Enabling Dynamic Software Evolution
through Automatic Refactoring

Peter Ebraert Theo D’Hondt Tom Mens
Programming Technology Lab Programming Technology Lab University of Mons-Hainaut
Vrije Universiteit Brussel Vrije Universiteit Brussel Avenue du Champ de Mars 6
Pleinlaan 2, B-1050 Brussel, Belgium Pleinlaan 2, B-1050 Brussel, Belgium B-7000 Mons, Belgium
Email: pebraert@vub.ac.be Email: tidhondt@vub.ac.be Email:tom.mens@umbh.ac.be

~ Abstract—Many software systems must always stay opera- behavior of the software that is being executed. To thisrgxte
tional, and cannot be shutdown in order to adapt them to e need a software system that has full reflective capagsiliti
new requirements. For such systems, dynamic software evdlan _According to Pattie Maes [2], reflection is the ability of a

techniques are needed. In this paper we show how we can exgloi ¢ inulat dat thing that i fi
automated refactorings to improve a software the component program o manipulate as data, something that Is repregenti

structure of a software system while the system is running the state of the program during its own execution.

in order to facilitate future evolutions. We report on some A reflective system is able to reason about itself by the
experiments we performed in Smalltalk to achieve this goal. use ofmetacomputations computations about computations.

For permitting that, such a system is composed out of two
levels: the base level housing the base computations and

People always say that you should never change a systgi®metalevel housing the metacomputations. Both levels are
that is working fine. However, even if a software system seersaid to becausally connectedThis means that, from the
to work properly from a user’s point of view, it may be diffitul base level point of view, the application has access to its
to maintain or adapt from a developer’s point of view. As suchepresentation at the metalevel and that, from the metaleve
it may be very cumbersome to evolve the system by addipgint of view, a change of the representation will affeceritir
a new feature, fixing a bug or porting the system to a nease computations.
environment. Because the focus of this paper is on refactorings, we céstri

In all these situations where a software system is not flexitdurselves to class-based object-oriented languages.cObje
enough to allow for a certain change, the techniqusofivare oriented languages like Java are excluded because of the
refactoringcan be used. According to Fowler [1], a refactoringmitations of their reflective capabilities. Smalltalkn dhe
is “a change made to the internal structure of software toema#ither hand, is fully reflective: everything is an object, and
it easier to understand and cheaper to modify without clmangican thus be taken apart, queried for information and passibl
its observable behaviour.” Refactorings can be used tol#imp be modified. Even messages are objects, and can thus be
the structure of a software system in order to prepare it fomaonitored and modified when they are sent or received [3].
certain evolution step.

Now suppose we have a running system, and we would like
to evolve it without shutting it down. This is a much biggeA. Terminology
challenge since there are considerably more constraintiseon In order to provide a sound basis for starting a discussion
running system. Refactoring techniques would be very iseth how we plan to do dynamic evolution, we first need to
here too. For example, by reducing the coupling betweestablish a common vocabulary that will be used throughout
components in a running system, we could at the same tigs paper.
increase the system performance (from a user point of view)software systemis assumed to consist of a set of processing
and its understandibility and evolvability (from a devedop components with directed connections indicating the commu
point of view). nication that occurs between the components.

Until now, refactorings have only been investigated in th& component is a processing entity that can request and
context of source code restructuring. The main contriloutigprovide services. In class-based OO languages, components
of this paper is to show the use and feasibility of applyingypically consist of interrelated classes, which are comimu
dynamic refactoringsi.e., refactorings that modify a runningcating through message passing.
system. A connectionis a directed communication from one compo-
nent - theinitiator of the communication to another compo-
nent - therecipient This connection contains all important

In order to be able to apply refactorings to a running systemmessages sent between the classes contained in the mitiato
we need to be able to dynamically modify the structure armbmponent and the recipient component. Connections itedica

I. INTRODUCTION

IIl. PROPOSED SOLUTION

Il. EXPERIMENTAL SETUP

i @Fﬁj % ooooo \ﬁ%
cﬁfb % S
o k)
Base Ba: ntities

M Port Provided Interface { Required Interface |:> Connection
Fig. 2. Runtime evolvability by means of a two layered awttitre: inter-
Fig. 1. A base level application architecture component communications (left) are indirected to the toor{right).
that the component might initiate transactions. class in another cluster, will be captured in connections.

A transaction is an exchange of information, by means
of message sends, between two and only two componefits, The dynamic evolution framework
initiated by one of the components. Transactions are theln [5], [6] we presented a first version of an evolution frame-
means by which the state of a component is affected by otlvesrk [7]. It shows how we apply a two-layered architecture to
connected components in the system. Transactions corisisaliow the modification of the behavior of running applicaso
a sequence of one or more message exchanges betweerFtredoing so, we instrument the base-level application with
two connected components. It is assumed that transactiea#is to a metalevel monitor at every point where commu-
complete in bounded time and that the initiator of a trarisact nication between components occurs. During execution, the
is aware of its completion. The completion of transactions eonitor passes control to the concerned components (fellow
the initiator is required to ensure correct termination leé t ing the metalevel representation of the application), mgki
change management protocol that will be described later. its presence unnoticeable. This is illustrated in figure 2.
Figure 1 introduces the notation that we use to show whatln order to evolve the application, the user has to change
the structure of a base-level software system looks like. the application’s representation in the monitor. To thaesg
this notation, the system is represented as a directed graptuntime API is included so that on-line interaction witle th
of components and connections. The big edge in the direct@dnitor becomes possible. The functionalities of the ARI in
graph represent a connection between two components. clude the addition, the removal and the modification of syste
i) components, and their relations. Each of these operatiaves h
B. Detecting the dynamic component structure their pre-conditions, which have to hold before the operati
Most of the time, we do not know the dynamic comis actually carried out by the framework [8]. When modifying
ponent structure of an application described as a directaad existing component, problems could rise concerninge stat
graph of nodes (components) and edges (connections), taimsistency [9].
instead we only have the source code of the application. The
dynamic component structure reflects the way objects needdo
be grouped into components based on their communicatioril) Detecting possible refactoringsin order to decide
patterns. To increase cohesion and reduce coupling betwadrich part of the code needs to be refactored to facilitate
components, objects that exchange many messages betwatne evolutions, we use the information obtained from the
one another should be clustered into the same componentmonitoring application to verify at regular time intervals
In order to detect which objects can be clustered togethetether the current component structure should be modified.
static source code analysis does not suffice. First of alticst It this happens to be the case, the proper refactorings will b
analysis only provides an approximation of the possible ruauggested to be applied with our without user interaction.
time behaviour. Second, since we reason about objectteden 2) Change Management ProtocoRn evolution or refac-
code, we need to take into account dynamic information sutidring typically replaces a set of componefts, Cs, Cs, ...
as late binding and polymorphism. Third, since Smalltali is by their new versiong’;, C}, Cj,... We use the notatioAC;
dynamically typed programming language, we need to do tat denote the difference betweé€r and C;. In this section,
least some amount of dynamic type inferencing. we first define a set of atomic stepchange transactions
Therefore, we decided to resort to a dynamic analysis tifat can be used to compufeC in an automated way.
the program. We use statistical information that we obtgin b In object-oriented programs, components typically cdnsis
monitoring execution traces of the application at runtifiteis of some related objects, that on their turn consist of irtan
can be achieved by using a two-level architecture. While tivariables and methods. Most of the relations between the
application is running normally at the base level, a momr objects are caught in the methods and instance variables.
application will be located at the metalevel. Such applicet This is why our meta-object protocol currently implements
already exist [4], but do not meet all our needs. That is wttiie following set of atomic change transactions. (In theirfeit
we developed our own monitoring application that collents i we intend to extend this set to cover a more realistic set of
formation on running applications. That information isdise applications.)
cluster classes that are very related together into commqgenechaName Changes the name of a class.
The messages that go from a class in a certain cluster t@addMethod Adds a method to a class. As a result, all

Dynamic refactoring and evolution

objects that are instance of this class will automaticallyr instance variable is in emovablestate if it is not called
understand this new method thanks to Smalltalk’'s methasiymore. For modifying methods or instance variables, we
lookup mechanism. need to make sure that the components that use them, are
remMethod Removes a method from a class. As a result, aleactivated, so that no inconsistencies are introducedewhi
instances of this class may no longer understand this methodanging the component. So we can say that instance vegiable
Hence, one should be very careful with this operation asdt methods are in anodifiablestate, if they cannot be called
can give rise to runtime exceptions. We will explain how tevhile the evolution is occurring. Adding a method or instanc
deal with this later in this section. variable does not have any precondition, so we say that the
chaMethod Modifies the implementation of a method in grecondition for adding always holds true.
class. Again, this will have an impact on all objects that are When the backtracking algorithm finishes, it outputs the bes
instance of this class or one of its subclasses. set of atomic transactions that can be followed in order itmgor
addinstVar Adds an instance variable to a class. As a resulf; to C’. Note that it is guaranteed that a valid path will be
all objects that are instance of this class have a new varialbund asC' and C’ are both composed of objects that are in
they can use to store values. By default, the value will be géeir turn composed of methods and instance variables.elin th
tonil. worst case, all methods and instance variables of all abjact
reminstVar Remove an instance variable from a class. C can be removed, and the methods and instance variables of
chaSuperChanges the parent of a class. This will change tla objects inC’ then added. From the moment the best path
inheritance hierarchy, and as a result the methods that asmyound, the change transaction set is established.
object of this class, or of any of its children, can underdtan 3) Managing consistencylnformally, we can say that a
deactivate Deactivates a component — all the classes amdnsistent application state is a state from which the syste
instances it contains — to make sure that no transaction wiin continue processing normally rather than progressing
occur in the component. When a component is deactivatédwards an error state. A system is viewed as moving from
all transactions are put in a waiting list. one consistent state to the next, as the transaction pingess
activate Allows the component — all the classes and instancesntinues. In fact, application transactions modify tretesf
it contains — to resume its execution. All waiting transaiesi the application, and, while in progress, have transieriesta
will be processed upon activation. distributed in the system. While transactions are in pregjre
the internal states of nodes may be mutually inconsistemt. S
By monitoring the users’ actions when evolving on offlineve should also avoid the loss of application transactiorts an
copy of C' to C’, we can automatically obtaiC'. Afterwards, make sure that we achieve a consistent state after carrying
the operations that need to be performed, in order to comphrough a change. This consistent state requires thatighace
with possible preconditions of certain actions, are iregkih communication in progress between the affected components
order to obtain thehange transaction sequendke sequence nor with their environment.
of all atomic change steps. That sequence is then used téor making sure that no communication is occurring while
evolve the onlineC to C”. a certain component is being modified, we introduce the
The main benefits of this approach are the preservationaifncept opdeactivatedcomponents. Such components will
the state and object identity, as we will keep on working an tlgueue all incoming transaction requests, and carry them out
same (already existing) componetit Replacing an entity C whenever they gedctivated The evolution framework that we
would involve the creation of”, the swapping of all relations proposed in section IlI-C, offers the functionality of aetiing
from C to C’, the deletion ofC and the mapping of the and deactivating system components. Note that the current
state fromC to C’. Evolving the existingC' component to implementation goes out from an asynchronous messaging
C’ only involves the creation af’ and the propagation of the system, and that transactions that are queued, will noegihc
changes o'. This implies that there will be no more relationSuch an approach will make sure that consistency is presgerve
swapping problems and less state mapping problems. but will also make the entire application stop, unless it is
A second benefit is the possibility to test the new versiateveloped in a distributed way (with multiple threads). In
of the component offline. In order to validat®, we need class-based systems, deactivating a component meansehat w
to perform some tests. First we need to perfaamponent will deactivate all its class and all living instances ofttbass
testing (testing the internal behavior of the component), arahd bring them in a modifiable state.
then we need to dsystem testinffesting the external behavior 4) Carrying out refactorings and evolutionsErom the
of the component - its relation with the other components).moment we have the change transaction sequence, we can
Every one of the atomic change transactions has some sptart implementing these changes on the running system. In
cific requirements that need to comply before the transactithis phase, the atomic changes of the transaction set will be
can be carried out. For instance, we cannot remove a certamplemented in the system one by one. While most of them
methodm that is still called somewhere. So before removingan be done transparently, some may require the prograsmer’
m, the methods in whichn is called, must be modified sointerference. This is the case when there is a state invplved
that they do not calln anymore. For including these pre-that needs to be preserved. Concretely, when an instance
conditions in the rules, we have to introduce states. A ntethweariable is deleted or modified, the question arises whatdas

c3 o J
—TT— ot
Gi o2 7 Tfooms
1) Dsoeandray ool &) otAndray oo
0.1 gonk for:from:till: e—t
— — 8 —T—. 2)
—TT— ./ Agency / —TT— ;
\ b D
planHolliday from:i lanHollidayFor from N planHoliday from:til” [PlanHolidayFor from:tir T .
ClientName Room ClientName
roomNr name roomNr

checkin
checkout

price

Fig. 3. The original architecture of the travel example;vting 1 interface. Fig. 4. The adapted architecture of the travel example;iginy 3 interfaces.

happen with the value of that instance variable. Either tieey the system anymore and the evolution gets carried out yotall
can be ignored, or its is needed later in a new instance VariaButomatic. The resulting architecture can be seen in figure 4
that will be added. Consequently, when an instance variable
is added, the programmer is also requested to interfere, and
to tell wether the variable should be initialized with a egrt I some cases, software systems can not be turned off
value. For example, using Euros instead of Belgian Francsff{ carrying out an evolution. This triggers the need for a
our bank accounts requires us to use the following formuli@mework that supports dynamic evolution. We suggested to
'take the old value and multiply it by 40,3399, and use it a@PPly dynamic refactorings to improve the runtime compaénen
the new value'. structure of object-oriented software systems. The ambroa

For methods in class-based systems, things are much sii@s on the reflective properties of the underlying prograngm
pler. Because methods are only referenced through the cli@guage in order to modify the application’s behavior.

V. CONCLUSION

itself, adapting them on the class level does the job. Our framework uses a monitor at meta-level that keeps
track of the base-level application. This monitor detebis t
IV. EXAMPLE dynamic architecture of the application by collectingistital

We validate our approach by working out the simple exnformation about the messages sent between objects. This
ample that we shortly introduced above. In that example vigformation is used to determine the dynamic software archi
have a software system with clients, travel agencies argljottecture in terms of components and connections. Whenever
as the basic components (figure 3). When a certain clighis structure changes, dynamic refactorings can be trighe
wants to go on a holiday, he contacts an agency he knoWg.evolve the component structure at runtime.

That agency can then book a room in a hotel, by using theCurrently, we are in the process of implementing the above
bookAndPay : for : from: till : interface that is provided framework in Smalltalk. The framework allows the addition,
by the Hotel component. This service makes sure a roomrgmoval, or modification of base-level components while the
booked and payed for. system is running. The framework provides facilities tabst

Imagine that, at a certain time, we might want to allodish atomic change sequences, manage consistency, preserv
reservations that are not payed at the same time than makdgect identity and state, and apply dynamic refactorings a
reservations. For adding that functionality to the syster@iyolutions.
we need to split up théookAndPay : for : from: till:
service in two different servicesvook and pay. For not

; ot ; ; ; 1] M. Fowler, Refactoring: Improving the Design of Existing Code
affecting existing agencies, that still might want to use tH Addison-Wesley, 1999,

bo_okAndPay. :for: from: till: service, that SerVice. MUSt[2] p. Maes, “Computational reflection,” Ph.D. dissertatidrtificial Intelli-
still be provided by the Hotel component. For not having code gence Laboratory, Vrije Universiteit Brussel, 1987.

inati ; i i [3] S. L. Messick and K. L. Beck, “Active variables in smalk#80,” in
dupllcatlon, that service will invoke the book and pay seevi Technical Report CR-85-09 Computer Research Lab, Tektronix, 1985.

REFERENCES

in its time, as we can see in figure 4. [4] R. Wuyts, “Smallbrother - the big brother for smalltalk,

Université Libre de Bruxelles, Tech. Rep., 2000. [Onlin&yailable:

Place | Atomic change| Parameters http://homepages.ulb.ac.be/ rowuyts/SmallBrothdginhtml

C3 deactivate [5] P. Ebraert and E. Tanter, “A concern-based approach namiyc software

C3> Hotel | chaMethod "bookAndPay:for:from:till:"[meth.Body] evolution,” in The proceedings of the Dynamic Aspects Workshop in

C3> Hotel | addMethod "book:for:from:till” [meth.Body] conjunction with AOSPLancaster, UK, march 2004.

C3> Hotel | addMethod pay:” [met.Body] [6] P. Ebraert and T. Tourwe, “A reflective approach to dyramsoftware

C3 activate evolution,” in The proceedings of the Workshop on Reflection, AOP and
Meta-Data for Software Evolution in conjunction with ECOO®slo,

TABLE | Norway, June 2004.

[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and ReSBkiste,
“Rainbow: Architecture-based self-adaptation with réasainfrastruc-
ture,” IEEE Computer Societyol. 37, no. 10, pp. 4654, october 2004.

Table | shows the atomic changes that are needed f8irJ. Kramer and J. Magee, “The evolving philosophers pwbl Dy-
performing this evolution. This specification is passedrte t namic change managemengEE Transactions on Software Engineering
. vol. 16, no. 11, pp. 1293-1306, November 1990.

Evolution Framework, that handles all those steps, and thgg v. vandewoude and V. Berbers, “Fresco: Flexible andaigé evolution

carries out the evolution. As, in this case, there is no state system for components,” iftlectronic Notes in Theoretical Computer

modification involved, the user won't have to interact with —Science2004.

THE ATOMIC CHANGE SET FOR METHOD EXTRACTION

