On the Performance of SOAP in a Non-Trivial
Peer-to-Peer Experiment

Tom Van Cutsem, Stijn Mostinckx,
Wolfgang De Meuter, Jessie Dedecker*, Theo D’'Hondt
{tvcutsem,smostinc,wdmeuter,jededeck,tjdhondt }@vub.ac.be

Programming Technology Lab
Department of Computer Science
Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussels - Belgium
Fax: +32 2 629 35 25

Abstract. This paper reports on the experiences we gained while try-
ing to build an interpreter for a new programming language aimed at
developing strong mobile software. The interpreter is actually a distrib-
uted virtual machine that can be used in a peer-to-peer setting on a
heterogeneous platform. In our quest for an experimental implementa-
tion, simplicity and portability led us to using a combination of Java and
SOAP technologies. The paper reports on the problems we encountered
in this experiment and shows that SOAP is inadequate in peer-to-peer
communication that cannot afford fat servers to run on all nodes.

1 Introduction

The topic of our research is the design of programming languages that simplify
the construction of strongly mobile applications. This fits in what has been called
“Ambient Intelligence” (AmI) by the European Council’s IST Advisory Group
(ISTAG, 2003). The vision of AmlI is that soon individuals will be surrounded
by a dynamically configured processor cloud running smoothly integrated ap-
plications. In this context, we conduct experiments in language design in order
to distil language concepts that will facilitate writing mobile applications. The
languages we design are typically dynamically typed, reflective and have built-in
provisions for distribution and mobility.

The current scion of our language family is called Pic% (pronounced Pic-oh-
oh). It is an object-oriented mobile extension of a language family called Pico
(D’Hondt, 1996). Pico has been extended in various experimental ways, ranging
from distributed agents (Van Belle and D’Hondt, 2000) to objects and delegation
(De Meuter et al.,2003). The experiment described here is a unification of these
two. Hence, the scion discussed here features:

* Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.0.)
© Springer-Verlag, 2004. This work appeared in Component Deployment: Second
International Working Conference (LNCS volume 3083/2004)



— Minimality: Ordinary calculus syntax is used and the concept space is
restricted to basic values, functions and tables (D’Hondt, 1996): Pico can
be seen as an attempt to recover as many concepts of Scheme (Abelson and
Sussman, 1985) as possible given a conventional infix syntax restriction.

— Strong reflection: All entities, including parse trees are first-class. More-
over, they can be easily inspected and changed by the programmer.

— First-class computational state: Computations are first-class entities,
similar to Scheme continuations. This enables Strong Code Mobility, such
that running programs can transparently migrate to another machine'. In
Pic%, programs can grab their own computational state, transmit it over a
wire, and, upon arrival, resume the computation.

— Prototypes: Pic% features prototypical objects (De Meuter et al., 2003)
which are created ‘ex nihilo’ (without classes!) or by cloning existing ob-
jects. The absence of classes is very adequate in a language aimed at strong
mobility since no (transitive closures) of classes have to be transmitted.

We adhere the vision that language design is an iterative experimental activ-
ity. In an experimental implementation, test applications can be written in the
language. This allows one to detect unforeseen interactions in its concept space.
Very often, these are reflected by similar interactions between its implementa-
tion components, such as the VM core and the distribution layer in our case.
Based on these experiments, the language and its implementation are further
polished and another iteration cycle can be entered. In our case, we wanted to
experiment in a realistic processor cloud constellation with PDA’s, PC’s, mobile
phones, etc. The limited computational power of some of these forced us recon-
cile efficiency with portability as good as possible. Thus, our evaluator had to
be constructed using portable lightweight technology, which led us to Java? and
to SOAP (World Wide Web Consortium, 2003) for the networking and mobility
of our experimental distributed evaluator. The latter choice was made because
SOAP (Simple Object Access Protocol) is claimed to be a lightweight object
exchange protocol. Furthermore, SOAP is claimed to be deployable in all kinds
of network topologies (client-server, n-tier or peer-to-peer) (Snell et al., 2001).
Unfortunately this turned out to be untrue. The point of this paper lies in shar-
ing our experience with the SOAP technology and in arguing why we found
SOAP to be unsuitable in order to successfully finish our project. We explain
why SOAP is not suitable in a peer-to-peer setup with small devices without
huge amounts of memory and without fast processors.

In the following section, we explain a bit more about the mobile Pico ver-
sion in order to give the reader a good feeling of the flexibility we were after.
In section 3 we give an overview of the (sometimes hyped) arguments that led
us to the technological platform with which we tried to implement our inter-
preter. In section 4 we give a thorough overview and analysis of the problems
we encountered using this technology. Finally, section 5 concludes.

! Note that this is much more expressive than weak mobility, which is about moving
“dead” code (cfr. Java Applets).
2 We often violated the“rules of good object-oriented practice” for efficiency reasons.



2 Context

As explained our research is about new language concepts for programming
distributed and mobile systems in the context of AmI. We believe that current
distributed programming languages and middleware solutions (such as Java RMI
and CORBA) are too static to match the dynamicity encountered in open dis-
tributed environments. Therefore we designed a highly dynamic mobile object-
oriented extension of Pico as an alternative (De Meuter et al., 2003). It is not our
intent to present its features in detail, but because they influenced our design
decisions we briefly explain them in following subsections to give the reader a
basic feeling.

2.1 Remote Object Lookup

The first important aspect of our model is how objects find other objects in
the network. Given our setting (a heterogeneous, pervasive peer-to-peer envi-
ronment) we want a system to lookup objects as declaratively as possible. To
this extent, our remote object lookup is a distributed generalisation of the lobby
concept introduced in Self (Ungar and Smith, 1987). A lobby is an object that
denotes a set of processes. Fach process can register itself in a lobby and can
request other members of a lobby. This is the way a process can lookup other
processes in our model. An object is made accessible to remote processes by
publishing it under a given name:

anObject.publish("alias");

To retrieve the remote reference to the service object from processA we can
write:

remoteObject : remoteProcess.alias;

2.2 Message Passing

Once we have referenced a remote object we may want to send messages to it.
Message sending between local and remote objects happens transparently and is
handled by a variation of wait-by-necessity (Caromel, 1993). When a message is
sent to a remote object, then it is invoked asynchronously (the sender does not
block until the message has been performed). The return value of such a remote
method invocation is an awaited object. When the remote object has received
the method call and has computed the result the awaited object becomes the
real object. The sending process will only wait when the awaited object is sent
a message and has not yet become the real result. Below is an example of the
remote message passing semantics:

result = remoteService.perform(aRequest); // does not wait
remoteObj.processResult(result); // does not wait
result.operation() // waits till ’result’ is a true object



The first expression asynchronously sends the perform message to the remoteService
object and the variable result now contains an awaited object. The second
expression uses the reference to the result object as a parameter. The third
expression is a message that is sent to the result object. It is only in the last
expression that the process will block until the awaited object has become the
result that has been computed by the remoteService object.

2.3 Mobility

Issues such as partial failures and efficiency can be anticipated using object
mobility. In our language all objects understand the move message by default.
A move method can move any object graph up to a certain cut-off point to
any location. This way it is possible to both pull an object to your process
as well as to push it to another process. Strong mobility comes for free in our
language, because in Pic% the computational state of a process is first-class and
also represented as an object (which understands the move method). Below is
an example of object migration:

anObject.move(destination, pruningExpression);

The second parameter is a pruning expression that determines what part of
the object graph should migrate. Objects that are pruned away are replaced by
remote references to the objects that stayed behind on the source process.

3 Architecture and Implementation

Now that we have given a short overview of the distribution and mobility fea-
tures of Pic%, we can turn our attention to the experimental implementation
we built; the main topic of this paper. As already said, Pic% was implemented
in Java and the distribution and mobility layer of the interpreter was conceived
using SOAP. SOAP stands for Simple Object Access Protocol. It is presented
as a lightweight protocol intended for exchanging structured information in a
decentralized, distributed environment (World Wide Web Consortium, 2003).
The protocol is independent from its protocol binding. HTTP is frequently used
as protocol binding, but others such as SMTP can be used as well. The content
of a SOAP message is written in XML (World Wide Web Consortium, 2000).
A SOAP message contains one main information element, the envelope which is
divided into several information subelements. The most important subelements
are header, body and fault information elements. The header specifies the exe-
cution directives (such as transaction information) of the message. The SOAP
body element is optional and contains application specific element information
items. A SOAP fault element provides a structured way to report various errors
that ocurred while processing a message.

One of the design goals of SOAP was the ability to encapsulate and exchange
remote procedure calls (RPC). This resulted in SOAP-RPC, a set of rules that
specify how a remote procedure call must be embedded in a SOAP envelope.



Our implementation uses SOAP-RPC with HTTP as protocol binding to com-
municate between the different interpreters of our language. More information
on the structure of SOAP messages in the context of our application is given
later in this section.

The Apache Software Group developed a library called Apache-SOAP (The
Apache Software Foundation, 2001), which is considered to be a modern imple-
mentation of the SOAP specification. As said above, we used HT'TP as protocol
binding, which requires a special kind of HTTP server that supports Web Ser-
vices (often called an application server). In our experiments, we used the Tom-
cat (The Apache Software Foundation, 2003) application server . This server
is then used by the Apache-SOAP library as the communication layer for the
implementation of the Web Service. In our case, the Web Service is a wrapped
Pic% interpreter whose methods are remotely invocable. Hence, one Pic% inter-
preter can “talk SOAP-RPC” (over an HTTP binding) to a Web Service that
encapsulates another Pic% interpreter. Figure 1 identifies these different large
components that are involved in the communication of two Pic% interpreters.

Application
Server (Tomcat)

Application
Server (Tomcat)

SOAP-RPC deployed

an

Web Service
(Communication interface)

Web Service
(Communication interface

)

refers to

Pic%
Interpreter

Pic%
Interpreter

Fig. 1. Distribution Components involving SOAP

The following subsections give a more in-depth discussion of the implemen-
tation and the concrete setup of the experiment.

3.1 Implementation Choices

We wanted our language to be a medium for writing experimental, yet real
world applications. By this, we mean that experimental programs written in
Pic% should immediately work in the context of PDAs and mobile phones as
well as on traditional PC’s. Hence our choice for Java since a virtual machine
currently exists for all these platforms.



Another important issue was which networking mechanism to choose from.
Although we were no experts in the field of networked objects, we documented
ourselves on several existing techniques that were available given the Java re-
striction. Using documentation, such as a.o. (Snell et al., 2001), we made our
decision in favor of SOAP based on the following other arguments:

— Text-based protocol: Unlike most of the other available technologies (such as
Java RMI and CORBA) SOAP is text-based. This is as a matter of fact an
advantage as many of the binary protocols risk getting blocked by firewalls
that shield the several administrative domains in which most of the internet
is currently divided (Cardelli and Gordon, 1998).

— Independent of implementation language: The current implementation is
done in Java, as it is at this point the most promising platform available
for the platforms we target. Nevertheless we thought it would be an extra
benefit if we could later on write interpreters in other languages. SOAP will
allow us to communicate with interpreters written in other programming
languages. This was an important argument not to choose for Java RMI.

Independent of transport layer: Nearly all current SOAP applications use the

HTTP protocol. Nevertheless, this is not compulsory so that we can change

this to transport protocols that are more oriented towards wireless protocols

like Bluetooth or WiFi in the very near future.

— Standardized communication support: SOAP enables remote procedure calls
which are a well known concept, understood by different packages for all
types of languages (World Wide Web Consortium, 2003).

— FEaxtensible medium: Since we use XML to present our argument types, we
have a degree of flexibility which is harder to achieve using other technologies
which generate precompiled stubs.

— Simple: As the name SOAP (the ‘S’ of SOAP stands for simple) and docu-
mentation suggests (Snell et al., 2001), the usage of SOAP is claimed to be
simple.

In brief, we can say that the portability constraint led us to Java and that the
lightweight and simplicity constraints led us to SOAP. In the following sections,
we will explain how the Pic% language features explained in section 2 were
implemented using this technology.

3.2 Representing Processes

As explained in section 2 a Pic% process can be registered in a lobby, so that
it becomes accessible for other Pic% processes. In Java such a Pic% process
is represented as an instance of ProcessServer. The public interface of such a
ProcessServer consists of the set of methods making up the Web Service encap-
sulating a Pic% process. Hence, a ProcessServer class implements all methods
necessary for interprocess communication. The ProcessServer Web Service is
an object which is “deployed” on the application server through a so-called
deployment descriptor. Such deployment descriptors are XML files containing



several configuration parameters for the service such as a unique identifier, the
object’s class, the set of invocable methods and so on.

As for Apache-SOAP, it was designed in such a way that its Web Services are
indistinguishable from ‘normal’ Java classes at the source code level. This means
that one does not need to write a single line of code to promote a Java object to a
Web Service. All necessary information must be given in a deployment descriptor
and Apache-SOAP will take it from there. When a web server receives an HT'TP
POST request carrying a SOAP call, it will automatically deserialize arguments
into Java objects, call our ordinary Java method and respond by serializing the
return value of the method.

3.3 Remote Object Lookup

When the programmer accesses the public fields of a process object (like in
section 2.1 when we execute remoteProcess.alias to lookup the published
object), we construct a SOAP call to the underlying remote ProcessServer
object. The requesting process spawns a new Java Thread which is going to
perform the SOAP-RPC call. The return value is an awaited object (Caromel,
1993) that will eventually become a proxy to the requested object. This reflects
the implementation of what was described in section 2.2.

Shown below is the actual message sent by the call Thread when processB
is requesting a public object called alias residing on processA. Default SOAP
and XML namespaces are replaced by an ellipsis because the messages otherwise
become too verbose.

<?xml version=’1.0’ encoding=’UTF-8’7>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="..."
xmlns:xsi="..."

xmlns:xsd="...">

<SOAP-ENV : Body>

<nsl:getPublicObject xmlns:nsl="processA"
SOAP-ENV:encodingStyle="...">
<name xsi:type="xsd:string">alias</name>
<sender xmlns:ns2="..."
xsi:type="ns2:ProcessId">
<processId xsi:type="xsd:string">processB</processId>
<processURL xsi:type="ns2:java.net.URL">
<value xsi:type="xsd:string">URL to B</value>
</processURL>
</sender>
</nsl:getPublicObject>
</SOAP-ENV:Body>
</S0AP-ENV:Envelope>

The SOAP call contains name and sender attributes, which contain respec-
tively the alias of the remote object we want to get a reference to and the re-



questing process identification. This process is identified by a pair (name, url)
that uniquely identifies a process. The SOAP message below is the content of
the HTTP response:

<?xml version=’1.0’ encoding=’UTF-8’7>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="..."
xmlns:xsi="..."
xmlns:xsd="...">
<SOAP-ENV:Body>
<nsl:getPublicObjectResponse xmlns:nsl="processA"
SOAP-ENV:encodingStyle="...">
<return xmlns:ns2="urn:picoo.vub.ac.be"
xsi:type="ns2:RemoteObject">
<!-- serialized version of a RemoteObject -->
</return>
</nsl:getPublicObjectResponse>
</S0OAP-ENV:Body>
</SOAP-ENV:Envelope>

The method returns successfully and sends the public object to the requesting
process. Even though the serialized representation of the proxy is omitted, we
have printed the XML messages here in order to illustrate the amount of data
that is actually sent over the network.

3.4 Message Passing

Recall that our programming model specifies messages to remote objects to
be sent asynchronously, but always immediately return an awaited value which
still might have to become its actual value. Nevertheless, in the implementation
we resorted to a well-established encoding of synchronous SOAP-RPC calls. As
illustrated in the above code, for the remote object lookup this problem was
solved using a call thread. We cannot apply this scheme to implement message
passing, however, because messages sent to remote objects are not handled by the
remote process immediately. Instead, the remote process schedules such messages
in a queue and handles them whenever computing resources are available. We
therefore model asynchronicity of remote messages explicitly by using a callback
mechanism. As an example, consider the evaluation of remoteObj.m(x) from
within processA, where remoteObj represents an object on a remote process,
say processB. The evaluator on processA will first perform a SOAP-RPC call
to processB to initiate the computation of the message send, supplying a return
address as an extra argument.
processA maintains a mapping of these return addresses onto AwaitedObjects

that still have to become their real value. Thus, the return address is an identifier
for some awaited object which needs to be “replaced” by the function’s return
value when it is computed. Given this information, processB can schedule the
request in its queue. When the request is eventually evaluated, the return value
of the function needs to be sent back explicitly to the caller.



In short, message passing is made asynchronous by using two synchronous
SOAP-RPC calls, one to signal a remote method invocation, the other to return
the result.

4 Experiment Results

Throughout the development of the Pic% interpreter, we encountered several
weaknesses relating both to the concepts underlying SOAP as well as to the
specific libraries we used. This section discusses these problems. In our argument
we clearly make the distinction between problems inherent to SOAP and those
one might encounter when applying the model using contemporary technology.
The latter problems are also important since the software we used is a reflection
of the technological state of the art of the field. A developer choosing to use
SOAP can be confronted with its technical issues just as likely as its conceptual
issues.

4.1 The Client-Server model

The first problem basically boils down to the fact that SOAP is claimed to be
applicable in any distribution topology including client-server applications and
peer-to-peer. This turns out not to be the case.

Conceptual problems Usually, SOAP provides “service objects” that perform a
potentially complex operation, for relatively simple clients. This can indeed be
observed by looking at most programs that currently use SOAP. A prototypical
example of the usage of SOAP in internet environments is a web service offer-
ing the latest stock exchange information. This means there is one heavyweight
service object, containing a database of stock quotes of a given stock exchange,
updated on a regular basis. Lightweight clients can then query for the stock
quote of a company, e.g. using a company’s ticker tape symbol. Other concrete
examples include Amazon’s 3 SOAP interface for retrieving product information
and Google’s + SOAP interface for retrieving search results. In all these cases
the topology is basically client-server with heavyweight servers and lightweight
clients. This is not a coincidence. Its (essentially service-based) design, clearly
reveals that SOAP was basically designed to offer ’fat’ services that perform
tasks for ’thin’ clients rather than for a truly interoperating set of collabora-
tive entities. Such a setup, which should clearly be our aim given our context
of communicating interpreters, requires an architecture that SOAP apparently
cannot offer, despite its promising claims. After all, in our setting, SOAP forces
every Pic% interpreter to be a (heavy) web service, since each interpreter must
be able to act both as a server and as a client. This is too heavyweight a setup
for our purposes. The technology is inherently too complex in order to run on
small devices with limited computing power.

3 http://www.amazon.com/webservices
4 http://www.google.com/apis



10

Technological problems In the Apache-SOAP library, the most natural way to
write a distributed application is by using HTTP as protocol-binding. This
automatically implies a client-server architecture and that each embedded de-
vice needs to run an application server. Another possibility is to use SMTP as
protocol-binding which would worsen the situation because we would need to
run both an SMTP and a POP server.

The cost of the innate client-server architecture is further aggravated by
the fact that Java objects which act as a SOAP service must be deployed on
an application server, like Apache Tomcat. The application server runs a Web
Service, which unfolds the HTTP requests and passes them on to the SOAP
layer. Hence, before communication between two computer nodes can occur we
have to pass through three layers:

1. the application that needs to communicate (a Pic% interpreter) has to pass
communication through the web service.

2. the web service on its turn has to interact with the application server.

3. the application server has to interact with the low level communication lay-
ers, such as TCP/IP.

This need for layers immediately presents performance problems of using SOAP
in the context of lightweight mobile machines, which do not always have the com-
puting power to run an application server with deployed web services listening
for incoming HTTP requests.

4.2 XML serialization

The second problem basically boils down to the fact that XML is not very well
suited for encoding object graphs to be transported over a network.

Conceptual problems Choosing SOAP as a communication medium between
components implies using XML to encode the data being communicated. Us-
ing XML has the obvious advantage of ensuring portability across platforms and
languages. One could use a proprietary protocol and wrap this data in an XML
message, but this would nullify the reasons for using XML or even SOAP in
the first place. Converting objects to another representation for the purposes of
storing them on disk or sending them over a wire is called serialization (also
called pickling or marshalling). Using XML for this in our context implies that
we have to be able to represent any first-class value of our programming language
in XML, as any such value can be transported over a wire to another interpreter
We thus faced the problem of having to serialize any Pic% value (such as a
number, a function, an array of strings, the runtime stack, ...) to XML. This is
more problematic than one would imagine at first sight.

First, Pic% objects, like most objects in other object-oriented languages, ba-
sically consist of data fields and methods, more generally known as slots. Since
objects can contain other objects in their slots, objects and other values are
connected with each other in a graph-like manner (a so-called object graph). Of



11

course, this object graph may contain cycles, meaning there are objects point-
ing (directly or indirectly) to themselves. A serialization algorithm should be
able to cope with such cases. Unfortunately, XML is designed to describe tree
structures. Graph structures, however, are more complex and require the use
of “pointers” to avoid the duplication of graph nodes. Serializing such object
graph results in pretty complex, but — more importantly — in very large XML
files. We have experienced more than a factor 10 when going from a pointer
representation to an XML representation.

But the situation is even worse. One must make sure that, when reconstruct-
ing an object graph from the XML representation on the receiver side (called
deserializing an object), object identity is maintained. As an example, con-
sider an object o having two slots, one containing some value v1, and the other
containing a value v2. If vl == v2 before o is sent over the network, then it
should hold that v1’ == v2’, given that v1’ and v2’ are the reconstructed ver-
sions of v1 and v2. In general, any two objects pointing to the same object before
serialization should also point to the same object after deserialization. This re-
quires a complex encoding of ‘pointers’ in the XML files sent around. But apart
from the complexity it also poses some serious conceptual problems. An object
that reaches a process in two different ways should still be equal to itself. This
requires an encoding of pointers in XML that is ‘globally consistent’ over differ-
ent machines. Assuring this global consistency actually means implementing a
distributed memory management system in XML!

Technological problems The Apache SOAP library was very minimal in its sup-
port for serializing Java objects to XML. Therefore, we had to write our own
serialization algorithm capable of safely (i. e. avoiding aforementioned pitfalls)
transporting any Pic% object graph across the network.

Apache-SOAP provides standard serializers to map primitive Java types and
Arrays, Maps, Dates etc. into XML using standard SOAP encoding (see World
Wide Web Consortium (2003), section 5). It also provides the necessary deseri-
alizers to transform the XML back into the proper Java objects. However, when
(de)serializing arbitrary Java classes, things get more difficult. Apache-SOAP
provides a generic BeanSerializer capable of (de)serializing arbitrary Javabeans.
This serializer was impractical for us to use for a number of reasons:

— Our implementation classes do not adhere to the Bean model in that we
do not allow (for security reasons) all instance variables of our classes to be
accessed or changed by accessor or mutator methods, and that we do not
want to provide no-args constructors for them. Writing accessors for every
instance variable would break encapsulation of Pic% objects. In a mobile
context this kind of security breaching is totally unacceptable.

— Since we have knowledge of the structure of the classes that we serialize, a
dedicated (de)serializer would outperform the generic Bean serializer.

— Some Pic% objects require special serialization to preserve object identity.
Other objects can be singletons, requiring the deserializer to return just the
existing singleton instance instead of creating a new one.



12

Because of all these technical problems, we ended up writing a serializer capa-
ble of (de)serializing specific Pic% interpreter objects. Dedicated (de)serializers
were written for Pic% objects that required special (de)serialization needs. This
serializer maintains object identity and handles circular structures. Although
not impossible, all this code put extra burden on the machinery it is supposed
to run. This was no longer adequate in the context of the lightweight devices we
are targeting.

4.3 XML and Typing

Another issue in the transformation between object graphs and XML documents
in a statically typed language like Java are typing problems. Unfortunately,
Apache SOAP bases its serialization on static types as specified in method sig-
natures. Of course, in an object-oriented setup that uses inheritance, serialization
should logically be performed on dynamic types since one wants the ‘real’ object
to be serialized and not only the part indicated by the static (abstract) type it is
assigned at that particular moment. When Apache SOAP wants to serialize an
object, it retrieves an associated serializer for such objects based on the static
type of the variable in which it resides. We therefore explicitly had to override
framework methods to circumvent this strategy and to retrieve serializers based
on the dynamic type. This is necessary since e.g. many methods in our language
implementation operate on abstract classes. One cannot write serializers for such
abstract classes. Moreover, subclasses may require special serialization behaviour
which cannot be expressed at the level of the superclass.

4.4 Performance Issues

Last, but not least, as already suggested a few times, SOAP (and XML) suffers
from some serious performance problems.

Conceptual problems Using SOAP in our setting gives rise to two performance
bottlenecks. The first is the limited amount of bandwidth usually available for
communication between small mobile devices. To circumvent this drawback,
small-size messages and data representation are essential. But, obviously, XML is
not a very compact data description language. As already indicated, we observed
a factor 10 difference between a tree and its XML representation.

Another drawback of SOAP is that the use of XML leads to speed perfor-
mance penalties both due to the construction of XML documents and due to
parsing them back to object graphs upon reception. In the first part, a lot of
verbose information has to be written to the XML document which would not be
included in a binary serialization. Concerning the second part, parsing XML is a
costly operation. Indeed, apart from the program logic that actually deserializes
the flattened object graph, there is also a lot of parsing code active that is merely
about XML parsing. Actually, XML puts an extra ’parsing indirection’ between
the object graph representation and its flattened representation. The point here
is that SOAP’s use of XML implies generality and thus a larger overhead in



13

parsing. This imposes a significant performance bottleneck on SOAP message
reception. Thus, binary protocols outperform XML not only in size but also in
speed. Lightweight devices like cellular phones will probably not be able to cope
with such costly operations when large object-graphs are transmitted.

Technological problems Apart from these conceptual problems presented ab-
stractly, we can shed some light on the concrete difficulties we encountered in
our implementation. In the following, we show that the size and overhead asso-
ciated with the XML representation of Pic% objects is really substantial.
When transmitting Pic% values, every node in the XML structure requires:

— an xsi:type element denoting the dynamic Java type of the serialized ob-
ject, qualified by an XML namespace denoting the encoding style used.

— a picoold element uniquely identifies a given XML part. It acts as an address
to which one can refer later on in the XML document in the case of multiple
references. This was already explained in section 4.2.

The following XML excerpt shows part(!) of a SOAP body, representing a
serialized version of the Pic% function f() :void. This is about the simplest
function we can write in Pic% as it is a function without arguments that always
returns the void value, Pic%’s null-value. The generated XML is incredibly
verbose:

<argument xsi:type="ns2:edu.vub.picoo.grammar.AGFunction">
<_picoolId_ id="1"/>
<name_ xsi:type="ns2:edu.vub.picoo.grammar.AGText">
<_picoold_ id="2"/>
<text xsi:type="xsd:string">f</text>
</name>
<parameters xsi:type="ns2:edu.vub.picoo.grammar.AGTable">
<_picoold_ id="3"/>
<table xmlns:ns3="http://schemas.xmlsoap.org/soap/encoding/"
xsi:type="ns3:Array"

ns3:arrayType="ns2:edu.vub.picoo.grammar.PicoValue[0]">

</table>
</parameters>
<body xsi:type="ns2:edu.vub.picoo.grammar.AGVoid">
<_picoold_ id="4"/>
</body>
</argument>

Although we have not performed any scientifically founded measurements,
one has to admit that the amount of data actually transmitted is tremendous
compared to the simplicity of the Pic% function. As good as all experiments we
conducted seem to indicate that, in general, an XML representation is at least
10 times bigger than the corresponding binary representation.



14

5 Conclusion

The long term goal of our research is to design small and conceptually clean pro-
gramming language features that are dedicated to the construction of distributed
and strong mobile systems in the context of Ambient Intelligence. Having estab-
lished an initial design of a language, our experimental vision on language design
demanded us to construct an experimental interpreter for it as soon as possible.
Even though we were willing to make some performance sacrifices as a trade-off
for portability and simplicity, we wanted our implementation to be really usable
on small mobile devices. Although we do not claim to be experts in middleware
technology, the available (commercial) literature led us to using Java and SOAP.
Unfortunately, SOAP did not prove to be suitable in this context due to its in-
herent client-server architecture which requires deploying program classes on a
separate web server, and due to the inherent weaknesses of XML when it comes
to performance and expressivity. In the context of our restrictions we cannot
help but conclude that SOAP is not only a simple but also a simplistic object
access protocol.

References

Abelson, H. and Sussman, G. J. (1985). Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA.

Cardelli, L. and Gordon, A. D. (1998). Mobile ambients. In Foundations of Software
Science and Computation Structures: First International Conference, FOSSACS
’98. Springer-Verlag, Berlin Germany.

Caromel, D. (1993). Toward a method of object-oriented concurrent programming.
Communications of the ACM, 36(9):90-102.

De Meuter, W., D’Hondt, T., and Dedecker, J. (2003). Intersecting classes and proto-
types. In Proceedings of PSI-Conference. Springer-Verlag.

D’Hondt, T. (1996). The pico programming language project. http://pico.vub.ac.be.

ISTAG (2003). Ambient intelligence: from vision to reality. Draft report.

Snell, J., Tidwell, D., and Kulchenko, P. (2001). Programming Web Services with
SOAP. O'Reilly.

The Apache Software Foundation (1999-2003). The tomcat 5 servlet/jsp container.
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/index.html.

The Apache Software Foundation (2001). Apache soap v2.3.1 documentation. http:
//ws.apache.org/soap/docs.

Ungar, D. and Smith, R. B. (1987). Self: The power of simplicity. In Conference
proceedings on Object-oriented programming systems, languages and applications,
pages 227-242. ACM Press.

Van Belle, W. and D’Hondt, T. (2000). Agent mobility and reification of computa-
tional state, an experiment in migration, in: Infrastructure for agents, multi-agent
system, and scalable multi-agent systems. Springer Verlag Lecture Notes in Artifi-
cial Intelligence nr. 1887.

World Wide Web Consortium (2000). Extensible markup language (xml) 1.0 (second
edition). http://www.w3.org/TR/REC-xml.

World Wide Web Consortium (2003). Simple object access protocol (soap) 1.2 w3c
note. http://www.w3.org/TR/SOAP/.



