN IMPLEMENTATION

performance; dependency checking and significant events; transaction life-cycle; and
naming and grouping. We outline these next.

Performance

The first implementation topic to consider is performance: the expressive power of
ACTA is a possible performance hurdle for the implementation. In a number of places
in the axioms an arbitrary logic expression can be used as a specification, which can
take an arbitrarily large amount of time to execute. A complete implementation of
ACTA, therefore, requires the TP Monitor to be able to not only reflect on the trans-
action history, but also to evaluate logic expressions given by the model specification.
This is not only a significant implementation task, but would also have an, in gen-
eral, undefinably large impact on transaction performance. This runs contrary to the
expectations for TP Monitors, which is to process transactions in a short timeframe.
It is therefore worthwhile to consider limiting the expressiveness of the framework
somewhat in favor of a faster TP Monitor, which will also be easier to implement. We
therefore take a minimal, feasible, implementation and can consider expanding this as
required later.

Reviewing the model specifications published in [CR91, CR92], we can consider
the following simplifications:

Dependencies: These have only been defined solely on significant events, therefore
only these events need to be accessible to the part of the TP Monitor which
verifies dependencies.

Conflicts: As we have stated in 6.1.3, conflict-checking is already performed in cur-
rent TP Monitors through the use of locks. Therefore, we do not need access to
the transaction histories to determine conflicts.

View traversal: While stated to be of use in multilevel transactions [WS92], this
ATMS has not been formalized, and none of the published formal definitions of
other models use a view traversal. Hence it may be omitted.

Delegation: Rewriting the transaction history is only performed simultaneously with
a significant event, and most frequently the entire contents of the access set is
delegated to another operation. Combined with conflict checking using locks, as
above, where owning a lock implies responsibility of an operation, this means
that delegation boils down to changing the ownership of all the locks of the
source transaction to the target transaction.

Overall, this means that we can remove the explicit transaction history, and the
expression evaluation, while still guaranteeing that a number of models are covered.

117

CHAPTER 6. ACTA

Of course, if we want to guarantee full compliance with the model, this removal is not
allowed, but this will have a performance penalty. To assess, in general, the full impact
of such removal is a hard task, as there are an unlimited amount ATMS which can
be specified in ACTA. We can however relate the removal of the explicit transaction
history, and the expression evaluation to the ATMS we have covered in chapter 2, and
we will discuss this later in the dissertation, in 12.3.

Dependency Checking and Significant events

The second topic to consider are dependencies, which indirectly will also impact per-
formance. As an example, consider the Commit Dependency (Tj CD Ti): If Ti and Tj
commit, Ti must commit before Tj. This is very easy to verify a posteriori, but this
verification is more intricate if performed at runtime. If Ti wants to commit while Tj
is running, commitment has to be postponed until Tj has committed to satisfy the
dependency. Also, this postponement will turn out to be unnecessary if Tj aborts, as
this abort implies no commit restriction on Ti. It is clear, however, that it is, in gen-
eral, impossible to predict the behavior of Tj with regard to commits or aborts, and
therefore this postponement is always required in case of a Commit Dependency. As
a result, the performance of the TP Monitor will not be optimal in all cases, trading
off performance for guaranteed correctness in all possible cases.

Tied to dependencies are the number of significant events defined by an ATMS,
as these dependencies are specified relative to the significant events. In ACTA, the
list of significant events is open, as each model may add its own significant events
to the classical list consisting of begin, commit and abort. For example, in nested
transactions, the spawn significant event is added, indicating the spawning of a new
transaction. Such an open list of significant events requires a certain flexibility of the
dependency mechanism, as it may need to be invoked at any point of the execution
of a transaction.

It is clear that having a fixed set of significant events eases implementation of
the dependency mechanism, which will probably also open avenues for performance
optimization. Investigating the published models in [CR91, CR92], we see that this
is indeed possible. This is because wherever a new significant event is introduced,
such as for example the spawn event in nested transactions, this can be mapped to
one of the events of the classical list, in the example the begin event, on a different
transaction. Therefore, we can limit the significant events to begin, commit, and abort,
and implement the dependency checking mechanism such that it only intervenes at
these moments in the execution of a transaction.

118

6.3. COMPARING A FORMAL MODEL WITH AN IMPLEMENTATION

Transaction Life-cycle

Third we need to concern ourselves with the underlying forces that steer the life-cycle
of a transaction: Transactions are started and ended by the underlying application as
it executes. However, ACTA, as a formal model, does not concern itself with the appli-
cation’s execution, but solely with the resulting history. Therefore, to ensure that the
resulting history is correct, we need to consider how we can ensure that transactions
start and end when necessary. It is clear that the main part of the responsibility for
this lies with the control flow of the underlying application: at some points a transac-
tional unit of code will run, resulting in the beginning of a transaction, and when the
unit ends, the transaction will also end. A major assumption that we need to make
here is that this control flow does not run contrary to the control flow mandated by
the ATMS. We need to make this assumption because, in general, this is impossible to
verify statically. For example, in nested transactions, the method of a sub-transaction
has to end before the method of its parent has ended. If these methods run in different
threads, and the child transaction depends on user input to terminate, we can not, at
compile-time, verify termination of the child prior to the parent.

To ensure the application behaves correctly, it should be possible to let the TP
Monitor perform some runtime checks through dependencies, and either take correc-
tive action if possible, or produce an error if not. For example, in nested transactions
two possible runtime errors may occur: a parent transaction may end before the child
transaction has ended, or a child may declare to spawn from a non-existent transac-
tion. In the first case, we can take corrective action by aborting the child, as specified
though the appropriate dependencies. However in the second case, we cannot take any
corrective action and will therefore be forced to produce an error.

Recall that, conceptually separate from the main control flow of the application,
some ATMS require certain secondary transactions to run automatically when their
dependencies are satisfied. For example in Sagas, compensating transactions are such
secondary transactions because they have to start executing in the correct sequence
when the Saga aborts. These secondary transactions are not related to the application
logic per se but are a result of using the ATMS, and run automatically. Therefore,
we should not require the application code to verify these dependencies and run the
appropriate code, but treat this separately, somehow placing this extra responsibility
at the conceptual level of the model, and not of the application.

Naming and Grouping

The fourth and last topic to consider is the naming and grouping of transactions:
while formally representing transactions as Ti and Tj, such identifications are not
simply translatable to a transaction at runtime. What we will need is to be able to

119

CHAPTER 6. ACTA

unambiguously identify a transactional unit of code at runtime, i.e. we will need some
form of naming support. Also, as the view set of a transaction consists of a group of
other transactions, we need to be able to define such groups to name them and also
to add and remove transactions.

We have now briefly outlined four important topics relevant for the implementa-
tion of a TP Monitor inspired by ACTA. In the next chapter, where we discuss the
implementation of our TP Monitor, called ATPMos, based on ACTA, we will return
to these four topics in more detail.

6.4 Conclusion

In this chapter we discussed ACTA, a model which can be used to formally describe a
wide range of ATMS. ACTA was developed in order to be able to reason about many
ATMS, and to be able to synthesize new models, by combining properties of different
existing ATMS. We first discussed the ACTA formalism before giving the formal
definitions of a number of ATMS, and we ended with a short note on implementation.

We have shown that in ACTA, an ATMS is formally defined by stating three kinds
of axioms that constrain and modify the transaction history. The first kind of axiom
on transaction histories are dependencies, which place a relationship between two
transactions, usually defined in terms of the significant events of these transactions.
The second kind of axioms pertain to visibility between transactions, which allows
different transactions to concurrently work on the same data as if they were the
same transaction, relaxing isolation. The third kind of axioms modify the transaction
history though the use of delegation, which delegates the responsibility for committing
or aborting a specified number of operations operations from the delegator to the
delegatee.

We discussed how the above kinds of axioms are augmented with the auxiliary
properties of serializability, serializable behavior and failure atomicity, to allow the
formal specification of a wide range of ATMS. Of the published ACTA specifications,
we have discussed two in detail: the classical transaction model and nested trans-
actions, the former requiring eight axioms, and the latter nineteen. Subsequently we
have indicated how ordering of transactions is specified by using dependencies through
a discussion of the relevant axioms from the Saga definition.

Finally, we have given a short note on implementation, indicating where the trans-
lation from a purely formal model to a working TP Monitor requires attention. We
considered four topics: dependency checking, performance, transaction life-cycle and
naming. We return on these topics in more detail in the next chapter, where we discuss
our implementation of a TP Monitor based on ACTA. This TP Monitor allows us to
support a wide range of existing ATMS, including newly created models.

120

Chapter 7
Demarcation Code for an ATMS TP

Monitor

If I have seen farther, it is by standing on the shoulders of giants.
— Newton (Attributed to Newton although the saying

can be traced back to at least the 12th century)

ACTA, which we discussed in the previous chapter, provides us with a formal model
that covers a wide variety of ATMS, and which can be used to synthesize new models.
A TP Monitor that is implemented based on the ACTA model, will therefore not only
be able to support the ATMS of which a formal ACTA specification is available, but
also be extensible to support new models that are expressible in ACTA. This gives us
run-time support, on the one hand for many existing ATMS, and on the other hand
for models that have not yet been created. As a result, use of this TP Monitor will
allow an application to employ a transaction model that is tailored to the specific
transactional properties of the application.

The TP Monitor we built is called ATPMos (ATMS TP Monitor), and is outlined
first in this chapter. The focus of ATPMos is to provide an interface for the use of
ATMS, inspired by ACTA, to client programs, i.e. the middle tier in multi-tier systems.

After providing an outline of ATPMos, we illustrate its use by means of a bank
transfer example which is part of a middleware component. We outline how adding
transaction demarcation code leads to tangled code for the bank transfer method when
using traditional approaches. We then show how AOP achieves a cleaner implemen-
tation regarding separation of concerns.

Reconsidering the bank transfer example, we then see that it is better to use

121

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

the Sagas ATMS, and we proceed with implementing the bank transfer as a saga.
We outline the demarcation code required to have the bank transfer operation as as
Saga, when using ATPMos. We then further discuss this demarcation code, focussing
on its large size and significant complexity, confirming the observation of 4.2 that
demarcation code for ATMS itself is composed of multiple concerns. This leads us, in
the next chapter, to create an aspect language and weaver which explicitly address
these issues.

7.1 ATPMos: A TP Monitor for ATMS

In this section we introduce ATPMos, our TP Monitor which supports a wide va-
riety of ATMS. We first consider ATPMos solely as a TP Monitor that supports
classical transactions. We then identify the features required for ATMS support, and
give an overview of how these features are provided by ATPMos. This shows how,
conceptually, a TP Monitor can be extended to support a wide variety of ATMS by
implementing the ACTA primitives. Finally, we give an overview of the interface which
ATPMos presents to the client program, enabling the client program to employ an
ATMS. Note that, as the goal of this dissertation is not to write a fully ACTA com-
pliant TP Monitor we do not discuss the implementation of ATPMos in detail here.
Instead a sketch of the implementation of ATPMos is given in appendix A.

ATPMos is designed as a TP Monitor for EJB Entity beans, which is our choice of
middleware and was discussed in 5.3. ATPMos assumes that state is contained within
such objects and that state modification happens through getter and setter methods.
As a consequence, concurrency management is performed when these methods are
called: calling a getter or setter on an Entity Bean when in a transaction requires that
first a call is made to ATPMos. These calls inform ATPMos that a read or write will
be performed, and contain as parameters the current transaction identifier, the object
and the field on which the read or write occurs. Internally, ATPMos uses a locking
strategy to determine if this operation is allowed, acquiring locks if necessary. If the
operation may proceed, the call will simply return. If the operation is not allowed at
the moment, i.e. the required lock could not be acquired, the call will block until the
lock is acquired.

To perform a read or write within a transaction, however, this transaction will
first have to be started, which is done through additional demarcation code. The call
to ATPMos to start a transaction will return a transaction identifier that uniquely
identifies the started transaction. All other demarcation code then uses this identifier
to indicate to which transaction they pertain. Finally, to end a transaction, also a call
to ATPMos is made to either commit or abort the transaction.

Note that ATPMos is not a priori restricted to EJB Entity beans. As long as data

122

7.1. ATPMOS: A TP MONITOR FOR ATMS

access occurs using getters and setters, for example in Java Data Objects [Sun03a],
these data accesses can be managed by ATPMos. Also, at this time, ATPMos only
provides the concurrency management features of transactions. Recovery of ongoing
transactions when the server running ATPMos is down is not implemented, since this
lies outside of the goal of this research.

We do not talk about the implementation of ATPMos as a TP Monitor for classical
transactions here. Instead, we refer to Appendix A.1, where we discuss this topic in
some depth. In table 7.2 (located in section 7.1.3), however, the interface to ATPMos
for classical transaction management is given.

7.1.1 From Classical Transactions to ATMS support

Considering ATPMos as a TP Monitor for classical transactions, we now ascertain
what needs to be added to provide support for ATMS. To determine this, we need to
look back at the previous chapter, and see which features from ACTA we have not
yet addressed.

To determine the features required for ATMS support, we consider each of these
features, as we introduced them in 6.1: first we look at events and history, second at
dependencies, third at conflicts, fourth at views and access, fifth at delegation, and
sixth we reevaluate the issues we raised in 6.3.

Events and History: In ACTA, a history is kept of all operations on data, per-
formed by the different transactions. In contrast, a TP Monitor does not keep
such an explicit history. However, as we discussed in 6.3, we can do away with
this explicit history altogether, and just need to concentrate on a representation
of the significant events of the transaction.

Dependencies: Dependencies place constraints between the events of different trans-
actions, support for which is totally absent in a TP Monitor for classical trans-
actions. Recall that we have seen in 6.3 that we only need to support constraints
on significant events. Therefore, what we will need is some way in which running
transactions, immediately before a significant event, verify if this event can be
sent or not. In other words, immediately before a begin, commit or abort, we
need to verify if this operation is allowed given the current dependencies, as we
have indicated in 6.3.

Conflicts: Conflict-checking is performed in ATPMos through the use of locks, im-
plementing the observation we made in 6.1.3. Therefore, no extra work will be
required here.

Views and Access: Views relax the isolation between different transactions, allow-
ing one transaction to view the intermediate results of another transaction. Ac-

123

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

cess sets contain all the data that has been seen or accessed by a transaction.
The access set typically is already present in a TP Monitor for classical trans-
actions, as the collection of resources which are locked by the transaction, and
this is also the case in ATPMos. Views, however, are not present in classical
transactions, so in order to support ATMS the view set of a transaction is kept,
and the locking algorithm takes these sets into account. Note that in 6.3 we
remarked that if we opt to leave out view traversal order, we still are able to
support a large number of ATMS.

Delegation: Delegation allows one transaction to delegate the responsibility for com-
mitting or aborting a specified number of its objects to another transaction. This
is not present in classical transactions, and therefore will need to be provided to
have ATMS support. Note that we can fix the selection of objects to be delegated
as the access set, which we mentioned in 6.3.

From a Formal Model to an Implementation: One topic discussed in 6.3 gives
rise to a new requirement: Naming. As we show later, we need some naming in-
frastructure to be able to, from one transaction, easily refer to other transactions.
This is useful, for example, when we need to specify a dependency.

Regarding the implementation of these features, we note here that a full imple-
mentation of a TP monitor that is completely compliant with the ACTA model would
require a very large amount of work, due to the high complexity. Also, significant re-
search has already been performed on this subject [AC95, ASSR93, BDG+94, BP96,
GHKM94]. However, the focus of this dissertation is not on building TP Monitors for
ATMS, but on how to program the software that interacts with them. Therefore, we
have chosen not to pursue this in depth. Instead we built a TP Monitor the imple-
mentation of which is not fully ACTA compliant, but the interface does provide all
the required features for the basic implementation we considered in 6.3.

To summarize, conceptually we need to add four elements to ATPMos to be able
to support ATMS: views, delegation, dependencies and naming. We discuss these
extensions next.

7.1.2 Implementing ATMS support

Having identified the conceptual extensions to classical transactions which are required
to enable ATMS support, we now outline how these extensions are implemented in
ATPMos. We begin with naming and grouping, proceed with views and delegation,
and end with dependencies.

Again, we do not discuss the implementation of these concepts here, but refer to
appendix A for a more detailed treatment of this subject.

124

7.1. ATPMOS: A TP MONITOR FOR ATMS

The Need for Naming and Grouping

As we have already mentioned in 6.3, from the standpoint of a formal model using
names such as Ti and Tj, and defining a set of transactions formally works just fine,
but when going to an implementation of the model, this raises a number of technical
issues. Dependencies, view and delegation take as arguments transaction identifiers of
actual running transactions or groups of transactions, and therefore these identifiers
have to be obtained from somewhere. We now discuss, conceptually, how we address
this issue in ATPMos using a naming service. This service provides support for naming
and grouping transactions, as we see next.

As an example of the use of naming, consider nested transactions. In the ACTA
formal model, we can simply state that “Tj is a child transaction of Ti”, but at
runtime, we need a way in which we can ascertain the identity of the parent from
within the method code of the child, and vice versa.

Classical transaction management seems to provide a solution for this problem
through transaction context propagation, which we discussed in 5.2.1. To summarize,
the identifier of the currently running transaction is passed as a hidden parameter
with every method call. This would allow a child transaction, called by the parent, to
first obtain a reference to the parent before starting. However, context propagation is
only performed by a method call, so if a child transaction is not called by the parent,
e.g. when it runs in a different thread, this parameter is not passed. In that case the
child will not be able to obtain a reference to the parent. Furthermore, transaction
context propagation only allows one transaction identifier to be propagated. If we
would want a given transaction to place dependencies between itself and two other
transactions, this would be impossible as only one other transaction can be referred
to. Therefore we need to provide a more general solution.

A first reflex would be to graft this information onto the control flow of the appli-
cation. For example, again consider nested transactions, where sub-transactions of a
parent transactional method correspond to the methods called from within the parent
transactional method. This would imply that we need to modify each method’s sig-
nature to now also contain the identifier of the parent transaction. Arguably, this can
become troublesome when a large amount of methods and method calls is involved.
Furthermore, passing transaction identifiers from a called method to the caller is even
more awkward in Java, since only one return value is allowed. If we want to pass the
original return value, combined with a number of transaction identifiers, we need to
make a value object [ACM01], and change the return type of the method. Another
solution, avoiding changes in signature, would be to use a global variable to keep the
identifier of the parent transaction, but this would not work if two nested transaction
hierarchies are running concurrently. Therefore, we need to separate naming of trans-
actions and transaction groups from the control flow of the application, and provide

125

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

this as an extra feature of ATPMos.

The ATPMos Name and Group Service

To address the issue of naming, we have chosen to implement a name service in ATP-
Mos, inspired by the wide variety of name services available in distributed systems.
The name service acts as a global dictionary, allowing transactions to bind their iden-
tifier to a key of their choosing, and to retrieve identifiers of other transactions based
on their key. We do not include the interface definition for the naming service here,
instead we refer to table 7.1 (in section 7.1.3).

Note that the name service can be used to implement classical transaction context
propagation, as follows: In our nested transaction example, the method of the parent
transaction can bind its identifier using the current thread as key. Called methods
correspond to sub-transactions and wish to obtain the identifier of the parent. They
perform this by performing a lookup using as key the current thread, which is the
same thread as the parent methods’ thread.

Grouping of transactions can be found in ACTA in, for example, the view sets.
Consequently, ATPMos also provides support for groups of transactions, where a key
now refers to a set of transactions. Groups are separate from the naming of transactions
and can also be named, in a registry separate from the naming of transactions. This
avoids ambiguity of lookup for transactions and groups, i.e. if a transaction is looked
up no group will be returned and vice-versa. Also, this allows both a transaction and a
group to have the same name, giving the application programmer more flexibility. As
for the naming service, the interface definition is given in table 7.1 (in section 7.1.3),
and we do not include it here.

This concludes our introduction of the naming service of ATPMos, which provides
for a global registry of transactions and transaction groups. Using this service the
code from one transactional method can obtain the identifier of other transactions
and transaction groups. Using those identifiers, this transaction can then set views,
place dependencies and so on, as we will discuss next.

Views and Delegation

Naming and groups, which we have just seen, do not immediately correspond to any
ACTA concepts, but will be used by the features that are covered in the remainder of
this chapter. The most straightforward of these are the implementation of the ACTA
concepts of views and delegation, which we discuss here.

Views allow one transaction to see the intermediate results of another transaction.
We have implemented two distinct ways in which views are set, first considering views
between two transactions, and second the use of a group to define the view of a

126

7.1. ATPMOS: A TP MONITOR FOR ATMS

transaction.
Views are used when accessing data from within a transaction. When attempting to

read or write a datum in a transaction Ti, ATPMos decides if a lock should be acquired
for this operation. When using views ATPMos also checks if another transaction Tj
already has a lock of the required type and is in the transitive closure of the view of
Ti. If this is the case, Ti does not need to acquire any lock and can simply proceed.
Using groups to define a view from one transaction to a set of other transactions is
analogous. When building the transitive closure of all transactions in the view of the
current transaction, the name service is called to obtain a list of all transactions in
the viewed groups. The resulting transactions are added to the closure, and used as
roots for further building this closure.

Through delegation, a delegating transaction Ti delegates responsibility for com-
mitting or aborting data modifications to another transaction Tj. As we have already
observed in 6.3 delegation boils down to changing the ownership of all the locks from
Ti to Tj and therefore we do not discuss it further here.

The interface definition of the ATPMos methods for views and delegation are given
in table 7.2 (in section 7.1.3), and therefore we do not include this definition here.

Dependencies

The use of dependencies effectively adds a number of constraints to the execution of
significant events of transactions, as we have discussed above. More specifically, in
7.1.1, we summarized that what we need is a way in which a running transaction Ti,
immediately before a significant event, asks if this is allowed. As we introduced in 6.3,
Ti can be made to wait until a dependency with another transaction Tj is satisfied.
The example we used is the Commit Dependency (Tj CD Ti): If Ti wants to commit
while Tj is running, commitment has to be postponed until Tj has committed. How-
ever, it is possible that waiting is not sufficient: take for example the Compensation
Dependency (Tj CMD Ti): If Ti aborts, Tj must commit. If Tj requests to abort, it
not only has to wait until Ti has ended, but in case Ti aborts, the request to abort
will also be denied, and Tj is forced to commit to satisfy the dependency.

It is important that the types of dependencies that can be enforced by ATPMos is
open-ended, because of the general-purpose nature of ATPMos. We cannot foresee all
dependencies that will be necessary to support all possible ATMS, therefore we must
be able to add new dependencies to ATPMos when needed. We have achieved this by
modeling transactions and dependencies as Petri nets [Pet77] in separate modules, and
allowing new modules, representing new dependencies, to be added to the system at
any time. We maintain a clean separation between the representation of a transaction
and the representation of dependencies, which allows new dependencies to be easily
created and introduced. To introduce such a new kind of dependency, we only need

127

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

to create a representation of that dependency as a module and add it to the system.
At runtime, we can then use this new representation, without even needing to restart
ATPMos.

We don’t discuss the implementation of the dependency mechanism here, but we
do give a detailed overview in A.5. To summarize, ATPMos keeps a run-time model of
transactions and their dependencies, which is used to verify and enforce dependencies.
A link is kept between the model and the running transactions, and is used at the
significant events of the transaction. Before a transaction begins, commits or aborts,
the state of the model is updated by calling ATPMos. Upon updating the model de-
pendency checking is performed and the caller is blocked until either all dependencies
are satisfied, or the transaction must immediately proceed to a committed or aborted
state. If the update call to ATPMos ends normally, the transaction can effectively
begin, commit or abort. If the update call ends with an error indication, this requires
the transaction to commit or abort immediately, as specified by the error indication,
to satisfy a dependency.

Again, we do not include the interface definition for dependency enforcement here,
and instead we refer to table 7.2.

7.1.3 ATPMos Interface

As we said above, the focus for ATPMos is to provide an interface for the usage
of ATMS, inspired on ACTA, to client programs. In the previous sections, we have
deduced the features required of ATPMos to provide ATMS support, and given a
general outline of their implementation. We end the introduction to ATPMos by giving
an overview of the interface of ATPMos, which allows the clients to use these features.

We present the interface here split in two tables, first we give an overview of
the interface for naming and groups, and second we provide the interface for classical
transaction management, views, delegation and dependency management. As all these
features have already been discussed, we do not further elaborate on them here.

7.1.4 Conclusion

In the previous sections, we have introduced ATPMos, the TP Monitor we created for
this dissertation. ATPMos provides for transaction management on EJB Entity beans
through the use of locks. Within a transaction, concurrency management is performed
when getter and setter methods of the bean are called by first calling the read or write
methods on ATPMos. These methods block until that datum is locked for reading or
writing, respectively, effectively performing concurrency management.

ATPMos was first introduced considering it solely as a TP Monitor for classical
transactions, and later conceptually extended to support ATMS by adding the required

128

7.2. DEMARCATION CODE FOR CLASSICAL TRANSACTIONS

Name Summary

void bind (Object key,
Integer id)

Register transaction identifier.

Integer lookup (Object key) Lookup transaction identifier.
void unbind (Object key) Unregister identifier key.

void unbindAll (Integer id) Unregister all identifier names.

void addToGroup (Object key,
Integer id)

Add identifier to group.

Integer [] lookupGroup (Object key) Lookup identifiers in group.

void removeFromGroup (Object key,
Integer id)

Remove identifier from group.

void removeGroup (Object key) Unregister group.

void bindGroup (Object key,
Object group)

Register group.

Object lookupGroupBinding (Object key) Lookup group.
void unbindGroup (Object key) Unregister group key.

void unbindGroupAll (Object group) Unregister all names for group.

Table 7.1: ATPMos interface overview for naming and groups.

ACTA primitives. We identified four extensions that need to be made to provide sup-
port for ATMS: naming, views, delegation and dependency support. We sketched the
implementation of these features, but did not provide a detailed discussion about the
implementation, as it lies outside of the scope of this thesis. We have however provided
an overview of the interface which is presented by ATPMos to client programs wishing
to use an ATMS. For more information regarding the implementation of ATPMos, we
refer to appendix A, which further goes into depth on this topic.

Having introduced ATPMos, we outline in the remainder of this chapter how
software using an ATMS interacts with ATPMos, i.e. we talk about the transaction
demarcation code that is written when using ATPMos as a TP Monitor for ATMS.

7.2 Demarcation Code for Classical Transactions

Applications using transaction management will steer ATPMos through transaction
demarcation code (we introduced the concept of transaction demarcation code in 2.1).
This code is added to the application, defining the start and end of transactions, what
operations are involved in the transaction, and when using an ATMS, setting depen-
dencies, views and performing delegation. By writing the appropriate demarcation

129

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

Name Summary
Integer newID () Returns new identifier.

void begin (Integer id) Start transaction.
Integer begin () Start a new transaction, returns id.
void commit (Integer id) Commit transaction.
void rollback (Integer id) Rollback transaction.

void read
(Integer id,
Object key) Block until object can be read.

void write
(Integer id,
Object key,
RestoreData res)

Block until object can be written,
keeps backup value.

void addView
(Integer source,
Integer dest) Add a view from source to dest.

void removeView
(Integer source,
Integer dest)

Remove the view from source to
dest.

void addViewGroup
(Integer source,
Object dest) Add a view group to source.

void removeViewGroup
(Integer source,
Object dest) Remove the view group from source.

void delegate
(Integer source,
Integer dest)

Delegate all resources from source to
dest.

void addTransaction (Integer id) Add transaction to the model.
void removeTransaction (Integer id) Remove transaction from the model.

void addDependency
(Integer left,
String type,
Integer right)

Add dependency of given type be-
tween two transactions.

Forcing mayBegin (Integer id) Block until transaction may begin.

Forcing mayCommit (Integer id) Block until transaction may com-
mit.

Forcing mayAbort (Integer id) Block until transaction may abort.

Table 7.2: ATPMos interface overview for ATMS.

130

7.2. DEMARCATION CODE FOR CLASSICAL TRANSACTIONS

code, i.e. using these building blocks in the correct way, the application programmer
ensures that transaction management for the application is performed conforming to
the model of choice.

As we already argued in chapter 3, programming such demarcation code is not
a trivial task, even if we only consider classical transactions. In this chapter we il-
lustrate this problem using an example banking application, of which we render the
money transfer operation transactional. We see that in the resulting code both the
core concern of the application and the transaction management concern are very tan-
gled, therefore making the application difficult to write and maintain. Furthermore,
we illustrate that the design of the application should take transaction management
into account. If this is not the case, adding transaction management can require more
than adding just demarcation code, in some cases even new features have to be im-
plemented.

We start by describing the application we use as an example: a bank transfer
operation. We then describe three ways to add the concern of transaction management
to this operation, and the impact this has on the code with regard to separation of
concerns. Later in the text, after considering classical transactions, we show that
in advanced transaction management, programming demarcation code becomes even
more of a burden, using the same example code.

7.2.1 The Example Application

The example application we choose to illustrate our problem statement is inspired
by the classical example we used in chapter 2: a banking application. The example
application is conceived as a part of a multi-tier distributed system, using Enterprise
JavaBeans (EJB), which we introduced in 5.3, as the middleware server architecture.

In this banking application, the database layer is handled by the EJB server, and
persistent data is referenced through EJB Entity beans. This allows us, later on,
to use ATPMos to perform advanced transaction management for this application.
The application we have written represents just one middleware component in the
entire banking application, and is intended to be used by cashiers at a bank till. This
Cashier component allows the cashier to deposit money into an account, withdraw
money, transfer money between different accounts, et cetera.

As we wish to demonstrate the impact of transaction demarcation code on an ap-
plication, and not how to build a middleware component, we choose to focus on just
one operation: transferring money from one account to another account. This opera-
tion is performed by the moneyTransfer method, which takes a source and destination
BankAccount, which are EJB Entity Beans, and the amount to be transfered.

We do not include the full code for the moneyTransfer method here, we refer
to appendix B, which contains all the Java code discussed in this chapter, and more

131

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

specifically to B.1. Suffice it to say that the code for the moneyTransfer method
consists of three distinct steps. The first step performs the actual bank transfer, the
second step prints a receipt to be given to the customer, and the third step logs the
transfer operation. Note that the sequence of these three steps has been explicitly
fixed in the requirements of the application, which will be important later.

Instead of including the complete code of the transfer operation to illustrate the
effect of demarcation code on this method, we show the code for one step of the bank
transfer. In the following sections we repeat this code with demarcation code added.
The code we show is for the first step of the bank transfer: the actual transfer itself.
As this code is quite straightforward, we do not discuss it in detail, and simply include
it below:

4 int from_amount = from.getAmount();
5 int to_amount = to.getAmount();
6 to.setAmount(to_amount + amount);
7 from.setAmount(from_amount - amount);

A major problem with the code for the money transfer operation is that it is
abound with concurrency issues. The first step, the code of which is given above, has
even been used as a motivating example for the need of transactions. This is because
unchecked concurrent transfer operations can cause money to, as if by magic, appear
or disappear from the accounts [CDK94]. Therefore, to remove these concurrency
issues, we make this transfer operation transactional, which we see next.

7.2.2 Making the Transfer Operation Transactional

The moneyTransfer method, which we have introduced above, contains many possible
sources of race conditions. Therefore, to add concurrency management, we make this
method transactional, using our TP Monitor, ATPMos, which we introduced above.
This entails manually adding transaction demarcation code to this method, which
makes the required calls to ATPMos.

The code for the transactional money transfer is not included here, instead we refer
to B.2. Most important for this code is that a lot of transaction demarcation code has
been added, and that it is spread out all over the application code, cross-cutting
the original concern. As a result, the size of the code has more than doubled and
readability is significantly decreased because transaction demarcation code tangles an
extra concern into the code.

This is most apparent in the three steps of the transfer operation, where the
programmer has to switch concerns every few lines. The programmer needs to address
both the core concern of the code, in this case performing a transfer operation, and the

132

7.2. DEMARCATION CODE FOR CLASSICAL TRANSACTIONS

secondary concern of transaction management in a tangled way. We illustrate this by
repeating the code from the first step of the transfer operation, now with demarcation
code added, and emphasised like this:

11 txmgr.read(tx_id, from);
12 int from_amount = from.getAmount();
13 txmgr.read(tx_id, to);
14 int to_amount = to.getAmount();
15 RestoreData tores = new RestoreData(to,"amount");
16 txmgr.write(tx_id, to, tores);
17 to.setAmount(to_amount + amount);
18 RestoreData fromres = new RestoreData(from,"amount");
19 txmgr.write(tx_id, to, tores);
20 from.setAmount(from_amount - amount);

The cause for this tangled code is that before every read or write of an Entity
Bean, a call must be made to ATPMos, as we discussed above. This runs counter
to the separation of concerns principle we detailed in 3.1.1; instead of only focussing
on one concern, the programmer now needs to keep two concerns in mind and even
constantly switch between them. As said in 3.1.1, writing such code is difficult, as is
extracting the original concerns from the produced code, which results in code that is
difficult to maintain.

Furthermore, making the method transactional requires extra code to be defined
by the base application, which is not illustrated by the example code above. Because
a transaction may be rolled back after the transfer receipt has been handed to the
customer, this receipt needs to be annulled by printing out a cancellation notice.
However, it makes no sense always to print out such a notice, as in some cases no
receipt has been printed. Therefore demarcation code defines a flag which is set after
the receipt is printed and checked when rolling back the transaction. When rolling
back the transaction and the flag is set, an extra method call is made to print a
cancellation. This sub-concern of printing the cancellation notice introduces yet more
code tangling.

Note that the cancellation notice was not present in the original banking appli-
cation code, and is the result of introducing transactions, combined with the prohi-
bition to rearrange steps. Were we allowed to print out the receipt as last, no can-
cellation would be required. This is an example reason for the statements made in
[KG02, RC03], which we discussed in 3.2, asserting that applications should not be
constructed totally obliviously from the concern of transaction management. How-
ever, because this was not the case, we need to make amends, and extend the base
application with new functionality: printing out a cancellation notice.

133

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

Traditional solutions exist that attempt to reduce the complexity of adding de-
marcation code to method code, more specifically using wrappers. However, wrappers
are not a complete solution and provide only partial relief for the issue of tangling of
demarcation code, as we shall see next.

7.2.3 Simplification Through Wrappers

As we have seen above, an issue in the demarcation code in the previous section
is issuing calls to ATPMos before each read and write of the data. This introduces
a high degree of tangling between the core concern and the concern of transaction
management and furthermore is quite repetitive. To address this issue, a traditional
solution is to use a wrapper object. Instead of making each getter and setter call
directly to the affected object, we make the call to its wrapper. The wrapper first
performs the required call to ATPMos, followed by the call to the real getter or setter.

Again, we do not include the complete code for this version of the money transfer
operation, it is given in B.3. Important in this code is that, while the number of lines
of code has not dropped dramatically, the three steps of the transfer operation have
become much more legible. This part of the method has almost reverted back to the
original form and the role of the demarcation code is much less pronounced here, as
we can see from the example code below (again with demarcation code emphasised
like this):

11 BankAccountWrap from = new BankAccountWrap(from_orig);
12 BankAccountWrap to = new BankAccountWrap(to_orig);
13 int from_amount = from.getAmount(tx_id);
14 int to_amount = to.getAmount(tx_id);
15 to.setAmount(to_amount + amount, tx_id);
16 from.setAmount(from_amount - amount, tx_id);

The differences here are that we now create wrappers for each datum, and in the
getter and setter calls we pass the transaction identifier as extra parameter. Although
this implies that demarcation code is still tangled with the core concern, it has become
more implicit. Consequently, the programmer does not need to switch between the
two concerns as much above, and the concern of transaction management takes on an
inferior role. This results in a greater separation of concerns, making the code easier
to implement and maintain.

Working with wrappers has a downside, however, because when handing out ref-
erences to Entity Beans, for example to print out the receipt, we should not pass the
wrappers, but pass the original objects. Also, we have to take care that calls that
are not transactional are not performed on the wrapper, but on the original object.

134

7.2. DEMARCATION CODE FOR CLASSICAL TRANSACTIONS

In other words, adding wrappers to handle transaction demarcation implies adding
an extra concern to the code: managing these wrappers. Therefore, adding wrappers
requires that a trade-off must be made between making transaction management more
implicit and adding the extra sub-concern of wrapper management to the code.

So, to summarize, while the use of a wrapper significantly improves the code, it
is not a complete solution. This is because while it makes transaction management
more implicit, it also adds the extra sub-concern of wrapper management.

Note that EJB, as discussed in 5.3, does provide for automatic wrapper man-
agement, and some form of abstraction of the demarcation code, by making method
boundaries coincide with transaction boundaries, which we discussed in 5.3. However,
as we have already remarked in 5.3.5, this does not allow us to perform exception
handling at the level of that method, making it hard, if not impossible, to specify
in that method that a transfer cancellation printout is needed if a receipt has been
printed. This issue, combined with the lack of ATMS support, prohibits us to choose
that path to achieve further simplification of the example application. Therefore, the
code above is the most concise transactional form of the moneyTransfer method we
can achieve without using AOP.

To conclude, we see that going from code oblivious to transaction management to
code with transaction management has led to significantly tangled code. Furthermore,
not only demarcation code was added, but the existing code needed to be extensively
modified to work with wrappers and to provide exception handling, for which even
an extra feature had to be added in the application. It is therefore clear that making
code transactional is not always as straightforward a task as it would seem to be.

7.2.4 Transaction Management as an Aspect

We have seen above that using traditional software engineering, the concern of trans-
action management remains tangled with the core concern of the application. Transac-
tion demarcation code remains interleaved with the code performing the actual bank
transfer, leading to a poor separation of concerns. As a result of this poor separation
of concerns, the code is difficult to write and maintain, as asserted in [HVL95] and
which we discussed in 3.1.1.

To obtain a better separation of concerns for this code, existing work, including
some of our own, uses Aspect-Oriented Programming (AOP), which we introduced
in 3.1.2, and we discussed this existing work in 3.2. The use of AOP allows for a
much stronger separation of concerns, leading to code that is easier to develop and
maintain. We have therefore implemented a moneyTransfer operation, in which trans-
action management has been aspectized. The original moneyTransfer method is now
accompanied by an aspect definition, which is placed in a separate file that describes
the transactional properties of the method, i.e. that defines transaction demarcation.

135

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

As aspect technology, we use our previous work, which we discussed in 3.2, the goal
of which was to modularize transaction management as an aspect, specifically focusing
on exception handling within this aspect. The base aspect (i.e the application code)
is written in plain Java, while the transaction properties are written down separately,
in a little language created specifically for declaring transactional properties.

The code for the base aspect is not included here, instead we refer to B.4. Most
noticeable about this code is that it is almost unchanged from the initial code of the
moneyTransfer method. The code for the first step of the transfer operation is, in
fact, the same as the version without transaction demarcation, which we have shown
in 7.2.1, and therefore we do not include it here.

In the code for the moneyTransfer method only two small changes are required,
and both changes are a consequence of the design of the application, which did not
take transaction management into account. We return to this after discussing the
aspect code. As a result, this code provides for the cleanest separation of concerns yet
encountered. Except for a few statements, the base aspect code is untainted by the
transaction aspect.

The description of the transactional properties of the method is discussed in detail
in B.4, where the full code is given in the little aspect language we built for this
aspect. Instead of requiring a significant amount of java code to make this method
transactional, the code in B.4 uses but a few statements. The majority of the code, in
fact, consists of a rollback handler. Without this rollback handler, the moneyTransfer
method can be made transactional using the two statements below, which are self-
explanatory:

1 transactions Cashier {
2 moneyTransfer(BankAccount, BankAccount, int) new;
3 }

This illustrates that stating the transactional properties of the method using an
aspect-specific language is very concise and short, raising the abstraction level of the
code and hiding implementation details.

Having virtually untainted base code and a separate description to declare the
transactional properties of a method, confirm the observations we made in 3.2. AOP
is indeed a superior solution to specify transaction management that allows for mod-
ularization of this concern. Using AOP, we have achieved the highest separation of
concerns, resulting in code in which the different concerns are almost completely sep-
arated, i.e. almost no code tangling is present.

The cause for the slight tainting of the Java code by the transaction concern, is
again the issue of the design of the application: if the application were designed with
transaction management in mind, the construct to print out the cancellation notice

136

7.3. THE TRANSFER OPERATION AS A SAGA

would not be required. As it is, we have a partial solution, limiting the impact of
this construct to two statements in the base aspect. This is a confirmation of the
observation, which we discussed in 3.2, that the design of the application has to take
the concern of transaction management into account.

Finally, we note that using a concern-specific aspect language, as above, has the
advantage that conceptually the code is at a higher level which hides implementation
details. This, combined with the conciseness of the code further aids the implementa-
tion of the application.

7.2.5 Conclusion

In the above sections, we have illustrated what the impact is of adding transaction
management to existing code, showing how this new concern interleaves with the core
concern of the application, leading to very tangled code. Consequently, according to
the principle of separation of concerns, this code is hard to write and maintain, and
a better modularization of transaction management is called for. As a first attempt
to modularize transaction management we have used wrappers. We have shown that,
when using wrappers, while the concern of transaction management is less spread out
over the code, we still have code tangling, and furthermore the extra sub-concern of
wrapper management is also added to the application. A second attempt was made
using AOP, and we have just seen that this results in a much cleaner separation of
concerns, conferming the observation in 3.2. Now the code for the base aspect has
almost reverted back to the original form.

The question which now remains to be answered is what happens if we repeat this
exercise for advanced transaction management. In other words, what is the impact on
the application code considering separation of concerns if we want to use an ATMS
instead of classical transaction management. We provide an answer to this question
next.

7.3 The Transfer Operation as a Saga

We have now illustrated the impact on complexity and size of application code as
a result of adding demarcation code for classical transactions. However, when we
consider the example transfer operation from a run-time point of view, we see that it
would make sense to use an ATMS for this code, namely Sagas, which we discussed
in 2.3. This is because a major issue with the transfer operation is the printing out
of the receipt: to make a printout, even on a fast printer, takes a few seconds, which
effectively turns the transfer operation into a long-lived transaction. It therefore makes
sense to split up the transfer operation into a Saga, allowing for more concurrency
within the banking application.

137

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

In this section, we gauge the impact this has on the application, considering trans-
action demarcation code. We see that the demarcation code is more scattered than
when using classical transactions and that a lot more demarcation code is required.
We also discuss the higher complexity of the demarcation code and its tangled nature,
which was predicted in 4.2. We show how this tangled code confirms the conceptual
discussion in 4.2, which lead us to the observation of tangled aspect code.

We now first talk about this demarcation code, addressing the amount of demar-
cation code required to use the Sagas ATMS, and the complexity of the demarcation
code. This is followed by a discussion on the tangled nature of this demarcation code,
which confirms our observation in 4.2.

7.3.1 Demarcation Code for the Saga

To render the transfer operation into a saga, we first split up the transfer into three
parts: a transfer method, a printReceipt method, and a logTransfer method.
Each of these methods coincides with the steps we used when first describing the
transfer operation above. The transfer example code we have used previously to illus-
trate the impact of demarcation code now is the body of the transfer method, as
can be seen below:

11 private void transfer
12 (BankAccount from, BankAccount to, int amount)
13 {
14 int from_amount = from.getAmount();
15 int to_amount = to.getAmount();
16 to.setAmount(to_amount + amount);
17 from.setAmount(from_amount - amount);
18 }

This split into a saga has as a result, that when printing the receipt in the
printReceipt method, less locks are held on the bank account objects, which al-
lows them to be concurrently accessed by other transactions. Splitting up this long
lived transaction into a saga has effectively added extra concurrency to the system,
increasing transaction processing speed.

To use the saga ATMS for the money transfer operation without using AOP, we
need to add transaction demarcation code to the different methods introduced above.
In addition to the classical transaction demarcation code given above the bulk of this
demarcation code manages dependencies: it will declare dependencies, based on the
formal description of sagas in [CR92], and verify these dependencies.

Note that, as a result of splitting the saga up into different methods, the demar-
cation code for the saga will now be scattered over these different methods. This

138

7.3. THE TRANSFER OPERATION AS A SAGA

contrasts with classical transactions, where the demarcation code for one transaction
is not scattered at all.

We do not include all the code for the different methods moneyTransfer, transfer,
printReceipt, and logTransfer here, neither with nor without demarcation code.
All this code is contained within appendix B, more specifically in B.5. Instead we
outline the most significant parts of this code next, and we use the transfer method
as an illustration, after discussing the top level moneyTransfer method.

The top level of the saga corresponds to the moneyTransfer method, the body
of which calls the three steps in sequence. Although this method does not perform
any work that is transactional, we still need to declare it as a transaction because the
different steps in the saga place dependencies on this top-level method. This is done
to enable roll-back of the saga: if the saga is rollbacked, the top-level method will be
marked to roll-back, which will trigger the compensating transactions due to the fact
that their dependencies on the saga will be satisfied. Also, at the end of the saga,
the internal representation of transactions and dependencies kept in ATPMos is no
longer required and is therefore cleaned up by the demarcation code at the end of the
moneyTransfer method.

It is striking that of these forty-eight lines of code, only three lines are not con-
cerned with transaction demarcation. Although this implies that not much code tan-
gling takes place, the transaction concern still has a large impact, due to the size of
the demarcation code, and of the complexity of the demarcation code itself.

Considering the different steps of the saga, each of these, save for the last one, needs
to define a compensating transaction that is run when the saga is rollbacked after
that step has already committed. The compensating transaction performs a semantic
“undo”, such that at the end of saga rollback the database is consistent, as we have
discussed in 2.3. Recall that in 2.2, where we have described secondary transactions,
we identified compensating transactions in Sagas as such secondary transactions.

For the first step in this example, the transfer step, we created an undoTransfer
method, which performs the inverse of the transfer operation, the code for which
is given in B.5.3. Note that as this method is also a transaction, it also includes
demarcation code. The code for the transfer step itself was already given early in
this dissertation, in 4.2, where we discussed the concerns within the demarcation code.
For convenience, however, we also include this code here (again with demarcation code
emphasized):

120 private void transfer
121 (BankAccount from_orig, BankAccount to_orig, int amount)
122 throws TxException
123 {
124 TransactionManager txmgr = TransactionManager.getCurrent();

139

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

125 Integer tx_id = txmgr.newID();
126 txmgr.addTransaction(tx_id);
127 Integer saga = txmgr.lookup(Thread.currentThread());
128 txmgr.addToGroup("Saga"+ saga + "Step",tx_id);
129

130 final Integer comp_id = txmgr.newID(); //for compensation
131 txmgr.addTransaction(comp_id);
132 txmgr.addToGroup("Saga"+ comp_id+ "Comp",comp_id);
133 txmgr.bind("Saga"+ comp_id+ "Comp",comp_id);
134

135 final BankAccount compfrom = from_orig; //for inner class
136 final BankAccount compto = to_orig; //for inner class
137 final int compamount = amount; //for inner class
138

139 Runnable compensator = new Runnable()
140 {
141 public void run(){
142 undoTransfer(compfrom, compto, compamount, comp_id);
143 }
144 };
145

146 txmgr.addDependency(saga, "ad", tx_id);
147 txmgr.addDependency(tx_id, "wd" ,saga);
148 txmgr.addDependency(comp_id, "bcd" ,tx_id);
149

150 new Thread(compensator).run();
151

152 Forcing bf = txmgr.mayBegin(tx_id);
153 if (bf == null)
154 txmgr.begin(tx_id);
155 else {
156 txmgr.rollback(tx_id);
157 return;
158 }
159

160 try {
161 BankAccountWrap from = new BankAccountWrap(from_orig);
162 BankAccountWrap to = new BankAccountWrap(to_orig);
163 int from_amount = from.getAmount(tx_id);
164 int to_amount = to.getAmount(tx_id);

140

7.3. THE TRANSFER OPERATION AS A SAGA

165 to.setAmount(to_amount + amount, tx_id);
166 from.setAmount(from_amount - amount, tx_id);
167

168 Forcing cf = txmgr.mayCommit(tx_id);
169 if (cf != null)
170 throw new TxAbortedException();
171

172 txmgr.addDependency(comp_id, "cmd" ,saga);
173 txmgr.addDependency(comp_id, "bad" ,saga);
174

175 txmgr.commit(tx_id);
176 }
177 catch (TxException ex){
178 txmgr.mayAbort(tx_id);//will always succeed
179 txmgr.rollback(tx_id);
180 throw ex;
181 }
182 }

Note that we do not discuss this code in detail here, a overall outline of the work
performed by this code has already been given in 4.2, and we provide a more in depth
discussion of the different tasks in this code later, in 7.3.2. Here, we limit our discussion
to the demarcation code for the rollback concern.

To start the undoTransfer method as a secondary transaction, quite a large
amount of demarcation code is required, the code starts at line 132 and ends at line
150. Furthermore, this code is quite complex, requiring an instance of an anonymous
inner class to be created (as a Runnable), so that the undoTransfer method can be
executed in a different thread (in lines 135 to 144). Also, a number of dependencies
have to be placed on the secondary transaction (lines 146-148), i.e. the transaction to
be run by this instance, before this instance is run (line 150). Otherwise the secondary
transaction would immediately start executing, which is not correct as it should only
run when rolling back the saga. Only after these tasks have been performed, among
others, the actual transfer step can start.

As in the first step of the saga, the second step declares a compensation step:
the printing of a transfer cancellation notice, which we already have discussed when
first making the transfer operation transactional. For the sake of the example, we
assume that a method implementing this has been defined on the current printer, as
we did in the first transactional version of the money transfer operation above. This
has as a result that we do not need to implement an extra semantical undo method
for this secondary transaction, and instead call the printer method directly from the

141

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

inner class we create for the secondary transaction. The most noticeable impact in the
code, as seen in B.5.4, is the growth of the inner class responsible for the secondary
transaction This now makes the method of this inner class transactional in itself, as
this transactional behavior should not be placed in the code of the printer.

An interesting issue of the code in B.5.4 is the receipt number, which is a unique
number printed on the receipt, that is generated within the body of the printReceipt
method. This receipt number also has to appear on the cancellation notice, to indicate
to which receipt the cancellation applies. However, as the receipt number is generated
within the body of the printReceipt method, it can not be passed as a method pa-
rameter to the cancellation code. This is because the cancellation method is called, as
a secondary transaction, before the body of the printReceipt method is executed.
An indirection trick is used to implement this: when starting the secondary transac-
tion, we pass a container to the cancellation method that is filled in by the body of
the printReceipt method. This indirection allows this value to be shared between
the two methods, so that it can also be printed on the cancellation notice. We know
that, at run time, the compensating transaction will only run after the printReceipt
transaction has committed, which implies that the container will have been filled in,
and therefore this will never produce an error.

This ends our discussion on the demarcation code for the bank transfer operation
as a saga. We first split the method into four distinct methods, and added demar-
cation code to these four methods. We noted that this implies that this code is now
more scattered than before. We have outlined the most important features of this
demarcation code: the considerable size and complexity and the need to be able to
share information between transactions and secondary transactions.

7.3.2 Concerns in Demarcation Code for the Saga

Having outlined some of the peculiarities of the demarcation code for the bank transfer
operation as a Saga, we now take a step back and perform a conceptual analysis of
this demarcation code. If we compare the amount of demarcation code to application
code addressing the core concern, we first see that much more demarcation code is
present. The original code for the moneyTransfer operation counted 37 lines, whereas
the version using Sagas counts 267. This amounts to over 7 times as much code, solely
as a result of using the Saga ATMS, or over 200 lines of demarcation code. However,
size is not the only issue, more important still is the complexity of the demarcation
code, which we discuss here, and we start by reviewing the demarcation code for the
different steps of the saga.

In the different methods, i.e. steps, of the saga, we discern the five phases of the
demarcation code we introduced in 4.2: preliminaries, beginning, running, commit and
abort. We now elaborate on the different tasks performed in each of these phases and

142

7.3. THE TRANSFER OPERATION AS A SAGA

locate these tasks in the transfer example code given previously, by including their
line numbers:

Preliminaries The preliminaries start with obtaining a transaction identifier from
ATPMos (Line 125). This identifier is then used to register this transaction in the
dependency mechanism of ATPMos (Line 126). Naming is performed to obtain
a reference to the top level and grouping is used to add this transaction to the
group of steps of this particular saga (Lines 127-128). If a secondary transaction
is required the preliminaries also include the creation of an instance of the inner
class for that transaction (Lines 130-141).

Beginning First in the beginning phase is the setting of dependencies (Lines 146-
148), and second is calling the run method of the secondary transaction, i.e.
spawning the secondary transaction (Line 150). Dependencies are set before the
secondary transaction is spawned, as these restrict the running of the secondary
transaction. Third is verification of dependencies for this transaction (Lines 152-
158), which might require the transaction to immediately abort (Lines 156-157),
and fourth is the call to ATPMos to begin the transaction (Line 154).

Running The running phase simply consists of the original method code that uses
wrappers for transactional data access (Lines 160-166).

Commit Following the running phase, the commitment phase first verifies depen-
dencies (Lines 168-170), which may cause the transaction to abort (Line 170).
Second the dependencies for commit time are set (Lines 172-173), and third the
transaction is committed (Line 175).

Abort Aborting the transaction starts with verifying dependencies (Line 178), which
is known to always succeed, then instructs ATPMos to rollback the transaction
(Line 179), and ends by throwing an exception (Line 180).

We have chosen the terminology of tasks to name the work performed in the dif-
ferent phases above, and have not called these tasks concerns here. This is because
these tasks are at a low level of the implementation of the model, and do not reflect
the conceptual concerns of the demarcation work being performed. Conceptually, the
demarcation code above tackles two concerns, namely the structure and rollback con-
cerns we identified in 4.1.1, and we review both next.

The structure concern consists of maintaining the structure of the different steps of
the saga. This ensures that each method corresponds to one step, starting and ending
the transaction for that step when necessary, and ensuring that a representation of
this transaction is present in the dependency model of ATPMos.

143

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

Management of rollbacks is the second concern we identified and is treated by the
bulk of the demarcation code above. Rollback is ensured by the secondary transactions,
which are all compensating transactions. All the dependencies set in the different
steps of the saga ensure that these counter-steps run in the right sequence to perform
rollback.

Note that we have not reviewed the code for the top level of the saga, this code
is mainly responsible for the structure concern. It makes the top level of the saga
available for the different steps, and removes the representations of the different steps
in the dependency model of ATPMos when the saga ends.

Tangled Demarcation Code

An important issue we are faced with is that there are not only many tasks to be
performed in order to implement these two concerns, but furthermore the demarcation
code which implements these tasks is also tangled, as identified in 4.2. For example,
the tasks in the beginning of preliminaries phase treat the structure concern and at
the end of the phase end with the rollback concern. This is followed by the begin phase
where first the rollback concern is treated and then again the structure concern. In
other words, in one part of the demarcation code first we have code for the structure
concern, then for the rollback concern, and then again for the structure concern, which
is a clear case of code tangling.

In the saga ATMS the code for only two concerns is tangled, so this code tangling
seems not so large an issue. If we consider other ATMS, however, as we did in 4.1.2, we
find ATMS which treat more concerns, such as Relatively Consistent Schedules (RCS).
In RCS, two additional concerns are present: management of views and performing
delegation. In RCS, the same region of demarcation code as the example above needs
also to treat these concerns, as delegation is performed and a view is set at begin
time. The same phases in the demarcation code therefore now contain four tangled
concerns.

Compare this to classical transaction management, which we discussed first. Not
only is there less demarcation code, but there is no tangling. In classical transaction
management only two concerns are present: structure and rollback. The implementa-
tion of the rollback concern, however, is non-existent. This is because the structure
concern is responsible for calling the TP monitor to rollback the transaction, and no
other actions need to be taken for the rollback. Therefore, as there is only one concern
present within the demarcation code, this code is not tangled.

Following the principle of separation of concerns, we can clearly conclude from
the above observation that the demarcation code for ATMS is much more difficult to
write and maintain, due to the large volume of demarcation code in which multiple
concerns are tangled. Therefore, to enable the use of an ATMS, so that the application

144

7.3. THE TRANSFER OPERATION AS A SAGA

programmer can use a transaction model tailored to the design of the application being
built, we need to address the issue of demarcation code.

7.3.3 Conclusion

In this section we described how the code for the money transfer operation was changed
by splitting the moneyTransfer method into four parts, and by adding demarcation
code to make use of the Saga ATMS.

A striking property of the resulting code is its size: with 267 lines it is over 7
times as large as the version without transaction demarcation of 37 lines. Or, from
a different perspective, this code contains over 200 lines of transaction demarcation
code. This transaction demarcation code is quite complex, and can be subdivided
in preliminaries, beginning, running, commit and abort phases, where each of these
phases performs multiple tasks.

Furthermore, considering the two different concerns present in the Sagas ATMS:
structure and rollback, which we identified in 4.1.1, we confirm the analysis of 4.2. We
see that the demarcation code in the above example indeed treats these concerns in a
tangled way, making this demarcation code complex.

The above allows us to conclude that that the demarcation code for ATMS is much
more difficult to write and maintain than demarcation code for classical transaction
management. Consequently, to be able to use an ATMS, this demarcation code is in
dire need of modularization. Furthermore, we now need to take into account that, in
addition to modularizing the concern of transaction management, the different con-
cerns within the ATMS also should be modularized. This allows for easier modification
of the properties of the ATMS itself. This enables an existing ATMS to be tailored to
better fit the design of the application being built, or a new ATMS to be more easily
created specifically for that application.

To ease implementation of maintenance of the demarcation code for ATMS, we
have chosen to use AOP, which allows us to achieve a better separation of concerns,
i.e. a better modularization of demarcation code for ATMS. As we have shown in 3.2,
and observed again above, AOP allows us to achieve a clean separation of concerns
for classical transactions. Separating the aspect itself into different modules, however,
cannot be achieved in a conceptually clean way using current popular AOP tools, as
we have analyzed in 4.3. We therefore have to build our own aspect language and
weaver, which will support modularization of the ATMS aspect itself, and we discuss
this in the next chapter.

145

CHAPTER 7. DEMARCATION CODE FOR AN ATMS TP MONITOR

7.4 Conclusion

This chapter started with introducing the TP Monitor we built to be able to provide
runtime support for a wide variety of ATMS. This TP Monitor, called ATPMos, is able
to support a wide variety of ATMS because it implements the ACTA primitives, which
we discussed in the previous chapter. We gave an overview of the implementation
of ATPMos, starting by considering ATPMos solely as a TP Monitor for classical
transactions. We then identified the required features for ATMS support, outlined
how these are implemented in ATPMos, and given an overview of the interface to
ATPMos.

With ATPMos as a TP Monitor, we illustrated the process of making a middle-
ware application transactional by use of a bank transfer example. We have shown
that using traditional solutions to add transaction demarcation code result in the im-
plementation of both concerns, i.e. the base code and the transaction concern, to be
tangled. We confirmed that when using AOP the amount of tangled code is reduced to
a minimum, making AOP a superior solution to modularize transaction management.
We also repeated the observation in 3.2 that the design of the application should take
transaction management into account.

The final part of this chapter started with the observation that it would be better
to use the Sagas ATMS to make the bank transfer transactional. We outlined the
demarcation code that is required to employ the Saga ATMS, when using ATPMos,
and talked about the important features of this demarcation code: the large size
and significant complexity. We further discussed the complexity of this demarcation
code, identifying the different steps in this code, as introduced in 4.2. We confirmed
the observation of 4.2 that this demarcation code itself treats multiple concerns in a
tangled way. This lead us to conclude that demarcation code for ATMS is even more
in need of modularization than demarcation code for classical transactions.

Such modularization, however, needs to explicitly take into account that an ATMS
itself is composed out of different concerns and allow these to also be modularized.
While we have shown that AOP is a superior solution to achieve modularization of
demarcation code for classical transactions, we have also identified earlier, in 4.3, that
existing, popular, AOP tools do not provide for such modularization. We require this
modularization, as we must be able to easily make modifications to the ATMS, to
have a better fit to the application being built. Therefore, we have created our own
aspect language and weaver, specifically for the modularization of ATMS, which do
allow the implementation of the ATMS itself to be composed out of different modules.
We discuss these in the next chapter.

146

Chapter 8
KALA: Kernel Aspect Language for

ATMS

About the use of language: it is impossible to sharpen a pencil with a blunt ax.
It is equally vain to try to do it with ten blunt axes instead.

— Edsger Dijkstra

In the previous chapter, we illustrated how the large size and significant com-
plexity of demarcation code for ATMS makes implementation and maintenance of
applications using these models a difficult task. We have also seen that the same
phenomenon, albeit on a much smaller scale, is present in classical transactions, and
how Aspect-Oriented Programming successfully tackles this by modularizing transac-
tion management. Therefore, to ease implementation and maintenance of applications
using ATMS we have developed an aspect language and aspect weaver for ATMS.

An important goal for this language is to enable easy definition and modification of
ATMS code, by allowing the different concerns within the ATMS to be modularized.
We investigated these different concerns in chapter 4 and discussed the impact this
has on the aspect language and weaver.

In this chapter, we introduce the KALA language, the aspect language we devel-
oped to enable such separate specification of demarcation code for ATMS. We first
give an overview of KALA, detailing its features, and then discuss the aspect weaver
we created for KALA, showing how KALA specifications are woven into the base code.

147

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

8.1 KALA: The Language

Our aspect language, called KALA (Kernel Aspect Language for ATMS), was specif-
ically created to allow for the separate specification of transactional properties of Java
methods, and for these specifications to be modular with regard to the different con-
cerns present in ATMS. KALA is based on the ACTA formal model, which ensures
that a wide variety of ATMS can be implemented using KALA. In conjunction with
KALA we created an aspect weaver, that will weave KALA specifications into the base
code of an application, inserting transaction demarcation code that uses ATPMos as
a TP Monitor, and transactionally accesses Enterprise JavaBeans.

A major goal for KALA is the ability to modularize the code for an ATMS by
defining the different concerns of that ATMS in separate modules. This brings the
benefits of separation of concerns to the definition of an ATMS. As a result, devel-
opment of an ATMS is eased and a given ATMS also can be more easily modified to
better fit a particular class of applications. In this chapter, however, we do not discuss
modularization. This is discussed in the next chapter, which is dedicated to this topic.

In KALA, the programmer will declaratively state the transactional properties
of a Java method in one block of statements, using the constructs provided by the
ACTA formal model. In other words, in KALA, dependencies, views, and delegation
of a given transaction are defined through declarations made for the corresponding
method. Such declarations can be set to coincide with any of the significant events
of a transaction, i .e. begin, commit and abort. Therefore, the main body of KALA
declarations for a given method contains begin, commit, and abort statements, and
each of these statements contains a nested block of dependency, view and declaration
statements.

To be able to set dependencies, views and delegation, identifiers for source and
destination will be obtained through the naming and grouping service of ATPMos,
to which KALA also provides access. Naming and grouping can be performed both
in blocks for the begin, commit, and abort statements as in the top-level declaration
block for a method. Declarations at the top level block are executed before the method
starts, and the result of name lookups are accessible within the begin, commit, and
abort statement blocks.

The use of a KALA program fully automates the process of checking dependencies.
The resulting executable will automatically ensure that the transaction is added to
the dependency model of ATPMos. Also, dependencies are verified at begin, commit
and abort time. This is implemented in the woven code by making the required calls to
ATPMos, as we discussed in 7.1.2. As a result, at begin, commit and abort time, the
transaction will wait either until all dependencies are satisfied and it may proceed, or
until it is forced to commit or abort to satisfy a dependency. Having this process fully
automated frees the KALA programmer from this burden, so that he can concentrate

148

8.1. KALA: THE LANGUAGE

solely on declaring the transactional properties of the method.
KALA greatly eases the use of secondary transactions, by allowing them to be

declared through a specific autostart statement. The use of this statement, in the
top level block of KALA statements for a method, fully automates starting of this
transaction in a separate thread. The autostart statement also allows for separate
transactional specifications, i.e. KALA code, to be given for that particular execution
of a secondary transaction.

Finally, KALA also supports termination of transactions and groups of transac-
tions, as implemented by ATPMos. Termination can be performed at begin, commit
and abort time.

We will now discuss the KALA language in more detail, starting with naming
and grouping, second discussing dependencies, views and delegation, third treating
automatically starting secondary transactions, and fourth presenting how transactions
are terminated. We will not give a formal specification of the KALA grammar here,
as it is given in appendix C, instead we discuss the language more informally.

8.1.1 Naming and Grouping

KALA programs declare transactional properties of a method separately from that
method’s definition, in a separate program file. Therefore, a static naming scheme
is required to identify for which method a block of properties is intended. Also, to
place dependencies, set views, and perform delegation between running transactions,
we need a dynamic naming and grouping scheme, as already discussed in 7.1.2. In
this section we describe how static and dynamic naming and the use of groups is
programmed in KALA.

Static Naming

Statically, we need to identify with which method a block of transactional proper-
ties is associated. To name the method, the full class name and the method sig-
nature, separated by a dot, are given. For example, consider two methods, with as
signature fatherMethod(int) and childMethod(float, String), the first of class
org.tree.RootNode, the second of class org.tree.ChildNode. The static name of
both methods, respectively, would be org.tree.RootNode.fatherMethod(int) and
org.tree.ChildNode.childMethod(float, String).

This already enables us to write our first KALA program, given below, in which
we declare that both these methods are transactional, without declaring any specific
properties, as seen by the empty block of declarations following their name.

1 org.tree.RootNode.fatherMethod(int){
2 }

149

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

3 org.tree.ChildNode.childMethod(float, String){
4 }

Dynamic Naming

Now suppose that we wish to implement nested transactions, where childMethod will
be a sub-transaction of fatherMethod, and that fatherMethod directly or indirectly
calls childMethod. To realize this, some dependencies, view and delegation declara-
tions will need to be made, with as sources and targets the running instances of these
transactions. Therefore, a dynamic naming scheme is required, to identify transactions
at run-time.

To obtain a reference to a registered transaction at run-time, KALA code uses the
ATPMos naming service, which we outlined in 7.1.2. Lookup is performed in KALA
by using an alias statement, which takes as first argument the identifier to which
the resulting reference will be bound, and as second argument the key for the lookup
operation. As key a Java expression, enclosed between angular brackets, is given.
Within this expression, existing aliases can be used, along with the keyword self,
which stands for the transaction to which this declaration applies at run-time1. If no
identifier is found for that key, the resulting reference will be to the null transaction,
as in ATPMos.

Registration to the naming service is performed by adding a name statement to the
transactional properties, with as first argument the transaction to be registered, and
second the name, given as a Java expression, enclosed between angular brackets, as
above. The transaction to be registered, is either the result obtained through an alias
statement, or the self keyword. As in ATPMos, registering a transaction overwrites
the previously held binding, and registering the null transaction for a binding, removes
that binding from the system.

Note that the above implies that KALA does not provide support for detecting
accidental overwriting of a name. If two different transactions unintentionally register
themselves under the same name, this error will not be detected and therefore not
be reported. We have decided to omit such a feature, as it is not essential to this
dissertation. Instead we consider this as future work, and we discuss this in 12.3.

The name and alias statements can be used within the blocks of declarations
of the begin, commit and abort statements, and also in the top-level block of KALA
statements for a method. The top-level statements are executed before the transaction
begins, and the result of alias lookups are visible within the the blocks of declarations
for the begin, commit and abort statements. name and alias within begin, commit
and abort is performed at that point in the life-cycle of the transaction, and the results
of alias lookups are only visible at that specific time.

1The contents of both the aliases and of the result of the self keyword are of type Integer

150

8.1. KALA: THE LANGUAGE

Note that the run-time execution sequence of name lookup and registration is
identical to the static sequence of alias and name statements in the KALA program,
as within each of these statements references can be made to the results of previous
statements.

As an example of dynamic naming, we can expand the code above to let the child
method obtain a reference to the father method. Suppose that fatherMethod directly
or indirectly calls childMethod. This has as a consequence that both are running in
the same thread and that therefore the Java expression Thread.currentThread()
will evaluate to the same value. If we let the fatherMethod register itself under
Thread.currentThread(), the childMethod can obtain a reference to the father using
the same expression, as implemented below:.

1 org.tree.RootNode.fatherMethod(int){
2 name(self <Thread.currentThread()>);
3 }
4 org.tree.ChildNode.childMethod(float, String){
5 alias(father <Thread.currentThread()>);
6 }

Group Support

Dependencies, views and termination, which we will discuss in detail in 8.1.2 and
8.1.3, can also take as arguments a group of transactions, the members of which are
determined at run-time. This is required as some operations need to affect a group of
transactions, the number of which can not be determined statically. As an example of
such a group, we consider the children of a parent transaction in Nested Transactions.
The population of this group can depend on the application logic, and is therefore,
in general, impossible to determine statically. Group support is realized by using the
group service provided by ATPMos, analogous to the support for dynamic names, as
can be seen here.

A transaction can be added to a named group, through the groupAdd statement,
which takes the same arguments as an name statement: as first argument the trans-
action to be registered is given, and second the name of the group is given, as a
Java expression between angular brackets. References to groups are obtained though
the groupAlias statement, which is analogous to the alias statement above, but
now looks up the contents of groups that have been previously registered using the
groupName statement.

The grouping statements, which we defined above, can be used at begin, commit
and abort time, and in the top-level block of KALA statements of a method, which
is as in the use of run-time names. The scope for groupAlias statement is the same

151

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

as the scope for the alias statement: all declarations if performed at the top level, or
the declarations of a significant event if performed at a significant event.

For example, as suggested above, we can let child transactions add themselves to
a group, the name of which starts with the identifier of the parent transaction. We
perform this before the child transaction starts using the KALA code below.

1 org.tree.RootNode.fatherMethod(int){
2 name(self <Thread.currentThread()>);
3 }
4 org.tree.ChildNode.childMethod(float, String){
5 alias(father <Thread.currentThread()>);
6 groupAdd(self <""+father+"Children">);
7 }

This concludes our discussion of naming and grouping in KALA, where we have
shown how a static name identifies the method to which a block of declarations applies,
and how dynamic naming and groups, as supplied by ATPMos, are available in KALA.
Using this, we can now declare dependencies, views and delegation between different
transactions, which we see next.

8.1.2 Dependencies, Views and Delegation

In the ACTA formal model, the transactional properties of a method consist of the
constructs of dependencies, view and delegation. These constructs are also present in
KALA and can be set at begin, commit and abort time, as we have discussed in 6.3.
To specify these constructs, they are stated in either a begin, commit or abort block,
indicated by the respective keyword before a block embedded within the transactional
declaration. We now present the dependency, view and delegation statements, and will
subsequently show an example of their use.

A dependency is added, similar to the ACTA and ATPMos form of specifying
dependencies, by a triplet of the source, the type of dependency, and the target of the
dependency. Source and target are transaction identifiers, looked up using the alias
statement, or group identifiers looked up using the groupAlias statement, or are the
self keyword. The type of dependency is identical to the name used within ATPMos.
A dependency statement consists of the keyword dep, followed by a comma-separated
list of such triplets, enclosed between parenthesis.

The keyword view takes a comma-separated list of such tuples declaring source and
destination, enclosed between parenthesis, and adds these views from source transac-
tion to the destination. This destination of a view may be either a transaction, or
a group, as above. Views are removed by prepending the destination identifier with

152

8.1. KALA: THE LANGUAGE

the minus sign ‘-’. Delegation is specified by the del keyword, which takes a tuple
of source and target transaction identifiers in its’ specification, as in the dependency
specification. Delegation with a group as source or target is not allowed.

As an example of the use of dependencies, view and delegation, we can extend
the example above into a partial implementation of nested transactions, based on the
ACTA specification we discussed in 6.2.4. This is achieved by adding the required de-
pendencies, view and delegation operations at begin and commit time of childMethod,
as can be seen below. The dependency in line 8 ensures that the parent does not com-
mit before the child has ended. The view set in line 9 allows the child to view the
intermediate results of the parent, and delegation in line 10 ensures that the work of
the child is committed to the parent.

1 org.tree.RootNode.fatherMethod(int){
2 name(self <Thread.currentThread()>);
3 }
4 org.tree.ChildNode.childMethod(float, String){
5 alias(parent <Thread.currentThread()>);
6 groupAdd(self <""+parent+"Children">);
7 begin {
8 dep(parent cd self);
9 view(self parent); }

10 commit { del(self parent); }
11 }

We have now presented how dependencies, views and delegation are set at begin,
commit or abort time though the use of their respective statements within a begin,
commit or abort block, and adapted the example of above to yield an implementation
of nested transaction. The next KALA construct, for termination of transactions,
will allow us to complete the above code, yielding a better implementation of nested
transactions.

8.1.3 Termination of Transactions

As we have said above, an important feature of KALA is that it automates depen-
dency checking between transactions. A consequence of this is that all transactions
are automatically added to the dependency model of ATPMos before they begin ex-
ecuting. A transaction is, however, not automatically removed from the dependency
model when it ends. This is because other, running transactions may have placed de-
pendencies on this transaction that need to remain in place even after the transaction
has ended. The same holds for a global name or group membership of a transaction:

153

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

these are not automatically removed from the naming service when the transaction
ends, as other transactions may still need to obtain a reference to this transaction.
The transaction programmer must therefore manually declare that these references
are no longer needed, as we have seen in 7.3.1. In summary, at given times in the
execution of an advanced transaction, some cleanup work has to be performed.

Such cleanup consists of ending secondary transactions, removing unneeded trans-
action models from the dependency sub-system and erasing remaining names from the
system. Recall that in 6.3 we noted that such transaction termination is not present
in ACTA, as this formal model allows us to presuppose an infinite amount of memory.
In KALA, however, we must deal with a finite amount of computing resources, such
as memory, and therefore such clean-up work is required. This clean-up is performed
in begin, commit or abort blocks through the terminate and groupTerminate state-
ments, which we discuss here.

The terminate statement takes as argument an identifier of a transaction, either
the result of an alias statement, or the self keyword, and removes that transaction
from the system. First all naming entries to that transaction are removed and the
transaction is removed from all the groups it is contained in, second the transaction is
removed from the dependency model, and third, if the transaction has not committed
or aborted, the transaction is forced to abort.

Similar to terminate is groupTerminate, which takes as argument a Java expres-
sion as in the alias, statement. This terminates all transactions in the given group,
as above, and removes that group from the system. A global name to a group, reg-
istered using groupName, can be removed from the system, without the group itself
being removed, through the groupNameTerminate statement. This statement takes as
argument a Java expression, as above.

We can now complete the code of the nested transactions example, by adding
groupTerminate and terminate statements to the root of the nested transaction
hierarchy, at commit and abort time. These ensure that upon commit of the parent,
the children are cleaned up, and that if the parent aborts, children are also immediately
aborted.

1 org.tree.RootNode.fatherMethod(int){
2 name(self <Thread.currentThread()>);
3 commit {
4 groupTerminate(<""+self+"Children">);
5 terminate(self); }
6 abort {
7 groupTerminate(<""+self+"Children">);
8 terminate(self); }
9 }

154

8.1. KALA: THE LANGUAGE

10 org.tree.ChildNode.childMethod(float, String){
11 alias(parent <Thread.currentThread()>);
12 groupAdd(self <""+parent+"Children">);
13 begin {
14 dep(parent cd self);
15 view(self parent); }
16 commit { del(self parent); }
17 }

This concludes our discussion on termination of transactions by the terminate
and groupTerminate statements, which are ‘clean-up’ statements to be performed
when a (part of) an advanced transaction has ended. Using these statements, we have
finished the KALA code for the nested transaction example, giving us our first KALA
program.

8.1.4 Automatically Starting Secondary Transactions

Separately from the main control flow of the application, some ATMS require what
we call secondary transactions to execute. Instead of being part of the control flow,
these secondary transactions run automatically, in a different thread. Dependencies
are used to restrict when these transactions may begin, i.e. they only begin when
some dependencies are satisfied. These dependencies have been placed on the sec-
ondary transaction before it starts executing. This is performed either in the begin
phase of the secondary transaction itself, or by other transactions before the secondary
transaction has begun. An example of such secondary transactions are the compen-
sating transactions in sagas, which we have implemented as part of the bank transfer
operation in 7.3.1. In this example we have seen how these secondary transactions are
spawned in a different thread, and how dependencies are placed on them to ensure
that they execute in the correct sequence at rollback time.

In KALA, secondary transactions can be automatically spawned by using the
autostart statement in the main block of declarations for a method. The autostart
statement takes four parameters:

• The first parameter is the signature of a method, and refers to the method of
the same object that implements the secondary transaction.

• The second parameter is a comma-separated list of Java expressions, enclosed
between angular brackets, which lists the actual parameters for executing the
indicated method.

155

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

• The third, optional, parameter is a comma-separated list of local variable names,
enclosed between parenthesis, listing variables to be shared, which will be de-
tailed later.

• The fourth, optional, parameter is a block of KALA code, declaring the trans-
actional properties for that method.

The secondary transaction will spawn, in a separate thread, after the begin de-
pendencies of the enclosing method declaration have been set. This ordering allows
dependencies to be placed on the secondary transaction, ensuring it runs when re-
quired. Spawning of the secondary transaction consists of performing a method call,
with as receiver the same object as the caller, to the method indicated in the first
parameter of the autostart, and as arguments the Java expressions given as second
parameter.

Considering the implementation for secondary transactions we can not escape the
fact that in some cases extra Java code must be added to the class of the method
declaring the secondary transaction. As the secondary transaction performs work con-
ceptually belonging to the application logic, this work belongs to the core concern of
the application. Therefore, the implementation should not be made in the transaction
aspect, i.e. in KALA, but in the Java code of the application. This is consistent with
the discussion in 3.2 where we presented the observation that the design of the ap-
plication has to take transaction management into account. For example, consider a
compensating transaction. This secondary transaction performs an ‘undo’ action re-
quired by the ATMS, which is not necessarily already present in the base application.
If this ‘undo’ action is not present, then this extra method must be implemented by
the application programmer.

The method for the secondary transaction indicated in the autostart must be
implemented on the same class as the transactional method. This is because if it has
been implemented on another class, we can not automatically deduce for what instance
of that class the method must be invoked. In these cases, the application programmer
will have to write a method on the class containing the transactional method, which
invokes the method for the secondary transaction using the correct instance.

Because the secondary transaction is spawned in a separate thread, before the
containing method runs, the arguments for the secondary transaction can not include
local variables of the containing method. However, as we have seen in 7.3.1, in some
case, we need access to these variables. This is addressed by the third parameter of
the autostart statement, which declares what local variables can be passed through
to the Java expressions given as second parameter, to be shared between the two
methods. Any Java expression in the second parameter, referring to such a shared
variable is restricted to be the variable name. Both the secondary transaction and the

156

8.1. KALA: THE LANGUAGE

enclosing transaction will now transparently operate on the same variable, ensuring
the state remains shared. Concurrent access to that shared variable can be avoided by
using dependencies. As an example consider the Sagas example which we discussed in
7.3.1, where the secondary transaction is restricted to begin only after the containing
method has ended. This allows the contents of the shared variable to be unknown
when the secondary transaction is spawned, and it will be bound by the enclosing
transaction when the local variable is assigned.

Since the secondary transaction is itself a transaction, the autostart statement
also allows for its properties to be defined, through the fourth parameter. This param-
eter is a block of transaction declarations, where all KALA statements, and the begin,
commit and abort blocks can be used. Note that these declarations do not conflict
with any other KALA declarations given for that method, i.e. the same method can
be used in different autostart statements with different properties, and can also be
given transactional properties outside of an autostart. Also, within an autostart,
the scoping of names is respected, i.e. the result of alias lookups in the top-level
block, made before the autostart, are accessible in the autostart block.

As an example, we do not reuse the nested transactions example of above, as no
secondary transactions are used in this ATMS. Instead, we show the KALA definition
of the second step of the saga operation, the Transfer method, which we discussed
in 7.3.1. We do not fully discuss this example code, as we return to it in 9.5.

As an example of the use of autostart, we show the KALA code for the second
step of the saga example, which we talked about in 7.3.1 and the Java code for which is
B.5.4. Here, we only highlight the elements of this code important for this discussion.
The code below is the KALA specification for the printReceipt method. This code,
in line five, specifies a compensating transaction (i.e. a secondary transaction), which
is implemented by the printTransferCancel method. Line six gives the actual pa-
rameters used to call this method. In line seven the num receipt instance variable of
printReceipt is a shared variable, which allows it to be passed as an actual parame-
ter in line six. The compensating transaction itself also has a number of transactional
properties set, which is performed in lines seven through ten.

1 Cashier.printReceipt(Account, Account, int){
2 alias (Saga <Thread.currentThread()>);
3 alias (CompPrev <""+Saga+"Comp">);
4 group (self <""+Saga+"Step">);
5 autostart (Cashier.printTransferCancel(Account,Account,int,int)
6 <source, dest, amount, num_receipt>
7 (num_receipt) {
8 name(self <""+Saga+"Comp">);
9 groupAdd(self <""+Saga+"Comp">);

157

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

10 });
11 begin {
12 alias (Comp <""+Saga+"Comp">);
13 dep(Saga ad self, self wd Saga, Comp bcd self);
14 }
15 commit {
16 alias (Comp <""+Saga+"Comp">);
17 dep(CompPrev wcd Comp, Comp cmd Saga, Comp bad Saga);
18 }
19 }

In this section we have discussed the autostart statement, which allows secondary
transactions to be spawned independently from the main program flow. Using the
autostart statement, such secondary transactions, i.e. method calls, are executed
automatically when their dependencies are satisfied. In the autostart statement,
specific transactional properties for that method, in the context of that autostart
can be specified, and local variables from the enclosing method can be shared with
the method of the autostart.

8.1.5 Conclusion

In this section we have introduced the aspect language KALA, which allows for the
declarative specification of the transactional properties of a method, and its related
secondary transactions. The resulting transactional methods, when woven, will use
ATPMos as TP Monitor.

These transactional properties mainly consist of the ACTA concepts of depen-
dencies, view and delegation, which we defined in 6.1 and can be declared at begin,
commit and abort time. To set these properties, references to transactions can be re-
trieved from the ATPMos naming service, providing they have registered themselves
previously, which can also be performed in KALA declarations.

When transactions end, their associated datastructures within ATPMos are not
automatically deleted, to allow other, running transactions to still refer to them, for
example when verifying a dependency. Therefore, manual cleanup of transactions,
and of transaction groups is required, and KALA also allows for such cleanup to be
specified at begin, commit and abort time.

Lastly, to enable secondary transactions to run outside of the main control flow
of the application, these can be automatically started from within KALA code for
a method. These declarations specify a method, to be called in a separate thread,
its actual parameters, optionally what local variables from the enclosing method are
shared, and optionally the transactional parameters for that method.

158

8.2. AN ASPECT WEAVER FOR KALA

Having presented the KALA language, we will now give an overview of the aspect
weaver we have built, which weaves transaction demarcation code into the base-level
code, producing transactional methods that issue calls to ATPMos to perform trans-
action management.

8.2 An Aspect Weaver for KALA

An aspect language itself has no use if programs in this language can not be wo-
ven into the base code by an aspect weaver. Therefore, along with KALA, we have
constructed an aspect weaver for KALA programs. The weaver performs source-code
modifications of the base Java code, adding transaction demarcation code that uses
ATPMos, according to the specifications given by the KALA code. In this section we
will give an overview of what modifications are made to the source code without giving
implementation details of our weaver, as they are not important for this discussion
and have already been discussed in [FM04, FG04]. We conclude the discussion by
stating why we had to build our own weaver, and could not reuse an existing weaver
to perform this work for us.

We discuss our weaver in four parts, for clarity: First we outline how methods are
made transactional recalling the skeleton demarcation code we mentioned in 4.2, then
we will talk about the begin, commit and abort blocks, which is followed by naming
and groups, and we end with autostarts. Note that this does not imply that the weaver
performs four passes in this sequence on the source code, this structuring is only for
clarity of the discussion. In each part, we will return to the conceptual subdivision
of the transaction demarcation code in six phases, as we have seen in 7.3.2, because
the resulting code bears much resemblance to the code we presented in that section.
Recall that these phases are as follows: first the preliminaries, then the begin phase,
followed by the running phase, then either the commit phase or the rollback phase
takes place, and the code ends with the cleanup phase. We will detail the source-code
modifications made by the weaver to each phase, or skip the phase if no modifications
are made.

8.2.1 Making a Method Transactional

The first task of the weaver is to make the method transactional, which in fact boils
down to creating the skeleton demarcation code we introduced in 4.2. This is performed
by inserting demarcation code for beginning and ending the transaction, modifying
the original method’s code, such that accesses to entity beans are made transactional,
and adding the code that performs dependency verification. In this skeleton structure
the three following tasks will add their modifications.

159

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

A flow chart illustrating this skeleton code, outlining the different phases, the
sequence of operations in each phase, and the places to be filled in for each phase, is
given in figure 8.1, which is essentially the flow chart in figure 4.1 (discussed in 4.2).
The implementation of the skeleton in pseudo-Java is given in figure 8.2.

Conceptually, the important elements of the skeleton are the calls to ATPMos to
register the transaction, begin, commit and abort the transaction, which surround the
code of the original method. The remainder of the skeleton code consists of supporting
logic which implements the decision points of the flow chart in figure 8.1. This logic is
in place to ensure that the transaction aborts if required and that dependencies are
enforced.

The skeleton structure, which is filled in by the following phases, is created by
taking the original body of the method, using it as the body of a try statement, and
creating a new body for the method with as sole statement the try statement just
mentioned. In that try statement, a single catch clause is present, for transactional
exceptions, but with an empty body. In other words, the new body of the method con-
sists of the old body, surrounded by a try-catch. To this code, further modifications
are performed, which we discuss phase per phase.

The preliminaries start with suffixing the signature of the method with an extra
throws declaration, as the method may now throw an exception due to transaction
management. We explicitly declare an exception to be thrown by this method, as
callers to the method have to include code that recovers from a transaction rollback to
ensure correct application behavior for these cases. Explicitly declaring this exception
(i.e. not having it a subclass of RuntimeException), allows the compiler to verify
this when it is performing type checking, and will cause compilation to abort if this
exception is not caught.

Next in the preliminaries is the body of the method, where statements are inserted
at the beginning to obtain the transaction identifier, and to register the transaction
to the dependency model of KALA.

In the beginning phase, the mayBegin method is called to establish if the trans-
action may start and if a forcing indication is returned, it is kept as an instance
variable for later use. If no forcing is returned, a call to ATPMos is made to begin the
transaction.

The running phase consists of the code within the try block, i.e. the previous
body of the method. This code is prefixed by a check on the forcing indication. If
the transaction must immediately abort, an exception is thrown, to be caught in the
catch block, as we will see further on. If the transaction must immediately commit, the
original body of the method is skipped. If the transaction may proceed normally, the
original body of the method is executed, with some modifications. These modifications
boil down to the use of wrappers, as we have seen in 7.2.3, with all of the wrappers
automatically generated by the weaver.

160

8.2. AN ASPECT WEAVER FOR KALA

Get identifier

Register in dep

mechanism

May Begin?

Original method

May

Commit?

Begin Tx

Commit Tx

End of

method

Beginning of

method

May Abort?

Tx

Exception

Abort Tx

Indicate aborted

No

Preliminaries

Begin

Running

Commit Abort

Must Abort

Yes

No

Yes

No

Yes

Yes

Must Commit

Figure 8.1: Flow chart of woven code skeleton, to be filled in by the following tasks

161

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

Original method code

+Wrappers

+Containers

try {

 if(must abort)

 throw TxException

 if(!must commit)

 mayCommit?

 if(must abort)

 throw TxException

 commit

}

Copy of

commit code

catch(TxException ex){

 mayAbort?

 if(must commit)

 else

 abort

 re-throw ex

}

{

 mayBegin?

 if(no forcing)

 begin

}

get identifier

register in dep mechanism

P
r
e
l
i
m
i
n
a
r
i
e
s

B
e
g
i
n

R
u
n
n
i
n
g

C
o
m
m
i
t

A
b
o
r
t

Figure 8.2: Outline of structure of woven code skeleton

162

8.2. AN ASPECT WEAVER FOR KALA

This brings us to the commit phase, located at the end of the try block. A call to
mayCommit is made, and if a forcing indicating to abort is returned, an exception is
thrown, as above. The last statement of the try block is a call to ATPMos to commit
the transaction.

The abort phase is located in the catch clause of the try statement. It starts with
a call to mayAbort, and if a forcing indicating to commit is returned, the transaction
is committed, as above. If no such forcing is returned, a call is made to ATPMos to
abort the transaction and the exception is re-thrown to inform the caller.

This ends the modifications made to the code to ensure transactional access to
the data, which resulted in a phased structure, shown in figure 8.2, in which the three
following tasks will add their modifications. We discuss the first task: treating the
begin, commit and abort blocks, next.

8.2.2 The begin, commit and abort blocks

The begin, commit and abort blocks of KALA declarations state dependencies, views,
delegation, and termination to be set and performed at begin, commit and abort
time. The code skeleton discussed previously is therefore filled in with code setting
dependencies, views and performing delegation. A flow chart depicting the result of
this operation is given in figure 8.3.

In the beginning phase, dependencies are inserted before the mayBegin call, This
is because these may contain dependencies that influence the beginning of the trans-
action, which are verified by the mayBegin call. After the mayBegin call, views are set
and delegation is performed. Finally, after the call to ATPMos to actually begin the
transaction termination is performed through the appropriate calls to ATPMos.

For the commit phase, before the call to ATPMos to commit the transaction, code
is inserted to add dependencies, set views, and perform delegation. After the call to
commit the transaction, code is added to perform termination. Furthermore, the same
manipulations are done in the abort phase, around the call to commit the transaction
as a result of a forcing indication. This is because this is a duplicate location in the
code for the commit phase.

In the abort phase, similar code manipulations as for the commit phase take place.
Before the call to ATPMos to abort the transaction, code is inserted to add depen-
dencies, set views, and perform delegation. After the call to abort the transaction,
code is added to perform termination of transactions and groups.

8.2.3 Naming and Groups

Naming and groups are used to obtain references to transactions or groups of trans-
actions that are used in the begin, commit and abort blocks, as arguments to de-

163

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

Get identifier

Register in dep

mechanism

May Begin?

Original method

May

Commit?

Begin Tx

Commit Tx

End of

method

Beginning of

method

May Abort?

Tx

Exception

Abort Tx

Indicate aborted

No

Preliminaries

Begin

Running

Commit Abort

Must Abort

Yes

No

Yes

No

Yes

Yes

Must Commit

Dependencies

Views,

Delegation

Dependencies,

Views,

Delegation

Dependencies,

Views,

Delegation

Terminates

Terminates Terminates

Figure 8.3: Flow chart of woven code skeleton, with dependencies, views, delegation
and terminate (shown in bold) filled in.

164

8.2. AN ASPECT WEAVER FOR KALA

pendencies, views, delegation and termination statements. Figure 8.4 shows the flow
chart of the woven code, with naming and groups filled in.

Names and groups that are used outside of the begin, commit and abort blocks
lead to code insertion at the end of the preliminaries phase. The result of alias
or groupAlias lookups are bound to instance variables with the name given in the
alias. These are therefore accessible in the begin, commit and abort blocks, and in
any subsequent name statements, as the ordering of naming and grouping statements
in the KALA program is respected. name statements are translated to a call to the
naming service of ATPMos, with the given arguments, as are groupAdd and groupName
statements.

Considering the begin, commit and abort blocks, naming and grouping are per-
formed in the same fashion, at the beginning of the code for each block. Note that,
as above, this implies that naming and groups for the commit block are duplicated in
the abort phase.

8.2.4 Autostarts

Autostarts enable the use of secondary transactions, by calling the respective methods
in a separate thread, implementing what we have seen in 7.3.1. Adding autostarts
completes the code skeleton by modifications to the preliminaries phase, the beginning
phase and the running phase. A flow chart of the final woven code is given in figure
8.5.

To implement sharing of variables through a container, this container is declared
as an instance variable in the beginning of the preliminaries phase. At the end of the
preliminaries phase, an anonymous inner class is created, in the body of which is a
copy of the referenced method, where references to shared variables are modified so
they make use of the container. Furthermore, this method code is then subject to
weaver manipulations as declared by the KALA statements in the autostart block, i.e.
the weaver recursively works on this method code.

In the beginning phase, between placing of dependencies and calling the mayBegin
method on KALA, a new instance of this class is created and run in a separate
thread, with as argument the parameters given in the autostart, passing a container
if so directed. This effectively spawns the secondary transaction in a separate thread.
In the running phase, all references to shared variables are modified so they use the
container, implementing the shared variable.

This completes the description of the work performed by our aspect weaver, ren-
dering a method transactional by adding demarcation code to the method according
to the KALA specification for this method. As we have seen, this is quite intricate
work, which raises the question of why we did not reuse an existing aspect weaver to
perform this work for us, and we address this next.

165

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

Get identifier

Register in dep

mechanism

May Begin?

Original method

May

Commit?

Begin Tx

Commit Tx

End of

method

Beginning of

method

May Abort?

Tx

Exception

Naming &

Groups

Abort Tx

Indicate aborted

No

Preliminaries

Begin

Running

Commit Abort

Must Abort

Yes

No

Yes

No

Yes

Yes

Must Commit

Dependencies

Views,

Delegation

Dependencies,

Views,

Delegation

Dependencies,

Views,

Delegation

Naming &

Groups

Naming &

Groups

Naming &

Groups

Terminates

Terminates Terminates

Figure 8.4: Flow chart of woven code skeleton, with naming and groups (shown in
bold) filled in.

166

8.2. AN ASPECT WEAVER FOR KALA

Get identifier

Register in dep

mechanism

May Begin?

Naming &

Groups
Autostarts

Naming &

Groups
Spawn AutostartsDependencies

Original method

May

Commit?

Views,

Delegation
Begin TxTerminates

Naming &

Groups

Dependencies,

Views,

Delegation

Commit Tx Terminates

End of

method

Beginning of

method

May Abort?

Tx

Exception

Naming &

Groups

Dependencies,

Views,

Delegation

Abort Tx

TerminatesIndicate aborted

No

Preliminaries

Begin

Running

Commit Abort

Must Abort

Yes

No

Yes

No

Yes

Yes

Must Commit

Figure 8.5: Flow chart of final woven code.

167

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

8.2.5 Why a New Weaver?

The AOP community has created several aspect languages and associated weavers, so
instead of creating our own aspect weaver it would seem to be possible to reuse one of
these tools to perform the weaving. We could generate aspect code for these weavers,
translating the KALA specification to an equivalent specification in the language of
the weaver used, and let this weaver perform the intricate task of ensuring transac-
tion demarcation is performed correctly. The aspect code we generate would be an
intermediate representation, never seen by an application or ATMS programmer, and
therefore if this code would be tangled aspect code, this is not an issue.

We have investigated the aspect languages AspectJ [Asp05] and AspectWerkz
[Bon04], which are arguably the most used and best known aspect languages at the
moment, and the less prominent, but still well-known JAsCo [SVJ03] language and
JBoss AOP framework [BFB+], to investigate if we could use one of these as a weaver
for translated KALA specifications. We found, however, that none of the weavers
provided us with adequate technical features to realize this. In other words, we cannot
translate KALA code to equivalent aspect code for these weavers, e.g. equivalent
AspectJ code. We enumerate the features we miss in these languages here:

Pointcuts for Bean Getters and Setters As we have introduced in 7.1, we per-
form concurrency management on reading and writing data encapsulated within
Entity JavaBeans by prefixing calls to getters and setters of these beans. None
of the above tools and languages, however, allow for an intentional pointcut
specification defining the getters and setters of a class or interface. Instead, all
getters and setters must be explicitly enumerated. Although this is not an issue
restricting the possibility of using one of the above tools for this work, we find
it a remarkable oversight, as an intentional specification is clearly preferable.

True Exception Throwing The above weavers do not allow the signature of a
method to be modified, and this has an impact on exception throwing. If as-
pect code wishes to throw an exception, this exception must be a subclass of
RuntimeException, as these exceptions do not need to be explicitly declared in
the method signature. The sole exception to this is JBoss AOP, which does al-
low all kinds of exceptions to be thrown, however without altering the method’s
signature. A critical issue with throwing runtime exceptions is that type check-
ing for these exceptions is not performed by the compiler. This means that the
compiler does not verify if the thrown exceptions are caught, as is the case for all
other exceptions, and therefore that the program halts if one of these exceptions
is thrown but not caught. Note that this drawback, specifically for AspectJ has
already been criticized by Kienzle and Gerraoui [KG02], which we discussed in
3.2. As for Kienzle and Gerraoui, this is a critical issue for our research because

168

8.2. AN ASPECT WEAVER FOR KALA

we throw an exception if a transaction aborts, in order to inform the caller of
this abort. With type checking for exceptions turned off, it is possible for the
program to stop working, if this exception is not caught. If we are able to use
exceptions that are not a subclass of RuntimeException, this issue would be
detected at compile time, and compilation would fail.

Autostarts An autostart runs a given method in a separate thread, and most impor-
tantly, weaves demarcation code specific to that execution in that method only.
We are unable to define a pointcut specification that expresses the above. Note
that using cflow-like pointcuts is not applicable here, as the called method runs
in a different thread and therefore lies in a separate control flow which we have
no access to.

Method Local Variable Access For sharing variable access through a container,
we need to be able to define a pointcut on all reads and writes of this variable
within the method. None of the above tools allow this. An argument could be
made that this breaks the encapsulation of the method by exposing too much
of the internal details of the method. However, we note that the same pointcut
for the parameters of the method is also impossible, which arguably would not
break this encapsulation. In either case, we need to intercept reads and writes
to these variables to redirect them to the container, and this is impossible with
the above tools.

Method Signature Change In addition to being able to declare extra classes of
exceptions thrown by the method, we also need to be able to change the signature
of the method. One example is when sharing variable access through a container,
the type of the parameter being contained needs to change to the type of the
container.

Exception Information Tunneling A number of the above weavers allow aspect
code to fulfill the role of an exception handler, i.e. to run if the given method
throws the stated exception. This exception handler, however can only access the
parameters of the method, and has no access to local variables of the method, as
it is argued that this would break encapsulation of the method. But an exception
handler can require more information than just the parameters of the method,
as is the case for our work. In these cases, it should be possible to allow for some
kind of information tunneling, whereby the exception handler is able to break
through the encapsulation barrier to inspect the internal state of the method,
so it can perform the required corrective action.

Given all the above issues with a number of existing and well-known aspect
weavers, we have instead opted to create our own aspect weaver, which does pro-

169

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

vide support for all the above, and allows KALA specification to be woven in the
method code.

8.2.6 A Word on Language-Independence

We wish to emphasize that although the KALA weaver performs source-code modifi-
cations on Java code, this research is also applicable to other programming languages
for the base level. Conceptually, the design for the KALA weaver can be used for other
object-oriented or procedural programming languages, if the following three elements
are taken into account:

Method Signatures in KALA are currently given as Java signatures. These need
to be changed to reflect the method signatures of the base language.

Exception Handling is used for transaction rollback. To rollback the transaction,
an exception is thrown for which the exception handler is responsible for rollback.
The base language will have to provide this level of exception handling support.

Autostarts are implemented through Java multi-threading and inner classes. This
implies that first the base language needs to provide multi-threading support.
Second, the Java scoping for inner classes must be emulated: an instance of an
inner class can see all the local variables of the declaring method2. This allows
the body of the autostart to see the aliases of the declaring transaction. The same
scoping can be achieved by explicitly passing all the aliases to the autostart as
extra parameters when spawning the autostart.

8.2.7 Conclusion

In this section we have talked about our aspect weaver, giving an overview of how the
Java code of the application is modified to include transaction demarcation code, an
outline of which is given in figure 8.6.

We detailed the working of the weaver by conceptually dividing up the work in
four phases. First we outlined how making the method transactional creates a code
skeleton, in which the phases add their code. For the second phase we detailed adding
dependency, view, delegation and termination statements to this skeleton. The third
phase consisted of adding naming and groups. The fourth and last phase completed
the skeleton with code for autostarts. We ended this discussion with an enumeration
giving the reasons why we had to create our own weaver for KALA, and by discussing
the language-independence of the KALA weaver.

2if these are declared final

170

8.2. AN ASPECT WEAVER FOR KALA

Original method code

+Wrappers

+Containers

try {

 if(must abort)

 throw TxException

 if(!must commit)

 mayCommit?

 if(must abort)

 throw TxException

 naming & groups

 dependencies,views,delegation

 commit

 terminates

}

Copy of

commit code

catch(TxException ex){

 mayAbort?

 if(must commit)

 else

 naming & groups

 dependencies,views,delegation

 abort

 terminates

 re-throw ex

}

{

 naming & groups

 dependencies

 spawn autostarts

 mayBegin?

 if(no forcing)

 views,delegation

 begin

 terminates

}

get identifier

register in dep mechanism

naming & groups (final ivars)

create autostart classes

Original autostart method code

+Wrappers +Containers

+KALA declarations

run(){

 call code above}

P
r
e
l
i
m
i
n
a
r
i
e
s

B
e
g
i
n

R
u
n
n
i
n
g

C
o
m
m
i
t

A
b
o
r
t

Figure 8.6: Outline of woven code

171

CHAPTER 8. KALA: KERNEL ASPECT LANGUAGE FOR ATMS

8.3 Conclusion

This chapter introduced KALA: a Kernel Aspect Language for ATMS. In KALA,
transactional properties of Java methods are specified separately, with these specifi-
cations highly similar to the ACTA specifications of transaction models.

KALA allows the application programmer to declare the transactional properties
of a Java method in one block of statements. This has as a first advantage that the
transaction aspect is separated from the core application logic. Furthermore, KALA
offers as an additional advantage that checking of dependencies is automated. The
programmer no longer needs to implement the code which ensures that dependen-
cies are adhered to. Also, KALA provides explicit support for declaring secondary
transactions, which significantly eases their use.

We detailed how the different ACTA constructs: dependencies, views and delega-
tion are available in KALA, and at what points in the transaction life-cycle they can
be used. We have shown how ATPMos names and groups are reified in KALA, in sup-
port of the ACTA constructs present. We also talked about termination of transactions
and groups, which automates the removal of names, groups and dependency models
in ATPMos. Lastly we introduced automatically starting of secondary transactions,
as provided by KALA.

Accompanying KALA is an aspect weaver, which weaves transactional specifica-
tions given as KALA code into the corresponding Java methods. We gave an outline of
the modifications that are made to the source code, inserting the required demarcation
code. We also detailed why we could not reuse existing, popular aspect weavers to per-
form these modifcations. Finally we briefly stated how the weaver can be implemented
for other programming languages.

Now that we have an aspect language for ATMS and its associated weaver, there
is one important feature of this language which was intentionally left undiscussed,
which is modularization of KALA specifications. As we said in the beginning of this
chapter, KALA specifications can be modular with regard to the different concerns
present in ATMS, and we discuss this feature in depth in the following chapter.

172

Chapter 9
Composing ATMS Concerns With KALA

You did something because it had always been done,
and the explanation was “but we’ve always done it this way.”

A million dead people can’t have been wrong, can they?
—Terry Pratchett, “The Fifth Elephant”

In the previous chapter, we introduced KALA, the aspect language we created for
ATMS. One of the goals of KALA is to enable a modular specification of the different
concerns of a given ATMS, as identified in 4.1. This eases the implementation of the
ATMS and allows its properties to be more easily modified. As a result, creation
and adaptation of an ATMS is facilitated, which enables an ATMS to be tailored to
better fit the transactional properties required by the application being developed.
This chapter discusses how this goal is achieved through a separate specification of
each concern of the ATMS.

KALA allows for the different concerns that compose an ATMS to be written down
separately, in multiple KALA files. When weaving KALA code, these separate speci-
fications are first composed to form one ATMS aspect, that afterwards is woven into
the source code. In this chapter we first discuss how the different concerns identified
in 4.1 can be defined separately, and introduce how composition of these different con-
cerns is performed through a straightforward merging process. As an example for the
separate specification and merging of KALA code, we use a KALA implementation of
the demarcation code in 7.3.1. After introducing separate specification and merging
of KALA code, we further illustrate this for the Nested Transactions and Relatively
Consistent Schedules ATMS. This is followed by a demonstration of how this separate
specification enables us to create a new ATMS based on Nested Transactions. We

173

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

end this chapter by considering how, once an ATMS has been created, the applica-
tion programmer will write KALA code. This leads us to the following chapter, which
introduces ATMS-Specific aspect languages.

9.1 Separate Definition of Concern Code

We wish to modularize the definition of an ATMS because we consider an ATMS
not as a fixed monolithic block, but as a composition of multiple concerns, as we
analyzed in 4.1. We want to apply the known benefits of separation of concerns, which
we discussed in 3.1.1, to the process of creating and modifying an ATMS. Applying
separation of concerns here, i.e. programming an ATMS in different modules, will
greatly ease implementation and modification of this ATMS. This is a key factor for
this dissertation, because we want to enable that a new ATMS is built, or an existing
ATMS is adapted, to fit the application being developed.

We need to use KALA to be able to modularize an ATMS because of the iden-
tification of tangled aspect code we performed in 4.3: modularization as provided by
popular solutions such as AspectJ is lacking and leads to aspect code which itself is
tangled. Instead of having to write tangled aspect code, we can now write different
KALA modules defining an ATMS, and these modules will be composed to form one
aspect definition for the ATMS, as we see later.

It is important to remark that in modularized KALA code, each module imple-
ments one concern of an ATMS with regard to the application using this ATMS. In
other words, each KALA module describes the transactional behavior of the applica-
tion solely with regard to one ATMS concern. For example, in an application using
the Sagas ATMS, the KALA module for rollbacks will describe the behavior of that
application with regard to rollbacks of the saga. In general, a module of KALA code
does not implement an ATMS concern as such, but rather how the implementation
of that concern is linked to an actual application. As we show in the final part of this
chapter, this has its drawbacks, and these are addressed in the next chapter.

In this section, we show how, applied to a given application, KALA can be used to
define the different concerns of an ATMS separately. We assume here that an analysis
has first been made of the different concerns present in the ATMS being used, as we
have performed in 4.1 for a number of ATMS. The different concerns identified in
such an analysis, applied to an application, can then be written down separately in
different KALA files. We show this by taking the Sagas ATMS we analyzed in 4.1.1,
and writing KALA code for this ATMS.

As a concrete example of KALA code for the use of Sagas, we revisit here the
example we have shown in 7.3.1. Recall that this example consists of a bank trans-
fer operation, split in three steps: a transfer, a printReceipt and a logTransfer

174

9.1. SEPARATE DEFINITION OF CONCERN CODE

method, all called from a moneyTransfer method. Note that we don’t repeat the Java
code of the bank transfer operation, instead we refer to B.5.

We identified in 4.1.1 that the Sagas ATMS is comprised of two concerns: first the
management of the structure of the overall transaction, and second the management of
how rollback is performed. To have an implementation of these transactional concerns
for the bank transfer operation, we now write KALA declarations for all four methods
first for the structure concern, and second for the rollback concern.

9.1.1 Sagas: Structure

The first concern identified in 4.1.1 which we implement here, is the structure of the
saga. Recall that we identified this concern as the management of the overall structure
of the saga, in which the different steps perform their work. The structure concern
codifies the subdivision of the saga into different steps, allowing each step to obtain
a reference to the top-level saga, and ensures that after the saga has ended all steps
are removed from the dependency model of ATPMos.

Note that although we subdivide the discussion of the implementation of this
concern into two parts, all the code for the structure concern is implemented in one
file, as is indicated by the continuity in line number counting.

Saga Top-level

The first KALA declarations we show are for the top-level moneyTransfer method
and are given below. This code registers itself, using the same technique we have seen
in 8.1.1, so that the different steps in the saga, shown later, can obtain a reference
to the saga. At commit and abort time, the unique identifier of this saga is used to
refer to a group name which is therefore guaranteed to be unique for this saga. In
this group, the different steps of the saga will have registered themselves. As a result,
termination of this group implies termination of all the steps of the saga, and together
with termination of the saga itself ensures proper cleanup is performed.

1 Cashier.moneyTransfer(BankAccount, BankAccount, int) {
2 name(self <Thread.currentThread()>);
3 commit { groupTerminate(<""+self+"Step">); terminate(self); }
4 abort { groupTerminate(<""+self+"Step">); terminate(self); }
5 }

Saga Steps

The code of all the steps of the saga is virtually identical, the only difference being
the identification of the method corresponding to each step. Each of these steps first

175

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

require a reference to the top-level transaction so as to, second, add itself to the group
of steps. By adding itself to the group of steps, it ensures that it will be terminated
when the saga ends, by the code either in line 3 or line 4.

6 Cashier.logTransfer(BankAccount, BankAccount, int) {
7 alias (Saga <Thread.currentThread()>);
8 groupAdd(self <""+Saga+"Step">);
9 }

10 Cashier.transfer(BankAccount, BankAccount, int) {
11 alias (Saga <Thread.currentThread()>);
12 groupAdd(self <""+Saga+"Step">);
13 }
14 Cashier.printReceipt(BankAccount, BankAccount, int) {
15 alias (Saga <Thread.currentThread()>);
16 groupAdd(self <""+Saga+"Step">);
17 }

This concludes the code for the structure concern of the sagas ATMS, applied to
the bank transfer example. This code implements the structure of the saga in different
steps, with termination of the different steps when the saga ends. The following con-
cern, rollback handling will add the handling of rollbacks of this structure, yielding
the behavior of the Sagas ATMS.

9.1.2 Sagas: Rollback Handling

The second concern identified in 4.1.1 which we implement here, is rollback handling
for the saga. Recall that in order to rollback a saga, the currently executing step is
aborted, and that all committed steps are compensated for by executing compensating
steps in the reverse sequence of step execution.

The KALA code below is an implementation of the above concern, and is defined
in a separate KALA file. Again, we subdivide the discussion of the implementation in
different parts, and the line numbers show this code all belongs to one file.

Saga Top-level

The top level of the saga registers itself, as in the structure concern, because the
different steps and compensating steps will place dependencies on the sagas, as we see
later. At commit and abort time, the group of compensating steps is aborted, similar
to what is performed in the structure concern.

1 Cashier.moneyTransfer(BankAccount, BankAccount, int) {
2 name(self <Thread.currentThread()>);

176

9.1. SEPARATE DEFINITION OF CONCERN CODE

3 commit { groupTerminate(<""+self+"Comp">); }
4 abort { groupTerminate(<""+self+"Comp">); }
5 }

Last Step

In the last step of the saga, to implement the rollback concern, a number of depen-
dencies have to be set between the step and the saga when the step begins. Note that,
as in 7.3.1 we do not discuss these dependencies in detail, but instead refer to [CR92].
To set these dependencies, in line 8, a reference to the saga has to be obtained, which
is performed in line 7.

6 Cashier.logTransfer(BankAccount, BankAccount, int) {
7 alias (Saga <Thread.currentThread()>);
8 begin { dep(Saga ad self, self wd Saga, Saga scd self); }
9 }

First Step

The first step of the saga needs to spawn a secondary transaction, to be used as com-
pensating transaction when the saga rollbacks. It achieves this by using an autostart
statement in lines 12 thru 16, which compensates a bank transfer simply by perform-
ing the inverse transfer operation. The secondary transaction registers itself under a
unique name in line 14, so that in line 18 and 21 a reference can be obtained to this
transaction to set the required dependencies. Also, the secondary transaction adds
itself to the group of compensating transactions in line 15, ensuring it is properly
terminated in line 3 or 4, when the saga ends.

10 Cashier.transfer(BankAccount, BankAccount, int) {
11 alias (Saga <Thread.currentThread()>);
12 autostart (transfer(BankAccount, BankAccount, int)
13 <dest, source, amount> {
14 name(self <""+Saga+"Comp">);
15 groupAdd(self <""+Saga+"Comp">);
16 });
17 begin {
18 alias (Comp <""+Saga+"Comp">);
19 dep(Saga ad self, self wd Saga, Comp bcd self); }
20 commit {
21 alias (Comp <""+Saga+"Comp">);

177

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

22 dep(Comp cmd Saga, Comp bad Saga); }
23 }

Second Step

The second step of the saga is highly similar to the first step of the saga, the only
differences being a different autostart, and dependencies being placed on the previous
compensating transaction. The autostart declares the compensating step for this
step, and also uses a wrapper, in line 29 to print the receipt number on the cancellation
notice. A reference to the compensating transaction of the first step of the saga is
obtained in line 26, which allows an extra dependency on this transaction to be placed
in line 38.

24 Cashier.printReceipt(BankAccount, BankAccount, int){
25 alias (Saga <Thread.currentThread()>);
26 alias (CompPrev <""+Saga+"Comp">);
27 autostart (printTransferCancel(BankAccount,BankAccount,int,int)
28 <source, dest, amount, num_receipt>
29 (num_receipt) {
30 name(self <""+Saga+"Comp">);
31 groupAdd(self <""+Saga+"Comp">);
32 });
33 begin {
34 alias (Comp <""+Saga+"Comp">);
35 dep(Saga ad self, self wd Saga, Comp bcd self); }
36 commit {
37 alias (Comp <""+Saga+"Comp">);
38 dep(CompPrev wcd Comp, Comp cmd Saga, Comp bad Saga);}
39 }

Note that an autostart, as we have discussed in 8.1.4, requires the specified
method to be defined in the same class as the method for which it is defined, we are
now required to add an implementation of the printTransferCancel method to the
Cashier class.

This completes the KALA code of the concern of rollback handling for the bank
transfer operation using the sagas ATMS. As there are no more concerns in this ATMS,
this concludes the KALA code for this example.

178

9.2. COMPOSING KALA CODE

9.1.3 Conclusion

In this section we have shown how the implementation of a chosen ATMS for a given
application is modularized using KALA code. In KALA, each module is implemented
in a separate file. As an example we have reused the bank transfer operation from
7.3.1, which uses the Sagas ATMS. We have taken the decomposition of the Sagas
ATMS, perfomed in 4.1.1, which identified two concerns, and given the KALA code
for each of these concerns.

This modularization frees us from having to write tangled aspect code, which
brings the benefits of separation of concerns to the process of defining an ATMS as
an aspect. Instead of having to write aspect code which itself is tangled with multiple
concerns, with all the impediments this entails, we now cleanly separate each concern
in a separate KALA module.

To form a complete aspect specification, however, the different KALA files for one
ATMS will have to be combined. This composition of separate KALA files to form
the full ATMS specification is shown next.

9.2 Composing KALA Code

In the previous section, we have illustrated how different concerns within one ATMS
can be written down separately, in different modules. This allows for easy modification
of the implementation of a concern, and allows other concerns to be added by adding
new modules to the implementation.

To form a complete specification of an ATMS, however, the different modules have
to be composed into one KALA program, as we discussed in 4.3. Recall that the dif-
ferent concerns within the ATMS are conceptually combined before the ATMS aspect
is woven, because it is the combination of these concerns that forms the definition of
the ATMS. The KALA weaver, therefore, is not built to weave each concern of an
ATMS separately into the base code. Instead all KALA modules are combined into
one KALA file, describing how the ATMS is used, and this full description is woven
into the base code. Although this aspect code will be tangled aspect code, this is not
an issue since this code is but an intermediate representation which is not presented to
a programmer. An ATMS programmer will solely work with the modularized ATMS
definitions, we consider the composition of modules as just one phase of the weaving
process.

The above is possible because the composition of different concerns was taken into
account when designing the KALA language. As a result, composition is a straight-
forward process which does not require any extra input from the programmer. In fact,
composing different KALA specifications in essence boils down to a simple merge, as
we show here.

179

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

Conceptually, different KALA specifications declare that different actions need
to take place at a given time in the life-cycle of a transaction: before the transaction
begins, at begin time, at commit time or at abort time. In the composed file, therefore,
for each of these moments in the life cycle all the actions defined for that point need
to be performed. In other words, for the composition, all the declarations that pertain
to one moment in the life time of the transaction have to be gathered into one block
of the resulting specification.

The sequence of statements for naming and grouping within this composition mat-
ters, however, as a name referred in a KALA statement needs to be defined in a
previous naming or grouping statement. Therefore, when composing different KALA
specifications, the partial ordering of naming and grouping statements within each
KALA file needs to be preserved in the global file.

Considering in more detail the begin, commit and abort blocks of KALA code,
we can state that the sequence of the code for setting dependencies, placing views,
performing delegation and termination, however, is irrelevant, as their sequence is
fixed in the final woven code. Therefore, when composing a number of different begin,
commit or abort blocks for the same method, their dependency, view, delegation and
terminate statements can be simply joined into one sequence which respects the partial
ordering of names and groups. The same observation holds for autostart statements,
as their sequence in the KALA code is of no importance, all autostart statements for
one method, in different modules, are placed before the begin block of the composed
KALA specification.

We can implement the above composition by a simple merge, the implementation
of which is outlined next. Given that we have a number of KALA specifications for
one method and we need to generate an output file:

1. Start the output file with the method signature suffixed with {.

2. For each specification, take the sequence of top-level declarations and add them
to the output file.

3. Write the start of a begin block to the output file.

4. For each specification take the sequence of begin declarations and add them to
the output file.

5. Write the close of the begin block, and the start of the commit block to the
output file.

6. For each specification take the sequence of commit declarations and add them
to the output file.

180

9.2. COMPOSING KALA CODE

7. Write the close of the commit block, and the start of the abort block to the
output file.

8. For each specification take the sequence of abort declarations and add them to
the output file.

9. Write the close of the abort block and the closing } to the output file.

There is one downside, however, to this simple merging, which is name clashes: it
must be avoided that different modules redefine one name. If these modules redefine
the name with the same target, as in line 2 of both modules in the sagas example above,
this is not an issue. But if different modules define the same name for a different target
this will lead to wrongly placed dependencies, views, delegation, and so on, in other
words, yielding faulty code. Conceptually, this issue can, however, be easily solved
through a renaming or a merge of names. Therefore we do not provide an outline of
such an implementation here.

The above is all which is required to compose different KALA modules into one
full program, and we show the result of such a composition next.

9.2.1 Sagas

To illustrate the composition process outlined above, we now show how the saga code
we defined in separate modules in 9.1 is integrated into one KALA program. As in
9.1, we subdivide the discussion of the saga in different steps, starting with the top
level of the saga.

Saga Top-level

The top level of the saga shows how the different commit and abort blocks are joined,
and how name resolving leads to one name statement in line 2.

1 Cashier.moneyTransfer(BankAccount, BankAccount, int) {
2 name(self <Thread.currentThread()>);
3 commit {
4 groupTerminate(<""+self+"Comp">);
5 groupTerminate(<""+self+"Step">); terminate(self); }
6 abort {
7 groupTerminate(<""+self+"Comp">);
8 groupTerminate(<""+self+"Step">); terminate(self); }
9 }

181

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

Saga Steps

The different steps of the saga illustrate name resolving for the alias statement, but
beyond that are a straightforward merge.

10 Cashier.logTransfer(BankAccount, BankAccount, int){
11 alias (Saga <Thread.currentThread()>);
12 groupAdd(self <""+Saga+"Step">);
13 begin { dep(Saga ad self, self wd Saga, Saga scd self); }
14 }
15 Cashier.transfer(BankAccount, BankAccount, int) {
16 alias (Saga <Thread.currentThread()>);
17 groupAdd(self <""+Saga+"Step">);
18 autostart (transfer(BankAccount, BankAccount, int)
19 <dest, source, amount> {
20 name(self <""+Saga+"Comp">);
21 groupAdd(self <""+Saga+"Comp">);
22 });
23 begin {
24 alias (Comp <""+Saga+"Comp">);
25 dep(Saga ad self, self wd Saga, Comp bcd self); }
26 commit {
27 alias (Comp <""+Saga+"Comp">);
28 dep(Comp cmd Saga, Comp bad Saga);}
29 }
30 Cashier.printReceipt(BankAccount, BankAccount, int){
31 alias (Saga <Thread.currentThread()>);
32 alias (CompPrev <""+Saga+"Comp">);
33 groupAdd(self <""+Saga+"Step">);
34 autostart (printTransferCancel(BankAccount,BankAccount,int,int)
35 <source, dest, amount, num_receipt>
36 (num_receipt) {
37 name(self <""+Saga+"Comp">);
38 groupAdd(self <""+Saga+"Comp">);
39 });
40 begin {
41 alias (Comp <""+Saga+"Comp">);
42 dep(Saga ad self, self wd Saga, Comp bcd self); }
43 commit {
44 alias (Comp <""+Saga+"Comp">);

182

9.3. OTHER ATMS DESCRIPTIONS

45 dep(CompPrev wcd Comp, Comp cmd Saga, Comp bad Saga); }
46 }

We have now seen how separate KALA modules are straightforwardly composed
to form a complete specification of the usage of an ATMS by a given application. We
have given an outline of the implementation of such a composition, and have show the
result of composing the example modules created in 9.1 into one KALA program. Note
that such composed KALA code is only intended as an intermediate representation,
to be woven into the base code.

This composition of KALA code, which requires no programmer intervention, en-
ables ATMS definitions to be easily modularized into different concerns. As a result,
the advantages of separation of concerns also apply when developing ATMS. Conse-
quently, in the remainder of this chapter we do not repeat such composed code, but
write KALA code in different modules.

Given the description of Sagas as two KALA modules in 9.1, and the above merge
into one KALA program, we now repeat the exercise for other ATMS, showing how
they can be implemented in KALA.

9.3 Other ATMS Descriptions

To further illustrate the implementation of an ATMS, but abstracting from the appli-
cation using this ATMS, we now show how we implemented two other ATMS: Nested
Transactions and Relatively Consistent Schedules, using KALA.

To implement both these ATMS, we repeat the process of 9.1, where an ATMS is
defined in different modules, each module corresponding to one concern of the ATMS.
Regarding the concerns present in Nested Transactions and Relatively Consistent
Schedules, we use the analysis of 4.1.2. This analysis revealed four concerns present
in both ATMS. In addition to the structure of the ATMS and handling of rollbacks,
both these ATMS also contain the concerns of view management and delegation of
operations. We therefore implement both ATMS using four different KALA modules,
one module per concern.

We do not provide example applications to which the KALA code is applied tor the
code below. This is because as we solely wish to concentrate on the implementation
of the ATMS, without considering how this ATMS is used by an application. We will
use placeholder code, which is marked like this, when referring to base-level entities,
such as method signatures. When these ATMS are used for a given application, this
placeholder code needs to be replaced by the appropriate code for that application.

We start our illustration of ATMS implementations with describing the KALA
code for Nested Transactions, and subsequently treat Relatively Consistent Schedules.

183

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

9.3.1 Nested Transactions

Nested Transactions is arguably the best-known ATMS, and we already provided an
example implementation of this ATMS in KALA, in 8.1.3. Here we provide a more
general implementation for this ATMS in KALA, based on a decomposition in con-
cerns. Recall that in 4.1.2 we established that Nested Transactions is composed out of
four different concerns: structure, handling of rollbacks, view management and dele-
gation of operations. We now write KALA code for each of these concerns separately.
We do not include the result of composing these different modules here, as it brings
no significant contribution to this discussion.

Structure

The structure of Nested Transactions is not fixed statically as in Sagas, instead of
this, at runtime a tree structure of transactions is built. Therefore there is no KALA
code that statically imposes a structure, instead each transaction that forms a part
of the tree structure is solely responsible for itself. This implies that each transaction
has to perform termination on itself, to remove its dependencies from the ATPMos
dependency model, which is performed in lines 5 and 6 of the code below.

Given such a tree structure, built at runtime, there is however one restriction to
the structure: a parent may not commit before all its children have ended. Therefore
a commit dependency needs to be placed between a parent and each of its children.
This requires that each child obtains a reference to its parent, so as to be able to
place this dependency, in line 4 of the code below. We achieve this using naming,
by first letting each transaction name itself (line 2), so that it can be referred to by
its children, and second letting each transaction obtain a reference to its parent by
performing a lookup in line 3.

The above is achieved by the following KALA code, that must be defined for all
transactional methods (recall that placeholder code is marked like this) :

1 packageName.className.methodName(parameterList) {
2 name(self <name expression>);
3 alias(parent <parent expression>);
4 begin { dep(parent cd self); }
5 commit { terminate(self); }
6 abort { terminate(self); }
7 }

184

9.3. OTHER ATMS DESCRIPTIONS

Rollback Handling

When rolling back a transaction which is a part of a tree of nested transactions we
need to ensure that if this transaction aborts, all its children have to abort also. This
is implemented first by letting each child add itself to a group associated with the
parent in line 4 of the code below, and second by letting each transaction terminate
its children when aborting, in line 6 of he code below. Having each child add itself to
the group associated with the parent, however, also implies that each parent needs to
also clean up this group when committing, which is performed in line 5.

1 packageName.className.methodName(parameterList) {
2 name(self <name expression>);
3 alias(parent <parent expression>);
4 groupAdd(self <""+ parent + "Children">);
5 commit { groupTerminate(<""+ self + "Children">); }
6 abort { groupTerminate(<""+ self + "Children">); }
7 }

Delegation

Upon commit of a child its work is delegated to the parent, which is performed in line
4 of the KALA code below. Again this requires a reference to the parent, which in
turn requires that each transaction register itself.

1 packageName.className.methodName(parameterList) {
2 name(self <name expression>);
3 alias(parent <parent expression>);
4 commit { del(self parent); }
5 }

View Management

Thirdly, in Nested Transactions, a child has a view on the intermediate results of its
parent, which is achieved by setting the view at begin time in line 4 of the code below.

1 packageName.className.methodName(parameterList) {
2 name(self <name expression>);
3 alias(parent <parent expression>);
4 begin { view(self parent); }
5 }

185

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

Conclusion

This concludes the general KALA implementation of Nested Transactions, divided
in four modules, each module treating one separate concern. We see that in each
concern the first two lines of the body are repeated. This is because each module
requires a link to the parent transaction, which is manged by these name and alias
statements. We could have chosen to define these two statements once, e.g. in the
structure concern, and use these names in the code for the other concerns. We have
however not performed this, as this tightly couples the implementation of the other
modules to the code of the structure concern. Instead, in the implementation above no
such coupling is present. The downside of this is that this does require us to repeat the
name and alias statements. However, the repetition of these statements is not an issue
while composing these modules, since name resolving can perform a straightforward
merge of these names.

Having given a KALA implementation of Nested Transactions, we now move on
to a more intricate ATMS, which is Relatively Consistent Schedules.

9.3.2 Relatively Consistent Schedules

Relatively Consistent Schedules (RCS) is an interesting case for defining KALA code,
as on the one hand this ATMS is quite intricate, and on the other hand it shows how
an ATMS can be built as the extension of another ATMS.

Indeed, as we have observed in 4.1.2, we can consider RCS as an extension of
Sagas, onto which the concern of view management and delegation have been added.
We illustrate this here by solely stating the KALA code for both these concerns, and
reusing the code for the structure concern and the rollback concern of 9.1 (of which
we suppose the concrete method names are replaced with placeholders). We only give
the KALA code for the first and last step, and the top-level method here. This is
because from the implementation of the first step the code for all subsequent steps,
except the last, is easily deduced.

Note that we observed in 4.1.2 that both the concern of view management and
delegation are required to form the RCS ATMS, as their interaction is tightly coupled.
To emphasize this tight coupling, we could chose to put the code of both these concerns
in one KALA definition, but we treat them separate here for clarity.

Delegation

Delegation in an RCS is required to ensure that the work of the RCS is not committed
to the database as a step finishes, but only committed as the RCS commits. To achieve
this, each step of the RCS will, at commit time delegate its work to the top level,
implemented in lines 7 and 12 of the code below. This requires that each step first

186

9.3. OTHER ATMS DESCRIPTIONS

obtain a reference to the top level, which is performed in lines 5 and 10. Furthermore,
as each step of the RCS requires access to the intermediate results of the previous steps,
at the beginning of the step all operations contained within the RCS are delegated to
the step, which is performed in lines 6 and 11.

1 packageName.className.methodName(parameterList) {
2 name(self <Thread.currentThread()>);
3 }
4 packageName1.className1.methodName1(parameterList1) {
5 alias (RCS <Thread.currentThread()>);
6 begin { del(RCS self); }
7 commit { del(self RCS); }
8 }
9 packageNameN.classNameN.methodNameN(parameterListN){

10 alias (RCS <Thread.currentThread()>);
11 begin { del(RCS self); }
12 commit { del(self RCS); }
13 }

View Management

If we consider the ATMS created by adding the above delegation concern to the Sagas
ATMS, we essentially return to one long-lived transaction, which runs contrary to the
goals of this ATMS. Therefore we use view management to relax isolation at given
moments, to allow other running transactions to access the intermediate data of this
RCS.

In RCS, isolation is relaxed in between the different steps of the RCS by allowing a
certain number of other transactions to interleave at those points. We can implement
this by, after a step completes, setting the view of the RCS to include a group of
transactions, as is performed in line 14 below. This implies, however, that the RCS
will still have a view that was set by the previous step, which therefore first must be
removed, and this is implemented in line 9. Note that for the first step of the RCS no
such view will have been defined, but this does not cause the program to fail. This is
because the view group to be removed will resolve to the empty group in line 8, the
removal of which simply does nothing.

1 packageName.className.methodName(parameterList) {
2 name(self <Thread.currentThread()>);
3 }
4 packageName1.className1.methodName1(parameterList1) {
5 alias (RCS <Thread.currentThread()>);

187

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

6 groupAdd (self <group exp2>);
7 begin {
8 groupAlias(preView <""+RCS+"View">);
9 view(RCS -preView); }

10 commit {
11 groupName(<view group exp2> <""+RCS+"View">);
12 groupAlias(newView <""+RCS+"View">);
13 view(RCS newView); }
14 }
15 packageNameN.classNameN.methodNameN(parameterListN){
16 alias (RCS <Thread.currentThread()>);
17 groupAdd (self <group expN>);
18 begin {
19 groupAlias(prevgroup <""+RCS+"View">);
20 view(RCS -prevgroup); }
21 }

Conclusion

Note that this specification, however, is slightly less powerful as the RCS model. In
RCS we can specify that a given transaction type TX only interleaves if also another
transaction type TY interleaves. Here we have no such control. Although this means
we do not realize a complete implementation of RCS, we consider this difference to
be negligible. In fact, we find the implementation to still be powerful enough to be
useful, and we illustrate this in 11.3.

This concludes the definition of KALA code for the RCS ATMS, which illustrates
how a new ATMS can be built by simply adding the implementation of extra concerns
to an existing ATMS. We have shown this here by adding an implementation of
delegation and view management to the Sagas code of 9.1.

Having given the definition of a number of published ATMS, we now show how we
can use KALA to define a new ATMS by creating one: Cooperating Nested Transac-
tions.

9.4 Building a New ATMS: Cooperating Nested Transactions

In this section we show how we can use KALA to define a new ATMS to fit a given
application or class of applications. The goal is to achieve an ATMS in which the
transactional properties better align with the transactional properties of the (class
of) application(s). We show this by creating a new ATMS, which we call Cooperat-
ing Nested Transactions which aims to achieve the highest possible performance for

188

9.4. BUILDING A NEW ATMS: COOPERATING NESTED TRANSACTIONS

computations that are hierarchically structured.
One of the advantages of using the multi-tiered architecture in a large-scale dis-

tributed system is the ability of this architecture to provide a faster response time
of the middle layer through load balancing. For load-balancing, we can deploy one
component of the system multiple times, on multiple servers so that the workload
is distributed over different servers. One component can also call other components
to perform sub-computations in parallel, on different servers, which will speed up its
response time.

We can use this parallelization on different servers to perform sub-computations of
a given algorithm in parallel, but we want the entire computation to be performed as a
single transaction to prevent data inconsistency. As the computation is hierarchically
structured, we can consider the sub-computations as nested sub-transactions of the
main algorithm, and distribute sub-transactions over different servers, to be performed
in parallel.

We can consider using Nested Transactions as an ATMS for this application: as
sub-computations are sub-transactions they will preserve data consistency, and can
access the data of the parent. Also, a failure in the sub-computation will not necessarily
imply that the entire computation is lost. This allows graceful recovery of errors in
the computation, without needlessly losing work.

Having sub-computations performed in parallel, however, may entail that each of
these sub-computations need to be able to access the other computations’ intermediate
results, as they are supposed to cooperate, in parallel, to achieve the overall goal.
This is not possible when using nested transactions and therefore, we have adapted
the Nested Transactions ATMS to allow sharing between different sub-transactions,
yielding a new ATMS: Cooperating Nested Transactions (CNT).

In CNT, all siblings of a parent transaction have access to each other’s intermediate
results though a view relationship. This entails, as a consequence of also viewing the
parent, that they also have access to the intermediate results of the siblings of the
parent, up to the root transaction. This, however, has an impact when aborting a
child transaction. The siblings which have seen the inconsistent data of this child and
have not committed are also considered to be inconsistent and should abort.

Note that the rollback of all siblings only applies to the sibling transactions that
run simultaneously, in parallel, with the aborting sub-transaction. Siblings that have
committed before the aborter are not aborted, and siblings that start after the abortion
need not abort. This limits the lost work in such cases to only include sibling sub-
transactions which run at the same time as the aborting sub-transactions, and not
all siblings. This is an advantage of using CNT over running the entire computation
in one transaction. If we would do this and a sub-computation aborts, automatically
all of the work of the entire computation is lost. With CNT, only the work of the
sub-computations simultaneously running, in parallel, is lost.

189

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

We have implemented CNT in KALA by taking the implementation of Nested
Transactions, reusing the structure and delegation concern and modifying the con-
cerns of view management and rollback handling. This illustrates one of the benefits
of applying separation of concerns at the level of the ATMS definition, easing modifi-
cation of an ATMS as only the code for the changing concerns needs to be considered,
as we show next.

View Management

In CNT, all children of a given transaction can see each other’s intermediate results,
as they are supposed to cooperate in parallel to achieve the overall computation. To
implement this, in the code below, views are set from this transaction to all siblings,
and the reverse, in line 6. This, however, requires each child of a transaction to add
itself to the group of children of the parent transaction, performed in line 4, and a
reference to be obtained to this group, in line 5.

Also, when a transaction ends, the group of children of this transaction has to be
removed by the system, which is performed in lines 7 and 8 of the code below.

1 packageName.className.methodName(parameterList) {
2 name(self <name expression>);
3 alias(parent <extends expression>);
4 groupAdd(self <""+parent+"Children">);
5 alias(siblings <""+parent+"Children">);
6 begin { view(self parent, self siblings, siblings self); }
7 commit { groupTerminate(<""+ self + "Children">); }
8 abort { groupTerminate(<""+ self + "Children">); }
9 }

Rollback Handling

As a consequence of allowing siblings to see each other’s intermediate results, we must
consider the consequence of a rollback of such a transaction. As the siblings have seen
the intermediate state of the aborting transaction, which is now considered erroneous,
these siblings should also abort. We cannot modify transactions which have already
committed, but we can abort all currently running siblings of the aborting transaction,
which is performed by the groupTerminate statement in line 8.

1 packageName.className.methodName(parameterList) {
2 name(self <name expression>);
3 alias(parent <parent expression>);
4 groupAdd(self <""+ parent +"Children">);

190

9.5. PROGRAMING IN KALA: THE PROBLEM STATEMENT REVISITED

5 commit { groupTerminate(<""+ self + "Children">); }
6 abort {
7 groupTerminate(<""+ self + "Children">);
8 groupTerminate(<""+ parent +"Children">); }
9 }

Conclusion

In this section we have created a new ATMS, called Cooperating Nested Transac-
tions, to better fit the transactional requirements of applications with a parallelizable
tree-structured algorithm. We performed this by adapting an existing ATMS: Nested
Transactions, to also allow viewing between all children of a given transaction.

The separation of the Nested Transactions ATMS into different modules has en-
abled us to easily perform these modifications, by only needing to change the modules
corresponding to the changed concerns. We did not need to consider he code for the
structure concern and the delegation concern. This illustrates the advantage of sepa-
ration of concerns at the level of an ATMS definition.

Having now provided different examples of KALA code, for multiple ATMS, we
now take a step back, and consider how a programmer creating a middleware appli-
cation will employ KALA to use an ATMS in the application being created.

9.5 Programing in KALA: The Problem Statement Revisited

In this chapter we have shown that KALA is well-suited for defining an ATMS by
showing the KALA implementations of existing ATMS, and by building a new ATMS
through modification of an existing ATMS. The question which remains, however, is
how an application programmer will use such a definition to employ an ATMS in the
application code, and we address this question here.

We have seen in 9.1 that to use an existing ATMS, in this case Sagas, the program-
mer has to write a set of KALA declarations, which apply to a number of methods
within the application. We have seen that, to define a saga 39 lines of KALA code
were needed, but a significant amount of this code is redundant. For example, the
code for the begin block of the second and third step are identical, and there are only
a few differences between the commit blocks of these steps. Overall, we see that in a
saga definition a lot of code is repeated. Now imagine that in the same application
multiple sagas need to be defined. This will entail writing this entire KALA code again
for each instance of a saga. As each instance of a saga will behave identically with
regard to the transactional properties, this means that, in essence, the code of 9.1
will be duplicated. The only exceptions will be the elements referring to the actual
methods and compensating methods of the saga. We already hinted at this in 9.3,

191

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

where we used placeholders which have to be filled in when applying the ATMS to an
application.

The underlying cause for this code duplication is that KALA code is too low-level
and does not abstract over the part of the application which is using this ATMS.
KALA code defines an ATMS by combining the fundamental ACTA building blocks,
and linking these combinations to a part of the application being developed. This
results in a definition of the transactional behavior of that part of the application. As
a consequence, everywhere this ATMS is used the construction and linking process is
repeated. This leads to the code duplication identified above, and it would be better if
this is avoided. Furthermore, this process implies that the application programmer is
required to know the complex technical implementation of the ATMS, because the sub-
concerns of dependencies, views and delegation still have to be treated. This requires
intricate work, registering transactions and adding them to groups when required, and
performing clean-up operations when possible.

We should avoid the need for an application programmer to write low-level code,
as this programmer, simply using an ATMS, should not be exposed to the internals of
this ATMS. Doing so, as in KALA, is not necessary as the application programmer will
not want to modify the ATMS. More importantly, this is dangerous as it needlessly
exposes the internals of the ATMS, breaking encapsulation and more easily allowing
errors to be written1.

The upside of KALA is that it is a generally applicable programming language
for declaring the transactional properties of code for an ATMS. Conceptually, we
have moved up from low-level assembly-like constructs for demarcation code in 7.3.1,
to a higher-level programming language in 9.1, but which is still general-purpose.
Therefore KALA can be used as a common base, i.e. a kernel, for other programming
languages, which further simplify specifying the transactional properties of code for a
given ATMS, trading-off generality.

Such further simplification of the usage of an ATMS is possible by using an extra
level of abstraction. We can abstract from the internals of the ATMS and instead
let the application programmer reason about the concepts present in that ATMS. To
use an ATMS, this programmer then no longer needs to construct an ATMS and link
this construction to the application being developed. Instead an existing construct is
reused that solely needs to be linked to the application.

For example, considering the saga code in 9.1, the application programmer would
no longer need to specify all the dependencies, but rather state the sequence of steps
and of compensating steps, as below. All dependencies can be deduced from this
sequence. The code below, in which the links to the application being developed is
emphasized can be translated to equivalent KALA code, which was given in 9.2.1.

1Following the simple rule that the more code is written, the higher chance for errors in that code.

192

9.6. CONCLUSION

1 Saga Cashier.moneyTransfer(BankAccount, BankAccount, int) {
2 step Cashier.transfer(BankAccount, BankAccount, int)
3 compensate transfer(BankAccount, BankAccount, int)
4 params <to, from, amount>;
5 step Cashier.printReceipt(BankAccount, BankAccount, int)
6 compensate printTransferCancel(BankAccount, BankAccount, int)
7 params <from, to, amount, num_receipt>
8 wrap(num_receipt);
9 step Cashier.logTransfer(BankAccount, BankAccount, int);

10 }

Reusing the Sagas ATMS within the same application, or for other applications
is easy given the ability to reuse the above construct. The emphasized code is simply
replaced by the methods and parameters to which the Sagas ATMS applies. This
linking process is all that is required to reuse the Sagas ATMS.

In this dissertation this extra abstraction, from general-purpose KALA code to a
definition specific for the ATMS, is made through the use of domain-specific languages.
We discuss this abstraction in the next chapter.

9.6 Conclusion

As stated in the previous chapter, one of the goals of KALA is to enable modular
specifications of ATMS. Instead of having to write tangled aspect code, in KALA it
is possible to apply separation of concerns to the process of defining an ATMS, and
to write each concern in a separate module.

We have shown in this chapter how KALA allows such modular specification by
defining each module in a separate KALA file. We illustrated this by giving KALA
code for four ATMS, where each ATMS was modularized in the different concerns of
structure, rollback handling, view management and delegation. Of these four ATMS,
three were published ATMS: Sagas, Nested Transactions and Relatively Consistent
Schedules. Of these three, the last ATMS illustrates one of the benefits of modular-
ization as it is defined by adding two modules to the first ATMS.

We also included one new ATMS: Cooperating Nested Transactions. This ATMS
was created to fit a specific class of applications: computations that are hierarchically
structured and that achieve higher performance through parallelization. The definition
of this ATMS shows how we can easily create a new ATMS by modifying a number of
modules from an existing ATMS, in this case Nested Transactions. This again shows
a benefit of modularization, i.e. applying separation of concerns when defining an
ATMS.

193

CHAPTER 9. COMPOSING ATMS CONCERNS WITH KALA

Modularity, however, requires a composition mechanism that combines the differ-
ent modules into one full specification. In this chapter we also introduced composition
of different KALA modules into one full specification, a process which requires no
extra programmer input. We have given a sketch of the composition algorithm, which
basically amounts to a straightforward merge operation with name resolving, and have
given an example result of such a merge.

We ended this chapter by considering how an application programmer, wishing
to use an existing ATMS defined in KALA, can apply this ATMS to the application
being built. We have seen that while KALA is a good programming language to build
such ATMS, the application programmer should not be exposed to this KALA code
as it is too low-level. If simply using an ATMS, and not building a new ATMS, the
application programmer wishes to abstract from the technical implementation of the
ATMS. Instead of the implementation, the concepts present in the ATMS should be
exposed to this programmer. The following chapter introduces how we enable this
through the use of domain-specific languages.

194

Chapter 10
Domain-Specific Aspect Languages for

ATMS

All language designers are arrogant. Goes with the territory . . .
— Larry Wall

The goal for this dissertation is to allow an application programmer to use an
ATMS for concurrency management in the middle tiers of a multi-tier distributed
system. In the previous chapters, we have seen how, using KALA, an ATMS can be
implemented which best fits the design of the application being built. However, as we
have seen when evaluating KALA in 9.5, the resulting KALA code is extensive, quite
complex and leads to a high level of code duplication. This makes the use of an ATMS
with KALA a difficult and error-prone task.

Consider the perspective of an average application developer who is not an expert
in ATMS, but still wishes to use an ATMS in the application. This developer does not
need to be exposed to the internal implementation concepts of the ATMS as specified
in KALA, as he will never modify such an implementation. Instead of reasoning about
dependencies, views, delegation, et cetera, this application developer will want to
reason about the concepts present in an ATMS, e.g. the concept of a compensating
transaction. In other words, the application programmer will want to use a higher
level of abstraction when using an ATMS. This makes the usage of an ATMS easier
and less error-prone.

We achieve a higher level of abstraction for an application programmer in this
chapter by using Domain-Specific languages. We first detail the general approach:

195

CHAPTER 10. DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

going from KALA code to a Domain-Specific Language for each ATMS, before intro-
ducing the different languages we created.

10.1 From KALA to Domain-Specific Aspect Languages for
ATMS

KALA, which we introduced in the previous two chapters, was created to allow for a
separate and modular specification of the usage of an ATMS in a given application.
This allows for an ATMS to be implemented which best fits the design of the applica-
tion. As KALA is a general aspect language for ATMS, it also allows for a new ATMS
to be created, if needed. Creating a new ATMS is eased by the ability to specify the
different concerns of an ATMS in different KALA modules. This allows a new ATMS
to be created by changing one module, or combining different modules to form a new
ATMS. However the general-purpose nature of KALA comes at a price, as we have
seen in 9.5. KALA code is extensive, quite complex, and can lead to a high amount of
code duplication. As a result, use of an ATMS with KALA is difficult and error-prone,
and this would better be avoided.

The reason why the KALA code is extensive and complex is because it considers
implementation details of the ATMS, instead of sticking to the concepts present in
that ATMS. For example, if an ATMS proposes to use compensating transactions for
rollback, such as Sagas (discussed in 2.3), the KALA programmer has to specify an
autostart, give that autostart a name, place multiple dependencies, and terminate
the autostart when no longer needed. KALA needs to work with these underlying
concepts since it is a general-purpose ATMS aspect language that needs to cover
multiple ATMS, but this requires a trade-off regarding ease of programming. It is
clear that it would be easier for the programmer to specify just one ATMS-related
concept: the compensating transaction, than to concern himself with four different
implementation-related concepts.

We can add an extra layer of abstraction to ease programming an ATMS, sacrificing
generality for a higher ease of use. If we drop the requirement to be able to build a new
ATMS when needed, we can shield the programmer from the implementation concepts
of an ATMS. This is because these implementation concepts are only relevant when
building an ATMS and not when simply using an existing ATMS. Programmers that
simply use an existing ATMS can work at a higher level of abstraction, using the
ATMS as a black box component. In the example above, users of the Sagas ATMS
would simply declare a compensating transaction, instead of specifying four different
implementation concepts. This raises the abstraction level of the program to the level
of the concepts present in the ATMS.

196

10.1. FROM KALA TO DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

Domain-Specific Languages

In order to be able to program the concern of advanced transaction management in
terms of the concepts present in the ATMS being used, significantly easing program-
ming, we propose to add a second layer above KALA, using Domain-Specific Lan-
guages. Domain-specific languages (DSLs) are little languages, usually declarative,
which are specifically designed to provide expressive power for a particular domain
[vDKV00]. Because the language constructs of a DSL reflect the concepts of a do-
main, they will hide non-domain-specific technical issues from the programmer. This
allows the DSL creator to fully shield the programmer from these issues, preventing
their incorrect usage. Furthermore, hiding these technical issues allows the programs
in the DSL to be as concise as possible, containing only the concepts that need to be
expressed. This results, amongst others, in higher productivity and maintainability
[vDKV00] of the application.

Because a DSL is focussed on addressing a specific problem domain, the code in
the DSL is less complex and more concise than in a general-purpose language. We can
therefore use DSLs to address the issue we identified with KALA code in 9.5, which is
that it is too low-level. By defining a DSL for an ATMS, we can expose the concepts
within the ATMS, instead of the underlying implementation concerns. Each DSL is
then focused towards one specific ATMS, making the aspect code for that ATMS as
concise and natural as possible, as it reflects the concepts of that model.

What we propose is to create a family of DSLs, each language specific to one
ATMS, i.e. a model-specific aspect language. The advanced transaction management
concern is programmed in such a DSL, and at compile time the DSL code is first
translated to KALA code, before it is woven into the base concern, as illustrated in
figure 10.1. This solution is mainly inspired from the Oz programming language and
its use of a kernel language. The Oz programming language [MMR95] is based on a
concurrent constraint kernel language, on top of which a number of languages have
been defined for multiple programming paradigms. At compile-time, code in these
languages is translated to the kernel language and this resulting code is compiled.

Contrary to using multiple KALA files for one ATMS, as in in the previous chapter,
the DSL translators for these DSLs only output one file. Conceptually these transla-
tors themselves also implement a merging mechanism, which allows them to perform
merging of names in an optimal way. As we are no longer concerned with develop-
ing new ATMS, but solely with using existing ATMS, modularity of the generated
KALA code is no longer required. Therefore, in this chapter we show KALA code
not separated in different modules, but as one, merged, file, containing tangled aspect
code.

Note that also in the different languages we define here, the sub-concerns of each
ATMS are not separated in different modules of the DSL. None of the DSLs provide for

197

CHAPTER 10. DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

Aspect

Weaver
Translator

1 2

Nested Saga RCS

KALA

Java

.class

Figure 10.1: At compile time first code in the model-specific languages is translated
to equivalent KALA code, which second is woven into the Java code.

a modularity mechanism. As a result, the code in the DSL again contains cross-cutting
concerns. However, we explicitly allow this, as we want the DSL code to be as concise
as possible, solely reflecting the concepts of the ATMS. Adding modularization would
imply that we need to define how different modules are combined. This would require
more information to be specified in the DSL programs, making them less concise.
Therefore, we have chosen to omit modularization of the cross-cutting concerns within
the DSL code.

A Family of Languages

We consider the DSLs we have built for this purpose to be a family of languages
because they share and reuse as much syntax and semantics as possible. For each (se-
mantical) concept of an ATMS we identified, we created one syntactical representation
of that concept, which is used in all the DSLs that use that concept. For example,
the concept of a compensating transaction, which we mentioned above, is always pro-
grammed using the compensate keyword. This aids the programmer because the skill
set acquired by using one DSL can be transferred to other DSLs. It is easier to switch
between different languages, as the same concepts are written down the same way,
and this also aids in learning new languages, as concepts which are already known
need not be re-learned.

We have created five DSLs for our language family, one for classical transactions
and one for each transaction model we implemented in KALA in the previous chapter.
The first model for which we have created a DSL is the classical transaction model.
Second and third we created DSLs for the most well-known ATMS: nested transactions
and Sagas. Fourth we chose to create a DSL for relatively consistent schedules (RCS),
last is a DSL for the ATMS we created in the previous chapter: Cooperating Nested

198

10.2. CLASSICAL TRANSACTIONS

Transactions (CNT). Note that we have chosen not to devise names for the different
DSLs we create, instead referring to these languages as the transactions DSL, the
nested transactions DSL, the Saga DSL, the RCS DSL, and the CNT DSL.

To show that we have a family of DSLs, in which ATMS concepts are reused
where possible, we now detail the five different DSLs we created, in the sequence
given above. For each DSL we first give a brief recap of the ATMS it addresses,
and discuss the different concepts present in that model. We then show how these
concepts are addressed in the DSL through an example transactional declaration. Last,
we introduce how this example program is translated to the equivalent KALA code,
giving a semi-formal definition of this translation step. We have an implementation of
each DSL translator, an overview of which we presented in [FC05]. These translators
also reuse the partial implementation of each ATMS concept, where possible. We do
not discuss the implementation of the DSL translators here, instead we refer to [FC05].

For clarity in this text, we have chosen to work based on an example declaration
and not through a more formal specification. The example declarations, however are
extensive enough to cover all cases and therefore, combined with the implementation
of the DSL transformers, can easily be used to deduce a more formal transformational
specification.

We now introduce the DSLs we created, starting with classical transactions.

10.2 Classical Transactions

The first language we introduce here is the DSL for classical transactions. Although
this dissertation focusses on advanced transaction models, we include the basic form
of transaction management, for completeness.

There is only one concept present in this model, which is the indication that a
method is a transaction. Therefore the transactions DSL is simple: programs consist
of a list of declarations declaring a method to be transactional. Such a declaration
takes the form of a trans keyword, followed by the full signature of a method, which is
specified as a KALA compile-time method name, i.e. the full class name and method
signature, separated by a dot.

For example, consider the method with name methodName with parameter list
parameterList, of the class className, contained in the package packageName. In
order to declare this method transactional, the following line of code is required in
the transactions DSL:

1 trans packageName.className.methodName(parameterList);

Translating such a program to the equivalent KALA code is straightforward, as can
be seen below. The only implementation concern which is added to the KALA code

199

CHAPTER 10. DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

is the termination of the transaction, which is required to remove the representation
of this transaction from the dependency model of ATPMos, as we discussed in 8.1.3.

1 packageName.className.methodName(parameterList) {
2 commit {terminate(self); }
3 abort {terminate(self); }
4 }

Using the transactions DSL here frees us from one implementation concern, which
is termination of transactions. Although this is a minor advantage, such freedom of
implementation concerns will return and become more significant in the remainder of
this chapter, starting with the next model, nested transactions.

10.3 Nested Transactions

Nested transactions is one of the oldest and easily the most well-known ATMS, and
therefore it was virtually essential that we construct a DSL for this language, and we
discuss it here.

As said in 2.2, Nested transactions allow for hierarchically structured transactions,
where a child transaction also has access to the data used by its parent transaction,
and this recursively to the root transaction. Furthermore, when a child transaction
commits its data, this is not committed to the database, but instead to its parent,
which is now responsible for committing these data.

We built a DSL for nested transactions, which supports two ways to structure the
transaction hierarchy. First we discuss a specific form of nested transactions, where
the transaction hierarchy is equal to the method call hierarchy. Second we treat the
general form, without such equality, which corresponds to the KALA definition we
have seen in 9.3.1.

Hierarchy equal to caller hierarchy

The first form of structuring the hierarchy of nested transactions which is supported
by the nested transactions DSL is where the hierarchy of transactions is equal to the
caller hierarchy. In other words, every method which is transactional will be a child
transaction of its caller transactional method. Note that the parent transaction need
not be the immediate calling method, as this caller can be non-transactional. In this
case we must conceptually go back up the call chain to locate the nearest transactional
method.

We chose to explicitly support this form of nested transactions in the DSL, as this
is a quite popular interpretation of the nested transactions ATMS. This leads as far

200

10.3. NESTED TRANSACTIONS

as the fact that some databases which initially claim nested transaction support turn
out to only provide support for this form [Her]. Possibly this is because this form of
nested transactions can easily be emulated using nested savepoints [GR93].

The new concept apparent in this ATMS, over classical transactions, is that this
method is a sub-transaction of the (possibly indirectly) calling transaction. This is
declared by reusing the naming from the classical transactions DSL, and extending it
with the extends caller statement. If no transactional method can be found in the
call chain, this implies that the transaction is a root of a nested transaction hierarchy.
Root transactions can be stated explicitly in the DSL as well, an as they do not extend
any other transaction, they are therefore specified by omitting the extends caller
statement.

Specifying a root transaction is, in other words, identical to specifying a transaction
in the classical transaction DSL. This is logical, as no new concept is required, and all
the concepts from classical transactions are reused. This shows that indeed we have a
family of languages, where concepts are reused over different DSLs and are declared
the same way in these DSLs.

Both kinds of transactions can be seen in the example below, which uses analogous
names for package, class, method and argument list:

1 trans packageNameR.classNameR.methodNameR(parameterListR);
2 trans packageNameC.classNameC.methodNameC(parameterListC)
3 extends caller;

The equivalent KALA code, given below, uses the Thread.CurrentThread() nam-
ing technique which we have already seen in 8.1.1 to identify the calling transactional
method. The root transaction will register itself using Thread.CurrentThread(), and
child transactions look up the parent using Thread.CurrentThread() as key. These
transactions, such as declared for methodNameC, save the parent identifier locally and
register themselves as Thread.CurrentThread(), to enable their children to obtain a
reference to them. At the end of the transaction, the identity of the parent is restored
using the saved identifier.

1 packageNameR.classNameR.methodNameR(parameterListR) {
2 name(self <Thread.CurrentThread()>);
3 commit {terminate(self); }
4 abort {terminate(self); }
5 }
6

7 packageNameC.classNameC.methodNameC(parameterListC) {
8 alias(parent <Thread.CurrentThread()>);

201

CHAPTER 10. DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

9 name(self <Thread.CurrentThread()>);
10 begin {
11 dep(self wd parent, parent cd self);
12 view(self parent);}
13 commit {
14 del(self parent);
15 name(parent <Thread.CurrentThread()>);
16 terminate(self); }
17 abort {
18 name(parent <Thread.CurrentThread()>);
19 terminate(self); }
20 }

Because of the semantics of naming, dependencies, views and delegation (defined
in 8.1.1 and 8.1.2), when looking up a parent which is non-existent, i.e. this child
transaction is in fact a root, no dependency, view and delegation will be performed.
In other words, if methodNameC does turn out to be a root transaction, the effect of
the KALA code will be identical to the code of methodNameR.

We see that the use of the nested transactions DSL has freed us from four im-
plementation details: we do not need to concern us with naming, setting the views,
performing delegation and termination of transactions. As a result of such concise
code, we can conclude that the use of the nested transactions DSL here will indeed
ease implementation, as the programmer needs to take less implementation details
into account. Also, it is clear that the code in the DSL can not be made more concise,
as it only contains the minimum of information required to construct a hierarchy of
nested transactions.

Arbitrary Hierarchy

A second case of nested transactions we need to support is where the hierarchy of
method callers does not concur with the hierarchy of nested transactions. In other
words, a child transaction can declare any named transaction as its parent, and any
transaction should be able to give itself a global name.

Conceptually, we consider this as an extension of the case above, where now each
transaction declares the name of the parent, and can give itself a name. The former
is performed through an extends statement, taking as argument a Java expression,
which will resolve to the name of the parent. This expression has access to all actual
parameters of the method, and, of course, to all globals, and is executed before the
body of the method is run. The latter, giving a name to a transaction, is performed
through a name statement, also taking as argument a Java expression, and which is as

202

10.3. NESTED TRANSACTIONS

the extends statement. Both the extends and the name statement are optional, as a
root transaction does not extend any other transaction, and a child transaction may
opt not to give itself a name.

The code below shows an example nested transaction declaration:

1 trans packageName.className.methodName(parameterList)
2 extends <extends expression>
3 name <name expression>;

The KALA code for this example is similar to the KALA code for previous case of
nested transactions. The difference is concentrated solely in naming. Instead of using
Thread.CurrentThread() to look up the parent, the expression for the parent name
is used, and this parent is not set at the end of the method. Also the transaction uses
the name given in the name statement to name itself. Note that this code is, as should
be expected, the same as the merged form of the KALA code for Nested transactions
we introduced in 9.3.1.

1 packageName.className.methodName(parameterList) {
2 alias(parent <extends expression>);
3 name(self <name expression>);
4 begin {
5 dep(self wd parent, parent cd self);
6 view(self parent);}
7 commit {
8 del(self parent);
9 terminate(self); }

10 abort {
11 terminate(self); }
12 }

Absence of extends and the name statements, which are optional, is treated as
follows: If no name for this transaction is given in the DSL through a name statement,
the KALA code will not include the naming of this transaction. If no extends state-
ment is given, no alias, dep, view and del statement will be included in the KALA
code.

Again, the use of the nested transaction DSL has freed us of the implementation
details of setting the views, performing delegation and termination of transactions.
The sole concepts which are present in the DSL are those of the model: identifying a
method as transactional, naming of the parent transaction, and giving a transaction
a name, so it can be referred to. . This implies that the programmer, when using

203

CHAPTER 10. DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

the DSL, does not need to take these implementation details into account, we can
conclude that again the use of the DSL will ease implementation as a consequence.
Furthermore, the code which has to be written is as concise as possible, since leaving
out any more information entails leaving out a concept of the ATMS.

Conclusion

We have now fully introduced the DSL we created for specifying the use of nested
transactions as a separate module. We have seen two usages of the nested transaction
DSL, each targeting a different way of building the hierarchy of nested transactions.

We have shown that this DSL only reifies the concepts present in the nested
transactions DSL and does not include any of the implementation details required
when using KALA. Furthermore, the nested transactions DSL reuses concepts from
classical transactions and therefore the classical transactions DSL.

We conclude that the DSL allows the programmer to work with the concepts
present in the nested transactions ATMS and frees the application programmer from
the implementation details of setting the views, performing delegation and termination
of transactions. As a result, the code is as concise as possible and a higher level of
abstraction is achieved. This leads to easier implementation of the concern of using
nested transactions.

Having talked about the nested transactions DSL, we now proceed with the second
ATMS for which we developed a DSL, which is Sagas.

10.4 Sagas

Sagas is, next to Nested Transactions, one of the oldest ATMS and also arguably one
of the most referenced ATMS in the community. This has given us reason to define a
DSL for this ATMS, while additionally providing for extra flexibility in the ordering
of steps. We introduce the Sagas DSL here.

Sagas is tailored towards long-lived transactions, which are split into a sequence
of atomic sub-transactions that should either be executed completely or not at all.
In order to rollback the Saga compensating actions are used to undo the effects of
already committed sub-transactions. Hence, the application programmer has to de-
fine a compensating transaction for each sub-transaction, which performs a semantical
compensation action. To perform a rollback the TP Monitor aborts the currently run-
ning sub-transaction, and subsequently runs all required compensating transactions
in reverse order.

We have, in fact, already given an example of the Saga DSL in 9.5, applied to a
banking example of which the merged KALA code was given in 9.2.1. The example
code we show here is not applied to an example, but is more generic, and we also

204

10.4. SAGAS

show some of the KALA code as it is generated by the DSL transformer. We will not
go into details here, but solely focus on the changes with regard to the hand-written
KALA code.

Considering the concepts present in the model, we find more concepts present
than in the previous ATMS. We identify the concepts of the saga, the steps and their
compensating steps. As we introduced in 4.1.1, the saga, steps and compensating steps
coincide with methods in the base code. Therefore they can be identified with a method
signature as in the transactions and nested transactions DSL. To run compensating
steps, the equivalent method has to be invoked, which leads us to two more concepts
present: the parameters for invoking the compensating step, and which of these are
shared through a wrapper, as introduced in 8.1.4.

The code below shows an example declaration of a saga as a number of steps,
each with their compensating step, which takes a list of parameters and an optional
declaration of wrapped parameters. We show only two steps in this example, but
conceptually allowing for a varying number of steps, as indicated by [...] in line 10.

1 saga packageName.className.methodName(parameterList) {
2 step packageName1.className1.methodName1(parameterList1)
3 compensate methodName1c(parameterList1c)
4 params <actualslist1>
5 wrap (wraplist1);
6 step packageName2.className2.methodName2(parameterList2)
7 compensate methodName2c(parameterList2c)
8 params <actualslist2>
9 wrap (wraplist2);

10 [...]
11 step packageNameN.classNameN.methodNameN(parameterListN);
12 }

The above code contains five different concepts, required for the Sagas ATMS: the
saga, the steps, their compensating steps, the parameters for these steps and which
of these parameters are wrapped. As this directly corresponds to the concepts of the
sagas ATMS, leaving out one of these concepts in the code implies that this code does
not implement usage of Sagas, but of another ATMS. As a result, we state that code
in the Sagas DSL is as concise as possible.

Regarding the KALA code generated from the above DSL program, we do not
include the full code here, as it can be easily inferred from the code given in 9.2.1.
We only show the code for one step of the saga, to illustrate that the code for the
different steps (except the last step) has become equivalent :

1 packageName1.className1.methodName1(parameterList1) {

205

CHAPTER 10. DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

2 alias (Saga <Thread.currentThread()>);
3 alias (CompPrev <""+Saga+"Comp">); //may be null tx
4 groupAdd (self <""+Saga+"Step">);
5 autostart (methodName1c(parameterList1c)
6 <actualslist1> (wraplist1) {
7 name(self <""+Saga+"Comp">);
8 groupAdd(self <""+Saga+"Comp">);
9 });

10 begin {
11 alias (Comp <""+Saga+"Comp">);
12 dep(Saga ad self, self wd Saga, Comp bcd self);
13 }
14 commit {
15 alias (Comp <""+Saga+"Comp">);
16 dep(CompPrev wcd Comp, Comp cmd Saga, Comp bad Saga);
17 }
18 }

Above, the code for all steps is equivalent, whereas in 9.2.1, this was not the case.
In 9.2.1, the second step needed to look up the name of the compensating step of
the first step, in order to fix the sequence of compensating steps. Obviously, the first
step does not perform this, as it has no previous compensating transaction. However,
because of the way naming and dependencies are defined in KALA, we can also add
this code to the first step: as the lookup in line three will fail, no dependency will
be placed. This, combined with the generic name for the compensating transaction
has as a result that step sequence for all but the last step is determined at runtime,
instead of statically. In other words, the sequence of steps is not fixed, except for the
last step. This flexibility allows steps to be skipped even or performed multiple times,
as the core application concern sees fit.

Considering the large size and obvious complexity of the KALA code in 9.2.1,
treating many different implementation details: naming, grouping, placing of depen-
dencies, starting secondary transactions, and termination of transactions, it is easy to
conclude that the DSL version of the same specification is preferable. Using the Saga
DSL, the application programmer is kept unaware of these implementation details,
and is solely confronted with the concepts present in the ATMS. We state that the
code in the Sagas DSL is as concise as possible and at a higher level of abstraction,
which therefore eases implementation.

This brings us to the last ATMS for which we have defined a DSL; the most
complex ATMS we discussed in chapter 2, which is relatively consistent schedules.

206

10.5. RELATIVELY CONSISTENT SCHEDULES

10.5 Relatively Consistent Schedules

The last ATMS for which we have created a DSL is relatively consistent schedules
(RCS). When considering the different ATMS detailed in chapter 2, we see that RCS
requires the most information to be specified by the programmer. Also it has a differ-
ent modus operandi than the previous ATMS treated here, and therefore a different
application domain. This makes it a good candidate to further show the power of us-
ing a DSL to program a complex ATMS, as we do here. Moreover, the RCS DSL also
illustrates the reuse of concepts in the DSL family, as it is specified as an extension
to the Sagas DSL.

RCS, as Sagas, was defined to tackle the issues of long-lived transactions, but
realizes this differently. In RCS, a transaction is composed of different steps, as in
Sagas, but these steps do not commit to the database, contrary to Sagas. Instead, in
between each step, the intermediate results of a transaction are made visible to a set
of other transactions currently running in the system. How to rollback an RCS is not
explicitly stated in the published paper [AFTO89], except for the recommendation to
use compensation, as in Sagas.

Considering the concepts present in the model, we note the similarities to Sagas:
a top-level transaction which consists of different steps, each with their compensating
step, which implies method arguments for the compensating step and the possibility to
wrap these arguments. This allows us to reuse all these concepts in the RCS DSL, and
we now only need to focus on the concepts new to this model. New here is selectively
exposing the intermediate results to a limited group of transactions, and conversely
specifying to which group a given transaction belongs. These concepts are present in
the RCS DSL through view and group statements. The view statement declares what
group of transactions can see the intermediate results after a step has completed, and
before the next step begins. The group statement determines to which group the step
belongs, allowing for this to be different for each step. Both view and group statements
take as argument a Java expression that identifies the group, and has access to the
actual parameters of the method.

Example code defining the use of the RCS ATMS is given below, again allowing
for a varying number of steps, as indicated by [...] in line fourteen.

1 rcs packageName.className.methodName(parameterList) {
2 step packageName1.className1.methodName1(parameterList1)
3 compensate methodName1c(parameterList1c)
4 params <actualslist1>
5 wrap (wraplist1)
6 view <view group exp1>
7 group <group exp1>;

207

CHAPTER 10. DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

8 step packageName2.className2.methodName2(parameterList2)
9 compensate methodName2c(parameterList2c)

10 params <actualslist2>
11 wrap (wraplist2);
12 view <view group exp2>
13 group <group exp2>;
14 [...]
15 step packageNameN.classNameN.methodNameN(parameterListN)
16 group <group expN>;
17 }

As can be expected, the KALA code equivalent for the above RCS DSL code
is similar to the code for Sagas. The extra concepts present in the RCS ATMS are
translated to extra KALA statements, which are inserted into the declarations for the
different steps. These extra statements maintain the views to the intermediate results
and ensure the different steps of the RCS work with these results. We do not include
the generated KALA code here, as it essentially boils down to the merged form of the
RCS code we have already given in 9.3.2.

To illustrate the power of the RCS DSL compared to the equivalent KALA code,
we mention that the equivalent KALA program for the example above is eighty-one
lines of complex code. Using the DSL frees the programmer from writing such long
and complex code where naming and grouping is used, dependencies are set, views
are added and removed, and delegation is frequently performed. The DSL allows the
programmer to code using the concepts provided by the RCS ATMS, as concise as
possible and in a natural form, with only seventeen lines of code. This higher level of
abstraction significantly eases implementation.

In the RCS DSL we reused all of the concepts present in the Sagas DSL, as these
are also present in the RCS ATMS. This shows that we can achieve a family of DSLs
where concepts are reused as much as possible, making the skill set of a programmer
transferable over different languages. For example, a programmer knowledgeable of
the Saga DSL now only needs to learn the new concepts of the RCS model, as we have
demonstrated by only discussing these new concerns in this section.

10.6 Cooperating Nested Transactions

In 9.4, we have created our own ATMS: Cooperating Nested Transactions (CNT).
As in the other ATMS we discuss in this dissertation, writing a DSL for this ATMS
will ease the use of CNT by an application programmer. Furthermore, the CNT DSL
illustrates why the DSLs here are as concise as possible and how a family of DSLs

208

10.6. COOPERATING NESTED TRANSACTIONS

allows a programmer to transfer his skill set from one ATMS to another. Therefore,
we include a description of the CNT DSL here.

Recall that the CNT ATMS, which we defined in 9.4, was created to achieve the
highest possible performance for computations that are hierarchically structured. This
was implemented by modifying Nested transactions such that all the children of one
parent can also view each others’ intermediate results. As a consequence, rollback was
also modified: if one sibling aborts, all the concurrently running siblings also abort.

The concepts which are present in CNT, in fact, are the same as the concepts of
nested transactions. A transaction can be a parent of a number of other transactions
and that transaction can be a child of another transaction. As sibling sharing and
rollback are defined with respect to these two concepts, no new concept has to be
introduced here. This has an important impact on the CNT DSL, as we see next.

As a result of having a family of DSLs, we reuse as much syntax as possible between
DSLs. Therefore, as no extra concepts are present in the CNT DSL, the CNT DSL
has identical syntax to the Nested Transactions DSL with arbitrary caller hierarchy,
as can be seen from the code below:

1 trans packageName.className.methodName(parameterList)
2 extends <extends expression>
3 name <name expression>;

The above implies that the skill set of an application programmer who knows how
to use the Nested Transactions DSL with arbitrary hierarchy, is completely transfer-
able to the CNT DSL. Furthermore, no new syntax needs to be learned, the program-
mer only needs to be made aware of the peculiarities of this new model.

Note that, although the DSL code has the same syntax, the DSL translator will not
produce the same KALA code as for the Nested transactions ATMS, which we have
shown above. Instead the translator will produce the code as given in 9.4, albeit in
merged form. This illustrates the conciseness of the DSL specifications, as they reflect
solely the concepts present in the model, regardless of the actual implementation of
this model in ACTA.

To summarize, the CNT DSL illustrates the conciseness of the code using such a
DSL by showing how a new model, which does not include any new concepts, implies
that the DSL syntax does not change. Combined with the maximal reuse of syntax,
this allows the skill set of the application programmer to be fully transferable to the
new DSL, once the programmer is made aware of the peculiarities of this model.

209

CHAPTER 10. DOMAIN-SPECIFIC ASPECT LANGUAGES FOR ATMS

10.7 Conclusion

In this chapter we have taken the second step towards easing implementation of the
concern of advanced transaction management by making this code as concise as pos-
sible. This step consists of using domain-specific languages, one language for each
ATMS, to express aspect programs for that particular ATMS. We introduced five
different domain-specific aspect languages, for five different transaction models, and
have shown how programs in these languages are translated to their equivalent KALA
code.

The use of DSLs allows us to isolate the aspect programmer from the implementa-
tion details of naming and groups, dependencies, views, delegation, and termination
of transaction. Instead, the programmer now focuses solely on the concepts defined in
the ATMS being used, as we have shown for all five DSLs. This allowed us to make the
aspect programs as concise as possible, while having a natural form. As a result, we
have eased implementation of this code, with respect to the equivalent KALA code.

Furthermore, we have built a family of DSLs which reuse as many concepts as
possible between them. The same concept in an ATMS will be written down in the
same way in the different DSLs. This ensures that the skill set of a programmer in
one DSL is reusable as much as possible over the different languages. As a result, we
have shown that switching between different languages is eased, as is learning to use
a new model.

This completes the introduction of our approach to modularizing ATMS, where
we first extracted the concern of ATMS from the base code by defining a general
aspect language, and second defined a number of model-specific aspect languages on
top of the general aspect language. The first step is beneficial because it effectively
modularizes the concern of advanced transaction management. This not only eases
implementation, but also enables an ATMS to be tailored to the design of the appli-
cation. The second step adds the extra benefit of making the aspect code as concise
and natural as possible, which aids in implementing and maintaining the concern of
advanced transaction management.

210

Chapter 11
Using Domain-Specific Languages for

ATMS

In theory there is no difference between theory and practice. In practice there is.
—Yogi Berra

We have now introduced our approach that enables usage of an ATMS the design
of which best fits the application being built. This approach first separates out the
concern of transaction management, at the level of the code, by using a special-purpose
aspect language, called KALA, which we discussed in chapters 8 and 9. As as second
step, we have built a number of Domain-Specific Languages (DSLs) in the previous
chapter. Each of these is specific for one ATMS and adds an extra level of abstraction
on top of KALA. Each language reifies the concepts present in the respective ATMS,
making programs written in these languages as concise as possible, while having a
natural form.

In this chapter we illustrate how this approach can be applied to applications which
are multi-tiered distributed systems. We discuss three example applications, showing
the wide varieties of applications to be found in the domain of multi-tier distributed
systems. Each application has different requirements for the properties of transaction
management, and we select the most appropriate ATMS for each application. For each
of these examples we provide an implementation, both for the core concern, in Java,
and for the transaction management concern in the appropriate DSL. We show that
we can easily use the ATMS of which the design best fits the design of the application,
thanks to the good modularization of ATMS demarcation code and the conciseness of
the transactional specifications.

211

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

We start the illustration of our approach by considering the example application
we have used at various points of this dissertation, which is the banking application,
and more specifically we focus on the bank transfer operation.

11.1 Using Sagas

In this dissertation, we have used the example of a banking application in our discus-
sion to illustrate the nature of demarcation code for ATMS, show how KALA code
is composed, and argue for the need of a DSL to further abstract KALA code to the
level of the concepts in the Sagas ATMS. Here we repeat the example to show the
applicability of the Sagas ATMS to the bank transfer operation and how this can be
achieved by using the Sagas DSL. We first review the bank transfer operation and its
need for Sagas, second provide the full implementation of the bank transfer operation
using the Sagas DSL, and end with a discussion.

The Case

An example application we have used at various points in this dissertation is a variation
on the classical bank transfer transaction. We have positioned this transaction as a part
of a multi-tier banking application, where cashiers use this bank transfer operation
to perform a transfer for a customer at the bank till. We focussed solely on the bank
transfer itself, and ignored other parts of the banking application.

The bank transfer operation is conceptually composed of three actions: first per-
forming the actual bank transfer, second printing a receipt and third updating the
logs of the bank. The first action is the transfer itself, which updates both accounts
involved in the bank transfer with their new values. The second action points out a
receipt which the cashier gives to the customer as a proof of the transfer operation.
The third and last step updates the logs of the bank to reflect that a transfer has been
performed and a receipt has been given to the customer.

Conceptually, this bank transfer operation is one atomic event, and needs to be
made transactional because of the bank account manipulations performed in the first
action. Note that this first action is even considered as a classical case for the need
of transactions. Implementing the entire bank transfer operation as one transaction,
however, is problematic. The cause for this is the printing out of a receipt. To make a
printout, even on a fast printer, takes a few seconds, which turns the transfer operation
into a long-lived transaction. As we have discussed in 2.3, long-lived transactions have
a disastrous impact on application performance as they severely constrict concurrency.

To avoid the bank transfer operation becoming a long-lived transaction, instead
of using classical transactions we have used the Sagas ATMS. This ATMS better
suits the bank transfer operation as it turns the long-lived transaction into a series

212

11.1. USING SAGAS

of steps. Each action of the transfer maps to a step in the saga, and for each step a
compensating step is possible. The compensating step of the transfer itself is a transfer
in the opposite direction. The printout of the receipt can be compensated by printing
out a transfer cancellation notice. The last step of the saga has no compensating step,
as the Sagas ATMS does not require this.

Implementation

We have already discussed some variations of implementation of the bank transfer
example in various parts of this thesis. We have, until now, shown excerpts of the
bank transfer code and referred to appendix B for the full implementation. Here we
provide a complete implementation using the Sagas DSL. We first detail the Java code
for the bank transfer operation, and then give the code for the transaction management
concern in the Sagas DSL.

The top level of the Saga is a method which calls the different steps of the saga in
sequence, where each step of the saga corresponds to its own method:

1 public void moneyTransfer
2 (BankAccount from, BankAccount to, int amount)
3 {
4 this.transfer(from, to, amount);
5

6 this.printReceipt(from, to, amount);
7

8 this.logTransfer(from, to, amount);
9 }

This code is quite straightforward, receiving as parameters the EJB’s for the re-
spective BankAccounts , and the amount of money to be transfered between these
accounts. It first invokes the transfer action, second has the receipt printed, and third
calls the log action. We now show the code for these three actions in the above se-
quence, starting with the transfer operation:

10 private void transfer
11 (BankAccount from, BankAccount to, int amount)
12 {
13 int from_amount = from.getAmount();
14 int to_amount = to.getAmount();
15 to.setAmount(to_amount + amount);
16 from.setAmount(from_amount - amount);
17 }

213

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

Again, this code is straightforward, increasing the amount in the destination ac-
count and decreasing the amount in the source account.

The second step of the bank transfer is as follows:

18 private void printReceipt
19 (BankAccount from, BankAccount to, int amount)
20 {
21 ReceiptCounter counter = ReceiptCounterStore.getCurrent();
22 int num_receipt = counter.getCount();
23 counter.setCount(num_receipt + 1);
24 Printer.getCurrent().
25 printTransferReceipt(from, to, amount, num_receipt);
26 }

Here, a unique receipt number is first obtained, to be printed on the receipt.
Printing the receipt itself is not implemented in this method, this is instead delegated
to a Printer object.

This leads us to the last step in the bank transfer operation, which is updating
the global log of the bank. Again the code is straightforward, and requires no further
comment, as can be seen below:

27 private void logTransfer
28 (BankAccount from, BankAccount to, int amount)
29 {
30 OperationsLog log = OperationsLogStore.getCurrent();
31 int num_log = log.getCount();
32 log.setCount(num_log + 1);
33 log.addTransfer(from, to, amount, num_log);
34 }

Given the above code for the bank transfer operation, we can let this operation
use the Sagas ATMS by providing the following specification in the Sagas DSL:

35 Saga Cashier.moneyTransfer(BankAccount, BankAccount, int) {
36 step Cashier.transfer(BankAccount, BankAccount, int)
37 compensate transfer(BankAccount, BankAccount, int)
38 params <to, from, amount>;
39 step Cashier.printReceipt(BankAccount, BankAccount, int)
40 compensate printTransferCancel(BankAccount, BankAccount, int)
41 params <from, to, amount, num_receipt>
42 wrap(num_receipt);

214

11.1. USING SAGAS

43 step Cashier.logTransfer(BankAccount, BankAccount, int);
44 }

The code above specifies the moneyTransfer operation as the top level of a Saga,
which will call a number of steps. The first step is the transfer method, with as com-
pensating step also the transfer method, but with source and destination accounts
reversed. The second step is the printReceipt method, which is compensated by the
printTransferCancel method, the code of which is included below, for completeness.
In this code the local variable num receipt of the printReceipt method is shared
between this step and the compensating step (as specified on line 42), so that the
compensating step can include this number in the cancellation notice. The last step
of the saga is the logTransfer method, which does not specify a compensating step
as this is not required.

45 private void printTransferCancel
46 (BankAccount from, BankAccount to, int amount, int num_receipt)
47 {
48 Printer.getCurrent().
49 printTransferCancel
50 (from_orig, to_orig, amount, num_receipt);
51 }

This ends the implementation of the bank transfer operation using the Sagas DSL.
We briefly discuss this implementation next.

Discussion

We discuss the above implementation of the bank transfer operation, first focussing on
the conciseness of this implementation, and second considering separation of concerns.

In the code above, the reduction in size with regard to the original version of
the transfer operation is striking, illustrating the conciseness of using the Sagas DSL.
The original version of the transfer operation, using manually inserted demarcation
code, shown in appendix B is 267 lines of code. In contrast, above we have 51 lines
of code, i.e. less than one fifth the amount of lines of code. This implementation also
compares quite favorably to an implementation using KALA instead of the Sagas DSL.
The equivalent KALA code for the specification given above is given in 9.2.1, which
takes 46 lines of code instead of 10. This clearly shows the conciseness of the DSL
specification, which is overwhelmingly better than using manual demarcation code,
and also much more concise than the equivalent KALA specification.

Considering separation of concerns, we see that we have achieved a complete sepa-
ration of concerns at the level of the code of the application. None of the Java methods

215

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

above contain code for transaction management. The transaction management con-
cern is completely separated out in the separate transactional specification, in the
Sagas DSL. The Java code for the bank transfer operation is written totally oblivious
of the transaction management concern. This code simply needs to follow the design
which does take transaction management using Sagas into account. This not only eases
implementation of the bank transfer example, but also significantly enhances main-
tainability and evolvability. For example, consider what has to be done if the bank
transfer operation would have to be extended with an extra step, say updating a local
log. The programmer first implements this step, and the counterstep, not considering
the transactional nature of these operations. Second, the top-level moneyTransfer
method is modified to call the extra step. Third and last, to include this step in the
saga, the corresponding step declaration is added to the program in the Sagas DSL.
In general, due to the full separation of concerns, any method called from the top-
level moneyTransfer method can be included in the saga, as an extra step, simply by
adding the corresponding step declaration to the program in the Sagas DSL.

The combination of a full separation of concerns and concise DSL code for using
this ATMS highly ease implementation of this application, making it almost seem
trivial to use such an ATMS for a given application. This nicely illustrates the power
and applicability of our solution, which enables an application programmer to easily
use an ATMS the design of which is best suited to the application being built.

Conclusion

We have now given a full implementation of the bank transfer operation, an example
which we used at various points in this dissertation. This transfer operation consists
out of three separate steps: first the transfer itself, second printing out a receipt for
the customer, and third updating the logs of the bank.

We have argued that it is better to have this transfer operation as a Saga than as
a classical transaction, as the latter would be a long-lived transaction due to the time
needed to print the receipt. We have identified the steps of the saga and their counter-
steps and proceeded with giving the full implementation of the transfer operation.

The implementation of the transfer operation, in comparison to the implementa-
tion with manual demarcation code in appendix B, and to the implementation using
KALA in 9.2.1, clearly shows the advantages of our solution. We now have concise
code with a full separation of concerns, in contrast to verbose and tangled code. In fact
the code for the bank transfer operation is completely oblivious of the transactional
nature of the transfer. This illustrates how easily our solution enables the use of an
ATMS the design of which best fits the application being built.

As a next example of the use of an ATMS DSL, we consider how nested transactions
can be used for a web-based shopping aid application.

216

11.2. USING NESTED TRANSACTIONS

11.2 Using Nested Transactions

In nested transactions [Mos81], a tree is built of hierarchically structured transac-
tions. In this tree, a child transaction has access also to the data used by its parent
transaction. When a child transaction commits its data, this is committed to the par-
ent, which is now responsible for committing this data. Aborting a child does not
imply that its parents are aborted, which gives us a more fine-grained mechanism for
handling rollbacks.

We conceived an example component of a multi-tier distributed system: a shopping
aid for a web-based classic car parts store which is implemented as a set of rules. We
first outline this example case, before introducing the implementation which shows
how the nested transactions DSL is used and discussing this implementation.

The Case

A specialty market for which many on-line web shops can be found is the market of
spare parts for old-timer cars. These shops sell a very extensive variety of parts, some
shops virtually allowing the enthusiast to build a car from scratch, just by buying all
the parts. These on-line web shops are typical cases of multi-tier distributed systems,
and therefore are applicable to our research. The example application we conceived
to show the usage of the nested transactions DSL is an automated shopping aid for
these kinds of shops, and we introduce it next.

The shopping aid is a component of the web shop the purpose of which is to help
the shopper obtain the parts required for a given repair. Based on a description of the
task to be performed, the system will fill a shopping basket with spare parts required
for this task. However, not all parts are created equal: some parts will be specialty
parts which can only be obtained from this shop, while other parts are considered
common, and can be bought at any auto parts store. For example: if a ball bearing
needs to be replaced, a specialty part is the new ball bearing, while if the brakes need
to be bled, new brake fluid is required1, but this can easily be obtained from any auto
parts store and is therefore a common part. A second distinction of parts is if they are
from the original manufacturer or if they are replica parts. Classic car purists require
original parts, and will only settle for replicas if no original part is available.

The shopping aid needs to take into account the distinction between specialty
parts and common parts, and the difference between original parts and replicas. If
a common part can not be placed in the shopping basket because the store has run
out, a warning will be issued. If a specialty part from the original manufacturer is
not available, a replica part should be substituted. If no specialty part at all can be
obtained, however, the shopping aid will not place any part in the basket at all, since

1Brake fluid may never be reused [HS76].

217

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

the repair can not be performed. Note that before checkout, the customer can of course
elect to add or remove items from the basket, but managing the contents of the basket
is not relevant for this discourse, so we will not discuss this further.

The shopping aid is designed as a set of rules, where each rule corresponds to
one task, e.g. bleeding the brakes, and is responsible for giving a list of items to be
put in the basket. Rules may call other rules, as tasks can be split into sub-tasks,
some of which may be quite common. For example, bleeding the brakes is a sub-task
which is required for the majority of work on the brakes, such as when changing the
disks or the calipers. Therefore the brake bleeding rule will be called from the brake
disk changing rule and from the brake caliper changing rule. This results, when the
shopping aid is executed, in a tree structure of rules that are run.

Each of these rules is implemented as a method, and will have to run within
a transaction. This is because they may remove items from the parts inventory, to
be placed in the shopping basket. If, within a rule, a part can not be obtained for
whatever reason the transaction will abort, but this does not necessarily mean that
the shopping aid as a whole should abort. The shopping aid should only abort if
a specialty part is unavailable. If a common part can not be placed in the shopping
basket, the shopping aid must continue. In other words, we need a fine-grained control
of transaction aborts, as only in some cases aborting a rule implies aborting the entire
transaction.

The shopping aid is designed as a set of rules, which at run-time form a tree
structure. Furthermore, the computation needs to be enclosed in a transaction. Fi-
nally we require fine-grained control of rollbacks. This leads us to chose the nested
transactions ATMS for this component. Each rule will run all the sub-rules it calls
as separate sub-transactions, and also obtain parts from the inventory in a separate
sub-transaction. For each of these sub-transactions, the rule can then decide what to
to when a sub-transaction fails. The rule may itself abort or make amends for this
failure. For example, the bleedBrakes rule, will call the getPart rule to obtain brake
fluid from the inventory. If this fails, the bleedBrakes rule will not fail but return a
dummy part instead of the brake fluid part. This part will simply display an appro-
priate warning when listed in the customers’ shopping basket. Similarly, each rule will
first try to obtain original parts, and if this fails look for replica parts, if available.

Implementation

Given the description of the shopping aid component above, we now show the imple-
mentation of this component, with regard to the rules and their transactional behavior.
We do not detail all the possible rules of the shopping aid here, instead we focus on
one specific task, which is the replacing of a ball bearing of a rear wheel, as given
by the procedure laid out in [HS76]. We show next the code for all the rules that

218

11.2. USING NESTED TRANSACTIONS

are triggered for this procedure, all members of the SARuleSet class, followed by the
transactional specification of this code in the nested transactions DSL. We start with
the first rule which is triggered, the code for which is below:

1 public PartCollection replaceBallBearingAft(){
2 PartCollection pc = new PartCollection();
3

4 int bbnumber = partInventory.getPartNumber("BallBearingAft");
5 pc.addPart(getPart(bbnumber, 1));
6

7 pc.addParts(removeRearAxleBlockingComponents());
8 pc.addParts(dissassembleRearAxleHalf());
9

10 return pc;
11 }

The above code, as all rules, collects all the parts it requires in a PartCollection,
which is returned to the caller. To get a specific part, its part number is obtained
from the inventory using the getPartNumber method of the inventory, which takes a
descriptive name of the part, and returns the number. We do not discuss this method
in detail, as it is of no particular significance here. With the resulting part number,
parts can be taken out of the inventory, using the getPart method, which we discuss
in more detail later.

To replace a ball bearing aft, the rear axle must be freed from all blocking compo-
nents, such as the brake assembly, after which it can be disassembled in place. These
sub-tasks are implemented in the rules removeRearAxleBlockingComponents and
dissassembleRearAxleHalf, and we will discuss these after detailing the getPart
method, which is next:

12 private Part getPart(int partnumber, int req_amount) throws TxException {
13 PartStore store = partInventory.getParts(partnumber);
14 int stored_amount = store.getAmount();
15 if (stored_amount < req_amount)
16 throw new TxException("Not enough stock");
17 store.setAmount(stored_amount - req_amount);
18

19 return new Part(store.getDescription(),partnumber, req_amount);
20 }

The getPart method obtains a PartStore EJB, which represents the section of
the inventory which contains the parts with the given part number. The PartStore

219

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

records the number of these parts in inventory, a descriptive text for these parts,
amongst others. The getPart method verifies if there are sufficient parts in inventory,
and if so removes these from the inventory, to be returned to the caller. If there aren’t
enough parts, the getPart method terminates immediately by throwing an exception.

Having discussed getPart, we now continue with the rule
removeRearAxleBlockingComponents, the code for which is below:

21 public PartCollection removeRearAxleBlockingComponents(){
22 return bleedBrakes();
23 }

Removing the brake assembly and other blocking components does not directly
require any new parts to be added to the shopping basket. The procedure however
does require the brakes to be bled, which is represented by the bleedBrakes rule,
which we discuss next:

24 public PartCollection bleedBrakes() {
25 PartCollection pc = new PartCollection();
26

27 int bfnumber = partInventory.getPartNumber("BrakeFluid");
28 try {
29 pc.addPart(getPart(bfnumber,1));
30 }
31 catch (TxException ex) {
32 pc.addPart(new WarningPart("Obtain brake fluid"));
33 }
34

35 return pc;
36 }

As we mentioned above, the bleedBrakes rule calls the getPart rule to obtain
brake fluid from the inventory. If this fails, the bleedBrakes rule will not fail but
return, instead of the brake fluid part, a dummy WarningPart, which will display an
appropriate warning when listed in the shopping basket. This leaves us to discuss the
dissassembleRearAxleHalf rule, which is as follows:

37 public PartCollection dissassembleRearAxleHalf() {
38 PartCollection pc = new PartCollection();
39

40 int blrnumber = partInventory.getPartNumber("RearAxleBLRing");
41 pc.addPart(getPart(blrnumber, 1));

220

11.2. USING NESTED TRANSACTIONS

42

43 return pc;
44 }

Disassembling the rear axle implies removing the rear axle ball bearing locating
ring, which may not be reused [HS76], and therefore a new ring will be added to
the shopping basket. This is the last of the rules which are invoked for replacing a
ball bearing aft. Note that we did not include any rule here that looks for replica
parts, it suffices to say that such rules will be implemented similarly to bleedBrakes,
looking for a replica part if getting the original part fails, instead of creating a dummy
WarningPart.

Having seen all the code for the core concern of the application, we can proceed
with declaring the transactional properties of these methods in the nested transaction
DSL, which is as follows:

45 trans SARuleSet.replaceBallBearingAft() extends caller;
46 trans SARuleSet.getPart() extends caller;
47 trans SARuleSet.bleedBrakes() extends caller;
48 trans SARuleSet.dissassembleRearAxleHalf() extends caller;

The above code is all which is required to have the declared methods as nested
transactions, each a child transaction of the transactional method which called it. Note
that removeRearAxleBlockingComponents is not declared a nested transaction, as no
data access is performed in that method, the bleedBrakes method will therefore be
a nested transaction of replaceBallBearingAft.

This ends our treatment of the code for the shopping and. We have first introduced
the Java code for different rules of the shopping aid, and concluded by giving the DSL
code which lets this application use the nested transactions ATMS.

Discussion

Given the above code for the shopping aid application, we now discuss the conciseness
of the code and the degree of separation of concerns within this code.

We can safely state that the above code for transaction management is short,
concise and simple, as it treats the transactional aspect in terms of the con-
cepts exposed by the model: transactions and parent transactions. This makes
it easy to write, very readable and also very easy to modify. If, for example,
removeRearAxleBlockingComponents is modified, to now also include the application
of axle grease, this method can straightforwardly be made transactional by adding an
extra line to the transactional properties.

221

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

Some enhancements could be made to the nested transaction DSL, however. Cur-
rently we must explicitly declare all methods to be made transactional, and if the rule
set becomes large, this will result in a long list of declarations. It would be better to
be able to use some form of wildcarding, as is possible in AspectJ [Asp05], and our
previous work [Fab04b], for example as below:

1 trans SARuleSet.*() extends caller;
2 trans SARuleSet.removeRearAxleBlockingComponents() exclude;

This will automatically apply to all the methods in the SARuleSet, and exclude
removeRearAxleBlockingComponents from being made transactional. We have not
yet included this feature in the nested transactions DSL, as it has only limited impact
the core of this work: modularizing advanced transaction management using a concise
specification, which is already achieved with the current version of this language.

In getPart and bleedBrakes the line between the transaction management aspect
and the core concern of the application has become somewhat blurred, because the
core concern uses transaction failures to indicate a failure: obtaining a part from the
inventory. We consider, however, that this transaction management code belongs to
the core concern, as the triggering of the rollback in getPart is the result of the
application logic, as is the use of a WarningPart in bleedBrakes. Therefore, we state
that this code should remain in the method, and not be placed in the aspect. This
provides adequate ground for not adding rollback triggering and handling code in the
nested transaction DSL.

What we have here is that the originally non-functional concern of rollback han-
dling has been turned into a functional concern. Rollbacks of transactions are actively
used in the base functionality of the application. Therefore, due to an explicit design
choice of the application, we do not achieve total obliviousness of the transaction
management concern, this in contrast to the bank transfer operation we discussed
previously.

Further considering separation of concerns, we can conclude that using the nested
transactions DSL does indeed separate out transaction demarcation code in a separate
module to a very high degree. As we indicated above, it is not preferable to completely
separate out all transaction related code, as in nested transactions part of the core
concern might be tightly coupled with the transaction management concern.

Conclusion

In this section we have shown how to apply the nested transactions DSL to the building
of a component of a web-shop for classic car parts. The component we investigated
was a shopping assistant, a rule-based system that fills a shopping basket with spare

222

11.3. USING RELATIVELY CONSISTENT SCHEDULES

parts based on a given repair to be performed. In this component, each rule triggers
sub-rules as sub-transactions, and may make amends if a sub-transaction fails.

We have seen the code for different rules, in Java, and the code for making these
rules transactional in the nested transactions DSL. We can conclude that we have
separated out transaction management as much as possible, as the only transaction
demarcation code to be found in the code for the core concern is tightly coupled with
the core concern. Furthermore, the code in the nested transactions DSL is indeed
clear and concise, exposing the transactional concepts present in the model. Also,
transactional modifications to the code are easy to make, as making a rule a nested
transaction or not is done by adding or removing one straightforward line of code.

The next ATMS for which we show DSL usage is for a less typical multi-tier
distributed system: calculating the bill and management of inventory in a supermarket.
The ATMS which will be used here is relatively consistent schedules.

11.3 Using Relatively Consistent Schedules

The second ATMS we use to show how DSLs for ATMS are used is the relatively
consistent schedules ATMS, the most sophisticated ATMS we have discussed. We
introduced this ATMS in 2.4 as an ATMS which uses semantic information to allow
more concurrency when using long-lived transactions. This is achieved by splitting up
the transaction into different steps, and defining how each step may be interleaved with
steps of other transactions. Through interleaving of such steps different transactions
can share data without affecting consistency.

In order to show how the RCS DSL is used to employ the RCS ATMS on an
application, we have created a second application: a supermarket checkout system.
This system is responsible for calculating the bills for the customers as products are
scanned at the checkout counters, and for managing the inventory of the shop. We
first give an overview of the system, before detailing its implementation, which is then
discussed.

The Case

Consider the checkout process in a common supermarket: the customer places his
goods on the counter, and the checkout clerk uses a bar code scanner to scan all
products, adding the cost to the bill, and decreasing stock count for the scanned
product. The computer system calculating the bills and managing stocks can also be
implemented as a multi-tier distributed system. The cash registers are thin clients,
since they are embedded systems with few computational resources and are low on
memory. To perform stock management, the cash registers communicate with a central
server, which is the middle tier, and that server uses a database as the lowest tier.

223

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

Conceptually, the checkout action is one transaction, which starts when the first
product is scanned and ends when the customer has paid the bill. But, as we all have
experienced while waiting in line at the checkout counter, this transaction can be
long-lived. The consequences of this are grave: when, for example, a bottle of Duvel
beer is scanned, the transaction keeps an exclusive lock on the count of Duvel bottles
in stock, making it impossible for other checkout counters to decrease the stock count.
The other counters now have to wait until the bill is paid before their checkout process
can continue, which is clearly unacceptable.

Furthermore, this is but a simple case: people can be inattentive, and for example,
before paying the bill, realize that they do not need as many bottles of beer, and return
one. These purchases have to be ‘un-scan’ed, and stock count has to be increased.

Note that we could, of course, provide an implementation of the supermarket
application using the classical transaction model. However, this solution would tend
to be an application-specific solution which is not as conceptually clean, and which
therefore suffers from drawbacks if we consider maintainability of the application. For
this small example, this is not a big issue, but its importance increases significantly
when the application becomes larger.

Let us consider the checkout transaction in an ATMS context. We can easily see
that we can split the long-term transaction in different steps: each part is a ‘scan’
or an ‘un-scan’, and the last part is a ‘payment’ action. Using this analysis, we see
that relatively consistent schedules is an applicable ATMS. The compensating step
of a ‘scan’ is an ‘un-scan’, and vice-versa. There is only one transaction type: the
‘Checkout’ type, and both the ‘scan’ and ‘un-scan’ steps belong to this type. After
every step, all steps of the Checkout type may interleave, whereas other transactions,
which are of other types, may not.

Using the relatively consistent schedules ATMS here keeps the implementation
conceptually clean: the checkout remains one transaction, as we will see next.

Implementation

The checkout process is implemented in the middle tier, i.e. the central server of
the supermarket, as the cash registers do not have enough memory to keep a list of
products and their prices. Each checkout process is modeled as an instance of the
Checkout class, of which the doCheckout method contains the code for performing
the checkout, which can be seen below:

1 void doCheckout(){
2 int qty;
3 while((qty = getInput()) != 0){
4 if(qty > 0)

224

11.3. USING RELATIVELY CONSISTENT SCHEDULES

5 scan(getInput(), qty);
6 else
7 unScan(getInput(), -qty);
8 }
9

10 showTotal();
11 }

The checkout process is a loop, repeatedly scanning products until all products
are scanned. The scanning process starts by obtaining the quantity of products being
scanned, which may be zero to indicate the end of the scanning process. Multiple
items of the same product can be scanned at once, as some products may be bundled
in groups, such as a six-pack of beer, or the cashier may manually input a negative
amount to indicate a return of goods. Based on the sign of the quantity, either the
scan or unScan method is called to either add to or remove the products from the
bill. Both methods are given the product identifier, obtained from the input device,
and the number of products scanned. At the end of the scanning process, the cash
register is instructed to show the amount to be paid.

We do not detail the implementation of getInput and showTotal here, as the
implementation of these methods is not relevant for this discussion. We focus, instead
on the scan and unScan methods, and start with the code for the scan method, below:

12 void scan(int Pid, int Qty){
13 ProductBean product = getProduct(Pid);
14 StockBean stock = getStock(Pid);
15

16 stock.setQty(stock.getQty() - Qty);
17 if(stock.nearEmpty()) addOrder(stock);
18

19 addPrice(product.getName(), product.getPrice());
20 }

Based on the product identifier and the quantity of products, the scan method
adds the product name and price to the bill, and removes this amount of products
from the stock of the shop. scan first obtains a ProductBean entity bean, which
represents the product, followed by a StockBean entity bean, which represents the
part of the shop’s stock that contains that product. The stock is decreased, and if
it is nearly empty, an order is placed to the supplier. The method ends by having
the cash register print the name and the price of the product on the bill, using the
addPrice method, which also updates a running total within the cash register. We

225

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

do not discuss the nearEmpty, addOrder and addPrice methods here, as they are not
transactional.

The inverse of scanning a product, is returning a product at checkout time, and
this is processed through the unScan method, the code for which is below:

21 void unScan(int Pid, int Qty){
22 ProductBean product = getProduct(Pid);
23 StockBean stock = getStock(Pid);
24

25 stock.setQty(stock.getQty() + Qty);
26 notifyPickup(product);
27

28 removePrice(product.getName(), product.getPrice());
29 }

In this method the items are put back into stock, a notification is sent out to pick
up the goods at the cashier’s desk, to be restocked, the items are subtracted from the
bill, and the running total is decreased. As the code for unStock is quite straightfor-
ward, we do not discuss it further, and neither do we discuss the notifyPickup and
removePrice methods, as they are not relevant here.

Note that scan and unScan are not exactly each other’s inverse: if an order has
been placed for some products as the result of a scan, the undo of this scan, i.e.
unScan does not anull this order. This is because it can be expected that this product
will run out soon, and having the stock management application placing an order
slightly early is not a problem. Similarly, a notification to restock goods as a result of
an unScan is not rescinded by the scan method. This may lead to spurious pick-up
notifications, but again this is allowed.

We have now shown the code for the core concern of the application, which is
calculating the bill for customers and updating the stock inventory as items are checked
out. What remains is to specify the concern of transaction management, stating that
the doCheckout method is a transaction, using the relatively consistent schedules
ATMS. This is performed by the following program, written in the RCS DSL:

30 rcs Checkout.doCheckout() {
31 step Checkout.scan(int, int)
32 compensate unScan(int, int)
33 params <Pid, Qty>
34 view <"Checkout">
35 group <"Checkout">;
36 step Checkout.unScan(int, int)

226

11.3. USING RELATIVELY CONSISTENT SCHEDULES

37 compensate scan(int, int)
38 params <Pid, Qty>
39 view <"Checkout">
40 group <"Checkout">;
41 step Checkout.showTotal()
42 group <"Checkout">;
43 }

In this program, we declare that the doCheckout method is a transaction, with
three steps: the scan and unScan methods, and as a last step the showTotal method.
All doCheckout transactions belong to the Checkout group, and between scans every
doCheckout transaction allows all other doCheckout transactions to interleave. This
allows all doCheckout long-lived transactions to execute in parallel, while maintaining
consistency, as in the scan, unScan and showTotal methods, no data is shared.

Note that because the KALA code generated by the RCS DSL builds the sequence
of steps dynamically, as we have seen in 10.5, there is no constraint on the number of
sequence of steps for scan and unScan. The sequence of these steps is of no importance,
and each step may be repeated any number of times, i.e. any number of products may
be scanned, and unscanned, in any sequence. The only fixed step is the end of the
checkout process, showing the total amount due.

We have now shown the implementation of the supermarket checkout system, first
introducing the Java code responsible for stock management, and second detailing the
code in the RCS DSL, which describes the ATMS concern for this application.

Discussion

We now discuss the code given above, focusing on the separation of concerns achieved,
and considering the conciseness and complexity of the DSL code.

Using the RCS DSL we have completely separated transaction demarcation code
from the core concern of the application. The entire transaction concern is contained
within the RCS DSL program, and the Java code contains no transaction code what-
soever. In other words, again the Java code is totally oblivious to the use of an ATMS,
simply following a design which fits the RCS ATMS. Having used the relatively consis-
tent schedules ATMS, the implementation of the checkout process is kept conceptually
clean: the checkout is one transaction, and because we have used the RCS DSL, this
did not come at a significant price considering coding work. Furthermore, because we
define the doCheckout method as a transaction, we get the ability to undo the check-
out process simply by roll-backing the transaction. This will trigger the compensating
methods, effectively annulling the checkout.

The code in the RCS DSL is more complex than the code we have shown for the

227

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

nested transactions example above, but this is unavoidable as the relatively consistent
schedules ATMS requires more semantic information to be stated by the programmer.
Nevertheless the code is concise as it directly expresses the concepts used by the ATMS
(the transaction, the steps, their countersteps, visibility between steps, the type of each
step) and the relationships between these concepts. As a result, this code is still quite
straightforward to write, understand and maintain. For example, consider that a new
type of step is introduced, say processing of coupons. These are also scanned, have an
impact on the bill, and are tallied in the stock. First the code for scanning the coupon
is written, together with the counterstep, which represents handing the coupon back
to the customer. In order to include this in the doCheckout transaction, this method
is simply added as a new step in the RCS DSL.

Conclusions

In this section we have shown the use of the RCS DSL to render a checkout process in
a supermarket transactional, using the relatively consistent schedules ATMS. Every
checkout is designed as a transaction, containing two possible steps: adding items to
the bill which removes them from the stock count, or the inverse.

We have seen the code for the core concern of the checkout, which is calculating
the bill and updating stock count, and have shown the code for the transactional
aspect of this process, in the RCS DSL. Although the code in the RCS DSL is more
complex than the code in the nested transactions DSL, we can conclude that this code
is still concise as it directly reifies the concepts of the ATMS used, and their relation-
ships. Furthermore, the Java code for the checkout process is completely oblivious of
the transactional nature of this process. As a result, this code is easily written and
maintained.

11.4 Conclusion

In this chapter we have shown three examples of how our approach enables application-
specific advanced transaction management. The three examples applications we have
shown are a bank transfer operation, a shopping assistant, and a checkout process
of a supermarket. We now summarize each of these examples and give an overall
conclusion.

The bank transfer operation is the example we have used in different parts of
this dissertation. The bank transfer operation is part of a larger banking application,
which is used by cashiers to serve customers in a bank office. For this application we
solely focused on a money transfer operation between two accounts. This operation
consists of three distinct actions: first transfering the money between the accounts,
second, printing out a receipt to be handed to the customer, and third updating the

228

11.4. CONCLUSION

logs of the bank. Because printing the receipt turns the transaction into a long-lived
transaction, and the transfer operation consists of three different actions, the Sagas
ATMS is best suited for this operation. Each action corresponds to a step of the saga,
and counter-steps are both available for the transfer operation and for the printing of
the receipt. We have given a full implementation of the bank transfer operation, as
Java code, and used the Sagas DSL to let this operation be a Saga.

The second example is a shopping assistant which is part of a web-based shop
for spare parts of old-timer cars. Customers use the assistant to fill their shopping
basket with spare parts, based on a general description of the repair work they wish
to perform on their cars. Typically such work is hierarchically structured in different
phases, and a given phase may be used in different repair activities. The shopping
assistant is therefore structured as a rule-based system, each rule corresponding to
a phase of the repair. Each rule is responsible for filling the shopping basket with
the required items for that phase, and may call other rules to handle a sub-phase of
the repair activity. We found the Nested Transactions ATMS to be suited for this
application. Each rule of the application corresponds to a transaction, and will be a
child transaction of the calling rule. We have given some of the rules of the application,
written as Java code. Finally, we have shown how we can straightforwardly use the
nested transactions ATMS for these rules by writing a small amount of code in the
nested transactions DSL.

The last example we have treated in this chapter is the checkout process of a
supermarket. Each cash register scans products so as to compute the bill. As the
products are scanned, the shop inventory is updated and orders are placed to the
distributors if stock is low. Conceptually, the entire checkout process, from the first
product being scanned until the bill is paid, is one single transaction. Implementing
this as one single transaction would be disastrous, however, as the checkout is a long-
lived transaction. As a result it would be hard, if not impossible, to have many checkout
counters to operate in parallel. A counter would spend most of its time waiting for
other counters to finish their transaction before it can perform stock manipulations,
and the probabilities for deadlocks would be high. The RCS ATMS is more suitable
than classical transactions for this application. We can have each product scan as a
step in the RCS, which can be undone by an un-scan. Both these steps are member
of the same transaction type, and this type may interleave after each step. whereas
other types may not. This allows the cashiers to operate in parallel, as a cashier now
only needs to wait until another cashier has finished scanning a product, at the most.
We have shown the implementation of this checkout process. We have given the Java
code for the different scan and un-scan methods, as for the overall loop that drives the
checkout process. We also provided the code in the RCS DSL which lets the application
employ the RCS DSL.

In the three examples above, we have seen that the code concerning transaction

229

CHAPTER 11. USING DOMAIN-SPECIFIC LANGUAGES FOR ATMS

management is very concise while remaining readable. In the bank transfer example,
we have seen that using the Sagas DSL the code size is one fifth the size of when using
manual transaction demarcation code. Furthermore, in the shopping aid and checkout
example, we have argued that the code can not be made more concise as it solely
contains the concepts required for the ATMS being used.

Regarding separation of concerns, in the second example the transaction man-
agement concern was not fully separated out of the main application. This is due to
the fact that the application logic uses the fine-grained rollback structure of nested
transactions leading to a strong coupling between these two concerns. The code for the
transaction management concern is, however, separated out as much as possible, which
does aid implementation and maintenance of the application. Regarding the two other
examples, however, we achieve a full separation of concerns. Neither the bank transfer
nor the checkout example core application logic include any transaction management
code at all. In both examples, all transaction management is programmed separately,
in the DSL. Furthermore, the DSL code does not include any application logic whatso-
ever. This hugely benefits implementation and maintenance, allowing the transaction
management concern to be implemented separately from the core application logic.

We conclude that we have successfully illustrated that our approach enables the
use of an ATMS which best fits the design of the application being built. This is thanks
to the good modularization of ATMS demarcation code. This modularization not only
separates out the transaction management concern from the core application, but also
lets this code be as concise as possible. As a result, using an ATMS in an application
seems almost trivial, solely requiring a brief specification in the appropriate DSL.

230

Chapter 12
Conclusions and Further Research

“We apologize for the inconvenience”
— Douglas Adams, God’s Final Message to His Creation in

“So Long, and Thanks for all the Fish”

In this dissertation, we presented the first approach that enables the use of ad-
vanced transaction management in a multi-tier distributed system. We achieved this
by applying the software engineering techniques of Aspect-Oriented Programming and
Domain-Specific Languages. Combining these two techniques allowed us to create an
approach that is widely applicable while ensuring that the code for using such an
advanced transaction model is as concise as possible.

In this chapter we first provide a short summary of the context of the dissertation
before elaborating on our contributions.

12.1 Research Context

This dissertation is situated in the context of multi-tier distributed systems. Multi-
tier is the preferred architecture of large-scaled distributed systems which contain
a large amount of clients, and we discussed this architecture in chapter 5. Typical
examples of such systems are web banking applications and Internet shops. In general,
a large part of the applications accessible through a web browser are multi-tier systems.
Building such systems is aided by the large availability and the presence of a number of
standards for middleware. Middleware is server software which facilitates the creation
of such systems. This is performed by implementing support for common features of

231

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

these systems, such as network communications and database access. In multi-tier
distributed systems the de facto standard for concurrency management is transaction
management, and it is supported as a standard service by a built-in TP Monitor in
the majority, if not all, of middleware. This has as a consequence that the concern
of transaction management is no longer pertinent to an elite cadre of programmers.
Instead all multi-tier application programmers need to take transaction management
into account.

12.1.1 Issues with Transaction Management

The fact that transaction management is a concern for a large number of programmers
working on a large variety of distributed system raises some issues. The core problem
here is that transaction management was originally designed for one limited form
of data access, which is using simple, isolated units of work, taking a short time to
complete, that lock few data items. If this is ignored and applications use long units
of work, or units of work with a complex structure, or sharing needs to be performed
between different units of work, the transaction concept starts to break down. As a
result, application performance takes a significant hit, there is no mapping between
the structure of the unit of work and the corresponding transaction, and data sharing
can not be cleanly implemented. Multi-tier distributed systems are already faced with
these shortcomings, a testimonial to which is the fact that workarounds are present in
the community to handle this issue. These workarounds address the mismatch between
the concurrency management properties as offered by transaction management and
the concurrency management properties required by a particular application.

Instead of using workarounds to match the required concurrency management
properties to the provided properties, it is better to provide a fundamental solution
to address this mismatch. Such a fundamental solution already exists in the form
of advanced transaction models (ATMS). Many of such models have been developed,
mostly between 1981 and 1997, and we discussed these in chapter 2. In these chapters
we noted that each of these models addresses one specific set of issues of transac-
tion management (which we term classical transaction management). Using such an
advanced model allows for a fundamental approach to address the mismatch in con-
currency management properties, i.e. we can match the design of the model to the
design of the application such that the concurrency management properties match.
We find, however, that ATMS are not used to achieve such a match, an observation
which has also been made by other researchers, as we remarked in chapter 2.

232

12.1. RESEARCH CONTEXT

12.1.2 Demarcation code

An important hurdle to take in adapting ATMS is the complexity of demarcation
code. Demarcation code is the code of the application that instructs the TP Monitor
where transactions start and end, and what operations on the data are included in
the transaction. A known problem with demarcation code for classical transactions
is that it crosscuts the application structure, i.e. it cannot be separated out from
the application and placed into one module using traditional software engineering
techniques. The crosscutting nature of demarcation code runs contrary to the software
engineering principle of separation of concerns, which we discussed in chapter 3. Not
obeying this principle makes the code hard to implement and maintain. A prominent
technique to address the issue of crosscutting code is Aspect-Oriented Programming
(AOP), which we also discussed in chapter 3. AOP has already been used to modularize
demarcation code for classical transactions and we reviewed this work in 3.2. This work
has significantly eased the task of using classical transactions in an application, but
does not address ATMS. Demarcation code for ATMS is much more complex than
classical demarcation code, as it needs to provide more instructions to the TP Monitor.
Therefore, ATMS demarcation code will benefit even more from such a modularization,
highly easing implementation and maintenance of such code.

An alternative technique addressing the crosscutting nature of transaction de-
marcation code is the technique of declarative transaction management in the EJB
middleware standard. We described the EJB standard and declarative transaction
management in 5.3, and analyzed its claims concerning separation of concerns. We
found that in this technique separation of concerns is only present in the most trivial
cases. Instead, in a realistic setting, separation of concerns is only partially achieved. In
contrast to AOP, however, research has been performed to provide support of ATMS
in declarative transaction management, and we also discussed this work in 5.3. This
work has some important downsides in that it inherits the separation of concerns is-
sues of declarative transaction management, and only allows for a limited support of
ATMS.

The large volume, complexity and cross-cutting nature of demarcation code for
ATMS hinders development and maintenance of the application being built. This
significantly impedes the adoption of ATMS in multi-tier distributed systems. We need
to address this issue to enable use of an ATMS in multi-tier distributed systems. To
make demarcation code for ATMS easier to write and maintain, a good modularization
of this demarcation code is required. This modularization needs to be general enough
to cover a wide variety of ATMS. Furthermore, this also needs to be straightforward
to use. As a result it will be possible, given an application, for an average multi-tier
distributed systems programmer, to use an ATMS of which the design best fits the
design of the application.

233

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

12.2 Contributions

The goal of this dissertation is to allow an application programmer of a multi-tiered
distributed system to use an ATMS the design of which is best suited to the design of
the application. To the best of our knowledge, this is the first time that the software
engineering techniques of AOP and the use of a DSL have been used to address the
use of an ATMS by application programmers.

Allowing application programmers to effectively use ATMS in multi-tiered dis-
tributed systems has the potential to restart the research on ATMS. As we have
noted in chapter 2, between 1997 and now no fundamental research has been per-
formed in this area. Recently, some efforts have been made to apply this research in
a more contemporary setting, but these fail to address the application developer’s
perspective. We state that as long as using an ATMS is difficult, history will simply
repeat itself and this research area will again fall dormant. By significantly easing the
use of ATMS, however, these advanced models can be used and will be applied in
new settings, which will spawn the creation of new models, restarting the research on
ATMS.

We have achieved the goal of allowing application programmers to use an ATMS
through a good modularization of demarcation code for ATMS and a concise specifi-
cation mechanism for this code. We have a good modularization of demarcation code
for ATMS because:

• We achieve a maximum separation of concerns for the transaction management
concern.

• We support a wide variety of ATMS.

• We allow new ATMS to be created when needed.

Furthermore, the specifications of the use of an ATMS in an application are as con-
cise as possible. This is because such specifications reify the concepts present in the
ATMS, instead of the complex technical implementation. We elaborate on both these
contributions next.

12.2.1 AOP to Modularize ATMS

Using AOP, we achieved a good modularization of the concern of using an ATMS
in the application at hand. This modularization completely separates out the ATMS
concern as an aspect for the application, providing the application has been designed
with the usage of an ATMS in mind.

Our modularization features total obliviousness of the transaction management
concern by the code for the base application concern within the transactional method.

234

12.2. CONTRIBUTIONS

No code for transaction management can be found in the code for the base concern
if the design of the application takes transaction management into account. If all
persistent data is stored in the database and no irreversible side-effects are present
when executing an advanced transaction, the code is oblivious of the transaction
management concern.

The only interaction between the transaction management concern and the base
application concern is present in the caller of a transactional method. If the transac-
tion rollbacks, the caller will be informed of this through an exception that has to be
handled. Note that in 3.2 we have discussed a way to mitigate this, for classical trans-
actions, through a more powerful aspect. This aspect also allows for the handling of
rollbacks in the aspect definition. As a result, this part of the transaction management
concern is also modularized to a certain extent.

Not only does our modularization feature obliviousness, it is also effective for a
wide variety of ATMS. This allows a possibly large number of ATMS to be defined
as an aspect using our approach. We require the ability to capture a large variety of
ATMS as many ATMS have been published, each of these addressing only one specific
set of drawbacks of the classical transaction model. To have an ATMS that suits the
application at hand therefore requires the ability to choose one from this wide variety,
or even to create a new ATMS if needed.

Tackling Tangled Aspect Code

We enabled the separation of the code for the ATMS concern itself into different
modules, to allow the creation of a new ATMS. This allows for easy modification of
an existing ATMS or creation of a new ATMS, when needed. Such modularization
of the ATMS aspect itself is required as an ATMS can not be considered as one
monolithic concern, as we analyzed in chapter 4. We have analyzed several ATMS
and have shown that these consist of a combination of several (sub-)concerns, such as
treating rollbacks, managing views and performing delegation. We have also shown
that current, popular aspect languages used to modularize transaction management
as an aspect do not provide adequate support to decompose the ATMS aspect into
different modules. Instead, these tools require the code for the ATMS aspect itself
to treat different concerns in a tangled way, a phenomenon which we called tangled
aspect code in chapter 4. We therefore conceived an aspect language and weaver which
successfully tackle this issue.

To the best of our knowledge, this is the first case where an aspect itself has
been established to be composed of different cross-cutting concerns. This shows that
the technique of separating a cross-cutting concern into an aspect can be applied
recursively. The aspect itself may contain different cross-cutting concerns that are
best separated into higher-level aspects. These then need to be combined to form one

235

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

complete aspect definition. We note that this idea appears similar to the concept of
aspects on aspects [VC05], but this is not the case. In aspects on aspects, multiple
crosscutting concerns at the level of the base code are created as aspects. In tangled
aspect code, multiple crosscutting concerns are present at the level of the aspect code.

KALA: Kernel Aspect Language for ATMS

We have designed an aspect language that does allow for the ATMS aspect itself to
be modularized into the different concerns present. This language is called KALA,
which stands for Kernel Aspect Language for ATMS, and was introduced in chapter
8. KALA provides support for a wide variety of ATMS, because it is based on the
ACTA formal model for ATMS. The ACTA model, which we discussed in chapter 6
is an existing formal model known within the ATMS community, that allows for a
formal specification of a wide variety of ATMS.

We have shown that KALA allows for a clean modularization of the different
concerns within an ATMS by implementing the use of three existing ATMS in a
modular fashion and creating a new ATMS. Concretely, in chapter 9, we implemented
the use of the Nested Transactions, Sagas and Relatively Consistent Schedules ATMS,
each in different KALA modules. This has given a first illustration of the benefit of
modularizing ATMS code as the last ATMS we implemented could be implemented
by adding two modules to the Saga definition. Also, we created a brand new ATMS:
Cooperating Nested Transactions, by modifying a subset of the modules of Nested
Transactions, again showing the benefit of this modularization.

The ability to use a wide variety of ATMS or to create a new ATMS by either
modifying an existing ATMS or building a new ATMS from scratch shows KALA
to have a wide applicability. This then allows an ATMS to be chosen of which the
properties best fit the properties of the application being built. However, given the
choice of an ATMS, writing KALA code to use this ATMS turns out to be extensive
and complex work. We have significantly eased this using domain-specific languages.

12.2.2 Engineering of DSLs for ATMS

KALA is an aspect language which covers the domain of ATMS, and this flexibility has
as a consequence that KALA code treats the implementation concepts of an ATMS.
Writing KALA code entails combining these implementation concepts in a specific
way to build behavior which corresponds to the ATMS being used. This has as a cost
that KALA definitions are very extensive and complex, and a large amount of KALA
code duplication occurs when using an ATMS within an application.

Not all application programmers, however, want to define a new ATMS. Most
simply use an existing ATMS for the application being built. In other words, few

236

12.2. CONTRIBUTIONS

application programmers need to be exposed to the implementation details of the
ATMS that is being used. Instead they will want to work with the concepts being
used by the ATMS, and ignore the implementation details. We make this possible
through the use of domain-specific languages.

Model-specific Languages

We have designed a family of domain-specific languages (DSLs), each language ad-
dressing a specific ATMS. This family of DSLs was introduced in chapter 10. By
designing each language specific to one ATMS, each of these languages solely reflects
the concepts of that ATMS ensuring the code written in this DSL is as concise as
possible. Furthermore, we have a family of DSLs, where for each ATMS concept one
syntax is used. This allows for reuse of the skill-set of the application programmer:
as the same concept is always denoted identically, knowledge of this concept in one
ATMS is straightforwardly transferable to other ATMS.

By defining five DSLs in our language family, we have shown that writing ATMS
code using the DSLs we created is as concise as possible and allows for reuse of a
programmers’ skill-set. We have implemented DSLs for classical transactions, Nested
Transactions, Sagas, Relatively Consistent Schedules and Cooperating Nested Trans-
actions. For each DSL we have argued why code in this language is as concise as pos-
sible. An illustration of this is the DSL for Cooperating Nested Transactions, which
is the same as for Nested Transactions, as both are composed of the same concepts.
These two DSLs also illustrate the benefit of having a language family: as both DSLs
treat the same concepts, the syntax for both languages is the same. This allows an
application programmer with knowledge of the one language to use the other language
immediately.

The use of DSLs significantly eases the use of an ATMS, which results in a higher
productivity and maintainability of the application. We illustrated the ease of imple-
mentation by showing the code for three example applications in chapter 11, each
using a different ATMS.

Extensibility: Engineering of ATMS

The DSLs in our language family are built on top of KALA: programs written in such
a DSL are translated to the equivalent KALA code when weaving. This allows the
easy treatment of a new ATMS. First the ATMS is written as KALA code, which is
eased by the modular specification of ATMS in KALA. Code for the new ATMS can
reuse some of these modules, modifying them or adding new modules. Second, as we
have the KALA code for the new ATMS, the DSL compiler does not need to perform
any aspect weaving. Instead of weaving, the DSL compiler only needs to produce the

237

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

equivalent KALA code. Weaving is then taken care of by the KALA weaver. This
makes the DSL compiler much easier to implement.

An illustration of the extensibility of our approach is the creation of a new ATMS:
Cooperating Nested Transactions (CNT), and its DSL. CNT was first defined, in
chapter 9 as KALA code. In this definition, the modularity of KALA specifications
allowed us to straightforwardly reuse and modify parts of the Nested Transactions
ATMS. Second, a DSL for CNT was created, in chapter 10, translating DSL code to
the equivalent KALA code.

12.2.3 Technical Contributions

Two technical contributions have been made to achieve the above result.
First, so as to be able to use an ATMS in a multi-tier distributed system, the

middleware needs to provide support to use this ATMS in its TP Monitor. We have
enabled this by building a general TP Monitor for ATMS, called ATPMos, based on
the ACTA formal model. We gave an overview of this TP Monitor in chapter 7, and
detailed the interface it exports to the application. Having a single TP Monitor sup-
port a wide variety of ATMS instead of having one TP Monitor per ATMS allows an
application to use multiple ATMS at the same time, where each ATMS best suited
to one particular part of the application. Furthermore, advantages made to the im-
plementation of ATPMos immediately benefit all ATMS, which is not the case if we
have one TP Monitor per ATMS.

Second, an aspect language such as KALA has no use if programs in this language
can not be woven into the base code by an aspect weaver. Therefore, KALA is accom-
panied by an aspect weaver, which proves that KALA specifications are translatable to
the equivalent demarcation code. We give an outline of KALA specifications are trans-
lated to the equivalent Java code in chapter 8, which allows for other implementations
of such a weaver to be built.

12.3 Future Work

As any research endeavor, this work opens avenues for future work, both conceptually
and technically. We see five major avenues for such work, which we discuss in this
section. First we consider a structured approach to choose an ATMS for a given appli-
cation. Second, we extend the domain of this research to also include multi-database
systems and workflow management applications. Third, we consider the phenomenon
of tangled aspect code, looking for a general solution. Fourth, we envisage more sup-
port for writing KALA code. Fifth and last we consider further extending KALA.

238

12.3. FUTURE WORK

12.3.1 A Structured Approach to Select an ATMS

In chapter 11 we illustrated how applications can be built using an ATMS the design
of which best fits the design of this application. We have, however, not considered the
decision process which leads to the choice of a particular ATMS for the application
at hand. For each example, we have matched the ATMS to the application in an
unstructured way. It would be better to have a more structured approach to match
an ATMS to a given application. The aim would be to have some methodology which
eases the choice of ATMS, so that the best ATMS for a given application is found.
To allow this, we propose that all ATMS be analyzed to determine their transactional
properties. Based on these properties, a classification of the ATMS can be made. For
a given application, the required transactional features of the application can than be
used to look up the ATMS in the classification. If no fitting ATMS can be found, this
classification is useful to find a number of ATMS which at least exhibit some of the
required transactional properties. These can then serve as a basis to develop a new
ATMS, reusing the appropriate parts of the different ATMS.

12.3.2 ATMS for Multi-Database and Workflow Management

We noted in chapter 2 that ATMS are not solely restricted to single-database multi-
tier distributed systems. A significant amount of research on ATMS has also been
performed for multi-database systems and workflow management systems. Both these
areas pose significant additional requirements over single-database systems, and there-
fore we did not address such systems here.

Our approach for modularization of ATMS demarcation code can, however, also
be applied in these domains. We therefore give a brief introduction to these domains
and speculate how our work is applicable here. We start with Multi-Database support
before treating workflow management.

Multi-Database support

Multi-Database Systems (MDBS) are typically the result of an integration process:
an application is created, that uses a number of, pre-existing, heterogeneous Local
Databases (LDBS), to provide an integrated view of that data. In such systems, the
integrated system does not replace all existing systems: local applications continue
to run on the LDBS, and therefore these databases may not be unduly modified
[KPE92]. As a result, the most important requirement for MDBS is that some form
of local autonomy for these LDBS must be guaranteed.

A classical example of MDBS is a travel agency application [ELLR90, KPE92]:
This application provides an integrated way in which a travel agent can book a trip,

239

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

which consists of airline bookings, hotel reservations and possibly a rental car reser-
vation. For each of these three steps, the databases of multiple companies are queried
for availability, and depending on the clients’ choice, bookings are made.

The MDBS transaction management system will break down the global transaction
into a number of local transactions, submitted to the corresponding LDBS. Control of
these transactions should be distributed to avoid bottlenecks, minimizing the global
transaction duration. Even so, the global transaction will last significantly longer than
the local transactions [KPE92], making the global transaction a long-lived transaction.
Mind, however, that simultaneously with the global transaction, the local applications
will still be accessing the local database. Therefore it is important to avoid that locks
on the LDBS are held for a long period. However, while releasing such locks early
increases concurrency, it also introduces the risk that the integrity constraints of the
global, virtual, database are broken.

A well-known ATMS for multi-database systems is Flex Transactions[ELLR90,
KPE92]. In Flex, a global transaction is split in different steps, as in Sagas. Three
semantic extensions are added to the Sagas model, however: flexible transactions,
mixed transactions and execution time. Flexible transactions allow the user to specify
a number of alternative subtransactions for a given task, to be executed on a different
database. Mixed transactions contain subtransactions that can be compensated and
subtransactions that cannot. The first group will be committed when finished, the
second group will only be committed when the global transaction commits. Execution
time attaches a timeframe when a transaction may run at a LDBS. If the timeframe
has passed, the subtransaction will fail.

We could design an aspect language targeted to this specific domain (as KALA
is targeted to single-database ATMS), using the Flex model as a guideline. This new
language would, however, not be able to reuse all of the features of KALA. For exam-
ple, to set views and perform delegation require the LDBS to support these features.
Furthermore, performing delegation of operations performed on one LDBS to another
LDBS will be hard, if not impossible, due to the local autonomy. So therefore, views
and delegation should be disallowed. An exception might be made if both source and
destination transaction run on the same LDBS which is known to support setting
of views and performing delegation. To implement flexible transactions, KALA de-
pendencies and autostarts could be reused, in an extended form. They would specify
alternative transactions for a given transaction and specify how to choose which trans-
action (out of all the alternatives) to commit, and which to abort. Committing only
one transaction of a group is not supported in KALA, so some extension will have
to be made to allow this. Considering mixed transactions, for a given transaction,
dependencies and autostarts currently are used to specify compensating transactions,
implicitly declaring the transaction to be compensatable. It would be better to have
an explicit specification in the language, so the MDBS can easily identify compensa-

240

12.3. FUTURE WORK

table transactions and immediately commit them. Finally, attaching execution time
to a transaction is not implemented in KALA. A specification mechanism for this will
have to be designed and added to KALA.

Workflow Management

In contrast to MDBS, there is no straightforward definition given of workflow man-
agement systems (WFMS). The description we give here is compiled from [RSS97,
WS97, AM97]. Workflows are activities that result from an organizational process,
often involving human and automated tasks. The workflow comprises the coordinated
execution of these tasks. A WFMS automates coordination and control of, and com-
munication and coordination between the tasks to satisfy the requirements of the
organizational process. Example application areas for WFMS are office automation,
computer supported cooperative work, and the ever-elusive paperless office. Workflow
management is currently of considerable importance in the research on web-services,
as such workflows are used to compose different services into one application.

As a token to the ambiguity of the definition of WFMS, the example application
used in [WR92] is the same travel agency application we used above. Only here,
emphasis is made on the dependencies between the different transactions. For example,
if a client books a flight with a given airline he will get a discount on a rental car of
a certain agency, which can not be modeled in a MDBS.

There are some disagreements regarding the applicability of ATMS for WFMS
[WS97]: On the one hand, various researchers of the database community view work-
flows as an extension of ATMS. On the other hand, there are researchers who maintain
that the requirements of the organizational processes are too rich with regard to mod-
eling, coordination and run-time requirements to be able to be modeled by ATMS.
Furthermore, while recovery by use of roll-backs is admissible for most ATMS, WFMS
are known to also use roll-forward for recovery.

We do not wish to take sides in this debate here. We note that research exists
applying ATMS for WFMS, and we now outline a well-known ATMS: the ConTracts
model [WR92]. ConTracts addresses control flow dependencies and other semantic
dependencies between individual, short transactions, by providing for an execution
script for these transactions. In other words: a ConTract executes predefined steps
(usually in the form of transactions), according to the control flow description given
in a script. The script programming language is similar to parallel programming lan-
guages [WR92]. It allows for parallel execution of steps, sequences of steps, branches
and loops of steps. Lastly, to be able to undo steps, compensating steps for each step
need to be defined, and each step may be preceded by an entry invariant that must be
met before the step will be executed. Forward recoverability of ConTracts is explicitly
addressed in [RSS97], using recoverability at the step level and at the script level. At

241

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

the step level, if active steps are a transaction, they are rolled back, if not, manual
intervention by an administrator is required. At the script level, a ConTract is forward
recoverable: the state of the script is recovered, and each active step is recovered. After
this phase, the ConTract will simply resume its execution.

Having a separate script for the specification of dependencies between different
transactions of the workflow already provides for a separation of concerns. The code
for the application logic is not polluted with execution script code. However, declar-
ing methods as transactional is still performed by traditional demarcation code, which
results in poor separation of concerns overall. It would be interesting to combine the
script feature of ConTracts with KALA. This would result in a better separation of
concerns, and also add the abilities of KALA regarding views and delegation to the
workflow. Considering dependencies, we are unsure of the combination of a script
language and KALA dependencies. The script may remove the need for KALA de-
pendencies, but this will have to be investigated further.

12.3.3 Tackling All Tangled Aspect Code

This research uncovered, to our knowledge, the first case of where an aspect is itself
composed out of multiple cross-cutting concerns. We termed this phenomenon tangled
aspect code. We speculate that the concern of ATMS is not the only concern in which
tangled aspect code is present. Indeed, if an aspect itself is complex enough to be
composed out of different concerns, the possibility of tangled aspect code is real.

We have been able to tackle tangled aspect code through the use of domain knowl-
edge. KALA was specifically designed for the ATMS domain, and to provide for mod-
ularization of tangled aspect code for this domain. Important research questions now
are:

• Can we identify other complex aspects that suffer from tangled aspect code?

• For these complex aspects, are there domain-specific solutions to modularize this
code?

• Is there a general way in which tangled aspect code can be tackled?

The first two items will require extensive and in-depth research of known aspects
and of aspect candidates. We will need to determine if these are also composed out
of different sub-concerns that, when combined, form tangled aspect code. For each of
these aspects, a domain-specific solution may be possible, but it would be better if
we could find a more general solution that provides relief for multiple aspects. This
would give us a general two-level aspect mechanism. At the first aspect level an aspect
is separated from the base code, and at the second aspect level the concerns within
these aspects would be separated from each other.

242

12.3. FUTURE WORK

Furthermore, the modularization process need not stop at the second level of
aspects. There is no guarantee that a concern at the second level is monolithic. This
concern can again be composed out of different concerns, and again we cannot be sure
that there is no tangled aspect code at this level. In other words, a possible third
level of aspects cannot be ruled out, and theoretically these levels can continue at
infinitum. An interesting question here is about the nature of the aspect weaver at
the third (and superior) levels. Is the aspect weaver for the third level the same as the
weaver for the second level? If not, we have a clear distinction between aspect levels.
If the weaver is the same, the levels are not clearly delineated. We could argue that
third and superior levels are equal to composition of aspects at the second level.

It would be worthwhile to examine the aspects that suffer from tangled aspect
code identified above, to determine the presence of such superior levels of aspects. We
can first search for domain-specific solutions to modularize third-level aspects, and if
successful consider generalizing the approach. For example, for the ATMS concern, we
have not yet identified third-level aspects. However, we suspect that such cross-cutting
code can be modularized using KALA modules. Therefore we do not need a separate
weaver for third level aspects, and such superior levels are equal to the second level.

12.3.4 Tool support for KALA

In order to develop a new ATMS, the properties of this ATMS will have to be written
down as KALA code. KALA, however, currently does not provide much support for
development. We propose three points of interest to aid in developing KALA code:
first a better form of error-handling, second more support for debugging, and third
verification of dependency specifications.

Runtime error-handling in KALA is non-existent at the moment: KALA fails
silently. If a dependency, view, delegation or termination is specified with an inap-
propriate argument, this specification is simply skipped silently. This is because name
lookup for a transaction or a group of transactions returns the null transaction or an
empty group when the lookup fails. On the null transaction and an empty group, de-
pendency, views, delegation and termination are defined to have no effect. We cannot
be sure that performing such operations on the null transaction or on an empty group
is an error, however. An example of the correct use of this feature is the RCS definition
in chapter 9, where this is used to allow the sequence of compensating transactions to
be determined at runtime. A second case is the rebinding of a name of a transaction:
no error is produced if an existing name for a transaction is overwritten, yielding a
new transaction identifier for that name. Again, this can be an error, or this can be
intentional. Therefore, we can not signal an error when dependencies, views, delega-
tion and termination are performed with the null transaction or an empty group as
argument, or if a transaction name is overwritten. Instead, what should be possible is

243

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

to log these events. If the application behaves erroneously, the log can be used to help
determine the cause of the errors.

Currently, support for debugging KALA code is non-existent. However, as KALA
code is woven into the Java code by source-code transformations, it is possible to use
a Java debugger to observe the effects of KALA specifications. This can be aided by
providing extra contextual information in comments interspersed throughout the code
generated by the weaver. Furthermore, we can consider integrating the KALA weaver
into an extensible Java IDE, such as Eclipse, as is performed in AspectJ [Asp05]. This
integration could then also modify the debugger to show the appropriate KALA code
instead of the annotated Java code when applicable.

Specifying dependencies in KALA is arguably a difficult task, especially if the
network of dependencies becomes complex. Such a complex web of dependencies is
difficult to model mentally and might lead to errors such as making it impossible for
transactions to commit or abort. We have found a means to provide an explicit model
of dependencies when implementing ATPMos, our TP Monitor for ATMS. In ATPMos,
we model the dependencies of transactions using Petri nets [Pet77], and we discuss
this in appendix A. Using Petri nets has advantages not only for ATPMos but also
for specifying dependencies. Petri nets are represented graphically and drawing such
an explicit representation of the dependencies allows the KALA developer to obtain a
better picture of this network. Furthermore, Petri nets can be simulated, showing how
the network of dependencies and the state of transactions evolves over time, and tools
are available which perform such simulations graphically. Finally, an interesting feature
of Petri nets is the ability to perform reachability analysis. Reachability analysis takes
a net as input, i.e. a group of transactions and a network of dependencies between
them, and determines if it is possible for this net to reach a certain state, for example,
for all transactions to either commit or abort. Therefore, to aid in specification of
dependencies, a tool can be built that uses Petri nets as a model, giving a graphical
simulation of dependencies, and determining if certain errors will occur by performing
reachability analysis.

12.3.5 Extending KALA and ATPMos

At the end of our discussion of the ACTA formal model in chapter 6, we have analyzed
which of the ACTA features were not essential for a first implementation of this model
in ATPMos. As a result, we have chosen to simplify the implementation of ATPMos
somewhat, and correspondingly do the same for KALA. It is worthwhile to consider
extending both KALA and ATPMos with features that were omitted, which we discuss
here. Extending KALA and ATPMos will broaden their scope, i.e. we will be able to
support a wider variety of ATMS. As the possible list of ATMS is open-ended, we can
however not assess the impact of adding these features.

244

12.3. FUTURE WORK

View Traversal Ordering

The first extension we consider is adding a view traversal order. As we have men-
tioned in chapter 6, ACTA allows for the definition of the ordering of the views of
a transaction. This allows for a transaction to explicitly prefer the view of a given
(group of) transaction(s) over another view, i.e. it will first attempt to access data
using the view on the former before considering the view of the latter. As we have
remarked in chapter 6, none of the ATMS for which an ACTA specification is avail-
able uses the view traversal order and therefore we omitted it. This could however
be added in KALA by the use of a viewTraversal statement, which takes a list of
transactions and transaction groups, and sets the view traversal to the ordering given
in this list. This ordering can then be observed by the locking algorithm of ATPMos
when acquiring locks, after a few modifications to this algorithm have been made.

Delegation Operation Selection

A second extension concerns delegation. In ACTA not necessarily all the operations of
the source transaction are delegated to the destination transaction. We have, however,
chosen to delegate all the work so as to simplify the implementation of ATPMos and
KALA. To enable KALA and ATPMos to only partially delegate the work from one
transaction to another transaction, we first need the ability to determine what part of
the work should be delegated. In other words, we need to be able to tag operations, so
that later they can be identified as having been included in the delegation. In ATPMos
this is easily performed by adding an extra tagging parameter to each read or write
call, and to the delegation operation. Each read or write then tags the operation,
and when delegating the tag of the operations to be delegated is given. In KALA,
however, this is more intricate. We can easily add a tag specification to the delegation
operation, but we have no means to tag individual operations of the method. To tag
individual operations, we need to target specific data accesses within the body of the
method, which is not supported by KALA. This is because the join-point model of
KALA is too simple: we can only specify join points targeting the start and the end of
the method, and not specific data accesses, i.e. statements, in the method. To enable
this, we require statement joinpoints, for example as proposed by Kellens and Gybels
[KG05]. Using these joinpoints we can then target specific operations within the body
of the method and tag these for later delegation.

Finer-grained Timing of Specifications

The concept of statement joinpoints also opens other horizons. We have now only
been able to specify dependencies, views, delegation and termination at three specific
points in the life-cycle of a transaction: begin, commit and abort time. Using statement

245

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

joinpoints allows us to provide such specifications at any point of the execution of the
body of the transaction. Specifying dependencies, views, delegation and termination
is straightforward, as ATPMos already provides support for such specifications at any
moment in the life cycle of a transaction. We could, however, also consider having
dependencies themselves consider points in the execution of the transaction instead
of only placing relationships between begin, commit and abort of two transactions.
This will require more work, as the dependency mechanism of ATPMos currently only
supports the definition of dependencies that consider begin, commit and abort time
of the transaction. To realize this requires a redesign of the dependency mechanism
of ATPMos, which will also impact how KALA code interacts with this dependency
mechanism.

Adding Exception Handling

Finally, a last extension to KALA we envisage is adding the ability to state exception
handlers for transactional exceptions in KALA. This is similar to our work, discussed
in 3.2, where the aspect definition of a transactional method allows for the inclusion
of exception handlers. The purpose of these exception handlers is to catch exceptions
related to transaction management, for example the occurrence of a rollback.

This research was not performed in KALA, but was limited to classical trans-
actions. Technically, including this work in KALA should be straightforward. Care
should be taken, however to consider the conceptual interaction between handling a
transactional exception and the global rollback strategy of the advanced transaction
model.

More Powerful Crosscut Specifications

As we have noted in chapter 11, when discussing the use of Nested Transactions, our
crosscut specifications can become needlessly extensive if the same transactional prop-
erties apply to multiple methods. As we have shown, this requires the same properties
to be repeated multiple times, as we show in the example below, taken from 11.2:

1 trans SARuleSet.replaceBallBearingAft() extends caller;
2 trans SARuleSet.getPart() extends caller;
3 trans SARuleSet.bleedBrakes() extends caller;
4 trans SARuleSet.dissassembleRearAxleHalf() extends caller;

It would be better to be able to use some form of wildcarding, for example as is
performed in our previous work [Fab04b], to make the above specification more concise.
For example, we could specify the above as follows (where the second line indicates
that removeRearAxleBlockingComponents should not be made transactional).

246

12.3. FUTURE WORK

1 trans SARuleSet.*() extends caller;
2 trans SARuleSet.removeRearAxleBlockingComponents() exclude;

247

CHAPTER 12. CONCLUSIONS AND FURTHER RESEARCH

248

AppendixA
ATPMos Implementation

The TP Monitor we built is called ATPMos (ATMS TP Monitor), and its implemen-
tation is sketched in this appendix. The focus of ATPMos is to provide an interface
for ATMS, inspired on ACTA, to client programs, i.e. the middle tiers in multi-tier
systems.

The first version of ATPMos was built earlier and was intended as a TP Monitor
for classical transactions, therefore it did not provide support for any ATMS. The
implementation of ACTA concepts that were missing was realized as a later step. In
view of this, we first discuss how we designed ATPMos to support classical transac-
tions and the interface to the application programs. Subsequently we show how the
implementation of ACTA concepts was added, and the extensions to the interface.

A.1 Classical Transaction Management

In this section, we introduce the first version of ATPMos, our TP Monitor which
supports a wide variety of ATMS. This first version, however, was built as a classical
TP Monitor, and does not provide any support for ATMS. This is because ATPMos
was originally developed to perform research on a cleaner separation of concerns for
transaction management in EJBs [Fab04b] and to investigate default failure handling
mechanisms for transaction rollback [Fab04a].

ATPMos is designed as a TP Monitor for EJB Entity beans. We assume that
state is contained within such objects and that state modification happens through
getter and setter methods. As a consequence, concurrency management is performed
when these methods are called: calling a getter or setter on an Entity Bean, when
in a transaction, requires that first a call is made to ATPMos. These calls inform
ATPMos that a read or write will be performed, and contain as parameters the current

249

APPENDIX A. ATPMOS IMPLEMENTATION

transaction identifier, the object and the field on which the read or write occurs.
Internally, ATPMos uses a locking strategy to determine if this operation is allowed,
acquiring locks if necessary. If the operation may proceed, the call will simply return.
If the operation is not allowed at the moment, i.e. the required lock could not be
acquired, the call will either block, until the lock is acquired.

We will now discuss the design of ATPMos in more detail, starting with an overview
of the significant classes within ATPMos, before detailing how these classes interact
to perform lock-based transaction management.

A.1.1 Class Layout

We start our discussion of the design of ATPMos by describing the major players in
the class structure, as shown in the UML class diagram in figure A.1.

In ATPMos, all transactions are uniquely identified by an Integer object. All calls
to ATPMos must include this identifier to indicate what transaction is the target of
this operation. ATPMos knows of one ‘special’ identifier, the Integer zero, which is
used to indicate the null transaction. The null transaction will never run, and therefore
never keeps locks, and will never commit nor abort. Calls with as transaction identifier
zero, i.e. pertaining to the null transaction, will therefore have no effect.

TransactionManager is the main entry point into the system. It is a Singleton, and
all clients access it to either perform transaction primitive operations or before
reads and writes. Of note is the begin method that starts a new transaction
and returns an Integer object which is a unique identifier for this transaction,
to be used in all subsequent communications between ATPMos and the client.

TransactionContext contains all transactional information for a given transaction.
First, it keeps all locks on Resources held by the transaction. Second, it main-
tains a list of all other TransactionContext objects on which this context is
waiting, which occurs if it wants to obtain a lock that first has to be released by
them. Third, it keeps a record of all original values in the database that were
modified by this transaction. This allows them to be restored in case of rollback.

ResourceTable reifies all the data that is currently being accessed by transactions.
Read and write requests pass through here, as we will see in the next section, and
the table decides if locks should be acquired. Failure to acquire a lock is handled
differently, depending on which subclass of the table is instantiated in ATPMos.
The RestartingTable throws an exception, signaling that the transaction has
to restart from scratch, while the BlockingTable blocks until the lock can be
acquired.

250

A.1. CLASSICAL TRANSACTION MANAGEMENT

TransactionManager

Integer newID();
void begin(Integer id);
Integer begin();
void commit(Integer id);
void rollback(Integer id);
void read(Integer id, Object key);
void write(Integer id, Object key,
RestoreData res);

TransactionContext
Integer id;
Locker[] waitingFor;

void backup(Object key,
RestoreData res);
void commit();
void rollback();

*

ResourceTable

void read(Object key,
TransactionContext ctx);
void write(Object key,
TransactionContext ctx);

1

LockConflict

String requiredForRead(
String currentlock);
String requiredForWrite(
String currentlock);
Locker[] getConflicts(String
currentlock, Lockers hold);

Resource
Object key;

void lock(TransactionContext ctx,
String type);
void unlock(TransactionContext ctx);

*

1

*

*

Lock

DeadlockDetector

TransactionContext getDeadlocker (
TransactionContext ctx, Locker[] conflicts);

1

BinaryLock ReadWriteLock

BlockingTable RestartingTable

Figure A.1: UML class diagram of major classes in first version of ATPMos

251

APPENDIX A. ATPMOS IMPLEMENTATION

DeadlockDetector implements a wait-for graph [CDK94] deadlock detection algo-
rithm, to determine if a deadlock has occurred. If this is the case, a transaction
involved in the deadlock will immediately be rolled back. This process is repeated
until the deadlock is broken.

Resource represents one datum in the database, and keeps the lock information for
that datum: which TransactionContexts keep a lock on that datum, and the
nature of that lock.

LockConflict abstracts over different possible locking strategies that may be used
by defining the required operations to allow this. The basic locking strategy is
implemented in BinaryLock, while shared and exclusive locks are implemented
in the ReadWriteLock class.

We did not include relatively minor elements, such as RestoreData and Locker
here, as their purpose can be easily inferred from the context.

With the major players known, we can now proceed with discussing how they
interact to provide transaction management.

A.1.2 Interactions

To complete our discussion of the design of ATPMos, we will now detail how the
classes we introduced above interact. To show this interaction, we describe the control
flow within the system for the beginning and ending of a transaction, as well as the
read and write calls.

Beginning and Ending Transactions

To start a transaction, the client first needs to obtain a unique identifier for that trans-
action, by calling the newID method on TransactionManager, which will return an
Integer object. Internally, this identifier is generated by a simple increasing counter.
To start the transaction, the begin method is called, with as argument the identifier.
A new TransactionContext is created with that identifier, and kept in a dictionary
with as key the identifier. For convenience, a second begin method is included, which
takes no arguments, to perform the above two steps in one go.

A transaction is ended either by a call to commit or to rollback, which we both
discuss next. To commit a transaction the TransactionManager will first obtain the
indicated TransactionContext and tell it to commit. This simply boils down to re-
leasing all the transactions’ locks and therefore the TransactionContext iterates over
the Resources it holds, and tells each to release the lock it holds. As a result of the
locks being released, TransactionContexts waiting to obtain these locks will be no-
tified of this release, and will attempt to acquire the lock, as we will discuss later.

252

A.1. CLASSICAL TRANSACTION MANAGEMENT

To rollback a transaction, we cannot simply release the locks, as data may have
been modified through writes, and these modifications have to be undone. Therefore,
there is one change from the sequence above: the TransactionContext first uses the
backup of old values it has kept, as we will see later, to restore the data to its original
values before releasing all the locks.

Data Access

This section is the core of the concurrency strategy: while running inside a trans-
action, each call to a getter or a setter on the data is prepended by a call to the
TransactionManager. This indicates a read or write is about to occur on a given da-
tum, within a given transaction. Depending on the Lockconflict and ResourceTable
subclasses instantiated in the system ATPMos will behave differently, achieving the
intended concurrency strategy. We now first detail reads before we discuss writes.

Read

Operation

1: Obtain

Transaction

context

2: Obtain

Resource and

Locks

3: Determine

required Lock

4: Lock

needed?
End Read No

5: New lock

conflicts?
6: Add Lock No 7: Resolve

Conflict
Yes

Yes

Figure A.2: Flow chart illustrating data access in ATPMos as result of a read operation

The different steps that occur during a read operation are illustrated in figure A.2
and proceed as follows:

1. The TransactionManager obtains the correct TransactionContext, and calls
the read method on the ResourceTable, which performs the remainder of the
work.

2. The ResourceTable obtains the indicated Resource, creating one if it is not yet

253

APPENDIX A. ATPMOS IMPLEMENTATION

present in the system, and obtains the locks held by the TransactionContext
on that Resource.

3. The ResourceTable queries the LockConflict to determine what type of lock
should be acquired for a reading operation, given the locks currently held. De-
pending on the subclass of LockConflict instantiated, and the locks held by
the TransactionContext, a type of lock is returned.

4. If no lock should be acquired, i.e. the TransactionContext already has the lock
required for reading, the read method on the ResourceTable ends, ending the
involvement of ATPMos.

5. The ResourceTable queries the LockConflict to determine if existing locks on
the Resource (by other TransactionContexts) are in conflict with the lock to
be acquired.

6. If no conflicts exist, the lock is added to the Resource, the Resource is added
to the TransactionContext and the read method on the ResourceTable ends,
ending the involvement of ATPMos.

7. Depending on the subclass of ResourceTable present in the system, this conflict
is handled differently.

With a RestartingTable, only one transaction can conflict with the requesting
transaction, and the youngest conflicting transaction is immediately rolled back,
with an exception thrown to the client of that transaction1.

With a BlockingTable, the transaction should wait until the conflicting locks
are released before acquiring the lock. However, waiting may lead to deadlock,
as we have seen in 2.1.3, and this needs to be addressed. This is performed by
the DeadlockDetector, which implements a wait-for-graph deadlock detection,
as we have shown in 2.1.3. The BlockingTable asks the DeadlockDetector
for other TransactionContexts that would deadlock with this context, and
selectively rollbacks these transactions until the deadlock is broken. If we are
free from deadlock, and still unable to acquire the lock, the TransactionContext
is updated with the list of lockers on which we wait, and the thread is suspended.
When one of these conflicting locks is released, execution restarts at step 5.

8. No conflicts remain, so the lock is added to the Resource, the Resource is added
to the TransactionContext and the read method on the ResourceTable ends,
ending the involvement of ATPMos.

1Transaction age is easily determined using the transaction identifier. Restarting the youngest
guarantees that no starvation occurs.

254

A.1. CLASSICAL TRANSACTION MANAGEMENT

Write operations are treated similarly as read operations, therefore we do not in-
clude a full description here. Two differences are worth mentioning: in all the above
steps ‘reading’ is replaced by ‘writing’, as is read by write, and as a last step, the
TransactionManager uses the backup method on the TransactionContext to safe-
guard a copy of the original data for a later restore.

Having presented the control flow for both reads and writes, we have concluded
the section on the interactions performed for data access management in ATPMos,
ending our discussion on the design of ATPMos.

A.1.3 Conclusion

In this section, we detailed the design of the first version of ATPMos, our TP Monitor
that supports a wide variety of ATMS. This first version does not support any ATMS,
it was built purely as a classical TP Monitor, focussing on the concurrency manage-
ment functionality of TP Monitors and the interface towards client applications.

ATPMos performs transaction management for data contained within Java ob-
jects, provided that data access occurs through getters and setters. Concurrency
management is performed when these methods are called by first making a call to
ATPMos. Also, to start and end transactions, calls must be made to ATPMos, as in
traditional transaction demarcation.

We discussed the design of ATPMos in some detail, first giving an UML class
diagram of the main players in the ATPMos design; the TransactionManager and
TransactionContext, the ResourceTable, Resource and DeadlockDetector, and lastly
the LockConflict class.

Name Summary
Integer newID () Returns new identifier.

void begin (Integer id) Start transaction.
Integer begin () Start a new transaction, returns id.
void commit (Integer id) Commit transaction.
void rollback (Integer id) Rollback transaction.

void read
(Integer id,
Object key) Block until object can be read.

void write
(Integer id,
Object key,
RestoreData res)

Block until object can be written,
keeps backup value.

Table A.1: ATPMos classical transaction interface.

255

APPENDIX A. ATPMOS IMPLEMENTATION

With the responsibilities of these classes known, we proceeded with detailing how
these classes interact to provide the required functionality. We have shown what hap-
pens when beginning and ending transactions, both by a commit and abort, and have
given a detailed list of the operations performed when performing a read or write call,
concluding our design discussion. An interface summary, containing of the methods
in ATPMos to be called by clients, is given in table A.1.

Next, ATPMos is extended with ATMS support by adding implementation of the
ACTA concepts that were missing from the first version. We discuss these ATPMos
extensions that enable support by ATMS next. We begin with naming and grouping,
proceed with views and delegation, and end with dependencies.

A.2 Naming and Grouping

ATPMos contains a naming and grouping service, inspired by the wide variety of name
services available in distributed systems. The name service acts as a global dictionary,
allowing transactions to bind their identifier to a key of their choosing, and to retrieve
identifiers of other transactions based on such a key.

More concretely, the bind method of ATPMos takes an object and a transaction
identifier, and inserts this association in a global dictionary, overwriting any previ-
ously stored association with that key. The lookup method takes as argument an
object and will return the corresponding transaction identifier, or the null transaction
if the dictionary does not contain that key. A consequence of this is that binding an
object to the null transaction is equal to removing that binding from the name ser-
vice. Associations can also be removed from the dictionary using the unbind method,
which takes as argument the key to remove, or the unbindAll method, which takes
as argument a transaction identifier and removes all bindings to that identifier.

ATPMos also provides support for groups of transactions, allowing a transaction
to be added to a group using the addToGroup method. Adding to a non-existing group
automatically creates it. Looking up a group, using the lookupGroup method, returns
an array of transaction identifiers, which is empty if the group does not exist. A trans-
action can be removed from all the groups it is contained in by the removeFromGroups
method. Lastly, the bindings to groups are removed using the removeGroup method.

Similar to a name service for transactions, ATPMos contains a name service for
groups. This name service for groups is provided by ATPMos through the bindGroup,
lookupGroupBinding, unbindGroup and unbindGroupAll methods. These behave
analogously to the naming service methods we introduced above, save that they
work for groups and that lookup of a non-existing group returns null. Note that
group support does not operate with names registered by bindGroup, but only the
original names as used in the grouping methods can be referred to. For example,

256

A.3. VIEWS

binding a new name foo to an existing group bar does not imply that the call
lookupGroup(foo) returns the contents of the group bar. To achieve this, first the
binding of foo must be obtained and then used as argument to lookupGroup, as
follows: lookupGroup(lookupGroupBinding(foo)).

Name Summary

void bind (Object key,
Integer id)

Register transaction identifier.

Integer lookup (Object key) Lookup transaction identifier.
void unbind (Object key) Unregister identifier key.

void unbindAll (Integer id) Unregister all identifier names.

void addToGroup (Object key,
Integer id)

Add identifier to group.

Integer[] lookupGroup (Object key) Lookup identifiers in group.

void removeFromGroup (Object key,
Integer id)

Remove identifier from group.

void removeGroup (Object key) Unregister group.

void bindGroup (Object key,
Object group)

Register group.

Object lookupGroupBinding (Object key) Lookup group.
void unbindGroup (Object key) Unregister group key.

void unbindGroupAll (Object group) Unregister all names for group.

Table A.2: ATPMos interface for naming and groups.

This concludes the introduction to the naming service of ATPMos. The naming
service provides for a global registry of transactions and transaction groups, and its
methods are summarized in table A.2.

A.3 Views

Views allow one transaction to see the intermediate results of another transaction.
Views can take as target either another transaction or a group of transactions. We
will first address views between two transactions, before detailing the use of groups
to define a view.

To implement views between two specific transactions, the management of locks
was modified in two steps: Firstly, TransactionContext was modified such that it
also keeps a reference to all other transactions that are in the view, i.e. an extra
association is kept to other TransactionContexts. Extra methods were added in

257

APPENDIX A. ATPMOS IMPLEMENTATION

TransactionManager, addView and removeView, both having a source and desti-
nation transaction identifier as formal parameters. These then add or remove the
destination TransactionContext from the sources’ TransactionContext views. Sec-
ondly, these views are used when accessing data. We have shown in A.1.2 that, when
attempting to read or write a datum in a transaction Ti, in step four LockConflict
first decides what kind of lock should be acquired for an operation. We need to modify
this step so that LockConflict also checks if another transaction Tj already has a
lock of the required type and is in the transitive closure of the view of Ti. If this is
the case, Ti does not need to acquire any lock and can simply proceed.

We need to implement it as above, and cannot just take a copy of the lock of
Tj, i.e. acquire it by skipping step six, seven and eight. This is because we literally
see what the other transaction sees every time the data is accessed; if in Tj the lock
is modified or released, this change immediately applies to Ti. Therefore we need
to verify this at every data access. Optimizations of this scheme through a caching
mechanism are, of course, possible but we chose not to implement this, as this work
does not fall within the scope of this thesis.

Also, this implementation of views has no impact on possible deadlocks: since Ti
simply uses the lock already held by Tj, it does not wait for this lock to be released.
Therefore, as no extra wait relationship is created in the wait-for graph, it can not
cause a deadlock.

Using groups to define a view from one transaction to a set of other transactions
is analogous to the implementation above. View groups are added and removed with
the addViewGroup and removeViewGroup methods, which take the name of a group
as destination. To implement this, TransactionContext also keeps a list of the names
of groups that define a view for this transaction. When building the transitive closure
of all transactions in the view of the current transaction, the lookupGroup method
on the name service is called for all entries in this list. The resulting transactions
are added to the closure, and used as roots for further building this closure. Again,
optimizations of this scheme are certainly possible, but we chose to omit this as it
does not fall within the scope of this thesis.

Note that our implementation of views is not fully compliant with the ACTA
specification of views: if Ti uses a write lock on a datum x, held by Tj, and writes
a new value to x, Tj will see that new value, which does not happen in ACTA. We
have chosen not to remedy this, as it does not impact the interface towards the client
application, and such an implementation would require a prohibitory large amount of
work.

258

A.4. DELEGATION

A.4 Delegation

Through delegation, a delegating transaction Ti delegates responsibility for commit-
ting or aborting data modifications to a delegatee Tj, which boils down to changing
the ownership of all the locks from Ti to Tj.

This is implemented quite straightforwardly through an extra delegate method
on TransactionManager, again having a source and destination transaction identifier
as formal parameters. First the source and destination TransactionContexts are re-
trieved. Second all the locked resources that the source TransactionContext keeps are
modified such that the association is changed to the destination TransactionContext.

Name Summary

void addView
(Integer source,
Integer dest) Add a view from source to dest.

void removeView
(Integer source,
Integer dest)

Remove the view from source to
dest.

void addViewGroup
(Integer source,
Object dest) Add a view group to source.

void removeViewGroup
(Integer source,
Object dest) Remove the view group from source.

void delegate
(Integer source,
Integer dest)

Delegate all resources from source to
dest.

Table A.3: ATPMos interface for views and delegation.

This concludes our discussion on the implementation of delegation, easily the most
straightforward extension of ATPMos. An interface summary for both views and del-
egation is given in table A.3. The next extension, dependencies, was more intricate,
as we shall see next.

A.5 Dependencies

In this section we discuss how the dependency mechanism in ATPMos was imple-
mented. We present this mechanism in detail, to illustrate how we enable an open-
ended amount of dependencies, and how new dependencies can be created and added
to the system. First we describe how we model dependencies, second we discuss adding
and removing of dependencies, and third how enforcement of dependencies is per-
formed, also detailing the client interface to the dependency system.

259

APPENDIX A. ATPMOS IMPLEMENTATION

A.5.1 Modeling Dependencies Through Petri Nets

In general, there are a large variety of systems available for constraint checking, but
we did not perform any systematic comparison on the different systems, as this falls
beyond the scope of this thesis. We chose to use Petri nets [Pet77], which we will
discuss next, because of a convincing case was made for the use of Petri nets in
[VB03], and we had a Petri net evaluator, by the same author, at our disposal.

We now start with a brief introduction to Petri nets, before describing how we rep-
resent transactions as Petri-Nets and end with with a description of how dependencies
are modeled.

Petri Nets in a Nutshell

A Petri net [Pet77] is a formal model of information flow, usually represented in
a graphical form. The major use of Petri nets is modeling of concurrent systems
where there are constraints on concurrence or precedence of these concurrences [Pet77].
Many varieties of Petri nets have been developed, but we restrict ourselves to the
plainest form, which are simple Petri nets. In general, Petri nets have both a static
and a dynamic side, and we first discuss the static side before talking about dynamic
properties.

Statically, Petri nets are represented as graphs with two kinds of nodes: places
and transitions, which are connected by directed arcs. A place represents a state of
a (sub-)system, and is usually drawn as a circle. Transitions represent, as their name
implies, a transition from one state to another, and are usually drawn as bars. The
input places of a transition are all the places with an outgoing arc to that transition,
and the output places of a transition are all the places to which the transition has an
outgoing arc.

Dynamically, states are marked by tokens, usually drawn as black dots in places,
which indicate that a (sub-)system is in the marked state. We show an example of a
Petri net with marked states, called a marked Petri net, in figure A.3. Marked Petri
nets are evaluated stepwise, each step consisting of the following rules:

1. A transition is enabled if first all its input places contain a token, and if second
none of its output places contain a token unless that place is also an input place
(such as, for example, the Tj-Committed place in figure A.3).

2. An enabled transition is fired. If, at a given time, different transitions are en-
abled, only one is fired. Note that there is no formal definition of which enabled
transition is fired, so this selection can be considered as random.

3. Firing a transition happens atomically and consists of removing the token from
each of the input places, and placing a token in each of the output places.

260

A.5. DEPENDENCIES

Ti-Begin Tj-Begin

Ti-Running Tj-Running

Ti-Aborted Tj-AbortedTi-Committed Tj-Committed

A C

Figure A.3: An example marked Petri net. Both the transitions labeled A and C are
enabled.

The evaluation of a Petri net causes the tokens to be re-distributed over the net
every time an evaluation step finishes. The dynamic state of the net is defined by the
distribution of these tokens, which is called the marking. Considering the marking in
figure A.3, we see that both transitions labeled A and C are enabled. In the next step,
the evaluator will, at random, choose one transition to fire, say C. In that case, both
the token in Ti-Running and in Tj-Committed will be consumed, and a new token
will be placed, both in in Ti-Committed as in Tj-Committed. If the marking would
have been different, and Tj-Committed did not contain a token, only A would have
been enabled. In that case, there is no choice: the token from Ti-Running would be
consumed, and a new token would be placed in Ti-Aborted.

The above example should sound familiar: think of the places prepended with Ti
(i.e. the left column) as the state of a transaction Ti, and the places prepended with
Tj (i.e. the right column) as the state a transaction Tj is in. The above marking can
be interpreted as follows: Ti is running and may choose to either commit or abort,
since both the C(ommit) and A(bort) transitions are enabled. However, if Tj has
not committed, i.e. Tj-Committed is not marked, Ti can only choose the A(bort)
transition. This is very similar to a commit dependency between Tj and Ti.

261

APPENDIX A. ATPMOS IMPLEMENTATION

The above example already is an indication of how we can use Petri nets to model
transactional states and the dependencies between them. In the remainder of this
section we first detail how we model transactional states, and then show how depen-
dencies between transactions are modeled.

Transactions as Petri-Nets

In figure A.3 we have shown how different states of a transaction: beginning, run-
ning, committed and aborted can be modeled. We will now extend this representation
somewhat, to take into account extra state information required for dependencies, and
explicitly include the ACTA significant events begin, commit, and abort.

Figure A.4 shows the above representation side-by-side with the new representa-
tion. The changes we made are as follows:

Notation: The shape of places and transitions has been modified such that we could
place the labels inside these nodes, instead of outside. This makes the graph
easier to read when it has many arcs.

Beginning: Begin is not a state, but a significant event which transitions from non-
existence to existence. To allow this, we created a place called #Pre, and made
Begin a transition. Placing a token in #Pre allows the Begin transaction to be
fired, i.e. represents the starting of a transaction.

Wait places: As we have stated in the beginning of this chapter, due to dependencies
needing to be satisfied, transactions may be forced to wait when attempting to
begin, commit or abort. This is modeled using Wait Begin, Wait Commit and
Wait Abort places, with their respective OK transitions.

Commit or Abort?: The choice between taking the commit and abort transition
can obviously not be made by the Petri net evaluator, as we must assume it will
take a transition at random. The choice is made by the transaction body, firing
the corresponding significant event, and this choice should be reflected in the
model. This is done in analogy with the #Pre place, using #Com and #Abt
places. Placing a token in one of these places represents, respectively, a commit
or abort decision. With a token in Running and one in #Com, the evaluator
will proceed with the Commit transition, and with a token in Running and one
in #Abt, the evaluator will fire the Abort transition.

Note that this representation of transactions explicitly limits the list of significant
events for a ATMS to begin, commit, and abort. As we have discussed in 6.3, a limited
list of significant events suffices, as extra significant events can be mapped to these
three, possibly taking effect on a different transaction.

262

A.5. DEPENDENCIES

#Pre

Wait Begin

Running

Wait Commit Wait Abort

Commit Abort

Begin

OK Begin

Commit

OK Commit

Abort

OK Abort

#Abt#Com

Begin

Running

AbortedCommitted

AbortCommit

Figure A.4: Completing the transactional representation

263

APPENDIX A. ATPMOS IMPLEMENTATION

Having shown the representation of transactions we use, we can now show how we
model dependencies by adding extra arcs and transitions between different transac-
tions.

Dependencies are Arcs and Transitions

A dependency between two transactions Ti and Tj places a constraint on the ex-
ecution of significant events of transactions Ti and Tj, depending on the state of
these transactions, as we discussed in 6.3. In other words, depending on the state
of both transactions, certain transitions can no longer be enabled in the Petri net
representation.

We achieve this by adding extra arcs and transitions to the graph, relating both
transactions to each other by using input and output places from the different trans-
actions. Consider, for example, figure A.5, which shows a BCD dependency placed
between the transaction Tj on the left hand side of the figure, and the transaction Ti
on the right hand side. Tj can not proceed beyond the Wait Begin place, until the Ti
has reached either Commit or Abort. Furthermore, in case Ti commits, Tj will start,
and in case Tj aborts, Ti is forced to immediately abort itself. This is, in effect, an
enforcement of the Tj BCD Ti dependency.

A second example is figure A.6, showing a CD dependency: if the left hand side
wants to commit, the right hand side has to have either committed or aborted, which
satisfies the CD dependency. Beyond the two examples above, we have modeled six
more dependencies of the twelve defined in ACTA. For brevity, and as the list of
possible dependencies is open-ended, we do not include any more models here.

We have now shown how we formulate dependencies between transactions through
Petri nets. We first gave a short introduction to Petri nets, second we have shown
how we model transactions, and third we have demonstrated how dependencies are
modeled. Next we will show how we can build a run-time model of the transactions in
the system that reflects the state of these transactions and the dependencies between
them.

A.5.2 Managing Dependencies

We have now seen how we model dependencies though the use of Petri nets, by letting
each transaction have an associated Petri net, and having dependencies placed by
adding arcs and transitions between these nets. We can now proceed with detailing
how these models are constructed at run-time, and describe how the system can be
extended with new kinds of dependencies when needed.

At run-time, we construct a representation of the running transactions and their
dependencies as Petri nets. These nets are evaluated using a Petri net evaluator which

264

A.5. DEPENDENCIES

#Pre

Wait Begin

Running

Wait Commit Wait Abort

Commit Abort

Begin

OK Begin

Commit

OK Commit

Abort

OK Abort

#Pre

Wait Begin

Running

Wait Commit Wait Abort

Commit Abort

Begin

OK Begin

Commit

OK Commit

Abort

OK Abort

 BCD

Force Quit L

#Abt#Com #Abt#Com

Figure A.5: BCD Dependency

265

APPENDIX A. ATPMOS IMPLEMENTATION

#Pre

Wait Begin

Running

Wait Commit Wait Abort

Commit Abort

Begin

OK Begin

Commit

OK Commit

Abort

OK Abort

#Pre

Wait Begin

Running

Wait Commit Wait Abort

Commit Abort

Begin

OK Begin

Commit

OK Commit

Abort

OK Abort

#Abt#Com #Abt#Com

CD

OK Commit

Figure A.6: CD Dependency

266

A.5. DEPENDENCIES

was put to our disposal, and of which we do not provide a full description here, as it is
detailed in [VB03]. Important for this work is that the evaluator supports the use of
dynamic Petri nets: nets where transitions, places and arcs can be added and removed
at runtime. The representation of the Petri net that serves as input for the evaluator
is not graphical, but a textual representation, which is detailed in [VB03]. Such a
representation, as a data file, allows us to easily keep a generic form for transactions
and dependencies in memory, and tailor these at runtime when adding them to the
overall Petri net.

An important advantage of this system is that we can easily add more kinds of
dependencies later on, without even needing to restart the evaluator. This is what
enables us to have an extensible dependency evaluation mechanism.

A dependency is added to the system by calling the addDependency method on
ATPMos, which takes as arguments the transaction identifiers of the affected trans-
actions and the name of the dependency. Removal of transactions and their related
dependencies is performed by calling the removeTransaction method on ATPMos.
As removing transactions implies removing the related dependencies, for each transac-
tion modeled in the net, we keep a list of dependencies that refer to that transaction.
Removing a transaction entails first removing the dependency from the model, and
subsequently removing the transaction itself.

We have now seen how we construct a model, at run-time, of the running transac-
tions and their dependencies as Petri nets. We do this using generic representatios of
transactions and dependencies, which are customized when added to the model. Re-
moval of transactions automatically entails removing their associated dependencies.
Having a model of the transactions and their dependencies at run-time, we can now
discuss how this is used to enforce dependencies.

A.5.3 Enforcement of Dependencies

The run-time model of transactions and their dependencies we introduced above allows
ATPMos to enforce dependencies, which we detail here.

As an illustration of how dependencies are enforced, we use figure A.7 which shows
a Petri net at run-time. This net contains two transactions, labeled 41 and 42, with
41 BCD 42, 42 running, and 41 waiting to begin, which is indicated by the tokens in
the respective places. Recall that we have already shown the BCD dependency in its
generic form in figure A.5.

Let us first elaborate on the state of transaction 42 before discussing transaction
41. 42 is stuck in the running state because a token is missing from either #Com 42 or
#Abt 42. A token placed in either of these places indicates the choice of the transaction
to either commit or abort, respectively. As long as this choice remains unknown, the
token will remain in the running state. Transaction 41 did not reach the running state,

267

APPENDIX A. ATPMOS IMPLEMENTATION

#Pre 41

Wait Begin

41

Running 41

Wait Commit

41
Wait Abort 41

Commit 41 Abort 41

Begin 41

OK Begin 41

Commit 41

OK Commit 41

Abort 41

OK Abort 41

#Pre 42

Wait Begin

42

Running 42

Wait Commit

42
Wait Abort 42

Commit 42 Abort 42

Begin 42

OK Begin 42

Commit 42

OK Commit 42

Abort 42

OK Abort 42

Force Quit 41 42

#Abt

41

#Com

41

#Abt

42

#Com

42

Figure A.7: Transactions 41 and 42, with 41 BCD 42. 42 is running, 41 is waiting to
begin.

268

A.5. DEPENDENCIES

but remains waiting to begin, due to the BCD dependency. It will only be able to begin
when allowed by the BCD dependency, i.e. when 42 has committed, which enables the
OK Begin 41 transition. Furthermore, if 42 has aborted, 41 will not be able to begin,
but will instead be forced to abort, as a result of the BCD dependency.

The model illustrated in figure A.7 can be used to verify and enforce dependencies
at the level of the actual transactions, by maintaining a link between the model and the
running transactions. This link is used at the significant events of the transaction, when
a transaction wants to begin, commit or abort. It is at these points that dependencies
must be checked, as these dependencies are expressed in relationship to the significant
events of the transaction. Therefore, before a begin, commit or abort call is made
to ATPMos, the transaction must issue a request to ATPMos, using the mayBegin,
mayCommit and mayAbort methods, respectively. These request methods provide a
bidirectional link between transaction and model: first they update the state of the
model and second they provide for dependency verification and enforcement, as we
show next.

The state of the model is updated by the request methods, which interface with the
model by placing a token in the #Pre, #Com and #Abt places, respectively, which
may allow some transitions to become enabled. The requester method, however will
not immediately return, it will block until, respectively, the OK Begin, OK Commit
and OK Abort transitions are fired, or an additional transition added by a dependency
is fired. Blocking the requester method ensures that the transaction will not simply
proceed, but will wait until an eventual dependency is satisfied.

When such a request method returns, it may return with or without a forcing
indication. If a request method returns without a forcing indication, all dependencies
are satisfied and the transaction may simply proceed. If the method returns with
a forcing indication, this means that the model has followed a transition that was
added by a dependency, i.e. was forced to proceed abnormally to satisfy a dependency.
Therefore, to enforce this dependency, the transaction may not simply proceed, but
must immediately go to the state indicated in the forcing indication.

In our example figure A.7, transaction 41 issued a mayBegin call, and that call
is blocked, waiting for 42 to either commit or abort, due to the BCD dependency.
If 42 decides to commit, it will issue the mayCommit call, placing a token in #Com
42. After a number of evaluation steps, the OK Commit 42 transition will be fired,
allowing the mayCommit call to proceed and transaction 42 to commit. Firing the OK
Commit 42 transition will enable the OK begin 41 transition, which will be fired.
When OK begin 41 is fired, the mayBegin call issued by 41 will return without a
forcing indication, satisfying the BCD dependency. Should 42 decide to abort instead
of commit, a similar scenario is played out, with as major difference in outcome that
the maybegin call issued by 41 will proceed with an indication forcing to abort. 41
must then immediately abort to satisfy the BCD dependency.

269

APPENDIX A. ATPMOS IMPLEMENTATION

We shall not elaborate on the implementation of the constraint system in further
detail. It suffices to say that the Petri net evaluator runs in its own thread, and the
implementation of the waiting methods interact with the evaluator through message
queues, blocking and unblocking themselves when required.

A.5.4 Conclusion

In this section, we have introduced the dependency system of ATPMos, which can
later be extended with new dependencies when the need arises, as a result of using
Petri nets to represent transactions and their dependencies. We repeat the different
methods we added to ATPMos in the interface summary table A.4.

Name Summary
void addTransaction (Integer id) Add transaction to the model.

void removeTransaction (Integer id) Remove transaction from the model.

void addDependency
(Integer left,
String type,
Integer right)

Add dependency of given type be-
tween two transactions.

Forcing mayBegin (Integer id) Block until transaction may begin.

Forcing mayCommit (Integer id) Block until transaction may com-
mit.

Forcing mayAbort (Integer id) Block until transaction may abort.

Table A.4: ATPMos interface for views and delegation.

As a model for transactions and dependencies, we use Petri nets, which we briefly
introduced. Transactions are modeled as a Petri nets, and dependencies are modeled
using extra transitions and arcs placed between these nets.

An important feature for the dependency system of ATPMos is the ability to add
new kinds of dependencies. This is achieved by adding the corresponding Petri net
representations to the system, and can even be performed at run-time.

The Petri net model of the running transactions is grown at run-time, by adding
transactions and dependencies. Removing of transactions, implies removing the de-
pendencies that are associated with these transactions. Verification of dependencies
is performed using this run-time Petri net model. We illustrated how verification and
enforcement works within the model, and shown how this model is linked to the actual
transactions through method calls, which are shown in the interface summary table
A.4, resulting in dependency support for transactions.

270

A.6. CONCLUSION

A.6 Conclusion

Name Summary

void bind (Object key,
Integer id)

Register transaction identifier.

Integer lookup (Object key) Lookup transaction identifier.
void unbind (Object key) Unregister identifier key.

void unbindAll (Integer id) Unregister all identifier names.

void addToGroup (Object key,
Integer id)

Add identifier to group.

Integer[] lookupGroup (Object key) Lookup identifiers in group.

void removeFromGroup (Object key,
Integer id)

Remove identifier from group.

void removeGroup (Object key) Unregister group.

void bindGroup (Object key,
Object group)

Register group.

Object lookupGroupBinding (Object key) Lookup group.
void unbindGroup (Object key) Unregister group key.

void unbindGroupAll (Object group) Unregister all names for group.

Table A.5: ATPMos interface overview for naming and groups.

In this appendix, we have introduced ATPMos, the TP Monitor we created for
this dissertation. ATPMos was first built as a TP Monitor for classical transactions,
and later extended to support ATMS by adding the required ACTA Primitives. We
chose not to fully implement all these primitives, as this is not the scope of this thesis.
We instead research how to program the software that interacts with these kinds of
TP Monitors, and therefore we focused on the interface to ATPMos, summarized in
tables A.5 and A.6. This interface does provide all the required features for the basic
implementation we considered in 6.3.

The first version of ATPMos only supported classical transaction management for
EJB Entity beans through the use of locks. Within a transaction, concurrency man-
agement is performed when getter and setter methods of the bean are called by first
calling the read or write methods on ATPMos. These methods will block until that
datum is locked for reading or writing, respectively, effectively performing concurrency
management. Initiation and termination of transactions is performed using the begin,
commit and rollback methods.

Of ATPMos, we described the class layout and the interactions of these classes
before discussing the extensions of ATPMos into a TP Monitor for ATMS, following

271

APPENDIX A. ATPMOS IMPLEMENTATION

Name Summary
Integer newID () Returns new identifier.

void begin (Integer id) Start transaction.
Integer begin () Start a new transaction, returns id.
void commit (Integer id) Commit transaction.
void rollback (Integer id) Rollback transaction.

void read
(Integer id,
Object key) Block until object can be read.

void write
(Integer id,
Object key,
RestoreData res)

Block until object can be written,
keeps backup value.

void addView
(Integer source,
Integer dest) Add a view from source to dest.

void removeView
(Integer source,
Integer dest)

Remove the view from source to
dest.

void addViewGroup
(Integer source,
Object dest) Add a view group to source.

void removeViewGroup
(Integer source,
Object dest) Remove the view group from source.

void delegate
(Integer source,
Integer dest)

Delegate all resources from source to
dest.

void addTransaction (Integer id) Add transaction to the model.
void removeTransaction (Integer id) Remove transaction from the model.

void addDependency
(Integer left,
String type,
Integer right)

Add dependency of given type be-
tween two transactions.

Forcing mayBegin (Integer id) Block until transaction may begin.

Forcing mayCommit (Integer id) Block until transaction may com-
mit.

Forcing mayAbort (Integer id) Block until transaction may abort.

Table A.6: ATPMos interface overview for ATMS.

272

A.6. CONCLUSION

the ACTA model.
The first extension, Naming, was not a direct implementation of an ACTA concept,

but rather a consequence of using these concepts. It is required for the code within
a transaction to also be able to obtain a reference to other, running transactions,
for example to place a dependency. The naming service we implemented in ATPMos
allows a transaction to register itself under a certain key, using the bind method.
This allows other transactions to obtain this reference, using the lookup method with
that key. References are removed using the unbind and unbindAll methods. Further-
more, the naming service also supports groups of transaction identifiers, which can
be added to using the addToGroup method. Lookup using the lookupGroup method
returns an array of transaction identifiers. Transactions are removed from groups us-
ing the removeFromGroup methods and groups can be completely removed by the
removeGroup method. Lastly, group support is also available in the naming service,
through the bindGroup, lookupGroupBinding, unbindGroup and unbindGroupAll
methods.

The next two extensions: views and delegation, are quite straightforward. Views
are implemented through a change in the locking algorithm of ATPMos, now tak-
ing into account view relationships. These are set using the methods addView and
removeView for single transactions and addView and removeView for groups. Delega-
tion is implemented by one extra method delegate, which performs the required lock
reassignment.

The last extension, dependency support, required more work due to the need for
extensibility, i.e. the ability to add new kinds of dependencies when needed. Depen-
dency support was implemented by using a Petri net representation of transactions
and dependencies. New types of dependencies can be added when needed, thanks to
the use of separate dependency descriptions. At run-time, dependencies are managed
by adding transactions using the addTransaction method, and adding dependen-
cies through the addDependency method. Removal of transactions from the run-time
model is performed using the removeTransaction method, which also removes the
associated dependencies. Concluding dependency support, we have shown how depen-
dencies are enforced using the request methods mayBegin, mayCommit and mayAbort.
These block until either the transaction may continue, or until it is forced to immedi-
ately proceed to another state.

273

APPENDIX A. ATPMOS IMPLEMENTATION

274

AppendixB
Demarcation Code for ATMS

An Academic speculated whether a bather is beautiful if there is none in the forest to admire
her. He hid in the bushes to find out, which vitiated his premise but made him happy.

Moral: Empiricism is more fun than speculation.
— Sam Webe

This appendix contains all the Java code referenced from chapter 7. Each snippet
of code is annotated with a discussion.

B.1 The Example Application

1 public void moneyTransfer
2 (BankAccount from, BankAccount to, int amount)
3 {
4 int from_amount = from.getAmount();
5 int to_amount = to.getAmount();
6 to.setAmount(to_amount + amount);
7 from.setAmount(from_amount - amount);
8

9 ReceiptCounter counter = ReceiptCounterStore.getCurrent();
10 int num_receipt = counter.getCount();
11 counter.setCount(num_receipt + 1);
12 Printer.getCurrent().
13 printTransferReceipt(from, to, amount, num_receipt);
14

275

APPENDIX B. DEMARCATION CODE FOR ATMS

15 OperationsLog log = OperationsLogStore.getCurrent();
16 int num_log = log.getCount();
17 log.setCount(num_log + 1);
18 log.addTransfer(from, to, amount, num_log);
19 }

This code has three distinct steps, the first step, from line 4 to 7 performs the
actual bank transfer, the second step, from line 9 to 13, prints a receipt to be given to
the customer, and the third step, from line 15 to 18, logs the transfer operation. Note
that the sequence of these three steps has been explicitly fixed in the requirements of
the application, which will be important later.

In the second step, ReceiptCounter (an EJB Entity Bean), is obtained from a
repository, which returns a separate counter for each branch office. Each counter keeps
the count of the receipts printed in this office, so that each receipt can be given a unique
reference number when printed. Similarly, in the third step, the OperationsLogStore,
keeps a global counter for all the operations performed by the bank. For brevity, we do
not include the code for these objects, nor the code for Printer, as it is not relevant
for the example.

B.2 Making the Transfer Operation Transactional

Making the code above transactional has resulted in the method code below, in which
demarcation code is emphasized like this.

1 public void moneyTransfer
2 (BankAccount from, BankAccount to, int amount)
3 throws TxException
4 {
5 boolean printed = false;
6 int num_receipt;
7 TransactionManager txmgr = TransactionManager.getCurrent();
8 Integer tx_id = txmgr.begin();
9

10 try {
11 txmgr.read(tx_id, from);
12 int from_amount = from.getAmount();
13 txmgr.read(tx_id, to);
14 int to_amount = to.getAmount();
15 RestoreData tores = new RestoreData(to,"amount");
16 txmgr.write(tx_id, to, tores);

276

B.2. MAKING THE TRANSFER OPERATION TRANSACTIONAL

17 to.setAmount(to_amount + amount);
18 RestoreData fromres = new RestoreData(from,"amount");
19 txmgr.write(tx_id, to, tores);
20 from.setAmount(from_amount - amount);
21

22 ReceiptCounter counter = ReceiptCounterStore.getCurrent();
23 txmgr.read(tx_id, counter);
24 num_receipt = counter.getCount();
25 RestoreData countres = new RestoreData(counter,"count");
26 txmgr.write(tx_id, counter, countres);
27 counter.setCount(num_receipt + 1);
28 Printer.getCurrent().
29 printTransferReceipt(from, to, amount, num_receipt);
30 printed = true;
31

32 OperationsLog log = OperationsLogStore.getCurrent();
33 txmgr.read(tx_id, log);
34 int num_log = log.getCount();
35 RestoreData logres = new RestoreData(log,"count");
36 txmgr.write(tx_id, log, logres);
37 log.setCount(num_log + 1);
38 log.addTransfer(from, to, amount, num_log);
39

40 txmgr.commit(tx_id);
41 }
42 catch (TxException ex){
43 txmgr.rollback(tx_id);
44 if (printed)
45 Printer.getCurrent().
46 printTransferCancel(from, to, amount, num_receipt);
47 throw ex;
48 }
49 }

What is immediately obvious is that a lot of transaction demarcation code has
been added, and that it is spread out all over the application code, cross-cutting the
original concern. As a result, the size of the code has more than doubled: from 19 to
49 lines of code. This example illustrates how adding transaction demarcation code
tangles an extra concern into the code and increases code size, which significantly
decreases readability.

277

APPENDIX B. DEMARCATION CODE FOR ATMS

Let us first consider what has happened to the three steps of the previous version
of the code. It is striking that in all steps the concern of transaction management
interleaves the original application code. Also, as a result, the first step has grown to
10 lines, from 4, the second step to 9 lines, from 5, and the last step to 7 lines, from 5.
A more detailed look reveals the origin of the interleaving of the two concerns. Each
getter operation is preceded by a read call to ATPMos, and each setter operation
is preceded by 2 lines: first a construction of a RestoreData, and second a write
call to ATPMos. These interleaving additions are required, because both the read
and the write call before a getter or setter are needed to allow ATPMos to perform
concurrency management. Recall that a RestoreData is required in a write call to
allow ATPMos to restore the original values of a datum when a rollback is performed.

Also, an additional significant inconvenience to the use of the read and the write
calls is the fact that they are repetitive, yet slightly different. It is all too easy to
perform copy-paste reuse here, and incorrectly modify the required parameters, which
leads to errors. Similarly, when reading the code, the repetitive nature of these calls
makes it all too easy to gloss over the details, again leading to errors, such as in line
19, where to and tores, should actually be from and fromres.

But let us assume this part of the demarcation code is correct, and continue with
the remainder of the demarcation code. A reference to the TransactionManager is
obtained in line 7 and used in line 8 to start the transaction. As a result of starting the
transaction, a transaction identifier is returned, which is used in all subsequent calls
to ATPMos. Considering code tangling, these lines do not pose as big a problem as
the code treated above. However there is still some tangling, because this transaction
code is present in the same module as the core logic of the application, i.e. the method
definition.

As all calls to ATPMos may yield an exception, for example signaling that the
transaction was aborted, the three steps of the transaction are included in a try
block, that ends with the instruction to commit the transaction in line 40. The catch
block treats exceptions by first performing a rollback of the transaction in line 44, and
then possibly printing out a cancellation notice, again to be handed to the customer.
Also, to notify the caller of the moneyTransfer method of the error when processing
the transaction, the raised exception is re-thrown in line 47. Again code tangling is
not as big an issue, but is still present.

The code for printTransferCancel is not relevant to this discussion, and there-
fore, we do not include it here. There is one catch to the use of printTransferCancel,
however: it requires the receipt number of the printed transfer receipt, obtained in line
24. To be able to reference this variable here1, its definition had to be moved out of
line 24, in the try block, to line 6, which further tangles the code.

1In Java, the scope of a catch block does not include the body of the try block

278

B.3. SIMPLIFICATION THROUGH WRAPPERS

This concludes the discussion of the transactional code for the moneyTransfer
method. We first remarked on the cross-cutting nature of demarcation code and the
increase in code size, which was more than doubled. Looking at the three steps of the
application, we identified the tangledness of the two concerns and the repetitiveness
in the read and the write calls as a likely source of errors. Furthermore, we identified
the need for a new feature as a result of transactional exceptions, the printing of
cancellation notices, and discussed how this is used.

A concluding remark we wish to make is with regard to the leap in complexity of
the code. The original code for the moneyTransfer method we proposed in B.1 was
quite simple, but lead to the tangled and complex code we have just discussed. Imagine
the original code not so simplistic, already treating different concerns and closer to
a real banking application in its complexity. The corresponding transactional code
would be even more complex and therefore very hard to understand.

B.3 Simplification Through Wrappers

The use of a wrapper significantly simplifies and shortens the code, but does not do
away completely with the burden imposed by transaction management. To illustrate
this, we have rewritten the above code to make use of wrappers, included below, with
code related to transaction demarcation emphasized:

1 public void moneyTransfer
2 (BankAccount from_orig, BankAccount to_orig, int amount)
3 throws TxException
4 {
5 boolean printed = false;
6 int num_receipt;
7 TransactionManager txmgr = TransactionManager.getCurrent();
8 Integer tx_id = txmgr.begin();
9

10 try {
11 BankAccountWrap from = new BankAccountWrap(from_orig);
12 BankAccountWrap to = new BankAccountWrap(to_orig);
13 int from_amount = from.getAmount(tx_id);
14 int to_amount = to.getAmount(tx_id);
15 to.setAmount(to_amount + amount, tx_id);
16 from.setAmount(from_amount - amount, tx_id);
17

18 ReceiptCounterWrap counter =
19 new ReceiptCounterWrap

279

APPENDIX B. DEMARCATION CODE FOR ATMS

20 (ReceiptCounterStore.getCurrent());
21 num_receipt = counter.getCount(tx_id);
22 counter.setCount(num_receipt + 1, tx_id);
23 Printer.getCurrent().printTransferReceipt
24 (from_orig, to_orig, amount, num_receipt);
25 printed = true;
26

27 OperationsLog log_orig = OperationsLogStore.getCurrent();
28 OperationsLogWrap log = new OperationsLogWrap(log_orig);
29 int num_log = log.getCount(tx_id);
30 log.setCount(num_log + 1,tx_id);
31 log_orig.addTransfer(from_orig, to_orig, amount, num_log);
32

33 txmgr.commit(tx_id);
34 }
35 catch (TxException ex){
36 txmgr.rollback(tx_id);
37 if (printed)
38 Printer.getCurrent().
39 printTransferCancel
40 (from_orig, to_orig, amount, num_receipt);
41 throw ex;
42 }
43 }

At first sight transaction demarcation code does not seem as widely distributed
over the original code, cross-cutting less the original concern. Also, the use of the
wrapper has decreased the line count from 49 to 43, but we need to take into account
that 4 lines were added due to formatting issues. Therefore, in total, the use of the
wrapper has decreased the line count by 10 lines, or slightly over one fifth.

What is immediately obvious is that the three steps of the transfer operation have
become much more legible, almost reverting back to their original form in B.1, and
the role of the demarcation code is much less pronounced. The major differences are
that we now create wrappers for each datum, and in the getter and setter calls we
pass the transaction identifier as extra parameter.

Working with wrappers has a downside, however, because when handing out refer-
ences to data, such as in printTransferReceipt, we should not pass out the wrappers,
but pass out the original objects. Also, we have to take care that calls that are not
transactional, such as the addTransfer call to the logging object, are not performed
on the wrapper, but on the original object.

280

B.4. TRANSACTION MANAGEMENT AS AN ASPECT

Looking at the remainder of the example, we see that it has not significantly
changed from the previous version of moneyTransfer. It is obvious that this part of the
demarcation code, including exception handling code using printTransferCancel,
can not be simplified through a wrapper and is still tangled with the code for the core
concern.

B.4 Transaction Management as an Aspect

Before discussing the transaction aspect, we first show the moneyTransfer code, be-
low, with added demarcation code emphasized:

1 public void moneyTransfer
2 (BankAccount from, BankAccount to, int amount)
3 {
4 int from_amount = from.getAmount();
5 int to_amount = to.getAmount();
6 to.setAmount(to_amount + amount);
7 from.setAmount(from_amount - amount);
8

9 ReceiptCounter counter = ReceiptCounterStore.getCurrent();
10 num_receipt = counter.getCount();
11 counter.setCount(num_receipt + 1);
12 Printer.getCurrent().
13 printTransferReceipt(from, to, amount, num_receipt);
14 printed = true;
15

16 OperationsLog log = OperationsLogStore.getCurrent();
17 int num_log = log.getCount();
18 log.setCount(num_log + 1);
19 log.addTransfer(from, to, amount, num_log);
20 }

In the aspect code, written in the transaction aspect language, transaction prop-
erties are grouped per class. In each group, method signatures are listed and postfixed
either with new or none, indicating whether a new transaction should be started or
the method is not transactional. For the parameter list of method signature, the *
wildcard may be used, indicating applicability regardless of parameter types. Also,
default behavior for a bean can be set to be either new or none, using the default
keyword instead of a method signature. We can also add instance variable declarations
and define exception handlers for methods. Instance variable declarations are added

281

APPENDIX B. DEMARCATION CODE FOR ATMS

to the method using the declare keyword that declares instance variables that are
accessible both in the body of the method as in the exception handler. Exception
handlers are defined by appending a number of catch blocks, containing java code,
to the transactional declaration of the method. Within this code, the transaction can
be rolled back by simply calling a txRollback() method. If the transactional method
throws an exception that is not caught by these handlers, or the handlers do not call
the txRollback() method, the transaction commits when the method ends.

We include the description of the transactional properties of moneyTransfer be-
low:

21 transactions Cashier
22 {
23 moneyTransfer(BankAccount, BankAccount, int) new
24 declare {
25 boolean printed = false;
26 int num_receipt;
27 }
28 catch (TxException ex) {
29 txRollback();
30 if (printed)
31 Printer.getCurrent().
32 printTransferCancel(from, to, amount, num_receipt);
33 throw ex; }
34 }

B.5 The Transfer Operation as a Saga

We have split up the moneyTransfer operation of B.1 into different methods. We have
a top-level moneyTransfer method that subsequently calls three methods transfer,
printReceipt, and logTransfer, each method corrsponding to a step of the saga.
The new code for the moneyTransfer operation, without any transaction demarcation,
is given below:

1 public void moneyTransfer
2 (BankAccount from, BankAccount to, int amount)
3 {
4 this.transfer(from, to, amount);
5

6 this.printReceipt(from, to, amount);
7

282

B.5. THE TRANSFER OPERATION AS A SAGA

8 this.logTransfer(from, to, amount);
9 }

10

11 private void transfer
12 (BankAccount from, BankAccount to, int amount)
13 {
14 int from_amount = from.getAmount();
15 int to_amount = to.getAmount();
16 to.setAmount(to_amount + amount);
17 from.setAmount(from_amount - amount);
18 }
19

20 private void printReceipt
21 (BankAccount from, BankAccount to, int amount)
22 {
23 ReceiptCounter counter = ReceiptCounterStore.getCurrent();
24 int num_receipt = counter.getCount();
25 counter.setCount(num_receipt + 1);
26 Printer.getCurrent().
27 printTransferReceipt(from, to, amount, num_receipt);
28 }
29

30 private void logTransfer
31 (BankAccount from, BankAccount to, int amount)
32 {
33 OperationsLog log = OperationsLogStore.getCurrent();
34 int num_log = log.getCount();
35 log.setCount(num_log + 1);
36 log.addTransfer(from, to, amount, num_log);
37 }

Having seen the new moneyTransfer code, we can now proceed by adding demar-
cation code for the saga.

We have chosen to also use wrappers here, as in B.3, to simplify the code as much
as possible, without using aspects.

We now tackle the different sections of the saga in increasing order of complexity.
We start with describing the top-level method, moneyTransfer, before treating the
steps of the saga. The last step, logTransfer is discussed first, as it is the easiest, then
we discuss the first step, transfer, and end with the second step, printReceipt.

283

APPENDIX B. DEMARCATION CODE FOR ATMS

B.5.1 Saga Top-level

We now show the new code for the moneyTransfer method, with transaction demar-
cation code emphasized, and which is subsequently discussed in more detail:

1 public void moneyTransfer
2 (BankAccount from, BankAccount to, int amount)
3 throws TxException
4 {
5 TransactionManager txmgr = TransactionManager.getCurrent();
6 Integer tx_id = txmgr.newID();
7

8 txmgr.bind(Thread.currentThread(), tx_id);
9 txmgr.addTransaction(tx_id);

10

11 txmgr.mayBegin(tx_id); //disregard Forcing result
12 txmgr.begin(tx_id);
13 try {
14 this.transfer(from, to, amount);
15

16 this.printReceipt(from, to, amount);
17

18 this.logTransfer(from, to, amount);
19

20 Forcing cf = txmgr.mayCommit(tx_id);
21 if (cf != null)
22 throw new TxAbortedException();
23

24 txmgr.commit(tx_id);
25 }
26 catch(TxException ex){
27 txmgr.mayAbort(tx_id);//never fails
28 txmgr.rollback(tx_id);
29 throw ex;
30 }
31 finally {
32 Integer[] comps = txmgr.lookupGroup("Saga"+ tx_id + "Comp");
33 for(int i=0; i<comps.length; i++) {
34 txmgr.removeTransaction(comps[i]);
35 }
36

284

B.5. THE TRANSFER OPERATION AS A SAGA

37 Integer[] steps = txmgr.lookupGroup("Saga"+ tx_id + "Step");
38 for(int i=0; i<steps.length; i++) {
39 txmgr.removeTransaction(steps[i]);
40 }
41

42 txmgr.removeGroup("Saga"+ tx_id + "Comp");
43 txmgr.removeGroup("Saga"+ tx_id + "Step");
44 txmgr.unbind("Saga"+ tx_id + "Comp");
45

46 txmgr.unbind(Thread.currentThread());
47 }
48 }

If we consider the code sequentially, we see that code is comprised of six parts,
which can be compared to the demarcation code phases we discussed in 4.2: first the
preliminaries, from line 5 to 9, then the begin phase, from line 11 to 12, followed by
the running phase, from line 14 to 18, then either the commit phase, line 20 to 25
or the rollback phase, line 26 to 29, takes place, and the code ends with the cleanup
phase, line 32 to 46.

In the preliminaries, a new transaction identifier is requested from ATPMos, in
line 6, and the transaction is added to the dependencies model in line 9, which is
the task of transaction initiation. In line 8, the saga top-level is registered in the
naming service with as key the current thread, i.e. the task of name management. As
the different steps within the saga run within the same thread, this enables them to
obtain a reference to the saga, as we see later on.

The beginning phase consists solely of the transaction initiation task and is started
with updating the transaction model of ATPMos in line 11. As we know that there
are no dependencies placed on this transaction, we know that no Forcing will be
returned, and we disregard it. The transaction is started in line 12 through the begin
call.

The running phase is as before, since no data access is performed, and requires no
further comment. The commit phase treats the transaction conclusion task. It starts
with the mayCommit call, which serves two purposes: updating the transaction model
of ATPMos, and verifying if we may commit or must rollback. This decision will be
verified by the dependency mechanism, because the saga must rollback if a step rolls
back. If we may commit, this is performed in line 24, otherwise an exception is raised,
to be caught in the rollback phase.

Any transaction exceptions thrown by the different steps of the saga will indicate
that the step has rolled back, which implies that the saga may not perform any more
steps, and must be rolled back. In the rollback phase, which is also a part of the

285

APPENDIX B. DEMARCATION CODE FOR ATMS

transaction conclusion task, mayAbort updates the transaction model of ATPMos.
This causes some dependencies to be satisfied, firing compensating transactions, as
we discuss later. Again, no Forcing will be returned, and therefore, we continue with
the rollback on line 28. The caller of the moneyTransfer method is informed of the
saga rollback in line 19, by re-throwing the exception that caused the rollback of the
saga.

The cleanup phase performs name management, group management and trans-
action termination. It is mainly responsible for updating the transaction model of
ATPMos, cleaning the model of the different compensating transactions and steps.
These have added themselves to the groups2 referenced in line 32 and 37, and are
removed from the model one by one in lines 34 and 39, which is transaction termi-
nation. Lastly, the groups themselves are removed in line 42 and 43, for the group
management task. In line 44 a reference that was bound in the steps, which we see
later, is removed, and the reference to the saga itself is removed in line 46, performing
name management and ending the cleanup phase.

This concludes the description of the top-level saga code, of which the transaction
demarcation code takes up the bulk. This code can be conceptually divided into five
different low-level tasks, spread out through the demarcation code, with the sole goal
to create and tear down a structure for the different steps of the saga to do their work
in. Note that this code, by itself, is already larger than the full transfer operation in
the classical model when using wrappers, as in B.3.

B.5.2 Last Step

We begin our discussion of the different steps in the saga at the end, with the last
step. We have chosen to begin with the end step because the code is the easiest to
understand, as it does not define any compensating transactions.

We first show the code, and detail it later:

49 private void logTransfer
50 (BankAccount from, BankAccount to, int amount)
51 throws TxException
52 {
53 TransactionManager txmgr = TransactionManager.getCurrent();
54 Integer tx_id = txmgr.newID();
55 txmgr.addTransaction(tx_id);
56 Integer saga = txmgr.lookup(Thread.currentThread());
57 txmgr.addToGroup("Saga"+ saga + "Step",tx_id);

2The group names are guaranteed to be unique, as they include the transaction identifier of the
saga, which is guaranteed to be unique.

286

B.5. THE TRANSFER OPERATION AS A SAGA

58

59 txmgr.addDependency(saga, "ad", tx_id);
60 txmgr.addDependency(tx_id, "wd" ,saga);
61 txmgr.addDependency(saga, "scd", tx_id);
62

63 Forcing bf = txmgr.mayBegin(tx_id);
64 if (bf == null)
65 txmgr.begin(tx_id);
66 else {
67 txmgr.rollback(tx_id);
68 return;
69 }
70

71 try {
72 OperationsLog log_orig = OperationsLogStore.getCurrent();
73 OperationsLogWrap log = new OperationsLogWrap(log_orig);
74 int num_log = log.getCount(tx_id);
75 log.setCount(num_log + 1,tx_id);
76 log_orig.addTransfer(from, to, amount, num_log);
77

78 Forcing cf = txmgr.mayCommit(tx_id);
79 if (cf != null)
80 throw new TxAbortedException();
81

82 txmgr.commit(tx_id);
83 }
84 catch (TxException ex){
85 txmgr.mayAbort(tx_id);//will always succeed
86 txmgr.rollback(tx_id);
87 throw ex;
88 }
89 }

Again, demarcation code, which is emphasized, takes up the bulk of the code, and
again different tasks are present: transaction initiation, transaction conclusion, name
management, group management, wrapper management, and dependency manage-
ment. In the discussion of this code, we do not dwell on tasks we already talked about
above, and solely mention the new tasks.

The same phases as in the code for the top-level return, save for the cleanup phase:
preliminaries are from 53 to 57, the begin phase is from 59 to 69, the running phase

287

APPENDIX B. DEMARCATION CODE FOR ATMS

starts at 72 and ends at 86, followed by the commit phase, lines 78 to 82, and the
code ends with the rollback phase: lines 85 to 87. We now detail these phases in the
above sequence.

The preliminaries are straightforward, save for obtaining a reference to the saga in
line 56, using the current thread as key, and registering this step in the corresponding
group, in line 57.

The beginning phase starts with registering three dependencies between the saga
and this transaction, which is the dependency management task. The need for these
dependencies, as for all the dependencies in the rest of this example, has been formally
stated in the Saga formal definition in [CR92]. The goal for placing these dependencies
is to ensure correct rollback in case the saga is aborted. In general, in this code, we
assume that the ATMS programmer knows what dependencies need to be placed
where, and therefore we do not discuss the intricacies of these dependencies, and
solely mention the desired result.

After dependencies have been placed, line 63 also performs dependency manage-
ment: it verifies if the transaction may begin. This is not the case if the saga has
already been marked for rollback. In this case, the method will immediately end, as
no work may be performed. After this method ends, the top level of the saga, the
moneyTransfer method, will initiate rollback of the saga, as we have seen above.

The running phase is changed from the code shown in B.5, in that we use wrappers
for the data access. In fact, the code is identical to lines 26 through 30 of the wrappers
example in B.3, therefore including the work to perform wrapper management.

The commit phase is identical to the commit phase of the top-level method, and
therefore requires no further comment. The abort phase is also quite straightforward,
as no dependency of the saga will ever disallow aborting a step.

This ends the discussion of the last step of the saga, which introduced the placing
of dependencies in the beginning phase, and the disallowing of steps to begin in case
of saga rollback. The main goal of the demarcation code was to ensure correct rollback
of the saga if this step is aborted. The next step we discuss is the first step of the
Saga, which shows further demarcation code for the rollback concern in the definition
of a compensating transaction.

B.5.3 First Step

Each step of the saga, except for the last one, needs to define a compensating trans-
action that is run when the saga is roll-backed after that step has committed. For
the first step in this example, the transfer step, we created an undoTransfer step,
which performs the inverse of the transfer operation, as can be seen below:

288

B.5. THE TRANSFER OPERATION AS A SAGA

90 private void undoTransfer
91 (BankAccount from_orig, BankAccount to_orig,
92 int amount, Integer tx_id)
93 {
94 TransactionManager txmgr = TransactionManager.getCurrent();
95

96 Forcing bf = txmgr.mayBegin(tx_id);
97 if (bf == null)
98 txmgr.begin(tx_id);
99 else {

100 txmgr.rollback(tx_id);
101 return;
102 }
103

104 try {
105 BankAccountWrap from = new BankAccountWrap(from_orig);
106 BankAccountWrap to = new BankAccountWrap(to_orig);
107 int from_amount = from.getAmount(tx_id);
108 int to_amount = to.getAmount(tx_id);
109 to.setAmount(to_amount - amount, tx_id);
110 from.setAmount(from_amount + amount, tx_id);
111

112 txmgr.mayCommit(tx_id); //always succeeds
113 txmgr.commit(tx_id);
114 }
115 catch (TxException ex){
116 //should never happen
117 ex.printStackTrace();
118 }
119 }

This method is transactional, with the demarcation code following the organiza-
tion of previous transactional methods, with a preliminaries phase, beginning phase,
running phase, and commit phase, which can be clearly deduced from the code.

In the preliminaries phase, no transaction identifier is requested from the
TransactionManager, and this transaction is not added to the model. Because this
is a secondary transaction, it will be subject to a number of dependencies, as we see
later. Therefore, the adding has already been performed in the transfer method, and
the transaction identifier to be used is passed as a parameter to the method.

289

APPENDIX B. DEMARCATION CODE FOR ATMS

Of key importance is the beginning phase, where we verify if the transaction may
begin. The mayBegin call will block until dependencies are satisfied. This is used here
to ensure that the compensating transaction will not immediately start when this
method is called. Instead it will wait until it either may run, or it must immediately
abort. The former will occur at a given point of rolling back the saga, and the latter
will occur when the saga commits.

The running phase of undoTransfer is quite straightforward, using wrappers for
transactional data access, and performing an inverse money transfer between the two
accounts. As commitment of compensating transactions must always succeed, we dis-
regard any forcing result. Transaction rollback should never occur, but this can not be
guaranteed (e.g. in case of a forced rollback due to a deadlock, as we have discussed
in 2.1.3), so if the abort phase is reached, the error is logged. The intention is that
this error is later resolved manually by a database administrator, as is also performed
in [KS03].

Having seen the code of the compensating transaction, we still have to address
how it is linked from the transfer step, which we perform in following code:

120 private void transfer
121 (BankAccount from_orig, BankAccount to_orig, int amount)
122 throws TxException
123 {
124 TransactionManager txmgr = TransactionManager.getCurrent();
125 Integer tx_id = txmgr.newID();
126 txmgr.addTransaction(tx_id);
127 Integer saga = txmgr.lookup(Thread.currentThread());
128 txmgr.addToGroup("Saga"+ saga + "Step",tx_id);
129

130 final Integer comp_id = txmgr.newID(); //for compensation
131 txmgr.addTransaction(comp_id);
132 txmgr.addToGroup("Saga"+ comp_id+ "Comp",comp_id);
133 txmgr.bind("Saga"+ comp_id+ "Comp",comp_id);
134

135 final BankAccount compfrom = from_orig; //for inner class
136 final BankAccount compto = to_orig; //for inner class
137 final int compamount = amount; //for inner class
138

139 Runnable compensator = new Runnable()
140 {
141 public void run(){
142 undoTransfer(compfrom, compto, compamount, comp_id);

290

B.5. THE TRANSFER OPERATION AS A SAGA

143 }
144 };
145

146 txmgr.addDependency(saga, "ad", tx_id);
147 txmgr.addDependency(tx_id, "wd" ,saga);
148 txmgr.addDependency(comp_id, "bcd" ,tx_id);
149

150 new Thread(compensator).run();
151

152 Forcing bf = txmgr.mayBegin(tx_id);
153 if (bf == null)
154 txmgr.begin(tx_id);
155 else {
156 txmgr.rollback(tx_id);
157 return;
158 }
159

160 try {
161 BankAccountWrap from = new BankAccountWrap(from_orig);
162 BankAccountWrap to = new BankAccountWrap(to_orig);
163 int from_amount = from.getAmount(tx_id);
164 int to_amount = to.getAmount(tx_id);
165 to.setAmount(to_amount + amount, tx_id);
166 from.setAmount(from_amount - amount, tx_id);
167

168 Forcing cf = txmgr.mayCommit(tx_id);
169 if (cf != null)
170 throw new TxAbortedException();
171

172 txmgr.addDependency(comp_id, "cmd" ,saga);
173 txmgr.addDependency(comp_id, "bad" ,saga);
174

175 txmgr.commit(tx_id);
176 }
177 catch (TxException ex){
178 txmgr.mayAbort(tx_id);//will always succeed
179 txmgr.rollback(tx_id);
180 throw ex;
181 }
182 }

291

APPENDIX B. DEMARCATION CODE FOR ATMS

We do not detail the line numbers of all the phases here, as they can be readily
inferred from the source code. Instead we focus on the parts that merit special atten-
tion due to a new task: management of secondary transactions (i.e. the compensating
transaction), ignoring all other tasks.

The additions to the preliminaries phase, line 130 to 144, all are due to the com-
pensating transaction. First the transaction identifier is created and it is added to the
transaction model. Then the compensating transaction is added to the compensation
group, and registered as the last created compensating transaction, which is used in
the next step of the saga. Lines 135 though 137 are present due to the requirements of
using an inner class in 139 to 144. The sole purpose of the compensator object built
by this inner class is to call the undoTransfer method in a separate thread, and to
pass it the source and destination accounts, along with the amount to be transfered
back and the identifier of the transaction to be used.

In the beginning phase, after dependencies have been placed, the compensator
object is given to a new thread and started, in line 150. Due to the fact that a BCD
dependency is placed between the compensating transaction and this transaction in
line 148, compensation will not start, as the transfer method must commit before
undoTransfer may begin. As a result, the new thread will be blocked until all de-
pendencies on its begin phase are satisfied, as we have stated when discussing the
undoTransfer method. Also, further dependencies on the compensating transaction
are placed in the commit phase of the code, which ensures that the compensating
transaction will only run when the saga aborts.

This concludes the discussion of the first step of the saga, where we described the
impact of using a secondary transaction, in this case a compensating transaction, for
rollback of the saga. We have seen that adding this compensating transaction not only
requires an extra method to be added, but also significantly increases the complexity
of the code, to enable this method to be called in a separate thread.

In the last step of the saga, compensation also plays an important role, as it is
treated slightly differently, which we see next.

B.5.4 Second Step

The second step declares a compensation step: the printing of a transfer cancellation
notice. We assume that a method implementing this has been defined on the current
printer, as we did in the first transactional bank transfer operation above. This has as
a result that we do not need to implement an extra semantical undo method for this
secondary transaction, and instead call the printer method directly from the inner
class we create, as can be seen below:

292

B.5. THE TRANSFER OPERATION AS A SAGA

183 private void printReceipt
184 (BankAccount from_orig, BankAccount to_orig, int amount)
185 throw TxException
186 {
187 TransactionManager txmgr = TransactionManager.getCurrent();
188 Integer tx_id = txmgr.newID();
189 txmgr.addTransaction(tx_id);
190 Integer saga = txmgr.lookup(Thread.currentThread());
191 txmgr.addToGroup("Saga"+ saga + "Step",tx_id);
192 Integer prev_comp_id = txmgr.lookup("Saga" + saga + "Comp");
193

194 final Integer comp_id = txmgr.newID(); //for compensation
195 txmgr.addTransaction(comp_id);
196 txmgr.addToGroup("Saga"+ comp_id+ "Comp",comp_id);
197

198 final BankAccount compfrom = from_orig; //for inner class
199 final BankAccount compto = to_orig; //for inner class
200 final int compamount = amount; //for inner class
201 final int[] num_receipt_holder = new int[1];
202

203 Runnable compensator = new Runnable()
204 {
205 public void run(){
206 TransactionManager txmgr = TransactionManager.getCurrent();
207

208 Forcing bf = txmgr.mayBegin(comp_id);
209 if (bf == null)
210 txmgr.begin(comp_id);
211 else {
212 txmgr.rollback(comp_id);
213 return;
214 }
215 try {
216 Printer.getCurrent().printTransferCancel
217 (compfrom, compto, compamount, num_receipt_holder[0]);
218 txmgr.mayCommit(comp_id); //always succeeds
219 txmgr.commit(comp_id);
220 }
221 catch (TxException ex){
222 //should never happen

293

APPENDIX B. DEMARCATION CODE FOR ATMS

223 ex.printStackTrace();
224 }
225 }
226 };
227

228 txmgr.addDependency(saga, "ad", tx_id);
229 txmgr.addDependency(tx_id, "wd" ,saga);
230 txmgr.addDependency(comp_id, "bcd" ,tx_id);
231

232 new Thread(compensator).run();
233

234 Forcing bf = txmgr.mayBegin(tx_id);
235 if (bf == null)
236 txmgr.begin(tx_id);
237 else {
238 txmgr.rollback(tx_id);
239 return;
240 }
241

242 try {
243 ReceiptCounterWrap counter =
244 new ReceiptCounterWrap
245 (ReceiptCounterStore.getCurrent());
246 int num_receipt = counter.getCount(tx_id);
247 num_receipt_holder[0] = num_receipt;
248 counter.setCount(num_receipt + 1, tx_id);
249 Printer.getCurrent().printTransferReceipt
250 (from_orig, to_orig, amount, num_receipt);
251

252 Forcing cf = txmgr.mayCommit(tx_id);
253 if (cf != null)
254 throw new TxAbortedException();
255

256 txmgr.addDependency(prev_comp_id, "wcd", comp_id);
257 txmgr.addDependency(comp_id, "cmd" ,saga);
258 txmgr.addDependency(comp_id, "bad" ,saga);
259

260 txmgr.commit(tx_id);
261 }
262 catch (TxException ex){

294

B.5. THE TRANSFER OPERATION AS A SAGA

263 txmgr.mayAbort(tx_id);//will always succeed
264 txmgr.rollback(tx_id);
265 throw ex;
266 }
267 }

In terms of transaction demarcation code tasks, this method does not introduce any
new tasks, so we do not fully discuss this code here, we only point out the remarkable
parts .

The most noticeable impact is the growth of the inner class responsible for building
the compensator object. This now makes its run method transactional in itself, as this
transactional behavior should not be placed in the code of the printer. Furthermore,
we need to perform a trick using an array in lines 201, 217 and 247: we need to pass the
identifier of the receipt to the compensating method, however this is not yet known
when the inner class is created. To bypass this, we use an array as a container, which
is filled in at line 247, but already referenced in line 217. We know that, at run time,
the compensating transaction will only run after the printReceipt transaction has
committed, which implies that the container will have been filled in, and therefore
this will never produce an error.

Also meriting our attention is the lookup of the previous compensating transaction
in line 192 and the dependency placed in the commit phase, in line 256, between this
compensator and the previous. This is done to ensure that compensation proceeds in
the required order, first compensating this step, before compensating the first step of
the saga.

295

APPENDIX B. DEMARCATION CODE FOR ATMS

296

AppendixC
KALA Grammar Specification

This appendix contains a formal specification of the KALA grammar and the tokens
for this grammar. We first provide the grammar for the KALA language, before giving
a scanner definition for this grammar.

C.1 KALA Grammar

We first show the grammar for the KALA language, which was defined using the
SmaCC parser generator [Ref05]. SmaCC, which stands for Smalltalk Compiler-Com-
piler, is a parser generator for the Smalltalk programming language, the language
in which our aspect weaver is implemented. SmaCC allows production rules for the
grammar to be written in quite a straightforward way, including semantic actions for
each rule. The code below shows all the rules for the grammar, of which we have
removed the semantic actions for clarity. In our implementation, the semantic actions
are used to build a parse tree of the KALA program, which the weaver then uses to
weave the appropriate aspect code.

We provide an excerpt of the syntax for SmaCC production rules, taken from
[Ref05] here, for convenience:

• Each production rule consists of a non-terminal symbol name followed by a :
separator which is followed by a list of possible productions separated by vertical
bar |, and finally terminated by a semicolon ;.

• Each production consists of a sequence of non-terminal symbols, tokens, or key-
words.

297

APPENDIX C. KALA GRAMMAR SPECIFICATION

• Non-terminal symbols are valid Smalltalk variable names and must be defined
somewhere in the parser definition. Forward references are valid.

• Tokens are enclosed in angle brackets as they are defined in the scanner e.g.,
< IDENTIFIER > (the scanner is discussed next), and keywords are enclosed in
double-quotes, e.g. "alias".

• Symbol * or Symbol + makes a repeating Symbol. The * repeats zero or more
times, and the + repeats one or more times.

• Symbol ? makes Symbol optional.

• (Productions) groups the items in Productions.

• [Productions] is equivalent to (Productions) ?.

The left-hand side of the first grammar rule is the start symbol, which in our case
is goal, as can be seen below.

Grammar definition

goal :
tx_declaration_list
;

tx_declaration:
method_signature "{"
[naming_grouping_autostarts]
[tx_begin] [tx_commit] [tx_abort] "}"
;

naming_grouping_autostarts:
naming_grouping_autostart_list ";"
;

tx_begin:
"begin" "{" se_declaration_list [";"] "}"
;

tx_commit:
"commit" "{" se_declaration_list [";"] "}"
;

298

C.1. KALA GRAMMAR

tx_abort:
"abort" "{" se_declaration_list [";"] "}"
;

naming_grouping_autostart:
naming
| grouping
| autostart
;

naming:
tx_alias
| tx_name
;

grouping:
groupAdd
| groupName
| groupAlias
;

autostart:
"autostart" "("
method_signature <UNPARSED_EXPRESSION>
[wrapper_declaration] [tx_declaration_body]
")"
;

se_declaration:
naming
| grouping
| deps_declaration
| view_declaration
| dele_declaration
| terminate_declaration
;

method_signature:
name "(" type_list_opt ")"

299

APPENDIX C. KALA GRAMMAR SPECIFICATION

;

wrapper_declaration:
"(" simple_name_list ")"
;

tx_declaration_body:
"{" [naming_grouping_autostarts]
[tx_begin] [tx_commit] [tx_abort]
"}"
;

tx_alias:
"alias" "(" name_key_exp ")"
;

tx_name:
"name" "(" name_key_exp ")"
;

groupAdd:
"groupAdd" "(" name_key_exp ")"
;

groupName:
"groupName" "(" name_key_exp ")"
;

groupAlias:
"groupAlias" "(" name_key_exp ")"
;

name_key_exp:
simple_name <UNPARSED_EXPRESSION>
;

deps_declaration:
"dep" "(" dep_list ")"
;

300

C.1. KALA GRAMMAR

dependency:
simple_name simple_name simple_name
;

view_declaration:
"view" "(" "-"? simple_name simple_name ")"
;

dele_declaration:
"del" "(" simple_name simple_name ")"
;

terminate_declaration:
tx_terminate
| terminateGroup
;

tx_terminate:
"terminate" "(" simple_name ")"
;

terminateGroup:
"groupTerminate" "(" simple_name ")"
;

type_list_opt:

| type_list
;

type:
name
| name dims
;

dims:
"[" "]"
| dims "[" "]"
;

301

APPENDIX C. KALA GRAMMAR SPECIFICATION

name:
simple_name
| qualified_name
;

simple_name :
<IDENTIFIER>
;

qualified_name :
name "." <IDENTIFIER>
;

tx_declaration_list:
tx_declaration
| tx_declaration_list ";" tx_declaration
;

se_declaration_list:
se_declaration
| se_declaration_list ";" se_declaration
;

naming_grouping_autostart_list:
naming_grouping_autostart
| naming_grouping_autostart_list ";" naming_grouping_autostart
;

type_list:
type
| type_list "," type
;

simple_name_list:
simple_name
| simple_name_list "," simple_name
;

dep_list:
dependency

302

C.2. KALA TOKENS

|dep_list "," dependency
;

C.2 KALA Tokens

The grammar defined above relies on a scanner to return tokens for symbols, such as
< IDENTIFIER > . This scanner is also written using SmaCC [Ref05], which allows a
scanner to be defined using a collection of token specifications, with each specification
terminated by a semicolon ; . Each token is specified by a pair of token name and a
regular expression, separated by :, where the token name is a valid Smalltalk variable
name that is surrounded by <>. We do not include the SmaCC syntax for regular
expressions here, as it is extensive yet quite straightforward, instead we refer to the
SmaCC documentation [Ref05].

Token definitions

<IDENTIFIER> :
[a-zA-Z_] [a-zA-Z0-9_]*;

<UNPARSED_EXPRESSION> :
\< ([^\\\>] | <ESCAPE_SEQUENCE> | \\ [\>\<])* \> ;

<ESCAPE_SEQUENCE> :
\\ ([btnfr\"\’\\] | ([0-3] [0-7]{0,2} | [4-7][0-7]?)) ;

303

APPENDIX C. KALA GRAMMAR SPECIFICATION

304

INDEX

Index

3-tier, 84

access set, 107
ACID, 26
advanced transaction mechanisms, 33
Advice, 49
advice precedence, 79
aspect, 48
Aspect-Oriented Programming, 47
aspectisation, 48
AspectJ, 48
atomic objects, 110
ATPMos, 121, 249
axioms, 103

base aspect, 48
behaves correctly, 110
behaves serializably, 110
behavioral dependencies, 105

cascading aborts, 32
compatibility sets, 39
compatible, 105
compensating transaction, 35
conflict, 29, 105
conflict-serializability, 28
conflict-serializable, 29
Container, 90
ConTracts, 241
Cooperating Nested Transactions, 189

cross-cut, 47
crosscutting concerns, 47

deadlocked, 30
declarative transaction management, 92
delegate, 108
delegation management, 64
delegation of resources, 40
demarcation code, 26
dependencies, 104
dependency set, 105
deployment descriptor, 89
dirty read, 32

EJB objects, 90
Enterprise JavaBeans, 88
Entity Bean, 89
equivalent, 28
events, 103
extended transaction models, 34

failure atomicity, 111
Flex Transactions, 240

generalized conflict relationship, 106

history, 103
Home interface, 90

Inter-type declarations, 49
interleaving descriptor set, 39

305

INDEX

inverse method, 51

Join Points, 48
join-transaction, 41

KALA, 148

locking scheduler, 29

management of rollbacks, 61
management of the structure, 62
marked Petri net, 260
marking, 261
middleware, 85
Multi-Database Systems, 239
Multi-tier or N-tier, 85

name service, 126
Nested Transactions, 33
null transaction, 250

object events, 103
Object Request Broker, 87
Object Transaction Monitors, 87
ongoing operations, 103
open-ended activities, 40
order of conflict checks, 108

Petri net, 260
places, 260
Pointcuts, 48

Relatively Consistent Schedules, 37
Remote interface, 90
Remote Procedure Call, 86
resource managers, 86
return-value dependent, 106
return-value independent, 106

Sagas, 35
savepoints, 32
schedule, 27

secondary transactions, 34
semantic types, 38
semantically consistent schedule, 37
Sensitive transactions, 37
separation of concerns, 46
serial schedules, 27
serializable, 28
serially equivalent, 27
Session Beans, 89
significant event, 103
Simultaneous execution, 38
split transactions, 40
strict execution of transactions, 32
strict two-phase locking, 32
structural dependencies, 104
system exception, 91

tangled aspect code, 81
tier, 84
tokens, 260
TP monitor, 86
transaction abort, 31
transaction context, 87
Transaction context propagation, 87
transaction dependency, 98
Transaction Monitor, 86
transaction rollback, 31
transaction scheduler, 27
transaction suspension, 87
transactional methods, 49
transitions, 260
two-phase locking, 30

view management, 63
view set, 107
visibility, 107

wait-for graph, 30
workflow management systems, 241

306

BIBLIOGRAPHY

Bibliography

[AC95] E. Anwar and S. Chakravarthy. Realizing transaction models: an ex-
tensible approach using ECA rules. Technical report, Computer and
Information Science and Engineering Department, University of Florida,
1995.

[ACM01] Deepak Alur, John Crupi, and Dan Malks. J2EE patterns. Technical
report, Sun Java Center, 2001.

[AFTO89] Abdel Aziz Farrag and M. Tamer Özsu. Using semantic knowledge of
transactions to increase concurrency. ACM Transactions on Database
Systems, 14(4):503 – 525, December 1989.

[AM97] Gustavo Alonso and C. Mohan. Advanced Transaction Models and Ar-
chitectures, chapter Workflow Management: The Next Generation of Dis-
tributed Processing Tools. Kluwer, 1997.

[Asp05] The AspectJ project, 2005. http://eclipse.org/aspectj/.

[ASSR93] P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and en-
forcing intertask dependencies. In Proceedings of the 19th Conference on
Very Large Databases, Morgan Kaufman pubs. (Los Altos CA), Dublin,
1993.

[BDG+94] A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, and K. Ramamritham.
Asset: a system for supporting extended transactions. In SIGMOD ’94:
Proceedings of the 1994 ACM SIGMOD international conference on Man-
agement of data, pages 44–54. ACM Press, 1994.

307

BIBLIOGRAPHY

[BFB+] Bill Burke, Marc Fleury, Adrian Brock, Claude Hussenet, Kabir
Khan, and Marshall Culpepper. JBoss Aspect Oriented Programming.
http://www.jboss.org/developers/projects/jboss/aop.

[Blo77] Arthur Bloch. Murphy’s law and other reasons why things go wrong!
Price/Stern/Sloan Publishers, 1977.

[BMDV02] Johan Brichau, Kim Mens, and Kris De Volder. Building composable
aspect-specific languages. In Proc. Int’l Conf. Generative Programming
and Component Engineering, pages 110–127. Springer Verlag, 2002.

[Bon04] Jonas Bonér. What are the key issues for commercial aop use: how does
aspectwerkz address them? In AOSD ’04: Proceedings of the 3rd inter-
national conference on Aspect-oriented software development, pages 5–6.
ACM Press, 2004.

[BP96] Roger Barga and Calton Pu. Reflection on a legacy transaction processing
monitor. In Proceedings of Reflection ’96, 1996.

[CDK94] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-
tems, Concepts and design. Addison-Wesley, second edition, 1994.

[CR91] Panos K. Chrysanthis and Krithi Ramamritham. A formalism for ex-
tended transaction models. In Proceedings of the 17th International Con-
ference on Very Large Data Bases, pages 103–112, 1991.

[CR92] Panos K. Chrysanthis and Krithi Ramamritham. Database Transaction
Models For Advanced Applications, chapter ACTA: The SAGA continues,
pages 349–397. Morgan Kaufmann, 1992.

[DV99] Kris De Volder. Aspect-oriented logic meta programming. In Pierre
Cointe, editor, Meta-Level Architectures and Reflection, Second Interna-
tional Conference, Reflection’99, volume 1616 of Lecture Notes in Com-
puter Science, pages 250–272. Springer Verlag, 1999.

[Edw99] Jeri Edwards. 3-Tier Client/Server At Work. Wiley Computer Publish-
ing, 1999.

[ELLR90] A. Elmagarmid, Y. Leu, W. Litwin, and Marek Rusinkiewicz. A mul-
tidatabase transaction model for interbase. In Proceedings of the six-
teenth international conference on Very large databases, pages 507–518,
San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

308

BIBLIOGRAPHY

[Elm92] Ahmed K. Elmagarmid, editor. Database Transaction Models For Ad-
vanced Applications. Morgan Kaufmann, 1992.

[Fab04a] Johan Fabry. But what if things go wrong? Paper presented in CADS
workshop at ECOOP04, 2004.

[Fab04b] Johan Fabry. Transaction management in EJBs: Better separation of
concerns with AOP. Paper presented in The Third AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software, 2004.

[FC05] Johan Fabry and Thomas Cleenewerck. Aspect-oriented domain-specific
languages for advanced transaction management. In Proceedings of 7th
International Conference on Enterprise Information Systems, 2005.

[FG04] Johan Fabry and Kris Gybels. Building software with logic and OO
symbiosis: an experience report. Proceedings of MPOOL04 workshop at
ECOOP 04, 2004.

[FM04] Johan Fabry and Tom Mens. Language-independent detection of object-
oriented design patterns. Elsevier Computer Languages, Systems and
Structures, 30(1-2):21–33, April-July 2004.

[GB03] Kris Gybels and Johan Brichau. Arranging language features for more ro-
bust pattern-based crosscuts. In 2nd International Conference on Aspect-
Oriented Software Development, 2003.

[GHKM94] Dimitrios Georgakopoulos, Mark F. Hornick, Piotr Krychniak, and Frank
Manola. Specification and management of extended transactions in a pro-
grammable transaction environment. In Proceedings of the Tenth Inter-
national Conference on Data Engineering, pages 462–473, Washington,
DC, USA, 1994. IEEE Computer Society.

[GM83] Hector Garcia-Molina. Using semantic knowledge for transaction process-
ing in a distributed database. ACM Transactions on Database Systems,
8(2):186 – 213, June 1983.

[GMDW00] Hector Garcia-Molina, Jeffrey D.Ullman, and Jennifer Widom. Database
System Implementation. Prentice Hall, 2000.

[GMS87] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceedings of the
ACM SIGMOD Annual Conference on Management of data, pages 249 –
259, 1987.

309

BIBLIOGRAPHY

[GR93] Jim Gray and Andreas Reuter. Transaction Processing, Concepts and
Techniques. Morgan Kaufmann, 1993.

[Han99] Per Brinch Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices,
34(4), April 1999.

[Her] Alvaro Herrera. Personal communication.

[HS76] J.H Haynes and Adrian Sharp. Fiat 124 sport automotive repair manual.
Haynes Publishing Group, 1976.

[HVL95] Walter L. Hürsh and Cristina Videira Lopes. Separation of concerns.
Technical report, College of Computer Science, Northeastern University,
1995.

[I+97] John Irwin et al. Aspect-oriented programming of sparse matrix code,
1997. Xerox Palo Alto Research Center.

[JK97] Shushil Jajodia and Larry Kershberg, editors. Advanced Transaction
Models and Architectures. Kluwer, 1997.

[KG02] Jörg Kienzle and Rachid Guerraoui. Aop: Does it make sense? - the case
of concurrency and failures. In Proceedings of ECOOP 2002. Springer
Verlag, 2002.

[KG05] A. Kellens and K. Gybels. Issues in performing and automating the “ex-
tract method calls” refactoring. In Proceedings of Software Engineering
Properties of Aspect Languages and Technologies (SPLAT) Workshop at
AOSD ’05, Chicago, USA, 2005.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Proceedings of ECOOP 1997. Springer Verlag,
1997.

[KPE92] Eva Kühn, Franz Puntigam, and Ahmed K. Elmagaramid. Advanced
Transaction Models and Architectures, chapter Multidatabase Transac-
tion and Query Processing in Logic. Morgan Kaufmann, 1992.

[KS03] Randi Karlsen and Thomas Strandenæs. Trigger-based compensation
in web service environments. In International Conference on Enterprise
Information Systems 2003, pages 487–490, 2003.

[Lea99] Doug Lea. Concurrent Programming in Java. Addison-Wesley, second
edition, 1999.

310

BIBLIOGRAPHY

[MH01] Richard Monson-Haefel. Enterprise JavaBeans. O’Reilly, third edition,
2001.

[Mic05] Microsoft Corporation. Microsoft .NET Home Page.
http://www.microsoft.com/net, 2005.

[MKL97] Anurag Mendhekar, Gregor Kiczales, and John Lamping. RG: a case-
study for aspect-oriented programming, 1997. Xerox Palo Alto Research
Center.

[MMR95] Martin Müller, Tobias Müller, and Peter Van Roy. Multi-paradigm pro-
gramming in Oz. In Donald Smith, Olivier Ridoux, and Peter Van Roy,
editors, Visions for the Future of Logic Programming: Laying the Foun-
dations for a Modern successor of Prolog, Portland, Oregon, 7 1995. A
Workshop in Association with ILPS’95.

[MMW01] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software devel-
opment through declaratively codified programming patterns. In 13th Int.
Conf. Software Engineering and Knowledge Engineering, Buenos Aires,
pages 136–143. Knowledge Systems Institute, June 2001.

[Mos81] E. B. Moss. Nested transactions: An approach to reliable distributed com-
puting. Technical report, Massachusetts institute of Technology, 1981.

[MRKN92] Peter Muth, Thomas C. Rakow, Wolfgang Klas, and Erich J. Neuhold.
Advanced Transaction Models and Architectures, chapter A Transaction
Model for an Open Publication Environment. Morgan Kaufmann, 1992.

[Obj04] Object Management Group, Inc. The common ob-
ject request broker: Architecture and specification.
http://www.omg.org/technology/documents/formal/corba iiop.htm,
2004.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, 1972.

[Pet77] James L. Peterson. Petri nets. ACM Computing Surveys, 9(3), September
1977.

[PKH88] Calton Pu, Gail E. Kaiser, and Norman C. Hutchinson. Split-transactions
for open-ended activities. In Proceedings of the Fourteenth International
Conference on Very Large Data Bases, pages 26–37, San Francisco, CA,
USA, 1988. Morgan Kaufmann Publishers Inc.

311

BIBLIOGRAPHY

[Pro01] Marek Prochazka. Advanced transactions in enterprise javabeans. In
EDO ’00: Revised Papers from the Second International Workshop on
Engineering Distributed Objects, pages 215–230, London, UK, 2001.
Springer-Verlag.

[RC96] Krithi Ramamritham and Panos K. Chrysanthis. Executive Briefing:
Advances in Concurrency Control and Transaction Processing. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.

[RC03] Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. In
2nd International Conference on Aspect-Oriented Software Development.
ACM, 2003.

[Ref05] Refactory, inc. The SmaCC parser.
http://www.refactory.com/Software/SmaCC/, 2005.

[RSS97] Andreas Reuter, Kerstin Schneider, and Friedemann Schwenkreis. Ad-
vanced Transaction Models and Architectures, chapter Contracts Revis-
ited. Kluwer, 1997.

[SGM94] Kenneth Salem and Hector Garcia-Molina. Altruistic locking. ACM
Transactions on Database Systems, 19(1):117 – 165, March 1994.

[SLB02] S’ergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distri-
bution and persistence aspects with AspectJ. In Proceedings of OOPSLA
02. ACM, November 2002.

[Sun02] Sun Microsystems. Java naming and directory interface (JNDI).
http://java.sun.com/products/jndi/, 2002.

[Sun03a] Sun Microsystems. Java data objects (JDO).
http://java.sun.com/products/jdo/, 2003.

[Sun03b] Sun Microsystems. Java remote method invocation (RMI).
http://java.sun.com/products/jdk/rmi/, 2003.

[Sun05] Sun Microsystems. Enterprise JavaBeans architecture.
http://java.sun.com/products/ejb/docs.html, 2005.

[SVJ03] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JAsCo: an
aspect-oriented approach tailored for component based software devel-
opment. In AOSD ’03: Proceedings of the 2nd international conference
on Aspect-oriented software development, pages 21–29. ACM Press, 2003.

312

BIBLIOGRAPHY

[Szy98] Clemens Szyperski. Component Software, Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1998.

[TCLL03] Bruce Tate, Mike Clark, Bob Lee, and Patrick Linskey. Bitter EJB.
Manning, 2003.

[The] The PostgreSQL Global Development Group. The PostgreSQL database.
http://www.postgresql.org/.

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton
Jr. N degrees of separation: Multi-dimensional separation of concerns. In
International Conference on Software Engineering, pages 107–119, 1999.

[tpc01] Transaction processing performance council. http://www.tpc.org, 2001.

[tpc04] TPC benchmark C. Technical report, Transaction Processing Council,
http://www.tpc.org/tpcc, 2004.

[VB03] Werner Van Belle. Creation of an Intelligent Concurrency Adaptor in
order to mediate the Differences between Conflicting Concurrency Inter-
faces. PhD thesis, Department of Computer Science, Vrije Universiteit
Brussel, Belgium, 2003.

[VC05] Bart Verheecke and Maria Augustina Cibran. Dynamic aspects in large
scale distributed applications, an experience report. In Proceedings of
Software Engineering Properties of Aspect Languages and Technologies
(SPLAT) Workshop at AOSD ’05, Chicago, USA, 2005.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. SIGPLAN Notices, 35(6):26–36,
2000.

[Vin97] Steve Vinoski. CORBA: integrating diverse applications within dis-
tributed heterogeneous environments. IEEE Communications Magazine,
14(2), 1997.

[VLK97] Cristina Videira Lopes and Gregor Kiczales. D: a language framework
for distributed programming, 1997. Xerox Palo Alto Research Center.

[WR92] Helmut Wächter and Andreas Reuter. Advanced Transaction Models and
Architectures, chapter The ConTract Model. Morgan Kaufmann, 1992.

[WS92] Gerhard Weikum and Hans-J Schek. Advanced Transaction Models and
Architectures, chapter Concepts and Applications of Multilevel Transac-
tions and Open Nested Transactions. Morgan Kaufmann, 1992.

313

BIBLIOGRAPHY

[WS97] Devashish Worah and Amit Sheth. Advanced Transaction Models and
Architectures, chapter Transactions in Transactional Workflows. Kluwer,
1997.

[Wuy01] R. Wuyts. A Logic Meta-Programming Approach to Support Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Department
of Computer Science, Vrije Universiteit Brussel, Belgium, January 2001.

314

