
Using Dynamic Aspects to Distill Business Rules from
Legacy Code

Isabel Michiels
Theo D’Hondt

PROG, Vrije Universiteit Brussel (VUB)

Kris De Schutter
Ghislain Hoffman

INTEC, Universiteit Gent (UGent)

Abstract
Large organizations often rely on business rules to express their business constraints
and very often these rules are scattered throughout different parts of the source code.
Although call-stack context and other dynamic events provide a valuable view on (old)
code, checking why the output of their system produces certain values remains a
complex and time-consuming process. In this paper we advocate the use of dynamic
aspects to facilitate and optimize the process of distilling business rules from legacy
code. We demonstrate this use through a possible scenario of investigation of a small
but real life case study and conclude with our envisioned practical implementation.

1 Introduction
When information systems are created for use within (large) organizations, many business

rules are embedded into the software as some kind of constraints. On first implementation of
these business rules they are usually fragmented and inserted into many different parts of the
source code, which makes it hard to localize them at a later stage when, for example, the software
is evolving.

Information systems that have been around for a long time typically suffer from this
scattering of business rules; although some rules have to be continuously adapted and are thus
kept in human memory, there are other business rules that, once they are implemented, are left
unchanged and, through the passage of time, are somehow "lost" in the source code. This gets
even more problematic when documentation is not being kept up to date.

Checking whether the output of an information system is correct, or why it produces a
certain value, therefore becomes very difficult. The only plausible approach to tackle this
scattering is to trace program execution, which can be a complex and time-consuming process.

As an illustration, consider being confronted with the following situation: our accountancy
department reports that several of our employees were accredited an unexpected and unexplained
bonus of €500. Accountancy rightfully requests to know the reason for this unforeseen expense.
Not knowing the exact cause, we are left faced with having to comprehend an old and poorly
documented system.

2 Research Context
The problems described here were encountered several times within the ARRIBA1 project, a

generic research project funded by the IWT, Flanders2, which started out in October 2002 and
will last four years [2].

1 http://arriba.vub.ac.be/
2 http://www.iwt.be/

The main goal is to provide a methodology and its associated lightweight tools in order to
support the integration of disparate business applications that have not necessarily been designed
to coexist.

Inspiration for this project comes from two driving forces: on the one hand we have a
consortium of research groups3 that have been active in the field of software engineering and,
more particularly, in re(verse) engineering, software evolution and software architectures. On the
other hand, we have the recently created forum of Belgian enterprises4 (large and small)
interested in a joint initiative to identify generic problems and likewise generic solutions plaguing
their ICT base.

The object of this investigation is therefore the identification of mainstream ICT problems
within this forum of enterprises that rely on information technology for their critical business
activities.

Part of this is covered by the newly named discipline of Enterprise Application Integration
(EAI), and re(verse) engineering; another part lies in the use of AOSD techniques for code
instrumentation as an important tool to aid program comprehension.

3 Difficulties encountered
With an estimated 60\% to 80\% of all business applications still written in COBOL[4], it

was no surprise to find exactly this in the code base of the companies involved in ARRIBA.
COBOL therefore quickly gained much of our focus.

Working with COBOL has its difficulties:

• The applications concerned are no longer understood. Major mission-critical applications
were developed in the 70's by programmers that are no longer working at the company,
or have moved on to other projects.

• The code is badly structured and poorly documented. The amount of code is huge
(millions of LOC) and has been adapted many times for several reasons (switching
platforms, year 2000 conversions, transition to the Euro currency,…). So keeping the
documentation synchronized with those evolutionary changes didn't always happen.

• Logic is spread out over the entire application. COBOL has only limited modularity
mechanisms. Therefore complex logic had to be manually distributed over the programs.

• COBOL as a programming language is no longer understood. Languages like COBOL
are no longer very popular with the new generation of programmers, nor are they being
actively taught to students. We are more and more faced with a new generation of
computer scientists with a different kind of background.

• Specific COBOL language constructs: COBOL language constructs such as REDEFINE,
GO TO or ALTER make it extra difficult to trace the execution of a program.

4 Proposed approach
To tackle some of the above problems we propose to use dynamic aspects as an aid for semi-

automating the process of tracing the execution of a (COBOL) program.
Dynamic aspects are aspects that are used when you want to invoke some behavior based on

the dynamics of program execution[1]. This technology will allow us to inspect specific parts of
the dynamic execution of an application.

3 Vrije Universiteit Brussel (VUB), Universiteit Gent (UG), Universiteit Antwerpen (UA); supported by
UCL in Louvain-La-Neuve, and SCG, Berne, Switzerland.
4 Inno.com, KBC, LCM, Banksys, Toyota, KAVA and Pefa

To elaborate on this point, let us reconsider the situation presented in the introduction: being
faced with an unexpected bonus of €500 for some of our employees. We now present a simplified
but realistic scenario of how dynamic aspects can help us get a handle on this problem.

4.1 Possible scenario of investigation
First thing we have to figure out is which variable or record holds the value for the bonus.

Accountancy has provided us with printed reports showing the questionable results. We use these
to find the routine which has generated these results through a simple search on strings, and find
that the data (the bonus in euros) is being held in a variable named (for instance) BNS-EUR.
(Because we plan on using it later we also write down the variable holding the employee id
number.)

Looking into the definition of BNS-EUR, it tells us that it is defined as an edited picture5.
We conclude that this variable is only used for pretty printing the output, and not for performing
actual calculations. At some time during execution the correct value for the bonus was moved to
BNS-EUR, and consequently printed. We now have to find what variable that was.

Rather than looking at all MOVEs to BNS-EUR, we will cut down the list to those MOVEs
which occurred while processing one of the 'lucky' employees (which we can deduce from the
reports we received from accountancy). This is where our first dynamic aspect helps us out. It
limits the data we have to look at by allowing us to apply previously gained knowledge.

We find the possibilities to be one of several string literals (which we can therefore
immediately disregard) and a variable named BNS-EOY (whose name suggests it holds the full
value for the end-of-year bonus).

Our next step is to try to figure out how the end value was calculated. Knowing that would
allow us to check the figures and maybe spot an error. To achieve this we set up another aspect to
trace all statements modifying the variable BNS-EOY.

Consider the following piece of (pseudo) COBOL code to demonstrate some of the things
we (might) have to capture in this phase:

03000 READ EMPLOYEE.
03100* ...

04800 ADD B31241 TO BNS-EOY.
04900* or
05000 COMPUTE BNS-EOY = BNS-EOY + B31241.
05100* or
05200 MOVE B31241 TO BNS-EOY.
05300* or...

These include arithmetic statements and MOVEs. Dynamic aspects allow us to get this
lifetime trace of a variable. And again we can limit these lifetime-traces to those which occur
while processing specific employees.

In doing so we get lucky and find a variable (cryptically) named B31241, which is
consistently valued €500, and is added to BNS-EUR in every trace.

Before moving on we'd like to make sure we're on the right track. We want to verify that this
addition of B31241 is only triggered for our list of 'lucky' employees. Again, a dynamic aspect
allows us to trace execution of exactly this addition and helps us verify that our basic assumption
holds indeed.

5 In COBOL you define a variable as being a picture of a number of characters or numeric values, like "A-
VAR PIC 9(2)", which means that A-VAR can hold a numeric value of 0 up to 99. You can also edit these
PICs by making them ready for displaying them the way you want, like a date for example: "A-DATE PIC
99/99/99". [6]

Knowing what is added leaves us with the question of why. Unfortunately, the logic behind
this seems spread out over the entire application. So to try to figure out this mess we would like to
have an execution trace of each lucky employee, including a report of all tests made and passed,
up to and including the point where B31241 is added. Dynamic aspects allow us to get these
specific traces. Comparing these will narrow down our search and help us find our way inside the
original code.

This is where our story ends. We find that B31241 is part of a business rule: it is a bonus an
employee receives when he or she has sold at least 100 items of the product with number 31241.
Apparently this product code had been assigned to a new product the year before. It once was
associated to another product which had been discontinued for several years. The associated
bonus was left behind in the code, and never triggered until employees started selling the new
product.

4.2 Future Implementation
The way we want to implement dynamic aspects in COBOL is to use a declarative language

at the meta level as a pointcut language that will reason statically about dynamic execution traces.
A declarative language is especially suited for expressing constructs like mentioned in our
COBOL example in section 4.1: for capturing the modification of a variable one can write a
predicate which expresses the different ways for changing a variable. This way you create an
abstraction layer which makes it easy to adapt the predicate in case of any changes (for example
when another COBOL dialect uses other statements to modify a variable).

Having the ability to transform COBOL code into XML, we have started to work on two
similar declarative approaches to achieve this. In one, we have been experimenting with
combining SOUL (Smalltalk Open Unification Language)[5] with this XML representation and
then representing the structure of COBOL applications into the logic language SOUL. So far this
has allowed for static reasoning only.

The second approach uses a Java-Prolog bridge (in the form of PrologCafe6) to enable a
Prolog environment to reason about the intermediate XML representation, and even transform it.
This has already made it possible to implement a very simple and generic logging aspect.

The above mentioned approaches will end up generating extra COBOL code into the original
applications, thereby implementing the proposed aspects. Both approaches allow the exploration
of a richer and easier-to-use language to help us express our concerns.

So far we can conclude that a declarative language at a meta level is a powerful medium and
that it is certainly suited within this context.

5 Conclusions
In this position paper we presented our intentions of using dynamic aspects as a technique

for semi-automating the process of distilling "lost" business rules out of large pieces of (COBOL)
legacy software. These ideas came about within the context of the research project ARRIBA.

We first pointed out the difficulties we came across in this research since we are working on
large real-life case studies of COBOL legacy systems. The size and complexity of these
information systems and lack of expressiveness regarding modularity cannot be ignored.

We demonstrated how we see our approach being integrated in a simplified but real life
problem scenario, frequently encountered in one of the companies involved in our research
project. We then advocated the use of a declarative language at the meta-level as some sort of
pointcut language to capture specific execution traces. This way we could simplify the process of
distilling "lost" business rules out of information systems.

6 http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/

To conclude we would like to point out that, although we have demonstrated our ideas
within the context of COBOL legacy applications, we firmly believe that they can be applied to
similar cases implemented in other programming languages.

Acknowledgments
Our thanks to Wolfgang De Meuter, Thomas Cleenewerck and Herman Tromp for their ideas and
for proofreading the paper.

References
 [1] Johan Brichau, Wolfgang De Meuter, Kris De Volder. Jumping Aspects. In ECOOP Workshop on

Aspects and Dimensions of Concerns”, Cannes, 2000.

 [2] Isabel Michiels, Dirk Deridder, Herman Tromp and Andy Zaidman. Identifying Problems in Legacy
Software: Preliminary Findings of the ARRIBA Project. In ELISA workshop at ICSM, 2003.

 [3] Mo Budlong. Sams Teach Yourself COBOL in 21 Days. Sams Publishing, 1999.

 [4] Aberdeen Group. Legacy Applications: From Cost Management to Transformation. Executive White
Pape r f rom Abe rdeen Group , March 2003 . Can be found a t
http://www.aberdeen.com/2001/research/03038126.asp.

 [5] Roel Wuyts. Declarative Reasoning about the Structure of Object-Oriented Systems. In Proceedings
of TOOLS USA ’98, 1998.

 [6] Mike Murach, Anne Prince, Raul Menendez. Murach’s Structured COBOL. Mike Murach &
Associates, 2000.

