
Enabling Dynamic Software Evolution
through Automatic Refactoring

Peter Ebraert
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussel, Belgium

Email: pebraert@vub.ac.be

Theo D’Hondt
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2, B-1050 Brussel, Belgium

Email: tjdhondt@vub.ac.be

Tom Mens
University of Mons-Hainaut

Avenue du Champ de Mars 6
B-7000 Mons, Belgium

Email:tom.mens@umh.ac.be

Abstract— Many software systems must always stay opera-
tional, and cannot be shutdown in order to adapt them to
new requirements. For such systems, dynamic software evolution
techniques are needed. In this paper we show how we can exploit
automated refactorings to improve a software the component
structure of a software system while the system is running
in order to facilitate future evolutions. We report on some
experiments we performed in Smalltalk to achieve this goal.

I. I NTRODUCTION

People always say that you should never change a system
that is working fine. However, even if a software system seems
to work properly from a user’s point of view, it may be difficult
to maintain or adapt from a developer’s point of view. As such,
it may be very cumbersome to evolve the system by adding
a new feature, fixing a bug or porting the system to a new
environment.

In all these situations where a software system is not flexible
enough to allow for a certain change, the technique ofsoftware
refactoringcan be used. According to Fowler [1], a refactoring
is “a change made to the internal structure of software to make
it easier to understand and cheaper to modify without changing
its observable behaviour.” Refactorings can be used to simplify
the structure of a software system in order to prepare it for a
certain evolution step.

Now suppose we have a running system, and we would like
to evolve it without shutting it down. This is a much bigger
challenge since there are considerably more constraints onthe
running system. Refactoring techniques would be very useful
here too. For example, by reducing the coupling between
components in a running system, we could at the same time
increase the system performance (from a user point of view)
and its understandibility and evolvability (from a developer
point of view).

Until now, refactorings have only been investigated in the
context of source code restructuring. The main contribution
of this paper is to show the use and feasibility of applying
dynamic refactorings, i.e., refactorings that modify a running
system.

II. EXPERIMENTAL SETUP

In order to be able to apply refactorings to a running system,
we need to be able to dynamically modify the structure and

behavior of the software that is being executed. To this extent
we need a software system that has full reflective capabilities.
According to Pattie Maes [2], reflection is the ability of a
program to manipulate as data, something that is representing
the state of the program during its own execution.

A reflective system is able to reason about itself by the
use ofmetacomputations– computations about computations.
For permitting that, such a system is composed out of two
levels: the base level, housing the base computations and
the metalevel, housing the metacomputations. Both levels are
said to becausally connected. This means that, from the
base level point of view, the application has access to its
representation at the metalevel and that, from the metalevel
point of view, a change of the representation will affect ulterior
base computations.

Because the focus of this paper is on refactorings, we restrict
ourselves to class-based object-oriented languages. Object-
oriented languages like Java are excluded because of the
limitations of their reflective capabilities. Smalltalk, on the
other hand, is fully reflective: everything is an object, and
can thus be taken apart, queried for information and possibly
be modified. Even messages are objects, and can thus be
monitored and modified when they are sent or received [3].

III. PROPOSED SOLUTION

A. Terminology

In order to provide a sound basis for starting a discussion
on how we plan to do dynamic evolution, we first need to
establish a common vocabulary that will be used throughout
this paper.
A software systemis assumed to consist of a set of processing
components with directed connections indicating the commu-
nication that occurs between the components.
A component is a processing entity that can request and
provide services. In class-based OO languages, components
typically consist of interrelated classes, which are communi-
cating through message passing.
A connection is a directed communication from one compo-
nent - theinitiator of the communication to another compo-
nent - therecipient. This connection contains all important
messages sent between the classes contained in the initiator
component and the recipient component. Connections indicate



Fig. 1. A base level application architecture

that the component might initiate transactions.
A transaction is an exchange of information, by means
of message sends, between two and only two components,
initiated by one of the components. Transactions are the
means by which the state of a component is affected by other
connected components in the system. Transactions consist of
a sequence of one or more message exchanges between the
two connected components. It is assumed that transactions
complete in bounded time and that the initiator of a transaction
is aware of its completion. The completion of transactions at
the initiator is required to ensure correct termination of the
change management protocol that will be described later.

Figure 1 introduces the notation that we use to show what
the structure of a base-level software system looks like. In
this notation, the system is represented as a directed graph
of components and connections. The big edge in the directed
graph represent a connection between two components.

B. Detecting the dynamic component structure

Most of the time, we do not know the dynamic com-
ponent structure of an application described as a directed
graph of nodes (components) and edges (connections), but
instead we only have the source code of the application. The
dynamic component structure reflects the way objects need to
be grouped into components based on their communication
patterns. To increase cohesion and reduce coupling between
components, objects that exchange many messages between
one another should be clustered into the same component.

In order to detect which objects can be clustered together,
static source code analysis does not suffice. First of all, static
analysis only provides an approximation of the possible run-
time behaviour. Second, since we reason about object-oriented
code, we need to take into account dynamic information such
as late binding and polymorphism. Third, since Smalltalk isa
dynamically typed programming language, we need to do at
least some amount of dynamic type inferencing.

Therefore, we decided to resort to a dynamic analysis of
the program. We use statistical information that we obtain by
monitoring execution traces of the application at runtime.This
can be achieved by using a two-level architecture. While the
application is running normally at the base level, a monitoring
application will be located at the metalevel. Such applications
already exist [4], but do not meet all our needs. That is why
we developed our own monitoring application that collects in-
formation on running applications. That information is used to
cluster classes that are very related together into components.
The messages that go from a class in a certain cluster to a

Fig. 2. Runtime evolvability by means of a two layered architecture: inter-
component communications (left) are indirected to the monitor (right).

class in another cluster, will be captured in connections.

C. The dynamic evolution framework

In [5], [6] we presented a first version of an evolution frame-
work [7]. It shows how we apply a two-layered architecture to
allow the modification of the behavior of running applications.
For doing so, we instrument the base-level application with
calls to a metalevel monitor at every point where commu-
nication between components occurs. During execution, the
monitor passes control to the concerned components (follow-
ing the metalevel representation of the application), making
its presence unnoticeable. This is illustrated in figure 2.

In order to evolve the application, the user has to change
the application’s representation in the monitor. To that extent,
a runtime API is included so that on-line interaction with the
monitor becomes possible. The functionalities of the API in-
clude the addition, the removal and the modification of system
components, and their relations. Each of these operations have
their pre-conditions, which have to hold before the operation
is actually carried out by the framework [8]. When modifying
an existing component, problems could rise concerning state
consistency [9].

D. Dynamic refactoring and evolution

1) Detecting possible refactorings:In order to decide
which part of the code needs to be refactored to facilitate
future evolutions, we use the information obtained from the
monitoring application to verify at regular time intervals
whether the current component structure should be modified.
It this happens to be the case, the proper refactorings will be
suggested to be applied with our without user interaction.

2) Change Management Protocol:An evolution or refac-
toring typically replaces a set of componentsC1, C2, C3, ...
by their new versionsC′

1
, C′

2
, C′

3
,... We use the notation∆Ci

to denote the difference betweenCi and C′

i
. In this section,

we first define a set of atomic steps -change transactions-
that can be used to compute∆C in an automated way.

In object-oriented programs, components typically consist
of some related objects, that on their turn consist of instance
variables and methods. Most of the relations between the
objects are caught in the methods and instance variables.
This is why our meta-object protocol currently implements
the following set of atomic change transactions. (In the future
we intend to extend this set to cover a more realistic set of
applications.)
chaNameChanges the name of a class.
addMethod Adds a method to a class. As a result, all



objects that are instance of this class will automatically
understand this new method thanks to Smalltalk’s method
lookup mechanism.
remMethod Removes a method from a class. As a result, all
instances of this class may no longer understand this method.
Hence, one should be very careful with this operation as it
can give rise to runtime exceptions. We will explain how to
deal with this later in this section.
chaMethod Modifies the implementation of a method in a
class. Again, this will have an impact on all objects that are
instance of this class or one of its subclasses.
addInstVar Adds an instance variable to a class. As a result,
all objects that are instance of this class have a new variable
they can use to store values. By default, the value will be set
to nil.
remInstVar Remove an instance variable from a class.
chaSuperChanges the parent of a class. This will change the
inheritance hierarchy, and as a result the methods that any
object of this class, or of any of its children, can understand.
deactivate Deactivates a component – all the classes and
instances it contains – to make sure that no transaction will
occur in the component. When a component is deactivated,
all transactions are put in a waiting list.
activate Allows the component – all the classes and instances
it contains – to resume its execution. All waiting transactions
will be processed upon activation.

By monitoring the users’ actions when evolving on offline
copy ofC to C′, we can automatically obtain∆C. Afterwards,
the operations that need to be performed, in order to comply
with possible preconditions of certain actions, are inserted in
order to obtain thechange transaction sequence; the sequence
of all atomic change steps. That sequence is then used to
evolve the onlineC to C

′.
The main benefits of this approach are the preservation of

the state and object identity, as we will keep on working on the
same (already existing) componentC. Replacing an entity C
would involve the creation ofC′, the swapping of all relations
from C to C′, the deletion ofC and the mapping of the
state fromC to C′. Evolving the existingC component to
C′ only involves the creation ofC′ and the propagation of the
changes onC. This implies that there will be no more relation
swapping problems and less state mapping problems.

A second benefit is the possibility to test the new version
of the component offline. In order to validateC′, we need
to perform some tests. First we need to performcomponent
testing (testing the internal behavior of the component), and
then we need to dosystem testing(testing the external behavior
of the component - its relation with the other components).

Every one of the atomic change transactions has some spe-
cific requirements that need to comply before the transaction
can be carried out. For instance, we cannot remove a certain
methodm that is still called somewhere. So before removing
m, the methods in whichm is called, must be modified so
that they do not callm anymore. For including these pre-
conditions in the rules, we have to introduce states. A method

or instance variable is in aremovablestate if it is not called
anymore. For modifying methods or instance variables, we
need to make sure that the components that use them, are
deactivated, so that no inconsistencies are introduced while
changing the component. So we can say that instance variables
or methods are in amodifiablestate, if they cannot be called
while the evolution is occurring. Adding a method or instance
variable does not have any precondition, so we say that the
precondition for adding always holds true.

When the backtracking algorithm finishes, it outputs the best
set of atomic transactions that can be followed in order to bring
C to C′. Note that it is guaranteed that a valid path will be
found asC andC′ are both composed of objects that are in
their turn composed of methods and instance variables. In the
worst case, all methods and instance variables of all objects in
C can be removed, and the methods and instance variables of
all objects inC′ then added. From the moment the best path
is found, the change transaction set is established.

3) Managing consistency:Informally, we can say that a
consistent application state is a state from which the system
can continue processing normally rather than progressing
towards an error state. A system is viewed as moving from
one consistent state to the next, as the transaction processing
continues. In fact, application transactions modify the state of
the application, and, while in progress, have transient state
distributed in the system. While transactions are in progress,
the internal states of nodes may be mutually inconsistent. So
we should also avoid the loss of application transactions and
make sure that we achieve a consistent state after carrying
through a change. This consistent state requires that thereis no
communication in progress between the affected components
nor with their environment.

For making sure that no communication is occurring while
a certain component is being modified, we introduce the
concept opdeactivatedcomponents. Such components will
queue all incoming transaction requests, and carry them out
whenever they getactivated. The evolution framework that we
proposed in section III-C, offers the functionality of activating
and deactivating system components. Note that the current
implementation goes out from an asynchronous messaging
system, and that transactions that are queued, will not proceed.
Such an approach will make sure that consistency is preserved,
but will also make the entire application stop, unless it is
developed in a distributed way (with multiple threads). In
class-based systems, deactivating a component means that we
will deactivate all its class and all living instances of that class
and bring them in a modifiable state.

4) Carrying out refactorings and evolutions:From the
moment we have the change transaction sequence, we can
start implementing these changes on the running system. In
this phase, the atomic changes of the transaction set will be
implemented in the system one by one. While most of them
can be done transparently, some may require the programmer’s
interference. This is the case when there is a state involved,
that needs to be preserved. Concretely, when an instance
variable is deleted or modified, the question arises what hasto



Fig. 3. The original architecture of the travel example; providing 1 interface.

happen with the value of that instance variable. Either the value
can be ignored, or its is needed later in a new instance variable
that will be added. Consequently, when an instance variable
is added, the programmer is also requested to interfere, and
to tell wether the variable should be initialized with a certain
value. For example, using Euros instead of Belgian Francs in
our bank accounts requires us to use the following formula:
’take the old value and multiply it by 40,3399, and use it as
the new value’.

For methods in class-based systems, things are much sim-
pler. Because methods are only referenced through the class
itself, adapting them on the class level does the job.

IV. EXAMPLE

We validate our approach by working out the simple ex-
ample that we shortly introduced above. In that example we
have a software system with clients, travel agencies and hotels,
as the basic components (figure 3). When a certain client
wants to go on a holiday, he contacts an agency he knows.
That agency can then book a room in a hotel, by using the
bookAndPay : for : from : till : interface that is provided
by the Hotel component. This service makes sure a room is
booked and payed for.

Imagine that, at a certain time, we might want to allow
reservations that are not payed at the same time than making
reservations. For adding that functionality to the system,
we need to split up thebookAndPay : for : from : till :

service in two different services:book and pay. For not
affecting existing agencies, that still might want to use the
bookAndPay : for : from : till : service, that service must
still be provided by the Hotel component. For not having code
duplication, that service will invoke the book and pay service
in its time, as we can see in figure 4.

Place Atomic change Parameters
C3 deactivate
C3> Hotel chaMethod ”bookAndPay:for:from:till:”[meth.Body]
C3> Hotel addMethod ”book:for:from:till” [meth.Body]
C3> Hotel addMethod ”pay:” [met.Body]
C3 activate

TABLE I

THE ATOMIC CHANGE SET FOR METHOD EXTRACTION

Table I shows the atomic changes that are needed for
performing this evolution. This specification is passed to the
Evolution Framework, that handles all those steps, and thus
carries out the evolution. As, in this case, there is no state
modification involved, the user won’t have to interact with

Fig. 4. The adapted architecture of the travel example; providing 3 interfaces.

the system anymore and the evolution gets carried out totally
automatic. The resulting architecture can be seen in figure 4.

V. CONCLUSION

In some cases, software systems can not be turned off
for carrying out an evolution. This triggers the need for a
framework that supports dynamic evolution. We suggested to
apply dynamic refactorings to improve the runtime component
structure of object-oriented software systems. The approach re-
lies on the reflective properties of the underlying programming
language in order to modify the application’s behavior.

Our framework uses a monitor at meta-level that keeps
track of the base-level application. This monitor detects the
dynamic architecture of the application by collecting statistical
information about the messages sent between objects. This
information is used to determine the dynamic software archi-
tecture in terms of components and connections. Whenever
this structure changes, dynamic refactorings can be triggered
to evolve the component structure at runtime.

Currently, we are in the process of implementing the above
framework in Smalltalk. The framework allows the addition,
removal, or modification of base-level components while the
system is running. The framework provides facilities to estab-
lish atomic change sequences, manage consistency, preserve
object identity and state, and apply dynamic refactorings and
evolutions.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] P. Maes, “Computational reflection,” Ph.D. dissertation, Artificial Intelli-
gence Laboratory, Vrije Universiteit Brussel, 1987.

[3] S. L. Messick and K. L. Beck, “Active variables in smalltalk-80,” in
Technical Report CR-85-09. Computer Research Lab, Tektronix, 1985.

[4] R. Wuyts, “Smallbrother - the big brother for smalltalk,”
Université Libre de Bruxelles, Tech. Rep., 2000. [Online]. Available:
http://homepages.ulb.ac.be/˜rowuyts/SmallBrother/index.html

[5] P. Ebraert and E. Tanter, “A concern-based approach to dynamic software
evolution,” in The proceedings of the Dynamic Aspects Workshop in
conjunction with AOSD, Lancaster, UK, march 2004.

[6] P. Ebraert and T. Tourwe, “A reflective approach to dynamic software
evolution,” in The proceedings of the Workshop on Reflection, AOP and
Meta-Data for Software Evolution in conjunction with ECOOP, Oslo,
Norway, June 2004.

[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” IEEE Computer Society, vol. 37, no. 10, pp. 46–54, october 2004.

[8] J. Kramer and J. Magee, “The evolving philosophers problem: Dy-
namic change management,”IEEE Transactions on Software Engineering,
vol. 16, no. 11, pp. 1293–1306, November 1990.

[9] Y. Vandewoude and Y. Berbers, “Fresco: Flexible and reliable evolution
system for components,” inElectronic Notes in Theoretical Computer
Science, 2004.


