
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

2005

Mobile Actors Supporting Reconfigurable
Applications in Open Peer-to-Peer Networks

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Jorge Vallejos Vargas

Promotor: Prof. Dr. Theo D’Hondt (Vrije Universiteit Brussel)
Advisors: Tom Van Cutsem and Stijn Mostinckx (Vrije Universiteit Brussel)

c© Vrije Universiteit Brussel, all rights reserved.

Abstract

Mobile technology is gently beginning to seep into society. With it, new visions
of computing can be realized, where users are continually surrounded with mobile
and embedded computing devices. Whereas these scenarios are becoming ever
more realistic, programming such devices remains notoriously difficult, due to the
limited resources (in terms of memory and battery power) and volatile connections
these devices can sustain between each other.

This thesis will investigate code mobility to compensate for the dynamic re-
configuration of mobile networks, due to unexpected events such as device discon-
nections prompted by users moving about. Therefore, we propose a model for han-
dling both device and code mobility in dynamically reconfigurable environments,
such as mobile networks. In the spirit of the mobile ad-hoc networks, which are
not equipped with server architectures the strong mobility mechanism performs a
decentralized reconfiguration that is entirely transparent to the programmer.

Acknowledgements

I thank all the people who made the EMOOSE program possible. It was a great
learning experience. I would like to thank to the people at the Ecole des Mines de
Nantes for her support during all this master. I am also grateful to my professors
whose teaching have been very motivating during the first part of the master in
Nantes.

I wish to acknowledge the people from PROG department for supporting my
project. They provided me helpful criticism, timely feedbacks and guidance on
this research. I am particularly grateful for the invaluable help and dedication of
Stijn and Tom. I thank them for their time, comments, suggestions and advices
throughout my thesis research.

To my EMOOSE mates, Javier, Richa, Daniel and Harmin: I am grateful for
their friendship. I also thank every one I got to know in Brussel; they helped me to
integrate and appreciate the new environment where I had to write the thesis.

A special note of thanks to my parents, Mary and Jorge, my sister, Macarena
and my son Benjamin: they have always given me unconditional love and emo-
tional support as well as considerable encouragements. I would also like to thank
Sonia for her love, her patience and encouragements during the time of hard work.

Thanks to all the people who, to some way, gave me their support for the writ-
ing of this thesis.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statements . 2

1.2.1 Dealing with Mobile Networks 2
1.2.2 Previous Code Mobility Issues 3

1.3 Approach . 3
1.4 Contributions . 4
1.5 Dissertation Roadmap . 4

2 Open Networks in Mobile Environments 7
2.1 Introduction . 7
2.2 The Hardware Evolution . 8

2.2.1 Devices for Mobility . 8
2.2.2 Wireless Networks . 10

2.3 Systems for Open Networks . 15
2.3.1 Languages . 15
2.3.2 Middleware . 16

2.4 Conclusion . 17

3 Open Peer-to-Peer Network Architectures 19
3.1 Introduction . 19
3.2 P2P Systems and the Internet . 20

3.2.1 Early P2P Systems . 20
3.2.2 Client-Server Network Architecture 22
3.2.3 Open P2P Network Architecture 22

3.3 Open P2P Applications . 23
3.3.1 Centralized P2P Applications 24
3.3.2 Decentralized P2P Applications 25
3.3.3 Hybrid P2P Applications 25
3.3.4 DHT-based P2P Applications 26

3.4 P2P Algorithms . 27
3.4.1 Chord . 27
3.4.2 Pastry . 29

i

ii CONTENTS

3.4.3 CAN . 30
3.4.4 Evaluation of P2P Algorithms 32

3.5 P2P Models . 32
3.5.1 JXTA . 32
3.5.2 P2PS . 38

3.6 Open P2P Networks in Mobile Environments 40
3.7 Conclusion . 41

4 The Ambient-Oriented Programming 43
4.1 Introduction . 43
4.2 Open P2P Networks Conditions for Concurrency 43
4.3 Concurrency Models . 44

4.3.1 Thread Model . 45
4.3.2 Actor Model . 47

4.4 Concurrency Models’ Issues for Open P2P networks 50
4.5 Actor-based Languages and Frameworks 51

4.5.1 Actor as Agents . 51
4.5.2 ABCL . 53

4.6 Actor-based Languages for Open P2P Networks 54
4.6.1 Actor-based Libraries . 55
4.6.2 ChitChat . 57
4.6.3 SALSA . 61
4.6.4 AmbientTalk . 66

4.7 Ambient-Oriented Programming 67
4.7.1 AmbientTalk Kernel . 68
4.7.2 Evaluation of AmbientTalk 70

4.8 Conclusion . 71

5 Strong Mobility in Open P2P Networks 73
5.1 Introduction . 73
5.2 Code Mobility in Open P2P Networks 74

5.2.1 Reasons for Code Mobility in Open P2P Networks 74
5.2.2 Requirements for Code Mobility in Open P2P Networks . 74

5.3 Types of Code Mobility . 75
5.3.1 Weak Mobility . 75
5.3.2 Semi-Strong Mobility 76
5.3.3 Strong Mobility . 77
5.3.4 Full Mobility . 77

5.4 Reasons for Strong Mobility in Open P2P Networks 77
5.5 Strong Mobility in Object-Oriented Languages 78

5.5.1 Telescript . 78
5.5.2 Obliq . 79
5.5.3 Emerald . 81

5.6 Actor-based Languages for Mobility in Open P2P Networks . . . 83

CONTENTS iii

5.6.1 MicroTAPAS Library . 83
5.6.2 ChitChat . 86
5.6.3 SALSA . 89

5.7 Conclusion . 92

6 Strong Mobility of Ambient Actors 95
6.1 Introduction: The AmbientTalk Mobility Model 95
6.2 Device Mobility . 96

6.2.1 Ambient References . 96
6.2.2 Implementation of an Ambient Reference 97
6.2.3 Types of Ambient References 99

6.3 Strong Mobility of Ambient Actors 100
6.3.1 Strong Mobility of Ambient Actors in AmbientTalk 102
6.3.2 Implementation of Strong Mobility of Ambient Actors . . 103
6.3.3 Network Reconfiguration 109

6.4 Mixing Device and Ambient Actor Mobility 112
6.4.1 Loss of Connection During the Move Process 112

6.5 Evaluation of the AmbientTalk Mobility Model 115
6.5.1 Decomposing the AmbientTalk Mobility Model 116
6.5.2 Mobility Model Comparisons 117

6.6 Conclusion . 119

7 Application and Validation 121
7.1 Introduction . 121
7.2 Ambient Intelligence . 121
7.3 Follow-MeApplications . 122

7.3.1 The Story: Bob’s Mobile Desktop 122
7.3.2 Implementation of aFollow-MeApplication 123
7.3.3 TheFollow-MePattern 125
7.3.4 Related Scenarios . 128

7.4 Conclusion . 128

8 Conclusions 131
8.1 Problem Statements (revisited) 131

8.1.1 Dealing with Mobile Networks 131
8.1.2 Previous Code mobility Issues 132

8.2 Approach (revisited) . 132
8.3 AmbientTalk Mobility Model in a Nutshell 133
8.4 Applications for Mobile Open Networks 134
8.5 Future Work . 135

iv CONTENTS

A AmbientTalk Applications 137
A.1 Applications for Testing the AmbientTalk Mobility Model 137

A.1.1 Actor Mobility Implementation at the Departure Device . 138
A.1.2 Actors at the Arrival Device 138
A.1.3 Actors at a third-party Device 139

A.2 Follow MePattern Implementation 139
A.2.1 FollowMe Actor . 139
A.2.2 User Ambient Reference 140
A.2.3 AmbientSession Actor 142
A.2.4 AmbientApplication Actor 143

Bibliography 145

Index 149

List of Figures

2.1 Nomadic Network . 11
2.2 Ad-hoc Network (MANET) . 13

3.1 Network Architecture . 23
3.2 P2P Network Architectures . 24
3.3 Hash Function in Chord . 28
3.4 Routing a message in Pastry . 30
3.5 2−dimensional cartesian coordinate space 31
3.6 JXTA Protocol Stack . 35
3.7 Project JXTA Software Architecture 36
3.8 P2PS Architecture . 39

4.1 Actor Model . 48
4.2 MicroTAPAS Extended Actor Model 56
4.3 ChitChat Active Object . 58
4.4 UAN and UAL independence . 64
4.5 SALSA Theater . 65

5.1 Computational Context . 76
5.2 Distribution of mobility entities 85
5.3 Mobility in SALSA . 89

6.1 Ambient Reference . 97
6.2 Strong mobility of ambient actors 108
6.3 Network reconfiguration . 109

v

vi LIST OF FIGURES

Chapter 1

Introduction

Mobile technology is changing the way computational systems serve their users.
Small mobile devices provided with processing and connection capacity improve
the availability of the network services. However, such devices have some restric-
tions that can affect their interaction over the network. These are limited resources
(such as small memory and limited battery) and volatile connection to the network.

Code mobility can help the systems to reduce the impact of the dynamic re-
configurations of mobile networks, due to unexpected events such as device dis-
connections. In other words, device and code mobility are two phenomenons that
may work complementarily for increasing the availability of the applications over
the network. An application can move (or be moved) from one device to another
in order to keep on serving its users. However, its mobile condition could not only
be used as part of a contingency plan. This is rather a traditional vision for code
mobility adopted in the context of networks with fixed participants. Code mobility
can be used to create new types of services over mobile networks such asrunning
applications that follow their users adapting themselves to the new contexts. Such
types of applications are being developed already in the context of a new field in
distributed systems known asAmbient Intelligence(acronym AmI) [ISTAG, 2003].
The AmI vision is that technology will become invisible, embedded in the people
surroundings, whenever they need it, adaptive to users and their contexts, and en-
abled by simple and effortless interactions [Lindwer et al., 2003].

Next to the reason for using code mobility over mobile networks, this disserta-
tion will focus on the properties a programming language needs to have in order to
facilitate the work with both types of mobility (device and code). As final result, it
will propose a mobility model for software development in mobile networks.

1.1 Motivation

As said before, some scenarios in which code mobility can be used in systems
running over mobile networks, correspond to futuristic applications found in the
context of AmI field. Consider the following situation:

1

2 CHAPTER 1. INTRODUCTION

Bob is writing a document on the PC at home. While he writes, he is
listening music and chatting with some friends. Suddenly, his daughter
Alice enters to the studio where Bob is and asks him for the PC to do
her homeworks. Gently, Bob leaves the studio in order to take his
laptop at his bedroom and continue to work there.

This story implies for Bob to reproduce somehow on his laptop in his bedroom
the same work conditions he had on the PC at the studio. It is the text editor with
his document, the music player with the song he was listening and his chat session.
The epilog of this story usually would require for Bob to store his work and music
in an external storage unit (such as a pen-drive) or somewhere on the network.
After that, Bob would need to restart their applications on his laptop, copy (or
download) the files and open them again.

An AmI system surrounding to Bob could lead to a different epilog:

Bob leaves the studio without doing anything on the PC, goes to his
bedroom, opens the laptop (starts it if required) and after a while, the
applications he was using on the PC appear on the laptop’s desktop
(text editor, music player and chat). He realizes that while he was
changing of work place, some friends continued chatting with him.
Thus, Bob answers them.

Note that what is happening in this case is that applications follow Bob, re-
maining available during the mobility. That is why Bob can receive messages from
its friends in his chat session even during his move. Upon arrival, applications can
reconfigure themselves with respect to the new resources found at the new loca-
tion, in order to continue their proper operations. It is the intention of this work
to demonstrate that a model that considers both, device and code mobility is good
enough to develop such software applications. Of course, this scenario also re-
quires the existence of a location-support hardware infrastructure, which is also
part of the definition of the AmI vision.

1.2 Problem Statements

The problems for developing applications like the ones described above have two
different sources: the properties of the mobile networks and drawbacks of previous
code mobility implementations.

1.2.1 Dealing with Mobile Networks

This work consist of an analysis of the properties of mobile networks and their
participants (devices), in order to identify the conditions this type of networks im-
pose on the software development. The properties described in this work are the
following:

1.3. APPROACH 3

• Devices over the mobile network are heterogenous. They can differ in their
resources (screen definition, battery power, etc.).

• Devices have scarce resources and volatile connection.

• Devices provide and require services from or to other devices in the mobile
network.

• Devices are autonomous and concurrent by nature.

1.2.2 Previous Code Mobility Issues

Applications available during the move can currently be implemented in different
languages. However, according to the language these implementations can imply
different considerations:

• If this type of application was implemented in language such as Java, it
would imply to have the implementation of mobility scattered in the code. It
could also imply to deal directly with topics such as concurrency (threads,
monitors and synchronization) distribution (serialization, naming servers,
etc.) and network organization (because partial failures).

• This type of application could also be implemented with agent-based ap-
proaches such as Telescript [White, 1996], Aglets [Lange and Oshima, 1998]
and others. However, in these approaches does not provide support for dis-
covering devices (and their services) over the network. They neither provide
any mechanism for avoiding inconsistency states in the systems due to con-
nection volatility of the devices in mobile networks.

1.3 Approach

This dissertation proposes a model for working with device and code mobility over
dynamically reconfigurable environments, such as mobile networks. This model
was implemented in the ambient-oriented programming (AmOP) language called
AmbientTalk [Dedecker, 2005a] described in chapter 4. It is a concurrent distrib-
uted object-oriented programming language based on actors, that is specifically
geared towards the use of mobile devices. As such, it provides mechanisms for
dealing with their natural concurrency, volatile connections and for getting ac-
quaintance of the services available over the network, known asambientin this
programming paradigm. Applications built in AmbientTalk are composed by (am-
bient) actors that communicate over the network in order to share their services.

The AmbientTalk mobility model presented in this work consist of the follow-
ing:

4 CHAPTER 1. INTRODUCTION

1. Support for device mobility by usingAmbient References(see section 6.2.1),
an abstraction at programming language level built on top of the more prim-
itive service discovery mechanism provided by AmbientTalk.

2. Support for actor (code) mobility in such a way, it can receive incoming
messages even during the time in which it is moving from one device to
another. This type of mobility is known asStrong Mobility. In this mo-
bility the actor’s state and its message queues are transferred, such that the
communication state of any messages sent from or received by the moving
actor remain intact. Strong mobility of actors is achieved by using amove
primitive (section 6.3.1) that can be included in a higher ordermovemethod
created by an AmbientTalk programmer.

3. Finally, this strong mobility mechanism performs a transparent (for program-
mers) and decentralized reconfiguration (section 6.3.3) of the communica-
tion relationships with other actors upon the arrival of the moved actor to the
new location. Actors do not lose their relationships at any moment during
their moves.

The mixed use of ambient references and strong mobility of actors will support
the availability of applications using this model (section 6.4).

1.4 Contributions

The contributions of this thesis are the following:

• Analysis of four relevant concepts for developing applications for mobile
networks: open networks(chapter 2),peer-to-peer network architectures
(chapter 3),ambient-oriented programming paradigm(chapter 4) andstrong
mobility (chapter 5). These concepts are related to the understanding of the
phenomena occurring in mobile environments (known as open networks)
and the requirements imposed by this type of network (peer-to-peer archi-
tectures, ambient-oriented paradigm and strong mobility).

• Development of a mobility model that is the result of the application of the
previous four concepts (chapter 6). As such, this model provides strong
mobility of ambient-actors in open P2P networks.

• Development of a pattern for developingFollow-Me applications in Ambi-
entTalk programming language, as the one described in the motivation (chap-
ter 7).

1.5 Dissertation Roadmap

The chapter 2 describes a mobile network as a Open Network. It supports this
match by identifying the properties of open networks in the mobile ones and their

1.5. DISSERTATION ROADMAP 5

devices participants. The chapter 3 describes how the Peer-to-Peer network Archi-
tecture has been used in other types of open networks. This chapter also presents
different cases in which this architecture has been applied to mobile open networks.

The chapter 4 describes the Ambient-Oriented Programming paradigm, its model
for concurrency and distribution (called Ambient Actor Model) and the implemen-
tation in programming language AmbientTalk. The Ambient Actor model and Am-
bientTalk are compared to previous and current approaches that deal with concur-
rency and distribution in mobile or other types of networks. The chapter 5 defines
Strong Mobility and presents some existent implementations. Some of them are
direct influence of the mobility model presented in the next chapter.

The chapter 6 presents the AmbientTalk Mobility Model developed in the con-
text of this thesis. This model is validated in chapter 7 by means of the develop-
ment of aFollow-Me pattern for developing this type ofFollow-Me applications
mentioned above. The chapter 8 contains the conclusions and future works

6 CHAPTER 1. INTRODUCTION

Chapter 2

Open Networks in Mobile
Environments

2.1 Introduction

Open networks are those that have a dynamic configuration along the time because
of the volatile connection of their participants. In open networks, the participants
may join and disjoin dynamically. There are well-known networks that can be con-
sidered open networks. These are the internet and the mobile networks. Tradition-
ally, internet applications have worked under a client-server architecture. In such
a case, the clients are the ones that have a volatile connection, while the servers
rarely are disconnected from the network. However, a new type of architecture
is getting popular in the internet: the Peer-to-Peer network architectures (the next
chapter is entirely dedicated to explain this quite new phenomenon). In this case,
all the participants (calledpeers) have a volatile connection. Note that in the in-
ternet, the volatility of the participants (clients, servers or peers) is mainly due to
a direct decision of users to join or disjoin the network (e.g. a user opening or
closing a chat or a home bank session). This is not necessarily the case of mobile
networks.

Mobile networks are completely or partially composed by participants that are
moving around the network. These mobile participants correspond to personal
devices that move with the users. In mobile networks, a device communicate to
others through a wireless connection provided by itself or by other participants
specially dedicated to provide network connection. However, as it is explained in
this chapter, neither the wireless connections have unlimited coverture range nor
the portable devices have a huge electricity power. Thus, these networks are con-
sidered open networks because users may deliberately join and disjoin their mobile
devices to the network, like in the internet case, but also because the connection
of these devices depend of the coverture range of the wireless connection at the
place they are being used (they can get out of range) and their power capacity. The
scenario turns even more unstable if it is considered the communication between

7

8 CHAPTER 2. OPEN NETWORKS IN MOBILE ENVIRONMENTS

mobile devices, which is the case of one type of mobile network.
This chapter will describe the open networks in the context of mobile environ-

ments. The goal is to identify the new conditions that these networks imply for
the development of applications running over them. The first part describes the
hardware phenomenon implied in this case in both mobile devices and wireless
network configurations. The second part discusses about the current middlewares
and languages that deal with these dynamic configurations. Their drawbacks for
building distributed systems for open networks are also a motivation for this work.

2.2 The Hardware Evolution

Traditional networks do not consider scenarios in which computers physically
move over them. Those networks consist of a collection of fixed hosts that usu-
ally are powerful machines in terms of processor, memory, network connection
and source of power. They form rigid structures offering their clients centralized
services. Such systems rarely change the location of the servers. They neither add
or delete servers frequently. The disconnection of a computer is considered to be
abnormal if it is serving to others. It is not necessarily the case of open networks.
The join anddisjoin events occur much more frequently on their participants, so
not all services (offered by them) are known beforehand or fixed. That is why an
open network is required where participants can discover one another dynamically
and where they may join or leave without causing the other participants to crash.
This is the case of the mobile networks.

This section describes the hardware that enables to serve people during their
movement, and the new conditions to be considered when developing systems for
mobile networks.

2.2.1 Devices for Mobility

Two complementary trends can be recognized nowadays in the development of
devices that support the people mobility:mobileandembeddeddevices.

2.2.1.1 Mobile Devices

Mobile devices areportable appliances with own processor, memory, source of
power and wireless connection capacity. Their computational power is much lower
than the power of personal computers because they are lightweight machines that
can be carried and used anywhere.

Mobile devices also provide a set of perceptual resources such as screens,
speakers, microphones or video cameras.

Although most of the today-devices were created to offer specific services such
as cell phones, geographical positioning systems and personal digital assistants,

2.2. THE HARDWARE EVOLUTION 9

producer companies [MIT-LCS, 2004] are arriving to provide devices with all hard-
ware required to accomplish all these functions. Some devices that combine these
functionalities are already available.

2.2.1.2 Embedded Devices

In parallel to the advances in mobile technology, another trend [Krco et al., 2005]
revolves the creation of areas populated by devices embedded into physical spaces
(rooms, automobiles, etc.). These embedded devices are able to interact with mo-
bile devices in order to accomplish the services required by their users. Tradi-
tionally this type of devices have been related to sensors capable only to capture
information from the environment (such as radar systems, microphones, movement
detectors, etc.) [Leopold et al., 2003]. Another interpretation of this concept could
also comprise it to network-connection provider devices such as wireless routers.
In fact embedded devices, can play both the role of context and network provider as
well as playing an active role in the delivery of services. This vision of computers
into the fabric of life was calledpervasive computingby Weiser [Weiser, 1991].

Embedded devices are provided with processing and connection capacity, and
perceptual resources (as sensors). In a system running over an open network, em-
bedded devices could perfectly execute some computations such as to determine
the location of people (using mobile devices) over a network. They could also
control physical entities such as lighting, door locks and heating systems.

The following section will explain how both type of devices can provide net-
work connection to others.

2.2.1.3 Device Considerations for Software Development

Systems that consider the devices previously mentioned as participants have to
consider two properties of them:heterogeneityandscarce resources.

Heterogeneity Devices can vary in the resources they provide. The resources not
only come from the network, some of them are found inside of the device
(like the sensors mentioned in the previous section). An application running
in a device should exploit the particular features of the devices to provide
the appropriate set of interactions. Note that the features of a device can
determine not only the user interface aspects. Restrictions in the process-
ing power or operating memory make heavy applications unsuitable in de-
vices. According to [Islam and Fayad, 2003] most of systems have wrongly
used the model-view-controller pattern to deal with device heterogeneity (in
which only the view varies). It is not enough since data or model used
devices can be different too. As is explained in the next section, restric-
tions in the network connection (phenomenon known asconnection volatility
[Dedecker, 2005a]) imply to modify the concurrency and distribution model.

10 CHAPTER 2. OPEN NETWORKS IN MOBILE ENVIRONMENTS

Scarce resourcesDevices for mobility have advanced rapidly in terms of avail-
able resources, however they still remain limited when compared to PCs and
laptops. The biggest improvement to the hardware of these devices are in the
processing, memory and connection capacities. Unfortunately the sources of
power (battery technology) has not followed the same trajectory. A system
developed for such devices should provide some alternatives to reduce the
impact of the unexpected changes in the resources of the devices (loss of
connection, depleted battery, etc.). It could provide mechanisms for storing
the application in memory (the data and/or the state), or moving a part of it
to another device in order to ensure the availability of the service provided
by the program.

2.2.2 Wireless Networks

The second fundamental component of a open network is the physical network
that supports the mobility of the people and their devices. According to its com-
position a network can be defined either as aNomadicor an Ad-hoc network
[Mascolo et al., 2002]. This section also describes two phenomenons related to
these networks. The first one explains the mobility of a whole network (with all its
devices) around other networks (network mobility). The second one refers to the
fact that the environment where devices move around can be composed by a set of
overlay networks. As it is explained in chapter 7, these two cases imply particular
requirements to the systems developed for mobile networks. As in the previous
section, the final part will describe the implications for the software development
of the different types of networks, as well as the mentioned phenomenons.

2.2.2.1 Nomadic Network

Nomadic systems are composed of a set of mobile devices and an infrastructure
with fixed nodes. These fixed nodes are responsible to provide wireless network
connection to the mobile devices. The fixed devices can be servers or desktop ma-
chines, or can be embedded devices in the sense explained in the previous section.
Fixed devices can also be wiredaccess pointslike wireless routers. Depending of
the size of the network, it can have more than one access point providing network
connection. It ensures mobile devices to have connection along the boundaries of
the space covered by these providers. Note that the same low-level mechanism
used for mobile devices to switch transparently of access points inside a network
(known ashandoffor roaming[Lin and Chlamtac, 2001]), could be used to switch
from a network to other, or to choose one in case of having overlay networks. The
only visible boundaries for the people are those related to commercial or political
reasons [Cardelli, 1999].

Figure 2.1 shows a generic scheme of a nomadic network. Some cases of
nomadic networks are the cellular networks and wireless LANs. In addition, it will
be presented a emerging case a of wireless sensor networks that matches properly

2.2. THE HARDWARE EVOLUTION 11

Figure 2.1: Nomadic Network

with the definition of nomadic networks.

Wireless LAN A wireless LAN or WLAN is a network infrastructure with fixed
and wired access points (also called base stations or gateways). In a WLAN the
last link with the mobile device is wireless, giving it network connection in the
surrounding space. Mobile devices within this network connect to the nearest base
station that is within its communication radius [Wang, 2003].

The first versions of WLANs bridged these networks to a wired Ethernet net-
works. Actually, WLAN are also supported by stand-alone base stations such as
broadband/ADSL connection boxes.

Cellular Network Cellular networks form a nomadic network between the cel-
lular phones and their base stations. A mobile phone is a node with amobile IP
that provides it with two IP address: a fixed home address and a care-of address
that changes at each new access point attachment. This type of network is often
found questionable because the high latency and disruption produced by frequent
handoffs (changes of base station) of mobile phones.

Wireless Sensor Network A wireless sensor network consists of a number of
smart sensorsthat are embedded devices with sensing capabilities, able to perform
data processing tasks and wirelessly communicate with other devices [Berger et al., 2003].

12 CHAPTER 2. OPEN NETWORKS IN MOBILE ENVIRONMENTS

As sensors, these device are equipped with perceptual resources such as micro-
phones and antennas. There are several experiments in which wireless sensor net-
works are used to interact either with mobile devices or people directly. These
networks can be used for locating mobile devices over the network. It will be
briefly explained in the chapter of application and validation of this work (chapter
7). There are other experiments in which mobile devices have been provided with
sensing capabilities and therefore people can scatter those devices across an area
of interest [Priyantha et al., 2000].

2.2.2.2 Ad-hoc Networks

Ad-hoc networks or mobile ad-hoc networks (called MANET) were initially de-
veloped by DARPA project in the early 1970’s. MANETs are mobile wireless
communication networks without infrastructure support. Each one of the partic-
ipants can act as router to other nodes in the network and cooperates with other
nodes within its range to discover and communicate each other. Both discovery
and communication are done without a central server and predefined central access
points.

A MANET has a dynamic configuration along the time because the constant
arrivals and departures of mobile devices. It requires the MANET to have network
protocols that enable it to organize itself after each change in the network. Device
mobility can also produce variations in the network connection quality, if these
devices are supporting such connection. Nevertheless, there are as many other po-
tential network connection routes as devices with connection capacity are joined on
the MANET. This information is also managed by the network routing protocols.

Figure 2.2 depicts an ad-hoc network. A particular case of it can be found
in a personal area network. This concept invented at IBM [Zimmerman, 1996] is
described at following.

Personal Area Network A Personal Area Network (acronym PAN) is defined as
the network composed by all devices that a person carries while he moves around.
These devices (laptops, cellular phones, PDAs, digital cameras, etc.) can conve-
niently be connected to cooperate each other during the mobility. This cooperations
can be simple ones such as moving information from a digital camera to a laptop,
or can be more sophisticated ones such as devices providing network connection
to the others device of the PAN (which is actually the behavior of a MANET).

2.2.2.3 Network Mobility

A network and all its devices can move as single unit over one or many bigger
networks. There are several cases in which (nomadic and ad-hoc) network mobility
can be seen. These cases even can happen at the same time:

• A PAN moving with its user.

2.2. THE HARDWARE EVOLUTION 13

Figure 2.2: Ad-hoc Network (MANET)

• Wireless sensor networks deployed in vehicles providing driving facilities.

• Access network deployed in public transportation (buses, trains, aircrafts).
Note that a user of this public transport could be using a PAN.

Actually there are several projects that are dealing with this in order to make
transparent for the users all the handoffs implied in the mobility [Lin and Chlamtac, 2001].
The network also has to be managed at the application level because the available
resources as well as the permissions of the networks can change from one to an-
other.

2.2.2.4 Overlay Networks

People can move over places in which one or more of their devices can find one or
more overlay networks. These networks can be both nomadic and ac-hoc networks.
It could be an advantage for users if the system managing the connection of the
device provides a mechanism to permanently choose the best connection.

It seems to be a subject for network developers. However, as in the case of the
network mobility, it can be also a matter of the application level. The following
section will explain why.

14 CHAPTER 2. OPEN NETWORKS IN MOBILE ENVIRONMENTS

2.2.2.5 Network Considerations for Software Development

At least four new properties need to be considered for the software development
after having described the nomadic and ad-hoc networks. These are based on the
description of hardware phenomenon found in [Dedecker, 2005a]. The consider-
ations areconnection volatility, ambient resources, device autonomyandnatural
concurrency.

Connection volatility It is related to the fact that a connection between two de-
vices can never be considered stable. Wireless networks are unpredictable
and can induce long delays on the networks traffic. In addition, the mobility
of users can imply that their devices get out of range. In many cases this
disconnection is only temporal. It would be desirable that applications that
became disconnected can somehowresumetheir communications once they
are reconnected.

Another desirable property of the systems is the possibility for users to move
information or running applications from remote devices to their current de-
vices. Thus, they actively help to ensure the availability of the services they
require.

Ambient ResourcesThe resources an application needs to perform its tasks can
be in the devices containing it or in other devices on the network. It im-
plies that resources can become dynamically (un)available according to the
connection-state of the devices that contain them. [Dedecker, 2005a] calls
the available remote resourcesambient, term understood as the place where
the computations happen. This concept is explained in more details in chap-
ter 4.

It was previously explained that devices can move around overlay networks.
Normally it would be desirable that they have always thebest available con-
nectionin terms of quality (speed, reliability, etc.). However, the best con-
nection will depends also of the devices (and their resources) that can be
reached using this connection. In such a case, it would be useful to allow
users to choose personally the most convenient connection according to their
purposes.

Autonomy Every device acts as an autonomous computing unit[Dedecker, 2005a].
The dynamic configuration of the wireless networks (especially the ad-hoc
networks) makes rigid client-server approaches unsuitable. In a system com-
posed entirely of devices that are constantly joining and leaving the network,
it is impractical to have some devices with higher responsibilities (since it
can disappear at any time as any other device). Instead, the responsibilities
in a network can perfectly be shared by its participants.

Natural Concurrency Another property of mobile devices (additional to those
described in section 2.2.1.3) is their natural concurrency. Every system that

2.3. SYSTEMS FOR OPEN NETWORKS 15

implies the participation of several devices, is considered a concurrent sys-
tem, since each device has its own processor. It implies for the system to im-
plement communication systems that exploit this natural concurrency maxi-
mally.

2.3 Systems for Open Networks

The following sections will introduce some current languages and middlewares
that can be used to build systems for open networks.

2.3.1 Languages

The inclusion of mobile devices to the networks separates the programming lan-
guages that do not support this mobility from those that support it (or could do it
according to their characteristics). The former languages have been identified by
[Dedecker, 2005a] as languages for local area networks. The latter ones will be
consequently the languages for open networks. Most of the following languages
will be explained in more detail in chapters 4 and 5.

2.3.1.1 Languages for Local Area Networks

These languages were conceived for reliable networks, with centralized services
offered by privileged (in term of network and computing capacity) servers. The
disconnection of these servers is considered harmful for the system.

On another hand, some of them take advantage of the network reliability and
offer synchronous communication primitives. As it will be explained in chapter
4, synchronous communications is harmful for the autonomy of mobile devices.
Some languages using synchronous communications are Java [SUN Microsystems, 2005],
Emerald [Jul et al., 1988] and Obliq [Cardelli, 1995].

2.3.1.2 Languages for Open Networks

These languages were not conceived to deal with mobile devices. Some of them
still do not do it. However, they have more adequate properties for supporting the
dynamicity found in an open network. First, most of these language are based on
the actor model concurrency model. As it is explained in chapter 4, it uses asyn-
chronous communications which preserves the autonomy and natural concurrency
of the devices. However, as remarked in [Dedecker, 2005a] these languages ei-
ther do not consider mechanisms to discover ambient resources or do not deal with
the connection volatility. Some of these languages are E [Miller, 2000], SALSA
[Varela and Agha, 2001], ChitChat [De Meuter, 2004].

16 CHAPTER 2. OPEN NETWORKS IN MOBILE ENVIRONMENTS

2.3.2 Middleware

Several recent research works have focused on the extension or creation of middle-
ware for supporting open networks such as nomadic and ad-hoc networks. How-
ever, it has not been straight forward task. Traditional middleware has characteris-
tics that make it unsuitable in this new context:

• Mobile devices require light computational load. Existing middleware usu-
ally requires a heavyweight platform that cannot be deployed on these de-
vices.

• As will be largely explained in chapter 4 the connection volatility of devices
require asynchronous communication. Traditional middleware does not con-
sider this type of communication.

• Systems in open networks run in an extremely dynamic context which re-
quires devices to be aware to their environment. Existing middleware were
built thinking in terms of fixed distributed systems. There is no support for
this kind of ambient-awareness.

According to [Mascolo et al., 2002] the recent works on middleware can be
split into different research areas such asRPC-based, publish-subscribe, tuple
space-basedanddata sharing-orientedmiddleware.

RPC-based middlewareAttempts to make CORBA suitable for nomadic net-
works focus their work on making ORBs suitable in mobile device and the
IIOP protocol resilient to failures in the communication. Other RPC-based
approaches support queuing of RPCs or enable rebinding of resources. These
approaches have gotten good results only for short-time connections.

Publish-subscribe middleware This middleware included the event-based inter-
action. Consumers subscribe to events they are interested in and they are
notified when they are published. This mechanism allows to express context-
aware communications. However, the communication is made viacallbacks
which hamper the understanding of the program.

Tuple space based middlewareTuple spaces [Gelernter, 1985] have proven suit-
able for mobile computing because of the dynamic context nature of mobile
systems. They can be used for coordinating mobile units across a mobile
computing environment. However, this paradigm does not integrate well
with the object-oriented paradigm.

Data sharing-oriented middleware This middleware tries to maximize the au-
tonomy of the devices by introducing weak replica management facilities
[Dedecker, 2005a]. The drawback is that weak replicas are not always syn-
chronized because of the connection volatility of the devices. The conflicts
produced must be resolved depending on each application specific needs.

2.4. CONCLUSION 17

2.4 Conclusion

This chapter has described the open networks and has identified the implicants for
the software development. These implications are:

1. A system running over an open network should exploit the heterogeneity of
the devices.

2. A system should be aware of the condition of the resources of the devices,
and provide some mechanism to ensure the availability (if possible) of the
services of the devices.

3. A system should be connection-aware, able to deal with the connection
volatility of devices.

4. A system has to be ambient-aware, able to discover the resources present in
the environment.

5. A system must respect the autonomy of every device. Note that in a open
network every device can be defined in terms of the services it offer and
those it requires. As such, devices may perfectly be used as client (requiring
services) and server (providing services) at the same time.

6. Devices are concurrent by nature (they have their own processors). They
have to work together in such a way that their natural concurrency is not
hampered but rather exploited.

The open networks in mobile environments are the scenarios targeted in this
work. The three following concepts (explained in the three following chapters) are
included to support the considerations of open networks above mentioned.

The next chapter describes thePeer-to-Peer network architectures, a phenom-
enon that has been evolving in parallel to open networks, in another context. This
chapter will argue why this type of architecture is the most adequate for the devel-
opment of distributed systems in open networks.

18 CHAPTER 2. OPEN NETWORKS IN MOBILE ENVIRONMENTS

Chapter 3

Open Peer-to-Peer Network
Architectures

3.1 Introduction

The main purpose of this chapter is to describe the peer-to-peer network architec-
ture and its close relationship with the open networks along its evolution, initially
with the internet and currently also with mobile open networks.

The Peer-to-Peer (acronym P2P) concept means to share responsibilities of a
work between the participants in a network. Unlike in client-server architectures
described in section 3.2.2, everyone can serve and be served in P2P schemes, even
at the same time.

P2P computing is not new. [Minar et al., 2001] state the internet was initially
conceived to have P2P relationships between the users, arguing that still working
applications such as Usenet and DNS (explained in section 3.2.1) were conceived
under this architecture. Early versions of these applications already had some of the
properties observed in recent P2P applications, like decentralization and scalability.
As it is briefly explained in section 3.2.2, the boom commercial of internet in the
nineties produced the changed of its shape, imposing the client-server architecture.

Nowadays, when file sharing applications have brought back P2P concepts,
these systems show strengths never seen before in client-server structures. To at-
tributes already mentioned of early P2P systems (decentralization and scalability),
other new properties are added. Current P2P applications are also recognized as
self-organized and fault-tolerant. As it is explained in sections 3.3 and 3.4, these
properties are the solution to the condition of open network of the internet. The
previous chapter identified an open network as a network with a dynamic configu-
ration along the time because of the volatile connection of their participants. This is
exactly the problem that file sharing applications solve by using a P2P architecture.

The final part of this chapter will discuss the result of some cases in which this
architecture has been used for mobile open networks.

19

20 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

3.2 P2P Systems and the Internet

As mentioned above, a P2P setup is not limited to the scope of internet; however
this network has been the test bed along its history for applications that have used
the P2P scheme. The following subsections identify some stages in the evolution
of the internet and its relationship with the P2P architecture, in order to clarify the
context of the P2P paradigm.

3.2.1 Early P2P Systems

In the early days of the internet several P2P applications were developed, which
typically operate of the level of ISP’s server infrastructure1. The two most popular
cases are Usenet and DNS [Minar et al., 2001].

3.2.1.1 Usenet

Usenet [Minar et al., 2001] is considered the first file-sharing protocol (still in use
since 1979). It was originally based on a mechanism (Unix-to-Unix-copy pro-
tocol) by which a machine could automatically dial another, exchange files and
disconnect when the exchange ended. Its most popular use has been as a news sys-
tem. At present, Usenet works on a TCP/IP protocol known as the Network News
Transport Protocol (NNTP), which allows news servers on the Usenet network to
discover newsgroups efficiently and exchange new messages in each group.

In Usenet there is no central authority that controls the news systems. For
instance, each new newsgroup addition to the main topic hierarchy is proposed
and discussed in the Usenet groupnews.adminin a rigorous democratic process
[Minar et al., 2001].

With respect to NNTP, this protocol contains meta-data such as thepath header
in the news messages to trace their transmission from one news server to another. It
avoids a flood of repeated messages during NNTP transmissions: A server will not
try to send a message to another if it is already contained in the path header of such
a message. Optimizations similar to the path header were not used by more recent
P2P systems like Gnutella (see section 3.3.4). Consequently, a Gnutella node could
receive the same request repeatedly.

Usenet is a successful case of an open and decentralized system. But this de-
centralized nature became a problem because of the commercial internet explo-
sion. Spam made Usenet a extremely noisy communication channel. Nevertheless,
Usenet is a good design lesson about P2P systems for its decentralized control,
methods of avoiding a network flood and other characteristics, even with its cur-
rent problems.

1Internet Service Provider, a company that provides access to the Internet.

3.2. P2P SYSTEMS AND THE INTERNET 21

3.2.1.2 Domain Name Systems

A Domain Name System [Minar et al., 2001] (acronym DNS) stores the informa-
tion about host and domain names. This system blends P2P networking with a
hierarchical model of information ownership. Its best known property is scalabil-
ity, from few thousand hosts in 1983, to hundreds of millions of them currently on
the internet.

DNS was established as another solution to the file-sharing problem. The way
to map to a human-friendly name to an IP address was through a single text file
(host.txt) which was copied around the internet periodically. Since this file became
unmanageable because of the explosive growing number of hosts, it was necessary
to develop this system (DNS) to distribute the data sharing across the internet.

The Namespace of DNS names is built hierarchically. This hierarchy yields
a simple natural way to delegate responsibility for serving part of the DNS data-
base. Each domain has a name server (known asauthority [Minar et al., 2001])
of records for hosts in that domain. Looking for the address of a given name, the
server can query to its nearest name server, or delegate the query to the authority for
that namespace. Successively the query can be delegated to a higher authority up
to the root name servers for the internet as a whole. When the answer is achieved,
it is propagated back down to the requestor. The result is cached along the way to
the name servers in order to make the next fetch more efficient. Name servers play
both roles to do this work, servers and clients. This is one of the design decisions
that have helped to make the network more scalable. The second decision is the
natural method of propagating data request across the network. Although a DNS
server can query any other; there is a standard path up the chain of authority. The
load is naturally distributed across the DNS network. Any individual name server
needs to serve only to its clients and the namespace it individually manages.

3.2.1.3 Evaluation of Early P2P Applications

The properties recognized in these two early P2P applications are the following:

Decentralization There is no a central control in both applications. Usenet has
a democratic administration process and in the DNS case each name server
is server and client at the same time. Note a client-server scheme could be
understood as a particularization of a P2P architecture: a client is a peer with
exclusive responsibilities of a client, and the opposed case happens with a
server peer.

Scalability It is related to the capacity of a system to increase its number of par-
ticipants without any traumatic reconfiguration process. It is achieved in the
DNS by its chain of authority and its peers with client and servers responsi-
bilities.

22 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

3.2.2 Client-Server Network Architecture

The explosion of the internet in 1994 radically changed its shape, turning it from
a quiet geek utopia into a bustling mass medium[Minar et al., 2001]. The mil-
lions of people interested in sending emails, viewing web pages, downloading files
and buying products had a far-reaching impact in the way network architecture
evolved. These changes affected directly the original conception of internet as a
P2P network[Minar et al., 2001].

The network model of software development changed significantly, not just
for the bandwidth consumption, but also for the methods of addressing and com-
municating in the network: Modem connection protocols (as PPP2 and SLIM3)
became more common; applications were created according to users with slow-
speed connection; and companies started to manage their own networks shielded
through firewalls and NATs4. These changes were made according to the usage
patterns common at that time, mainly thinking in downloading files, not uploading
or publishing information.

The web browser was conceived under a client-server network architecture, in
which the client connects to a well-known server, downloads some data and dis-
connects. In this operation the web client needs neither to have a permanent or
well-known IP address, nor a continuous connection to internet, nor to accommo-
date multiple users. It just needs to know to who and how to ask a question and
listen for a response.

It was explained in the previous chapter that internet is an open network. It
has a dynamic configuration over the time because of the volatile connection of the
(client) computers used by people. Usually it is not the case of the servers whose
have a stable participation on the internet. Note that client-server systems depends
mainly of the stable connection of the servers.

3.2.3 Open P2P Network Architecture

P2P architectures came back to the internet with the popular file sharing applica-
tions at the end of 1990s. These applications were developed to enable the user’s
PCs to interact directly to each other without the intervention of a server. Figure
3.1 depicts both the client-server and the P2P network architectures.

File sharing applications had to deal with different conditions to ones found
in the context of the early applications. Systems like DNS rarely has to deal with

2Point-to-Point Protocol commonly used to establish a direct connection between two nodes. It
has been used to connect computers trough phone line. ISPs use this protocol to offer dial-up internet
access. [Wikipedia, 2004]

3The Serial Line Internet Protocol (SLIM) was an encapsulation of the internet protocol designed
to work over serial ports and modem connections. [Wikipedia, 2004]

4Network Address Translation, also known as Network masquerading or IP-masquerading, is a
technique which IP address of network packets are rewritten as the packet pass through a router or
firewall. It is used to enable multiple host on a private network to access the internet using a single
public IP address. [Wikipedia, 2004]

3.3. OPEN P2P APPLICATIONS 23

Figure 3.1: Network Architecture

the disconnection of their participants (name servers). It is not the same scenario
for file sharing applications. Their participants (peers) are computers managed by
users that may voluntarily leave or join the network at any moment. Thus, These
applications have had to develop mechanism for dynamically discovering peers,
organizing themselves after the connection and disconnection of a peer and routing
messages between them. All these mechanism will be detailed in the following two
sections.

3.3 Open P2P Applications

This section describe the different types of P2P network architectures that have
been developed in the past few years. Nowadays it is possible to find different
types of P2P applications such as file sharing systems [J. Liang and Ross, 2004,
Cohen, 2003], some instant messaging systems [Cerulean Studios, LLC, 2005], dis-
tributed computing [PlanetLab Consortium,] and others. This chapter will focus
the attention in file sharing systems uniquely because such applications are illus-
trative for all the types of open P2P network architectures (even for mobile open
P2P networks, as it is explained in section 3.6). A file sharing system make files
available to users in a network. In such systems each peer can both download and
upload files the same time.

[Eberspcher et al., 2004] identifies four types of open P2P network architec-

24 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

ture: centralized, hybrid, pure and DHT-based P2P network architectures See fig-
ure 3.2 (DHT-based P2P architectures are depicted in the following section).

Figure 3.2: P2P Network Architectures

3.3.1 Centralized P2P Applications

These systems are also known asmediated systems[Susan Crosse and Smith, 2003].
They use a client-server setup for its control operations (figure 3.2). Each peer must
logon to a central server. In most of the cases servers manage a database with all
connected users and their shared files. Searches are sent to the server and if it finds
the required file, searcher peer can download the file directly from the peer that has
this file.

Napster 1.0 Napster 1.0 was an online music service created by Shawn Fanning
in 1999 (Northeastern University, USA). It was a mediated P2P network consisting
of a centralized server for performing search functionality [Susan Crosse and Smith, 2003].
It used a client-server protocol over point-to-point TCP for performing the searches.
Napster does not provide a complete solution for bypassing firewalls, and it’s capa-
ble of traversing only a single firewall. This way, each peer acts as a simple router,
capable of sending content to a firewalled peer when a request is made via HTTP.
As previously mentioned, a centralized system has a single logical point of failure.
Napster can load balance among servers using DNS rotation. However, this was

3.3. OPEN P2P APPLICATIONS 25

considerated a potential congestion point.

Evaluation of Centralized P2P Systems Centralizing logging and searching ac-
tivities in these systems processes an effective access control. However, they in-
herit the traditional problems found in client-server architectures, such as having a
single point of failure, performance bottlenecks and scalability.

3.3.2 Decentralized P2P Applications

These systems are purely P2P. They don’t use a central server at all. Each peer has
the same responsibility: There are no group leaders. Queries for files are broad-
casted through the network. Pure P2P networks have become unpopular because
they generate a lot of overhead traffic to keep them up and running. Nowadays,
Freenet still uses this model because it offers an unprecedented anonymity.

Case: Gnutella Gnutella is a distributed software project to share files in a pure
P2P network. It was invented at Nullsoft by Justin Frankel and Tome Pepper
(March 2000). Current versions of this protocol run over TCP/IP. In Gnutella
network, searches (queries) are propagated from a peer to all their known peer
neighbors. The response is routed back using the same path. When a resource
is found and selected for downloading, a direct point-to-point connection is made
between the client and the host of the resource. The file downloaded directly using
HTTP.

Evaluation of Decentralized P2P Systems In a Pure P2P architecture all fea-
tures of the system rely on the peers. Pure P2P systems have good performance
in small networks. In contrast to the centralized systems (with centralized control
access), security is often a very important issue in these systems.

3.3.3 Hybrid P2P Applications

Hybrid Architectures tend to get the best of the both alternatives mentioned before,
through the introduction ofultrapeerconcept [Susan Crosse and Smith, 2003] (also
known assuper nodes[J. Liang and Ross, 2004]). An ultrapeer accomplishes the
role of a server like in centralized systems, but only for a limited number of peers.
In this scheme there are a set of ultrapeers themselves connected through a pure
P2P network. This is the reason why hybrid systems have two layers in the control
plane (figure 3.2): one in with peers connected to one ultrapeer (in a client-server
fashion) and another with ultrapeers connected in a decentralized P2P network.
Both build an overlay network over existing IP network.

Case: KaZaA Kazaa media desktop is a file sharing application that uses the
FastTrack protocol. Both were created at company Consumer Empowerment by

26 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

the Niklas Zennstrm and Janus Friis (March 2001). FastTrack is based on the
Gnutella protocol; it extends this protocol with the addition of Super Nodes for
improving scalability. Super Nodes (acronym SNs) are more powerful than Ordi-
nary Nodes (acronym ONs). As said before, ONs are assigned to a SN. Every node
can become SN automatically if it has enough bandwidth and processing power
[Parashar, 2004]. Each SN maintains an overlay network with other SNs (long-
lived TCP connections between them).

Two-tier hierarchical networks work more efficiently in large-scale systems.
Since there is often more heterogeneity in peers in such systems. Peers can differ
in up-times, bandwidth connectivity and CPU power accessibility (behind NATs or
firewalls). To exploit the heterogeneity, the organization must consider a hierarchy
where nodes more powerful (in terms of the properties mentioned) are automati-
cally allocated in the higher tier.

Case: Bit Torrent BitTorrent is a P2P file distribution application created by
Bram Cohen under MIT License (February 2002). This tool allows people to down-
load the same file without slowing down everyone else’s download [Wikipedia, 2004].
It is possible by swapping portions of the file between the downloaders. Peers fre-
quently connect for small portions of time.

BitTorrent uses tit-for-tat method to seek Pareto efficiency [Cohen, 2003]. Tit-
for-tat is a strategy in game theory for the iterated prisoner’s dilemma (to maximize
his own advantage, without concern for the well-being of the other player) It con-
sists of responding in kind to a previous opponent’s action [Wikipedia, 2004]. An
allocation is Pareto efficient if there is no other allocation in which some other indi-
vidual is better off and no individual is worse off. [Osborne, 1997]. Downloaders
are encouraged because every client uploading to others gets faster downloads.
This way the system achieves a higher level of robustness and resource utilization
than current cooperative techniques. In traditional P2P systems there are problems
of fairness between peers in the network. BitTorrent proposes that each peer’s
download rate has to be proportional to their upload rate.

Evaluation of Hybrid P2P Systems As in the case of the decentralized sys-
tems, Hybrid P2P applications are highly scalable and fault-tolerant. In addition,
experiments with hybrid solutions [Parashar, 2004, Cohen, 2003] have concluded
that these are much more efficient than both centralized and decentralized systems.
However, security problems remain.

3.3.4 DHT-based P2P Applications

Currently, it is possible to find some highly structured P2P network architectures
based on Distributed Hash Tables (DHT). In DHT-based architectures, every peer
(callednode) is assigned a unique key by a hash algorithm. The keys, along with
the network address of the peer are evenly distributed among all connected peers.
Each peer maintains a routing table and queries are only directed to those peers in

3.4. P2P ALGORITHMS 27

the routing table. DHT-based algorithms are aimed to be fast and accurate in the
peer lookup over a network [Ding and Bhargava, 2003].

The next section will describe briefly some of the best-known DHT-based al-
gorithms.

3.4 P2P Algorithms

This section present three of the best-known DHT-based algorithms namely Chord,
Pastry and CAN. All these algorithms will be discussed in terms of their naming,
routing, node addition and node failure mechanisms.

3.4.1 Chord

Chord [Ion Stoica and Balakrishnan, 2001] was developed at Massachusetts Insti-
tute of Technology (MIT). Chord is an algorithm that uses a ring topology. The
basic idea of Chord describes how nodes join the ring, how data is stored and how
the ring recovers from node failures. Interfacing with applications, Chord provides
only one function: given a key, it maps the key onto a node. That node would typ-
ically be responsible for storing the data associated with that key, or it could store
information about where that data can be found.

3.4.1.1 Naming and Routing

The hash function begins by assigning to nodes and keys anm−bit identifier, or-
ganizing the nodes in the ring based on the node identifiers. Both keys and node
identifiers map onto the same ring and the first note that follows a certain key in
the ring is responsible for that key. Each node keeps track of its successor and
predecessor on the ring.

Figure 3.3 shows a Chord network with three nodes identified for0, 1 and3.
The key identifiers are1, 2 and6. The successor of key1 among the nodes in
the network is node1, so key is stored at this node. The successor of key2 is 3
because is the first node found moving clockwise from2 on the identifier. Finally,
successor of key6 is the node0.

In addition to ring strategy, Chord provide the nodes with data structures called
finger tables. In these tables only the successor is needed for a correct search-
result (however, the predecessor makes it possible to efficiently join and leave the
network, see following sections). Each node keeps a number of pointers (peri-
odically checked and updated if possible) to nodes at an exponentially increasing
distance away.

3.4.1.2 Join

A node joins a network by asking an arbitrary node to look up its successor, up-
dates predecessor and successor pointers and finger-tables entries, and transfers the

28 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

Figure 3.3: Hash Function in Chord

relevant keys from its successor. The node (that receives the petition from the new
node) proceeds to send notifications. It notifies to the nodes that supposedly have
itself in their finger table. This is done by notifying all nodes that are predecessors
of keys which are2i steps before the node that just joined. This may occasionally
miss, but that is only relevant for performance and will be corrected on the next
periodic update.

3.4.1.3 Failure

Failures are detected periodically by a stabilization protocol. In the event of a node
failure the ring can be traversed via the successor pointers only. In order to keep
the ring intact, each node keeps track of a number of its immediate successors. If
a node is detected as failed it will be removed from the ring. The extra successor
pointers are used for this. The fix-fingers routine is executed periodically to make
sure that the finger tables are correct and up to date. If a node in the path to the
node that holds a specific key is broken, the lookup will fail. This can be handled
by retrying after a short while, since the stabilize protocol will repair the ring. A
different approach is to ask the previous entry in the finger table. This should give
a new and hopefully valid path, even though performance would decrease. It is
also possible to keep track of the predecessors to the entries in the finger table.

3.4. P2P ALGORITHMS 29

3.4.2 Pastry

Pastry [Rowson and Druschel, 2001] is a project initiated at Microsoft Research
focusing on P2P anonymous storage. It is a scalable, distributed object location
and routing substrate for wide-area P2P applications. It follows two goals with its
DHT-based routing approach. Firstly, just like in Chord, Pastry provides methods
to be able to route to any shared node available and identifiable (with a key). Sec-
ondly, it takes into account network locality. Thus Pastry minimizes the distance
the message travels, according to a scalar metric, like the geographical distance,
the distance within the IP network in terms of hops or delay.

3.4.2.1 Naming and Routing

Each node has a unique 128-bit node identifier. The node identifiers are uniformly
distributed by basing them on secure hash of the node’s public keys or IP addresses.
The node with a node identifier that is closest to a given key is responsible for that
key, but the key is also replicated to a certain number of the nodes in the leaf set.
When a request for a specific key arrives at a node, this node forwards the request
to a node that shares one digit more in the prefix with the given key. If there is no
such node in the routing table, the message is forwarded to a node that shares the
same prefix but whose node identifier is numerically closer to the key. This way the
request is forwarded closer and closer to the responsible node. Figure 3.4 shows a
path example of a message. Since Pastry routes requests to a node that supposedly
is close in the network layer, it is likely that requests first arrive at a replica which
is closer to the requesting node than the responsible node.

3.4.2.2 Joining

The efficient way how Pastry maintains dynamically the node state is key to its de-
sign (node state comprisesthe routing table, leaf and neighborhood sets, node re-
covery in case of nodes failures, and new nodes arrivals.[Rowson and Druschel, 2001]).
When a new nodeX arrives, it receives a new node identifier. It needs to initialize
its state tables, and then inform other nodes of its presence. NodeX knows ini-
tially about a nearby nodeA (according to the proximity metric). So,X asksA to
route a special join message with the key equal toX. Pastry routes the message
to the existing nodeZ whose nodeID is numerically closest toX. In response,X
obtains all state tables of encountered nodes in the path fromA to Z, information
used byX to initialize its state.

3.4.2.3 Failure

Respect to nodes departure, a Pastry node is considered failed if its neighbors can
no longer communicate with it. Then, all members of the failed node’s leaf set are
notified and they update their leaf sets. This action is trivial because the leaf sets
of nodes have adjacent node identifiers overlap. A recovering node contacts the

30 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

Figure 3.4: Routing a message in Pastry

nodes in its known leaf set, obtains their current leaf sets, updates its own leaf set
and then notifies the members of its new leaf of its presence. Routing table entries
that refer to failed nodes are repaired lazily.

3.4.3 CAN

Content-Addressable Networks [Ratnasamy et al., 2001] (acronym CAN) was cre-
ated at AT&T Center for Internet Research at ICSI. The goal of this algorithm
is to improve the performance of large-scale distributed systems (such as Internet
systems). The main feature of CAN is the mapping of a keyk onto a pointP in
a d−dimensional cartesian coordinate space. The coordinate space is partitioned
among all nodes in the CAN so that each node is responsible for a zone. Figure 3.5
shows a2−dimensional2−bit coordinate space partitioned between 5 CAN nodes.

3.4.3.1 Naming and Routing

CAN works by following the straight line path through the Cartesian space from
source to destination coordinates. Nodes maintain coordinate routing tables that
hold the IP address and virtual coordinate zone of each of their neighbors in the
coordinate space. In ad−dimensional coordinate space, two nodes are neighbors if
their coordinate spans overlap alongd− 1 dimensions and differ along one dimen-
sion. The entire CAN space is divided amongst the nodes currently in the system

3.4. P2P ALGORITHMS 31

Figure 3.5:2−dimensional cartesian coordinate space

[Ratnasamy et al., 2001]

3.4.3.2 Joining

When a new node joins the CAN, it randomly chooses a pointP in the coordinate
space and sends ajoin request forP to any known node in the network. The
join request is routed to that node in which zone P is located. The joined node is
allocated by splitting this existing node zone in half, retaining half and handing the
other half to new node. This process happens as following:

• First the new node must find a node already in the CAN.

• Next, using the CAN routing mechanisms, it must find a node whose zone
will be split.

• Finally, the neighbors of the split zone must be notified so that routing can
include the new node.

3.4.3.3 Failure

CAN ensures in case of nodes departures, that zones occupied for them are taken by
remaining nodes. To do this, the node has to hand over its zone and the associated
database (key, value) to one of its neighbors as following:

• To merge its zone with his neighbor’s one.

32 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

• If the first alternative does not produce a valid zone, handing the zone to the
neighbor whose current zone is smallest, and the node will the temporarily
handle both zones.

In case of node or network failures (one or more nodes become unreachable),
CAN handles this through an immediate takeover algorithm that ensure one of the
failed node’s neighbors takes over the zone. In this situation the pairs (key, value)
held by the departing node would be lost until the estate is refreshed by the holders
of the data.

3.4.4 Evaluation of P2P Algorithms

P2P network architectures based on DHTs have the following properties:

Self-organization and Scalability DHT-based networks as CAN, Chord and Pas-
try self-organizing context for large-scale P2P networks. In all protocols,
nodes and objects are signed random identifiers (called node identifiers and
keys respectively) from a large, sparse id space. A route primitive forwards
a message to the live node that is the closest in the id space to the message’s
key. Furthermore, given that each node has a well defined routing table, the
lookup for any node/object can be accomplished within a relatively number
of hops (Pastry in log16N, Chord in (1/2)log2N and CAN dN1/d, where N
is the number of nodes in the overlay and d the dimension of space in CAN.

Efficiency P2P networks based in DHT-algorithms improve significantly the use
of the available network bandwidth, in a trade-off for slightly more compu-
tation during query resolution. This was the case of the second version of
the JAVA implementation of JXTA [Li, 2003].

3.5 P2P Models

Nowadays, there are several programming APIs and models to create P2P applica-
tions. These models define a set of abstractions required to represent a P2P system
and also define a set of services, typically found in this type of networks. Two of
these P2P models are described in this section.

3.5.1 JXTA

JXTA [Wilson, 2002] is an open-source-based P2P infrastructure developed at SUN
Microsystems by Bill Joy and Mike Clary (2001). It is P2P library that implements
a set of protocol specifications. In addition, JXTA identifies some concepts con-
sidered by JXTA team as relevant for P2P programming.

3.5.1.1 JXTA Elements

The elements that JXTA identify for P2P programming are the following:

3.5. P2P MODELS 33

Peer A Peer is a node in a P2P network that forms the fundamental processing
unit of any solution. A node is any networked device (computers, PDAs, servers,
printers, etc.) that implements one or more JXTA protocols. It is possible to have
more than one peer running on the same device. There are no restrictions of operat-
ing and synchronization dependencies between peers. An encompassed definition
of a peer is:Any entity capable of performing some useful work and communi-
cating the results of that work to another entity over a network, either directly or
indirectly [Wilson, 2002]. According to the type of work that a peer can have it can
be:

Simple Peer , designed to serve to a single user, allowing to him to provide and
consume services from other peers on the network.. Often this kind of peers
are under strong security conditions (behind firewalls, NATs, etc.). They will
probably not be capable of communicating with peers that are outside their
barriers. That’s why in the JXTA scheme they have the least responsibility
in the P2P network.

Rendezvous Peer, it is a meeting place that provides peers with a network loca-
tion to use to discover other peers and peers resources. Rendezvous peers
are usually outside a private internal network’s firewall. If it is necessary to
locate it inside, either a protocol authorized by the firewall or a router peer
are required.

Router Peer it provides a mechanism for peers to communicate with other peers
separated from the network by firewall or NATs equipment. A router peer
provides to peers outside the firewall a go-between that they use to commu-
nicate with a peer behind the firewall, and vice versa.

These types of roles are not exclusive.

Peer Group is a set of peers having a common interest. It provides services to
their member peers. They determine its membership policies. The kind of common
goals of Peer Groups can be based on:

• The application they want to collaborate on as a group

• The security requirements of the peers involved

• The need for status information on members of the group.

A Peer can be in several Peer groups simultaneously.

Network Transport There are mechanisms to allow peers to exchange data over
the network. This layer, known asnetwork transport[Wilson, 2002], is the re-
sponsible for all aspects of data transmission that can be breaking the data into

34 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

manageable packets, adding appropriate headers to a packet and in some cases,
ensuring that packets arrive at their destination.

Network Transport is composed by three parts:

1. Endpoints the initial source or final destination of any piece of data being
transmitted over the network. An endpoint corresponds to network interfaces
used to send and receive data.

2. Pipes unidirectional, asynchronous, virtual communications channels con-
necting two or more peers.

3. Messages containers for data being transmitted over a pipe from one peer to
another.

Services Services are theuseful tasksa Peer or Group Peer can perform. These
tasks can be anything that a peer might want another peer in a P2P network to be
capable of doing (like transferring a file, and so on). There are two categories:

1. Peer services offered by a peer to other peers. These services are available
only when the peer is connected.

2. Peer Group services offered by a Peer Group to its members. This func-
tionality could be provided by several members of the group. This way, a
service is available when at least one of the peers offering this service is
online. Hence it improves reliability.

Advertisement A structured representation of an entity, service, or resource
made available by a peer or peer group as part of a P2P network[Wilson, 2002].
Language-neutral metadata structures (XML documents) are used to represent ad-
vertisements.

Entity Naming Most items on a P2P network need a unique identifier:

• Peers need it for allowing other peers to locate it.

• Peer groups have an identifier for allowing other peers to perform actions
inside of it, such as joining, querying or leaving the group.

• Pipes use an identifier to allow communication between endpoints.

• Messages need it to be uniquely identifiable. This way peers can mirror
contents across the network and provide redundant access, if possible.

3.5. P2P MODELS 35

3.5.1.2 Core JXTA Design Principles

The first design choice of the Project JXTA team was not to make assumptions
about the type of operating system or development language employed by a peer.
Furthermore the JXTA Protocols Specification expressly states that network peers
may be any type of device. In addition, JXTA makes no assumptions about the
network transport mechanism, except for a requirement that states that JXTA must
not require broadcast or multicast transport capabilities.

3.5.1.3 JXTA Protocol Suite

Based on the protocols specification for any P2P system implementation, JXTA
developed six protocols based on XML messages (figure 3.6). Each protocol con-
versation is divided into a portions conducted by the local and the remote peer.
Each one is responsible for handling the incoming message and processing the
message to perform a task.

Figure 3.6: JXTA Protocol Stack

Protocols are not totally independent for one another because each layer in the
JXTA protocol stack depends on the layer below to provide connectivity to other
peers. However, peers can use a subset of all kind of protocols.

The Endpoint Routing Protocol provides a set of messages used to enable mes-
sage routing from a source peer to a destination peer. Route information

36 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

includes an ordered sequence of relay peer IDs that can be used to send a
message to the destination.

The Rendezvous Protocolallows for peers to subscribe or be a subscriber to a
propagation service. The former corresponds to a peer that is listening to a
rendezvous peer. The latter is the rendezvous peer itself.

The Peer Resolver Protocolallows peers to send and process generic requests
and receive an associated response. Queries and responses can be directed
to all peers in a Peer Group or to specific peers within the group.

The Pipe Binding Protocol provides a mechanism to bind a virtual communica-
tion channel to a peer endpoint.

The Peer Information Protocol provides peers with a way to obtain status infor-
mation from other peers on the network. This information can be uptime,
state, recent traffic, etc.

The Peer Discovery Protocolallows for peers to advertise their own resources
(e.g., peers, peer groups, pipes or services) and discover resources from other
peers. Each peer resource is described and published using an advertisement.

Figure 3.7: Project JXTA Software Architecture

3.5. P2P MODELS 37

3.5.1.4 Logical Layers of JXTA

JXTA platform has three layers (figure 3.7). Each one of thembuilds on the
capabilities of the layer below, adding functionality and behavioral complexity
[Wilson, 2002]:

Core Layer provides the essential elements of every P2P application, namely Peers,
Peer Groups, Network Transport, Advertisements, Entity Naming, Protocols
and Security and authentication primitives.

Services Layer it providesdesirableP2P services such as searching for resources
on a peer, sharing files from a peer and performing peer authentication.

Applications Layer it is built on the capabilities of the services layer to provide
the ”common P2P applications”.

3.5.1.5 Evaluation of JXTA

JXTA succeeds in creating a standard protocol and a set of patterns of P2P services
that is widely used. The protocol is independent of application, devices and net-
work transports to be used in P2P systems. In addition, the use of XML provides a
standard-based format for data structures which is largely understood, easily trans-
portable (light weight) and human-readable.

Benchmarks have revealed that Java implementation of JXTA [Mathieu Jan, 2004,
Emir Halepovic, 2003] suffer from reliability and performance problems (addi-
tional overheads and high latency values). However, they confirm that JXTA is
anyway an appropriate solution for common challenges of P2P network, such as
large data transfers or slower-speed networks.

Finally, what apparently is the major advantage of JXTA (to be a standard
protocol) could become the biggest limit. It has already made a number of design
decisions. This could confine the protocol to specific type of P2P applications.
JXTA has to have the definition of its protocols flexible enough to adapt itself to
new types of application in the future or combination of existing P2P solutions in
order to extract the best of each of them to future systems. These kind of combined
approaches have already started to happen [Bernard Traversat and Pouyoul, 2003].

After having worked with JXTA one may to conclude that this model could be
even much simpler, in the sense the JXTA concepts seem to be more abstractions
of elements found in a programming language (like classes) than elements found
in a conceptual P2P system . A case that shows this difference is thepipeconcept.
It is clear that a pipe is an excellent abstraction of a socket, but is this concept
indispensable to design a P2P system? What is really essential is the possibility of
a peer to send a message to another peer. It could be represented just as a method.

38 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

3.5.2 P2PS

P2PS is a library/platform to build P2P application in Mozart/Oz created at Univer-
sité Catholique de Louvain, Belgium in 2003. P2PS implements Tango algorithm
[Carton and Mesaros, 2004], which is a generalization of Chord but it scales better,
in order to get efficient development. TheP2PS platform provides the developer
with a means for building and working with P2P overlay applications, offering dif-
ferent primitives and services such as group communication, efficient data location,
and dealing with highly dynamic networks.[Valentin Mesaros and Roy, 2004]

3.5.2.1 Functionality

P2PS has an API that offers the primitives and services hiding underlying details
such as the DHT algorithm used (whereas it implements Tango; it can be any DHT
algorithm). The primitives are used for management, communication and monitor-
ing.

Management Primitives

Create a Network functionality that allows user to create a P2P overlay network.
It creates the first peer node of a network; specifically it creates the access
point for this node. The primitive iscreateNetand receive parameters related
to the network, to the node and to the access point (IP and port). Finally the
access point is published in the network.

Join a Network Primitive joinNet that receives as parameters the access point of
a peer node already joined to this network.

Leave a Network Primitive leaveNetthat disconnect the peer node from the net-
work.

Communication Primitives P2PS performs efficient key based routing that means
a message from a node s to a node d will be routed throughout the overlay network
according with the corresponding key lookup procedure, where d is considered a
key.

One-to-one communicationprimitive to send a message. It is possible to choose
between sending the messagedirectly or indirectly (through the responsible
of the key), and doing thebest-effortor reliably.

One-to-many communication primitive to send a message to all or a selected list
of peer nodes in the network.

Send to successormethod to get replicas of the message in more than one node.
It is done to increase the resilience.

3.5. P2P MODELS 39

Monitoring Primitives Primitives to be aware of the state and changes respect
to peer nodes and network.

Figure 3.8: P2PS Architecture

3.5.2.2 Architecture

P2PS is organized in three-layer architecture (see figure 3.8).

Com Layer Layer that act as the interface of P2PS and the underlying physical
network. This layer provides the functionalities of access point creation,
connection establishment, basic communication primitives and fault detec-
tion.

Core Layer Layer that provides high-level connectivity primitives. It implements
the Tango algorithm. Its main purpose is toimplement node join and leave
mechanisms, route key based messages to their responsible, and maintain the
routing table and the successor list regardless of the nodes joining and leav-
ing, thus guaranteeing overlay efficiency.[Valentin Mesaros and Roy, 2004]

Services Layer This layer is a kind of wrapper that builds up the operations needed
to implement P2P applications. These are system initialization, create con-
nection access and systems join and leave operation.

3.5.2.3 Evaluation of P2PS

This model results much simpler than JXTA. As Mozart/Oz, P2PS is a good model
because of its expressiveness. Even while JXTA can offer more services, such as

40 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

security and authority, P2PS reduce all its services to a small set of primitives,
whose counterpart in JXTA comprises a considerable sequence of object instantia-
tions and explicit subscription to these services.

3.6 Open P2P Networks in Mobile Environments

The previous sections described the evolution of P2P network architectures in the
context of the internet. As said before, this is an open network in the sense it has
a dynamic configuration due to the connection volatility of their participants. P2P
architectures have demonstrated to work properly under these dynamic conditions.

Recently experiences [Ding and Bhargava, 2003, J. Kurhinen and Vuori, 2004,
Priyantha et al., 2000] have used P2P architectures in the context of mobile net-
works. Particularly in the context of mobile ad-hoc networks explained in the
previous chapter (section 2.2.2.2). Some similarities and differences between both
phenomenons have been found in these experiences. The similarities are the fol-
lowing:

• Neither mobile ad-hoc networks nor P2P network architecture require a cen-
tral server, which means, every peer or device should collaborate with others
in order to make the whole system work.

• One of the main problems in P2P architectures and mobile ad-hoc networks
is to discover peers and services over the network, and routing communica-
tions efficiently.

• In both systems, broadcasting can be employed to some extent in order to ex-
change data or routing information among different peers. As was explained
in this chapter, such a strategy can raise the scalability problem.

• There is a mechanism in mobile ad-hoc networks called proactive (or table-
driven) routing protocols in which every mobile node tries to maintain a
routing table involving the complete information of network topology. This
protocol is similar to the routing mechanisms of DHT-based P2P architec-
tures.

The inclusion of P2P architectures in mobile networks is just starting to pro-
duce results. There are still some issues to solve, such as the following:

• Mobile ad-hoc networks and P2P systems work in different network layers.
There are no clarity respect to the coordination mechanisms that should exist
between both systems.

• Mobile networks are constrained by limited resources of theirs participants.
It is not a concern of P2P applications over internet (such as file sharing
systems).

3.7. CONCLUSION 41

• Whereas some P2P systems on internet would be interested to establish the
same connections after a disconnection, mobile ad-hoc networks focused to
reestablish the connection independently of the channel used for this pur-
pose.

3.7 Conclusion

This work has described the history of P2P systems since the creation of the in-
ternet. During this history networks (both software and hardware) have evolved
according to several interests. Because of these interests the P2P paradigm was left
out for a long time. But the same evolution and the newsophisticateduser require-
ments such as sharing files or communicating over the internet, brought back the
P2P systems. These requirements do not differ so much of the requirement that the
early applications’ developers imagined at the very beginning.

New kinds of P2P applications, algorithms and models have been evaluated in
this chapter. As a summary it is possible to say:

• P2P applications are decentralized, self-organized, highly scalable and fault-
tolerant. On the other hand these applications require decentralized coordi-
nation, which is more difficult to handle than its centralized counterpart; are
more sensitive to the peer conditions; and finally could imply more program-
ming issues.

• Current P2P applications can be classified as centralized, decentralized and
hybrid. This difference is based in where and how services are provided.
Hybrid P2P systems with the incorporation of a second type of peer (with
better conditions) have gotten the best test results.

• P2P systems based in DHT algorithms get better performance in all works
related to peer lookups due to its adequate infrastructure for this service of
peer discovery.

• P2P models and APIs identify a set of entities and services for P2P appli-
cation. Users can create their own P2P systems based in those entities and
services.

• Finally, this work have described recently experiences implementing P2P
architectures on mobile systems. This architecture provides some properties
that comply with the requirements of mobile networks (since they are open
networks as the internet). However this type of experiences have just started,
and several issues remain.

The following chapter will present the ambient-oriented programming para-
digm. This paradigm aims to solve the problems found in mobile networks men-
tioned in the chapter 2. It also requires decentralized systems such as the systems

42 CHAPTER 3. OPEN PEER-TO-PEER NETWORK ARCHITECTURES

developed with P2P architectures. As will be explained, AmbientTalk [Dedecker, 2005a]
is a language that implements this paradigm and provides P2P solutions to deal
with mobile devices.

Chapter 4

The Ambient-Oriented
Programming

4.1 Introduction

The particular interest of this chapter is to illustrate the way in which current con-
currency and distribution models deal with the new conditions of mobile networks.
Most of these approaches are adaptations to past models developed for other types
of networks. They are briefly defined in this chapter discussing their applicability
in this new context.

One of the arguments presented in this chapter is that the concurrency model
known asActor model[Agha, 1986] has more adequate properties to deal with
mobile open networks than other traditional approaches. However, this model is
still not good enough to comply all requirements imposed by mobile environments.
Remember that the special condition of mobile open networks, explained in chapter
2, is their dynamic configuration due mainly to the mobility of their participants.

This chapter presents the actor-based concurrency model calledAmbient Actor
model. This model was developed in the context of the ambient-oriented program-
ming language calledAmbientTalk[Dedecker, 2005a]. It deals with the conditions
of mobile open networks, giving actors the ability to foresee changes in the envi-
ronment, so that they can take appropriate actions.

Several programming languages and frameworks have adapted the actor model
to work with different networks. The current approaches that use this model to deal
with mobile networks are somehow based on previous implementations done for
other contexts. This chapter identifies the links between the different actor-based
languages and frameworks.

4.2 Open P2P Networks Conditions for Concurrency

Concurrency appears when two or more computations work together. In a mobile
open network these computations can be interacting from different devices. Such a

43

44 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

coordinated work should consider the properties of open networks and their partic-
ipants (devices) described in the chapter 2. Some of this properties can affect the
way in which devices work together. The conditions these properties hint are the
following:

1. Devices are concurrent by nature. All the devices that work together over a
open network are running independently (each one has its own processor).
As such, a concurrent work would not must affect this autonomicity, but it
could take advantage of this property.

2. Mobile devices have a volatile connection and scarce resources. A concur-
rent system should minimize the impact of these limitations.

3. A mobile system would require to move computations from one device to
another (some reasons are described in the chapter 5 about mobility). The
concurrent work should not hamper this mobility.

The following section describes different approaches to model concurrent dis-
tributed systems and discusses the issues found in these approaches to model sys-
tems for open networks.

4.3 Concurrency Models

This section introduces two concurrency models, one based on threads and another
in actors. Although there is not athread modelas such, there are many program-
ming languages that deal with concurrency by implementing threads. To simplify
the identification of this approach, it will be referred to thethread modelin the
context of this work.

[Briot et al., 1998] defines a three-dimensional design space that classify the
implementations of concurrency models in programming languages. The dimen-
sions are the followings:

Alignment between objects and threadsThis dimensionreflectsthe degree of
alignment between objects (as state containers) and threads (as independent
processors) are. The entities with a full alignment of these two concepts are
known asactive objectsor actors. These are objects that contain their own
execution threads.

Alignment between messages and synchronization boundariesThis dimension
reflects in what degree the messages communicated between objects produce
synchronization in their processes. In other terms, it measures to which ex-
tends an object that sends a message to another, gets blocked until the recep-
tion of the response.

4.3. CONCURRENCY MODELS 45

Alignment between objects and units of distribution This dimension classifies
the languages according to the fact that object and unit of distribution are
separated or not. When an object is the unit of distribution, objects as a whole
are the only remotely accessible data, and an object always conceptually
resides at one node.

These three dimensions will help to compare the thread and actor models in the
two following sections.

4.3.1 Thread Model

A thread is a virtual processor capable to execute instructions sequentially, and
communicate with other threads by sharing data. In an object-oriented language,
each thread can execute methods of multiple objects. It reveals that threads and
objects are totally unaligned entities1.

This model has well-known drawbacks. These are the following:

Data-races A data-race can occur when a shared data is manipulated simultane-
ously by two threads. It can lead the data-structure to an inconsistent state
(for instance, if theput andget methods of buffer are called at the same
time). A program with data-race problems can randomly crash, give incor-
rect answers and be very hard to debug.

Deadlocks A deadlock occurs when a set of threads interfere in such a way that
all of them get blocked waiting for a resource they will never acquire. It
produces a cyclic dependency between threads such that each thread holds a
resource which its successor in the cycle is waiting to acquire.

Starvation Starvation appears when a thread never acquires a resource because
it is systematically granted to other threads. It also can happen after the
application of mutual exclusion schemes. Although this problem can beless
critical than the previous ones, this is another case making evident theextra
complexity of languages that let on programmers the responsibility to deal
with concurrency.

The next section will explain the way in which languages implementing the
thread model, deal with these drawbacks.

4.3.1.1 Thread-based Languages

Many class-based languages deal with concurrency by using a thread model. Java’s
concurrency model [SUN Microsystems, 2005] considers two other concepts in ad-
dition to threads: monitors and synchronization [Lea, 1999]. Both concepts have

1Some class-based languages implementing the thread model, like Java, define a thread as a class
too. However, the instances of this class are quite unlike active objects.

46 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

been included to deal with the drawbacks mentioned above. Java threads, monitors
and the synchronization mechanism operate as follows:

Java threads In order to specify the behavior of a thread, an object should be
an instance of a class that implements an interface calledRunnable (with
one method calledrun). This interface is already implemented by a Thread
class. In such a case, the processor executing the thread will start when the
start() method of this class is invoked, and will finish whenever therun
method returns.

Synchronization Java programmers have to deal with synchronization to avoid
data-races. Programmers are responsible of ensuring themutual exclusionof
threads by declaringcritical (shared) pieces of code assynchronized 2.
Thus, only one object will execute such a critical section. The rest of the
threads in the system trying to access this section must wait until the current
thread finishes its work. Note that a deadlock can be considered the side-
effect of Java synchronization, since it occurs only when the threads share
resources under mutual exclusion schemes.

Monitors A monitor encapsulates mutable data shared between multiple threads,
by means of a data structure mediating the access to this data. In Java every
object is a monitor that can be requested and released. Thus, asynchronized
block always is referring to a monitor. Sometimes an operation cannot be
executed while a condition is not verified (it is related to theconditional
or behavioralsynchronization [De Meuter, 2004], which is explained in the
section 4.6.2.1). In such a case, a thread can be suspended until the condi-
tion is fulfilled. In Java this is achieved by sending the messagewait to the
monitor of the object containing the synchronized code. This releases in that
particular moment usually to allow other threads access to execute this criti-
cal code. To notify that a condition may be verified, the monitor can receive
a messagenotifyAll . At this moment all waiting threads are resumed.

4.3.1.2 Evaluation of Thread Model

It is to be said that all the drawbacks of the thread model can be solved by using
some patterns when coding concurrent programs. However, note that the problems
were not produced by the concurrency mechanism itself (all Java concurrency con-
structs work properly), but the explicit incorporation of these mechanisms at pro-
gramming level. For the following model based on actors, concurrency is transpar-
ent for the programmers.

With respect to the three design dimensions of [Briot et al., 1998], Java objects
are neither aligned to a thread, nor to a unit of distribution. Even when an object
could behave as a thread by implementing theRunnable interface and an object

2In Java it is a prefix in a method definition or a block used for synchronizing a part of a method
body.

4.3. CONCURRENCY MODELS 47

could be transmitted and identified over the network (using Java serialization and
Java RMI mechanisms), such alignments (if any) must be manually. There are sev-
eral programming languages explained in the section where objects are inherently
processors and unit of distribution (in such cases programmers never have to align
these concepts manually).

Finally, with respect to the alignment between objects and synchronization
boundaries, Java uses two mechanisms of synchronization. The first mechanism,
described above, is created to avoid race-conditions inside of the state of the ob-
ject. The second one is the synchronous message sending mechanism used for
communication with a single thread between objects. The programming languages
in section present concurrency and distribution model that work properly without
considering any of these type of synchronization.

4.3.2 Actor Model

The Actor Model [Agha, 1986] was proposed by Gul Agha at University of Illinois
in 1986. This model is based on the concept ofActor introduced by Carl Hewitt
at MIT in the early 1970s. Agha defines actors asself-contained, interactive, in-
dependent components of a computing system that communicate by asynchronous
message passing. An actor can perform three basic actions:

Sending MessagesActors communicate with one another using asynchronous mes-
sages. In other words, an actor that sends a message to another does not have
to wait until the receiver actor processes the message and sends the response
(if any) back to the sender actor.

Creating Actors To create an actor with a specified behavior description.

Become To allow an actor to change its own behavior. According to Agha, behav-
iors areabsolute containments of informationthat can be shared (accessed
and modified) in such a way that deadlocks in communications are avoided
(however there can still be a sort oflivelocksdescribed in section 4.3.2.2).

An actor is a computation that encapsulates astate, a set of procedures con-
trolling this state, known as itsbehaviorand a executionthread. The actor com-
municates with others by an asynchronous message passing mechanism. For this
purpose an actor has also a queue, commonly known as itsmailbox, in order to
receive the incoming messages. This message queue simplifies the concurrency by
processing one message at a time, hence excluding intra-object concurrency (ex-
ternal threads entering to the state of the actor) such that race conditions on the
internal state of an object are avoided.

According to Agha actors are defined to have ahistory-sensitive behaviorwhich
always can be expressed as a function of the incoming communications (messages).
An actor will autonomously reacts to messages by executing the method body it-
self. Each method in an actor’s behavior should specify the replacement of the
current one that will be used to process the next message (see figure 4.1).

48 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

Figure 4.1: Actor Model

Actors are also defined to avoid sequentiality in the messages communication
and processing. The first kind of sequentiality is achieved by using asynchronous
message-passing. The second kind of sequentiality is achieved by including the
actor creation process as part of the model. This action included in any method
body allow actors to create new actors guaranteing the ability of increasing the
distribution of a computation as it evolves.

4.3.2.1 Promise or Future Pipelining

As said before, actors have an inherent asynchronous communication system. Nev-
ertheless, some actor-based languages provide mechanisms to allow synchronized
sequences of actions among actors written in acontinuation-passing3 style. This
mechanism usually includes messages with an extra argument containing an ac-
tor calledcontinuation actor[Agha, 1986] orcustomer. When an actor receives a
message, it executes the method corresponding to this message. The return value
(calledjoin continuationin this context) of the method is sent to the continuation
actor. It will consumethe join continuation such that the computation can proceed.

3A continuation actually denotes ”all that remains to be computed” at the point where the con-
tinuation is captured. Continuations are best understood when looking at programs as nested ex-
pressions, each of which ”returns its value” to the surrounding expression, when it gets evaluated.
This ”expression surrounding the value” is then the continuation of the expression yielding that
value.[Van Custem and Mostinckx, 2004]

4.3. CONCURRENCY MODELS 49

It is possible to find continuation chains as result of sequential computations.
In such a scenario, computations are composed by a sequence of method invoca-
tions. Each invocation uses the result returned by the previous one as a parame-
ter. In conventional remote procedure call (RPC) systems, it would require many
synchronousround trips[Miller, 2000] over the network, one for each method in-
vocations. For languages using continuations, it is nothing more but a sequence of
messages sent from an actor to another. Every message uses the continuation actor
(also calledpromise[Miller, 2000, Liskov, 1988] orfuture [R. H. Halstead, 1985]
in this context) returned by the receiver actor of the previous message, as parameter
for the next message.

An example of this mechanism can be found in thewhen-catchconstruct of
E programming language [Miller, 2000] (see the code below). It can be read as
follows:

When a promise (continuation) becomes done, and therefore the resul-
tant object (temp) is locally available, perform the main action block.
But if something goes wrong, catch the problem in variable prob and
perform the problem block [Miller, 2000].

E syntax when (tempVow) -> done (temp) {
#... use temp

} catch prob {
#... report problem

} finally {
#... log event

}

The section 4.6.3.1 will show that the continuation pipelining mechanism is
quite useful for network reconfigurability purposes in open networks.

4.3.2.2 Evaluation of Actor Model

Actor model offers an expressive and transparent alternative for dealing with con-
currency and distribution. Three primitives are expressive enough to represent sce-
narios free of the common concurrency problems such as deadlocks, data-races
and starvation (although the actor paradigm does not impose an order in the mes-
sage execution it can be assumed the same order of the reception of the messages).
Actor-based languages such as the ones described in the section 4.5 keep program-
mers away from low-level implementation details of concurrency and distribution.

In terms of the three-dimensional design space explained at the beginning of
this chapter, actor-based languages align the object, the thread and the unit of
distribution (all of them are contained in its computation unit calledactor). In
addition, messages between actors do not compromise the autonomy of each of

50 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

them. It is also convenient for systems running on dynamically reconfigurable en-
vironments like open networks, since synchronized communications between ac-
tors make them more vulnerable to the connection volatility of the device where
they reside. Nevertheless, it does not mean that there is no synchronization at all.
De Meuter [De Meuter, 2004] identifies a type of synchronization related to actor
behaviors. It will be explained in section 4.6.2.1.

This model is not free of problems. There are still issues to be solved or im-
proved. For instance:

• The programs using continuations can becomescatteredandunreadable. As
explained in 4.3.2.1, it is becausethe breakdown of sequentiality in a com-
putation is also a breakdown of sequentiality at level of the implementation
of method’s bodies.

• The continuations and continuations chains can impose an overhead on the
system, since it is a mechanism that only postpones the work that at some
moment will have to be executed.

• As important as the expressiveness is in communication, is the properly re-
ception of the messages and its responses, if any. In communications be-
tween local actors it can be matter of a good implementation of the methods
in behaviors, but in a distributed system it also has to do with the availability
of both sender and receiver in the network during the communication. This
fact is more evident when working with mobile open networks (see section
4.7). In such a case an actor can send a message to another and time after,
when the receiver actor produces the response, the sender actor can then be
out of range. More considerations related to concurrency models for open
P2P networks are exposed in the following section.

• The actor model avoid deadlocks but there can still be a sort of ”livelock”:
messages can be ”stuck” in the incoming message queue of an actor if it does
not have the appropriate behavior to execute the message. It does not block
the actor, but it may stall the progress of an application.

4.4 Concurrency Models’ Issues for Open P2P networks

There is a set of issues identified in [De Meuter, 2004] when dealing with concur-
rency in open P2P networks. Some of them are directly related with the conditions
of this type of network described in section 4.2. The issues are the following:

1. Using synchronous message sending would block unnecessarily the devices.
Asynchronous communications solve this problem. The same argument is
useful for communications that involve more than two actors. The promise
pipelining mechanism minimizes the coupling between devices and can be
used for network reconfigurability purposes (see section 4.6.3.1).

4.5. ACTOR-BASED LANGUAGES AND FRAMEWORKS 51

2. As said in the previous section 4.3.2.2, languages implementing continuation
passing style can be complex to code. The problem is even worse in open
P2P networks in which devices can get out of range during the communica-
tion process, forcing programmers to thinkhow to keep the connection alive
during the process. However, resource limitations in the current devices and
networks, make impossible to ensure the full communication reliability in
the context of open networks. Some mechanisms have been proposed to
give alternative solutions to this problem (see section 4.7.1.1).

3. The model has to facilitate the work with mobile setting where actors hop
from one device to another. The chapter about mobility (chapter 5) will
explain why the actor model is more convenient for mobility purposes than
a thread-based one.

4. The difficulties to work with threads that share state, motivated researchers
to create inherently concurrent actors. However, in the context of open net-
works it is possible to find cooperating distributed applications that need a
kind of shared state(acquaintance) between the concurrently operating de-
vices (like shared virtual white boards). In pure actor systems this is hard to
accomplish by sending messages back and forth all the time, using explic-
itly encoded session information(such as http cookies). De Meuter suggests
letting participants to share some state. Section 4.5.2 describes ABCL, a
programming language that implements the actor model including a notion
of a actor states. However it is unaccessible by external actors.

5. It is hard to guarantee consistency of internal actor state in open networks if
it allows intra-object concurrency. This is due to the inability to foresee all
interactions this actor can undergo with actors in other devices.

4.5 Actor-based Languages and Frameworks

The following sections boils down to two early actor-based approaches. The first
one corresponds to an ambitious idea to use the properties of actors inintelligent
entities known asAgents. The second one is an actor-based programming lan-
guage called ABCL, although it was not conceived for open P2P network (as the
languages presented in section 4.6), it has become a unavoidable reference for later
actor-based languages.

4.5.1 Actor as Agents

The concept of agent has been present since very early times in technology
[Lange and Oshima, 1998], however there is still no agreement about its defini-
tion. An agent can be loosely defined as asoftware entity that assists people by
performing tasks under given constraints on their behalf[Clements et al., 1997].
The ambitious idea behind this concept is to provide this agent with intelligence.

52 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

But this intelligence has been related along the history to many attributes like reac-
tivity, autonomy, collaborative behavior, knowledge-level communication ability,
inferential capability, adaptability, mobility, and others. In a limited consensus,
some authors[Clements et al., 1997] say that an agent must accomplish at least the
following conditions:

Goal-oriented An agent should act in response to changes in their environment
related to a goal.

Communicative An agent should be able to communicate with other agents and
with its environment.

Mobile An agent should be able to transport itself from one host to another.

The reason why agents are considered as actors is because usually the agents
communicate with each other by message-passing, like actors do.

4.5.1.1 Aglets

There have been a large number of agent building packages. One of the most
popular is the Aglets Workbench[Lange and Oshima, 1998], developed at IBM’s
research labs in Japan (1998). An aglet is a java-based onternet agent (Aglet is
a shorthand for agent plus applet) characterized by an event-driven entity (as a
Java applet). These events provide an aglet with state persistency and light-weight
object migration mechanisms. The aglets reside in servers containing objects called
contexts, which act as workplaces in which aglets can communicate between them
and get information about the server. This information is used by a aglet to take its
decisions (for instance, to check the compatibility with a certain server it intends
to migrate to).

Concurrency Model of Aglets As said previously, aglets use a message-passing
communication scheme. They do not normally invoke each other’s methods di-
rectly. Instead, they send messages through proxy objects obtained from the server
known asAgletProxy , in the same line of Java RMI-based systems. An aglet
can send both synchronous and asynchronous message to another by using the
proxy methodssendMessage or sendAsynchMessage respectively. Each
message carries aString indicating the kind of message and another optional
piece of data. A particular property of aglets is that they cancomply, refuse to
complyor decide to comply later witha request. This is possible thanks to thecall-
backmodel implemented in the aglets framework [Venners, 1997], which provides
them with an instant of decision (thecallbackmethod) previous to the execution
of any event. For instance, thedispatch() method (used to move aglets) is
invoked on an aglet, theonDispatch() callbackmethod is invoked by the host,
before the dispatch operation starts. Therefore, in the body ofonDispatch()
the aglet must decide whether or not go.

4.5. ACTOR-BASED LANGUAGES AND FRAMEWORKS 53

4.5.1.2 Evaluation of Aglets

The Aglets technology is strongly based on a client-server architecture. As ex-
plained in chapter 3, it is not the most appropriated scheme for open networks.
On another hand, the close relationship between an aglet and its server containing
it, implies that the latter commonly has to be referred at programming level (for
instance, to get an AgletProxy of another aglet).

4.5.2 ABCL

Actor Based Concurrent Language[Briot and de Ratuld, 1988] (acronym ABCL) is
a prototyped-based concurrent programming language created by Akinori Yonezawa
et al. at University of Tokyo in 1986. It provides active objects (with an associated
execution thread).

4.5.2.1 Concurrency Model of ABCL

ABCL implements the actor model and combines it with the notion ofmutable
state[De Meuter, 2004] which can bedormant, activeor waiting. An active ob-
ject is initially dormantand becomesactivewhenever it receives a message. It
becomesdormantagain when there are no more messages in the message queue.
Active objects can get blocked waiting for a certain message. This is achieved us-
ing a mechanism known asselective message receipt[De Meuter, 2004] which is
incorporated in ABCL by theselect construct.

In order to protect active object states from concurrency problems related to
state sharing described in section 4.3.1.2, ABCL takes the following considera-
tions:

• Active objects cannot process more than one message at time.

• Methods patterns can contains additionalconstraints[De Meuter, 2004] (for
the behavioral synchronization explained in section 4.6.2.1). A same method
pattern can occur with multiple different constraints.

• If multiple pattern-constraint pairs match an incoming message, the first one
is selected.

Messages sent to an active object are put in its message queue (ordinary at the
end) if the object is inactivestate. If it is inwaitingstate, it will check whether the
incoming message is the expected one, according to the required patterns.

ABCL features three kinds of messages:past, nowandfuture.

Past Type Message PassingThis is a pure actor-like asynchronous method invo-
cation, the sender object does not wait for the response.

54 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

Now Type Message PassingIt is equivalent to the conventional synchronous method
invocation. In such a case, sender has to wait for a result to be returned. The
difference is that the receiver object can carry out some computation after
sending back the result (since this is an active object with an independent
processor). Recursively calling a method through now type message passing
causes deadlocks [De Meuter, 2004].

Future Type Message PassingThis type implements the promise pipelining model
described in section 4.3.2.1. Asynchronous method calls return a result (afu-
tureobject) which can be used as a parameter for a next computation. Unlike
Multilisp’s futures[R. H. Halstead, 1985] or Argus’ promises[Liskov, 1988],
ABCL allows a computation to fulfill more than once. To support this, the
future object has a queue that accumulates all values returned.

There is an alternative message passing mode calledexpressmode, in which
expressmessages are accepted even when the receiver object isactive. This mode
implies message-handling to lose its atomicity. Therefore ABCL includes the prim-
itive atomic to evaluate expressions without interruption.

4.5.2.2 Evaluation of ABCL

As mentioned above, ABCL has been an important reference for more recent actor-
based languages, like ChitChat [De Meuter, 2004] and SALSA [Varela and Agha, 2001].
It is a prototype-based concurrent language based on active objects that provides
three types of messaging passing. The first type (past) is the implementation of the
sendaction in the original actor model. The second one is a improved version of the
synchronous message sending found in thread-based languages. Although it still
can produce deadlocks, the processing of message is done by the active object that
contains this method, and not by the sender of the message (it avoids data-races).
The last type works with future objects.

4.6 Actor-based Languages for Open P2P Networks

The purpose of this section is to present programming languages that deal with
distribution and concurrency in open networks. All of these approaches consider
somehow the three concepts reviewed until the moment in this work (open net-
works, P2P network architectures and actors). These properties will be highlighted
throughout this section.

As a consequence of working with open networks, the following languages also
provide mobility mechanisms that will be described in the next chapter exclusively
dedicated to mobility.

Before describing some actor-based programming languages it will be dis-
cussed different approaches in which the actor model is implemented as a software
library for a object-oriented language.

4.6. ACTOR-BASED LANGUAGES FOR OPEN P2P NETWORKS 55

4.6.1 Actor-based Libraries

Several actor-based libraries have been implemented in different object-oriented
languages. Some examples of these libraries are ProActive[Baude et al., 2003] and
TAPAS[Shiaa and Aagesen, 2002]. Such libraries provide high-level middleware
services for discovery, communication, and mobility.

MicroTAPAS is an interesting library to describe in the context of this work
because it is an actor-based approach oriented towards mobility in open networks,
providing some services in a P2P-style.

4.6.1.1 MicroTAPAS

MicroTAPAS[Luhr, 2004] was developed by Eirik Lühr at NTNU, Norway in 2003.
It is a lightweight version of TAPAS[Shiaa and Aagesen, 2002] geared towards
wireless environments. TAPAS (acronym for Telematics Architecture for Plug-
and-play Systems) is a software architecture developed for facilitating the manage-
ment of distributed services in a network. It allows for example for as the dynamic
introduction of new services or the upgrade of them. MicroTAPAS strives for the
same goal but now considering the use of small handled wireless devices. One of
the main motivation for MicroTAPAS is to allow users to move around the net-
work without the need of manually reconfiguring applications and services after
the movement.

The current implementation of this library was built using Java 2 Micro Edition
[SUN Microsystems, 2005], a reduced Java version for mobile applications.

MicroTAPAS Extended Actor Model This model is an extension of the Agha’s
actor model, consideringactorsas software components that reside innodesof a
network that can be servers, routers and switches, and users terminals, such as mo-
bile phones, laptops, PCs, PDAs, etc. In addition, this model consider an extended
actor composition and the creation of atheatermetaphor, defined below.

Extended Actor In addition to the state, behavior, a queue of messages and an
own execution thread, MicroTAPAS provides the actors with the following
two components:

Capabilities These are the requirements an actor demands of its current
node (or future one in case of migration). In the scheme proposed
in MicroTAPAS, a capability required by an actor should be matched
with a capability offered by the target node[Luhr, 2004]. Capabili-
ties can be hardware resources connected to the node (like printers or
screens), but these can also be quantitative aspects such asprocessing
capacityor screen resolution.

Role-sessionsThese capture the relationships between actors needed to ful-
fill their services. It can even imply the creation of new actors if it is
required.

56 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

Figure 4.2 shows the TAPAS extended actor model. How the components of
an actor are affected by actor mobility will be explained in the next chapter
related to mobility).

Figure 4.2: MicroTAPAS Extended Actor Model

Theater metaphor MicroTAPAS actor model is supplemented by a the theater
methaphor4. Without going into too much details, this metaphor is composed
by the following parts:

• Actorsthat performRolesaccording to predefined behaviors.

• Playsconsisting of severalActorswith differentRolesthat are logically
related.

• A Director acting as the manager of thePlaysand supervisor of the
Actors.

• A Domainthat represents the population ofActorsandNodesmanaged
by aDirector.

• A Configuration Manager, who is the responsible for obtaining a snap-
shot of all system resources, and taking decisions aboutCapabilityand
Actor installations.

4Several extensions to the actor model have adopted a ”Broadway” manner of naming all concepts
used in the new models [Shiaa and Aagesen, 2002, Varela and Agha, 2001]. It allowed to extend the
original model in such a way anActor was still a meaningful concept in a more general metaphor
that could include theaters, directors, managers, plays, etc.

4.6. ACTOR-BASED LANGUAGES FOR OPEN P2P NETWORKS 57

• A Mobility Managerto manage theActorsandNodesconnectivity and
mobility.

As mentioned before, most of the concepts are related to reconfigurability
and migration tasks. The migration process and the participation of these
components in it will be explained in the next chapter.

4.6.1.2 Evaluation of Actor-based Libraries

A library providing a good API (in terms of understandability) could look pretty
similar to a language providing new instructions for the same purposes of the li-
brary. However, the latter has advantages, as the ones suggested in [Varela, 2001].
It identifies the following advantages to use actor-based programming language
instead of actor frameworks:

Semantic constraints There are desired semantic properties that can be guaran-
teed at language level, such as the complete encapsulation of data and process-
ing within an actor (to prevent multiple threads from mutating shared state).

API evolution Generating code from an actor language ensures that proper inter-
faces are always used to create and communicate with actors. This code will
not be affected by the changes to the actors API.

Programmability Using an actor language improves the readability of developed
programs. Developing in frameworks often implies using constructs of the
language in which the framework was developed, to simulate actor opera-
tions. It can be confusing for programmers to relate actor semantics with the
syntax of the language. For instance, actor creation or messaging sending
are represented in a framework as (synchronous) method invocations.

These advantages can be identified when comparing MicroTAPAS with the fol-
lowing languages. Yet, it is to be remarked that MicroTAPAS framework makes
actors adaptable to their environment, and it happens transparently for program-
mers using this library.

Last but not least, this MicroTAPAS framework still provides some services
from a central server. These services are related to thedirector responsibilities
such as the coordination ofcapabilitiesandplaysin its domain. For each change
in the conditions of the capabilities and plays, as well as the movements of the
actors, it is needed in some way.

4.6.2 ChitChat

ChitChat is a prototyped-based programming language for open networks created
by Wolfgang De Meuter at Vrije Universiteit Brussel in 2004 [De Meuter, 2004].
It is strongly based on the Pic% programming language [De Meuter et al., 2004].

58 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

ChitChat adapted it to support distribution, concurrency and mobility in open net-
works. As an extension of Pic%, ChitChat is aclassless object-oriented program-
ming language with the full power of prototype-based languages[De Meuter, 2004].
Its concurrency and distribution model are results of theintersectionof properties
found Emerald [Jul et al., 1988], Argus [Liskov, 1988], Obliq [Cardelli, 1995] and
ABCL [Briot and de Ratuld, 1988].

4.6.2.1 Concurrency in ChitChat

The ChitChat concurrency model is inspired by ABCL, which is based on active-
objects. A ChitChat active object is conceived as the combination of apassive
objectdefining the behavior, a message queue and a thread that consumes the in-
coming messages sequentially. There is no intra-object concurrency in ChitChat,
which means that inside of an active object only one method can be executed at
time. Figure 4.3 depicts an active object in ChitChat.

Figure 4.3: ChitChat Active Object

Containment Principle In ChitChat object structure complies the following prin-
ciple: Each active object contains apassive partrepresented by passive objects
used only within the boundaries of an active object. All references to passive ob-
jects never cross the network boundaries represented by the device in which these
references are contained. If it is required, a deep copy of the passive object itself is
passed on.

As a corollary of this principle only active objects can extend from each other
over a network.

Behavioral Synchronization in ChitChat [De Meuter, 2004] describes behav-
ioral synchronization (also called conditional synchronization) as making object

4.6. ACTOR-BASED LANGUAGES FOR OPEN P2P NETWORKS 59

operations temporally enable or disable depending on its internal state. ChitChat
handles this by using a technique known ascall with current promise[De Meuter, 2004].
The interpreter has always acurrent promiseat hand, to wit the promise of the last
sent asynchronous message.Active objects are capable of grabbing the promise
they are about to fulfill, store it and fulfill the promise manually, at a later moment,
possibly after some conditions have been met[De Meuter, 2004].

Active Objects and Delegation-based onheritance ChitChat uses delegation-
based inheritance scheme to work with active objects. Thus,an active parent can
be shared by many active descendants[De Meuter, 2004]. Active parents are in-
tended to be the representative state their descendants share. To avoid race condi-
tions, in case of descendants change the shared state, aserialized super send[De Meuter, 2004]
construct has been included which allows expression to be executed atomically in
the context of the shared parent.

ChitChat Synchronization Synchronization in ChitChat is summarized as fol-
lows [De Meuter, 2004]:

• Messages to passive objects are always sent synchronously.

• Messages to active objects are always sent asynchronously.

• Asynchronous messages return immediately a promise to the sender of that
message.

• Delegation along a chain of passive objects always proceeds synchronously.

• Delegation along a chain of active objects proceeds asynchronously, which
means, the method is immediately searched for but the activation is sched-
uled in the queue of the object that holds the method implementation.

• athis andasuper functions are created in a similar sense tothis and
super . The difference is thatathis andasuper are handled asynchro-
nously and return a promise.this and super refer to passive objects
within the active object executing them.athis andasuper refer to active
objects, which can be either local or remote.

4.6.2.2 Distribution in ChitChat

Chitchat uses the broadcasting approach to get an initial network reference to an
object residing on a different machine. This approach is inherent of decentral-
ized network architectures as P2P ones. As said in chapter 3, these decentral-
ized schemes are more suitable for open networks than centralized name servers.
ChitChat provides a discovery service mechanism in which active objects can regis-
ter themselves to a channel by usingregister(’a Channel Name’) . It will
produce a continued broadcasting of the active object in the channel. Active objects

60 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

can discover their neighbors by callingmembers(’a Channel Name’) , that
creates a local table containing the network references of the other active objects.
Finally, they can disjoin the channel by invokingunregister(’a Channel
Name’) . This form does not invalidate references already established to that ob-
ject from within other machines.

Active and Passive Objects Through the Network These two types of objects
follow different patterns when they are sent trough the network (as arguments or re-
turn values). This distinction is also related to the containment principle described
in the previous section:

Passive objects are passedby copy This is assumed to insure active objects to be
the main source for distribution and passive objects to remain encapsulated
inside active ones.

Active objects are passedby referenceIt means that a unique reference to the ac-
tive objects is passed through the network, instead to pass the active object
itself. It remains at its original device.

4.6.2.3 Evaluation of ChitChat

The ChitChat programming language has been a strong influence for this work
due to the close relation in goals between [De Meuter, 2004] and this thesis (the
creation of a mobility model). De Meuter discusses different models of objects,
concurrency and distribution found in programming languages, in the aim to pro-
vide code strong mobility in open networks. Such a work not only discusses but
also presents its own proposal based on its research. Hence, ChitChat implements
the classless object-oriented model of Pic%, the concurrency model based on active
objects defined by ABCL, and the distribution model based on the implementations
made by Emerald, Argus, and others.

ChitChat has the following properties:

• ChitChat makes a distinction between active and passive objects. While ac-
tive objects are the entities with processing capacity that can interact over the
network, the passive objects are used to implement (with traditional object-
oriented modeling techniques) the behavior of the active objects.

• It also proposes a set of rules to work with these objects when creating sys-
tems for open networks. Active objects are always passed by reference. In-
stead, passive objects are passed by copy.

• It establishes the mechanisms for delegation between objects (both active
and passive ones), adding new abstractions for supporting delegation of ac-
tive objects over the network.

4.6. ACTOR-BASED LANGUAGES FOR OPEN P2P NETWORKS 61

However, ChitChat has the following issues, regarding the requirements of
open networks described in chapter 2:

1. Active object are neither aware to the resources of the devices that contain
them (connection to the network, battery power level, etc.).

2. ChitChat does not provide any mechanism to discover other actors over the
network.

4.6.3 SALSA

SALSA[Varela, 2001] (acronym forSimple Actor Language, System and Architec-
ture) is an actor-oriented language based on Java created by Carlos A. Varela at
University of Illinois in 2001. This language was aimed to be an small extension
of Java that allows programmers to build internet and mobile computing applica-
tions using the advantages of the actor-based programming. The advantages are
[Varela, 2001]:

• Actors are autonomous units with full encapsulation of its state and process-
ing.

• Actors communicate asynchronously and do not share any memory.

• Actors provide a unit of concurrency by processing one message at time.

These properties are taken into account to implement mobility and application
reconfigurability in SALSA (described in chapter 5).

4.6.3.1 Concurrency in SALSA

The primitives of the Actor model are supported in SALSA as following:

Actor Creation SALSA programs are grouped in modules which contain actor
interfaces and behaviors. Behavior definitions can contain constructors used
in actor initializations. Actors are constructed in a similar way as object are
constructed in Java (using thenew primitive). This actor creation statement
is one of the three approaches to get anactor referencein SALSA, (concept
useful for its distribution model explained in the next section).

Message PassingMessage passing in SALSA is implemented by asynchronous
message delivery with dynamic method invocation. This statement requires
a target (an actor reference), a reserved keyword (<-), and a message handler
(a SALSA method) with arguments to be sent. The following examples are
two variants to message passing in SALSA:

62 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

method(); // equivalent to "self <- method();"

standardOutput <- println("Hello World")
// standardOutput is an actor reference

Support for Actor State Modification An actor changes its state by updating its
internal variables through assignments or local method invocations[Varela, 2001].
Only an actor itself can change its internal state, since all variables are pri-
vate. Actors can change the states of other actors only by message passing.

Coordinating Concurrency In SALSA there are three types of continuations
(which correspond to the concept of promise pipelining described in section 4.3.2.1)
that are used for coordinating interactions between actors:token-passing, join and
first-classcontinuations. Thetoken-passing continuationcorresponds to the conti-
nuation mechanism described in section 4.3.2.1. It is used in SALSA for specifying
the order of processing. The value returned by a computation to its continuation is
calledtoken and is represented by the keyword@. Note that this simple scheme
enables chains of continuations.

checking<-getBalance() @ savings<-transfer(token);

A Join continuationsjoins tokens returned by multiple actors, once the have
finished processing their messages, returning an array with these tokens to the con-
tinuation actor.

join {
standardOutput <- print("Hello ");
standardOutput <- print("World");

} @ standardOutput <- println(" SALSA");

Finally, aFirst-class continuationdelegates a computation to a third party, en-
abling dynamic replacement or expansion of messages grouped by token-passing
continuations.

//Example of using First-Class Continuation
...
void saySomething() {

standardOutput <- print("Hello ") @
standardOutput <- print("World ") @
currentContinuation;

}
....

//statement 1 in some method.
saySomething() @ standardOutput <- print("SALSA");

4.6. ACTOR-BASED LANGUAGES FOR OPEN P2P NETWORKS 63

4.6.3.2 Distribution in SALSA

The distribution model in SALSA is known asWorldwide Computing Model
[Varela, 2001] which enables actor programs to be open and dynamically reconfig-
urable. It involves universal naming, theaters, service actors, migration and con-
currency control.

Worldwide Computing Model Worldwide Computing (WWC) Model is a global
distributed infrastructure enabling naming, communication and migration for ac-
tors. This is a actor-based model that consists of a set of virtual machines (known
as theaters) hosting one or more actors (calleduniversal actors) and providing a
layer for message passing and remote communication.

Universal Naming Universal naming is a strategy to make actors reachable on a
network. This service is in charge of providing object name uniqueness, allocation,
resolution and location transparency. There are three main components in this
naming system: universal actors, universal naming service protocol and universal
actor references.

Universal Actors This mechanism allows actors to becomeuniversal actors
[Varela and Agha, 2001] by providing them with a unique and location-independent
name known asUniversal Actor Name(acronym UAN), which is mapped to
the actor’s current locator calledUniversal Actor Locator(acronym UAL),
a uniform and unique handler containing location and protocol information
for communication with the given actor.

A sample UAN for an actor handling a printer:
uan://osl.cs.uiuc.edu/˜agha/printer/

A sample UAL for this actor:
rmsp://agha.cs.uiuc.edu/myPrinter

This naming scheme was motivated by the scalability and readability af-
forded by the world-wide-web’s addressing approach for uniformly identify-
ing multiple resources using Uniform Resource Identifiers5 (URI) proposed
in [Varela, 2001].

Due to independence between Actor’s UAN and UAL, when it migrates from
one theater to another, its UAN remains, but its UAL is updated in the cor-
responding naming server to reflect the new location (see figure 4.4). The
migration is transparent for other actors that had gotten already a reference
to the migrated actor (see more details about actor migration in SALSA in
the next chapter).

5URIs includes Uniform Resource Locators (URL) and Uniform Resource Citations (URC) con-
taining metadata. Nowadays, only URLs are widely used.

64 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

Figure 4.4: UAN and UAL independence

Universal Naming Service ProtocolUniversal Naming scheme offers a naming
service and protocol to implement the mapping from names (UANs) to loca-
tors (UALs). Initially this service was implemented in a centralized way, by
using a set of servers which understood theUniversal Actor Naming Protocol
(acronym UANP). Later works in SALSA have included distributed naming
strategies such as the implementation of afault-tolerant home-based nam-
ing service[Tolman, 2003] based on Chord P2P-lookup protocol presented
in chapter 3 (note that Chord was precisely designed for efficiently working
with mobility).

UNAP provides basic methods for creating, accessing, updating and remov-
ing entries in a (distributed) name server. These entries are pairs composed
by the UANs and UALs of the universal actor. This protocol is not used di-
rectly but through a high-level programming language abstractions described
in the following point.

Universal Actor ReferencesUniversal naming service provides high-level abstrac-
tions for enabling the association of actor references in SALSA language to
the programming-language-independent actor names (UANs) and locators
(UALs). These universal actor references make the actors to be accessible to
other universal actors. The high-level abstractions are methods included in
the behavior of universal actors which support the following primitives:

4.6. ACTOR-BASED LANGUAGES FOR OPEN P2P NETWORKS 65

• Binding an actor to a name and an initial theater.

• Getting references to and communicating with a universal actor

• Migrating an actor from one theater to another.

SALSA Theaters The virtual machine where universal actors reside is called
theater (see figure 4.5). It enables the execution of universal actors. A theater
contains the following components:

• A Remote Message Sending Protocol(RMSP) server for remote communi-
cation and messenger migration (described at the end in this section).

• A runtime system for universal and environment actors. This last type of
actors corresponds to those that enable the access to the immobile resources
of a theater, such as standard output and input streams.

Figure 4.5: SALSA Theater

In the newer implementations of the universal naming service[Tolman, 2003]
based on a P2P architecture, this service is incorporated into the theaters them-
selves (instead of using dedicated naming servers). To achieve this astage man-
ager is included in each theater who, upon receiving a naming request, delegates
responsibility to serve the request to astage handthat is a chosen from a thread
pool.

66 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

Remote Communication Universal actors communicate between them by using
the Remote Message Sending Protocol(RMSP). It is an internet-based protocol
implemented as an extension to Java object serialization. Each theater contains a
RMSP server that listens for incoming messages from abroad for actors living on
this theater. It keeps track of hosted actors and their locators (by using a hashtable
with the UAL as key and the SALSA reference to the local actor as value), so that
incoming messages can be properly passed to the target actor. Note that there are
no guarantees that ensure the target actor of a message will not move in the mean
time the message left the sender actor’s theater and is traveling over the network.
RMSP provides a solution to this situation, which will be explained in the context
of universal actor mobility in the next chapter.

4.6.3.3 Evaluation of SALSA

SALSA is an actor-based language that has adapted the actor model to work with
internet applications. Its main contribution is the distribution model (WWC model)
that provides a set of abstractions for dealing with open networks:

• It uses the universal naming strategy to make actors reachable on the net-
work.

• Universal actors are provided with a location-independent name (UAN) which
is mapped to a uniform and unique handler (UAL) containing information
about its location.

• This language provides a protocol (UNAP) to discover universal actors based
in the universal naming strategy. Actually this service is implemented using
a DHT-based P2P scheme.

• The SALSA theater is an abstraction to the virtual machine where an actor
resides. It provides mechanisms to both interact with resources found at this
location and communicate its resident actors with others over the network.

Respect to the applicability of SALSA in mobile open networks, it bases its
strategy in the implementation of the DHT-based P2P architecture. As explained
in chapter 3, this is a proper architecture for maintain a consistent state of sys-
tems running over open networks, considering its dynamic reconfigurability. But
this conditions is also related to the dynamic configuration of the services found
(offered by actors) in the network along the time. SALSA does not provide mech-
anism to discover and interact with these services. The following case presented in
this chapter will introduce explicit mechanism to deal with service discovery and
actor communications over an open network.

4.6.4 AmbientTalk

AmbientTalk[Dedecker, 2005a] is an actor-based programming language foram-
bient aware programscreated by Jessie Dedecker at VUB in 2005. It extends

4.7. AMBIENT-ORIENTED PROGRAMMING 67

the actor model by including characteristics of the ambient-oriented programming
paradigm. The idea behind this language is to build programs thatcan sense the
environment (ambient) and interact with it[Dedecker, 2005a].

Since it is the language on which the work of this thesis has been created,
this chapter will dedicate more attention to this language, as well as the paradigm
included in its actor model extension.

4.7 Ambient-Oriented Programming

Dedecker defines on ambient-oriented programming (acronymAmOP) language as
a concurrent distributed object-oriented programming language that is specifically
geared towards the use of mobile devices. To accomplish this it must employNon-
blocking Communication Primitives, Reified Communication Tracesand theAm-
bient Acquaintance Management. All of these properties have been implemented
in AmbientTalk language, which is described in the section 4.7.1.1.

Non-Blocking Communication Primitives As explained in section 4.4, block-
ing communications may produce distributed deadlocks in open networks where
participants such as mobile devices are not necessarily available during the commu-
nication process (this phenomenon known as connection volatility was explained
in chapter 2). As remarked in [Dedecker, 2005a],having blocking communications
primitives would imply a program or device to block upon encountering unsta-
ble connections or temporary unavailability of another device. For this reason, an
ambient-oriented language include in its concurrency model non-blocking commu-
nication primitives which minimizes the time resources are locked.

A non-blocking mechanism is not only asynchronous communication system,
since the later provides asendnon-blocking operation, but says nothing explicitly
about areceiveoperation of the message in the target actor. The tuple-space based
middleware (described in chapter 2) shows a case of the combination between a
non-blockingsendand a blockingreceiveoperation.

Reified Communication Traces The communication process is decomposed in
parts representing the different status of a communicated message. Non-blocking
communication between autonomous devices (see more details about device au-
tonomy phenomenon in chapter 2) might imply the communication between two
parties ends up in a state that is not consistent for the purposes the communication
was started (for instance when a message is received but not processed by the target
actor because it was shut down before the message was served).Whenever such a
inconsistency is detected, the parties must be able to restore their state to whatever
previous consistent state they were in, such that they can decide what to do based
on the final consistent state they agreed upon[Dedecker, 2005a].

Reified communication traces in a ambient-oriented programming language
provides aexplicit representationof the communication state allowing to react to

68 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

inconsistencies detected during this process (for instance, reversing part of its com-
putation).

Note that this mechanism does not give full guaranties that a communication
will be successful. There have been large studies that concluded it is not possible
to insure the correct delivery of a message [Dedecker, 2005a]. The reified com-
munication traces just offer programmers a way to manipulate the state of an actor
communication in order to achieve application-specific recovery.

Ambient Acquaintance Management This property is related to the fact that
resources are dynamically detected as devices find each others. Each device is said
to have capabilities to interact with others. These capabilities can be understood
as services that can be required by other devices. Interactions between devices are
direct ones. There is no need to rely in third parties to get acquaintance of other
actors (like in the cases of chat-servers or white-boards client-server applications).
It implies to have a distributed naming protocol like in P2P architectures6.

4.7.1 AmbientTalk Kernel

AmbientTalk is ambient-oriented programming language that implements the am-
bient actor model explained in the previous section, which is an extension of the
actor model. As mentioned in section 4.7, an ambient-oriented language is also a
concurrent distributed object-oriented language. As such, the implementation of
AmbientTalk considers the following parts:

• The implementation of the object model, which is based on the object model
of the programming language Pic%[De Meuter et al., 2004] (like ChitChat).
This model is based on the prototype-based object paradigm. Comparisons
between class-based and prototype-based approaches have concluded that
the latter have more advantages for building applications in open networks
[De Meuter, 2004].

• The implementation of the actor model. AmbientTalk provides three prim-
itives that implement the three basic operations found in the original actor
model:

1. A new actor is created with theactor primitive which takes an object
as one argument and returns a reference to the new actor with the object
as its behavior.

2. Messages are sent by using the# keyword which represents the asyn-
chronous method invocation operator.

6It is still possible for programmers to set up servers for ambient-oriented applications.
This property is related only to the fact that acquaintances of an object must be dynamically
manageable[Dedecker, 2005a].

4.7. AMBIENT-ORIENTED PROGRAMMING 69

3. Finally the state and behavior of an actor is changed by using the
become primitive. It takes on object as argument that will be in charge
of processing the following messages.

• The implementation of the ambient actor model to accomplish with the prop-
erties of an ambient-oriented programming language described in the previ-
ous section. The definition of this new model is presented in the next section.

• The implementation of a set of functions to enable reflection in messages
and mailboxes, at communication and processing stages.

4.7.1.1 The Ambient Actor Model

As mentioned at the beginning of this chapter, the Ambient Actor model (acronym
AAM) is an extension to the Agha’s actor model. AAM extends this model by
including mechanism to accomplish with the properties of the ambient-oriented
paradigm described above. In [Dedecker, 2005a], Agha’s actor model is evaluated
respect to these properties. It behaves as follows:

• The actor model partially fulfill the property of non-blocking communication
primitives. This is because, as explained in section 4.3.2, this model only
have support for thesendoperation but it says nothing about thereceive
operation.

• The actor model does not support reified communication traces, because it
does not identifies states in the actor communication process.

• The actor model requires third-party actors to gain new acquaintances of the
network. A later extension to this model also developed by Agha, called
theActorSpace model[Callsen and Agha, 1994], enabled distributed naming
by introducing an actor grouping mechanism, calledspaces. However these
spaces are still managed by centralized authorities.

The ambient actor model accomplishes these properties by incorporating new
mailboxes to the model which allow to make the communication state of an actor
explicit, and for ambient acquaintance management.

Communication State Ambient actor model enables control over the commu-
nication state of an actor. According to this state a message can be in one of the
following status of delivery:

• A message was received by a target actor but it (the message) is still not
processed by this actor. This message is actually stored in a mailbox called
in which corresponds to the queue found in the original actor model.

• A message was received and processed by the target actor. This message is
stored in a mailbox calledrcv (acronym forreceived).

70 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

• A message was sent by an actor but it is still not transmitted to the target
actor. This message is stored in a mailbox calledout .

• A message was sent and transmitted from the sender actor to the target actor.
This message is stored in a mailbox calledsent .

This mailboxes are a kind ofgatesto the past and future of the current status
of the actor.

Ambient Acquaintance Management Distributed naming is available in Ambi-
entTalk via a P2P lookup mechanism calledpattern-based lookup. A pattern is an
abstract description of an actor (or a set of them), and is specified by a communica-
ble value. Note that usually in P2P lookup mechanisms this description is the name
of the actor or a key understood by a P2P lookup algorithm (such as DHT-based
algorithms explained in chapter 3). However, this description could perfectly cor-
respond to a service offered by an actor which, in some scenarios, can make much
more sense than looking for its name. When somebody looks for a printer, it would
be pretty more desirable for him to look for theprint service over the network, than
looking for the name of the computer that has connected a printeror the name of
the printer itself.

The pattern-based lookup works as follow:

1. An actor that wants to search for certain pattern (for instance, representing an
actor or an actor’s service), put this pattern in a mailbox calledrequired .
It means, this actorrequiressuch pattern.

2. An actor that wants to make some pattern available (for instance, represent-
ing itself or some service it provides), put this pattern in a mailbox called
provided . It means, this actorprovidessuch pattern.

3. When the actor providing a pattern enter to the communication range of
another requiring the same pattern, this last actor joins to the provider actor.
It is done by registering the tuple [”pattern found”, ”actor providing this
pattern”] in other mailbox calledjoined . This tuple is calledresolutionin
AmbientTalk.

4. Whenever an actor, that is already included in a resolution of another, is
pulled out of communication range, this resolution is moved to another mail-
box (of the same actor) calleddisjoined . This way, ambient acquain-
tance mechanism not only detect new resources, but also to detect when
actors have disappeared from the network.

4.7.2 Evaluation of AmbientTalk

AmbientTalk is an ambient-oriented programming language for mobile open net-
works. It is based on the ambient actor model which provides the two following
mechanisms:

4.8. CONCLUSION 71

• A mechanism to control the communication state of an actor. It provides
the actor with non-blocking communications(for avoiding distributed dead-
locks) and reified communication traces (for avoiding inconsistences during
communication process due to the connection volatility of the mobile de-
vices).

• A pattern-based P2P lookup mechanism for the discovery of the services
provided by actors over the network (ambient acquaintance management).

These mechanisms have been included in AmbientTalk through the implemen-
tation of extra mailboxes (to the ones presented in previous actor model implemen-
tations) and reflective methods to operate over them. However, the programmer
does not have necessarily to interact with these mailboxes directly. As will be
explained in chapter 6 AmbientTalk allows programmers to build higher-level ab-
stractions on top of this implementation.

AmbientTalk is a language that provides the mechanisms mentioned above to
comply with the requirements of device mobility over a network. But it does not
consider any implementation related to actor (or any other computation) mobil-
ity. Previous languages described in this chapter (sections 4.6.2 and 4.6.3) provide
actor mobility as a way to deal with open networks. As explained chapter 6, the
proposal of this thesis points to develop an actor mobility mechanism for the Am-
bientTalk language.

4.8 Conclusion

This chapter has described several concurrency and distribution models as well as
their implementations in different programming languages and other frameworks.
Traditionally there have been two different concurrency approaches: the thread-
based and actor-based models. The latter has advantages over the former for deal-
ing with open networks such as asynchronous communications less vulnerable to
the connection volatility of devices, to the expressiveness, transparency of concur-
rency and distribution implementation details. However, both models still have
issues for working with open networks. These models do not say anything about
the way in which the dynamic reconfigurability of these networks produces an im-
pact on the resources present in the network along the time. They neither deal with
consistency of the communications upon device failures.

The ambient-oriented programming paradigm implemented by AmbientTalk
solves the issues mentioned above by considering two mechanisms: communi-
cation states and the pattern-lookup method. Both are used in the AmbientTalk
mobility model presented in this work (chapter 6).

Different programming languages and frameworks have adapted these models
to the conditions of different types of networks. Adaptations of the actor model for
open networks (MicroTAPAS, ChitChat, SALSA and AmbientTalk) have identified
the following new elements:

72 CHAPTER 4. THE AMBIENT-ORIENTED PROGRAMMING

• Distinction of the entities that can interact with others and move over the
network (active objects, universal actors and ambient actors after this work),
respect to the ones that are only used locally (passive objects, objects and
environmental actors).

• Abstraction for the devices and their resources (theaters, capabilities, envi-
ronmental actors).

• Actor Discovery Services (universal naming service protocol, director man-
agement, pattern-lookup mechanism).

The following chapter will present the mobility model of these languages.

Chapter 5

Strong Mobility in Open P2P
Networks

5.1 Introduction

This chapter describes the reasons and requirements for code mobility in open P2P
networks, and its implementation in different programming languages. Most of
these languages were presented in the previous chapter in the context of the evalu-
ation of their concurrency and distribution models. The analysis of their mobility
models is relevant for the development of the model exposed in this dissertation. It
is strongly based on the properties identified in such previous mobility implemen-
tations.

Code mobility is not new. In the late 1970s code mobility was already required
for process migration [Milojicic et al., 2000]. In such a case, a process (operating
system abstraction that encompasses the code, data and operating system associ-
ated with an instance of a running application) was transferred from one computer
to another. Code mobility in that case was used to enable load distribution and fault
resilience. Years later, mobility was related to agents which, as explained in the
previous chapter, are programs that can move over the network and autonomously
execute task on behalf of users.

This chapter first describes the reasons and requirements for code mobility
in open P2P networks. After that, it defines different types of mobility. Strong
mobility is one of them. It is explained in this chapter why this type of mobility
is more adequate for this open P2P networks (particularly for mobile open P2P
networks that are the scenario targeted in this work, described in chapter 2). The
final part presents different programming languages that implement strong mobility
of either objects or actors.

73

74 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

5.2 Code Mobility in Open P2P Networks

This section presents the code mobility in the context of the mobile open P2P net-
works. In the first part identifies some reasons for code mobility in these networks,
comparing them with historical reasons for this mechanism. The second part re-
views the properties of mobile networks explained in chapter 2 and discusses their
implications for code mobility.

5.2.1 Reasons for Code Mobility in Open P2P Networks

Historically, code mobility has been used either to move processes, agents or any
other computation towards desired resources or away from scarcity
[Milojicic et al., 2000]. For process migration it was related to move a process
towards a under-loaded computer or a specific resource (such as a database). In the
case of agents, they could move toward a source of information for improving the
performance (by accessing locally to data or other resources).

This reason is still valid for open networks. Code mobility can be useful for
dealing with their dynamic reconfiguration due to the volatile connection of their
participants. In mobile open networks, the connection volatility and resources
scarcity of mobile devices is a motive relevant enough to move applications re-
siding inside of them to other devices over the network with better conditions. In
such a case, code mobility helps to ensure the availability of the services provided
by mobile devices. It is even more suitable when working on P2P architectures
because no servers are required to take the decision of moving computations and
to perform the movement itself.

There is another reason found in the context of AmI [Lindwer et al., 2003] vi-
sion, mentioned in the introduction. Mobile and embedded technology will allow
the users to stay connected to their services even when the users move around. It
will imply to have applications hoping from one device to another in order to en-
sure such an availability. The chapter 7 will explain more in detail the AmI vision
and will develop an example of this type of application that follows its user.

5.2.2 Requirements for Code Mobility in Open P2P Networks

Some properties of open networks described in chapter 2 need to be considered in
the implementation of code mobility, in the following way:

• In a mobile open network the code mobility will coexist with the device mo-
bility, it means that during the move process of a code (like an application)
there could happen two unexpected changes of conditions in the network:

1. The device where the application is going to move get disconnected
(because its connection volatility or scarce resources).

2. The device where the application resides get disconnected before the
application moves completely.

5.3. TYPES OF CODE MOBILITY 75

• Devices in open networks are heterogeneous. As such these devices can vary
in their resources (such as screen definition battery power, etc.). The move
process of an application should consider this difference by implementing
some kind of reconfiguration and rebinding mechanism right after the arrival
of the application to a new device.

5.3 Types of Code Mobility

There is a criteria for classifying the different types of code mobility described
by Fugetta et al. in [Fugetta et al.,]: it is related to the computational context
of running programs which is the knowledge a language processor has about the
program it is executing. This context considers environments, working memory,
runtime stack and so on. Fugetta et al. identify three types of contexts:

Data context It is known as the state of a program, which is composed of the set
of variable bindings that are accessible and allocated for the program at some
requested moment.

Control context It is related to the status of the computation. It is composed of a
reference to apoint in the code(like a program counter or a current expres-
sion), and possibly a description of thosepast statesof the computation that
are still relevant (typically a runtime stack or a continuation).

Resources contextIt includes all the bindings of a program in memory that are
not allocated for the program alone. Those bindings can be in the internal
memory (like operating system resources), or can be external resources (such
as databases).

Based on the amount of contextual information that is transmitted upon migra-
tion it is possible to classify mobility mechanisms. Fugetta et al. summarize these
mechanisms by distinguishing four kinds of computation mobility: Weak mobil-
ity, semi-strong mobility, strong mobility and full mobility. The following sections
describe and compare them; the table 5.1 shows the relationship between these
different types of mobility and the computational contexts.

5.3.1 Weak Mobility

This kind of mobility does not include any computational context, it merely sends
dead codeover the network. When code arrives at its destination machine, it starts
running as if it never ran before.

Weak mobility is exemplified by Java applets, which are chunks of stateless
code downloaded from a web sever and executed on the client machine. Since only
the code is transmitted the applets do not have any state from previous runs (except
for some static bindings like constants).

76 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

Figure 5.1: Computational Context

5.3.2 Semi-Strong Mobility

This is the type of mobility used by most of middleware solutions (described in
chapter 2). It considers the data context in the mobility process, allowing computa-
tions to move from one device to another by using special mechanisms for halting
and resuming the moved computation, right before and after the movement. This
means that semi-strong mobility does not support control context, which must be
manually copiedinto the data context and upon arrival of the computation (with its
data context) at the new location, making sure this control context will be correctly
restored.

Encoding the control context in the data context can be complex, since it im-
plies to have algorithms explicitly divided to allow for mobility. In order to move
a computation, programmers not only have to serialize it at different points of its
data context (with the control context already encoded inside), but they also have
to encode thefutureof that computation once it arrives to the new location (known
as continuation passing style programming described in chapter 4).

Another example of semi-strong mobility is the Java serialization API. In Java
an object graph can be serialized, but the control state of java.lang.Thread is not
copied.

5.4. REASONS FOR STRONG MOBILITY IN OPEN P2P NETWORKS 77

5.3.3 Strong Mobility

This kind of mobility includes the data and control contexts of a computation.
It allows running process to hop from one machine to another without manually
halting the computation it is performing.

Strong mobility is associated toautonomous agents that roam networks to ac-
complish a certain task on behalf of their owner[De Meuter, 2004]. Section 5.4
gives some reasons to state that this type of mobility is also suitable for open
networks, and the computation to be moved can perfectly be autonomous actors
which, as explained previously (chapter 4), are much simpler entities than agents.

5.3.4 Full Mobility

This kind of mobility considers the whole computational context of a computation
(data, control and resource contexts). Programs in full mobility approaches are said
to be moved with the complete closure of its data and resources contexts without
any interruption in its current execution.

In full mobility resources are never rebound, which according to [De Meuter, 2004]
can be done bymoving them, making a copy, or creating a reference to them from
within the new machine. It means that moved computations will not require any
interaction with the new machine, becoming a kind ofparasitecomputations that
only uses the machine as a source for computational power. This technique is use-
ful in the context of process migration for load balancing purposes, but it does not
seem to be suitable for open networks in which rebinding mechanisms and bindings
of new resources are opportunities to keep the services required by users available.

5.4 Reasons for Strong Mobility in Open P2P Networks

Complementarily to the reasons for code mobility in open P2P networks described
in 5.2.1, there are other reasons that justify the use of strong mobility in these
networks. The reasons are the following:

Intentional strong mobility It is related to the explicit necessity of considering
mobility aspect as part of a solution for the design of a program. It can be
required for eitherresource optimization, software design considerationsor
identity preservation[De Meuter, 2004].

As a way to optimize resources, strong mobility is used as a load balancing
mechanism which, unlike full mobility, can rebind some required resources
upon arrival at its new destination.

Design considerations can lead designers to move objects along with others
that logically belong together. Strong mobility is desirable in this case since
these objects are currently active (they are on some runtime stack already).

78 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

Finally, the identity preservation is related to the scenario in which objects
are moved by reference (for instance as arguments of a remote method invo-
cation), that means no copy of them are created. All references to the object
at the sending machine must refer to it before and after its movement.

Strong mobility for actors Working with actors in distributed systems unavoid-
ably implies to deal with actor mobility. A natural scenario for this context
is having actors that are passed as arguments in remote method invocations
(messages). These actors may have to be strongly moved since they are run-
ning computations whose queue might be filled with request. It has been
the reason why mobility has been included in actor-based programming lan-
guages.

One good reason for moving an actor when passing it as a parameter is when
this actor will be sent lots of messages on the remote machine. If the actor
is moved, this will reduce the amount of remote method invocations back to
the sender machine because the actor will be local to the receiver machine.

Any method in an actor-based system can demand actors to be moved. It can
be a source of problems if actors do not carry with themselves their control
contexts in order to continue their executions. This situation gets even worse
if it is considered that the method calling an actor to move does not belong
to this actor, as described in [De Meuter, 2004].

5.5 Strong Mobility in Object-Oriented Languages

The following cases are object-oriented programming languages that have imple-
mented strong mobility. These are Telescript [White, 1996], Obliq [Cardelli, 1995]
and Emerald [Jul et al., 1988].

5.5.1 Telescript

Telescript [White, 1996] created at General Magic is a class-based programming
language created at in. This language works with classes which can be declared
abstract or sealed (like final classes in Java).

Security is the only particularity of Telescript with respect to standard class-
based languages. It is achieved by using four built-inmixins(named abstract sub-
classes that can be applied to several classes in row), which can be applied to
classes to modify them:

• unmoved mixin renders objects of the modified class unmovable.

• uncopied mixin turns a class into a class whose instance cannot be copied.

• copyright mixin turns a class into one that can only be instantiated by
copyright enforcer[De Meuter, 2004].

5.5. STRONG MOBILITY IN OBJECT-ORIENTED LANGUAGES 79

• protected mixin turns a class into one whose instances cannot be modi-
fied.

5.5.1.1 Mobility Model in Telescript

Telescript features strong mobility by providing a class hierarchy composed by the
superclassProcess and its subclassesPlace andAgent . PlaceshostAgents
which have a methodgo to move. It contains aTicket object as parameter. This
parameter determines the trip of the object upon invocation ofgo .

There is an alternative method calledsend used to move copies of an agent to
different locations. It looks like the mobility programming pattern master-slave in
which an object, that is charged with a certain task, can spawn a number of mobile
envoys. In parallel, these mobileenvoysaccomplish the task partially at another
location.

Telescripts implement a security model based on capabilities which are stored
in a object contained in thepermit attribute of anAgent . An agent’spermit
defines a set of predefined boolean values such ascanCreate (defining if an
agent can create new process),canGo (if an actor can move around),canGrant
andcanDeny (if it can raise or lower the permision level of the other processes).

5.5.1.2 Evaluation of Telescript

Telescript identifies in its mobility model two entities: places and agents. Agent
mobility can be achieved by using two methods:go andsend . One of the in-
teresting features of Telescript is its security model based on capabilities. These
capabilities can be useful for reconfiguration purposes of agents (or any other com-
putations) after their arrivals to new locations. A similar capabilities-based security
mechanism could ensure that agents will have restricted possibilities of altering the
conditions at the new location.

5.5.2 Obliq

Obliq [Cardelli, 1995] developed at DEC is a lexically-scoped and untyped lan-
guage developed by at in, for writing computations that can roam networks. Obliq
objects are records of named slots of the form{ x => ..., m => ..., ... }
where each slot is either a value field, a method invocation or an alias to a slot of
another object. This language is prototype-based but does not feature delegation
or object-based inheritance. Objects in Obliq are created by adding attributes to
copies of existing objects (by using the operatorclone as described below).

There are four language operations in Obliq that can be applied to local or
remote objects:

Selection and Invocation This operation has two variants according to what is
found in the slot.

80 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

a.x selects a value from the fieldx and return it.

a.x(b1, ... , bn) invokes a method from the fieldx of a, supplying
parameters and returning a result.

Updating and Overriding This operation deals with both field update and method
override:

a.x:=b .

In this examplex is either a field or a method ofa replaced byb andb is
either the new value or method.

Cloning It clones an object and possibly adds new slots to the clone.

clone(a1, ... , an)

Delegation or aliasing It is the operation that replaces fields with aliases.

{x => alias y of b end, ... }

Obliq locates objects using a central name server in which objects are registered
through the use of the operationnet export(’’objectName’’,DNS,object) ,
and located with the operationnet import(’’aCertainName’’,DNS)

5.5.2.1 Mobility Model in Obliq

Obliq mobility is accomplished by combining the cloning with aliasing operators.
A self-synchronized object that wants to move:

1. It sends to a remote execution engine residing on the receiving host, a first
class procedure that contains as its body aclone operation, such that the
clone is constructed at the site of the execution engine. The value returned
by this remoteclone operation is not the clone of the object itself but a
reference to it.

2. Obliq takes a reference to the cloned object for both sending it as result of
the cloning operation and for insuring that the clone is constructed locally.

3. After the returning from the execution of the cloning operation, the object
that spawned the procedure has to redirect all its fields to refer to the remote
clone. It can be done by using one atomic instruction that is syntatic sugar
for several aliasing instructions.

Part of the trick here is that Obliq’s objects are required to move themselves
because no thread should be able to tinker with the object during the execution
of these steps. It therefore all has to happen atomically. Obliq enables this by
declaring the object as self-organized so that the method that causes the copying
and redirecting cannot be interrupted.[De Meuter, 2004].

5.5. STRONG MOBILITY IN OBJECT-ORIENTED LANGUAGES 81

5.5.2.2 Evaluation of Obliq

Obliq is a distributed object-oriented programming language that provides mobility
by combining cloning with aliasing higher-order functions. It allows to create re-
motely objects and get back a reference to it. Obliq uses a centralized name server
where objects are registered (like Java RMI) that as explained in chapter 3 is less
convenient for open networks than P2P schemes. However, there is nothing in the
uses of the central server that cannot be transformed into a decentralized naming
server (SALSA was initially used a central naming server too and now it uses a
DHT-based P2P scheme, see section 5.6.3).

5.5.3 Emerald

Emerald [Briot and de Ratuld, 1988] is a distributed programming language devel-
oped at University of Copenhagen in 1988. It was mainly designed to support ap-
plications that had to run on a fixed and well-defined network topology. Although
this language is a prototype-based language, it provides classes, but the keywords
are mere syntactic sugar for the creation of a factory prototype (representing the
class) and a description of the types of itsinstances. At the same time, Emerald
is statically typed. This is combinable with prototypes because of the absence of
dynamic features like delegation.

Each object in Emerald contains a unique network-wide name, a representation
containing the data local to the object (primitives and references to other objects), a
set of operations that can be invoked on the object, and an optional process, which
converts a object in an active-object (by starting a thread of control).

Emerald’s concurrency model is a combination of active objects (or actors) and
threads that enables the following actions:

• An object can implementprocess blockswhich contain code that will be
entirely executed autonomously by a independent process.

• An object can be declaredmonitor guaranteing mutual exclusion between
their operations.

• Explicit synchronization is achieved by using thewait andsignal oper-
ations in a similar way thewait andnotify methods are used in Java.

Emerald support partial failures by including acheckpoint statement that
saves the state of an object to stable storage to facilitate recovery after a potential
crash. It also providefailure handlersin the same sprit of try-catch constructs
found in Java or C++.

Emerald kernel ensures the location transparent message passing by assuming
the responsibility of locating the receiver and handling the message properly af-
ter reception. Providing objects in the system with a unique name is useful for
achieving this distribution transparency.

82 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

5.5.3.1 Mobility Model in Emerald

Emerald provides a small set of primitives that combined can produce different fla-
vors of mobility. These primitives arelocate , move, fix , unfix andrefix .

• locate x returns the location (anode object) of the object x.

• move x to y co-locates objectx with thenode correspondent toy (which
is not necessarily a node itself).

• fix x at y fixes objectx at node correspondent toy .

• unfix x makesx mobile again.

• refix x at z unfixes automatically the objectx from the current loca-
tion and fixes it in thenode correspondent toz .

The move primitive is just ahint in Emerald, which meansthe kernel is not
obliged to perform the move and the object is not obliged to remain at the desti-
nation site[Jul et al., 1988]. It takes an object and passes itby moveinstead ofby
referenceor by copy.

Arguments in invocations of Emerald methods can be annotated with the key-
wordsmove or visit that will imply that upon returning from the method call,
only arguments annotated byvisit will come back to the node of the sender of
the message.

Emerald objects can be attached to other objects such that they move together.
This is achieved by means of theattached modifier which can be used to anno-
tate a variable declaration in the same spirit Java allows one to annotate variable
declaration with astatic modifier. Anattachis a unidirectional relation, that is,
if an objecto1 is attached to an objecto2 , then wheno2 moves,o1 will follow.
However, ifo1 moves,o2 will not necessarily follow, unless it was also explicitly
attached too1 .

5.5.3.2 Evaluation of Emerald

The main characteristic of Emerald programming language is itsmove primitive
as a hint, it means that the move could not occur and the moved objects may return
to its old location. The drawbacks of this language are the use of a unique name
within the network, that can lead to problems when unforeseen devices containing
objects with the same name enter the network. Another inconvenient for its use in
open networks is its synchronous communication model, considered harmful for
the autonomy of the devices (see chapter 4).

5.6. ACTOR-BASED LANGUAGES FOR MOBILITY IN OPEN P2P NETWORKS83

5.6 Actor-based Languages for Mobility in Open P2P Net-
works

The following actor-based approaches were already described in the previous chap-
ter. The following sections will explain their mobility models.

5.6.1 MicroTAPAS Library

For MicroTAPAS mobility isthe most important feature needed to achieve adapt-
ability and flexibility in the execution of service components. Its mobility archi-
tecture (based in TAPAS [Shiaa and Aagesen, 2002]) considers the three following
types of mobility: personal, terminal and actor mobility. For supporting them this
architecture prepares some actors with specific roles (behaviors) in the coordina-
tion of the participants of a network.

5.6.1.1 Personal mobility

Personal mobility involves users that use some subscribed services from different
location in the network. The goal of this type of mobility is to provide support
to users for suspending and resuming their so calledsessions[Luhr, 2004] from
any point of the network without dealing with technical stuffs such as restrictions
in private networks, security problems to execute their personal transactions and
so on. Although the systems proposed by MicroTAPAS for personal mobility are
based on actors, they do not rely on actor mobility and they are therefore outside
the scope of this work.

5.6.1.2 Terminal mobility

Terminals (or mobile devices) in TAPAS are considered to be the interfaces towards
the end user through which they can access their services while on the move. These
services can consist of a group of actors working together, distributed over different
nodes in the network. Hence a terminal executes an actor calledMobility Agent
(acronym MA), that is responsible for tracking the terminal location, and another
known asMobility Manager(acronym MM) which receives the communications of
theMobility Agentand keeps updated all the references of the nodes participating
in the services accessed by the user from its mobile terminal. A MA can send two
types of message to its MM:

• locationUpdate message is sent upon changing terminal location.

• nodeDiscovery message is sent once a communication is required with
other terminal.

84 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

Distribution of mobility entities Figure 5.2 shows the distribution of MA and
MM in a wireless network. Unlike the original TAPAS architecture which relied
on directors residing on servers to manage mobility, the introduction of wireless
network gives rise to the following model:

1. MicroTAPAS includes the mobility entities into its model. Each node that
is not a server must have a MA. This way, each node will be able to notify
changes in its location.

2. A MM must be added at the same node in which the director of the domain
resides (the server). Thus, each domain will have at least one MM providing
mobility support.

3. MicroTAPAS includes the concept ofsub-domainwhich deals with the dy-
namic configuration of wireless networks. The idea is to breakdown the pure
client-server architecture present in TAPAS, converting it in a kind of hybrid
P2P architecture (explained in chapter 3) in whichsupernodesshould con-
tain one MM providing mobility support to its correspondentsub-domain.
This way, thedirector will continue to work in a client-server style, while
MAs will use this hybrid P2P structure to offer their mobility services, and
in this way overloads will be avoided in case of big systems.

5.6.1.3 Actor mobility

It stands for the movement of instantiated functionality at a node along its proper-
ties (such as behavior, capabilities, role-sessions. See chapter 4) that are executed
by the actors living on it. The reasons in MicroTAPAS for actors to move around
theaters, are basically related to reacting to the changes in those properties. Some
of these changes can be: changes in the capability requirements, deterioration in
the resource availability, dynamic change in the network configuration, or implica-
tions of terminal mobility. The mobility entities (MA and MM) will play an active
role in actor mobility too.

Extended Actor As mentioned in chapter 4, MicroTAPAS extended the tradi-
tional actor model to include new components like capabilities and role-sessions.
In addition, every component is classified according to the way it is moved to the
new location. The two groups of actor components identified by this classification
criteria are:

Moved (copied) componentsThe components that will be copied to the new lo-
cation of the actor. These are: state, capabilities and role-sessions. The
queue of messages is dismissed in the current version of MicroTAPAS, which
implies that it does not implement strong mobility of actors.

5.6. ACTOR-BASED LANGUAGES FOR MOBILITY IN OPEN P2P NETWORKS85

Figure 5.2: Distribution of mobility entities

Re-instantiated componentsThe components that will not be moved to the new
location of the actor and that will be subsequently re-instantiated. These are:
methods and behavior. Note that MicroTAPAS makes a distinction between
the implementation of the methods and their call definitions (called the be-
havior)

The move procedure The actor mobility process in MicroTAPAS is closely re-
lated to the components mentioned above and the ways to be moved.

1. As in terminal mobility, every communication must be preceded by an
actorDiscovery(actor1) method.

2. An actor receives aactorMove(location2) message.

3. capablityChange(capabilities) allows to recover the capabili-
ties (e.g. printers or screen resolutions) at the new location. Certain capa-
bilities might not be available at the new location which will produce their
elimination.

86 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

4. createInterface(rolesession1,rolesession2) allows to re-
cover the role-sessions. As in the previous method, some role-sessions might
be no longer relevant.

5. behaviorChange(roleFigure,state) allows to recover the state
of the actor.

6. After this recovering process the MM is updated via a
locationUpdate(actor1,location2) method.

5.6.1.4 Evaluation of Mobility in MicroTAPAS

MicroTAPAS is a library that allows actor mobility, but this is not strong mobility,
since its control context is dismissed. The actor cannot perform any action during
the move.

This library uses a scheme based in two mobility entities: The mobility agent,
present in each device, and the mobility manager which is the responsible to per-
form the move. This entities are organized in a kind of hybrid P2P network archi-
tecture, where the mobility manager are the super nodes. MicroTAPAS considers
this scheme to share the responsibility of actor mobility (between all the mobility
managers).

Its reconfiguration process consider to recover at the new location all the ele-
ments an actor had at its old location. It implies to rebind resources (by means of
capabilities system), reestablish its relationships (role sessions) with other actors
and recover its state.

5.6.2 ChitChat

ChitChat conceives mobility as an action performed by three parties: the sender,
the receiver and the moved object. All these parties should play an active role in
the move process.

Sender It is the device that sends the object but not necessarily the initiator of the
move. It candecidehow much to move of the object graph.

Receiver This device will receive the moved object. It has to provide the moved
object with a number of references so that the moved object can benefit from
resource rebinding. It is an object hosted by the receiving host which will
have to initiate movement by invoking a move method, hence the receiver
determines whether an object may move to itself.

Moved object It is always an active object in ChitChat, since this is the only type
of object that can be referenced over the network. An active object has an
object graph composed by all objects that collaborate with the active object.
An active objectprescribehow much of its object graph will be moved along,
and how much will have to be rebound upon arrival at receiver’s location.

5.6. ACTOR-BASED LANGUAGES FOR MOBILITY IN OPEN P2P NETWORKS87

5.6.2.1 Move Methods

There is not a unique and structuredmovemethod in ChitChat. Programmers are
free to create this method according to the functionality they expect to have in
it. They can choose the name of the method, its arguments (which ones and how
many) and its body. The created methods are recognized because they are pre-
fixed bymove which is a consideration taken in the syntactic system of ChitChat
[De Meuter, 2004]. For instance a programmer can choose the namecome which
is included in the code as following:

move.come():: { ... }

There are some considerations to this flexibility mainly related to the mod-
els implemented in ChitChat to deal with objects in open networks (such as the
prototype-based and actor models).

Invocation semantics As explained in chapter 4, ChitChat allows to have chains
of active objects which can perfectly be distributed over the network. This
language is based on prototypes model, and a case of these chains can be
delegation chain of an active object. The semantic of move method used in
ChitChat indicates that all active objects along this delegation chain, starting
from the receiver of the message up until the active object that contains the
method will be moved to the machine of the sender of the message for the
activation of the move method.

The semantic also dictates that the body of the move method will be always
executed upon arrival of the moved object(s) at the destination machine.
Hence, this body is considered the action to be taken by the active object
immediately after its arrival to its new location.

Marshalling semantics The ChitChat semantics also delimit which part of the
internal structure of objects has to be moved (and how) and which part not.
The semantics state that an active object has to move with the entity that is
representing itself (an active object), its internal definition done by a passive
part (potentially composed by Pico tables, passive objects and basic values
like methods, numbers and texts), and its queue of communication. In the
case of network references pointing to other active objects, these references
have to be updated upon arrival at the new machine.

The message that involves a move method on an active object is scheduled
in the queue as any ordinary message. This guarantees atomicity in the move
action. After the updating of the location, the body of the move method is
executed on the new machine. This body may perform resource rebinding
based on the parameters it has bounded.

Parameter passingThis is a way to make sure that acquaintances are moved cor-
rectly: the only way an active object would be able to access a resource,

88 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

which is in the new location, is to receive a reference of this resource by
the sender active object. This is a consequence of message passing. (Note
that this operation can properly be done in P2P architectures, whereas it re-
jects mechanism in which references are obtained from acentral authority
server). The parameters in move methods can be used for this purpose.By
calling a move method with references to local resources, a move method
can drag an object to the site of the sender and install references to the local
resources at the right spots in the moved object[De Meuter, 2004].

5.6.2.2 Implementation of the Mobility Model

De Meuter has summarized the ChitChat mobility model as some details about its
implementation in the following steps:

1. Move method is invoked by a sender.

2. If sender resides on remote host, the receiver’s device prepare the receiver
for movement. It implies to stop the execution thread of the active object to
be moved, which will enter in amovingstate. In this state the active object
will not execute any message but it will still be able to receive them.

3. Pass the active object by copy to sender machine.

4. Reinstate the active object at the new location, switch its state tolocal and
schedule the move method for execution.

5. Notify the original active object and ask it to forward all messages received
during movement. It will enter in aremotestate (becoming a network refer-
ence object) and will send those messages to the new active object. Finally
the original active object is discarded.

5.6.2.3 Evaluation of Mobility in ChitChat

Active object mobility in ChitChat is a lightly structured process performed by
three entities: the (receiver) device that will receive the moved object and contains
an object that invokes the move method; the (sender) device that will send the
moved object and decide how much to move of the actor; and the moved object
itself.

The ChitChat move process occurs transparently for the ChitChat programmer.
He only has to create a higher-level move method.

This mobility model ensures that the moved actor never loses its capacity of
receiving messages during the move. Only its processing capacity is stopped and
restarted when it arrives to the new device. This actor neither loses the order in
which the messages were received.

5.6. ACTOR-BASED LANGUAGES FOR MOBILITY IN OPEN P2P NETWORKS89

5.6.3 SALSA

SALSA is an actor-based language that provides a mechanism to moveuniversal
actors aroundtheaters(see the full description of these concepts in chapter 4).
Like active objects in ChitChat (in previous section), universal actors in SALSA
move in response to an asynchronous message requesting migration to a specific
Universal Actor Location (UAL) (in order to avoid that the actor processes any
other messages during migration). This message ismigrate(ual) .

Varela describes the SALSA migration mechanism from the perspective of the
arrival and departure theaters that will be explained further on. The figure 5.3
shows both theaters before and after the move.

Figure 5.3: Mobility in SALSA

5.6.3.1 Arrival Theater

The RMSP server found in each theater (described in chapter 4) provides a generic
input gate for incomingSALSA-generated Javaobjects and a mechanism to receive
them.

90 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

Part of this mechanism varies according to the type (or class in the context of
the java-based SALSA language) of incoming objects, which can be messages and
universal actors1. Another part is common for all these types. This last part is
related to the actor references contained in incoming objects, that are updated by
RMSP using the same criteria (see figure 5.3):

• If the UAL of an actor reference points to the current theater, the UAL is
updated with the current SALSA reference of the actor found in the RMSP
server hashtable.

• If the UAL for the actor reference points to another theater, the reference
remains unchanged (as a remote actor reference).

• Every actor reference has alocal bit indicating whether the reference is
pointing to either a local or remote actor. This bit is also updated by the
RMSP.

The reception continue in different ways depending of the type of the incoming
object, as following:

Reception of a Messagethe target actor in the message object (after RMSP up-
dates all actor references) has a valid internal reference pointing to the target
actor in the current theater. This allows this message to be placed in the mail-
box of such actor. If it has moved in the mean time, it leaves aforwarder
actor at its place. Then, the RMSP server at the new location of the target
actor is contacted and the message sending process gets started again.

Forwarder actors are not guaranteed to remain in a theater forever. If RMSP
hashtable does not contain the entry for the target actor’s UAL, the naming
service will look for the new location and if it is found the message is for-
warded to the new target actor’s location (the process of looking for moved
target actors is repeated only 20 times, after what the message is returned to
the sender actor as undeliverable).

Reception of a Universal Actor The RMSP hashtable gets updated with an entry
mapping the new actor’s relative UAL to its recently created internal refer-
ence. The actor is restarted locally.

SALSA allows to move a group of actors at once. These group known as
casts[Varela, 2001] are units for coordination purposes2.

1In early versions of SALSA there were also messengers [Varela, 2001], special actors that mi-
grate with the purpose of carrying a message from a theater to another, but they are not anymore
mentioned in newer versions.

2Castsis a concept used in the hierarchical model implemented in SALSA. The current version
of this language has replaced this model by a reflective stack model [Varela, 2001].

5.6. ACTOR-BASED LANGUAGES FOR MOBILITY IN OPEN P2P NETWORKS91

5.6.3.2 Departure Theater

An actor that leaves a theater implies the following actions:

• Its state is serialized by the departure theater and moved to the new location.

• The current SALSA internal reference to the actor is updated to reflect the
new UAL and itslocal bit is set to false. Thus, the internal reference
becomes aforwarderactor (explained in the previous section).

• Finally, the (distributed) naming server containing the UAN of the moved
actor gets updated with the new actor location.

5.6.3.3 Mobility Implementation

From the point of view of a SALSA programmer, Mobility is implemented as fol-
lowing:

TravelAgent a = (TravelAgent)
TravelAgent.getReferenceByName("uan://myhost/ta");

a <- migrate("rmsp://yourhost/travel") @
a <- printItinerary();

This sample code can be summarized in three steps:

1. Obtaining an universal actor reference.

2. Sending themigrate message to the universal actor.

3. Optionally including a continuation that will be executed upon actor’s arrival
at new location.

At the implementation level, the internal migration steps were summarized by
Varela as follows:

1. Updating the naming service to reflect the actor’s new locator.

2. Serializing the actor’s state to the new theater.

3. Updating the actor’s references to local resources (calledenviromentactors
in SALSA).

4. Updating the theaters’ meta-data (when the stack meta-model is used).

5. Restarting the actor’s thread in the new location.

92 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

5.6.3.4 Evaluation of Mobility in SALSA

SALSA move process is initiated by a asynchronous messagemigrate(ual)
(similarly to ChitChat in the previous section). It allows the concatenation of a
continuation which will be executed at the arrival location. This continuation can
be used as a higher-level coordination instance after the move.

This mechanism implies direct interaction with the universal naming service
protocol (UNAP). It means, SALSA developers should know UALs and UANs of
the actors implied in this move process.

The SALSA mobility mechanism concentrates mainly in the network recon-
figuration process. It implies the reference updating strategy performed by the
RMSPs found at the departure and arrival devices, and the updating of references
to local resources (environment actors).

5.7 Conclusion

This chapter has described the strong mobility of code in the scenario of the mo-
bile open P2P networks. First, it identified the reasons for mobility in mobile open
networks. The first of them was related to the traditional reason for code mobil-
ity: move computations towards desired resources or away from scarcity. This
reason applies properly for the context of mobile open networks due to the con-
nection volatility and resource scarcity of their participants (mobile and embedded
devices). The second reason is based in AmI vision and the way in which technol-
ogy will surround the people. It will allow to create applications that hop from one
device to another in order to ensure the availability of their services for the users.

Respect to the requirements, these were related to the properties of devices
(connection volatility, scarce resources and heterogeneity). All of these properties
imply a different consideration for the code mobility.

This chapter defined different types of code mobility according to their com-
putational context. It was explained that strong mobility of code has advantages
over the other types, mainly because it implies that moved code (application) can
continue working during their move, and it can rebind resources at new locations.

Respect to the languages implementing code mobility presented in this chapter,
the following properties summarize their properties:

• Identification of destiny and source locations. Devices are usually recog-
nized by an entity that resides inside of it.

• Identification of the moved object. It has a unique identification (and loca-
tion) over the network.

• Identification of a method that initiates the move process. In all the actor -
based approaches it corresponds to a message received either directly by the
actor or by a entity that will perform the mobility.

5.7. CONCLUSION 93

• Performance of network reconfiguration after the move. All approaches con-
sidered a network reconfiguration approach after the arrival of the actor to
the new location. In the best cases this is a decentralized mechanism (using
a P2P scheme).

• Performance of intra device reconfiguration. Some approaches provide a in-
tra device reconfiguration mechanism that enables the moved actor to rebind
resources at the new location.

94 CHAPTER 5. STRONG MOBILITY IN OPEN P2P NETWORKS

Chapter 6

Strong Mobility of Ambient
Actors

6.1 Introduction: The AmbientTalk Mobility Model

The model for mobility presented in this work is aimed to provide support to am-
bient actors in dynamically reconfigurable environments, such as open networks.
These networks can change due to either devices or computation entities (such as
actors) moving around it. These movements can be produced involuntarily (for
instance, because of the connection volatility of devices, which also affects the ac-
tors inside of these devices) or voluntarily (predefined heuristics that force actors
to move). Thus, the mobility model in AmbientTalk is conceived to support net-
work reconfigurability in terms of both device and actor mobility produced either
intentionally or unintentionally. But the goal of supporting network reconfigurabil-
ity is still quite vague, since it can be matter of network architecture decisions, like
those taken in the different cases of P2P applications described in chapter 3. The
P2P architectures are part of the context of this work but not of the proposal, since
they deal with lower levels of decisions like peer discovery and routing protocols1.
Nevertheless, this vision assumes that peers correspond to devices on a network.

The AmbientTalk distribution model also uses a P2P-based scheme; however,
in this case, peers are assimilated to ambient actors capable to discover and com-
municate among themselves. As explained in chapter 4, peers use an actor-lookup
based on the patterns they offer. These patterns can be understood as the services
provided by the actors, themselves related to their behaviors. It means that an open
network based on ambient-actors is nothing more but a set of services provide by
them. Thus, the support to the inherent dynamism of an open network is specially
related to ensure, as much as possible, the availability of these services over the
network.

1It is not the goal of this work to propose a new low-level communication layer with a P2P
algorithm different to the one actually used in AmbientTalk (a broadcast-based P2P algorithm), like
a DHT-based P2P algorithm, which would be interesting if looking for efficiency.

95

96 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

The mobility model presented in this chapter deals with device and ambient
actor mobility, which both increase the availability of the services offered over a
network.

6.2 Device Mobility

As explained in the chapter 2, devices have volatile network connections because
some of them may be mobile, thus directly influencing their connection quality as
they move about. Consequently, the actors inside of these devices, communicating
with other actors from other devices, have volatile relationships with each other as
well. When a connection is lost, devices can either restore the connection later,
or not be reconnected anymore to that network. This mobility model provides a
mechanism for making actor communications less vulnerable to these scenarios.
This mechanism is based onAmbient Referenceswhich will be explained in the
following section.

The ambient-oriented model implemented in the AmbientTalk kernel, provid-
ing reified actor communications and acquaintance management mechanisms, is
already conceived to deal with device mobility (see chapter 4). However, the ab-
stractions found there to create programs are closely related to the mechanisms
themselves. It means that programmers are forced to deal with mailboxes and re-
flective methods created for these mechanisms in their programs. The idea of the
mobility model presented in this work, is to offer abstractions (already dealing with
these ambient-oriented mechanisms) that allow programmers to build software us-
ing more high-level programming constructs. The programmer would not look
anymore athowactors should communicate with one another in the system2.

6.2.1 Ambient References

An Ambient Reference is an abstraction built in AmbientTalk that represents, at
one device, an ambient actor located in another device. Its purpose is to provide
reliable communication between actors residing at the device where the ambient
reference is created, and the remote actor to which this reference is representing.
As explained in chapter 4, every communication in AmbientTalk involves apattern
provided by an actor and required by another one. An ambient reference can be
also expressed in these terms. It is an intermediate entity that requires a pattern
(service) provided by an actor in a remote device. An ambient reference is a pointer
which, instead of pointing to an actor address, points to a pattern, which decouples
the pointer from one specific actor. The figure 6.1 depicts a ambient reference
providing a pattern (represented by a geometric figure in this case).

The goal of using Ambient References is to abstract away the handling of ser-
vice discovery and the results of network failures.

2It does not preclude access to the components and methods offered by the AmbientTalk kernel,
if required.

6.2. DEVICE MOBILITY 97

Figure 6.1: Ambient Reference

6.2.2 Implementation of an Ambient Reference

An ambient reference is implemented in AmbientTalk programming language as an
actor that contains a required pattern (itsPattern field), a remote actor provid-
ing the pattern (itsProvider field), and a set of methods defining its behavior.
The remote actor object is explained in section 6.3, it is similar to a SALSA actor
reference [Varela, 2001], which is a lower-level reference than ambient references.

The following piece of code shows all the implementation of a basic ambient
reference.

ambientRefBehaviour::view({
itsPattern : void;
itsProvider: void;

cloning.new(aPattern)::{itsPattern:=aPattern};

init()::required.add(itsPattern);

joined(aResolution)::{
display(provider(aResolution), " joined on ",

pattern(aResolution), eoln);
required.delete(pattern(aResolution));

98 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

if(is_void(itsProvider), {
itsProvider:=provider(aResolution);
inbox.asVector().iterate({

outbox.add(setMsgTarget(copyMsg(el),
itsProvider)) })

})
};

getProvider()::itsProvider;

in(aMsg)::
if(not(or(is_void(itsProvider),

containsBehavior(msg.getName()))),
outbox.add(setMsgTarget(copyMsg(aMsg),

itsProvider)))
}).futuresMixin();

ambientRef(pattern)::
actor(ambientRefBehaviour.new(pattern));

The functionambientRef(pattern) in the last line of the code is all a
AmbientTalk programmer needs to know to create an ambient reference. It will be
used as following:

myRemotePrinterActor: ambientRef("print service")

This line creates an ambient reference that represents an actor over the network
providing the pattern identified by theprint servicestring3. Note that since an
ambient reference is an ambient actor itself, the rest of the actors in the device can
start immediately to send messages to this ambient reference upon its creation. An
Ambient Reference is a local proxy for a remote actor, which may or may not yet
be discovered. But because it is a local actor, it can receive messages regardless of
the discovery state of the ambient reference

The five methods of the ambient reference behavior have the following mean-
ing:

• cloning.new(aPattern) is the Pico-based way to create an object (an
actor behavior in this case) [De Meuter et al., 2004]. This constructor re-
ceives the required pattern as parameter.

• init() initializes the actor by putting the pattern required in this ambient
reference in itsrequired mailbox.

3Future versions of AmbientTalk will allow this identifier to be any object, not only a String.

6.2. DEVICE MOBILITY 99

• joined(aResolution) is a reflective method provided by AmbientTalk
that is called whenever a resolution is received in theprovided mailbox
of the ambient reference. Remember that a resolution is a tuple containing
a pattern and a remote actor providing this pattern. The implementation of
this method deletes the pattern from therequired mailbox, sets the remote
actor (itsProvider) and forwards to the remote actor all messages received by
the ambient reference (in itsin mailbox) before the resolution was gotten.

• getProvider() returns the remote actor.

• in(aMsg) is another reflective method that is invoked whenever a message
is received in thein mailbox of the ambient reference. This method is im-
plemented to ensure that every message received by the ambient reference
will be forwarded to the remote actor if it is already discovered and joined.
Otherwise, messages will remain in thein mailbox and will be forwarded
upon the joining reflected in thejoined method.

The actor of the device that contains the ambient reference can send messages
to the remote actor represented by this ambient reference even if none of the two
devices implied in this communication are connected to the network. It is because
the ambient reference is an actor itself provided with reified communication (ex-
plained in chapter 4); reified communication ensures that messages sent from an
actor to another no longer connected will remain in itsout mailbox until the target
actor joins the network again.

Thus, this ambient reference complies with the first scenario identified above,
related to devices that leave the network for a while and join it again afterwards.
But the second scenario is not accomplished by this type of ambient reference.
The ambient reference pointing to a remote actor residing at a device that does
not join the network anymore (or that is destroyed or moved to another device),
will not be useful anymore and the messages received for it will be lost. To solve
these problems, other types of ambient references have been created. These will be
described in the next section.

6.2.3 Types of Ambient References

Three types of ambient references have been created: strong, semi-strong and weak
references.

Strong ambient reference This is the original type of ambient reference explained
in the previous section. It is called ”strong” because, once it binds to a spe-
cific actor, it can never ”rebind” to another actor. It can be used for the case
in which it is required to maintain the communication with a specific actor
that provides certain pattern. Once this actor is matched with the ambient
reference, none other actor providing the same pattern will be accepted in its
place, even if the actor is not connected to the network. A strong ambient

100 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

reference will get problems when the remote actor to which it points is de-
stroyed or even just moved. This will be explained in the following section.

Weak ambient reference This type of ambient reference does not care about the
actor providing the required pattern, but only about the pattern itself. It may
rebind to any actor providing the pattern required by the ambient reference.
This means that this reference will join a remote actor and after its departure,
the ambient reference will look again for the pattern in other actors.

Semi-strong ambient referenceThis type of ambient reference is useful to fol-
low an actor around the network. Once it ”binds” to a certain actor providing
a certain service, it only allows rebinding to the specific service (pattern) of-
fered by this actor. This ambient reference not only matches the pattern but
also stores the name of the first actor found, providing the required pattern.

The distinction of these types of ambient references is relevant when working
with mixing cases of mobility (actor and device mobility). These scenarios will be
explained in section 6.4. The role of ambient references in dynamically reconfig-
urable networks.

6.3 Strong Mobility of Ambient Actors

The second concern in the AmbientTalk mobility model is related to the strong
mobility of ambient actors. It implies the following:

• This model provides strong mobility of ambient actors by making them avail-
able even during the time in which they are moving to a new location.

• This strong mobility mechanism performs a transparent P2P-based reconfig-
uration of the communication relationships with other actors upon the arrival
of the moved actor to the new location. It is to be said this reconfiguration is
transparent because actors do not lose their relationships at any time.

It has been explained in this work that strong mobility is related to move a
computation with its data and control contexts (see chapter 5). In terms of actors,
the data context can correspond to itsstate(which is considered in the most of the
traditional mobility approaches), while the control context can be interpreted as its
running process. In the actor model defined by Agha [Agha, 1986] the running
process was in charge of receiving and executing incoming communications. The
ambient actor model extends its responsibilities to providing reified actor commu-
nications and to managing the acquaintance of its network environment (based on
the pattern-lookup service).

Regarding these responsibilities, the strong mobility mechanism provided in
this model takes the following considerations into account when an ambient actor
demanded to move:

6.3. STRONG MOBILITY OF AMBIENT ACTORS 101

1. An ambient actor will continue receiving messages from other actors during
all the move process. However, at some moment of this process (this mo-
ment is identified in the description of steps of the move process in section
6.3.2) the received messages will not be processed until the actor restarts its
execution (its thread) at the new location. In spite of this, messages will al-
ways be processed at the same order they were received. A similar solution
is present in the ChitChat mobility model (chapter 5).

2. An ambient actor will continue providing the reified communication traces.
Note that at the moment in which the actor is not processing any message,
the responsibility of this mechanism will be limited just to receive external
messages in thein mailbox.

3. Finally, an ambient actor will comply with the acquaintance management
responsibilities. During the moment of the move process mentioned in the
first point, in which the actor does not process messages, it will continue
providing its patterns to other actors over network, but it will not require
any pattern (service) from abroad. This actor will look again for required
patterns only when it restarts its execution at the new location.

Local and Remote Actors It is important to say that ambient actors are already
transmitted over the network, before the implementation of this strong mobility
mechanism. It is referred to pass actors by reference, i.e. that when actors are
about to be passed over the network, a remote reference is passed instead. Hence,
there is no form of actor mobility whatsoever, an actor never moves from one ma-
chine to another. This previous transmission mechanism was included into the
AmbientTalk kernel for supporting the pattern-lookup service and the message-
passing communication system. In both cases actors are passed as parameters of
remote communications (actor messages or discovery results). In none of these
cases it is necessary to transmit the actor itself with all its components (state, be-
havior, thread and mailboxes). A lighter version of it, containing its location and
its identification, is good enough (as a SALSA actor reference with its UAL and
UAN [Varela, 2001]). This light version of the actor is calledremote actor. The
original version of the actor working at some device is known aslocal actor. The
transmission mechanism (implemented using Java serialization4) ensures the cor-
rect replacement of the different versions of actors in the following way:

• A local actor is replaced by its corresponding remote actor when it is trans-
mitted5.

• A remote actor arriving to its original location is replaced with the corre-
sponding local actor.

4Remember that the current version of AmbientTalk was built in Java, in the J2ME platform.
5AmbientTalk uses hashtables to ensures proper actor version replacements.

102 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

It is not the goal of strong mobility of ambient actors to pass local actors as
remote ones to other devices; but it is to move them in such a way that they arrive
to new locations as local actors too. Nevertheless, the strong mobility mechanism
takes advantage of this already existent transmission mechanism to perform the
move process (see section 6.3.2).

6.3.1 Strong Mobility of Ambient Actors in AmbientTalk

The ambient actor mobility is a lightly structured process from the point of view
of the AmbientTalk programmer, in the same spirit of Emerald and ChitChat (see
chapter 5). It considers a primitive which can be put inside of a more sophisticated
move method, if required. The primitive is calledmoveActor and takes two
arguments: a remote actor (explained above in this section) and an actor’s message
that will be processed right upon the restarting of the actor at the new location,
which can be used for coordination purposes like in SALSA (see chapter 5).

Note that a move method in an actor behavior enables this actor to be requested
to move by any device over the network that holds an ambient reference pointing
to this actor (by sending it the move message).

The following code shows the implementation of a possible move method using
themoveActor primitive.

travelerActorBehavior:object({
...
moveWhere(aRemActor):: {

moveActor(aRemActor,
createMessage(thisActor(),

thisActor(),
"foo",
[x]))};

...
foo(x):: { ... };
...

});

The method in this case is calledmoveWhere and receives an remote actor
as a first argument. It can be understood asmove this actor to the location of the
actor represented byaRemActor . The second argument is a message6 to itself
invoking its foo(x) method. Note that since this method is part of the behavior
of this actor, every device that contains an ambient reference to this actor can send
themoveActormessage. It means, this actor can be demanded to move from any
place.

6createMessage() is a function that receives as parameters the sender, the receiver, the name
of the message and the arguments. Note that in this case the message is sent to itself but there are no
restrictions about the receiver of the message. It can be anybody.

6.3. STRONG MOBILITY OF AMBIENT ACTORS 103

6.3.2 Implementation of Strong Mobility of Ambient Actors

The move process implemented to strongly move ambient actors in AmbientTalk
has four main steps. This process is complementarily fulfilled by the departure, the
arrival device and the moved ambient actor itself (like in ChitChat [De Meuter, 2004]).
These steps are delimited by four communications sent in order to accomplish with
the move. All these communications (except the first one that corresponds to the
invocation of the primitive used at AmbientTalk programming level explained in
the previous section) correspond to messages sent between devices, known in Am-
bientTalk ascommands(these are used only inside of the AmbientTalk kernel).
The four communications are the following:

The moveActor primitive As explained above, this primitive should be included
in some move method built at AmbientTalk programming level. This prim-
itive receives as parameters aremote actorwhich device will be the new
location of the moved actor, and acontinuation messagethat will be the first
message to be processed once the ambient actor is restarted at the new lo-
cations (similar to a remote continuation after an actor migration in SALSA
[Varela, 2001]).

The moveActor command This is the first command sent from the departure
device to the arrival one. It receives as parameters thelocal actor and the
continuation messagesent by the AmbientTalk programmer in the previous
primitive. Remember that passing a local actor as parameter implies that it
will arrive as a remote actor to the new location (by the actor transmission
mechanism). This parameter is only carried for coordination purposes in the
command chain of the move process, as explained later in section 6.3.2.4.

The resultMoveActor command This command is sent back from the arrival
device to the departure one. It receives as parameters theold local actorand
thenew local actor. Theold local actorparameter is currently a remote actor
as explained above, but it will become a local actor at the departure device.
The opposed case is for thenew local actorparameter (this is the newly
instantiated actor at the arrival device) which is currently a local actor and
will be converted in a remote actor at the destiny location of this command.

The moveActorContents command This is the last command communicated
in this process. It receives as parameters one more time theold local actor
and thenew local actor(in the correspondent states according to the actor
transmission mechanism), and thebehaviorandmailbox contentsof the old
actor.

As mentioned above, strong mobility of ambient actors has a process composed
of four steps created to prepare the ambient actor to move, reinstantiate it at the new
location, move properly the components of the actor, and finally restart it at the new
location.

104 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

6.3.2.1 Preparing the Ambient Actor to move

This preparation implies two parts: checking the move preconditions and starting
the move process by sending the first command from the departure to the arrival
device.

Checking preconditions Upon the invocation of themoveActor primitive, the
ambient actor, supported by the departure and arrival devices, checks a set of pre-
conditions intended to validate the current demand to move7 (like in ChitChat or
in SALSA). These preconditions can vary from simple validations (for instance, to
validate that departure and arrival devices are not the same) to more sophisticated
ones intended to ensure the adequate environment for the incoming actor. In this
last sense, a meaningful way to represent the devices is relevant. Such is the case of
thecapabilities systemprovided in MicroTAPAS [Luhr, 2004], in which the capa-
bilities are the services provided by the devices (like hardware resources). Another
similar example is the inclusion ofenvironmental actorsin SALSA. In both ap-
proaches these abstractions not only support the work of actors in devices, but also
are considered decision factors to move (or not) an actor to the demanded location.
This instant of checking preconditions let the final decision to move the actor to
itself, which is likely the sprit of the sentencemove method as hintsdescribed in
Emerald [Briot and de Ratuld, 1988].

Sending themoveActor command If the preconditions are properly fulfilled,
the departure device sends themoveActor command. It will create a deactivated
ambient actor at the new location, which means that the new actor will not process
messages yet (nevertheless, it can receive them already). At this moment, some
actor mobility approaches like the one found in ChitChat, stop the execution thread
of the old local actor at the departure location, letting it only with the capacity
to receive messages but not to process them. This decision seems not to be the
most adequate one if the goal is to maintain as much as possible the availability
of the moved actor and its services (patterns) offered to the network. The reason
discussed in this work for stating this, is related to the volatility of devices in open
networks. If the arrival device gets loss of connection right after it receives the
moveActor command, then the ambient actor at the old location will be lost too
(in terms of its process capacity). It is because the arrival device will not be able to
send the second command which enables the continuity of the move process back
to the departure location.

Letting the moved actor to work at the old location during this step of the move
process (even with its processing capacity), implies that none of its components
(state, behavior and mailboxes) should be moved to the new location. That is
because this action implies copying the actor components to the arrival device,

7In this implementation these preconditions are expressed at the level of AmbientTalk: they are
simply boolean tests represented by AmbientTalk expressions.

6.3. STRONG MOBILITY OF AMBIENT ACTORS 105

which could produce an inconsistency between the status of these components at
the time in which this first command is sent, and the same status at the time in
which the actor will restart to work at the new location (The following steps will
argue why these are two different times). One example of this inconsistency can
be seen in the behavior of the actor. According to thehistory-sensitive behavior
mechanism described in the traditional actor model (see section), the behavior of
an actor is always expressed as a function of its incoming messages. In other terms,
the execution of a message can change a current behavior. Since the actor at the
old location will continue to process messages, its behavior could have changed
during the time occurred between themoveActor command is sent to the arrival
device and the actor restart its work at that new location. It will not make sense to
process a message with a wrong behavior.

The same analysis can be done in the context of the state or mailboxes of the
actor, which could change during that time too.

Taking into consideration the previous discussion it is possible to conclude
that themoveActor command will instantiate an empty version of the moved
ambient actor at the new location. The following steps will explain how this action
will ensure the strong mobility of this actor.

6.3.2.2 Reinstantiating the Ambient Actor

This step starts when themoveActor command is received by the arrival device
and finalizes when it sends back theresultMoveActor message. The latter is
sent in the context of the execution of the former.

Creating an ambient actor The execution of themoveActor command con-
siders first the creation of an ambient actor which will continue the work of the
actor demanded to move. As explained in the previous step, this new ambient ac-
tor is currentlydeactivatedandempty. It is deactivatedin the sense that it cannot
process any message since its execution thread is not running. Nevertheless, it can
receive messages already. It isemptyin the sense that it does not have any behavior
and its mailboxes do not contain any message. They will be filled once the con-
tent of the old actor at the departure device is sent in themoveActorContents
command. However, note that mailboxes are ready to receive messages. It means
that every actor over the network that gets a reference to this new actor can send
messages to it already. The missing point is that this actor is still not published to
the network (it is not reachable by the pattern-lookup service). This will be done
only once it gets filled (with its state, behavior and contents of its mailboxes) and
activated.

Sending theresultMoveActor command The last action in this step is to
send back theresultMoveActor command from the arrival to the departure
device. As said before, this command receives as one of its parameters this new

106 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

local actor which will arrive to the departure device as a remote actor. This refer-
ence will be useful to forward the messages received by the moved actor of the old
location to the new actor. The next step explains when it is required to forward the
messages.

6.3.2.3 Preparing the actor contents to move

This step starts with the reception of theresultMoveActor command at the
departure device and finalizes when it sends the last command of the chain called
moveActorContents . This step happens in the context of the execution of the
resultMoveActor command.

Converting the old local actor into a remote one The reference to the new actor
created at the new location, carried by theresultMoveActor command, allows
the old actor to delegate the responsibility of receiving messages from other actors
over the network, to this new actor. It is achieved as following:

• The reference (a remote actor, as explained before) is included to the state of
the old local actor.

• A local actor with a reference to a remote actor will imply that all messages
sent to it, will be finally received by the remote actor to which the refer-
ence is pointing. It does not necessarily mean that the messages need to be
forwarded by the local actor to the remote actor, since it implies to have a
rerouting mechanism, which is harmful for the reliability of the communica-
tions, as explained later in the section 6.3.3.1.

The next step will show that the same mechanism of including remote actor
references into local actors can be done in the other way around (local actor refer-
ences into remote actor) with a reversed result.

Sending themoveActorContents command The new actor at the arrival
device is now properly receiving the messages sent to themoved actor(note that
at this moment themoved actoris a conceptual term accomplished by two actors).
This change happened transparently from the point of view of the other actors over
the network. In other words, the actor is beingstrongly movedin terms of its com-
munication relationships. It enables the old actor to move all its components to the
new actor, which means, to send its behavior8 and all the the content of its mail-
boxes with exception of the resolutions stored in thejoined anddisjoined
mailboxes, since these resolution will be automatically recovered by the pattern-
based lookup mechanism.

8A behavior in AmbientTalk is implemented as an object whose fields represent the state of the
ambient actor.

6.3. STRONG MOBILITY OF AMBIENT ACTORS 107

6.3.2.4 Restarting the Ambient Actor

This final step starts with the reception of themoveActorContents command,
and finalizes with the restarting of the processing capacity of the moved actor. This
step occurs in the context of the execution of this received command.

Restarting the processing capacity of the moved actor The reception of the
components of the old actor found in themoveActorContents command, en-
ables the new actor to complete its state in the following way:

1. The behavior of the old actor received with themoveActorContents
command is copied to the behavior of the new actor.

2. The messages found in thein mailbox received with the command, are
added to thein mailbox of the new actor, in such a way, these messages
will be executed before the messages found in the mailbox of this actor (if
any), once it starts its execution thread. Remember that the new actor could
receive already the messages sent to themoved actor, which chronologically
were sentafter the messages found in thein mailbox of the old actor (re-
ceived with the command).

3. The continuation message is added to thein mailbox of the new actor in
such a way that this message will be the first to be executed once this actor
starts its execution thread.

4. The content of the mailboxesrcv , out , sent , provided andrequired
received with the command are moved to the correspondent mailboxes of the
new actor.

After completing the state of the new actor it will start its execution thread,
which implies it will be started to process the incoming messages and it will be-
comereachableby the pattern-based lookup mechanism.

Converting the old remote actor into a local one The move process finalizes
updating the remote actor found at the arrival device (if any) that is pointing to the
moved actor at its old location. This is achieved by using the same mechanism to
convert the old local actor into a remote one, described in the previous step of this
process, but in the other way around. More details about these mechanisms are
given in the next section, which is related to the network reconfiguration after the
strong mobility of ambient actors.

The figure 6.2 depicts all the steps of the move process implemented for sup-
porting strong mobility of ambient actors in AmbientTalk.

108 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

Figure 6.2: Strong mobility of ambient actors

6.3. STRONG MOBILITY OF AMBIENT ACTORS 109

6.3.3 Network Reconfiguration

The mobility mechanism explained above requires network reconfiguration for en-
suring the proper work of the system once the move is done. It implies to update
all the relationships the moved actor have with other actors over the network. Re-
member that this mobility process is aimed to be a P2P-styled process. As such,
this process should comply with the properties of these architectures. It will be
evaluated in section . The network reconfiguration step can be considered part
of the self-organization capacity of the mobility model. As such, it occurs trans-
parently for the programmers (they do not deal with network reconfiguration at
programming level). A similar solution can be found in SALSA [Varela, 2001].

Three different cases requiring network reconfiguration after moving an actor
have been recognized. These are the reconfiguration produced at the departure and
the arrival device and also at any third-party devices which can contain actors com-
municating with the moved actor. As it is explained in the following three sections,
the network reconfiguration already starts while the actor is moving. Figure 6.3
depicts the three devices implied in the network reconfiguration.

Figure 6.3: Network reconfiguration

6.3.3.1 Reconfiguration at the Departure Device

This network reconfiguration is related to all the communication relationships that
the moved actor has with other actors residing at the departure device. The recon-
figuration in this case implies the following steps:

110 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

1. The reconfiguration at the departure device starts in the third step of the move
process (section 6.3.2.3). After this device receives theresultMoveActor
command, it converts the old local actor into a remote one by putting the ref-
erence pointing to the remote actor inside of it, carried by the command.

2. Once the old actor is converted to a remote one, all messages sent to it will
beforwardedto the remote actor at the new location. It is valid for both local
and remote relationships the moved actor have with other actors. It can be
understood as amessage-reroutingmechanism which is a usual P2P solution
(as in SALSA). However, this mechanism can deteriorate the reliability of
the actor communications. An actor that sends a message to another one, will
suppose that the message was properly received by the actor, as soon as this
message arrives to the device containing the receiver actor. It will not change
when using a message-rerouting mechanism. In such a case, if the receiver
actor is moved to another device, the message will be rerouted to the new
location, without any notification to the sender actor about this rerouting. It
could seem very useful for fixed networks. But it is not the case for open
networks where actors are exposed to the connection volatility between the
different devices. If the device in charge of rerouting the message is no
longer available, the message will never arrive to its final destination, and
the sender actor will never get aware of this.

The following two sections will propose an alternative (P2P) solution for this
problem. In the meantime, it is to be said that message-rerouting mechanism
(achieved by inserting the remote reference into the old local actor) will be
only useful for the actors communicating to the moved actor from its old
location, it means, at the departure device. That is why this system will be
calledlocal rerouting.

6.3.3.2 Reconfiguration at the Arrival Device

This network reconfiguration is related to all the communication relationships that
the moved actor has with other actors residing at the arrival device. The reconfigu-
ration in this case implies the following steps:

1. The reconfiguration at the arrival device starts in the last step of the move
process, after the reception of themoveActorContents command. In
this step, the remote actor that represented the moved actor when it was at
the old location, is updated.

It was explained in section 6.3 that the only additional ways (to the one pre-
sented in this move process) by which an actor arrives to a new location, is
when it is carried by a message or when it has a pattern required by another
actor residing at this new location. Both cases are handled by the Ambi-
entTalk transmission mechanism that ensures to pass a light version of such

6.3. STRONG MOBILITY OF AMBIENT ACTORS 111

actor (called remote actor) through the network. Thus, these cases are the
only ways by which a remote actor appears at that new location.

Coming back to the case of the moved actor, if there is already a remote actor
at the arrival device representing this moved actor, the remote actor will be
updated.

2. It is updated by putting inside of it a reference to the new local actor (rep-
resenting the moved actor). It is done to ensure that all communications
between moved actor and the rest of the actors at the arrival device, become
local. It means, it will not be sent to the old location andreroutedback to
the new one.

For ease of reference, this part of the network reconfiguration mechanism will
be calledlocal communicatingreconfiguration.

6.3.3.3 Reconfiguration at a Third-party Device

This network reconfiguration is related to all the communication relationships that
the moved actor has with other actors residing at anythird-party device which is
neither the departure device of the moved actor nor its arrival one. The reconfigu-
ration in this case implies the following steps:

1. An actor residing at a third-party device, as explained above, sends a mes-
sage to the moved actor at the old location, since it does not know anything
about the change of location of the moved actor. In such a case, the sender
will be notified by the arrival device that the receiver actor moved. This
notification contains the information about the new location of the actor.

2. Once the sender actor receives this notification, itre-sendsthe message to
the actor in its new location.

Rerouting and updating Note that this mechanism namedupdating by notifica-
tion avoids the rerouting of messages sent by actors that are not in the departure
device. It is a good achievement for the reliability of the system. However, the
discussion about reconfiguration is not included with this solution. It could be pos-
sible to have an intermediate solution between the message-rerouting mechanism
and the one proposed in this work. This third solution lets the departure device to
assume the responsibility of finding the current location of the moved actor. This
seems very similar to the solution described above. However, this third mechanism
makes the difference in the case an actor moves more than once over the network.
In such a case, this device will look for the moved actor over the network, instead
of immediately sending back a response to the sender actor of the received mes-
sage. In this mechanism, it could be possible that the device containing the moved
actor sends back the notification, which would reduce the number of communica-
tions implied in this lookup mechanism, turning it more efficient and reliable than
the first two solutions.

112 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

Vulnerability of the updating by notificationmechanism The network recon-
figuration mechanism at a third-party device proposed in this work is less vulnera-
ble to the connection volatility of devices than the message-rerouting mechanism,
but it is still vulnerable. The loss of connection with the departure device implies
that actors over the network that did not update their references to the moved actor
(by sending a message to the moved actor when the departure device was still on
the network), will not be able to access this actor anymore. For solving this prob-
lem, it is necessary to take into consideration all the mechanisms introduced to deal
with device and actor mobility. The following section will show that ambient ref-
erences already taking advantage of the reified communication and pattern-based
lookup mechanism of AmbientTalk, work properly even with actors moving over
the network.

6.4 Mixing Device and Ambient Actor Mobility

As mentioned in the previous section, mobility of actors in open networks is not
a phenomenon that occurs isolated. This process can be affected by the mobility
of the devices implied in the actor move. Nevertheless, not only the two types
of mobility can be mixed but it is also possible to handle the different types of
mobility in a uniform way. The following situations are included in this chapter
as a way to close the discussion about the actor move process itself in this work.
Further cases of mobility described in the next chapter are intended to show the
application of actor mobility in different scenarios in open networks.

6.4.1 Loss of Connection During the Move Process

As largely explained in the previous section the move process has four steps. De-
vices involved in this process can become disconnected during the execution of
these steps. The following analysis will evaluate, for each step, the condition
of the communication relationships between the moved actor and others found in
three different locations: the departure, the arrival and the third-party device. More
specifically, the evaluation of the communications is done for the particular case of
actors from the three mentioned devices sending messages to the moved actor.

In each step, the loss of connection of the departure and the arrival device will
be separately evaluated (note that the disconnection to the network of a third-party
device is not relevant for the fulfillment of the move process).

As said before, analyzing mixed mobility scenarios also implies the possibility
of mixing mechanisms created to deal with the different types of mobility. At the
very beginning of this chapter three types of ambient references were introduced.
The ambient references concept already takes advantage of the reified communica-
tion and pattern-based lookup mechanisms, included in AmbientTalk to deal with
device mobility. The following analysis will show the role of ambient references
in the reconfigurability of a network during the actor move process. Note that af-

6.4. MIXING DEVICE AND AMBIENT ACTOR MOBILITY 113

ter all the definitions of models, mechanisms, process and steps described in this
work, the only twoextra forms that will be needed to work withmobile actors
supporting reconfigurable applications in open P2P networksare the instantiation
of an ambient reference and themoveActor primitive included somewhere in its
behavior.

6.4.1.1 While preparing the ambient actor to move

As explained in the previous section this step only consists of performing a mo-
bility precondition check and sending the first command from the departure to the
arrival device of the actor to be moved. As such the only effects will be related to
the mobility of devices. Thus, this scenario is matter of the properly work of the
ambient references.

Loss of connection at the departure deviceThe loss of connection at this device
implies that the moved actor is not available anymore. Thus, it is a case only
to evaluate the work of the ambient references. All of the ambient references
are provided with reified communications. Then, actors residing at the de-
vices of a ambient reference pointing to the moved actor, will continue to
send messages to it. After the disconnection of the moved actor, notified by
the acquaintance management mechanism, the three ambient references will
behave differently.

• The strong ambient reference will wait until the moved actor get re-
connected to the network at the same device in which it was discovered
(the departure device in this case). If this happens, this reference will
send it all the enqueued messages. This kind offidelity is due to the
simple fact that it does not do anything after the disconnection of the
remote actor already registered in its state. It is not the case of the other
types of ambient references.

• The semi-strong ambient reference will wait until the moved actor get
reconnected. After the disconnection of the moved actor, this reference
clear theitsProvider field its state. However it has stored its name
in other field (itsProviderName). It implies that this type of ref-
erence will wait for the moved actor, but it will be also able to find the
moved actor in another device, if it is the case. This is a kind ofsmart
fidelity.

• Finally, the weak ambient reference will not wait for the moved actor.
Upon disconnection the moved actor, it will immediately start to look
for another actor providing the required pattern registered in its state
(it clears theitsProvider field and does not store any information
about the actor).

Loss of connection at the arrival deviceAs this device does not have any respon-
sibility until the moment in the move process, there is not too much to say

114 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

about this case. The only change of state perceived in this case will be in the
ambient references residing at this device. They will behave in the same way
described in the first case.

6.4.1.2 While reinstantiating the ambient actor

This step corresponds to the reception and execution of the first command sent by
the departure to the arrival device. This execution at this second device considers
the creation of an empty ambient actor and the sending of the second command
to the departure device. Although not that critical, the consequences of stoping
abnormally can start to be identified in this step.

Loss of connection at the departure deviceThe disconnection of the departure
device at this step will not imply any different consideration for the third-
party device to the ones described in the previous step (ambient references
accumulating messages and waiting or looking for other actors according to
their behavior). For the arrival device instead, the disconnection of the other
device will imply to get an empty and unreachable instance of an ambient
actor. Besides this, the scenario will not be different to the previous step
either.

Loss of connection at the arrival deviceSince the first step only produced the
creation of the new ambient actor, getting loss of connection at this device
will only imply the loss of this empty actor and the work of the ambient
references.

6.4.1.3 While preparing the ambient actor contents to move

This step considers the reception and execution of the response of the arrival de-
vice. After this execution the new ambient actor at the other location starts to take
the responsibilities of themoved actor. It starts to receive the messages sent by
other actors over the network. However, it cannot process them until the next step,
when it receives the last state of the moved object at the old location. Remember
that in terms of network reconfiguration, at this moment two of the three mecha-
nisms will start to work . These are the local message-rerouting and the updating
by notification system for updating actors at third-party devices.

Loss of connection at the departure deviceSince the responsibility of continu-
ing the process is at the departure device side (it has to send the last message)
a disconnection of this device at this moment will be the most harmful. At
the new location, it will have a empty ambient actor receiving the messages
of the moved actorwithout any capacity of processing them. This discon-
nection also put out of action the updating by notification system. Actors
at third-party devices that had not been updated before the disconnection of
the departure device, will loose the communication with the moved actor. It

6.5. EVALUATION OF THE AMBIENTTALK MOBILITY MODEL 115

means that these actor will not have access to the service provided by the
moved actor.

Note that the solution to this problem is to use weak ambient references. As
said before, these references will immediately look for new actors providing
the same service (pattern) over the network.

Although semi-strong reference enables it to find the moved actor at a new
location, it is not possible because the new actor representing the moved
one, is still notreachableby the pattern-based lookup system. As explained
in section 6.3.2.4 it will only happen once it gets filled and activated.

Loss of connection at the arrival deviceThis case will also produce inconsisten-
cies, since both actors found at the departure and third-party devices will
continue sending messages that will never arrive to its destiny.

6.4.1.4 While restarting the ambient actor

This is the new state of the network. The new ambient object at the arrival device
accomplishes with all the responsibilities of the moved actor, because it gets filled
and activated in this step. The updating of the remote actor pointing to the old actor
is done in such a way that local actors at this devices start to communicate locally
with the moved actor.

Loss of connection at the departure deviceThis disconnection does not mean any-
thing from the point of view of actors at arrival device. For actors at third-
party devices it will imply that they will not get updated by a notification
from the old location, but in this case weak and semi-strong ambient refer-
ences will be able to find the moved actor at the new location. Remember
that since weak ambient references look for patterns, these are not forced to
rejoin the same moved actor. By another hand a semi-strong ambient refer-
ence will join effectively the moved actor, as it matches with the pattern and
the name this reference was looking for.

Loss of connection at the arrival deviceThis last case of disconnection is quite
similar to the first one. It means, the disconnection will be adequately han-
dled by the three ambient references. The only difference will be that mes-
sages sent from third-party devices will be updated by notification. Note
that this enables even the proper work of strong ambient reference, which
gets updated at low-level for the network reconfiguration mechanism.

6.5 Evaluation of the AmbientTalk Mobility Model

The following evaluation of the model is done from two different points of view:
The concepts that support this mobility model and its related works.

116 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

6.5.1 Decomposing the AmbientTalk Mobility Model

It has been said along this work that the AmbientTalk Mobility Model presented in
this chapter was developed on top of the four concepts described in the chapters 2
to 5. These are mobile open networks, P2P network architecture, ambient-oriented
programming and strong mobility. The following subsections explain in which
ways these concepts are present in this model

6.5.1.1 The Model and the Mobile Open Networks

As explained in chapter 2, networks with mobile devices as participants have the
same condition that the open networks. This is a dynamic reconfiguration over the
time. In the case of the mobile networks, this is particularly due to the limitations of
mobile devices such as scarce resources and connection volatility. The mobility of
the actors residing in such devices must be aware to these change of conditions. It is
complied by implementing the mobility model in a ambient-oriented programming
language (AmbientTalk) that has mechanisms to deal with device mobility already.

6.5.1.2 The Model and the P2P Network Architecture

Chapter 3 described the properties p2p architectures such as decentralization, self-
organization, fault-tolerance and scalability, matches properly to the requirements
of mobile open networks. These architectures are already used in the AmbientTalk
language by its pattern-lookup mechanism for acquaintance management between
actors (such mechanism uses a broadcast P2P scheme). This mobility model also
uses a P2P scheme as follows:

• Decentralized scheme for performing the actor mobility. This model does
not require any central entity (like the director of MicroTapas or the Aglet-
Host in Aglets) to move the actor from one location to another. It neither
requires a centralized system for performing the network reconfigurability
in any of the two scenarios described in chapter 6: when it is supported by
the devices implied in the actor mobility and when it is supported by the
ambient references.

• Fault-tolerant actor mobility. Disconnections of devices are supported by the
ambient references at any moment during the move process.

• Self-organization mechanisms. There are two types of changes in the net-
work that can occurs during the move process. The first one is mobility of
the actor itself. The other is the potential disconnection of the devices that
are performing the move. The first change is entirely contained in the actor
mobility process implemented in this model. It implies the updating of the
references to the moved actor in the departure, arrival and any other third-
party devices, and the reconfiguration of the new actor to the new conditions

6.5. EVALUATION OF THE AMBIENTTALK MOBILITY MODEL 117

found at the arrival device. The second change is responsibility of the ambi-
ent references pointing to the moved actor.

6.5.1.3 The Model and the Ambient-Oriented Programming

Two distinctive properties of ambient actors described in chapter 4 are used in the
move process. Reified communications of actors are important for the success of
strong mobility, as explained in the next point. The acquaintance management
property (implemented by the pattern-based lookup mechanism) is used by the
ambient references (which are actors as well) during the actor mobility. At a third-
party device, an ambient reference pointing to the moved actor can take different
decisions upon a disconnection of the departure or arrival device. This decision
depends of the behavior each ambient reference implements. Chapter 6 described
three types of ambient references. The difference is in the way these references use
the pattern-based lookup mechanism.

6.5.1.4 The Model and the Strong Mobility

This concept allows actor to move without losing its availability for other actors
over the network. The implementation of strong mobility in this model considers
that an actor never lose its communication capacity. In this process the distinction
between different communication states (provided by the communication reified
mechanism) is useful to define the way in which the communication capacity of an
actor will continue working during the move.

6.5.2 Mobility Model Comparisons

The following subsections compare the mobility model developed in this work with
the closest approaches described in this dissertation. These are the three actor-
based approaches created for open networks.

6.5.2.1 AmbientTalk and MicroTAPAS Mobility Model

• MicroTAPAS considers three types of mobility (user,terminal or mobile, and
actor) whereas this model considers only two. Personal mobility which is
related to the user session management was not included in the scope of this
work.

• The MicroTAPAS mobility model considers two mobility entities that per-
forms the mobility (mobility agent and manager). The actor mobility is
controlled by the mobility managers of the system forming a hybrid P2P
scheme in which they are the superpeers of the network. AmbientTalk mo-
bility model uses a broadcast decentralized (broadcast) P2P system during
all the move process.

118 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

• MicroTAPAS consider a instance of network reconfiguration mechanism af-
ter the arrival of the actor to the new location. This mechanism comprises
mainly the reference updating to the this actor, the rebinding of resources
(capabilities) and the reestablishment of actor relationships (role sessions).
AmbientTalk Mobility Model does not provide mechanism to interact with
physical resources. It just contains the reconfiguration message included in
the moved method that is executed at first place upon arrival of the moved
actor at the new location.

• MicroTAPAS does not have any abstraction to deal with device mobility.
AmbientTalk mobility model includes the ambient references that already
uses the mechanism implemented by this language for acquaintance man-
agement and reified communications.

• MicroTAPAS includes an abstraction for networks boundaries (domain and
subdomains). It makes this distinction to delimitate the responsibilities of
different directors and mobility managers in the network. AmbientTalk does
not provide the notion of boundaries.

6.5.2.2 AmbientTalk and ChitChat Mobility Model

• Both ChitChat and AmbientTalk provide a lightly structured move process
performed by three entities: the arrival and departure devices and the moved
entity.

• Both languages allow programmers to build higher-level move methods. The
move process occurs transparently for the programmers.

• Both languages implements strong mobility which means, moved entities
never stop to work (partially though) during the move process.

• As MicroTAPAS, ChitChat does not provide any mechanism for interacting
with the environment.

6.5.2.3 AmbientTalk and SALSA Mobility Model

• SALSA move process is initiated by a asynchronous message that allows
continuations which will be execute at the new location of the actor. Am-
bientTalk occurs the same case with the higher-level move method and the
reconfiguration message.

• In SALSA programmers interact directly with the universal naming service
protocol (UNAP) which means they have to know somehow the ual or uan of
the actors implied in the move process. AmbientTalk implements a pattern-
based lookup mechanism. A pattern is much more like a service provided by
an actor.

6.6. CONCLUSION 119

• SALSA consider a network reconfiguration using a DHT-based P2P archi-
tecture. In addition it provides abstractions for representing the internal re-
sources of devices. AmbientTalk provide a decentralized P2P scheme for
network reconfiguration but, as said above, it does not provide abstractions
for interacting with resources directly.

6.6 Conclusion

This chapter has presented the proposal of this thesis. The AmbientTalk mobility
model is based partially in abstractions already built for other contexts such as the
ambient references. This model was the result of the application of four concepts
described in previous chapter, and the properties of previous mobility models also
described in this work. The final conclusion will summarize this mobility model
(chapter 8). The following chapter will apply this model to a concrete type of
application belonging to the AmI field. It will be the validation of this model.

120 CHAPTER 6. STRONG MOBILITY OF AMBIENT ACTORS

Chapter 7

Application and Validation

7.1 Introduction

This chapter presents an application for the AmbientTalk mobility model seen in
the previous chapter. In summary, this model considers the following:

• Support for device mobility by usingAmbient References, an abstraction at
the programming language built on top of the ambient-oriented model of
AmbientTalk (reified communications and acquaintance management mech-
anisms) described in chapter 4.

• Support for strong mobility of ambient actors by using themoveActor
primitive. It can be included in higher ordermovemethods created by an
AmbientTalk programmer.

The application selected for the validation of this model is calledFollow-Me,
one of the most representative type of applications of the new field in distrib-
uted computing known asAmbient Intelligence[ISTAG, 2003]. As it is briefly
explained in the next section, applications developed for this field run over a mo-
bile (open) network. Thus, the validation of the mobility model will consist in the
implementation of a software design pattern for theFollow-Meapplications.

Besides the implementation of theFollow-Mepattern, this case will also vali-
date the concepts identified along this work to develop applications in mobile net-
works. These are P2P architectures, ambient actors and strong mobility.

7.2 Ambient Intelligence

Ambient Intelligence (acronym AmI) is a term adopted by the European Coun-
cil’s IST Advisory Group [ISTAG, 2003] to refer to the vision that technology will
become invisibly embedded in the environment of the people, wherever they are,

121

122 CHAPTER 7. APPLICATION AND VALIDATION

adaptive to them and their contexts, and enabled by simple and effortless interac-
tions1. This vision coincides with the concept ofUbiquitous Computingdescribed
by Mark Weiser in [Weiser, 1991].

In terms of infrastructure, these properties suggest a network with embedded
devices representing the available environment and small mobile devices for inter-
acting with such environment. These mobile devices could not be required in case
of embedded technology with perceptual capacity for the interaction with users
(using speech or vision [MIT-LCS, 2004]). But these mobile devices can become
the environment itself, like in the case of PANs described in chapter 2. Whatever
road is taken, it will correspond to the description of the mobile (open) network
given in this work (chapter 2).

The AmI vision mentioned above also proposes an adaptive system available
to the users anywhere, in any context. The application described in the follow-
ing section will demonstrate that the AmbientTalk mobility model provides proper
abstractions for developing such a type of systems.

7.3 Follow-Me Applications

TheFollow-Meapplication is one of the most studied cases in the field of Ambient
Intelligence [Landay, 2003, Berger et al., 2003, Satoh, 2002, Priyantha et al., 2000].
The main idea is to provide the user with an application (a service) that follows
him, adapting itself to the different contexts found at the different places where the
user moves around. The following subsection will exemplify this application with
a story. Posteriorly, the implementation of this application will be described.

7.3.1 The Story: Bob’s Mobile Desktop

One story for explaining this scenario could be the following:

Bob is writing a document on the PC at home. While he writes, he is
listening to some music and chatting with a few friends. Suddenly, his
daughter Alice enters the studio where Bob is and asks him whether
she can use the PC to do her homeworks. Gently, Bob leaves the studio
in order to take his laptop to his bedroom and continue working there.

7.3.1.1 The Problem

The problem in this story is that Bob needs somehow to reproduce on his laptop at
his bedroom, the same work conditions he had on the PC at the studio. In this case,
he needs the text editor with his document, the music player with the song he was
listening and his chat session. To achieve this is not the issue, but the way in which
these conditions are recovered. The solution to this problem implies to move all
those services required to enable Bob to work properly on his laptop.

1These and other properties of the AmI vision are mentioned in [Lindwer et al., 2003].

7.3. FOLLOW-ME APPLICATIONS 123

7.3.1.2 The Solution

The AmbientTalk mobility model enables this story to have the following epilog:

Bob leaves the studio without doing anything on the PC, goes to his
bedroom, opens the laptop (starts it if required) and after a while, the
applications he was using on the PC appear on the laptop’s desktop
(text editor, music player and chat). He realizes that while he was
changing of work place, some friends continued chatting with him.
Thus, Bob answers them.

The AmbientTalk mobility model implements strong mobility of actor-based
applications. As such, the actors can receive messages even while they are moving
to other location (remember that actors can can not process messages while they
move). That is why Bob can receive messages in his chat session from its friends
even during his move.

Note that this story could have a different (but less convenient) result for each
type of mobility described in the chapter 5:

• If weak mobility would have been used (dead code traveling through the
network), Bob would have to store his work and music somewhere on the
network, and after restarting the applications at the new location he would
have to download the files.

• In case of implementing theFollow-Meapplication using semi-strong mobil-
ity (control context must be manually converted to data, which is then moved
through mobility. Afterwards the programmer must manually recover the
control context from the data) at the new location but the control context is
converted into data (serialized) when it is moved), Bob would get the same
final result of the strong mobility case, but he would have lost his chat session
during the move of the chat application.

• The full mobility is hard to imagine in this case (data, control and resource
contexts moved to the new location). It could be something like the system
trying to install on the laptop, the driver of the audio card found on the PC.

The next section explains the implementation in AmbientTalk of the solution
for this application.

7.3.2 Implementation of aFollow-Me Application

The implementation of theFollow Meapplication considers the following systems
working together:

1. A mechanism that determines the closest computer to the user (Bob). This
could be accomplished by demanding the user to log in each time he arrives

124 CHAPTER 7. APPLICATION AND VALIDATION

to a computer. Actually, there are also location-support infrastructures that
comply with this requirement without explicit interaction of the user. These
infrastructures will be briefly described later on.

2. A mechanism that move the applications to the user once he is localized
at another computer. This work proposes the development of aFollow-Me
pattern for this purpose.

7.3.2.1 Location-Support Infrastructure

Actually, there are several works oriented to develop location-support systems
[Priyantha et al., 2000, Ward, 1998]. These systems are like indoor Global Position
Systems (GPS) that consist of mobile devices capable to interchange information
which is embedded in the space (a room, a building, etc.), in order to determine its
current location. Based on that information, these systems enable users (and their
mobile devices) to interact with theirclosestenvironment.

The scenario described in the previous section assumes the existence of a
location-support infrastructure in Bob’ house. As said before, it mainly will avoid
Bob from having to log on each computer he is visiting.

AmbientTalk and Location-Support Systems Location-support systems sug-
gest a new differentiation criteria between entities offering similar services, that
could be considered somehow in the AmbientTalk acquaintance management mech-
anism. In the current version of AmbientTalk, this mechanism looks for actors pro-
viding services over the entire network. The question is how can an actor requiring
a service discover theclosestactor providing that service. There is no way until
the moment in this mechanism to focus the searching over a specific segment of
the network2, like for instance theclosestone. Perhaps it implies to consider the
notion ofboundarieswhich can be intentionally defined, like the ones described in
[Cardelli, 1999].

It is something that can also be related to the notion ofoverlay networksex-
plained in chapter 2. Note that a similar scenario occurs when a mobile device is
joining more than one network at time (e.g. a device simultaneously connected
to a WLAN and a PAN). The decision of looking for a service in one or another
network (or both) could be taken by the user.

In the context of this work it will be assumed that this criterium is already
implemented in the acquaintance management mechanism. It means, actors can
discover the closest other ones that provide the services they are requiring.

2There is a primitive way in which this can be done: actors could store information about their
location. Then, an actor which searches for a certain pattern joins with a number of actors providing
this pattern. The actor could then manually scan the list of joined actors and filter out theclosest
one based on the location information he gets from each actor. However, a nicer solution could be
achieved by the inclusion of boundaries to the model

7.3. FOLLOW-ME APPLICATIONS 125

7.3.3 TheFollow-Me Pattern

This pattern ensures that the actor-based applications follow their users whenever
they move over the network. They will remain available depending of the adapt-
ability of these applications to the new contexts found at new locations. This pat-
tern focuses mainly on the mobility of the actor-based applications, rather than
their adaptability.

TheFollow-Mepattern assumes two applicability conditions:

1. The use of mobile actor-based applications, it means, applications composed
by actors that can be moved over the network.

2. A location-support system deployed over the space in which users move
around. It implies mobile and embedded devices supporting such a system.

7.3.3.1 Participants

This pattern requires four type of actors:FollowMe , User , AmbientApplication
andAmbientSession actors.

The FollowMe actor This type of actor resides on the work stations3 (like the
Bob’s PC and laptop).FollowMe actors are responsible to keep users and
their sessions together, looking for such sessions over the network and mov-
ing them if required.

The User ambient reference This ambient reference resides on the mobile de-
vices carried by the users. It informs the user identification to theFollowMe
actor residing on the computer in which the user is currently working.

The AmbientSession actor This actor is the container of all applications opened
on a computer by a user to do his work. This session moves together with the
applications, in the same spirit of theswarmobject described in [De Meuter, 2004].
It will be explained in the next section.

The AmbientApplication actor This actor represents a application with the
capability to move and adapt itself to the conditions of the new locations.

7.3.3.2 Collaborations

TheFollow-Mepattern works as follows:

1. The first time that aUserRef ambient reference matches aFollowMe
actor, it sends a message to that actor asking it for the creation of a user
session. Thus, theFollowMe actor creates anAmbientSession actor
for this user.

3FollowMe actors are no limited to be on work stations, but for understandability of the pattern
we will assume this. Different scenarios will be discussed in section 7.3.4

126 CHAPTER 7. APPLICATION AND VALIDATION

2. The user opens its required applications (AmbientApplication ones)
and registers them in theAmbientSession (which may be automatically
performed).

3. The user leaves the current location and theUserRef reference starts imme-
diately to look for anotherFollowMe actor. At this moment theAmbientSession
actor is already prepared to be moved.

4. The user arrives to a new location. TheUserRef ambient reference finds
the newFollowMe actor. Then, the reference informs the user identifica-
tion to this actor and it starts the search for itsAmbientSession over the
network.

5. Once theFollowMe actor finds the requiredAmbientSession actor,
the former send a message to the latter asking it to move to the new location
(computer) where the user is working.

6. Subsequently, theAmbientSession actor sends messages to its contain-
ing AmbientApplication actors demanding them to move.

7. Finally, theAmbientApplication actors resume their full activities (if
possible, depending of their reconfiguration results).

7.3.3.3 Implementation

The full implementation of theFollow-Mepattern can be found in the appendix A.
This section will highlight some relevant parts of the code for the validation of this
work.

In few words, the implementation of theFollow-Mepattern consist offinding
the user’s session over the networkandmoving it to the new user’s location. As
it is shown in the following sections, the first part is accomplished by the use of
ambient references, whereas the second part is fulfilled by the use ofmoveActor
that allow strong mobility of the actors.

Ambient References The ambient references are used in the searchings required
by this pattern. The first one is performed by theUserRef , which is itself an
ambient reference. It looks for a ”followme” pattern, certainly provided by the
FollowMe actors (see the code below). The implementation of this ambient ref-
erence is similar to the implementation of the weak ambient reference described in
chapter 6. The difference is that the former handle the information of the user (in
this implementation it corresponds just to an extra field with the user name).

The second lookup is performed by theFollowMe actor in order to find the
AmbientSession . The extract of code shows thefindSession method that
is called by theUserRef reference correspondent to the user that is currently in
the computer (where theFollowMe resides). The session field is filled with a
weak ambient reference. The next line invokes themoveWhere method which

7.3. FOLLOW-ME APPLICATIONS 127

is the higher-order move method implemented by theAmbientSession actor.
Note that since theitsSession field contains an ambient reference (that is an
actor, as explained in chapter 6), the user could eventually starts to interact with
this session.

followMeBehaviour :: object({
...
itsPattern: "followme";
init() :: { publish(itsPattern) };
...
findSession(aUserName) :: {

itsUserName:= aUserName;
itsSession:=

WeakAmbientRef(itsUserName);
itsSession#moveWhere(thisActor(),

itsResources);
itsSession};

...
getSession(aUserName)::

{if(aUserName=itsUserName,
itsSession)};

...
})

The Higher-Order Move Method As previously mentioned,AmbientSession
andAmbientApplication actors move together to the new location. The way
to do it is similar to the one described in theswarmpattern [De Meuter, 2004]. The
code below shows that the invocation of themoveWhere method of the session,
implies the invocation of themoveWhere method of the applications. This mech-
anism is a bit more restricted than theswarmpattern, since in this case the move
methods of the applications must have the same name. After the iteration through
the applications contained in the session, it calls themoveActor primitive in or-
der to move itself to the new location.

ambientSessionBehavior:object({
...
itsApps:vector.new();
...
init():: {publish(itsUserName)};
...
moveWhere(aFollowMe,aResources):: {

itsApps.iterate(el.moveWhere(aFollowMe,
aResources));

moveActor(aFollowMe,void)};

128 CHAPTER 7. APPLICATION AND VALIDATION

...
})

The implementation of themoveWhere method of an application includes the
invocation of themoveActor primitive that enable the application actors to move
as well. In this case this primitive is invoked with a message as a second argument
that calls theresume method of the application. It was explained in chapter 6 that
this second argument corresponds to the first message to be processed by the actor
at the new location. The purpose of theresume method in this case is to include
in its body all needed to adapt the application to the new context.

ambientAppBehavior:object({
moveWhere(aFollowMe,aResources):: {

moveActor(aFollowMe,
createMessage(thisActor(),

thisActor(),
"resume",
[aResources]))};

resume(aResources):: { ... };
});

7.3.4 Related Scenarios

The following scenarios can occur considering the conditions provided by the
location-support system and the implementation ofFollow-Mepattern:

Two users arriving to the same locationThere are no restrictions for avoiding
two or more people to have their sessions on the same machine at the same
time. A way to limit this (if required) could be to make the user invariable in
theFollowMe actors.

FollowMe actors located in embedded or mobile devicesThis scenario is quite
the spirit of the ambient intelligence. It stresses the property of adaptability
of the applications.

AmbientSession actors moved to mobile devicesIt can be an alternative way
to move applications through the network. Since this is a strong mobility,
users could keep working on that applications on the device, even without
network connection.

7.4 Conclusion

This chapter has presented theFollow-meapplications as a way to validate the Am-
bientTalk mobility model proposed in this work. These applications correspond to
the field of Ambient Intelligence, which, as explained in this chapter, commonly

7.4. CONCLUSION 129

suppose dynamically reconfigurable environments, like the one found in open net-
works.

New infrastructures are being developed to support AmI applications. Such is
the case of location-support systems that deal with the physical discovery of the
participants of a network. Several works can be identified in terms of the software
required for the context of AmI. AmbientTalk is one of them. The pattern proposed
in this chapter to build location-aware applications such as theFollow-Me ones,
takes advantage of the mechanisms found in AmbientTalk to deal with devices and
actor mobility.

130 CHAPTER 7. APPLICATION AND VALIDATION

Chapter 8

Conclusions

This dissertation has described the AmbientTalk mobility model developed in this
thesis to deal with both device and ambient actor mobility. While the mechanisms
for supporting device mobility was already included in the AmbientTalk program-
ming language, the ambient actors mobility were the result of the application of
the concepts such as open networks, p2p network architectures, ambient actors
and strong mobility. The following two sections summarize the Ambient mobility
model and relate it with the concepts mentioned before. Subsequently, the applica-
bility of this model will be discussed, together with directions for future work.

8.1 Problem Statements (revisited)

The following are the problems identified in the introduction of this dissertation,
and the solution found in this work.

8.1.1 Dealing with Mobile Networks

Mobile networks have a dynamic reconfiguration over the time due to the limita-
tions of their participants (devices). In this proposal, the problems produced by this
property of the open networks were tackled with the mechanisms already present in
the AmbientTalk programming language (non-blocking communication primitives,
reified communication traces and ambient acquaintance management described in
section 4.7). Such mechanisms have been combined with the actor mobility in the
following scenarios:

• To avoid that mobility of devices affects the actor move process (section
6.4). It was explained in this section that mixing both mobility the most of
the crashes during the actor move process can be avoided.

• To implement theFollow-Meapplication (section 7.3). This application re-
quired services (Bob’s desktop) to hop from one computer to another. This

131

132 CHAPTER 8. CONCLUSIONS

application also required a location-support systems based on mobile and
embedded devices.

The conclusion in this case is that for the purpose of ensuring (as much as
possible) the availability of the services provided over the mobile network, the
combined solutions of mechanisms for mobile and actor devices get better results
than the independent solutions provided by the mechanisms of one or another.

8.1.2 Previous Code mobility Issues

The problems mentioned in the introduction respect to previous code mobility im-
plementations, pointed to complexity (in case of Java) and the lack of mechanisms
for interacting with dynamically reconfigurable networks (in case of agent technol-
ogy). The implementation of this model care about both issues as follows:

• Complexity for working with actor mobility was avoiding by implementing
a lightly structure move process which consist of a primitive that can be in-
cluded in any higher-level move method developed at AmbientTalk program-
ming level (see section 6.3.1). The move process is totally transparent for the
user. He does not have to take care about distribution and concurrency prob-
lems because these are already tackled at AmbientTalk implementation level
(by implementing the ambient actor model described in section 4.7.1.1). He
neither has to take car about the network reconfiguration after the move be-
cause it is already included in the implementation of the AmbientTalk mo-
bility model (section 6.3.3)

• Respect to the second issue described above, it is solved by the ambient-
oriented programming paradigm implemented in AmbientTalk (section 4.7).
Its implementation considers a set of abstractions developed to discover ser-
vices over the network (pattern-based lookup, section 4.7.1.1) and to avoid
inconsistency states in the systems due to connection volatility of the mobile
devices (communication states, section 4.7.1.1).

AmbientTalk programmers can interact directly with these mechanisms by
means of a small set reflective methods. But these mechanism can be en-
capsuled in a higher-level abstraction. The AmbientTalk mobility model in-
cludes ambient references that are abstractions to these mechanisms (section
6.2.1).

8.2 Approach (revisited)

As explained in the introduction of this dissertation consists of a set of com-
bined mechanisms: ambient references abstracting the AmbientTalk mechanisms
for dealing with mobile devices, the strong mobility of actors, and the network
reconfiguration mechanism performed after the actor’s move.

Some design considerations to this model are the following:

8.3. AMBIENTTALK MOBILITY MODEL IN A NUTSHELL 133

• This mobility model extends the P2P network scheme implemented in Am-
bientTalk:

– None central entities are required for executing the actor mobility and
network reconfigurability.

– Actor mobility is a fault-tolerant mechanism since disconnections of
devices are supported by the ambient references at any moment during
the move process.

– This model provides a structure that can organize itself after the actor’s
move and after a unexpected disconnection of the devices that are per-
forming the move. This second case is responsibility of the ambient
references pointing to the moved actor found at any device over the
network.

• As mentioned before, this model is strongly supported by the mechanisms
implemented by AmbientTalk for providing communication states and pattern-
based lookup mechanism. While the former is used to allows actor to move
without losing its availability for other actors over the network, the latter is
used by the ambient references during the actor mobility.

8.3 AmbientTalk Mobility Model in a Nutshell

The AmbientTalk mobility model proposed in this thesis works as follows:

• This model proposes to deal with device and actor mobility by using two
abstractions at AmbientTalk programming language level: the ambient ref-
erences and the move primitive.

– The ambient references are an abstraction of the mechanisms Ambi-
entTalk provides to deal with device mobility, namely reified commu-
nication and acquaintance management.

– The moveActor primitive is the abstraction of the actor strong mo-
bility mechanism implemented in this work. It receives as parameters a
remote actor residing in the future new location of the actor that needs
to be moved, and a message that will be used for coordination (adap-
tation) purposes. It will be the first message to be executed once the
moved actor starts to process messages at the new location. This prim-
itive can be used in any method of an ambient-actor, which can build
more high level abstractions on top of it.

• The actor move process is a shared responsibility between the current (de-
parture) device of the actor and its future (arrival) device.

134 CHAPTER 8. CONCLUSIONS

• This process is based on four communications. The first one corresponds to
the invocation of themoveActor primitive and the three last ones corre-
spond to virtual machine-level commands sent between the devices implied
in the move.

• The sequence of steps corresponds to the execution of such communications.
The steps are the following:

1. An actor is demanded to move by receiving a move method (a method
with themoveActor primitive inside its body).

2. The execution of that primitive produces that device starts the process
by checking low-level preconditions for the move. If these are properly
fulfilled the departure device sends themoveActor command to the
arrival device.

3. The execution of this command at the arrival device creates a deac-
tivated and empty actor (without processing capacity, behavior, state,
and mailboxes’ contents) but ready to receive messages from other ac-
tors. Then the arrival device sends back aresultMoveActor com-
mand. This command passes as parameter the reference to the new
actor.

4. The execution of this command at the departure device produces the
delegation of the communication capacity of the moved actor to the
created actor at the arrival device. At this moment the departure device
stops the processing capacity (thread) of the moved actor and sends the
moveActorContents command. It has as parameters the behavior
(with the state) and mailboxes’ contents of the moved actor.

5. The execution of this last command at the arrival device loads the con-
tents in the new actor and starts its thread.

• The network reconfiguration mechanism of this model will update the ref-
erences at third-party devices (neither the departure, nor the arrival device)
pointing to the moved actor at its old location. This way chained forwarding
(rerouting) of messages is avoided.

8.4 Applications for Mobile Open Networks

Chapter 7 considered the implementation of a AmI application calledFollow-Me
for validating the AmbientTalk mobility model. AFollow-Meapplication follows
its user around a space (a house, a building) covered with embedded devices that
provide information about the location of people and resources. The goal was
to create a pattern for developing such a type of applications using the mobility
model proposed in this work. The implementation consisted of finding the user’s
session over the network and moving it to the new user’s location. The result of this

8.5. FUTURE WORK 135

experiment demonstrated that both actions are properly accomplished by the model
(the first one using ambient references and the second one using strong mobility
of actors). The assumption was to consider the availability of the location-support
infrastructure for this exercise and the adequate communication between such a
system and AmbientTalk. Although it is possible to simulate the detection of the
user mobility at software level (for instance, by sending messages directly to the
FollowMe actor to simulate disconnection) the utilization of this pattern with real
ubiquitous infrastructure remains future work.

It is to be said that the communication with such a infrastructure would be
rather a matter of the internal implementation of AmbientTalk than an issue at the
programming level. Therefore, theFollow-Mewould not change. What effectively
could be added at the programming level is an abstraction for representing the
information about physical location of mobile devices.

8.5 Future Work

The following points correspond to possible continuation of the work presented in
this dissertation.

• As it was mentioned in this work, strong mobility of actors implies to adapt
themselves to the conditions of the new locations. This work has focused on
the move process itself more than the adaptability mechanism. It could be
necessary for improving the applicability of this model.

• The security is an issue in this work. There are no mechanisms to limit the
capacity an actor has to modify the device where it is residing. It can be
worst in the context of this work, in which actors are enabled to hop from
one device to another.

• The strong mobility mechanism requires the notion of distributed garbage
collection described in [Van Custem and Mostinckx, 2004] since it creates
new actors each time an actor moves, but it does not remove the old ones,
even if these are not being used anymore.

• The previous section mentioned the necessity of testing AmI applications
using new hardware infrastructure. It could be interesting to know what the
implications of these systems are for software development.

136 CHAPTER 8. CONCLUSIONS

Appendix A

AmbientTalk Applications

The following applications were developed in the context of this work for valida-
tion purposes. These are coded in AmbientTalk. A guide of the semantics used in
this programming language can be found in [Dedecker, 2005b]. The two applica-
tions described in this appendix are:

• Applications for testing the strong mobility of ambient actors, and the net-
work reconfiguration that takes place after the move.

• The implementation of the actors required by theFollow Mepattern.

A.1 Applications for Testing the AmbientTalk Mobility Model

The programs presented in this section were developed to test the AmbientTalk
mobility model (explained in chapter 6). Each section corresponds to a test created
for the three different devices identified in the explanation of the mobility model.
These are the departure device, the arrival one, and any other third-party device.

These test applications use an object that represents the device. It contains in
its implementation adisplayActor (actor) method, that shows in which
device are the actors.

device:: object({
theName: void;
cloning.new(aName)::theName:=aName;
getName()::theName;
setName(aName)::theName:=aName;
displayActor(actor)::display(actor, " is in ",

theName, eoln)
});

137

138 APPENDIX A. AMBIENTTALK APPLICATIONS

A.1.1 Actor Mobility Implementation at the Departure Device

This device is the current location of the actor to be moved (calledlocA). The fol-
lowing code contains an implementation of amovemethod (calledmoveWhere)
which contains themoveActor primitive defined in chapter 6.

The last line of this code (locA#displayMe()) will be executed after the
move of the actor in order to test that the communications to the moved actor from
this devices will not be affected.

{ thisDevice: device.new("Device-1");

o:object({
theName: void;
cloning.new(aName)::theName:=aName;
init():: publish("test1");
displayMe():: thisDevice.displayActor(theName);
moveWhere(aRef):: when(aRef#getProvider(),

moveActor(content,
createMessage(thisActor(),

content,
"displayMe",
[])))

}).futuresMixin();

locA: actor(o.new("Actor-A"));

startNetwork();

locA#displayMe() }

A.1.2 Actors at the Arrival Device

This device represents the new location of the moved actor. The following code
creates a new actor at this device (locB) and an ambient reference (concept ex-
plained in chapter 6) to the actor found at departure device (remA) that will be
moved to this device. The idea is to test the communications with the moved actor
will not be affected after the move.

{ thisDevice: device.new("Device-2");

o: object({
theName: void;
cloning.new(aName)::theName:=aName;
init()::publish("test2");

A.2. FOLLOW ME PATTERN IMPLEMENTATION 139

displayMe():: thisDevice.displayActor(theName)
}); locB: actor(o.new("Actor-B"));

startNetwork();
locB#displayMe() }

{ remA: ambientRef("test1"); remA#displayMe() }

A.1.3 Actors at a third-party Device

This device represents any device that is neither the departure device, nor the arrival
one of the moved actor. Two ambient references are created at this device:remA is
a reference to the moved actor. TheremB is a reference to the actor created at the
arrival device. This code shows that the actor represented byremA is demanded
to move at the location ofremB (the line isremA#moveWhere(remB)). Note
that the last line of this code (remA#displayMe()) is called after the actor was
moved. The purpose of this is to test the communications with the moved actor
will not be affected after the move.

{ remA: ambientRef("test1");
remB: ambientRef("test2");
startNetwork();
remA#displayMe();
remB#displayMe() }

{ remA#moveWhere(remB);
remA#displayMe() }

A.2 Follow Me Pattern Implementation

The following code corresponds to the implementation of the actors required by
the Follow Me pattern described in chapter 7. At the end of this section are also
included some examples of mobile applications.

A.2.1 FollowMe Actor

This is the actor that calls theAmbientSession actor to move. It happens only
in the case of aUserRef ambient reference invokes thefindSession(aUserName)
method. Note that this last method uses a weak ambient reference (explained in the
chapter 6) to find theAmbientSession of the user over the network.

followMeBehaviour :: object({
itsSession: void;
itsUserName: void

140 APPENDIX A. AMBIENTTALK APPLICATIONS

itsResources: void;
itsPattern: "followme";
cloning.new(aResources) :: {

itsResources:= aResources};
init() :: { publish(itsPattern) };
findSession(aUserName) :: {

itsUserName:= aUserName;
itsSession:=

WeakAmbientRef(itsUserName);
itsSession#moveWhere(thisActor(),

itsResources);
itsSession};

getSession(aUserName)::
{if(aUserName=itsUserName,

itsSession)};
createSession(aUserName):: {

itsUserName:= aUserName;
itsSession:=

AmbientSession.new(itsUserName,
itsResources);

itsSession}
})

FollowMe(aResources) ::
actor(followMeBehaviour.new(aResources))

A.2.2 User Ambient Reference

This is an ambient reference that resides on the mobile device of the user. Once
it finds aFollow Me actor, it either sends acreateSession message or a
findSession in case of the AmbientSession was previously created already.
This part of the behavior is found in thejoined(aResolution) method of
this ambient reference.

The implementation of theUserRef is based on the implementation of the
weak ambient references (WeakAmbientRef). Such a type of ambient reference
was already implemented in AmbientTalk [Dedecker, 2005a] at the moment of the
creation of this pattern.

userRefBehaviour :: object({
itsName : void
itsPattern : void;
itsRef : void;
itsInitiated : false;
cloning.new(aPattern,aName)::

A.2. FOLLOW ME PATTERN IMPLEMENTATION 141

{itsPattern:= aPattern ;
itsName:= aName };

init() :: { add("required",itsPattern) };

joined(aResolution) :: {

if(is_void(itsRef), {
itsRef := provider(aResolution);
if(itsInitiated,

{ outbox.add(createMessage(
thisActor(),
itsRef,
"findSession",
[itsName]))

}, {
itsInitiated:=true;
outbox.add(createMessage(

thisActor(),
itsRef,
"createSession",
[itsName]))

});
toForward: inbox.asVector();
toForward.iterate({

if(not(containsBehaviour(el.getName())),
{ outbox.add(setMsgTarget(el.copy(),

itsRef));
inbox.delete(el) })})

})
};

disjoined(aResolution) :: {

if(provider(aResolution) ˜ itsRef, {
itsRef := void;
outbound : outbox.asVector();
outbound.iterate({

aMsgTarget : el.getTarget();
if (aMsgTarget ˜ provider(aResolution),

{ outbox.delete(el);
inbox.add(el)})

});

if (joinBox.length() > 0,

142 APPENDIX A. AMBIENTTALK APPLICATIONS

itsRef := provider(
joinBox.asVector().get(1)))

});
delete("disjoined",aResolution)

};

in(aMsg) :: {
if(not(is_void(itsRef)) &

not(containsBehaviour(aMsg.getName())),
{outbox.add(setMsgTarget(

copyMsg(aMsg),
itsRef));

inbox.delete(aMsg)})
}

})

UserRef(aName) ::
actor(UserRefBehaviour.new("followme",aName))

A.2.3 AmbientSession Actor

This is the actor that will be moved as well as theAmbientApplication ac-
tors it contains. ThemoveWhere(aFollowMe,aResources) method is the
responsible of the move of this actor and theAmbientApplication actors.

ambientSessionBehavior:object({
itsUserName:void;
itsApps:vector.new();
cloning.new(aUserName):: {

itsUserName:=aUserName};
init():: {publish(itsUserName)};
moveWhere(aFollowMe,aResources):: {

itsApps.iterate(el.moveWhere(aFollowMe,
aResources));

moveActor(aFollowMe,void)};
setApplication(anApp):: itsApps.add(anApp);

})

AmbientSession(aUserName) ::
actor(ambientSessionBehaviour.new(aUserName))

A.2. FOLLOW ME PATTERN IMPLEMENTATION 143

A.2.4 AmbientApplication Actor

This actor contains the behavior of a mobile application. Thus, the applications that
will be considered in theFollow Memechanism, should extend this behavior. Note
that theresume method is the place in which the application can reconfigurate
itself to the resources found in the new device.

ambientAppBehavior:object({
moveWhere(aFollowMe,aResources):: {

moveActor(aFollowMe,
createMessage(thisActor(),

thisActor(),
"resume",
[aResources]))};

resume(aResources):: {’It reconfigures itself
upon arrival and restarts.’};

});

ambientApplication() ::
actor(ambientAppBehaviour.new())

Mobile Text Editor A very simple (and toy) version of the text editor actor could
be the following:

textEditorBehavior:ambientAppBehavior({
itsText: void;
write(aNewText):: {itsText:= itsText + aNewText};
displayText():: display(itsText);
resume(aResources):: {display("Text Editor ready to work!");

displayText()}
})

TextEditor():: actor(textEditorBehavior.new())

Mobile Music Player An also simple version of the music player actor could be
the following:

musicPlayerBehavior:ambientAppBehavior({
itsSong: void;
addSong(aSong):: itsSong:= aSong;
play():: display("Playing the song: ", itsSong);
resume(aResources):: {display("Music Player ready to work!");

play()}
})

144 APPENDIX A. AMBIENTTALK APPLICATIONS

MusicPlayer():: actor(musicPlayerBehavior.new())

Bibliography

[Agha, 1986] Agha, G. (1986).Actors: a model of concurrent computation in
distributed systems. MIT Press.

[Baude et al., 2003] Baude, F., Caromel, D., and Morel, M. (2003). From dstrib-
uted objects to hierarchical grid components. InOn The Move to Meaningful
Internet Systems 2003: Coopis, DOA, and ODBASE, volume 2888 of Lecture
Notes in Computer Science, pages 1226–1242.

[Berger et al., 2003] Berger, S., Schulzrinne, H., Sidiroglou, S., and Wu, X.
(2003). Ubiquitous computing using sip. InNOSSDAV 03. ACM.

[Bernard Traversat and Pouyoul, 2003] Bernard Traversat, M. A. and Pouyoul, E.
(2003). Project jxta: A loosely-consistent dht rendezvous walker.

[Briot and de Ratuld, 1988] Briot, J.-P. and de Ratuld, J. (1988). Design of a dis-
tributed implementation of abcl/i. InProceedings of the 1988 ACM SIGPLAN
workshop on Object-based concurrent programming, pages 15–17. ACM Press.

[Briot et al., 1998] Briot, J.-P., Guerraoui, R., and Lohr, K.-P. (1998). Concur-
rency and distribution in object-oriented programming.ACM Computing Sur-
veys, 30(3):291–329.

[Callsen and Agha, 1994] Callsen, C. and Agha, G. (1994). Open heterogeneous
computing in actorspace.Journal of Parallel and Distributed Computing, pages
289–300.

[Cardelli, 1995] Cardelli, L. (1995). Obliq: A language with distributed scope.
22nd Annual ACM Symposium on Principles of Programming Languages, pages
286–297.

[Cardelli, 1999] Cardelli, L. (1999). Abstractions for mobile computation. In
Secure Internet Programming, pages 51–94.

[Carton and Mesaros, 2004] Carton, B. and Mesaros, V. (2004). Improving the
scalability of logarithmic-degree dht-based peer-to-peer networks.Euro-Par
2004.

[Cerulean Studios, LLC, 2005] Cerulean Studios, LLC (2005).

145

146 BIBLIOGRAPHY

[Clements et al., 1997] Clements, P. E., Papaioannou, T., and Edwards, J. (1997).
Aglets: Enabling the virtual enterprise. InManaging Enterprises - Stakeholders,
Engineering, Logistics and Achievement.

[Cohen, 2003] Cohen, B. (2003). Incentives build robustness in bittorrent.

[De Meuter, 2004] De Meuter, W. (2004).Move Considered Harmful: A Lan-
guage Design Approach to Mobility and Distribution for Open Networks. PhD
thesis, Vrije Universiteit Brussel.

[De Meuter et al., 2004] De Meuter, W., D’Hondt, T., and Dedecker, J. (2004).
Pico: Scheme for mere mortals. InProceedings of the First International Lisp
Workshop.

[Dedecker, 2005a] Dedecker, J. (2005a). Ambient-oriented programming.

[Dedecker, 2005b] Dedecker, J. (2005b). AmbientTalk: The programming lan-
guage kernel for ambient computing.

[Ding and Bhargava, 2003] Ding, G. and Bhargava, B. (2003). Peer-to-peer file-
sharing over mobile ad hoc networks.

[Eberspcher et al., 2004] Eberspcher, J., Schollmeier, R., Zols, S., and Kunzmann,
G. (2004). Structure p2p networks in mobile and fixed environments.

[Emir Halepovic, 2003] Emir Halepovic, R. D. (2003). Jxta performance study.

[Fugetta et al.,] Fugetta, A., Picco, G., and Vigna, G. Understanding code mobil-
ity. In IEEE Transactions on Software Engineering, 24(5), pages 342–461.

[Gelernter, 1985] Gelernter, D. (1985). Generative communication in Linda. In
ACM Transactions on Programming Languages and Systems 7, 1.

[Ion Stoica and Balakrishnan, 2001] Ion Stoica, Robert Morris, D. K. F. K. and
Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for
internet applications.

[Islam and Fayad, 2003] Islam, N. and Fayad, M. (2003). Towards ubiquitous ac-
ceptance of ubiquitous computing.

[ISTAG, 2003] ISTAG (2003). Ambient intelligence: From vision to reallity.

[J. Kurhinen and Vuori, 2004] J. Kurhinen, M. Vapa, M. W. N. K. and Vuori, J.
(2004). Short range wireless p2p for co-operative learning.

[J. Liang and Ross, 2004] J. Liang, R. K. and Ross, K. (2004). Understanding
kazaa.

BIBLIOGRAPHY 147

[Jul et al., 1988] Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-
grained mobility in the emerald system.ACM Transactions on Computer Sys-
tems.

[Krco et al., 2005] Krco, S., Cleary, D., and Parker, D. (2005). P2P mobile sensor
networks. In38th Hawaii International Conference on System Sciences.

[Landay, 2003] Landay, J. A. (2003). Design patterns for ubiquitous computing.
IEEE computer ubicomp.

[Lange and Oshima, 1998] Lange, D. B. and Oshima, M. (1998). Programming
and deploying java mobile agents with aglets.Addison Wesley.

[Lea, 1999] Lea, D. (1999).Concurrent Programming in Java: Design Principles
and Patterns. Addison-Wesley, second edition. Online Supplement athttp:
//gee.cs.oswego.edu/dl/cpj .

[Leopold et al., 2003] Leopold, M., Dydensborg, M. B., and Bonnet, P. (2003).
Bluetooth and sensor networks: A reality check. InFirst International Confer-
ence on Embedded Networked Sensor Systems.

[Li, 2003] Li, S. (2003). Jxta 2: A high-performance, massively scalable p2p
network.

[Lin and Chlamtac, 2001] Lin, Y.-B. and Chlamtac, I. (2001).Wireless and Mobile
Network Achitectures. John Wiley and Sons.

[Lindwer et al., 2003] Lindwer, M., Marculescu, D., Basten, T., Zimmerman, R.,
Marculescu, R., Jung, S., and Cantatore, E. (2003). Ambient intelligence visions
and achievements: Linking abstract ideas to real-world concepts.

[Liskov, 1988] Liskov, B. (1988). Distributed programming in argus. InCommu-
nications Of The ACM, 31(3), pages 300–312.

[Luhr, 2004] Luhr, E. (2004). Mobility support for wireless devices - within the
TAPAS platform. Master’s thesis, Norwegian University of Science and Tech-
nology.

[Mascolo et al., 2002] Mascolo, C., Capra, L., and Emmerich, W. (2002). Mobile
computing middleware.Advances Lectures on Networking.

[Mathieu Jan, 2004] Mathieu Jan, D. A. N. (2004). Performance evaluation of jxta
communication layers.

[Miller, 2000] Miller, M. (2000). The e programming language, the secure dis-
tributed pure-object platform and p2p scripting language for writing capability-
based smart contracts.

148 BIBLIOGRAPHY

[Milojicic et al., 2000] Milojicic, D., Douglis, F., and Wheeler, R. (2000).Mobil-
ity: Processes, Computers, and Agents. Addison-Wesley, second edition.

[Minar et al., 2001] Minar, N., Hedlund, M., Shirky, C., O’Reilly, T., Bricklin,
D., Anderson, D., Miller, J., Langley, A., Kan, G., Brown, A., Waldman, M.,
Cranor, L., Rubin, A., Dingledine, R., Freedman, M., Molnar, D., Dornfest,
R., Brickley, D., Hong, T., Lethin, R., Udell, J., Asthagiri, N., Tuvell, W., and
Wiley, B. (2001). Peer-to-peer harnessing the power of disruptive technologies.

[MIT-LCS, 2004] MIT-LCS (2004). MIT Oxygen Project, pervasive human-
centered computing.

[Osborne, 1997] Osborne, M. J. (1997). Introduction to tutorial on the theory of
the firm and industry equilibrium.

[Parashar, 2004] Parashar, M. (2004). Peer-to-peer networks + an introduction to
jxta.

[PlanetLab Consortium,] PlanetLab Consortium. PlanetLab, an open platform for
developing, deploying and accessing planetary-scale services.

[Priyantha et al., 2000] Priyantha, N. B., Chakraborty, A., and Balakrishnan, H.
(2000). The Cricket location-support system.

[R. H. Halstead, 1985] R. H. Halstead, J. (1985). MULTILISP: a language for
concurrent symbolic computation. InACM Trans. Program. Lang. Syst., 7(4),
pages 501–538.

[Ratnasamy et al., 2001] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and
Schenker, S. (2001). A scalable content-addressable network.

[Rowson and Druschel, 2001] Rowson, A. and Druschel, P. (2001). Pastry: Scal-
able, distributed object location and routing for large-scale peer-to-peer systems.

[Satoh, 2002] Satoh, I. (2002). Physical mobility and logical mobility in ubiqui-
tous computing environments.Springer-Verlag Berlin Heidelberg.

[Shiaa and Aagesen, 2002] Shiaa, M. M. and Aagesen, F. A. (2002). Mobility
management in a plug and play architecture. InIFIP WG6.7 Workshop and
EUNICE Summer School on Adaptable Networks and Teleservices.

[SUN Microsystems, 2005] SUN Microsystems (2005). Java 2 micro edition.

[Susan Crosse and Smith, 2003] Susan Crosse, Elaine Wilson, A. W. D. C. and
Smith, C. (2003). P2p.

[Tolman, 2003] Tolman, C. (2003). A fault-tolerant home-based naming service
for mobile agents. Master’s thesis, Rensselaer Polytechnic Institute.

BIBLIOGRAPHY 149

[Valentin Mesaros and Roy, 2004] Valentin Mesaros, B. C. and Roy, P. V. (2004).
P2ps: Peer-to-peer development platform for mozart.

[Van Custem and Mostinckx, 2004] Van Custem, T. and Mostinckx, S. (2004). A
prototype-based approach to distibuted applications. Master’s thesis, Vrije Uni-
versiteit Brussel.

[Varela, 2001] Varela, C. (2001).Worldwide Computing with Universal Actors:
Linguistic Abstractions for Naming, Migration, and Coordination. PhD thesis,
U. of Illinois at Urbana-Champaign.

[Varela and Agha, 2001] Varela, C. and Agha, G. (2001). Programming dynami-
cally reconfigurable open systems with salsa.ACM SIGPLAN Notices 36, 12,
pages 20–34.

[Venners, 1997] Venners, B. (1997). The architecture of Aglets.Java World.

[Wang, 2003] Wang, M. (2003). Manet global connectivity and mobility manage-
ment using hmipv6 and olsr. Master’s thesis, Carleton University.

[Ward, 1998] Ward, A. (1998).Sensor-driven Computing. PhD thesis, Cambridge
University Engineering.

[Weiser, 1991] Weiser, M. (1991). The computer for the twenty-first century.Sci-
entific American, pages 94–100.

[White, 1996] White, J. (1996). Telescript technology: Mobile agents.J. Brad-
shaw,editor, Software Agents.

[Wikipedia, 2004] Wikipedia (2004). Wikimedia foundation project.

[Wilson, 2002] Wilson, B. J. (2002). Jxta.

[Zimmerman, 1996] Zimmerman, T. (1996). Personal area networks.IBM Sys-
tems Journal.

