

Vrije Universiteit Brussel
Faculty of Sciences

Department of Computer Science
Programming Technology Lab

Ph.D. Dissertation

Luk Stoops

August 27, 2004

Supervisor: Prof. Dr. Theo D’Hondt
Co-supervisor: Prof. Dr. Tom Mens

Proefschrift ingediend met het oog op
het behalen van de graad van Doctor in
de Toegepaste Wetenschappen

Page 2

Acknowledgments

I thank Prof. Dr. Theo D’Hondt for supervising this dissertation and for his trust and support
during my doctoral research at the Programming Technology Lab.

I especially thank my co-supervisor Prof. Dr. Tom Mens for his invaluable guidance and
support that made this work possible.

I thank Dirk Deridder, Dr. Tom Tourwe and many other members of the Programming
Technology Lab for proofreading the dissertation.

I thank all the other members of the Programming Technology Lab to welcome me in the
team and for being great colleagues.

Special thanks to Karsten Verelst for sharing his Borg expertise.

Also thanks to the master and graduate students Julian Doan, Christian Devalez and Karl
Evenepoel for joining me in this research domain and the valuable work and results they
obtained during their thesis research.

Finally, I thank my parents to spark my passion for science, my friends for their support and
my wife Gert and my sons Natan, Elias and Joran for putting things in perspective.

Luk Stoops

This work is made possible by one of the e-VRT projects funded by the Flemish government, a joint collaboration between
Vlaamse Radio en Televisie (VRT, public broadcaster of Flanders), IMEC (Interuniversity MicroElectronics Center) and
Vrije Universiteit Brussel (VUB).

Page 3

Title

Thesis

Progressive Mobility
Hides Network Latency

Progressive Mobility

Table of Contents

Page 4

Table of Contents

Acknowledgments.. 2
Title .. 3
Thesis ... 3
Table of Contents ... 4
List of Figures .. 8
List of Tables ... 10
Samenvatting.. 11
Summary .. 17
1 Introduction.. 23

1.1 Thesis Motivation .. 24
1.2 Latency... 25
1.3 Application availability.. 26
1.4 Research Goals... 27
1.5 Research restrictions .. 28
1.6 Chapter Summaries .. 30

2 A Conceptual Framework for Progressive Mobility.. 33
2.1 Network.. 35

2.1.1 Architecture.. 35
2.1.2 Packet Switching.. 35
2.1.3 Data Rate.. 36
2.1.4 Delays in Computer Networks... 36

2.1.4.1 Delays in Connection-oriented Networks .. 37
2.1.4.2 Delays in Connectionless Networks .. 37

2.1.5 Performance ... 38
2.1.6 Window of Opportunity ... 39

2.2 Application... 39
2.2.1 Internal Structure.. 39
2.2.2 Size... 40
2.2.3 Granularity ... 40
2.2.4 Evaluation Time... 41
2.2.5 Delay .. 41
2.2.6 User Interfaces ... 41
2.2.7 Predictability .. 42
2.2.8 Components ... 42
2.2.9 Distributed Systems and Applications ... 43
2.2.10 Choosing an Experimental Programming Environment 43
2.2.11 Programming Languages Used .. 44

2.2.11.1 Borg.. 44
2.2.11.2 Java... 45
2.2.11.3 Smalltalk .. 46

2.3 Techniques ... 48
2.3.1 Mobility.. 48

2.3.1.1 Host Mobility ... 48
2.3.1.2 Evaluator Mobility ... 49
2.3.1.3 Data Mobility ... 49
2.3.1.4 Code Mobility .. 49

Table of Contents

Page 5

2.3.1.5 Process Mobility ...52
2.3.1.6 Weak and Strong Mobility ...53

2.3.2 Server - Push versus Client - Pull...54
2.3.3 Parallelism ..54
2.3.4 Reflection ...55
2.3.5 Compression ...55
2.3.6 Reordering and Pre-fetching...56

2.3.6.1 Profiling..56
2.3.6.2 Class File Splitting and Pre-fetching..57
2.3.6.3 Non-Strict Execution for Mobile Programs ...58

2.3.7 Progressive techniques ...59
2.3.8 Other related techniques ...60

3 Progressive Anticipative Mobility using Pre-fetching of Permuted Code63
3.1 Abstract...64
3.2 Introduction ..65
3.3 Basic Observations, Assumptions and Restrictions ...67
3.4 Profiling and Reordering ..67
3.5 Reordering Algorithm ..69
3.6 Pre-fetching ..70
3.7 Experiment to Hide Network Latency..72
3.8 Results ..75

3.8.1 Benchmark..75
3.8.2 CoolImage ..78
3.8.3 Gremlin...80
3.8.4 Adapted Gremlin ..81

3.9 Discussion...83
3.9.1 Speedup ..83
3.9.2 Application Speedup versus Data rate..83
3.9.3 Pre-fetching Guidelines ..84
3.9.4 Dealing with Semaphores...84
3.9.5 Applicability in other Environments ..85

3.10 Summary and Conclusion...85
3.10.1 Network ..87
3.10.2 Application ...87
3.10.3 Techniques..88

4 Progressive Mobility using Component Streams ...89
4.1 Abstract...90
4.2 Introduction ..91
4.3 Proposed Technique ...93

4.3.1 Basic Observations, Assumptions and Restrictions ...93
4.3.2 Technique Description..94

4.3.2.1 Component Migration Time ...95
4.3.2.2 Component Idle Time...97
4.3.2.3 Necessary Conditions for Removing Network Latency98

4.3.3 Migration Strategies ...99
4.3.3.1 Self Triggered after Last Instruction ..99
4.3.3.2 Self Triggered based on Profiling...100
4.3.3.3 Under Control of a Supervisor ...100
4.3.3.4 Fixed Migration Strategy..101
4.3.3.5 Dynamic Migration Strategy ..101

Table of Contents

Page 6

4.3.4 Discussion .. 101
4.4 Experiment to Hide Network Latency ... 102

4.4.1 Borg Environment.. 102
4.4.1.1 Implementation .. 103
4.4.1.2 Results.. 105
4.4.1.3 Discussion .. 105

4.4.2 Java Environment... 105
4.4.2.1 Implementation .. 106
4.4.2.2 Results.. 107
4.4.2.3 Discussion .. 108

4.5 Experiment to Reduce System Latency in Low Data Rate Environments 109
4.5.1 Implementation .. 109

4.5.1.1 Finding the Size of Objects.. 109
4.5.1.2 A Data rate Simulating OutputStream ... 110

4.5.2 Adding a Graphical User Interface .. 110
4.5.3 Strategies.. 111
4.5.4 Results.. 114

4.5.4.1 Time Needed to Finish the Application ... 114
4.5.4.2 Time Needed to Send the Components.. 116
4.5.4.3 Time Needed for the First Draw .. 116
4.5.4.4 Time Gained in Comparison to Normal Sending....................................... 118

4.5.5 Discussion .. 119
4.6 Experiment to Reduce System Latency by Parallel Evaluation............................. 120

4.6.1 Process Migration with Opentalk... 120
4.6.2 Using BOSS ... 121
4.6.3 Limitations in Current Smalltalk Environment.. 121

4.6.3.1 Passing by Value.. 121
4.6.3.2 Order of Object Instantiation ... 121
4.6.3.3 GraphicsHandles Cannot be Stored by BOSS ... 121

4.6.4 Experiment setup.. 122
4.6.4.1 Calculate and draw the fractal, migrate afterwards.................................... 122
4.6.4.2 Start CalcProcess and migrate the DrawProcess.. 122
4.6.4.3 Migrate the CalcProcess first, then the DrawProcess 122

4.6.5 Implementation .. 122
4.6.5.1 Strategy without parallel processing .. 122
4.6.5.2 Strategy with parallel processing ... 123
4.6.5.3 Results.. 123

4.6.6 Discussion .. 123
4.7 Design Guidelines .. 123

4.7.1 Necessary Conditions for Removing Network Latency 123
4.7.2 Guidelines .. 124

4.8 Summary and Conclusion .. 125
4.8.1 Network.. 126
4.8.2 Application... 127
4.8.3 Techniques ... 127

5 Progressive Anticipative Mobility using Proactive Migration 129
5.1 Abstract .. 130
5.2 Introduction.. 131
5.3 Proposed Technique... 132

5.3.1 Basic Observations, assumptions and restrictions ... 132

Table of Contents

Page 7

5.3.2 Technique Description..133
5.3.2.1 Computing the Delta...135

5.4 Experiment to Calculate the Delta..138
5.5 Results ..139
5.6 Discussion...139

5.6.1 Gain for the Factorial Example ..139
5.6.2 Applications without Implicit Stack Operations ..140
5.6.3 Hardware Support...140
5.6.4 Dealing with Large Deltas..141

5.7 Summary and Conclusion...143
5.7.1 Network ..144
5.7.2 Application ...144
5.7.3 Techniques..145

6 Conclusion..147
6.1 Wrap-up ..148
6.2 Results ..148
6.3 Discussion...150
6.4 Future Work..151

6.4.1 Evaluate the Themes with other Criteria ..151
6.4.2 Other Topics Related to Pre-fetching of Permuted Code152
6.4.3 Pre-fetching of Permuted Code with Multi Node Hopping............................152
6.4.4 Architectural Transformations to make Applications Streamable154
6.4.5 Progressive Mobility using Proactive Migration and evaluation155

6.4.5.1 Proposed Technique ...155
6.4.5.2 Assumptions and Restrictions ..156
6.4.5.3 Handling Semaphores...157

6.4.6 Aspects ...158
6.4.7 New Research Projects ...159

Bibliography ...161

List of Figures

Page 8

List of Figures

Figure 1: OSI and TCP/IP reference model ... 35
Figure 2: A stream of packets .. 36
Figure 3: Time needed to transport character arrays of different sizes in a TCP/IP network.. 38
Figure 4: Network protocol overhead .. 39
Figure 5: Typical entities of a running application .. 40
Figure 6: Entities subject to migration... 48
Figure 7: Client-Server Paradigm .. 49
Figure 8: Code-on-Demand Paradigm ... 51
Figure 9: Remote Invocation Paradigm ... 51
Figure 10: Mobile Agent Paradigm ... 52
Figure 11: Splitted classes ... 57
Figure 12: Class pre-fetching... 58
Figure 13: Permuting the source code.. 68
Figure 14: Smalltalk dependency graph... 69
Figure 15: Normal weak code loading... 70
Figure 16: Progressive anticipative mobility using pre-fetching of permuted code 71
Figure 17: Pre-fetching of permuted code cycle in JIT environment 72
Figure 18: Percentage of code visited before the appearance of the graphical user interface . 74
Figure 19: Parallel evaluation Benchmark @ 2400 bps .. 76
Figure 20: Parallel evaluation Benchmark @ 114 kbps .. 76
Figure 21: Parallel evaluation Benchmark @ 41 Mbps... 77
Figure 22: Average timing results for Benchmark application.. 78
Figure 23: Timing results for CoolImage application.. 79
Figure 24: Parallel evaluation CoolImage @ 114 kbps ... 80
Figure 25: Timing results for Gremlin application .. 81
Figure 26: Timing results for adapted Gremlin application... 82
Figure 27: Time needed to build GUI compared with original time 83
Figure 28: Time needed to end the application compared with the original time 84
Figure 29: Components of an application during the streaming phase.................................... 95
Figure 30: Migration time for 1KiB code and Itot =106... 97
Figure 31: Component idle time versus evaluation clock speed.. 98
Figure 32: Component idle time for 100 sec application... 98
Figure 33: Migrate after last instruction .. 100
Figure 34: Self triggered migration based on profiling ... 100
Figure 35: Migrate under control of a supervisor .. 101
Figure 36: Cooperating agents ... 102
Figure 37: Components during the Migration Process .. 102
Figure 38: Components during the Streaming Process.. 103
Figure 39: Borg proof of concept code .. 104
Figure 40: proof of concept setup .. 105
Figure 41: Java experiment architecture .. 107
Figure 42: Graphical user interface and thread windows .. 111
Figure 43: Java experiment with GUI architecture.. 112
Figure 44: Sequence diagram of the extended fractal draw experiment................................ 113
Figure 45: Average timing results to finish the application... 115
Figure 46: Time to send the components ... 116
Figure 47: Time to first draw ... 117

List of Figures

Page 9

Figure 48: Time gained versus normal sending..119
Figure 49: Calculation of factorial (n) in Borg...134
Figure 50: Sequence diagram – classic strong migration of a factorial calculation134
Figure 51: Sequence diagram - proactive migration of a factorial calculation135
Figure 52: Watermark for delta definition in non-destructive memory136
Figure 53: Possible pointers in non-destructive memory ...137
Figure 54: Possible pointers and watermark in destructive memory......................................137
Figure 55: Borg calculation computational states ..138
Figure 56: application without implicit stack operations ..140
Figure 57: Application with a potential large delta ..141
Figure 58: Large delta ..141
Figure 59: Dealing with a large delta ...142
Figure 60: Multi node hopping...153
Figure 61: Multi node hopping and evaluation ..154
Figure 62: Proactive migration and evaluation...156

List of Tables

Page 10

List of Tables

Table 1: Typical Migration Steps... 26
Table 2: Average timing results (ms) for Benchmark application... 78
Table 3: Standard deviation (ms) of timing results for Benchmark application...................... 78
Table 4: Average timing results (ms) for CoolImage application ... 79
Table 5: Standard deviation (ms) of timing results for CoolImage application....................... 79
Table 6: Average timing results (ms) for Gremlin application.. 81
Table 7: Standard deviation (ms) of timing results for Gremlin application 81
Table 8: Average timing results (ms) for adapted Gremlin application 82
Table 9: Standard deviation (ms) of timing results for adapted Gremlin application.............. 82
Table 10: Properties of the Pre-fetching Technique .. 86
Table 11: Migration Steps Time Intervals ... 96
Table 12: Deployed Units .. 96
Table 13: Necessary Conditions for Removing Network Latency .. 99
Table 14: Average timing results (ms) to finish the application.. 115
Table 15: Standard deviation (ms) of timing results to finish the application....................... 115
Table 16: Time to send the components (ms) .. 116
Table 17: Time to first draw (ms) .. 117
Table 18: Time gained versus normal sending .. 119
Table 19: Properties of the Component Stream Technique ... 126
Table 20: Stack and Dictionary Values during Evaluation Factorial Program...................... 139
Table 21: Properties of the Proactive Migration Technique .. 144
Table 22: Summary of the performance indications.. 149

Samenvatting

Page 11

 Samenvatting

Samenvatting in het Nederlands

In overeenstemming met het aanvullend facultair reglement
 doctoraat in de toegepaste wetenschappen

Samenvatting

Page 12

Titel

Thesis

Progressieve Mobiliteit
Verbergt Netwerk Latentie

Progressieve Mobiliteit

Samenvatting

Page 13

Ambient Intelligence (AmI) [ISTAG 2001] is de visie dat computer technologie onzichtbaar
zal worden en zich zal integreren in de alledaagse voorwerpen rondom ons. De mensen zullen
leven in een omgeving die zich bewust is van hun aanwezigheid, gevoelig is voor hun
behoeften en hier ook op reageert [van Loenen 2003].

Om dergelijke intelligente omgevingen te bouwen zijn we genoodzaakt applicaties te
implementeren in heterogene gedistribueerde netwerken, gekenmerkt door een vluchtige
topologie als gevolg van de mobiele natuur van sommige van de knooppunten.

Energie, fouttolerantie en mobiliteit zijn de drie sleutelconcepten waar we mee zullen moeten
omgaan om de ondersteuning te implementeren voor de toekomstige omgevingen.
Specificatie, modelering en analyse van deze systemen zullen enkel mogelijk worden door
gebruik te maken van een mobiliteitgebaseerde calculus [Lindwer et al. 2003] waar we de
eigenschappen van communicatie zien als een dynamisch gegeven dat individuele
knooppunten toelaat met elkaar te interageren, zich te verplaatsen en collectief een gegeven
taak uit te voeren.

We staan voor de uitdaging om communicatiesystemen te ontwikkelen die de toekomstige
omgevingen in staat stellen hun diensten aan te bieden en om applicatie scenario’s te
ontwerpen en implementeren om de intelligente omgeving tot leven te brengen.

“Het vinden van wegen om complexe taken te partitioneren en te distribueren, op een
schaalbare wijze, tussen computationele knooppunten met beperkte hulpbronnen is mogelijk
één van de meest uitdagende problemen die opgelost dienen te worden om computers
naadloos te integreren naar omgevingen” [Lindwer et al. 2003].

Een valabele kandidaat om dynamische communicatiesystemen te implementeren tussen
computationele knooppunten in een intelligente omgeving is mobiele code, code die over een
netwerk verzonden kan worden en geëvalueerd1 wordt op het platform van de ontvanger.

Een belangrijk probleem in verband met mobiele code is netwerk latentie, de tijdsvertraging
als gevolg van het netwerk die optreedt voor de code geëvalueerd kan worden. Netwerk
latentie wordt een kritische factor voor de bruikbaarheid van toepassingen die geladen worden
over een netwerk, vóór de evaluatie van deze code kan starten. Vergeleken met andere
tijdsvertragingen die zich voordoen als gevolg van code mobiliteit, is de tijd om een applicatie
te transporteren van een zendend gastplatform naar een ontvangend gastplatform, veruit de
meest tijdrovende activiteit, wat kan leiden tot betekenisvolle opstartvertraging van de
toepassing. Dit is vooral het geval in netwerkomgevingen met een lage bit snelheid zoals
sommige draadloze netwerken met groot bereik of in overbelaste netwerken.

Behalve netwerk latentie is er nog ander mogelijke tijdsvertraging als gevolg van het
computersysteem zelf, zoals de (eventueel “juist op tijd”) vertaling van de code en mogelijke
evaluatie vertragingen als gevolg van het taakbeheer door het besturingssysteem of problemen
met concurrente uitvoering. Deze vertragingen zullen we systeem latentie noemen.

In een mobiele omgeving wordt systeemperformantie uitgedrukt in invocatie latentie.
Invocatie latentie is de tijdsvertraging tussen de invocatie van een toepassing en de start van
de evaluatie van deze toepassing [Krintz et al. 1998]. Het is de combinatie van de netwerk
latentie en de systeem latentie die zich voordoen voor de evaluatie van de toepassing start.

De vertraging tussen de invocatie van een toepassing en het verschijnen van de
gebruikersinterface noemen we: gebruikersinterface latentie. Het is de som van de netwerk

1 We gebruiken de meer algemene term evaluatie om de uitvoering of de interpretatie van code aan te geven.

Samenvatting

Page 14

latentie en de systeem latentie die zich voordoet voor het verschijnen van de
gebruikersinterface.

Een ander potentieel probleem in tijdskritische toepassingen is de toepassing
beschikbaarheid, het feit dat een toepassing tijdens zijn migratie niet beschikbaar is om
wisselwerkingen aan te gaan met andere processen die daarop aansturen. In een klassiek
migratie scenario zal een toepassing die migreert van een gastplatform naar een ander
gastplatform altijd tijdelijk stilgelegd worden om pas terug opgestart te worden nadat de
volledige code geladen is en hersteld in zijn oorspronkelijke vorm. De toepassing wordt pas
terug beschikbaar na de volledige migratie fase.

Met de opkomst van intelligente omgevingen, gebouwd op een heterogeen gedistribueerd
systeem, waar knooppunten het netwerk kunnen komen vervoegen of weggaan, zullen de
connectietijden tussen de knooppunten onderling onvoorspelbaar worden. Een applicatie
stoppen en pas terug opstarten nadat het vroeg of laat op zijn bestemming is gearriveerd zal
deze mogelijk veel te lang onbeschikbaar maken voor de gebruiker.

Knooppunten in een intelligente omgeving kunnen onbereikbaar worden door de mobiliteit
van de gebruiker, energiebeperkingen, plotseling optredende fouten enz…

In dergelijke netwerken, gekenmerkt door hun vluchtige topologie zal mobiele code een
belangrijke rol spelen. Netwerk latentie en systeem latentie, de oorzaak van invocatie latentie
zullen kritische factoren worden. Zo ook gebruikersinterface latentie, en toepassing
beschikbaarheid.

Deze thesis onderzoekt progressieve mobiliteit en stelt verschillende migratie scenario’s
voor om bovenstaande problemen aan te pakken. De voorgestelde technieken partitioneren de
toepassing in componenten en migreert deze componenten, progressief in de tijd, naar de
ontvanger.

Het doel van ons onderzoek is om de haalbaarheid aan te tonen van enkele scenario’s die het
impliciete parallellisme aanwenden dat zelfs in de meest eenvoudige computernetwerken
gevonden wordt maar massaal aanwezig zal zijn in intelligente omgevingen.

Dit onderzoeksdomein staat nog in de kinderschoenen en er is weinig ondersteuning van
bestaande methodologieën en gereedschappen. Daarom is het ook niet onze intentie
volledigheid of universaliteit na te streven.

Voor de huidige stand van zaken i.v.m. het uitwerken van deze ideeën verwijzen we naar
[Krintz et al. 1998] waar onderzoek werd uitgevoerd door het vooraf sturen van methodes in
een Java programmeeromgeving te simuleren.

De scenario’s kunnen ingezet worden op het systeem niveau, op het niveau van lokale
netwerken en in wereldwijde Internet netwerken hoewel de impact groter zal zijn in
netwerken met een lage bit snelheid. De geëxploreerde thema’s hebben als gemeenschappelijk
kenmerk dat zij allen een progressief migratie scenario toepassen en worden genoemd:

• Progressieve anticiperende mobiliteit met het op voorhand laden van
gepermuteerde code

• Progressieve mobiliteit met component stromen
• Progressieve anticiperende mobiliteit met pro-actieve migratie

Progressieve anticiperende mobiliteit met het op voorhand laden van gepermuteerde
code is een techniek die de toepassingscode permuteert en parallellisme exploiteert tussen het

Samenvatting

Page 15

laden en evalueren van de code met het doel om de gebruikersinterface latentie te reduceren.
De techniek is geïnspireerd op stromende (eng: streaming) media waarbij de evaluatie van de
gegevens bij de ontvanger van start gaat lang voordat de volledige datastroom is binnen
geladen.

De techniek laat toepassingen toe hun evaluatie vroeger te starten, vooral toepassingen die
tijdens de opstart fase sterk voorspelbaar zijn, zoals toepassingen die starten met het bouwen
van een standaard grafische gebruikersinterface, wat een grotere mate van anticipatie toelaat
[Stoops et al. 2002].

Onze bijdragen met deze techniek zijn:

• Automatische permutatie van vertaalbare eenheden gebaseerd op een
afhankelijkheidsgrafiek zodanig dat de statische structuur van de voorstelling van de
applicatie in een bestandstructuur een reflectie is van zijn dynamisch gedrag

• Introductie van een synchronisatie mechanisme ter ondersteuning van de evaluatie van
code die slechts partieel ter beschikking is

• Op voorhand laden van gepermuteerde code met focus op gebruikersinterface latentie

Experimenten in Smalltalk [Goldberg and Robson 1989] bevestigen ons thesis statement dat
progressieve mobiliteit netwerk latentie verbergt en systeem latentie reduceert door aan te
tonen dat deze techniek het mogelijk maakt netwerk latentie te verbergen door parallellisme
toe te passen tussen het laden van de code en de evaluatie van de code. Daar de evaluatie van
de toepassing vroeger start zal de invocatie latentie en dus ook de systeem latentie en vooral
de gebruikersinterface latentie afnemen.

Als praktische validatie hebben we deze aanpak getest op drie toepassingen met elk een
typisch doch verschillend gedrag.

Met onze experimenten bereiken we een gemiddelde gebruikersinterface latentie die 25% is
van de originele gebruikersinterface latentie. Een reductie van de totale evaluatie tijd van de
toepassing van 70% kon bereikt worden voor sommige toepassingen.

Progressieve mobiliteit met component stromen is een techniek waarbij componenten van
een toepassing één voor één migreren van het ene gastplatform naar het andere totdat de
volledige toepassing gemigreerd is. Deze techniek is ook geïnspireerd op stromende media
waar de evaluatie van de gegevens start lang voordat de volledige stroom gegevens is geladen.
Vergeleken met de vorige techniek, waarbij statische code wordt gemigreerd, zal deze
techniek progressief draaiende toepassingen migreren zonder ze tijdelijk stop te zetten.
Tijdens de migratie fase zal de toepassing beschikbaar blijven voor communicatie over en
weer met andere processen. Wanneer een toepassing “stroomt” zal een gedeelte ervan reeds
op het ontvangende platform draaien terwijl een ander deel nog op het zendend platform
draait.

Onze bijdrage met deze techniek is:

• Introductie van progressieve mobiliteit met component stromen

Experimenten in Borg [Van Belle et al. 2001], Java en Smalltalk bevestigen ons thesis
statement door aan te tonen dat het mogelijk is netwerk latentie volledig te verbergen. We
tonen ook aan dat het mogelijk is de systeem latentie in het algemeen en gebruikersinterface
latentie in het bijzonder te reduceren door de optimale migratie sequentie te kiezen voor de
verschillende componenten. Door een strategie met parallel processing toe te passen is het
mogelijk de totale evaluatie tijd van de toepassing te reduceren en daardoor ook de systeem
latentie.

Samenvatting

Page 16

We tonen de uitvoerbaarheid van het concept aan door middel van een experiment in Borg en
breiden dit achteraf uit door de techniek van progressieve mobiliteit met component stromen
te implementeren op een toepassing die een fractal tekent onder controle van een grafische
gebruikersinterface in Java en nadien implementeren we deze toepassing met verschillende
concurrentie strategieën in Smalltalk [Devalez 2003]. In al deze omgevingen verkregen we
betekenisvolle resultaten.

We bieden ook richtlijnen aan om toepassingen op design niveau te optimaliseren met het oog
op maximalisatie van het rendement van de techniek.

Progressieve anticiperende mobiliteit met pro-actieve migratie is een techniek die begint
met het nemen van een snapshot van de volledige toepassing vóór de echte migratie van start
gaat. Deze snapshot bevat ook de volledige evaluatie toestand van de toepassing. Dan wordt
deze snapshot anticipatief gemigreerd naar een potentiële ontvang gastplatform terwijl de
oorspronkelijke toepassing verder wordt geëvalueerd. Wanneer de echte migratie, naar
datzelfde gastplatform getriggerd wordt, dient er enkel nog het verschil tussen de huidige
evaluatie toestand van de toepassing en deze die al bevat zat in het snapshot gemigreerd te
worden. Dit verschil zal veel kleiner zijn dan de originele code waardoor de migratie tijd
betekenisvol gereduceerd kan worden.

Onze bijdragen met deze techniek zijn:

• Introductie van Progressieve anticiperende mobiliteit met pro-actieve migratie

Vermits de techniek sterk afhankelijk is van reflectie en reïficatie van de datastructuren die de
evaluatie toestand bevatten, implementeerden we een prototype in Borg om de haalbaarheid
aan te tonen. Borg is een programmeeromgeving ontwikkeld aan ons labo, waardoor de
nodige kennis over typische implementatie kenmerken aanwezig is.

We zullen concluderen dat progressieve mobiliteit de performantie van een mobiele
toepassing verhoogt. De voorgestelde technieken kunnen de totale evaluatie tijd verminderen,
netwerk latentie verbergen, invocatie- en gebruikersinterface latentie reduceren en de
beschikbaarheid van toepassingen verbeteren.

Summary

Page 17

 Summary

Summary

Page 18

Ambient Intelligence (AmI) [ISTAG 2001] is the vision that computer technology will
become invisible, integrated in all the everyday objects around us. People will live in an
environment that is aware of their presence, and is sensitive and responsive to their needs [van
Loenen 2003].

In order to build these intelligent ambients we are challenged to implement applications in a
heterogeneous distributed network characterized by a volatile topology due the mobile nature
of some of the nodes in the network.

Energy, fault-tolerance and mobility are the three key concepts that we will have to deal with
to implement the support for the future ambients. Specification, modeling and analysis of
such systems will become possible only by if we deal with communication properties, as a
dynamic phenomenon that enables individual nodes in the network to interact, move around
and collectively perform a given task.

We are faced with the challenge to develop communication systems that empower the future
environments and the design and implementation of application scenarios that bring ambient
intelligence to life.

“Finding ways to partition and distribute complex tasks, in a scalable manner, among
computational nodes with limited resources represents perhaps one of the most challenging
problems that need to be solved in order to seamlessly integrate computers into ambients”
[Lindwer et al. 2003].

A valid candidate to implement dynamic communicating systems between computational
nodes in the ambient network is mobile code: code that can be transmitted across the network
and evaluated2 on the receiver's platform.

An important problem related to mobile code is network latency: the time delay introduced
by the network before the code can be evaluated. Network latency becomes a critical factor in
the usability of applications that are loaded over a network before their evaluation can start.
Compared to other time delays involved with code mobility, the transfer of the code from the
sending host to the receiving host is in general the most time-consuming activity, and can lead
to significant delays in the startup of the application. This is especially true in the case of low
data rate environments such as the some of the current wireless, wide area, communication
systems or in overloaded networks.

Besides network latency there are other possible delays introduced by the computer system,
e.g. (Just In Time) compilation, evaluation delay caused by the (distributed) operating system
scheduling or concurrency problems. These delays will be called system latency.

In a mobile environment system performance is measured by invocation latency. Invocation
latency is the time from application invocation to when the evaluation of the program actually
begins [Krintz et al. 1998]. It is the combination of the network latency and the system
latency that occurs before the evaluation of the application starts.

The delay between the invocation of an application and the appearance of the user interface
will be called: user interface latency. It is the sum of the network latency and the system
latency that occurs before the appearance of the user interface.

Another potential problem in time-critical applications is application availability, the fact
that an application will not be available during its migration for other processes that need to
interact with it. In a classical migration scheme the application that migrates from one host to

2 We utilize the more general term evaluation to describe the execution or interpretation of the code.

Summary

Page 19

another is temporarily halted and is restarted at the receiving host after the code is completely
loaded and restored in its original form. It will become available again only after the complete
migration phase.

In the advent of ambient intelligence environments built on a heterogeneous distributed
system, where nodes may join or leave the network, connection times between the nodes
become unpredictable. Therefore, also the time needed to migrate the application will become
unpredictable and just halting the application until it may arrive at its destination, sooner or
later, may not be an option any more.

Ambient intelligence network nodes may become unreachable due to the mobility of the user,
energy source constraints, intermittent failures etc... In such networks, characterized by their
volatile topology, mobile code will play a major role. Network latency and system latency, the
cause of invocation latency and user interface latency, together with application availability
will become critical factors.

This dissertation investigates progressive mobility and explores different migration schemes
to cope with these problems. The explored themes all have in common that we partition the
mobile code and migrate the parts, progressively in time, to the receiver.

Our research goal is to provide a proof of concept of scenarios to harness the implicit
parallelism, found in even the most simple computer networks, but that will be massively
available in ambient intelligence environments. Given that this research area is still in its
infancy, without much support from existing methodologies and tools it is not our intention to
pursue completeness or universality.

As previous work in developing these ideas we refer to [Krintz et al. 1998] where, among
other things, research on non-strict evaluation was conducted by running simulations of
method pre-fetching in a Java programming environment.

The scenarios can be deployed at the system level, in local area networks and in worldwide
internet networks although the impact will be more significant in low data rate networks. The
explored themes all have in common that they apply a progressive migration scheme, and are
called:

• progressive anticipative mobility using pre-fetching of permuted code
• progressive mobility using component streams
• progressive anticipative mobility using proactive migration

Progressive anticipative mobility using pre-fetching of permuted code applies a technique
that permutes the application code and exploits parallelism between loading and evaluation of
code to reduce user interface latency. The technique is inspired by streaming media where the
evaluation of the data at the receiver starts long before the complete data stream is loaded.

The technique allows applications to start their evaluation early, especially applications with a
predictable startup phase, such as building a standard GUI, which allows a higher level of
anticipation [Stoops et al. 2002].

Our contributions with this technique are:

• Automatic permutation of compilable units based on a dependency graph so that the
static structure of the representation of the application in a file structure reflects its
dynamic behavior

• Introduction of a synchronization mechanism to support evaluation of code that is only
partially present

Summary

Page 20

• Pre-fetching of permuted code with focus on user interface latency

Experiments in Smalltalk [Goldberg and Robson 1989] confirm our thesis statement that
progressive mobility hides network latency. We show that this technique is able to hide
network latency by applying parallelism between the code loading and the evaluation of the
code. Since the evaluation of the applications will start early, invocation latency and therefore
also system latency and especially user interface latency will decrease.

As a practical validation we tested our approach on three applications each exhibiting some
typical but distinct behavior. In our experiments we obtain an average user interface latency
that is 25% of the original user interface latency. For one of the applications the total
evaluation time could be reduced to 70% of the original evaluation time.

Progressive mobility using component streams is a technique where components of an
application migrate one by one from one host to another until the application is completely
migrated. This technique is also inspired by streaming media where the evaluation of the data
at the receiver starts long before the complete data stream is loaded. In contrast with the
previous technique, where static code is migrated, this technique progressively migrates
running applications without halting them. During the migration phase the application will
remain available for interaction with other processes. When streaming a running application,
part of the application will already run on the receiving host while the other part is still
running on the sending host.

Our contribution with this technique is:

• Introduction of progressive mobility using component streams

Experiments in Borg [Van Belle et al. 2001], Java and Smalltalk confirm our thesis statement
by showing that is possible to hide network latency completely. We also show that it is
possible to reduce system latency in general and user interface latency in particular by
choosing the optimal sequence of migration of the different components. By applying a
strategy with parallel processing we are able to decrease the total evaluation time of the
application and therefore the system latency.

We perform a proof of concept experiment in Borg and elaborate on this by implementing the
technique of progressive mobility using component streams on a fractal drawing application
with a graphical user interface in Java. Afterwards we will deploy the fractal drawing
application with different concurrency strategies in Smalltalk [Devalez 2003]. In all these
environments we are able to achieve significant results.

We also provide guidelines to optimize applications at the design level to increase their profit
from the technique.

Progressive, anticipative mobility using proactive migration is a technique that starts by
taking a snapshot of the entire application before the real migration is triggered. This snapshot
includes the applications computational state. Then this snapshot is anticipatively migrated to
a potential receiving host while the original application continues to run. Then, when the real
migration, to that same receiving host, is triggered, there is only the need to send the
difference of the current computational state and the state that was already contained in the
snapshot. This difference will be significantly smaller than the original code which may
reduce the migration time considerably.

Our contributions with this technique are:

• Introduction of progressive, anticipative mobility using proactive migration

Summary

Page 21

Since the technique is heavily dependent on reflection and reification of the computational
state we implement a proof of concept in Borg, a programming environment developed at our
lab which provides us with all the necessary knowledge on the idiosyncrasies of the
implementation of the environment.

We will conclude that progressive mobility may increase the performance of a mobile
application. The proposed techniques can enhance overall program evaluation time, hide
network latency reduce invocation latency, user interface latency, and improve application
availability.

Summary

Page 22

Introduction

Page 23

1 Introduction

Introduction

Page 24

1.1 Thesis Motivation
With the advent of Ambient Intelligence (AmI) [ISTAG 2001], where people will be
surrounded by intelligent and intuitive interfaces embedded in everyday objects around us,
mobile code will become an important medium to support this intelligent environment. In
particular everyday objects such as telephones, watches, lights, doorbells should be able to
communicate with one another and with the users through wireless networks. Objects that do
not move relatively with respect to each other can rely upon current communication protocols
to provide a stable connection but the connection between moving objects: a car, a bicycle, an
occupant walking around in his house poses new challenges.

Ambient intelligence, as defined by the EC Information Society Technologies Advisory
Group builds on three recent key technologies: Ubiquitous Computing, Ubiquitous
Communication and Intelligent User Interfaces. Ubiquitous computing means integration of
microprocessors into everyday objects like furniture, clothing, toys, even paint that cleans off
dust and notifies you of intruders, walls that selectively dampen sounds [Weiser and Brown
1996]. Ubiquitous communication enables these objects to communicate with each other and
the user by means of ad-hoc and wireless networking. An Intelligent user interface enables the
inhabitants of the AmI environment to control and interact with the environment in a natural
(voice, gestures) and personalized way (preferences, context) [ISTAG2001].

Ambient systems need to address some key issues [O'Hare et al. 2004]:

• Recognition and accommodation of the diversity of devices that contribute to the
organic nature of the ambient and ubiquitous computing nervous system

• The need for personalisation and system adaptivity
• An understanding of the dynamics of context
• Provision of support for collaboration and cooperation between distributed ambient

system components
• Delivery of systems that exhibit autonomic characteristics yielding self management

and self healing capabilities

In addressing these core issues, we see that developers more and more adopt an agent-based
approach [O'Hare et al. 2004]. Information between two objects can be exchanged by just
sending data between them but to address the issues mentioned her above we need to send
behavior (code) also. In terms of functionality one can imagine a personal agent that follows a
user in time and space by migrating to objects that are in the neighborhood of the user so that
its service is easily accessible. This thesis will only focus on the exchange of code.

In order to support this new network architecture where connections between partners are no
longer predictable and where the connection time may be less than a second there is a new
need for techniques to exchange information as fast as possible. These new techniques should
make optimal use of this type of unpredictable, unstable and time constrained connections.
Just sending the information and hoping that it will arrive sometimes and that it still will be
usable once it gets there, as current protocols do, will no longer be an option.

If a block of data needs to be sent to a moving target, and one cannot predict the width of the
current timeframe, one possible solution is to break up the block of data in smaller parts and
send them one by one to the receiver. This will increase the possibility that they will fit in the
temporal timeframe. Precaution should be taken to send the most important parts first, in a
format that makes these partial data immediately usable at the receiver’s end.

Introduction

Page 25

Mobile code is a plausible candidate to ensure the connection between different moving
software components or devices. The emerging technique of mobile code is a new promising
way to set up communication mechanisms between different parties but there is still much
research needed to develop techniques to support and optimize these communication
mechanisms.

“Mobility challenges old assumptions and demands novel software engineering solutions.
Coordination mechanisms must be developed to bridge effectively a clean abstract model of
mobility and the technical opportunities and complexities of wireless technology, device
miniaturization, and code mobility. Logical mobility opens up a broad range of new design
opportunities, physical mobility forces consideration of an entirely new set of technical
constraints, and the integration of the two is an important juncture in the evolution of software
engineering as a field” [Gruia-Catalin 2000] .

Since the width of the timeframe available to migrate the code is not predictable, we need
some kind of mechanism to break up code into smaller parts and send them one by one,
progressively in time, to the receiver. This will increase the possibility that they will fit in the
temporal time frame. Here too, precaution should be taken to send the most important parts
first, in a format that makes this partial block of code immediately usable (ready for
evaluation) at the receiver’s end. Since connections between hosts in these new environments
are more volatile than in static networks there is also the need for mechanisms that allows the
code to continue its evaluation during the progressive migration so that the application
remains available for users or other applications at all time.

Partitioning code and send the most important parts first together with application availability
are the two main sub-problems in the domain of mobile code that this thesis focuses on. As a
significant bonus, we will have our migrated code up and running much faster than by using
traditional migration techniques. This makes the technique of progressive mobility, the
division of the application in components and migration of these components, progressive in
time, to the receiver, also applicable in current stable networks to speedup the start of an
application that is loaded over a network and even for an application that is loaded from a
hard disk.

1.2 Latency
Research has shown that invocation latency, the time from application invocation to when the
evaluation of the program actually starts is crucial in how users view the performance of an
application. Early work investigating the effect of time-sharing systems [Doherty and Kelisky
1979] where different users run their applications on the same machine concluded that
increased system response time disrupted user thought processes. More recent work [Johnson
98] investigates the impact of unpredictable web latency, the time between the click on a
hyperlink and the appearance of the result.

Invocation latency of an application residing on a single computer is greatly reduced
nowadays by the introduction of Gigahertz microprocessors and fast internal bus systems, but
it still remains significant in a mobile code environment, a software system distributed over a
physical or logical network of heterogeneous computers.

An important problem related to mobile code is network latency: in this context we define
network latency as the time delay introduced by moving the code over the network before it
can be evaluated. This delay typical has several possible causes (Table 1). The code must
typically be (1) halted, (2) packed (3) possibly transformed in a compressed and/or secure

Introduction

Page 26

format, (4) transported over a network to the target platform, (5) possibly retransformed from
its compression or security standard, (6) checked for errors and/or security constraints, (7)
unpacked, (8) possibly adapted to the receiving host by compiling the byte codes or some
other intermediate representation and finally (9) resumed.

Table 1: Typical Migration Steps

Step Action
1 Halt the application
2 Pack it
3 Transform it
4 Transport to the receiver
5 Retransform it
6 Check it
7 Unpack it
8 Adapt it
9 Resume the application

The fourth phase, the transportation over the network, is in general the most time consuming
activity, and can lead to significant delays in the startup of the application. This is especially
the case in low data rate environments such as the current wireless communication systems or
in overloaded networks. Therefore, it is imperative that in order to reduce the network latency
we need to tackle this transportation phase.

Network latency becomes a critical factor in the usability of applications that are transported
and eventually compiled "Just In Time". In a mobile environment application performance is
measured by invocation latency. Invocation latency is the time from application invocation to
when the evaluation of the program actually begins [Krintz et al. 1998]. Invocation latency is
crucial in the user’s perception of the performance of an application.

Almost 70% of all delay (transfer or compilation) of an average Java program occurs in the
first 10% of program execution [Krintz 2001]. This result suggests that if the first 10% of an
application is predictable then the delays can be reduced considerably. We found that in the
applications we used for our experiments that the predictable zone ranged from 15 % to 30%.

In ambient intelligence environments the speed of migration might become a critical factor if
an application migrates by example over a Bluetooth connection to a moving PDA. Bluetooth
is a specification for short-range HwirelessH connections with a maximum range of 10 meters. In
this case the moving target might be only a few seconds in range, so there will be no time to
waste and some worst case scenarios it will be only possible to send parts, subcomponents of
the complete application.

1.3 Application availability
Application availability is a second potential problem. In time-critical applications it may not
be acceptable that an application will not be available for other processes that need to interact
with it during its migration, in short, the application must keep running at all times. If a
classic migration scheme is deployed the application will become available again only after
the complete migration phase which may take too much time. In a control engineering
environment for example the maximum time between the intakes of samples of the quantity
under control is strictly defined and if the sample timing exceeds this threshold just once this

Introduction

Page 27

may compromise the complete control process. A typical approach to provide high
availability is replication of data and services but this is an expensive solution [Ladin et al.
1992].

The potential problem of application availability is expected to increase in ambient
intelligence environments where the transport time for an application can be limited to a few
seconds or a fraction of a second, i.e. the time a moving client is connected to a sensing point
of its surrounding intelligent environment. These limitations in time combined with low data
rates of mobile devices can force us to split up the running application dynamically in
different parts so that, during each connection, part of the application could be transferred.
During this transfer the evaluation of the different parts of the application continues.

1.4 Research Goals
We need to gain more insight in the different forms of latency and application availability of
applications that migrate over different kind of networks. Network latency is one of the most
important potential problems in mobile code environments, therefore we like to investigate in
different kind of settings in order to reduce or hide this network latency. We will do this with
a special focus on user interface latency since this kind of latency will determine the users
perception of the performance of a mobile application.

Our main research goal is to investigate in how to harness the implicit parallelism that is
found in computer networks. Even for the most simple network connection between two
computers there are at least two processors available. Modern computer architectures also
provide a separate processor to manage the network traffic and we anticipate on upcoming
new technologies where we may expect up to four different independent processors on one
chip. As a side effect of the introduced parallelism, we may also expect to see some reduction
in system latency.

To overcome invocation latency we can send the code in compressed form or increase the
data rate of the transport channel. This is not generally applicable however to the wide variety
of code formats and transport channels that are available for mobile code where the maximum
data rates are dictated by the underlying physical levels of the network.

In order to break open this new, complex and difficult research domain we explore three
different themes in which we use different perspectives to take advantage of the implicit
parallelism.

It is our goal to provide a proof of concept of the different scenarios developed under these
themes without pursuing completeness or universality. The three themes relate to the
perspective of:

• Pre-fetching of permuted code

• Deploying component streams

• Proactive migration

A common characteristic of the investigated scenarios in these themes is that we split up the
code and send the parts one by one progressive in time over the network. This is the essence
of progressive mobility.

The first theme, progressive anticipative mobility using pre-fetching of permuted code, is
tailored to applications that have not started yet before they migrate.

We apply a technique that automatically permutes the application at the level of compilable
units based on a dependency graph and exploits parallelism between transportation and

Introduction

Page 28

evaluation of code to hide network latency. We perform pre-fetching experiments to hide
network latency in the Smalltalk programming environment.

The technique allows many applications to start evaluation earlier on, especially applications
with a predictable, deterministic start-up phase (such as building a GUI) [Stoops et al. 2002].
A synchronization mechanism guards the availability of the units that are invoked during
application evaluation. Our contributions on this theme are:

• Automatic permutation of compilable units based on a dependency graph so that the
static structure of the representation of the application in a file structure reflects its
dynamic behavior

• Introduction of a synchronization mechanism to support evaluation of code that is only
partially present

• Pre-fetching permuted code with a focus on user interface latency

On the first theme we migrate static code, code that is not evaluated at the time the migration
is triggered, but sometimes we need to migrate running applications as well. Think of an
active agent application that needs to follow its user in an ambient intelligent environment.
This becomes our second theme. In order to split up the code of an application that is already
running, we introduced: progressive mobility using component streams.

A running application can migrate to another host by migrating its components one by one.
Preferably we will migrate components in a time slot when they are not needed for evaluation.
In this case the evaluation of the application continues during its migration which results in a
high application availability.

We perform experiments to hide network latency, to reduce system latency and to exploit
parallel evaluation. We deliver a proof of concept in the programming environments of Borg,
Java and Smalltalk. We show that network latency can be hidden almost completely, that
system latency can be reduced and that parallel evaluation on the sender and receiver can
enhance the users perception of the migrating application.

Our contribution on this second theme is:

• Introduction of progressive mobility using component streams

In some cases it makes sense to migrate a running application proactively to a candidate
receiving host, this is the third theme we investigated into. We provide a proof of concept in
the Borg programming environment, an environment that provides the reflection we need to
explore this theme.

On this last theme our contribution is:

• Introduction of progressive, anticipative mobility using proactive migration

1.5 Research restrictions
We do realize that we enter a new unexplored research domain, so besides the restrictions
imposed by current practical networks and in order to make it realistic to obtain useful results
we adopt certain restrictions in our experimental environment.

Introduction

Page 29

First of all, for most of our experiments, we relied on stable fixed TCP/IP network
connections. Conducting the experiments in unstable, unpredictable or vulnerable networks
would lead us too far away from our research goal.

We did not investigate in connection-oriented networks as GSM networks and we neglected
possible security aspects. Splitting up code in smaller parts may introduce extra security risks
so that possibly an authification for each part might be appropriate but this problem was not
considered in the context of this research.

The hosts used in our experiments have always comparable processing power and we only
investigate the progressive migration of code. Possible simultaneous progressive migration of
data is left for future work.

In all our experiments, we applied a push strategy. In our exploration we assume that the
know-how and know-when of the migration of partitioned code is located in the sending host.
However, this does not exclude the possibility of successful combinations with a pull-strategy
and we will mention these opportunities but we did not implement it in our experiments.

Besides these restrictions imposed by ourselves we are also confronted with limitation of the
programming languages or the tools used.

We find us confronted with the lack of support for strong mobility in popular programming
environments as Java and Smalltalk and a relative high class-level granularity of code blocks
in Java.

For most of the problems we implemented a workaround. We applied the µCode toolkit
[Picco 1998] to introduce a limited form of strong mobility in Java. With this toolkit, we
where able to migrate threads from one host to an other inclusive the state of its variables. In
contrary with real strong mobility the runtime stack is not migrated. Therefore, the threads
needed to get started again on the receiving host.

The implementation of a communication system between threads in Java that operate in
different namespaces is also far from trivial. As a workaround we have setup a dedicated
communication object accessible via remote method invocation (RMI).

In the Smalltalk environment we encountered several flaws in the current implementation of
the VisualWorks programming environment. We needed to combine the standard Smalltalk
Opentalk tool for distributed systems with the “Binary Object Streaming Service” BOSS to
implement strong mobility for small processes.

Introduction

Page 30

1.6 Chapter Summaries

Chapter 2: A Conceptual Framework for Progressive Mobility
We start by presenting a conceptual framework to provide a context to describe the techniques
of progressive mobility. The framework is limited to all the concepts that are needed as a base
to describe the techniques and contains also related work in these domains.

We present a three dimensional conceptual framework for the mutually orthogonal
dimensions: Network, Application and Techniques.

In exploring the network dimension, we will discover the boundaries that will indicate the
window of opportunity for progressive mobility.

The application dimension describes relevant application properties as structure, size, user
interfaces and components. In addition, the programming environments employed in this
dissertation are presented here.

Finally, in the techniques dimension we explore relevant techniques as mobility, parallelism,
pre-fetching and other related techniques.

Chapter 3: Progressive Anticipative Mobility using Pre-fetching of Permuted Code
In this chapter, we propose a technique that applies the idea of progressive transmission to
software code. The evaluation of the digital code stream can start before the transportation
phase is completed by anticipating on the sequence of evaluation.

We start by describing the technique of code permutation that will be employed to pre-fetch
static code in order to speedup a weak mobility migration scheme. A technique to permute
Smalltalk source code is presented. The Smalltalk source code is permuted at the level of
compilable units in such a way that the units that are needed first during evaluation are placed
at the start of the source file.

A prototype tool in Smalltalk is presented that automatically permutes a Smalltalk source file
and generates a set of source code files optimized for the pre-fetching process.

The feasibility of the technique has been validated by implementing prototype tools in
Smalltalk. In this chapter we will restrain ourselves to weak mobility. We will handle
progressively strong mobility in chapter 4 and 5.

Chapter 4: Progressive Mobility using Component Streams
This chapter introduces the technique of progressive mobility with strong mobility instead of
weak mobility. Progressive mobility using component streams allows applications to migrate
from host to host without sacrificing evaluation time during the migration phase and it allows
the application to start at the receiving host much earlier.

The technique is inspired by streaming media. When streaming a running application, part of
the application will already run on the receiving host while another part is still running on the
sending host.

The feasibility of the technique has been validated by implementing prototype tools in the
Borg mobile agent environment and later also in Java and Smalltalk. Our experiments show
that this migration strategy can hide network latency almost completely.

Introduction

Page 31

Chapter 5: Progressive Anticipative Mobility using Proactive Migration
This next chapter introduces yet another technique of progressive mobility using proactive
migration, a technique that avoids the delays introduced by the former technique.

The technique sends the application code, including the computational state, in advance,
anticipatively to the remote host, before the actual migration is requested. Then, when the
actual migration takes place, we won’t transfer the complete application but only the delta of
the current computational state with the already migrated computational state. At the receiver
the computational state can be brought up to date by applying this delta to the previous
received computational state before evaluation is continued.

Chapter 6: Conclusion
We conclude in this chapter by summarizing the results obtained during the exploration of the
three themes and present some future Work.

As future research directions, we suggest, besides other things, extensions on progressive
anticipative mobility using pre-fetching of permuted code and architectural transformations to
make applications streamable.

Progressive anticipative mobility using proactive migration and evaluation is also proposed as
a new progressive migration scheme and suggestions are made to aggregate crosscutting
concerns of progressive mobility in aspects in order to make use of aspect oriented software
design, an upcoming software engineering technique.

Introduction

Page 32

A Conceptual Framework for Progressive Mobility

Page 33

2 A Conceptual
Framework for
Progressive Mobility

A Conceptual Framework for Progressive Mobility

Page 34

We present a three dimensional conceptual framework for the mutually orthogonal
dimensions: Network, Application and Techniques. These dimensions play a major role in
our research domain. In ambient intelligence environments with ubiquitous communication,
different kind of objects will cooperate in a network architecture where applications will
migrate from one node to the other. In order to facilitate these migrations we will need to
apply new and current techniques.

The framework provides a context to describe the technique of progressive mobility. The
framework provides the terminology, definitions and properties of the relevant entities in
which we describe Progressive Mobility. The framework also includes references to related
work.

Roadmap:

• Network
o Architecture
o Packet Switching
o Data Rate
o Delays in Computer Networks
o Performance
o Window of Opportunity

• Application
o Internal Structure
o Size
o Granularity
o Evaluation Time
o Delay
o User Interfaces
o Predictability
o Components
o Distributed Systems and Applications
o Choosing an Experimental Programming Environment
o Programming Languages Used

 Borg
 Java
 Smalltalk

• Techniques
o Mobility

 Host Mobility
 Evaluator Mobility
 Data Mobility
 Code Mobility
 Process Mobility
 Weak and Strong Mobility

o Server - Push versus Client - Pull
o Parallelism
o Reflection
o Compression
o Reordering and Pre-fetching
o Progressive techniques
o Other related techniques

A Conceptual Framework for Progressive Mobility

Page 35

2.1 Network
In this section we describe the relevant entities of the network dimension of the conceptual
framework.

2.1.1 Architecture
Network software is highly structured. Most networks are organized as a stack of layers, each
one built upon the one below. The set of layers and protocols is called a network architecture.
Two important network architectures are the OSI reference model and the TCP/IP reference
model [Tanenbaum 2003]. Figure 1 shows the different names for the layers.

Figure 1: OSI and TCP/IP reference model

Many of the current networks use the internet transport protocol in the transport layer. The
task of the transport layer is to provide reliable, cost-effective data transport from the sending
host to the receiving host, independently of the host-to-network layer. Be it Ethernet on
twisted pair or wireless LAN (802.11), Bluetooth, GSM, GPRS or UMTS to mention a few
well known implementations of the lower layers.

2.1.2 Packet Switching
When a sending host has a message to send to a receiving host, the sending host first cuts up
the message into packets, each one bearing its number in the sequence. These packets are then
injected into the network one at a time in quick succession. The packets are transported
individually over the network. These packets may follow different routes and may arrive in a
different order at the end point. Finally they are disposed at the receiving host, where they are
reassembled into the original message. A stream of packets is show in Figure 2 [Tanenbaum
2003].

A Conceptual Framework for Progressive Mobility

Page 36

Figure 2: A stream of packets

If the message is not cut up into packets (message switching) there is no limit on data size,
which means that routers must have disks to buffer long blocks of data. It also means that a
single block can tie up a router line for a long time thereby preventing other traffic. Another
advantage of packet switching is that the first packet of a message can be forwarded while the
next packets have not fully arrived yet, reducing delay and improving throughput. For these
reasons, computer networks are usually packet switched.

2.1.3 Data Rate
The speed of wireless data communications has increased enormously over the last years with
the emergence of technologies as HSCSD (High Speed Circuit Switched Data), GPRS
(General Packet Radio Services), and UMTS (Universal Mobile Telecommunications
Service)

HSCSD is evolved from circuit switched data within the GSM environment. HSCSD enables
the transmission of data over a GSM link at speeds of up to 57.6 kbps3. This is broadly
equivalent to providing the same transmission rate as that available over one ISDN B-
Channel.

GPRS is a packet-based wireless communication service that delivers data rates from 56 up to
114 HKbps H and continuous connection to the Internet for mobile phone and computer users.

UMTS (Universal Mobile Telecommunications Service) is a third-generation (H3GH) HbroadbandH,
HpacketH-based transmission of text, digitized voice, video, and multimedia at data rates up to 2
HMbps H. The service offers a consistent set of services to mobile computer and phone users no
matter where they are located in the world and is based on the Global System for Mobile
communication standard (HGSM H). 4

2.1.4 Delays in Computer Networks
To emphasize that delay in this context mostly means wasted time, the term latency is often
used. Latency was originally defined as: “the length of time it takes to respond to an event”
[HBarbacci 95H]. Network latency however is now an expression of how much time it takes for a
packet to get from one designated point to another.

3 One kbps equals 1000 bits per second. - To avoid ambiguity, in this dissertation, we use the SI and IEC
prefixes. [IEEE 1997] [IEC 2000] - see http://physics.nist.gov/cuu/Units/prefixes.html.
4 A comparison of different communication speeds can be found at http://www.hawaii.edu/infotech/speeds.html
and http://whatis.techtarget.com/definition/0,,sid9_gci214198,00.html [Aug 2003].

A Conceptual Framework for Progressive Mobility

Page 37

The latency assumption seems to be that data should be transmitted instantly between one
point and another (that is, with no delay at all). The contributors to network latency include:

Propagation: This is simply the time it takes for a packet to travel directly from one place
and another at the speed of light.

Transmission (transport): The medium itself (whether optical fiber, wireless, or some other)
introduces some delay. The size of the packet introduces delay in a trip since a larger packet
will take longer to receive than a short one.

Router and other processing: Each gateway node takes time to examine and possibly
change the header in a packet (for example, changing the hop count in the time-to-live field).

Other computer and storage delays: Within networks at each end of the journey, a packet
may be subject to storage and hard disk access delays at intermediate devices such as switches
and bridges.

2.1.4.1 Delays in Connection-oriented Networks
Circuit switched networks as GSM need some extra connection time to establish a connection
and after the connection is used the connection should be released. During the connection the
sender just pushes bytes in at one end and the receiver takes them out at the other end.

When a connection is established there will be sometimes a negotiation between the sender,
the receiver and the network about parameters to be used, such as data rate, maximum
message size, quality of service and other issues. Typically, one side makes a proposal and the
other side can accept it, reject it, or make a counterproposal [Tanenbaum 2003].

These connection setup times can play a significant role if one considers implementing
progressive mobility where basically one message is split up in several smaller messages
which may lead to the introduction of several connection setup times. We will discuss this
aspect for each of the explored themes.

2.1.4.2 Delays in Connectionless Networks
Packet switched networks as GPRS and TCP/IP don’t need the extra connection time as
needed in connection-oriented services, each packet carries the full destination address and
each packet is routed trough the system independent of the others. Normally, when two
packets are sent to the same destination, the first one sent will be the first one to arrive.
However if the first one is delayed it is possible that the second one arrives first. It is the
responsibility of the receiving host to restore their original order.

Splitting a message in packets and reassembling them takes time and the larger the message is
to send the more overhead time we may expect. In a classical TCP/IP protocol the packet size
ranges from 1 to 2 kByte. Sending a message of 1000 bytes instead of 500 bytes does not
increase the number of packets (only one in this case) and will not lead to a significant extra
delay.

Figure 3 shows the time needed to transport an array of Unicode characters with sizes ranging
from 1 element (16 bits) to 107 elements (1.6 E+08 bits) between two hosts5.

5 The experiment was carried out between two Dell® Inspiron 8100 computers with Intel® Pentium® III Mobile
CPU AT/AT compatible processor at 1GHz processor speed and 256 Mb RAM running Windows® 2000 and
VisualWorks 5i4.

A Conceptual Framework for Progressive Mobility

Page 38

Figure 3: Time needed to transport character arrays of different sizes in a TCP/IP network

The figure shows that the transportation time becomes linear with the size of the message
once the size of the message exceeds the packet size i.e. 2 kByte (16384 bits). Note that the
graph uses logarithmic scales for both axes. The noise on the graph is mainly caused by
garbage collection actions in the Smalltalk environment. The maximum resolution of the time
measurement in the Smalltalk environment is 1 ms. For small arrays the transportation time is
about 2ms with some variations from 1 ms to 4 ms, this explains the up and down “glitches”
in the range from 10 to 1000 bits.

2.1.5 Performance
The current fiber technology is able to achieve data rates in excess of 50,000 Gbps (50 Tbps).
The current practical limit of about 10 Gbps is due to our inability to convert between
electrical and optical signals any faster [Tanenbaum 2003]. In the race for maximum speed
between computing and communication in laboratory environments, communication won.

The TCP/IP protocol is also responsible, at the transport layer, to provide a reliable
connection between a sending host and the receiving host. This means that the arrival of
packets must be confirmed by the receiver by sending an acknowledge packet to the sender. If
after a certain time the sender did not receive an acknowledgment for a packet with a
particular sequence number, that packet will be sent again. If too many packets get lost, the
sender will assume a network congestion and will slow down in order to try to pass al its
packets.

In Figure 4 we show the time it takes to transfer a 1 Megabit file 4000 km over a fiber
connection at various transmission speeds. Note that both axes have a logarithmic scale. Up to
1 Mbps the transport time is dominated by the rate the bits can be send. By 1 Gbps, the 40 ms
round-trip delay dominates the 1 ms it takes to put the bits on the fiber. Further increases in
data rate have hardly any effect at all [Tanenbaum 2003].

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000 1E+07 1E+08 1E+09

number of bits

tr
an

sp
or

ta
tio

n
tim

e
(m

s)

A Conceptual Framework for Progressive Mobility

Page 39

Figure 4: Network protocol overhead

2.1.6 Window of Opportunity
One of the assumptions for the techniques of progressive mobility described in this thesis is
that the time to send a message (an application in our case) is directly proportional to the
number of bytes sent and the data rate offered by the underlying network technology.

As we learn from Figure 3 and Figure 4 this is only the case for messages larger than 2 kByte
and data rates almost up to 10 Mbps with a maximum of 1Gbps.

Aside from these limitations there is however a large window of opportunity where the
preconditions of progressive mobility hold. The size of the applications on which we will
apply the technique of anticipative mobility using pre-fetching of permuted code range in size
from 65 kByte to 184 kByte, far above the minimum size of 2 kByte. The data rates in current
wireless environments have an order of magnitude of 10 Mbps or lower. In 3G networks, the
ambient intelligence environment that we have in mind for these progressive mobility
techniques, a mobile may be granted 144 kbps when it is close to the base station with small
shadow fading. But if the user is in the fade zone or fringe of cell, the data rate will drop
considerably [Shaw-Kung Jong 2000].

2.2 Application
In this section we describe the relevant entities of the application dimension of the conceptual
framework.

2.2.1 Internal Structure
Many implementations of programming languages, especially those that employ garbage
collection, store their code and computational state as one chunk of memory. In this chunk we
find all the elements necessary for the evaluation of the program. Again for many language
implementations this is: a stack of some sort and a dictionary with the variable bindings and a
representation of the abstract grammar. In chapter 5 we will take advantage of these properties
to encapsulate the computational state of an application. Figure 5 shows the typical entities of
a running application.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09 1E+10 1E+11 1E+12

data rate (bps)

fil
e

tr
an

sf
er

 ti
m

e
(m

se
c)

A Conceptual Framework for Progressive Mobility

Page 40

Figure 5: Typical entities of a running application

2.2.2 Size
The size of a mobile application may vary from a few bytes to several Mbytes. A typical
environment for instance that is a likely candidate to gain from progressive mobility is the
Multimedia Home Platform. This platform is currently investigated by our research group in a
joint collaboration between Vlaamse Radio en Televisie (VRT, public broadcaster of
Flanders), and IMEC (Interuniversity MicroElectronics Center) in one of the e-VRT projects
funded by the Flemish government.

The Multimedia Home Platform accepts data (teletext, pictures, ...) and code (Java) over a
shared 2Mbps channel called a carousel that provides on a regular basis, time slots for all the
data and code to be transported to the set-top box on the television set. Typical MHP
applications range from 60–300 kB. Browser applications range between 200–400 kB. An
HTML compliant browser is not on the market yet but its expected size range between 700-
800 kB, a number of bytes that is already too large for current set-top boxes which means that
partitioning of the code will be necessary, not even to get an improved performance but just to
get it up and running anyhow.

These are sizes and data rates that perfectly fit in our window of opportunity.

2.2.3 Granularity
Granularity is the relative size, scale, level of detail that characterizes an object or activity. In
the context of this thesis, we will use the term granularity as an indication of the number of
lines of code per usable unit. We will say, for instance, that the Java environment offers a
granularity at the level of a class. It makes no sense to migrate a single Java method since the
security mechanism of Java imposes that only complete classes can be loaded and started.
Other programming environments as Smalltalk and Borg offer a much smaller granularity at
the level of methods (Smalltalk) or even expressions (Borg).

Stack Dictionary Heap Abstract syntax Tree

A Conceptual Framework for Progressive Mobility

Page 41

2.2.4 Evaluation Time
Although the theoretical maximum network speed is enormous (see section 2.1.3), in practice
we find that compared with the raw "number crunching" power of microprocessors where
processor speeds of Gbps are common, the expected 3G speed ranging from 144 kbps to 384
kbps [Tanenbaum 2003] is still several orders of magnitude slower if we compare their bit
processing speeds. According to Moore's Law6 [Moore 1965] data density on a chip doubles
every 18 months and therefore also the chip's speed increases since the distance between the
transistors is reduced. This is why CPU speeds are known to double almost every couple of
years. We expect that this will remain the case through the end of this decade.

In some maritime environments data transmission rates of 2400 bps are still in use. And in the
new standard Multimedia Home Platform (MHP), a digital video broadcasting standard
intended to combine digital television with the Internet, we find a maximum data rate of 2
Mbps (256 kB/sec) for a channel that needs to share teletext, shop images, interactive TV data
and java programs. In practice this means that if want to send an application via this channel
we might expect a maximum data rate of 5kB/sec.

2.2.5 Delay
Delay in a computer system (system latency) is often used to denote any delay or waiting that
increases real or perceived response time beyond the response time desired. Specific
contributors to computer latency include mismatches in data speed between the
microprocessor and input/output devices and inadequate data buffers. The possible time
“wasted” by a (Just In Time) compilation step, evaluation delay caused by the operating
system scheduling, concurrency problems etc.

In a mobile environment performance is measured by invocation latency. Invocation latency
is the time from application invocation to when the evaluation of the program actually begins
[Krintz et al. 1998]. It is the combination of the network latency and the system latency that
occurs before the evaluation of the application starts.

The delay between the invocation of an application and the appearance of the user interface
will be called: User interface latency in this dissertation. It is the sum of the network latency
and the system latency that occurs before the appearance of the user interface.

Within a computer, latency can be removed or "hidden" by such techniques as pre-fetching
(anticipating the need for data input requests) and multithreading, or using parallelism across
multiple execution threads.

2.2.6 User Interfaces
In information technology, the user interface (UI) is everything designed into an information
device which a human being may interact with, including display screen, keyboard, mouse,
light pen, the appearance of a desktop, illuminated characters, help messages, and how an
application program or a Web site invites interaction and responds to it. In early computers,
there was very limited user interface except for a few buttons at an operator's console. The
user interface was largely in the form of punched card input and report output.

6 The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square
inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that
this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data
density has doubled approximately every 18 months, and this is the current definition of Moore's Law, which
Moore himself has blessed. Most experts, including Moore himself, expect Moore's Law to hold for at least
another two decades.

A Conceptual Framework for Progressive Mobility

Page 42

Later, a user was provided with the ability to interact with a computer online and the user
interface was a nearly blank display screen with a command line, a keyboard, and a set of
commands and computer responses that were exchanged. This command line interface led to
one in which menus predominated. And, finally, the graphical user interface (GUI) arrived,
originating mainly in Xerox's Palo Alto Research Center, adopted and enhanced by Apple
Computer, and deployed by Microsoft in its Windows operating systems and by UNIX adepts
in X-Windows.

Applications that communicate with the user by a graphical user interface (GUI) spend a lot
of time building this GUI (see also section 3.7) which may lead to large user interface
latencies.

2.2.7 Predictability
Basic properties of program predictability – for both values and control – are defined and
studied in [Sazeides 1998]. Program predictability originates at certain points during a
program’s execution, flows through subsequent instructions, and then ends at other points in
the program.

For many applications, and especially those build with imperative programming languages, if
we launch the application over and over again, its program flow after the start will always be
the same for a certain amount of time. We call this time the predictable deterministic time
zone. The process of building the graphical user interface is typically the same each time the
application is started and thus largely predictable. As soon as the user interacts for the first
time with the application, the program flow becomes less predictable.

To a lesser extent, many applications without a user interface also seem to follow a highly
predictable process during startup until their first interaction with an unpredictable
environment such as the connection with external systems, generation of a random number
based on a real time seed delivered by the system clock etc...

As a final observation, typical source code contains a lot of low priority chunks for which it is
predictable that loading can be deferred until the last moment. Class file splitting [Krintz
2001], partitions a Java class file into separate hot and cold class files where the low priority
code is grouped in the cold class to avoid transferring code that is never or rarely used.

Examples of low priority code are:

• Exception handling (unless exeptions are used to structure the program flow)
• Code from abstract methods (e.g. in Smalltalk: self subclassResponsibility)
• Code from cancellation methods (e.g. in Smalltalk: self shouldNotImplement)
• Program parts that are not used in the predictable time zone
• Code that is only needed for testing and debugging purposes

2.2.8 Components
Composition is the act of applying a composition operator (that forms part of a composition
model and theory) in a given context. Components are the subjects of composition.
Composites (also called assemblies) are the results of composition. [Szyperski 2003].

A software component has to be a unit of deployment. Furthermore, to enable dynamic
scenarios, it has to also be a unit of versioning and replacement. [Szyperski 2003]

Usually, a component provides a particular function or groups related functions. In
programming design, a system is divided into components.

A Conceptual Framework for Progressive Mobility

Page 43

In object-oriented programming and distributed object technology, a component is a reusable
program building block that can be combined with other components to form an application.
Components can be deployed on different servers in a network and communicate with each
other for needed services. A component runs often within a context called a container.

Coupling and cohesion are attributes that summarize the degree of interdependence or
connectivity among subsystems and within subsystems. We can define cohesion in terms of
intramodule coupling, normalized to between zero and one [Edward 2001].

An object-oriented information system is decomposed into entities; each entity is decomposed
into classes of objects. Good object-oriented system design should exhibit high cohesion
inside entities and low coupling among entities. In the research literature metrics are
proposed for cohesion and coupling and can be used to define a quality metric at the system
level [Nejmeddine 2002].

Component-based software development stands for software construction by assembling
independent building blocks. Typical component models are the Component Object Model
(COM) and JavaBeans. These models prescribe standards for the collaboration of independent
applications, which should yield improved development productivity and, in particular, more
adaptable software. Notable success has been reported for systems implementation in well-
understood application domains, such as graphical user interfaces [Nierstraz 1995]. The
building of the user interfaces in an object oriented environment is mostly delegated to one
instance of a designated class.

The technique of progressive mobility splits existing applications into components that also
should exhibit high cohesion inside entities and low coupling among entities. The components
will constitute the parts that will be transported, progressive in time, from a sender to a
receiver.

2.2.9 Distributed Systems and Applications
There is some mix-up in the literature between the notion of a computer network and a
distributed system. A distributed system is a collection of independent computers that
appears to its users as a single coherent system. Usually, it has a single model or paradigm
that it presents to the users. Often a layer of software on top of the operating system, called
middleware is responsible for implementing this model [Tanenbaum 2003]. A well-known
example of a distributed system is the World Wide Web, in which everything looks like a
document.

In this dissertation we describe distributed applications. Sometimes these applications
become only temporarily distributed during the process of migrating component by
component from a sender to a receiver.

2.2.10 Choosing an Experimental Programming Environment
The experiments conducted for this dissertation where performed in mainly three different
programming environments. Our first choice was always Smalltalk for it allows fast
prototyping and provides reflection, promising easy access to runtime structures e.g. the
execution stack of processes. Smalltalk is a programming language, where the objects that
define the language are themselves built with the language. Hence in Smalltalk, code entities
such as classes and methods are themselves programmable and extensible objects, just like
any other Smalltalk object. Smalltalk represents processes as objects. The VisualWorks
Smalltalk environment that we employed comes with an add-on: Opentalk that provides an
environment for the development and deployment of distributed applications.

A Conceptual Framework for Progressive Mobility

Page 44

As it turned out, Smalltalk did not always deliver as promised. Freezing a process object,
migrate it to another host and restart the process over there was not as simple as we thought it
should be. Sometimes, for small applications, we could make a workaround using Boss as
serializer but for the rare occasions that Smalltalk let us down we moved to a language that
was built for the migration of processes in the first place: Borg.

Finally, when the proof of concept was achieved we implemented as much as possible a
similar system in a more widely adopted language: Java. In order to obtain sufficient support
for our experiments we extended the basic Java environment with the RMI system and the
µCode toolkit [Picco 1998].

2.2.11 Programming Languages Used
We describe these programming environments, their properties and frameworks used in
alphabetic order:

2.2.11.1 Borg
Borg [Van Belle et al. 2001] is a mobile agent environment developed at the Programming
Technology Lab of the Vrije Universiteit Brussel. Borg is an extension of Pico [D’Hondt
2003], a functional, dynamically typed, statically scoped language.

An agent is an active autonomous software component that is able to communicate with other
agents. The term mobile indicates that an agent can migrate to other agent systems, while
carrying its program code and data.

The Borg system provides a platform with active autonomous agents, which communicate
with each other over a network, and which are able to migrate over this network. The Borg
agents can be considered as mobile components. In general, components are not active entities
but in the Borg context, a component is an active piece of code, which can communicate with
other components on the network. A Borg component is able to migrate to other machines. A
component's state can only be modified by sending a message to that component; all data of a
component is private. Note that component is not the same as object. Components are active
entities with independent private data. A component usually consists of a number of objects.
We will interchangeably use the terms component or agent during the remainder of this paper.
The term component indicates the fact that the entity is a part of a greater entity: the
application. The term agent refers to the autonomous role of the entity. In the Borg
environment, an application consists of a number of cooperating components.

Besides other, in this context less relevant properties, the Borg mobile architecture features:

• Strong mobility
A component can migrate between agent systems during its evaluation. Strong mobility is
seldom found in current, Java-based, agent systems due to some technical drawbacks of Java.
Because Borg has the ability to reify the complete computational state of a running process,
including its runtime stack, strong mobility is one of its standard features.

• An easy to use agent communication layer.
 The communication layer consists of a serializer and an objectcall-like syntax; it allows
agents to pass messages to each other. Agents always communicate in an asynchronous
fashion. The reasoning behind this design decision is the notion of being autonomous: an
agent should be designed as a separate entity, sending messages to, and receiving messages
from other agents, not as an entity which transfers its control flow to other agents.

A Conceptual Framework for Progressive Mobility

Page 45

• A hierarchical naming / routing system
Every agent has a human-readable name, which is always used to reference it. The naming
system favors late binding, in the sense that we bind agents to each other at evaluation time,
not at compile time, as we partially do with objects. There is no distinction between the name
of an agent and the address of an agent. Instead of resolving the name of an agent to its place,
messages are immediately routed to an agent based upon the receiver's name. This means, of
course, that we need to change the existing communication infrastructure substantially. We no
longer have a statically interconnected routing infrastructure and a separate, statically
interconnected naming infrastructure; instead we have one hierarchical infrastructure in which
we name agents and route messages between them.

• A location-transparent distribution layer
An agent can send messages to other agents, without having to know where the other agent
resides. For example, if agent 'Alice' talks to agent 'Bob', and 'Bob' migrates to the agent
system at the end of the universe, Borg keeps on routing messages between Bob and Alice
using the shortest path between them. To provide this functionality the name server and
router are merged into one entity.

• Resource Transparency
All resources in the mobile agent system (disks, user interfaces and so on) are represented as
static agents (which cannot migrate). So whenever we migrate an agent, it stays connected to
the resources it was using.

• Garbage Collection
A state of the art, highly performant garbage collector is incorporated into the system.

• Synchronizing agents
This is performed by using a rendez-vous between multiple agents. This rendez-vous can be
in time and/or in space (synchronize at a certain computer). The primitives themselves are
based upon CSP [Hoare 1985], with the exception that as guards, unification is used instead
of sequenced statements.

2.2.11.2 Java
Java is a language that has been widely adopted for writing mobile code. The reason for this
is the built-in support for a lot of features needed in mobile code. Java supports class
serialization; this enables objects to be written to a serialized stream or to be read from a
serialized stream into an object. Remote Method Invocation (RMI) [Sun 2002] is also a
standard feature of Java; it allows a program to invoke methods of objects that exist on other
Java Virtual Machines. It is possible to run a Java program on any machine that implements a
Java Virtual Machine (JVM), because Java compiles its source-code into byte-code. This
allows mobile code to be used on heterogeneous networks. Java also provides a class loader, a
mechanism to retrieve and dynamically link classes in a running JVM, even from a remote
location. This automatically supports weak mobility (see section 2.3.1.6).

RMI
The Java Remote Method Invocation (RMI) system allows an object running in one Java
Virtual Machine (VM) to invoke methods on an object running in another Java VM possibly
on different hosts. RMI provides for remote communication between programs written in the
Java programming language. RMI uses object serialization to marshal and unmarshal
parameters and does not truncate types, supporting true object-oriented polymorphism.

A Conceptual Framework for Progressive Mobility

Page 46

µCode
Even with all the advantages of Java, it has one major drawback: it is impossible to serialize
the runtime stack which makes it impossible to make use of strong mobility in a standard Java
environment. To overcome this limitation we deployed a mobile-code toolkit called µCode
[Picco 1998], an extension of the Java environment. The basic operations provided by µCode
enable creation and copy of thread objects on a remote µServer, and class relocation among
µServers. A µServer is an abstraction of the run-time support and represents a computational
environment for mobile threads. µCode supports synchronous and asynchronous invocation,
as well as deferred and immediate evaluation of mobile code.

The unit of migration is the group, a container for classes and objects. Classes can be added to
the group either individually or collectively by computing the transitive closure of a given
class.

µCode contains a small set of abstractions and mechanisms that can be used directly by the
programmer or composed in higher level abstractions for the creation of mobile code. It is
written in Java to make it portable on all platforms. µCode is not a mobile agent system, but it
focuses on mobility of code and state (Java classes and objects). µCode features a
CopyThread-method, which allows us to copy a running thread, while keeping its internal
state. Threads are objects in Java that allow concurrent programming; they have their own
namespace, and appear to run as if they have the processor for themselves. By using the
CopyThread-method, threads can be moved from one host to another.

µServers are µCode programs that form a layer between the Java code and the µCode
programs. If we run µServers on two hosts, the available abstractions in µCode allow us to
migrate a running thread from the sending to the receiving host. At arrival, the thread is
restarted with the instance variables in the same state they had at the evaluation point where it
was suspended before sending. This feature of µCode allows us to apply progressive mobility
using component streams in a Java environment. There is no need to change the Java Virtual
Machine or any standard libraries, so we preserve the full portability to all Java platforms.

2.2.11.3 Smalltalk
Smalltalk is a language, a complete class library, and an interactive programming
environment rolled into one seamless whole. [Cincom 2003]. Smalltalk was developed at the
Xerox Palo Alto Research Center in the '70s.

Smalltalk runs on a virtual machine, an abstract computer that can be implemented on
different processors to provide a binary-portable execution environment. More recently, Java
has popularized this implementation scheme.

In their desire to provide an interactive graphical environment the PARC Smalltalk group
invented overlapping windows and pop-up menus, within the Smalltalk environment. Steve
Jobs saw the Smalltalk environment at PARC in the eighties, took the ideas back to Apple and
incorporated them in the Lisa and the Mac. The windowing environment pioneered in
Smalltalk is now the common UI environment on most desktop computers.

Smalltalk performs automatic memory management (known as garbage collection), to relieve
the programmer of the error-prone task of reclaiming unused storage.

Smalltalk introduced the notion of a reflective programming language, whereby the objects
that define the language are themselves built with the language. Hence in Smalltalk, code
entities such as classes and methods are themselves programmable and extensible objects, just

A Conceptual Framework for Progressive Mobility

Page 47

like any other Smalltalk object. Smalltalk even represents processes and method activations as
objects. The use of Smalltalk objects to define the Smalltalk system itself allows the
programmer to extend the language and environment.

Smalltalk is a dynamic implicitly-typed language where objects, not variables, carry type
information, freeing the programmer from declaring variable types, but still providing
complete type-safety [Cincom 2003].

Boss
The VisualWorks “Binary Object Streaming Service” (BOSS) is an important tool for
converting most types of Smalltalk objects into a compact binary representation that requires
relatively little memory space. Although BOSS is used mainly to store objects in and retrieve
from a file, it can also be used for other purposes such as sending objects across a network.
BOSS is implemented by a group of Smalltalk classes in category System-Binary Storage.
BOSS writes objects onto a Stream: the Stream class provides a framework for a number of
data structures, including input and output functionality, queues, and endless sources of
dynamically- generated data. A Smalltalk Stream is similar to UNIX streams and provides a
sequential view on an underlying resource; when reading or writing elements, the stream
position advances until the end of the underlying medium has been reached.

Opentalk
Opentalk is a VisualWorks add-on that provides an environment for the development and
deployment of distributed applications. Opentalk contains frameworks and components for
creating or extending communication protocols, object services, remotely targeted user
interfaces, remote development tools, and other architectural components common to
distributed systems.

This Communication Layer consists of those components that define the base communication
framework, several Smalltalk-to-Smalltalk communication protocols, and a select set of base
services. It provides a set of frameworks and components for use by protocol developers who
are creating protocol layers in VisualWorks, operating on top of either the TCP/IP or UDP
transport layers.

Apart from being a distributed component “construction kit,” the Opentalk Communication
Layer provides a number of immediately useful components. There is a complete object
request broker implementation that supports configurations using several kinds of object
adaptors that exploit either TCP or UDP sockets. Brokers can be configured to use standard
unicast communication or multicast and broadcast messaging. A set of basic services is also
provided. Any application wishing to send or receive remote requests needs to create and
maintain a request broker. Request brokers provide transparent remote communication
between Smalltalk images and represent the communication layer to communicating
applications.

The latest version of Opentalk (VisualWorks 7.1) provides four passing modes: Pass-by-
reference, the default passing mode, pass-by-value for small objects, pass-by-name for
entities with a more global scope such as Classes and pass-by-OID (Object IDentifier), a
species of 'pass-by-name' for domain class instances. The standard passing mode can always
explicitly overridden by another passing mode.

A Conceptual Framework for Progressive Mobility

Page 48

In the case of anticipative mobility and proactive migration and evaluation some selected
objects are replicated to all involved potential receivers. In such cases, if a replicated object is
an argument to a remotely invoked operation, it is a waste of resources to pass the replicate by
either reference or value. Pass-by-reference entails remote message sends; pass-by-value
entails the marshaling of a complete copy. In contrast, pass-by-OID allows anticipative
migrated objects to be passed by no more than the object identifier under which they were
pre-registered in the object tables of both the sending and the receiving object adaptors. A
passed-by-OID object, on receipt, resolves to either (a) its local replicate or (b) an exception if
the passed OID has not been pre-registered at both sending and receiving locales.

2.3 Techniques
In this section we describe the relevant entities of the techniques dimension of the conceptual
framework.

2.3.1 Mobility
Mobility (the quality of moving freely) and migration (moving from one place to another) are
natural processes and stem from a desire to move either toward resources or away from
threats.

If we look at the entities available in a computational process, we distinguish the host
environment, the evaluator, the data, the code and the state of the process itself. All of these
entities, separate or grouped, are possibly subject to migration (Figure 6).

Figure 6: Entities subject to migration

2.3.1.1 Host Mobility
Portable computers, PDA’s and wearable computers are intended to move by their own nature
and by moving the host we also move its code, data, evaluator and process. Since they are
contained in the host machine they are an integral part of it. Moreover, motion is relative, if
we walk around with a PDA in our pocket all the host computers of the world are in a relative
motion too. Some of the applications on these host machines need to be aware of their relative
motion.

One of the goals of ubiquitous, pervasive computing is to embed more computers into our
daily environment, and yet make them less noticeable. To do so, applications in these smart
spaces or intelligent environments use information about the environment to adapt to the
changing context in which they run. These applications need to be aware of their
environment; they need to know the location of people and of their mobile devices, the
current weather or traffic conditions, the status of computational and human services, and so
forth.

Pervasive-computing applications must be aware of the context in which they run and move.
These context-aware applications should be able to learn and dynamically adjust their

data code state

evaluator

host

A Conceptual Framework for Progressive Mobility

Page 49

behaviors to the current context, that is, the current state of the user, the current computational
environment, and the current physical environment, so that the user can focus on his current
activity [Chen 2002].

2.3.1.2 Evaluator Mobility
A mobile evaluator seems a strange idea at first glance but they are common practice. If Java
byte codes arrives in a Web browser they trigger automatically the launch of an evaluator for
the byte codes, here a Java Virtual Machine. The evaluator code, available on the hard disk, is
loaded to the memory to be evaluated by the underlying host machine. Sometimes if the
evaluator code is not yet available on the hard disk it can be migrated over the internet to the
host machine.

Some mobile code security mechanisms attach the evaluator to the code so as to be sure that
the code will be evaluated with the correct non-tampered-with evaluator.

2.3.1.3 Data Mobility
Historically data was the first entity that became mobile. A large amount of data was stored
on external memory as magnetic or optical cards, tapes or disks. This external memory was
monitored by a powerful machine. The combination of the two is usually called a Database.
If a user needs some information he7 would launch a query and the resulting data was
migrated to the user. It leads to the very popular client-server paradigm.

Client-Server Paradigm: In this paradigm, see Figure 7, a server provides a set of services
including access to resources like databases. The implemented code of these services is
realized on the server and processed by the server. The server has the know-how, the
resources, and the processor. The client uses the services provided by the server [Lange et al.
1998].

Figure 7: Client-Server Paradigm

2.3.1.4 Code Mobility
Sometimes code is hardwired, in the host machine. Often this is the case in embedded
systems, a combination of computer hardware and software that is specifically designed for a
particular kind of application. But most of the times before the code is evaluated it is loaded
from a storage medium as a hard disk to a fast memory medium as DRAM to become
evaluated. Although this kind of internal code transport is not called mobile code or code
migration, several techniques described in this dissertation are also applicable to code loading.

In recent years we have witnessed the appearance of new paradigms for designing distributed
applications where the application components can be relocated dynamically across the hosts
in a network. This form of code mobility lays the foundation for a new generation of
technologies, architectures, models, and applications in which the location at which the code
is evaluated comes under the control of the designer, rather than simply being a configuration

7 he should be read as he or she throughout this dissertation.

Server Client

Know
how

A Conceptual Framework for Progressive Mobility

Page 50

accident [Picco 2001]. It allows for new functionalities such as local resource access and
dynamic load balancing.

Mobile code has an inherently dynamic character: Component interaction models need not
be fixed at design time, but can change according to the states of the software environment.
Mobility holds the promise of truly dynamical architectures, capable of changing their
topological layout and their interactional properties in response to split-second changes in
system requirements.

Security can be implemented less statically: mobile agents can go to secure locations when
security is important, or can choose to roam in less strict environments when it is not - and a
better performance can be gained. The concept of security in a system will move from being a
static property to being a service that can be offered for those components that might need it
at some point in time, and that will be ignored if the service is not needed.

Besides the fact that a mobile agent can move to resources to interact locally with them, the
agent itself can also be considered a computational resource. As such, it might be
summoned when it is needed in a local computation somewhere else in the system, and be
dismissed afterwards.

Mobile code comes in many forms and shapes. [Fuggetta et al. 1998] Mobile code can be
represented by machine code, allowing maximum evaluation speed on the target machine but
in doing so sacrificing platform independence. Alternatively, the code can be represented as
bytecodes, which are interpreted by a virtual machine (as is the case for Java in the Jini
framework [Arnold et al. 1999] and Smalltalk). The use of intermediate bytecodes provides
platform independence, a vital property in worldwide heterogeneous networks. The third
option, which also provides platform independence, consists of transmitting source code or
program parse trees [Franz and Kistler 1997].

Using source code as a transport medium in low data rate networks appears to be not such a
bad idea at all: The same program representation contains less bytes if it represented by its
source code instead of its compiled version since (1) It does not contain the libraries and other
stuff added by the linker, (2) since a higher level language is more expressive than machine
code; it allows: “saying more with less words”. (3) The source code in ASCII allows a high
compression rate using standard compression algorithms.

To obtain maximum execution speed an extra compilation step is necessary after the
transmission but the speed of the compilation process that generates native machine code is
typically much faster than the transportation time of the resulting byte codes over a low-data
rate network .

In what follows we describe three mobile code paradigms.

Code-on-Demand Paradigm
According to this paradigm, see Figure 8, you first get the know-how when you need it. A
host, called the client, gets the code from another host, called the server, when it needs it. The
client holds the processor capabilities and the local resources, but does not need preinstalled
code. The server has the know-how and resources. Java Applets are typical examples. Applets
get downloaded in Web browsers and evaluate locally [Lange et al. 1998].

A Conceptual Framework for Progressive Mobility

Page 51

Figure 8: Code-on-Demand Paradigm

Remote Invocation Paradigm
According to this paradigm, see Figure 9, the know-how is sent to a server for evaluation. A
host, called the client, sends the code to another host, called the server, when needed. The
server holds the processor capabilities and the local resources, but does not need preinstalled
code. The client has the know-how. Java Servlets are examples if they get uploaded to remote
servers and evaluate there [Carzaniga et al. 1997].

This paradigm can also be viewed as a special case of the code on demand paradigm [Lange
et al. 1998] where it is the server that “asks” for the code.

Figure 9: Remote Invocation Paradigm

Mobile Agent Paradigm
Clients and server merge to hosts. Any host in a network holds any mixture of know-how,
resources, and processors. The code in form of mobile agents is not tied to a single host, but is
available throughout the network [Lange et al. 1998]. See Figure 10.

Server Client

Know
how

Server Client

Know
how

Know
how

Server Client

Know
how

Know
how

Server Client

Know
how

A Conceptual Framework for Progressive Mobility

Page 52

Figure 10: Mobile Agent Paradigm

Mobile code and mobile agents hold the potential to share the next generation of technologies
and models for distributed computation. The first steps of this process are already evident
today: Web applets provide a case for the least sophisticated form of mobile code, Java-based
distributed middleware makes increasing use of mobile code, and commercial applications
using mobile agents are operational [Picco 2001].

The term agent refers to the function of the mobile code i.e. the task of representing a query
or a service for a human or non-human client. Also the term mobile objects is often used to
indicate that code, data, and a thread is moved. In this thesis we will use the term agent only if
we want to focus of its representative function, but mostly we make abstraction of the current
task and structure and use the more generic term mobile code.

2.3.1.5 Process Mobility
A process is an instance of a program running in a computer. It is started when a program is
initiated and is characterized by a state and an address space trough which the code and data
can be accessed. At the machine level the state contains at least the program counter, the
program status (flags) a stack pointer and the general registers.

Mobile agents that move as a process are called strong migration agents in contrast to weak
migration agents where only the code is moved from one host to another and restarted from
scratch. [Fuggetta et al. 1998].

Not all high level programming environments provide the necessary reflection to grant the
application access to its own computational state, but if this level of reflection is available we
may apply similar approaches on process mobility as the one we find at lower levels in the
computer architecture hierarchy e.g. the operating systems.

A process is a key concept in operating systems. It consists of data, variable storage, and the
state specific to the underlying Operating System (OS), such as parameters related to process,
memory, and file management. A process can have one or more threads of control; threads,
also called lightweight processes, containing their own variable storage, but share a process’s
address space and some of the operating-system-specific states, such as signals.

Migration performance of operating systems depends on initial and run-time costs introduced
by the act of migration [Milojicic et al. 1999]. The initial costs stem from state transfer.
Instead of at migration time, some of the state may be transferred lazily (on-demand), thereby
introducing extra run-time costs. Both types of cost may be significant, depending on the
application characteristics, as well as on the ratio of state transferred eagerly/lazily.

Agent

Know
how

Agent

Know
how

Network

Host Host

A Conceptual Framework for Progressive Mobility

Page 53

If only part of the process state is transferred to another node, the process can start its e
valuation sooner, and the initial migration costs are lower. This principle is called lazy
evaluation: and was also applied in our pre-fetched code experiments. Actions are not taken
before they are really needed with the hope that they will never be needed.

However, when everything is needed, penalties are paid for postponed access. For example, it
is convenient to migrate a huge address space on demand instead of eagerly. In the lazy case,
part of the space may never be transferred if it is not accessed. A process address space
usually constitutes by far the largest unit of process state; not surprisingly, the performance of
process migration largely depends on the performance of the address space transfer.

Various data transfer strategies have been proposed in order to avoid the high cost of address
space transfer [Milojicic et al. 1999].

• The eager (all) strategy copies all of the address space at the migration time. Initial costs
may be in the range of minutes.

• The eager (dirty) strategy can be deployed if there is remote paging support. This is a
variant of the eager (all) strategy that transfers only modified (dirty) pages. Unmodified pages
are paged in on request from a backing store. Eager (dirty) significantly reduces the initial
transfer costs when a process has a large address space.

• The Copy-On-Reference (COR) strategy is a network version of demand paging: pages are
transferred only upon reference. While dirty pages are brought from the source node, clean
pages can be brought either from the source node or from the backing store. The COR
strategy has the lowest initial costs, ranging from a few tens to a few hundred microseconds.
However, it increases the run-time costs, and it also requires substantial changes to the
underlying operating system and to the paging support.

• The flushing strategy consists of flushing dirty pages to disk and then accessing them on
demand from disk instead of from memory on the source node as in copy-on-reference. The
flushing strategy is like the eager (dirty) transfer strategy from the perspective of the source,
and like copy-on-reference from the target’s viewpoint. It leaves dependencies on the server,
but not on the source node.

• The precopy strategy is used to augment the process availability in the same sense as
proactive migration. It reduces the “freeze” time of the process, the time that process is
neither evaluated on the source nor on the destination node. While the process is evaluated on
the source node, the address space is being transferred to the remote node until the number of
dirty pages is smaller than a fixed limit. Pages dirtied during precopy have to be copied a
second time.

2.3.1.6 Weak and Strong Mobility
If an executable component is migrated before the application has started it suffices to send
over its code and start it up in the same manner as applets are loaded to a web browser and
started. If, however, the application was already running before migration, one should send
not only the bare code but also the intermediate values of the local variables of that evaluation
unit and the information of the exact point in evaluation where the entity was stopped to be
able to resume it at the same point. This extra information is usually referred to as the
computational state and runtime stack. This kind of migration is known as strong mobility
while the former is called weak mobility [Fuggetta et al. 1998]. In the remainder of this
dissertation we will refer to the computational state to indicate the values of all the variables
of the application including the runtime stack.

A Conceptual Framework for Progressive Mobility

Page 54

A typical way of moving an application from host to host is composed of the nine sequential
steps from Table 1 (page 26). Strong and weak mobility only differ in the way the current
state of the process is packed and unpacked. In strong mobility the computational state and
runtime stack is contained in the same package, in weak mobility the state (or part of it) is
passed by parameters under control of the programmer.

2.3.2 Server - Push versus Client - Pull
The dominant paradigm of communication on the world-wide web and in most distributed
systems is the request-reply or client-pull model. In this model of distributed information
systems, a client actively “pulls” information from the server. Since the early days of the
Internet, systems such as electronic mail and Usenet News have attempted to overcome the
deficiencies of this pull model by allowing producers of information to “push” their
information closer to the clients. In the push model, an information producer announces the
availability of certain types of information, an interested consumer subscribes to this
information. The producer periodically publishes the information (pushes it to the consumer).

Several reasons motivate the need for push systems. The most important one is that the
WWW is based on a simple request/reply scheme [Berners-Lee 1996] that requires the user to
issue a request whenever he needs information. This imposes a “synchronous” interaction
scheme, whereas push systems allow asynchronous information distribution: Ideally,
whenever information of the user’s choice becomes available it gets distributed [Hauswirth
1999].

The idea behind code-on-demand was the thin client or network computer. In this view a
workstation should only contain the bare minimum of the operating system, possibly in a non-
volatile ROM, all the extra software that is needed is loaded from the network, in the same
sense that Java Applets are loaded and evaluated on the client. The main advantage of this
scheme is that it allows maintaining a centralized codebase and that installation and
maintenance problems of the clients are virtually eliminated. Software update mechanisms
become very simple since they only need to adapt the central code base. Larger applications
may apply dynamic binding of lean software [Wirth 1995] where, as an example, the help
dialog is only loaded if activated.

The main disadvantage of this setup is that interoperable code always needs to be available
behind the scenes and that long delays may be expected at start up. Moreover a client-pull
setup will always need an extra communication step to send the request to the server. This
makes the pull strategy inherently slower than the push strategy we adopted for progressive
anticipative mobility using pre-fetching of permuted code.

A combination of the two paradigms is possible however. If a pre-fetching scheme is applied,
then, once the predictable time zone is surpassed and the not all the code is loaded yet, the
server has to rely on statistical data to predict the next chunk of code that is needed at the
client. This is the time that the client can come to help by giving some hints to the sender. If
the client communicates to the sender the exact place in the code it is halted, at a semaphore
or another synchronization mechanism, the sender might be able to determine the appropriate
next chunk of code.

2.3.3 Parallelism
Actual computer architectures provide separate processors for input/output (code loading) and
main program evaluation. Disk controllers, modems and network controllers contain their
own processing units. This enables us to send code to another host in parallel with the
evaluation of the main application. We also see new upcoming techniques that favor the use

A Conceptual Framework for Progressive Mobility

Page 55

of parallelism e.g. hyper-threading technology [Intel 2002] which enables thread-level
parallelism by duplicating the architectural state on each processor, while sharing one set of
processor evaluation resources. When scheduling threads, the operating system treats the two
distinct architectural states as separate "logical" processors. This allows multi-processor
capable software to run unmodified on twice as many logical processors. While hyper-
threading technology will not provide the level of performance scaling achieved by adding a
second processor, benchmark tests show that some server applications can experience 30
percent gain in performance [Intel 2002]. We now already witness the introduction of high
performance architectures as the Cray MTA-2 processor. Each MTA processor has up to 128
RISC-like hardware threads. Each thread is a hardware stream with its own instruction
counter, register set, stream status word and target and trap registers. In a few years we may
expect up to 20 different threads running on one standard microprocessor chip.

To take full advantage of possible parallelism one is compelled to split up a problem in
independent threads.

Amdahl's Law [Amdahl 1967] is a law governing the speedup of using parallel processors on
a problem, versus using only one serial processor.

In chapter 4 we propose a technique that requires the division in components of an existing
application. Since we have to split our application in different components anyhow we might
apply existing techniques devised for parallel programming [Attali et. al 2000, Caromel et al.
1998] to split up the application in different components. Moreover, it might be advantageous
to obtain concurrent processes at the same time. We will report on our experiments in section
4.6.5.2.

2.3.4 Reflection
Reflection is the ability for a program to manipulate its state and behavior as data during its
evaluation [Maes 1987]. There are two aspects to reflection:

• Introspection:
Makes it possible for an application to observe and reason about its state and behavior.

• Intercession:
The ability for the application to modify its evaluation state or alter its interpretation or
semantics.

We will rely on reflection to be able to capture the computational state of our applications,
mostly to implement strong migration. This level of reflection is not offered by most classical
programming environments, this why we will make use of languages as Borg, Smalltalk and
special toolkits for Java.

2.3.5 Compression
File compression is used to hide network latency by decreasing the number of bytes
transferred through the use of compact encoding mostly without the knowledge of the type of
underlying data. The resulting size of compressed files (compression ratio) is dependent upon
the complexity of the encoding algorithm. Typically, a similar complexity is required for
decompression of the file prior to its use. Techniques with a high compression ratio
necessarily need more time to decompress. Techniques with fast decompression rates are
unable to achieve aggressive compression ratios.

A Conceptual Framework for Progressive Mobility

Page 56

Since compression techniques must trade of compression ratio for decompression time the
latter must also be considered a source of invocation latency since it occurs online while the
program is executing.

To minimize this latency, a compression technique should be selected based on the underlying
resource performance, network, CPU, etc… Moreover since such performance is highly
variable [Wolski 1998] selection of the best compression algorithm should be able to change
dynamically. Such adaptive ability is important since the selection of a non-optimal format
may result in substantial total latency.

In order to address this selection problem Krintz [Krintz 2001] introduces Dynamic
Compression Format Selection (DCFS) a methodology for automatic and dynamic selection
of competitive compression formats. Using DCFS, mobile programs are stored at the server in
multiple compression formats. DCFS is used to predict the compression format that will result
in the smallest amount of network latency given the data rate predicted to be available when
transfer is triggered.

Code compression is another way to reduce overhead introduced by network delay. Several
approaches to compression have been proposed to hide network delay in mobile code
environments. J. Ernst [Ernst et al. 1997] describes an executable representation that is
roughly the same size as gzipped x86 programs and can be interpreted without
decompression. M. Franz [Franz and Kistler 1997] describes a compression format called
Slim binaries, a compression scheme based on adaptive methods such as LZW [Ziv and
Lempel 1977], but tailored towards encoding abstract syntax trees rather than character
streams. It takes advantage of the limited scope of variables in programming languages, which
allows to deterministically prune entries from the compression dictionary, and uses prediction
heuristics to achieve a denser encoding.

The technique of code compression is orthogonal to the techniques proposed in this paper,
and can be used to further optimize our results.

2.3.6 Reordering and Pre-fetching
One way to avoid invocation delay is to ensure that only those methods that will be executed
are transferred across the network. Sirer et al. [Sirer 1999] describes such an optimization
based on repartitioning of Java applications into modules that utilize network data rate more
effectively. Other Java based techniques, Class File Splitting and Pre-fetching and Non-Strict
Execution for Mobile Programs are proposed by Krintz [Krintz et al. 1999, Krintz et al. 1998].

2.3.6.1 Profiling
To determine the optimal ordering of code so that pre-fetching becomes possible, a more
thorough analysis of the code is needed. This can be done either statically, using control flow
analysis, or dynamically, using code instrumentation. Both techniques are empirically
investigated in [Krintz et al. 1998] to predict the first use ordering of methods in a class.
These techniques are directly applicable to our approach as well. More sophisticated
techniques for determining the most probable path in the control flow of a program are
explored in [Jason and Patterson 1995].

The static and dynamic profiling techniques used to determine the hot and cold parts can also
be used to measure the dynamic behavior of our application. The obtained profile will allow
us to predict ideal proactive migration points so that possible complications with sudden large
memory allocations (section 5.6.4) can be avoided.

A Conceptual Framework for Progressive Mobility

Page 57

2.3.6.2 Class File Splitting and Pre-fetching
Reordering of code and data is also essential for reducing transfer delay. One possibility to
accomplish this is by splitting Java code (at class level) into hot and cold parts [Krintz et al.
1999]. The cold parts correspond to code that is never or rarely used, and hence loading of
this code can be avoided or at least postponed.

Class file splitting partitions a class file into separate hot and cold class files, to avoid
transferring code that is never or rarely used. Class file splitting helps reduce the overall
transfer delay and invocation latency. Invocation latency is the time required to begin
evaluation of a program. In Java, this includes the time for transfer and load as well as any
additional file processing required by the evaluation environment, e.g. verification.

Class file pre-fetching inserts pre-fetch commands into the bytecode instruction stream in
order to overlap transfer with evaluation. The goal is to pre-fetch the class file far enough in
advance to remove part or all of the transfer delay associated with loading the class file.

Java class file splitting was proposed by T. Chilimbi [Chilimbi et al. 1992] to improve
memory performance. The goal of their research was to split infrequently used fields of a
class into a separate class.

The splitting algorithm relies on profile information of field and method usage counts. With
the profile information as input, a static bytecode tool performs the splitting.

Class file pre-fetching is an optimization that is complementary to class file splitting. Pre-
fetching class files masks the transfer delay by overlapping transfer with computation, i.e.,
class files are transferred over the network while the program is evaluated. In the optimal
case, this overlap can eliminate the transfer delay a user experiences. Effective pre-fetching
requires (1) a policy for determining at what point during program evaluation each load
request should be made so that overlap is maximized, and (2) a mechanism for triggering the
class file load to perform the pre-fetch.

Figure 11: Splitted classes

Global Data

Void main(...){
...
A Thread.pre-fetch(Class
B);
...
foo();
...
varB = new B();
...
}

void foo() {...}

void mumble(){...}

Global Data

B() {...}

Bar(...)

Class A Class B

A Conceptual Framework for Progressive Mobility

Page 58

Figure 12: Class pre-fetching

Figure 11 and Figure 12 show the benefit of splitting and pre-fetching, The first class to be
transferred is class A, and evaluation starts with the main routine. While executing main, a
pre-fetch request initiates the loading of class B. We insert a pre-fetch request for class B,
since it is needed when the first-use for class B is evaluated at the new B() instruction in main.
If the evaluation of class A, after the pre-fetch and before this first reference to class B, takes
more time than the transfer of B, the statement new B() will evaluate without waiting on the
transfer of B. On the other hand, if there are not enough useful compute cycles to hide class
B’s transfer (that is, the time to transfer class B is greater than the number of cycles evaluated
prior to A’s instantiation of B), then the program must wait for the transfer of class B to
complete before performing the evaluation of new B(). In either case, pre-fetching reduces the
transfer delay since without pre-fetching evaluation stalls for the full amount of time
necessary to transfer class B.

With verified transfer, class file splitting reduces the startup time by 10% on average. Without
code verification, the startup time can even be reduced slightly more.

2.3.6.3 Non-Strict Execution for Mobile Programs
Overlapping execution with transfer using non-strict execution [Krintz et al. 1998] was
proposed and simulated to parallelize the processes of loading and compilation/evaluation, a
technique that is also adopted by this dissertation. To reorder the procedures in a first-use
mode they used as a first approach static program estimation to predict the order of invocation
for procedures, a second approach uses first-use profiling to create a profile indicating the
order of invocation.

Static First Use Estimation uses a static call graph. To obtain the ordering, they construct a
basic block control flow graph for each procedure with inter-procedural edges between the
basic blocks at call and return sites. The predicted static invocation ordering is derived from a
modified depth first search (DFS) of this control flow graph, using a few simple heuristics to
guide the search. A flow graph is created to keep track of the number of loops and static

Class A Class B

varB = new B()

A Thread.pre-fetch(Class B) (Pre-fetch Class B)

(First-use of class B)

main()

A Conceptual Framework for Progressive Mobility

Page 59

instructions for each path of the graph. When generating the first-use ordering, they give
priority to paths with loops on them, predicting that the program will evaluate them first.

If real-time profiling is not possible or practical this approach can be used instead.

Profile Guided First Use Estimation uses profile information to determine the first-use
ordering of procedures. A first use profile is generated by keeping track of the order in which
procedures are invoked during a program’s evaluation using a particular input.

All procedures that are not evaluated are given a first-use ordering during placement using the
static approach described above. Since a program’s evaluation path may be input dependent,
they attempt to choose adequate sets of inputs in order to provide an evaluation path that is
similar to most of the possible inputs.

Krintz et al. also proposes different transfer strategies that can take advantage of non-strict
execution and program restructuring:

Parallel File Transfer can made optimal use of the available data rate. Current Internet
HTTP transfer technology allows multiple files to be transferred in parallel. The HTTP 1.1
specification uses a single TCP connection that allows up to four transfers in parallel. To take
advantage of this they model the transfer of multiple classes at once to assure that methods
arrive as near to the predicted start of their evaluation as possible. The transferring files split
the fixed amount of data rate available equally. Since data rate is shared, a schedule is
required that indicates when class files should be transferred to obtain efficient overlap of the
evaluation with transfer. A transfer schedule is created using the first-use procedure order
determined by the reordering techniques. There are many factors that must be taken into
account when developing a transfer schedule. First, information about the size of each
procedure and class file is required. The size of global and local data is also needed. With the
size information, the scheduler can make an informed prediction of the time it will take to
transfer the various parts of each file.

Interleaved File Transfer groups Java class files to speed up the loading process [Krintz et
al. 1998]. In Java, an application is composed of multiple classes each containing global data,
local data and code. This organization is similar to other programming languages for which
multiple files comprise the executable program: for those languages, the final program is
typically a single binary. With interleaved file transfer, we consider a group of Java class files
and compose a program as a single entity (an interleaved file), consisting of multiple
procedures and data.

This technique transfers the procedures and data to the destination in the order specified in
this virtual interleaved file. An interleaved file is a reordering of procedures. The transfer
algorithm takes the application and the restructuring information as input. It generates an
interleaved file from the input information and transfers it in the order dictated by the
restructuring, e.g., methods from different classes may be interspersed for transfer. This
transfer technique assumes that transfer proceeds at the method (procedure) level, in the order
established by the restructuring algorithms.

2.3.7 Progressive techniques
The Interlaced Graphics Interchange Format (GIF) [Siegel 1996] is a format that tries to
exploit the combination of low data rate channels and fast processors. An interlaced GIF file
contains a picture that seems to arrive on your display like a fuzzy outline of an image that is
gradually replaced by three successive waves of bit streams that fill in the missing lines until
the image appears at its full resolution. Among the advantages for the viewers, using low data
rate connections, are that the wait time for an image seems less and the viewer can sometimes

A Conceptual Framework for Progressive Mobility

Page 60

get enough information about the image to decide to click on it or move elsewhere. In the
latter case the technique behaves as a form of data compression. Interlaced GIF is a widely
used technique for speeding up image rendering on the Internet. Compression and rendering
via the quadtree data structure called BCQ Progressive Image Transmission [Dürst 1997]
seems to give even better results. Other progressive transmission methods are fractal images
[Ghim and Chorng 2001] and progressive JPEG.

A stream is a data structure that is accessible as a contiguous sequence of data units
representing a stream of data, transmitted continuously over a communications path. If the
data units encode audio or video signals we call this audio and video streaming. Streaming
media consists of a sequence of images; sound or both that are transmitted in compressed
form and played on the receiving computer as they arrive. With streaming media, a user does
not have to wait to download a large file before seeing the video or hearing the sound. The
encoding of the media is often combined with compression (section 2.3.5). A frequently used
algorithm for compressing video data follows the MPEG standard [Le Gall 1991].

The main characteristic of these transmission schemes is that the processing of the digital
stream is started long before the load phase is completed. These techniques which send data
progressive in time has inspired us to develop techniques that send mobile applications
progressive in time so that its evaluation can be started long before the load phase is
completed.

2.3.8 Other related techniques
The idea of progressive anticipative mobility using pre-fetching of permuted code was
inspired by mobile agent research at our lab where agents are represented by parse trees.
[Van Belle et al. 2001]. The migration of an agent happens by migrating the visited nodes in
the parse tree during a transitive closure. We noted that if we could permute the order of the
migration of the nodes, the evaluation of the receiving agent could start before the whole
parse tree was sent over. This increased the virtual migration speed. In a JIT compilation
environment a parse tree representation may have other advantages. Not only does it allow
higher level, domain specific, more efficient compression techniques, but the tree preserves
the control-flow structure of the original program, making it much easier to perform code
optimizations.

A similar technique, although at a lower level of the computer architecture, where parallelism
is exploited to speed up the processing of instructions is known as pipelining. With
pipelining, the computer architecture allows the next instructions to be fetched while the
processor is performing operations, holding them in a buffer close to the processor until each
instruction operation can be performed. The staging of instruction fetching is continuous. The
result is an increase in the number of instructions that can be performed during a given time
period.

With progressive anticipative mobility using pre-fetching of permuted code the evaluation of
the code is triggered by the loading process, since it is the loading process that switches the
semaphores. There is a similar but reverse relation between evaluation and code loading in the
code on demand paradigm. Java for instance provides a mechanism, the class loader, to
retrieve and link dynamically classes in a running Java Virtual Machine. The class loader is
invoked by the JVM run-time when the code currently in evaluation contains an unresolved
class name. Although the goals of pre-fetching and code on demand are the same (they both
aim to reduce transfer delay), both techniques are complementary since they can be employed
at the same time. If in a pure code on demand setup there is not an immediate demand for new

A Conceptual Framework for Progressive Mobility

Page 61

code after the loading of a previous part, empty time slots will be the result. This leads to a
less efficient loading process.

Another well-known example of code on demand is the use of dynamic link libraries. A
dynamic link library (DLL) is a collection of small programs, any of which can be called
when needed by a larger program that is running in the computer. The advantage of DLL files
is that, because they don't get loaded into random access memory together with the main
program, space is saved in RAM.

Continuous compilation [Plezbert and Cytron 1997] is a technique where interpretation,
compilation to native-code and native-code evaluation are intertwined. The goal is to have the
native-form available by the time the call to it occurs. The system essentially uses two threads
of control: one thread compiles interpreted code into native-code form, while the other thread
handles program evaluation of the interpreted and compiled code. The technique is
complementary with progressive anticipative mobility using pre-fetching of permuted code.

Continuous compilation and ahead-of-time compilation are techniques that are typically
used in a code on demand paradigm, such as dynamic class loading in Java. The goal of both
compilation techniques, explored in [Krintz et al. 1999] and [Plezbert and Cytron 1997], is to
compile the code before it is needed for evaluation. Again, these techniques are
complementary to our approach, and can be exploited to further optimize our results.

Partial evaluation provides a unifying paradigm for a broad spectrum of work in program
optimization, compiling, interpretation and the generation of automatic program generators
[Jones 1996]. Although the name suggest similarities with progressive mobility where also
only parts of the code are evaluated, partial evaluation is basically a program optimization
technique and should perhaps better called: program specialization.

Much partial evaluation work to date has concerned automatic compiler generation from an
interpretive definition of a programming language, but it also has applications to scientific
computing, logic programming, metaprogramming, and expert systems.

Program slicing is a source-to-source transformation technique that is useful in construction,
analysis, testing and debugging of programs [Venkatesh 1991]. A program slice contains the
portion of a program that captures some subset of the program behavior. Algorithms are
available for constructing slices for a particular evaluation of a program (dynamic slices) as
well as to approximate a subset of the behavior over all possible evaluations of a program
(static slices). The technique may be used for the refactoring of an existing application in
mutually independent components.

A Conceptual Framework for Progressive Mobility

Page 62

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 63

3 Progressive
Anticipative Mobility
using Pre-fetching of
Permuted Code

Trust no one. Always shuffle the cards yourself.
 -- Unknown.

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 64

3.1 Abstract

In an ambient intelligence environment, featuring ubiquitous communication that
enables everyday objects to communicate with each other and the user by means
of ad-hoc and wireless networking there will be also the need to migrate code.

This migration will not be straightforward as in current stable networks since the
timeframe in which we can send the code will be unpredictable. Therefore we
need some kind of mechanism to break up code into smaller parts and send them
one by one to increase the chance that it will fit in the current timeframe.

Precaution should be taken to send the most important parts first, in a format that
makes this partial block of code immediately ready for evaluation at the receiving
object.

We explore the possibility to harness the implicit parallelism found in the most
simple network connections by starting the evaluation on the receiver in parallel
with the migration of the last part of the code.

From the perception of the user the application is up and running much faster than
expected. Network latency is hidden.

Streaming audio and streaming video are multimedia techniques that employ
progressive transmission of encoded data and start the processing of the digital
stream long before the load phase is completed.

In this chapter, we explore the idea of progressive transmission of software code
instead of other media. The processing of the digital code stream can start before
the load phase is completed by anticipating on the sequence of evaluation.

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 65

In this chapter, where we provide a proof of concept of the technique of pre-fetching
permuted code, we start by presenting a technique to permute source code based on a
profiling and reorder process. Then we can make use of the resulting data structure to
implement a pre-fetching scenario in order to hide network latency and reduce system latency
at the same time. We present the results of four experiments and discuss the results.

Roadmap:

• Introduction
• Basic Observations, assumptions and restrictions
• Profiling and reordering
• Reordering algorithm
• Pre-fetching
• Experiment to hide network latency
• Results

o Benchmark
o CoolImage
o Gremlin
o Adapted Gremlin

• Discussion
o Speedup
o Application Speedup versus Data rate
o Pre-fetching Guidelines
o Dealing with Semaphores
o Applicability in other Environments

• Summary and Conclusion

3.2 Introduction

In an ambient intelligence environment, we will need to migrate code from one object to
another in order to address some key issues as context dynamics or system adaptivity. The
width of the timeframe available in such an environment to migrate the code depends on the
movement of the components relative to each other and the reach of their wireless
transceivers. The width of this timeframe will not be predictable, so we need some kind of
mechanism to break up code into smaller parts and send them one by one, progressively in
time, to the receiver. This will increase the chance that they will fit in the temporal time frame
and that we will be able to migrate the complete block of code.

A disadvantage of this approach is that it may take quit some time before the complete block
of code is transmitted, so precaution should be taken to send the most important parts first, in
a format that makes this partial block of code immediately usable (ready for evaluation) at the
receiver’s end.

For the users perception it is also important that the user does not have to wait to long
between its request for a service and the first perceptible reaction of the system. Therefore, we
migrate first all the code that builds the user interface. We migrate this code in a format that
allows the system to start the evaluation of the code even if it is only partial available.

In this first theme it is our goal to build a proof of concept of a system that breaks up code
into smaller parts and sent them one by one, progressively in time, in a setting that supports

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 66

weak mobility. We will handle progressively strong mobility in chapter 4 and 5. The
feasibility of the technique is validated by implementing prototype tools in Smalltalk.

Our contributions here are:

• Automatic permutation of compilable units based on a dependency graph so that the
static structure of the representation of the application in a file structure reflects its
dynamic behavior

• Introduction of a synchronization mechanism to support evaluation of code that is only
partially present

• Pre-fetching of permuted code with focus on user interface latency

An important question is: what should be the ideal unit of code to be split into? We propose
to use as unit those program abstractions that the code was built from. For example, in
Smalltalk likely candidates at different levels of granularity would be: statements, methods,
method categories, classes, class hierarchies, class categories, etc…

We like to take the unit of code as small as possible to achieve a high flexibility in the
possible places where the code can be split, which in turn will make it possible to obtain a
high level of parallelism. The smallest level in source code is a statement or the sending of a
message. In many languages, statements or messages are aggregated in higher level structures
(functions or methods), in such a way that if one statement of the function or one message
sent in a method is being evaluated, the other statements or methods from that aggregate will
often soon follow. Therefore taking the level of functions or methods as unit of code seems
more appropriate. Especially for well-written object oriented programs, adhering to the good
programming practice of keeping methods small, the splitting flexibility should remain high.

This is not possible in all languages. In Java for instance the smallest unit for code loading
and therefore for code migrating is the class. In addition, the Java security model prescribes
that this class file should contain al its methods and a security stamp to allow class file
validation. In Smalltalk a much finer granularity is possible at the level of compilable units.
We will split up our Smalltalk sources in methods, class descriptions, namespaces, window
specs etc…

We describe progressive anticipative mobility using pre-fetching of permuted code, a
technique that permutes the application at the granularity of the method level and exploits
parallelism between loading and evaluation of code to hide network latency. It may allow
many applications to start their evaluation early, especially programs with a predictable,
deterministic startup phase (such as building a GUI). The technique allows us to start up the
code before it is completely loaded. The underlying technique is also known as interlaced
code loading [Stoops et al. 2002] and non-strict execution [Krintz et al. 1998] where the
technique was simulated in a Java environment.

The feasibility of the technique has been validated by implementing a prototype tool in
Smalltalk, and testing it on three different applications for six different data rates (ranging
from very low to extremely high). Our results show that for applications that rely on a GUI,
the time to build the GUI is reduced to 21 % of the original on the average.

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 67

3.3 Basic Observations, Assumptions and Restrictions
A first important observation is that code transmission over a network in general and more
specifically in a wireless network is inherently slower than compilation and evaluation and
this will remain the case for many years to come (section 2.2.4).

As a second observation we note that actual computer architectures provide separate
processors for input/output (code loading) and main program evaluation and that in the near
future we may expect more hardware support to employ parallelism (section 2.3.3).

We assume that the know-how and know-when of the migration of partitioned code is located
in the sending host, so we apply a push strategy. However, this does not exclude the
possibility of successful combinations with a pull-strategy but we did not implement this in
our experiments.

We restrict us to the Smalltalk programming environment since it allows rapid prototyping, a
high degree of reflection and it provides a much finer granularity than found in other
programming environments.

The size of the applications and the data rate of the network are chosen under the restrictions
imposed by current practical networks (see section 2.1.6 Window of Opportunity - page 39).

Compared with the approach of C. Krintz [Krintz et al. 1999] we propose a push technology
instead of the code on demand pull technology and we divide our source code at the level of
compilable units instead of at the class-level. Moreover, we not only simulate the wide range
of transmission rates and ran our experiments in real time while C.Krintz et al. by their choice
of programming environment (Java) were forced to restrain themselves to simulations.

Our experiments involve adapting and running real code and consequently our results are not
obtained as part of some simulation technique. Only the different transmission rates are
simulated in order to evaluate the technique on load channels ranging from very low to very
high data rates. The results obtained for these simulated channels, with a constant data rate for
all possible data sizes, can be adapted to a specific channel technology and protocol by taking
in account the real data rate for the different data sizes. If for instance a TCP/IP network is
considered, Figure 3 – page 38 can be applied to obtain these delays.

3.4 Profiling and Reordering
Before we can start to cut the code into different chunks we need to permute the source code
in such a way that the code that will be evaluated first will be loaded first as well. After the
cutting, we will need to apply some glue code. This glue code is needed to suspend the current
evaluation of an application if the code to evaluate is not available yet. The detection of the
presence of the code can be implemented at different levels. In languages that support
reflection, each new method call can be forced to perform a reflective check to make sure all
the resources are available but we choose for a more generic approach in the sense that it is
applicable to all kind of programming languages. We add extra code at the end of each piece
of code, implementing the function of semaphores. Semaphores will temporary suspend the
application if the next chunk of code is not loaded yet.

To simplify the permutation process somewhat, during this first setup we assumed that the
code flow is completely deterministic. In other words, we assumed that for each run of the
code the application always behaves in the same way, hereby neglecting possible different
user inputs or other real random events. This makes the permutation process straightforward
since it suffices to determine the method invocation sequence once and rearranging the
methods accordingly. The static structure of the permuted file will then reflect more closely

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 68

its dynamic behavior. Although this presumption may sound very harsh, we found that it was
sufficient for the experiments we ran, especially with our focus on avoidance on user interface
latency. The building of a user interface seemed to be a very predictable deterministic activity
for the three applications in our experiments. All the evaluations of these applications showed
the same method invocation sequence during the build process of the user interface.

Finding the ideal breakpoints is less straightforward. Profiling tools together with the dynamic
behavior statistics, obtained as a side effect during the permutation process can give us some
hints as where to split the code. In our experiments we will resort to some simple heuristics,
such as cutting the file into four equal pieces. The permutation process, which is completely
automated in our setup, consists of several distinct steps (Figure 13).

Figure 13: Permuting the source code

In order to obtain the necessary method invocation sequence the original source code is
adapted (instrumented) with extra code that logs the time of invocation of each method. The
instrumentation is accomplished by the source code adaptor component.

Then the adapted source code is evaluated. The output is ignored at this time but the
instrumented methods will generate the necessary log information, in this case an XML8 file
that contains the method invocation sequence. As an additional output of the evaluator we also
gather timing information that will serve as a guide to optimize the number of the different
code pieces and the exact points to split up the pre-fetched source code.

8 We chose for XML for two reasons. First, XML is a standard way for information exchange between different
components. Second, the standard output format in VisualWorks 5i for Smalltalk source code is also XML.

 source
code
parser

original
source
code

source
code
adaptor

adapted
source
code

source
code
evaluator

<XML>
<method>
…
</XML>

0

5 000

1 0000

1 5 000

2 0000

2 5 000

3 0000

3 5 000

0 5 000 1 0000 1 5 000 2 0000 2 5 000

source
code
permuter

output

method invocation
sequence

 permuted
source
code

repository

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 69

In another phase, which can be carried out in parallel with the above steps, the original source
code is parsed by the source code parser component and the resulting descriptions (class,
methods, comments and other descriptions) are stored in an intermediate object repository.

In the final step a source code permuter will parse the XML file to retrieve the dynamic
sequence of the method invocations and use this information to assemble the new permuted
source code files that reflect this invocation sequence.

3.5 Reordering Algorithm
The algorithm used in this final step by the source code permuter is based on the
dependencies between the different Smalltalk entities. A method cannot be loaded and
compiled if the method’s class description is not already available in the system. In the
Smalltalk environment a method depends on its class description. So the class description will
be written to the permuted source code file before the actual method.

In a dependency graph (Figure 14) this is depicted by an arrow from method to class. In the
same spirit we notice that a class depends on its superclass, a class depends on its namespace,
a class initialization method depends on its class description and depends possibly on
semaphore code that eventually can prevent its invocation. A class also depends on the
availability of relevant shared variables and, if the class is a subclass of
ApplicationModel, the availability of the associated window specification resource.

Figure 14: Smalltalk dependency graph

These dependencies are not complete so as to cover all the possible Smalltalk applications but
are sufficiently comprehensive to cover all the dependencies in our actual experimental setup.

method

Name
space

class class init

Shared
variables

Window
spec

semaphore

super

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 70

3.6 Pre-fetching
After the permutation process, we are now ready to pre-fetch the code. We propose
progressive anticipative mobility using pre-fetching of permuted code as a technique that
applies the idea of progressive transmission to software code instead of streaming sound or
video.

Figure 15 shows the sequence diagram of a classic weak code loading process as known from
applets that are fetched to a browser. When an external trigger launches the migration of code
from Host 1 to Host 2 preparations are taken at Host 1 to load the code. For weak migration
schemes this preparation is minimal since the code is not running yet and is mostly available,
pre-packed, in a file data structure. Then the code is transported over the network and its
evaluation started at the receiving host. The sequence diagram focuses on the handling of the
code, i.e. the preparation, migration and evaluation of the code and ignores the assisting
input/output processes that run on both host during the migration. To present the sequence
diagrams in Figure 15 to Figure 17, the time to load the application and the time to compile
and evaluate it are chosen to be the same. In reality this will depend of the size and type of the
application and the data rate provided by the network.

Figure 15: Normal weak code loading

Our proposed technique splits a code stream into several successive waves of code streams.
When the first wave finishes loading at the target platform its evaluation immediately starts
and runs in parallel with the loading of the second wave (Figure 16). The main difference with
interlaced graphics such as progressive jpg is that we can use structural information about the
code to determine the most ideal way of splitting the code into different waves.

Host 1 Network Host 2

Migrate

Load

Prepare loading

Evaluate

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 71

Figure 16: Progressive anticipative mobility using pre-fetching of permuted code

In a JIT compilation environment there is an extra compilation phase needed and therefore
there are three processes that could potentially run in parallel: loading, compiling and
evaluation (Figure 17). Extra time savings will only occur if different processors are deployed
for the compilation and evaluation phase. Nevertheless, even if the same processor shares the
processes of compilation and evaluation, the use of JIT compilation is advantageous for the
proposed technique. Even code with a more complex flow of control, including system
utilities and language processors such as optimizing compilers, written in C, are dominated by
stable branches, and these branches usually vary little when the input data for the branch
predictor changes [Fisher 1992]. Since the program flow of a classic compilation process is
highly predictable, this guarantees that during this phase almost no unpredictable branches
will occur, allowing a smooth parallel process between compilation and loading. In other
words, incorporating a compilation phase in the evaluation flow of the program increases the
predictable deterministic time zone at the start of that program.

Host 1 Network Host 2

Migrate

Load #1

Prepare loading #1

Eval #1

Eval #3

Eval #2

Load #2

Load #3

Prepare loading #3

Prepare loading #2

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 72

Figure 17: Pre-fetching of permuted code cycle in JIT environment

3.7 Experiment to Hide Network Latency
We describe some experiments to illustrate a generic approach of progressive anticipative
mobility using pre-fetching of permuted code and to provide a proof of concept. A prototype
tool was implemented in Smalltalk (more specifically, VisualWorks Release 5i.4), a popular
object-oriented language that allows fast prototyping. We choose the granularity of the units
of loading at the level of methods.

As a practical validation we tested our approach on three applications each exhibiting some
typical but distinct behavior. It is not trivial to predict what type of applications will need to
migrate in the upcoming ambient intelligent environment, therefore we tested three different
applications with varying application size, number of classes, GUI size and use, and the
utilization of independent threads or not. These applications come with the VisualWorks
environment. They all have a size that is considerably greater than the minimum size of 2
kByte so that the transportation time is directly proportional with the size of the files. The
maximum data rate applied is 42 Mbps, so below the limit of 1 Gbps by which, in networks
over a great distance, the acknowledge protocol would dominate the transport time instead of
the file size. See also section 2.1.6 : Window of Opportunity.

Benchmark: (ver: 5i.4) (80 kByte, 7 classes) An application program that runs different
benchmarks on the Smalltalk environment adapted in such a way that after its Graphical User
Interface (GUI) appears, it launches a standard test immediately, thereby simulating prompt
user interaction.

CoolImage: (ver: 2.0.0 5i.2 with fixes) (184 kByte, 60 classes) an extended image editor that
draws on a non-trivial graphical user interface.

Host 1 Network Host 2

Migrate

Load #1

Prepare loading #1

Eval #1

Compile #1

Compile #2

Compile #3

Eval #3

Eval #2

Load #2

Load #3

Prepare loading #3

Prepare loading #2

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 73

Gremlin: (ver: Oct 7 ‘99) (65 kByte, 4 classes) An application that lets an animated figure
pop up from time to time without the need for a user interaction, representing non-GUI
applications that run as daemons in the background.

In order to test these applications we designed a code loader to simulate different transmission
rates. Essentially the code loader waits for the amount of time needed to load the file
containing the code, under different network data rates before effectively loading the code
from disk and passing it on to the compiler:
[(Delay forMilliseconds: aFilename fileSize * 8 / self bps) wait]

This delay is proportional to the file size and makes abstraction of the underlying technology
but provides a good estimation since, independent of the protocol, the input/output processors
of the sending and receiving hosts as well as the network processors (routers etc…) will need
an amount of time proportional to the number of bytes processed. To get the real delay for
each technology (TCP/IP, GSM, GPRS …), the results can be fine-tuned to a specific channel
technology and protocol by taking in account the real data rate for the different data sizes. If
for instance a TCP/IP network is considered, Figure 3 can be applied to obtain these delays.

For this setup different transmission rates were simulated: 2400 bps (very low data rate), 14.4
kbps (slow modem), 56 kbps (fast modem), 114 kbps (GPRS) en 2 Mbps (UMTS). These
different transmission rates were complemented by the rate obtained without network latency:
41 Mbps in our setup.

We deliberately chose for a JIT compilation approach because of its advantages in a low data
rate environment: (1) Source code has a smaller footprint than the corresponding native code;
(2) Source code preserves a high level of abstraction, thus enabling more powerful
compression techniques; (3) JIT fits nicely in the proposed code pre-fetching technique since,
as mentioned before, the compilation process is highly predictable, hereby increasing the
deterministic time zone.

We evaluated our approach on the source code of our different applications: Benchmark,
CoolImage and Gremlin. These applications each represent a more or less different kind of
behavior.

First the source code of each application was automatically permuted using the different steps.
For logging purposes a few extra lines of code were manually added to log the time the
application needs to complete evaluation and also the time needed to produce its GUI or its
first token of existence to the user. The application is loaded, compiled and run as is and then
via a load channel simulating a number of different data rates, to gather the normal timing
information referred to as “normal end” and “normal GUI” in the figures later. Next, the
application is cut in four pieces. The following procedure is applied:

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 74

Figure 18: Percentage of code visited before the appearance of the graphical user interface

By examining the permuted code, it is fairly easy to determine the part of code visited by the
evaluator in order to build the graphical user interface (Figure 18). For the user the emergence
of the GUI is often the first indication that the underlying application is loaded and ready to
go. In order to favor a quick emergence of the GUI we will try to make the first cut
immediately after the GUI code. If the method that finishes the GUI is in the first half of the
source code, as in our three test applications, then the first cutting place will be after that
method. This will reduce the user interface latency, one of the main advantages of this
approach.

As a result, the size of the first part is determined by the block of code visited by the evaluator
in order to build the graphical user interface. The other parts are then constructed with, more
or less, the same size as the first one. In the first experiment (Benchmark) the first part
account for 25% of the total code, therefore the remaining code is equally divided in the three
remaining parts: part 2, part 3 and part 4. We applied this approach to the other applications as
well.

The exact cutting place will be just before or just after a method description in the files. In
order to complete the dividing process, the four files need to get the same header and footer
tags so as to make them valid XML files again, the required format of Smalltalk source code.

To prevent that code from part 1 calls code from part 2 before this part is arrived, a semaphore
that halts evaluation until the code of part 2 is in place, is added at the end of part 1. The
semaphore is placed at the start of the last method in part 1 to ensure that it will be
encountered during the evaluation of that method. If the semaphore is placed at the end of the
method it is possible that the evaluation of the method ends, as a result of a return statement,
before the semaphore is encountered.

In this manner, three semaphores are added at the end of the three loose ends of part1, part2
and part3. The methods, in which the semaphores reside, are possibly invoked more than once
during the evaluation of the application. This means that each semaphore must be disabled
after its first use. In this setting this is done by enclosing each semaphore in a conditional
structure in such a way that the semaphore is bypassed after its first use:
Pre-fetcher.S1Active ifTrue: [Pre-fetcher.S1 wait. Pre-fetcher.S1Active := false]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

benchmark

coolImage

gremlin

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 75

The application is then loaded, compiled and run again in a pre-fetching style for each of the
simulated channel data rates and the new timing results are gathered. These are referred to as
“pre-fetched End” and “pre-fetched GUI” in the figures later.

Each timing result is calculated as the average of three timing runs to be able to flatten
occasional variations caused by the operating system or programming environment such as
garbage collection.

3.8 Results
For each of the three test cases result times were measured with different data rates chosen
under the restrictions imposed by current practical networks (see section 2.1.6 Window of
Opportunity - page 39).

Six different data rates are simulated: 2400 bps (very low data rate), 14.4 kbps (slow modem),
56 kbps (fast modem), 114 kbps (GPRS), 2 Mbps (UMTS) and 41 Mbps (no network
latency). For each of these data rates the time was measured in a normal set up (first load all
the code and then compile and run) and a pre-fetched set up where the compilation and start
of the code evaluation takes place after the first part is loaded.

For both loading types we measured the time it took for the GUI to display itself and the total
time to complete the loading, compilation and evaluation of the application9.

3.8.1 Benchmark
Benchmark is an application that runs selectable tests on the VisualWorks environment. In
order to allow the code to run while the other parts are still transported, the application was
adapted in such a way that after the GUI pops up the application immediately runs a number
of standard tests. Figure 19 shows the parallel processes achieved for the lowest data rate of
2400 bps where the load times are significantly larger than the compile times. The figure also
shows that although the code to build the GUI takes 25% of the total code (Figure 18), the
time to evaluate this part is a fraction of the evaluation time of the remainder of the code. As a
result the GUI will appear almost immediately after the loading and compilation of the first
part of the source code. The application finishes before the last part has loaded. This indicates
that the code in the last part was not needed in our setup and we may decide to stop loading
the rest of the application.

Figure 20 and shows the behavior of the same application at increasing data rates. As the data
rate increases to 114 kbps the load and compilation times become at the same order of
magnitude. Here too, the application ends before loading completes.

Figure 21 shows the behavior with maximum data rate of 41 Mbps. It shows that at maximum
data rate the load times are too short to take advantage of the parallel processing so in this
case the evaluation process will end after the full loading and compilation process. A possible
optimization as in the previous examples is not possible here.

GUI building indicates the first part of the evaluation process where the GUI is built. The
second part of the evaluation process is indicated in de figure by application. The evaluation
process has to share the processing power with the compile phases but can run in parallel with
the load phases (except for load1).

9 The experiments where carried out on a Dell® Inspiron 8100 computer with Intel® Pentium® III Mobile CPU
AT/AT compatible processor at 1GHz processor speed and 256 Mb RAM running Windows® 2000 and
VisualWorks 5i4.

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 76

Figure 19: Parallel evaluation Benchmark @ 2400 bps

Figure 20: Parallel evaluation Benchmark @ 114 kbps

0 50000 100000 150000 200000 250000 300000

execution time (in ms)

load1

compile1

load2

compile2

load3

compile3

load4

compile4

GUI building

application

evaluation time (ms)

0 2000 4000 6000 8000 10000 12000 14000

execution time (in ms)

load1

compile1

load2

compile2

load3

compile3

load4

compile4

GUI building

application

evaluation time (ms)

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 77

Figure 21: Parallel evaluation Benchmark @ 41 Mbps

Average timing results are depicted in Table 2 and Figure 22. Table 2 shows in the first row
(normal GUI) the time in milliseconds it normally takes to render the GUI for the different
data rates. The second row (normal end) shows the time in milliseconds the application
normally needs to end. The third and fourth rows (pre-fetched GUI and pre-fetched end) show
the same time if the application is deployed in a progressive anticipative mobility using pre-
fetching of permuted code fashion. Finally the bottom rows (GUI ratio and end ratio) show
the relative amount of time gained by pre-fetching to present the GUI and to finish the
application. Table 3 shows the standard deviation of the different timing results to give an
indication of the average deviation.

0 1000 2000 3000 4000 5000 6000 7000 8000

execution time (in ms)

load1

compile1

load2

compile2

load3

compile3

load4

compile4

GUI building

application

evaluation time (ms)

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 78

Table 2: Average timing results (ms) for Benchmark application

Table 3: Standard deviation (ms) of timing results for Benchmark application

Figure 22: Average timing results for Benchmark application

Figure 22 puts the results of Table 2 in a graphical view. Note that the x and y scale are
logarithmic to accommodate the wide range of data rates. Note also from Figure 22 that, if the
application is loaded via a network, the application itself ends earlier (on average 75% of the
original time needed) if deployed in a pre-fetched mode. This is possible because the
evaluation of the application already starts after the load and compilation phase of part 1 and
does not have to wait until the complete source code is loaded and compiled.

3.8.2 CoolImage
CoolImage is the largest application of the three which generates a large GUI and then waits
for user interaction to draw icons. As a result, the end of the loading and compile phase is
practically the same for the pre-fetched and normal deployment simply because in this
experiment no action takes place after the GUI building.

data rate (kbps) 2,4 14,4 56 114 2048 42308
normal GUI 548 235 566 744 529 309
normal end 555 239 566 739 690 311
pre-fetched GUI 268 186 9 192 355 37
pre-fetched end 1083 680 596 276 631 482

data rate (kbps) 2,4 14,4 56 114 2048 42308
normal GUI 279268 51184 18074 12352 7016 6562
normal end 280255 52175 19069 13361 8133 7526
pre-fetched GUI 74327 13341 4669 2995 1722 1341
pre-fetched end 221564 40291 14279 9279 6062 7609
GUI ratio 26,61% 26,06% 25,83% 24,25% 24,54% 20,43%
end ratio 79,06% 77,22% 74,88% 69,44% 74,54% 101,10%

1000

10000

100000

1000000

1 10 100 1000 10000 100000

data rate (kbps)

ev
al

ua
tio

n
tim

e
(m

s)

normal GUI
normal end
pre-fetched GUI
pre-fetched end

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 79

Table 4: Average timing results (ms) for CoolImage application

Table 5: Standard deviation (ms) of timing results for CoolImage application

Figure 23: Timing results for CoolImage application

data rate (kbps) 2,4 14,4 56 114 2048 42308
normal GUI 131 478 166 166 584 454
normal end 132 479 165 166 585 452
pre-fetched GUI 351 400 152 221 320 155
pre-fetched end 536 305 180 156 82 392

data rate (kbps) 2,4 14,4 56 114 2048 42308
normal GUI 640540 114905 38978 25348 13624 12666
normal end 640545 114909 38982 25351 13628 12673
pre-fetched GUI 115005 22832 8847 6663 4780 4224
pre-fetched end 638613 115496 39135 25192 13888 13037
GUI ratio 17,95% 19,87% 22,70% 26,29% 35,09% 33,35%
end ratio 99,70% 100,51% 100,39% 99,37% 101,91% 102,87%

1000

10000

100000

1000000

1 10 100 1000 10000 100000

data rate (kbps)

ev
al

ua
tio

n
tim

e
(m

s)

normal GUI
normal end
pre-fetched GUI
pre-fetched end

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 80

Figure 24: Parallel evaluation CoolImage @ 114 kbps

Figure 24 shows the parallel processes achieved for a data rate of 114 kbps. Note the
difference with Figure 20 were after the GUI building the application continued to evaluate
some code. In this type of application the application stops and waits for user input after
displaying the GUI. It is also clearly visible in Table 4 and Figure 23 that the time the
application itself will needs to end will not vary. In this case this is the time to load and
compile all the methods that can be invoked via the GUI.

3.8.3 Gremlin
Gremlin is an application that runs in the background of the VisualWorks environment and
pops up an animated figure from time to time at the border of the active window. When the
application is launched, the animated figure pops up for the first time and a help window
shows up. Table 6 and Figure 25 show the delays of the Gremlin application.

Since the Gremlin application starts with a popup of an animated figure and during the rest of
its life it just does the same over and over again at different time intervals it means that all the
resources need to be in place before the application can start. This is reflected in Figure 25 by
the fact that only for data rates lower than 56 kbps the first popup can finish earlier than the
complete loading and compile process. For data rates greater than 56 kbps it is the popup
process itself that will determine the end of the process. The appearance of the GUI in the pre-
fetched deployment for data rates lower than 56 kbps however is much faster and in the same
order as the other tests (on average 25% of the original time needed).

0 5000 10000 15000 20000 25000 30000

execution time (in ms)

load1

compile1

load2

compile2

load3

compile3

load4

compile4

GUI building

evaluation time (ms)

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 81

Table 6: Average timing results (ms) for Gremlin application

Table 7: Standard deviation (ms) of timing results for Gremlin application

Figure 25: Timing results for Gremlin application

3.8.4 Adapted Gremlin
The poor results obtained with the Gremlin application led us to the question whether it is
possible to adapt the design of the application in such a way that pre-fetching could be applied
more advantageously. If we could change the application so that it would no longer depend on
all of its resources, for its first sign of life, this would do the trick.

data rate (kbps) 2,4 14,4 56 114 2048 42308
normal GUI 302 326 173 258 285 407
normal end 302 326 173 258 285 407
pre-fetched GUI 162 209 293 233 206 218
pre-fetched end 851 322 326 233 206 218

data rate (kbps) 2,4 14,4 56 114 2048 42308
normal GUI 230743 46392 19563 14713 10469 10262
normal end 230745 46394 19565 14715 10471 10264
pre-fetched GUI 51601 15194 11932 11005 10283 10439
pre-fetched end 225385 39441 12777 11005 10283 10439
GUI ratio 22,36% 32,75% 60,99% 74,80% 98,23% 101,72%
end ratio 97,68% 85,01% 65,31% 74,79% 98,21% 101,70%

1000

10000

100000

1000000

1 10 100 1000 10000 100000

data rate (kbps)

ev
al

ua
tio

n
tim

e
(m

s)

normal GUI
normal end
pre-fetched GUI
pre-fetched end

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 82

Table 8: Average timing results (ms) for adapted Gremlin application

Table 9: Standard deviation (ms) of timing results for adapted Gremlin application

Figure 26: Timing results for adapted Gremlin application

To achieve this, we adapted the Gremlin application so that after it is launched only the help
window appears (containing an explanation of the behavior of Gremlin and stating that the
first popup is scheduled within 5 minutes). Conceptually this does not really change the main
behavior of the application but as Table 8 and Figure 26 shows there is now a significant time
gain possible for the GUI building (now the text window) and the end of the application (now
the loading and compilation of the source code but before the first popup).

Apparently small changes on the design level of the application sometimes suffice to get a
more optimal behavior in a pre-fetching loading environment. High-level analysis is required
however for this kind of optimization because the resemblance of the functionality of the two
versions of Gremlin becomes only apparent at the level of the user perception.

data rate (kbps) 2,4 14,4 56 114 2048 42308
normal GUI 373 409 401 430 394 226
normal end 374 409 401 431 394 226
pre-fetched GUI 70 48 24 106 150 37
pre-fetched end 500 246 217 191 102 70

data rate (kbps) 2,4 14,4 56 114 2048 42308
normal GUI 223468 39420 12568 7890 3544 3150
normal end 223470 39422 12569 7892 3546 3152
pre-fetched GUI 44183 8261 3049 2223 1413 1228
pre-fetched end 224902 39441 12596 7968 3557 3197
GUI ratio 19,77% 20,96% 24,26% 28,17% 39,88% 38,98%
end ratio 100,64% 100,05% 100,22% 100,97% 100,29% 101,45%

1000

10000

100000

1000000

1 10 100 1000 10000 100000

data rate (kbps)

ev
al

ua
tio

n
tim

e
(m

s)

normal GUI
normal end
pre-fetched GUI
pre-fetched end

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 83

3.9 Discussion

3.9.1 Speedup
If the graphs pre-fetched end and pre-fetched GUI appear below the normal end and GUI end
graphs a speedup was achieved. Note that Figure 22 is the only diagram where none of the
graphs coincide with each other. This is because the Benchmark application is the only
example that runs some time consuming benchmark tests after the appearance of the GUI. The
two other applications wait for user interaction after building the GUI.

3.9.2 Application Speedup versus Data rate
Figure 27 shows the relative amount of time needed to present the GUI compared with a
normal non-pre-fetched setup for the different data rates. If we neglect the original non-
adapted Gremlin application we find that an average speedup of 25% is obtained.

For applications were the GUI building takes a relatively large part (such as CoolImage and
Gremlin) the speedup achieved by pre-fetching seems to decrease as loading speed increases.
In the extreme case of Gremlin where the GUI building needs all the resources in place, the
application takes even a slightly longer time to evaluate. This is because the extra semaphore
code in the source code and the code to guide the pre-fetched loading process yield an extra
overhead, and are responsible for time ratios higher than 100 %.

Figure 27: Time needed to build GUI compared with original time

Figure 28 shows the relative amount of time needed to end the application for the different
data rates. The total time to load and evaluate the application at maximum data rate will be the
same or slightly higher due the extra source code added. The dip in the original Gremlin graph
indicates that for data rates smaller than 56 kbps the total time is determined by the load and
compile processes but for data rates greater than 56 kbps it is the popup process that will
determine the total time needed. Therefore, the right part of the figure the graph will look
identical to the one in Figure 27.

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000
data rate (kbps)

pr
e-

fe
tc

he
d

/ n
or

m
al

 ra
tio

 (i
n

%
)

Benchmark GUI ratio
CoolImage GUI ratio
Gremlin GUI ratio
Adapted Gremlin GUI ratio

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 84

Figure 28: Time needed to end the application compared with the original time

3.9.3 Pre-fetching Guidelines
As became apparent in the Gremlin case it can be advantageous to adapt existing programs to
make full use of the power of pre-fetched loading. Especially when you write new
applications from scratch it is possible to keep in mind some guidelines that will lead to an
optimal progressive anticipative mobility using pre-fetching of permuted code. Some of the
obvious ones are:

• Keep programming modules independent from each other (i.e., use low coupling and high
cohesion).

• Start as soon as possible with building the GUI.
• Keep the code and the resources to present the first user interface as small as possible.

Mostly this is the GUI where the user is confronted with at startup.
• If necessary enhance the GUI, e.g. extend the GUI menu, at a later time.
• Postpone heavily resource-dependent actions as long as possible.
• Postpone multithreaded processes as long as possible.

3.9.4 Dealing with Semaphores
As mentioned before, precautions must be taken to prevent methods from being called that are
not loaded yet. Although it is possible to catch these exceptions on the level of the virtual
machine or even on the level of the operating system, for this setup we chose for the approach
of adding semaphores in the source code since this provides a very generic mechanism that
can be applied in many programming environments.

It can be assumed that for every application there will exist an ideal number of pieces to split
the code in so as to obtain a maximum speedup. If the number of pieces increases so will the
total size of the code since each piece of code will need extra statements to present the
semaphore code. And if the code size increases so will the loading time and since the extra
code needs to be evaluated too, so will the evaluation time. These are just the times that we
wanted to decrease in the first place. Furthermore, there will be an extra overhead at the

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000
data rate (kbps)

pr
ef

et
ch

ed
 /

no
rm

al
 r

at
io

 (i
n

%
)

Benchmark end ratio
CoolImage end ratio
Gremlin end ratio
Adapted Gremlin end ratio

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 85

receiver and sender platform to administrate the loading, compiling and evaluation of the
different parts.

Provisions need to be made to disable the semaphores once they have served their purpose for
the first time. Placing them in a conditional branch that bypasses them after first use seems to
be a valid option and this is the choice that we took in our experiments.

If the method in which the semaphore is placed is triggered a significant number of times,
complete removal of the semaphore code after its first use can be considered. Access to a
precompiled version of the same method without the semaphore code can speed up that
process.

Another possible approach is deploying a dedicated kind of garbage collection agents to
remove unused semaphores in the background. On the other hand, if we are dealing with
mobile code that moves continuously from one host to another it may be advantageous to
keep the semaphores in place.

Semaphores will always have a negative influence on the performance of an application so
caution should be taken for time-critical systems.

3.9.5 Applicability in other Environments
Smalltalk is a language that is interpreted by a virtual machine and is available on a wide
variety of platforms. Therefore we expect that the general behavior of our experiments will be
the same on different platforms such as MacOS or UNIX. We might expect some differences
however for example related to character presentation in files and low-level window redraw
events.

Java is also a language interpreted by a virtual machine available on different platforms. The
security model of Java however prohibits the segmentation of the code in methods. In Java,
the unit of code loading is the class. A class needs to be loaded entirely to allow the security
mechanisms to calculate his signature. Krintz et al. [Krintz et al. 1998, Krintz et al. 1999] ran
simulation test on Java code and obtained similar results. Our results shows that even for
environments without network latency the user interface latency can be diminished (31% on
average) simply by running the disk-load and compile process in parallel with the evaluation
of the first part of the program. The methodology proves to be very generic and applicable to
all systems where code needs to be moved before it is evaluated.

Experiments on interleaved file transfer [Krintz et al. 1998] (section 2.3.6.3 page 58) yielded
comparable results. Transfer delay could be decreased between 31% and 56%. An important
difference with our approach is the implementation language (Java instead of Smalltalk).
Moreover, because of the limitations of the Java virtual machine security model, Krintz et al.
simulated their experiments using a bytecode instrumentation tool called BIT [Lee 1997].
Additionally, they only considered two different data rates while we explored a wider range of
6 different data rates. Alternatively, they proposed to transfer different pieces of Java code in
parallel, so as to ensure that the entire available data rate is exploited.

3.10 Summary and Conclusion
In order to support the inherent dynamics in an ambient intelligent network we will need not
only to send data but we will need to send behavior (code) also. Since the width of the
timeframe available to migrate the code is not predictable, we need some kind of mechanism
to break up code into smaller parts and send them one by one, progressively in time, to the
receiver. This will increase the possibility that they will fit in the temporal timeframe.

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 86

Precaution should be taken to send the most important parts first, in a format that makes this
partial block of code immediately usable (ready for evaluation) at the receiver’s end.

In this chapter we proposed a technique that breaks up code in smaller parts and applies the
idea of progressive transmission to migrate software code. We described the technique of
code permutation. A technique to permute Smalltalk source code at the level of compilable
units based on the dependency graph was presented. A prototype tool in Smalltalk was build
that automatically permutes a Smalltalk source file and generates a set of source code files
optimized for the pre-fetching process.

Performance of an application is most commonly measured by overall program evaluation
time and network performance is most commonly measured in network latency but in a
mobile environment performance is also measured by application availability, invocation
latency, and user interface latency.

Overall program evaluation time is the time between the invocation of an application and
the end of the evaluation of the last instruction.

Application availability is the inverse of the time an application “freezes” during migration.

Network latency is the time the application needs to travel over the network.

Invocation latency is the time from application invocation to when evaluation of the program
actually begins.

User interface latency is the time a user has to wait between his demand and a user interface
reaction of the system.

Table 10 gives an indication of the performance of the presented technique in these different
domains. If the technique has a small advantage in a particular domain it is indicated with a +,
an advantage in a domain is indicated by ++ and if the technique excels for a particular
domain it is indicated with +++. Note that the table only lists the positive performance
properties. Other properties that may have a negative influence by the introduction of
progressive mobility as the total size of the code, development overhead, maintainability,
extra security issues etc… are not considered in this context and are left for future work.

Table 10: Properties of the Pre-fetching Technique

O
ve

ra
ll

pr
og

ra
m

 e
va

lu
at

io
n

tim
e

A
pp

lic
at

io
n

av
ai

la
bi

lit
y

N
et

w
or

k
la

te
nc

y

In
vo

ca
tio

n
la

te
nc

y

U
se

r
in

te
rf

ac
e

la
te

nc
y

Pre-fetching of permuted code ++ + +++ ++ +++

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 87

To conclude this chapter we discuss these results in the most important dimensions of the
conceptual framework provided in chapter 2.

3.10.1 Network

We optimized the experiments to reduce network latency in general and user interface latency
in particular, so it will come as no surprise that these are the domains in which the results
excel. Exploiting parallelism between loading and evaluation proves to reduce user interface
latency considerably (21% of the original time on average in three applications tested). The
overall program evaluation time decreases since not all the code has to be transported and
compiled. The overall program evaluation time can be significantly reduced (79% of the
original time on average in three applications tested).

If the user interface latency is reduced, the invocation latency is reduced too but since we
optimized the technique for user interface latency reduction at the cost of delaying the
invocation of the other processes of the application the score of invocation latency is less.

Latency is an important dimension in networks but it is important to keep in mind that also in
an ambient intelligence environment two kind of networks must be considered, connection-
oriented networks that will need an extra setup time for each exchange of data and
connectionless networks that can exchange block of data much faster.

If the setup time in connection-oriented networks is very large compared to the time to send
one of the parts in which we divided the application it would make no sense to send them one
by one progressive in time and pay for each transmission the extra setup time.

In this case, it would be better to use a classic migration scheme and transport the complete
application at a whole so that only one setup time is needed.

However if the setup time is of the same order of magnitude as the time to send one of the
parts and the network architecture allows to keep the connection open after the first part is
migrated then we can still apply the pre-fetching technique after the extra setup delay.

Connectionless Networks are the ideal environment to implement progressive anticipative
mobility using pre-fetching of permuted code. Compared to the connection-oriented networks
the packets are typically a little larger since they need to contain the complete address of the
receiver but in practice the size of this extra data can be ignored compared to the size of the
actual block of data sent.

3.10.2 Application
The feasibility of the pre-fetching technique has been validated by implementing prototype
tools in Smalltalk. As a practical validation we tested our approach on three applications each
exhibiting some typical but distinct behavior, with varying application size, number of
classes, GUI size, typical usage, and the utilization of independent threads or not. Our results
show that for our test applications that rely on a GUI, the time to build the GUI is reduced to
21 % of the original on the average.

Application availability is not really an issue here since the application is not running at
migration time but since it becomes available much faster than by using classic migration
scenarios we give it a small positive indication in Table 10.

Progressive Anticipative Mobility using Pre-fetching of Permuted Code

Page 88

3.10.3 Techniques
The most relevant technique applied here is the exploitation of parallel processing of the
migration of the code and the evaluation of the code on the receiver.

Complete anticipative mobility using pre-fetching is only possible if the program flow is
known in advance. If the program flow is not deterministic it still remains possible to permute
the source code to reflect the most probable path to optimize parallelism as much as possible.
Several techniques are developed to find out this most probable path [Jason and Patterson
1995].

In this chapter we did restrain ourselves to weak mobility; we will handle progressively strong
mobility in the next sessions 4 and 5.

Progressive Mobility using Component Streams

Page 89

4 Progressive Mobility
using Component
Streams

Speed is good only when wisdom leads the way
-- James Poe (1921–1980)

Progressive Mobility using Component Streams

Page 90

4.1 Abstract

Networks in ambient intelligence environments are more volatile than static
networks. In order to support this new network architecture where connections
between partners are no longer predictable and where the connection time may be
less than a second there is a new need for techniques to exchange information as
fast as possible. In ambient intelligence environments the information exchanged
will sometimes take the form of code in order to provide support for the systems
dynamics inherent in these new environments.

During the migration of this code the application itself is typically not available to
interact with other processes, which in some cases might be not acceptable, so
there is also the need for mechanisms that allows the code to continue its
evaluation during the progressive migration so that the application remains
available for users or other applications at all time.

Progressive anticipative mobility using pre-fetching of permuted code migrates
static code, code that is not started yet in a progressive mode.

Progressive mobility using component streams takes this approach a step further
by progressively migrating running code.

Progressive mobility using component streams allows applications to migrate
from host to host without sacrificing evaluation time during the migration phase
and it hides network latency since it also allows the application to start at the
receiving host much earlier. Progressive mobility using component streams goes
beyond strong migration since the evaluation of the application will never be
halted.

Progressive Mobility using Component Streams

Page 91

In this chapter, where we provide a proof of concept of the exploitation of components
streams, we start by describing the proposed technique and the different migration strategies
that follow from it. We describe the different experiments conducted on this theme and
provide design guidelines to optimize applications that need to migrate by components
streams.

Roadmap:

• Introduction
• Proposed Technique

o Basic Observations, assumptions and restrictions
o Technique description

 Compensating Network Latency
o Migration Strategies

 Self Triggered after Last Instruction
 Self Triggered based on Profiling
 Under Control of a Supervisor
 Fixed Migration Strategy
 Dynamic Migration Strategy

o Discussion
• Experiments

o Experiment to hide network latency
 Borg environment
 Java environment

o Experiment to reduce system latency in low data rate environment in the Java
environment

o Experiment to reduce system latency by parallel component evaluation in
Smalltalk environment

• Design Guidelines
• Summary and Conclusion

4.2 Introduction
Ubiquitous Communication in ambient intelligence environments only makes sense if the
objects that compose the network are available to respond to the requests of other objects.

Besides the exchange of data between the everyday objects in an intelligent environment we
will need to send also code in order to address some key issues to support the dynamics of the
system. It will not always be possible to migrate this code as a whole, since the connection
time between, possible moving objects, is not predictable.

Connections between hosts in these new environments are more volatile than in static
networks, so there is the need for mechanisms to split up the code in smaller parts that will fit
in the limited timeframes in order to migrate the parts of the code progressive in time to other
objects.

To keep the application available during its migration we will also need a system that allows
the code to continue its evaluation during the progressive migration so that the application
remains available for users and other applications at all time.

Progressive Mobility using Component Streams

Page 92

In this second theme, it is our goal to build a proof of concept of a system that breaks up the
code of an application in smaller parts and sends them one by one progressively in time, while
the evaluation of the application continue. Since the evaluation should continue during the
migration we will explore this theme preferably in a setting that supports strong mobility.

We will explore three different possibilities to harness parallelism. We will exploit the same
kind of parallelism as in the previous chapter, starting the evaluation of parts already received
while the rest of the application still needs to migrate. But since the application is already
running before its migration we will also exploit the parallelism of the migration of copies of
components that still are running on the sender and the parallelism between components still
running on the sender and components already arrived and running on the receiver.

The feasibility of the technique has been validated by implementing prototype tools in the
Borg mobile agent environment and later also in Java and Smalltalk. Our experiments show
that this migration strategy can hide network latency almost completely.

In this second theme, our contribution is the introduction of progressive mobility using
component streams.

The main characteristic of transmission schemes as audio and video streaming is that the
processing of the digital stream is started long before the load phase is completed.

The newly introduced term progressive mobility using component streams is inspired by
streaming media but also by the transport mechanism for a sequential file, a data structure that
allows only sequential access. During the streaming process, the first part of the file will be
already located at the receiving host while the other part of the file still remains on the sender
platform. When streaming a running application, part of the application will already run on
the receiving host while another part is still running on the sending host.

Progressive anticipative mobility using pre-fetching of permuted code also applies a technique
where code arrives and starts its evaluation on the receiving host computer before the load
phase is completed, but the main difference with component streams is that the technique of
pre-fetching migrates code from an application that is not running yet. With progressive
mobility using component streams we migrate running code. This kind of migration is known
as strong mobility while the former is called weak mobility [Fuggetta et al. 1998].

Strong and weak mobility only differ in the way the current state of the process is packed and
unpacked. In strong mobility the computational state is contained in the same package, in
weak mobility the state (or part of it) is passed by parameters under control of the
programmer.

In a classical migration scheme the application that migrates from host to host is temporarily
halted and is restarted at the receiving host after the code is completely loaded and restored in
its original form. See Table 1: Typical Migration Steps (page 26).

During steps 2-8 the application is not available for users or other processes that need to
interact with it. After it is halted, it will become available again only when the migration
process has completed. In time-critical applications, this may not be acceptable. In a control
engineering environment, by example, the maximum time between the intakes of samples of
the quantity under control is strictly defined and if the sample timing exceeds this threshold
just one time this may compromise the complete control process.

Progressive mobility using component streams goes beyond the standard way of moving code
by moving the application piece by piece from sender to receiver. During the migration the
application continues to run and will be available to react to any event that will trigger an
action. If the sequence and load distribution of the different executable components is well

Progressive Mobility using Component Streams

Page 93

chosen the migration can happen in parallel with its evaluation thereby almost completely
eliminating network latency. It is a form of migration that even goes beyond strong mobility
since the evaluation of the application will never be halted.

Experiments
We will choose examples to investigate the possibility to:

• Hide network latency

• Reduce invocation latency

• Reduce user interface latency

• Enhance application availability

• Reduce system latency by introducing parallel component evaluation

We expect that network latency can be hidden by moving each component during its idle
time. Moreover we can try to start up the application before or during the actual migration.
Since at arrival of the first component at the receiving host the evaluation of this component
might start immediately also invocation latency should be reduced. If one of the first
components is able to draw the user interface this will also reduce user interface latency.

By starting up the application at the sending host at the same time or before its migration is
triggered we expect the availability of the application to increase.

In addition, since parallel component evaluation becomes possible during the migration phase,
a reduction in system latency is expected for those applications that can take advantage of
parallel evaluation.

In order to demonstrate the feasibility of progressive mobility using component streams we
will first describe an experiment to hide network latency. We will provide some small
existential examples in the programming environments Borg and Java.

Then we describe an experiment to reduce system latency in low data rate environments.
This experiment will also be conducted in the Java environment.

Finally a similar experiment was set up but now focused on the reduction of system latency
by parallel evaluation. This experiment was conducted in the Smalltalk environment to
investigate the constraints of that environment too.

We will provide some small existential examples in different programming environments in
order to show that for these applications the technique is useful. The determination of the
universal nature of the techniques or the demarcation of the domain in which the technique
proves useful is left for future work.

4.3 Proposed Technique

4.3.1 Basic Observations, Assumptions and Restrictions
As a first important observation we remind that the transmission over a network is inherently
slower than compilation and evaluation and this will remain the case for many years to come
(section 2.2.4.)

Progressive Mobility using Component Streams

Page 94

We remind also at the second observation, in the same chapter, that actual and future
computer architectures provide separate processors for input/output (code loading) and main
program evaluation (section 2.3.3).

A third observation is that many new applications are built following the principle of
separation of concerns (e.g. object-oriented, components-based or aspect-oriented software
development techniques). This leads to a modular design with relatively independent
components. The applied paradigm will influence the granularity of these components. During
the evaluation of the application processor control is passed from one component to the other
while all the other components are idle.

We assume that the know-how and know-when of the migration of partitioned code is located
in the sending host, so we apply a push strategy. However, this does not exclude the
possibility of successful combinations with a pull-strategy but we did not implement this in
our experiments.

The size of the applications in our experiments, especially the first one in Borg, are so small
that they fall outside the window (see section 2.1.6 Window of Opportunity - page 39) in
which the transportation time to send a block of code is directly proportional with the size of
the block of code. This makes it impossible to reduce invocation and user interface latency at
the receiving host since the transportation time to send the complete block of code is the same
as the transportation time to send part of it.

However, from the perspective of hiding network latency and application availability the
transportation time is not relevant. If we manage to migrate a component during its idle time,
its transportation time is not important. From the perspective of the user or cooperating
processes, the application remains available and is not influenced by transportation time
constraints in the network.

Moreover, we will be able to reduce invocation and user interface latency at the sending host
by keeping the application alive during its migration.

4.3.2 Technique Description
The introduced term component streams is inspired by streaming media but also by the
transport mechanism for a sequential file, a stream, a data structure that allows only sequential
access. During the streaming process the first part of the file will be already located at the
receiving host while the other part of the file still remains on the sender platform. When
streaming a running application, part of the application will already run on the receiving host
while another part is still running on the sending host.

The application components described in this chapter are based on a limited component model
where an application is build from different simple components that communicate with each
other by sending messages and that does not involve events or other special architectural
constraints and should not be confused with models that are more sophisticated as the J2EE
Java component model.

Figure 29 shows the components of an application during the streaming phase. The lines
indicate the communications between the components. The figure shows that an application
becomes temporarily distributed during the streaming phase.

Progressive Mobility using Component Streams

Page 95

Figure 29: Components of an application during the streaming phase.

While the streaming unit for files is usually a byte or a word, for progressive mobility using
component streams, the units need to be executable components and can take on a variety of
forms: modules, functions, procedures, objects, agents, processes, threads and so on. If an
executable component is sent over before the application has started it suffices to send over its
code and start it up in the same manner as applets are loaded to a web browser and started
(weak mobility). If, however, the application is already running before migration, one should
send not only the bare code but also the intermediate values of the local variables of that
evaluation unit and the information of the exact point in evaluation where the entity was
stopped to be able to resume at the same point (strong mobility). This extra information is
referred to as: the computational state (including the runtime stack).

The efficiency of the streaming process to hide network latency depends mainly on the
migration time and idle time of each component. In the next sections we discuss how these
component properties relate to each other.

4.3.2.1 Component Migration Time
The time a component needs to migrate from host to host is composed of the different times
needed in the steps of Table 11.

 ∑
=

≈
9

1i
imig T T

Sender Receiver

Progressive Mobility using Component Streams

Page 96

Table 11: Migration Steps Time Intervals

Step(i) Action Time(Ti)
1 Halt the application T1
2 Pack it T2
3 Transform it T3
4 Transport to the receiver T4
5 Retransform it T5
6 Check it T6
7 Unpack it T7
8 Adapt it T8
9 Resume the application T9

The transport time T4 depends mostly on the data rate B of the communication channel
because this is mostly much lower than the clock speed of the sending or receiving host. The
other times depend on the clock speeds Csender and Creceiver of the sending and receiving host
processors, respectively (see units in Table 12).

Table 12: Deployed Units

base quantity symbol unit
Data rate B bps

Clock speed C Hz
Number of bits b bits

Number of instructions I instructions

If we call b4 the number of bits transported and I i the number of instructions needed in step i
(Table 11) then the migration time Tmig becomes approximately:

If Csender = Creceiver and if we call

∑∑
==

+≈
9

5i

i

3

1i

 itot TT I then Figure 30 shows the migration time of a component of 1KiB10 if 106

instructions are needed for halting, packing, transforming, retransforming, checking,
unpacking, adapting and resuming the code.

10 One KiB = 1024 Bytes

receiver

9

5i
i

sender

3

1i
i

4
mig

C

I

C

I

B
b T

∑∑
== ++≈

Progressive Mobility using Component Streams

Page 97

Figure 30: Migration time for 1KiB code and Itot =106

The figure shows that the total migration time depends mainly on the transport time T4 and
thus the available data rate, for CPU clock frequencies up to 16 GHz11.

4.3.2.2 Component Idle Time
During the evaluation of an application that is built from components, the task of the
application will be performed by the different components. In many languages the component
structure reflects a functional decomposition of the application. During the control flow of the
application the work is done by different components mostly one at a time while all others
remain idle. If we assume as a first and rough approximation that the workload of an
application is equally divided over all its components and the application runs in a single
thread, the time a component remains idle depends on the number of components and the
evaluation clock speed.

Figure 31 shows the idle time per component in function of the system clock speed if we
assume an idle time of 100 seconds at 1 MHz clock speed. The graph shows the relation
between the idle time of a component and the speed of the components if the total workload is
equally divided between all components. If your competitors work twice as fast, your idle
time becomes half of the original one.

11 Intel expects to deliver CPU’s with a clock frequency of 24 GHz in 2007

1

64

4096

262144

1 4

16 64

25
6

10
24

40
96

16
38

4
0

1

2

3

4

5

6

7

8

9

10

time (sec)

data rate (kbps)

clock (MHz)

Progressive Mobility using Component Streams

Page 98

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512

MHz

se
c

Figure 31: Component idle time versus evaluation clock speed

Figure 32 shows the idle time per component if the evaluation of the application takes 100
seconds. If the number of workers increases to n for the same amount of work each of the
workers needs only to work 1/nth of the original time. The remainder of the time becomes idle
time. In practice the idle time will increase even faster since an increase of the number of
components tends to make an application less efficient, and therefore more time-consuming
due to the introduction of inter-component communication overhead.

If the workload is not equally distributed, as we may expect from real world applications the
times should be interpreted as average times.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

components

se
c

Figure 32: Component idle time for 100 sec application

4.3.2.3 Necessary Conditions for Removing Network Latency
In order to be able to move every component in parallel with the evaluation of the application
the following conditions (Table 13) must be satisfied:

Progressive Mobility using Component Streams

Page 99

Table 13: Necessary Conditions for Removing Network Latency

1 Each component must have at least one period of idle time equal to or greater than the
time the component needs to migrate.

2 The relative point of time where this idle time period starts must be known in advance

3 If different components have only one free slot of idle time equal to or greater than the
time that component needs to migrate, these slots may not overlap

If all these conditions are satisfied it suffices to migrate the components at the point of time
where their idle period starts.

If we build a new application that should be able to move by component streams, these design
rules should be kept in mind. It will not always be possible to comply with them completely,
but the more we approximate them the more the application will benefit from the proposed
technique. If we need to stream an existing application, we may need to adapt it to comply
better with the above conditions.

If the first condition is not met, the technique can still be deployed but migration of the
application will then cause some delay in its evaluation. We expect however that in many
cases architectural transformations could be applied to transform the original application to an
equivalent one that complies better with the first condition.

If the second condition is not met the migration of the application will also cause some delay
in its evaluation. If the exact onset of the idle time is not known in advance it will be possible
in some cases to estimate the delay based on statistics obtained from application profiling.
Modifying the application at its design level could transform the original application to an
equivalent one that complies better with the second condition.

If the third condition is not met the migration can only be optimized for one of the conflicting
components although here also architectural transformations at the design level may resolve
the conflict.

4.3.3 Migration Strategies
Progressive mobility using component streams will move a mobile application piece by piece
from sender to receiver. During the migration the application continues to run and will be
available to react to any event that will trigger an action. It is important that the sequence of
the different components is guided in such a way that the migration can happen in parallel
with its evaluation thereby eliminating the network latency almost completely. We describe
some typical strategies below.

4.3.3.1 Self Triggered after Last Instruction
The first strategy lets each component trigger its own migration just after it releases its control
to another component (Figure 33). This is a simple strategy that can be deployed if the
workload of an application is more or less equally divided over its components and if the
number of components is sufficiently large so that the average idle time is high and average
migration time is low. The strategy implies that the underlying framework is powerful enough
to allow the components to migrate completely autonomously. One environment that provides
such autonomous components is the mobile multi-agent environment developed at our lab:
Borg [Van Belle et al. 2001].

Progressive Mobility using Component Streams

Page 100

Figure 33: Migrate after last instruction

4.3.3.2 Self Triggered based on Profiling
The second strategy assumes the existence of a profiling process (Figure 34). The profiler is
an independent process that runs in parallel with the application built from the different
components. During the evaluation of the application the profiler generates a statistical profile
of the application behavior. The appearance of the profile could be a dictionary containing the
different evaluation contexts of a component as a key and the average idle time following the
evaluation in this context as value. Each component will at the end of its evaluation consult
the profiler to find out if the current moment in time is appropriate to migrate. The main
disadvantage of self triggering is the extra time the components need to spend after their
evaluation.

Figure 34: Self triggered migration based on profiling

4.3.3.3 Under Control of a Supervisor
If a profiler is running in parallel with the application it is advantageous to transfer the
migration control to this process which in this case we like to call a supervisor (Figure 35).
The components itself are now freed from checking the opportunity to migrate each time they

:Component :Migrate
Component

:Profiler

:Component 1 :Migrate
Component 1

:Component 2 :Migrate
Component 2

Progressive Mobility using Component Streams

Page 101

run. It is the supervisor that will decide when to migrate based on the profile gathered so far,
statistical data from the past, current host performance differences etc…

Figure 35: Migrate under control of a supervisor

4.3.3.4 Fixed Migration Strategy
If new applications are developed from scratch, the developer can model the design to
optimize its potential for progressive mobility using component streams. The development
environment can provide support for that. The developer can use his knowledge of the high
level purpose of the application to describe a fixed migration strategy of its components
including the exact moments in time where a migration should start. If the application decides
to migrate, or if another component asks the application to do so, a supervisor component,
running in parallel with and independent from the application, will guide the migration of the
application. The supervisor will trigger the migration based on fixed rules set up by the
developer. If the application needs to migrate more than once during its lifetime the
supervisor has to migrate with the application.

4.3.3.5 Dynamic Migration Strategy
If there is no fixed strategy available, the supervisor component, running in parallel with the
application can do the profiling of the application’s behavior in the same sense as described in
section 4.3.3.2. If the application needs to migrate, then the supervisor will guide the
migration of the application based on the profile obtained so far.

4.3.4 Discussion
The simplest strategy: self triggered after last instruction (section 4.3.3.1) can only be applied
if the underlying platform provides strong migration and complete autonomy to its
components. Moreover, the accompanying naming and routing system should be able to
maintain transparently the connections between the components. These are properties that can
only be found in some mobile multi-agent platforms but not in more current program
environments as Java. The second strategy: self triggered based on profiling (section 4.3.3.2)
needs the same facilities since here too, a component is supposed to migrate itself
autonomously after it consulted the profiler.

:Component :Migrate
Component :Supervisor

Progressive Mobility using Component Streams

Page 102

Therefore the only strategy that we can apply in a classic programming environment is: under
control of a supervisor (section 4.3.3.3). This strategy is potentially the most efficient of all
since this strategy does not introduce extra code in the components themselves but can run in
parallel with the application, eventually on a separate processor.

4.4 Experiment to Hide Network Latency

4.4.1 Borg Environment
Given the complexity of the implementation of this technique, we first start by building a
proof of concept in Borg, an environment that by its nature facilitates the expression of
mobile components. The Borg environment allows that components migrate completely
autonomously which give us the opportunity to apply the self triggered after last instruction
strategy.

The Borg environment models applications as cooperating autonomous agents as shown in
Figure 36.

Figure 36: Cooperating agents

This appears to be a natural environment to establish an object streaming proof of concept
since it allows us to migrate the application components (the agents) one by one. Figure 37
shows a snapshot after two of the components from the application in Figure 36 have been
migrated. The migration can be triggered by the component itself or under control of another
component.

Figure 37: Components during the Migration Process

Host sender Host receiver

Progressive Mobility using Component Streams

Page 103

An ideal migration strategy would be obtained if each component could be moved during its
idle time by a separate processor. This can be done by making sure that the I/O processor runs
parallel with the main processor or by providing each component of the (now distributed)
application with a separate host (Figure 38). If every component migrates during its own idle
time without claiming processing power of the application itself, the application can stream
from one set of sending hosts to a set of receiving hosts without the burden of network
latency.

Figure 38: Components during the Streaming Process

As a proof of concept we implemented a simple Borg application (Figure 39) that moves two
components C1 and C2 (Figure 40) from their sending hosts to two receiving hosts. The only
task of each component is counting to 20000 and then signaling a clock agent that it has
finished its job and passing control to the other component which in turn will go trough the
same procedure. The count of 20000 was chosen to make sure that the idle time of each
component is greater than its migration time. The separate clock agent is introduced to be able
to log timing events on different components in a distributed environment. The introduction
of a separate timing agent avoids severe synchronization problems between the distributed
components. Each component will start to migrate after it finished its counting job and during
this time the other component does the counting.

4.4.1.1 Implementation
Figure 39 shows the Borg code. Basically it creates an agent a1 that can move from host a to
host c and vice versa and an agent a2 that can move from host b to d and vice versa. Then
each agent is told to remember that the next agent to do the counting is the other one and
agent a1 gets the message to start the work.

The work method of each agent starts a counter from 0 to 19999 and then the other agent is set
to work, a time log is send to the clock agent and the working agent migrates to the other
host.

Sending Hosts Receiving Hosts

Progressive Mobility using Component Streams

Page 104

Figure 39: Borg proof of concept code

Figure 40 illustrates the hierarchical naming/routing structure which is chosen in such a way
that the path between the sending and receiving hosts is of equal length i.e. trough the Timing
Host and that the path from the components to the timing host is as short as possible (i.e.
directly to the Timing Host). In order to provide each component its own processor we used
five different hosts12.

12 Each host comprises a Gentoo Linux environment running on a 1800 MHz AMD processor with 256 MB
RAM.

{
show_clock(ref): display(ref, " ", clock(), eoln);
clock:agent("hostclock");

a:agent("hosta");
b:agent("hostb");
c:agent("hostc");
d:agent("hostd");

create_agent(num, places) ::
{ next_agent :0;
 pcount:1;
 set_next(a): next_agent:=a;
 work(): { for(i:0, i<20000, i:=i+1, void);
 next_agent->work();
 clock->show_clock("loop done"+text(num));
 pcount:=(pcount\\size(places))+1;
 agentmove(places[pcount]);
 clock->show_clock("move done"+text(num))
 };
 agent:clone2agent("component"+text(num));
 agent->agentmove(places[pcount]);
 agent
};

a1:create_agent(1, [a,c]);
a2:create_agent(2, [b,d]);
a1->set_next(a2);
a2->set_next(a1);
a1->work();
}

Progressive Mobility using Component Streams

Page 105

Figure 40: proof of concept setup

4.4.1.2 Results
We allowed the two components to work 500 times without migration and then again 500
times with migration and calculated the average time the application needed to complete. We
calculated the average time in order to flatten out unpredictable time variations introduced by
the Borg garbage collection, network data rate variations and/or other possible unpredictable
events.

The average time the application needed to complete without migration is 0.153 ms with a
standard deviation of 0.076 ms.

The average time the application needed to complete with migration is 0.106 ms with a
standard deviation of 0.047 ms.

4.4.1.3 Discussion
Apparently the application runs even faster if it migrates at the same time. Borg agents use a
polling mechanism to check for new messages in their incoming message queue. During the
migration of an agent this polling mechanism is suspended, this may explain the gain in time
if the application is migrated.

In either case the experiment showed that it is possible to migrate this specific running
application without slowing it down, as if there where no network latency at all. Even better,
the migrating application runs faster than the without migration. Although we do realize that
in real-world, non-distributed applications we might expect the application to slow down
somewhat during the migration.

4.4.2 Java Environment
Encouraged by the proof of concept results we implemented the use of component streams in
Java, a more established environment. We report on two more extended experiments in this

Timing Host

 Receiving Host Sending Host

a1

a2

clock

1

2

Progressive Mobility using Component Streams

Page 106

environment [Devalez 2003]. Java components are not able to migrate autonomously,
therefore we choose to implement a fixed migration strategy under control of a supervisor,
which appears to be the optimal architecture and migration strategy for the chosen
experiment.

As an example of the fixed migration strategy under control of a supervisor we migrate an
fractal generation application JULIA 2 [Devaney 1992] that plots a fractal on a screen. The
application is designed to consist of two largely independent components, one responsible for
the calculation and one for the graphical presentation of the calculated points to the screen.

Our main concern here is the efficiency of the migrating process itself, therefore we designed
the fractal application in such a way that it can stream efficiently to the receiving host. The
application is composed of two components, a component responsible for calculating the
fractal (calculateFractal) and a second component responsible for coordinates conversion,
scaling, plotting etc. (plotFractal). The total workload of the application is, as much as
possibly, equally shared by the two components.

To minimize the invocation latency [Krintz et al. 1998, Stoops et al. 2002] we send the
graphic presentation component first so that a human observer at the receiving hosts will have
a quick visual response after the migration starts. On the other hand, if we assume that the
receiving host has much more computing power, it could make more sense to migrate the
CalculateThread first to reduce the total evaluation time.

4.4.2.1 Implementation
Both components are implemented as a movable thread (PlotFractalThread and
CalculatingThread), running on a µServer (Figure 41). Threads run in their own namespace
and there is no standard mechanism that allows them to communicate with each other, so we
introduce an RMI object SharedQueue to allow the two threads to pass and retrieve
information from. CalculatingThread puts its results on a two-dimensional array of 50 pixel
coordinates on the queue datastructure while PlotFractalThread polls the queue to get its
input points.

Progressive Mobility using Component Streams

Page 107

Figure 41: Java experiment architecture

The µServers play the role of (distributed) supervisor and since the two components run on
top of their µServers it is not possible to run the supervisor independently on a separate
processor in this setup. In this example we apply a fixed migration strategy, the sequence and
time of migration is hard-coded in the supervisor. The supervisor interrogates on a regular
basis the status of the SharedQueue object and decides when the components are moved. In
our setup PlotFractalThread is moved immediately while the CalculatingThread starts its
calculations. If the supervisor detects that there are 300 elements available in the
SharedQueue it migrates the calculating thread. Since migration happens only once there is no
need to migrate the supervisor as well.

In order to provide each component its own processor so as to obtain true parallelism between
the migration of one component and the evaluation of the other at the sending and receiving
side we used five different hosts13, four µServers to host the two components and one central
RMI host for time logging and facilitating thread communication (Figure 41).

4.4.2.2 Results
First the application was evaluated without migration. The application was launched 30 times
and we calculated the average time in order to flatten out unpredictable time variations
introduced by the garbage collection, network data rate variations or other possible
unpredictable events. The average time to complete the application without migration was 2
sec 566 ms with a standard deviation of 20 ms.

13 Each host comprises a Gentoo Linux environment running on an 1800 MHz AMD processor with 256 MB
RAM. The hosts are interconnected via a 100 Mbps LAN network.

Timing and
communication Host

Sending Host

1

2

µServer

Receiving Host

µServer

µServer

PlotFractalThread

µServer

CalculatingThread

RMI
SharedQueue

Progressive Mobility using Component Streams

Page 108

Then we launched the application again 30 times but now the application was migrated from
the sending host to the receiving host immediately after it was launched. The average time to
complete the application now with migration was 2 sec 530 ms also with a standard deviation
of 20 ms.

The experiment showed that it is possible for a supervising component to migrate a running
application without slowing it down, as if there where no network latency at all. Even better,
the migrating application even runs slightly faster than the same application without
migration.

The µServer at the sending host maintains a logging process to find out when certain events
take place. This logging process runs only at the sending host and is not necessary at the
receiving host. This explains why in this setup the application runs faster if it is migrated at
the same time since the parts at the receiving host are not hindered any more by this polling
process.

4.4.2.3 Discussion

Threads
To divide our program in different processes, we used the available Thread class in
combination with the µCode toolkit to move the threads to the receiving host. However,
threads cannot communicate with each other directly, because they run in different
namespaces. We introduced the SharedQueue object to work around this problem. This slows
down the original application, because all communication has to go through this object. On
the other hand, this approach eliminates the direct connection between the migrating
components, which makes it easier to transfer them. In order to minimize extra slowdown
from the SharedQueue object, we ran it on a separate processor.

RMI
Since we migrate the threads to an other host, the SharedQueue object must also be available
for the threads running on the receiving host. Therefore we decided to make SharedQueue
accessible through RMI. The disadvantage of this is that a local stub must be available on all
the hosts that use the remote interface SharedQueue.

Reflection is very useful for its intercession part. In the context of mobile code, it would allow
us to change references to objects into remote references once the objects are transferred. We
would be able to introduce meta-objects that observe the running application and change the
object references when needed. Java already supports a limited introspection part of reflection
in the java.lang.reflect library. Unfortunately Java does not support intercession. In our
experiments, we worked around this problem using RMI. Since the SharedQueue object does
not move, we did not have to change references to this object. The threads we migrated also
did not have direct references to one another, which makes the use of reflection in this case
unnecessary. But when applying our techniques to other applications, we will have to
consider reflection to change references at the meta-level. Reflex [Tanter et al. 2003] is a
valid candidate to introduce intercession in the Java environment.

Progressive Mobility using Component Streams

Page 109

Frames
To draw our fractal figure, we used the java.awt.Frame class. We can add an object which
extends the Canvas class and overrides the Canvas paint() method to draw pixels on it. When
a Frame is shown on the screen, it immediately invokes the paint() method from the object in
the frame. And every time the Frame has to be redrawn, the paint() method is invoked again.

In our experiment, we added the PlotFractal thread to the Frame, since it overrides the paint()
method to draw the pixels. This made it difficult to synchronize the threads, because the
PlotFractal thread has to show the Frame first, and then wait some time until the Calculating-
thread finishes calculating the pixels, and then draw the pixels. With every redraw of the
Frame, this starts all over again. A possible solution to this is to keep the content of the
Frame, so that whenever we restart the thread at arrival, it keeps the pixels that are already
drawn. This would improve our experiment but re-initializing the thread also creates a new
Frame, and the graphics needs to be redrawn again anyhow.

µServers
To send a thread to a receiver, we need to activate a µServer that runs on the same processor
as the thread. We cannot make them run separately because we need to pack and unpack the
thread we want to send.

If we use the µServers as supervisors, they will use some of the processor time, which slows
down the application. After the migration, the application will run faster, since the receiving
µServers do not evaluate the extra supervisor instructions. This is a drawback of using threads
as migrating objects.

If we would have used autonomous agents, which contain everything needed to transfer them,
we would not see a difference in time between an application running on the sending hosts
and an application running on the receiving hosts. This also explains why the time to
complete the migrating application is less than when the application is not migrated.

4.5 Experiment to Reduce System Latency in Low Data Rate Environments
The previous experiment showed that component streaming does not slow down the
application, but it does not show the behavior of an application when it is migrated in low
data rate environments. Therefore we did setup a data rate simulator and added a graphical
user interface to the application to study its behavior.

4.5.1 Implementation
To be able to run experiments on selected data rates we need to put some simulation system in
place. In this section we describe how we implemented different data rates in the Java
environment.

4.5.1.1 Finding the Size of Objects
One way to simulate data rates is by blocking the migration a certain amount of time,
depending on the size of the objects we want to migrate. To do this we will have to create our
own outputstream, so that every time an object is serialized, the size of the object is calculated
and the migration is delayed for the time needed to transfer it. In Smalltalk, there is a sizeof-
method available to get the size of objects directly. In Java, a fast way to get the size is by
serializing the objects to a ByteArrayOutputStream first. Then we can get a byteArray from

Progressive Mobility using Component Streams

Page 110

this stream, and ask the size of it. This will give us the size of the serialized object. As we
have to serialize the objects to an ObjectOutputStream afterwards, this means we have to
serialize them two times, as the ByteArrayOutputStream does not keep the object information.
But since serialization is an available feature of the Java language, it is the most efficient
approach for determining the size of objects, so we will use this in our experiment.

4.5.1.2 A Data rate Simulating OutputStream
We created our own outputstream, we will call it the DRLOutputStream (Data Rate Limiting
Output Stream). This DRLOutputStream inherits from the ObjectOutputStream, and overrides
its methods to wait some time before serializing them. The time to wait depends on the size of
the objects, and on the data rate, which is passed when starting our application. To suspend
the migration, we must suspend the process responsible for migrating the components. This
can be done using the sleep method from the Thread class. After waiting some time, we will
then really serialize the objects by invoking the ObjectOutputStream methods. We replaced
the ObjectOutputStream object used in µcode by our DRLOutput Stream. Different data rates
can now be simulated by specifying them when starting our application. This will be useful to
test the benefits of progressive mobility using component streams.

4.5.2 Adding a Graphical User Interface
In order to show the power of progressive mobility using component streams on low data
rates, we decided to extend the fractal drawing application with a user interface. This interface
consists of Swing components (labels, buttons and text fields), and a JavaCanvas for
displaying the fractal. The user will be able to change the parameters for the fractal, and to
zoom in on certain parts of it. The area that will be shown while zooming in can be chosen by
moving a rectangle over the drawn fractal. We took a screenshot of this application showing
the graphical user interface and several command line windows to monitor the threads (Figure
42).

Progressive Mobility using Component Streams

Page 111

Figure 42: Graphical user interface and thread windows

Applying a user interface will show the availability of the application while transferring the
other components that are part of the same application. The user will be able to redraw, zoom
in, or change the different parameters of the fractal while the components are migrated.

4.5.3 Strategies
We implemented different migration strategies in our experiments. We used a fixed migration
strategy using a supervisor, and a strategy involving a profiler.

In order to be able to compare application component streams and normal code migration we
also migrated the components of the application without starting them on the sending host
first. This strategy implements the normal download of applications, where only source code
is transferred, and then started at the receiver.

Some initial experiments to test our code however showed that we must be careful when
transferring an initialized user interface object, because this object can suddenly become a lot
larger than a non-initialized one, and can take much longer to migrate. Since we want to
compare the migration of running components and components that are not started yet, we
needed our application to send objects of almost equal size and with almost equal migration
time. Therefore we implemented our application to do just this by applying the technique of
progressive anticipative mobility using proactive migration, a technique that we will further
explain in chapter 5 of this dissertation.

Basically the application now migrates a non-initialized copy of the running component and
after the migration the computational state is adapted to reflect the changes that occurred at
the running version on the sender. In this set up this was not too difficult since most of the
computational state is stored in the distributed SharedQueue object.

Progressive Mobility using Component Streams

Page 112

Again we provide each component with its own processor to allow the migration of one
component to run in parallel with the evaluation of the other component14.

The setup is shown in Figure 43 which is similar with Figure 41. In this setup however the
PlotFractalThread will also contain the settings of the user interface, and will react on user
interactions. The SharedQueue will also be extended to contain extra logging information to
be able to adapt the computational state of the threads at arrival to reflect the changes that
occurred at the running version at the sender during initialization of the user interface object.

We simulated three low data rate environments: a 2400 bps data rate, as still used in some
maritime networks, a 9600 bps data rate, as in cellular phone modem networks, and a 56 kbps
data rate, as in the standard modems that are still used for dialup lines. We performed
experiments with three strategies:

• normal: Just send the components and start them up at the receiver

• profiler: Thread decides to migrate based on number of points already put in queue

• supervisor: Threads are migrated by a supervisor that polls the queue on a regular
basis to check when number of points in queue reach a certain minimum

Figure 43: Java experiment with GUI architecture

Figure 44 shows the sequence diagram of the experiments.

14 For each host we used a Gentoo Linux environment, running on an 1800 MHz AMD processor with 256 MB
RAM.

Timing and
communication Host

Sending Host

1

2

µServer

Receiving Host

µServer

µServer
 PlotFractalThread

(GUI)

µServer

CalculatingThread

RMI
SharedQueue

(log)

Progressive Mobility using Component Streams

Page 113

Figure 44: Sequence diagram of the extended fractal draw experiment
The numbers on the sequence diagram indicate the moments on which we logged the time in
the SharedQueue.

In the sequence-diagram can be seen that the µServers at the senders run in parallel with the
application and, check the SharedQueue at regular time intervals to get the state of the
components. They also can act as supervisors and trigger the migration of the components,
and after these components have migrated to the receivers, they halt their evaluation. The
SharedQueue always stays available, since it logs the time and is needed for the
communication between the threads, even after their migration. We will now describe the
sequence-diagram in more detail at the different moments. The numbers correspond with the
numbers found in Figure 44.

1. The PlotThread asks to draw the fractal, because it received a redraw event by the user, or
because the application started. It then notifies the CalculateThread that it can start calculating
new points (using the SharedQueue). The PlotThread waits until the CalculateThread finishes.

If the profiling strategy is used then CalculateThread halts when it has calculated enough new
points, if the supervisor strategy is used it is the profiler that checks on a regular base the
number of points calculated and that will halt the CalculateThread when the number of new
points reach an certain minimum (300 in this setup).

:µServer1 :µServer2 :Shared-
 Queue

:Plot-
 Thread

:Migrate
 Plot-
 Thread

:Calc-
 Thread :Migrate

 Calc-
 Thread

7

1

2
3

5

9

4

be
fo

re
 m

ig
ra

tio
n

6

8

10

af
te

r
m

ig
ra

tio
n

Progressive Mobility using Component Streams

Page 114

2. While the CalculateThread is busy, the PlotThread starts migrating to the receiving host.
This can take more time than the time needed to calculate the points, as the PlotThread
contains the user interface, and is therefore a bigger object to migrate.

3. The CalculateThread finished calculating the new points and notifies the PlotThread that it
can start drawing. The migration of the PlotThread is not finished yet so it will be the original
version that is still available on the sender that will draw the fractal graph, while a copy of this
thread is migrating to the receiving host.

4. While the PlotThread is busy drawing, the CalculateThread is also migrated to the
receiving host. The migration of this component is usually shorter than the PlotThread, since
it is a smaller object. As shown in Figure 44. This migration happens in parallel with the
migration of the PlotThread and the evaluation of the original PlotThread at the server.

5. The fractal was drawn on the sending host platform. The components are now idle and wait
for the next redraw.

6. The CalculateThread was sent. From this moment on, the µServer on which it was running
halts, and the component starts evaluating at the receiver.

7. The PlotThread was sent, and starts evaluating at the receiver now. The µServer on which it
was running halts since the services as possible supervisor or migrator are not necessary
anymore.

8. A new redraw event makes the PlotThread ask for a new drawing. This time, the redraw
takes place on the receiving host platform. The PlotThread notifies the CalculateThread to
start.

9. The CalculateThread finished calculating and notifies the PlotThread to draw.

10. A fractal was drawn on the receiving hosts.

The sequence-diagram is similar for the different strategies we used, except for the normal
sending strategy where the components are not started at the sending host. It shows us that the
user might have some extra time during migration on which he can still use the application.
We will confirm this in the results of our experiments. To eliminate time variations due to
external influences, we calculated the average over several runs of the same experiment.

4.5.4 Results
We applied the different strategies and data rates on our experiments. We will now compare
the results from these experiments.

4.5.4.1 Time Needed to Finish the Application
In chapter 3 we noted that applications can finish earlier if parts of the application are sent
progressively to a receiver and if we manage to startup the application at the receiver before
the complete application is migrated. In applying progressive mobility using component
streams, we also may evaluate a part (a component) of the application on the receiver before
the complete application is migrated, so here too an application can finish earlier. Even if we
do not start the application earlier at the receiver we will discover that in this experiment the
application ends earlier if it is migrated.

As we did in our previous experiments, we logged how much time was needed to finish our
application while evaluating it with and without migration. We also logged the time while
evaluating on the receiver. Table 14 shows the average time for each strategy; Table 15 gives
an indication of the standard deviation of the times measured. As can be seen in Figure 45, the

Progressive Mobility using Component Streams

Page 115

supervisor seem to influence the evaluation time of the application on the sender, since it
takes more time to complete the application in comparison to running it on the receiver. This
was something we could expect, since we were using the µServers that are running in parallel
with the components on the same processors, as supervisors. The results however show that
while migrating the application, it does not slow down. In fact, it seems to run even faster.
This is probably because when the application is migrating the supervisor is halted because it
does not need to check on a regular base the number of points anymore. The extra clock
cycles previous needed by the supervisor can now more efficiently be used by the application.
We can conclude from these results that in this experiment the application was not slowed
down during migration, as we already experienced in our previous experiments. Another
observation is that the application seems to run somewhat faster when using a profiler in
comparison to running it using a supervisor. If a profiler strategy is applied the
CalculateThread can count the number of generated points by itself and doesn’t need the
profiler to monitor the shared queue.

Table 14: Average timing results (ms) to finish the application

Table 15: Standard deviation (ms) of timing results to finish the application

Figure 45: Average timing results to finish the application

strategy on sender while sending on receiver
profiler 240 609 544

supervisor 227 482 945

strategy on sender while sending on receiver
profiler 4168 3490 3288

supervisor 4676 3831 4320

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

on sender while sending on receiver

location

ev
al

ua
tio

n
tim

e
(m

s)

profiler
supervisor

Progressive Mobility using Component Streams

Page 116

4.5.4.2 Time Needed to Send the Components
Table 16 and Figure 46 shows the time needed to transfer our components with the different
data rates. This experiment was executed only one time, so we do not show standard
deviations. It seems that using a supervisor is beneficial for sending objects over the network,
since they do not contain extra checking and migration code. It makes them smaller, and
reduces the time needed to migrate them, even if we did transfer almost identical components
in each case. Future experiments could show if this time we gain while sending could
compensate for possible time loss when we use a supervisor to run the application (see Figure
45).

We can also observe that the time needed to send the objects seems almost identical for the
normal sending and profiling strategy. This was something we expected, as our application
was implemented to send objects of almost equal size.

Table 16: Time to send the components (ms)

Figure 46: Time to send the components

4.5.4.3 Time Needed for the First Draw
The benefits of progressive mobility using component streams are best shown if we calculate
the time needed to see the first drawn fractal after we started sending the components. This

data rate 2.4 kbps 9.6 kbps 56 kbps
normal 77483 24275 9337
profiler 78199 25041 9450

supervisor 53399 14941 3918

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

2.4 kbps 9.6 kbps 56 kbps

data rate

tim
e

(m
s) normal

profiler
supervisor

Progressive Mobility using Component Streams

Page 117

can be seen in Table 17. This experiment was executed only one time, so we do not show
standard deviations. With normal sending, we have to wait until the application is completely
downloaded and started. This waiting time can be very long if low data rates are applied.
When using progressive mobility using component streams however, we can see the first
drawing after a few seconds, while the transfer is still busy. This drawing is located on the
serving hosts, where the application was started, since we only have two components in our
application. In this setup the availability of the application is not compromised by its
migration.

This can demonstrate the use of the technique for hand-held devices. If an application needs
to be transferred to a handheld device it can do so while it is still in use on the desktop
computer, thereby generating immediate user feedback and minimizing user interface latency
to a minimum.

Table 17: Time to first draw (ms)

Figure 47: Time to first draw

In other applications, consisting of more components, we could send a small user interface
component to the receiver first, so that the user will see the first results at the receiver after a
shorter period. In our experiment, the displaying component was bigger, so it took most of the
migration time.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

2.4 kbps 9.6 kbps 56 kbps

data rate

tim
e

(m
s) normal

profiler
supervisor

data rate 2.4 kbps 9.6 kbps 56 kbps
normal 82806 29299 13736
profiler 3762 3844 3808

supervisor 3990 4193 3721

Progressive Mobility using Component Streams

Page 118

The results on different strategies are compared in Figure 47. The graph represents the time to
the first drawing using different data rates, and it shows that there is no latency while using
progressive mobility using component streams. The time to wait is almost exactly the time to
complete the application task, and this is the case for the profiler as well as the supervisor
strategy.

If high data rates are applied, we will not see such a difference with normal sending of this
rather small application. As components are almost immediately transferred and started at the
receiver, using progressive mobility using component streams might even slow down the first
drawing. This happens for example when the drawing component is interrupted on the sender
before it finishes its task. If however we design the application so as to prevent the
interruption of the drawing component at the sender we always become a first complete
drawing very fast after the start of the migration even with high data rates. In general
however, as the size of an application increases then scenario’s as described above becomes
possible even for higher data rates since the time of migration is defined by the size of the
application and the data rate of the network. See also section 4.3.2.1: Component Migration
Time.

As we noted before in the adapted gremlin application (section 3.8.4), here too, apparently
small changes on the design level of the application sometimes suffice to get a more optimal
behavior if applying progressive migration. Much of the behavior of an application, migrating
using components streams, can be modeled by smart engineering the number and size of the
components and the decision which component(s) should migrate first. We will revisit these
engineering and refactoring strategies later in section 6.4.4.

4.5.4.4 Time Gained in Comparison to Normal Sending
In Table 18 and in Figure 48 we show the time we gain in this experiment using progressive
mobility using component streams with low data rates. Since our application keeps running,
and is available while being transferred, we have some time during migration that can be used
to continue the evaluation of the application. In this specific experiment, it was possible to
make several drawings on the sender before the application was completely transferred. Here
too, this experiment was executed only one time, so we do not show standard deviations.

These extra drawings were only possible because of progressive mobility using component
streams, since with normal sending, we would just be waiting. The results for this experiment
should be interpreted as existential and does not reflect a universal rule. Even with the same
application we will not benefit from this extra drawings on high data rates, since the size of
the application to migrate is rather small the time gained will become insignificant in
comparison to normal downloads. The migration time will become a lot shorter.

Also important is the fact that the application must be available for the user to interact with it,
since the application started running on the serving hosts. This is not a problem when the
sending host is a hand-held computer, or when we have a bigger application and we send a
small user interface first.

Progressive Mobility using Component Streams

Page 119

Table 18: Time gained versus normal sending

Figure 48: Time gained versus normal sending

4.5.5 Discussion
Java is not an optimal platform for implementing progressive mobility using component
streams. It does not feature the perfect autonomous components we find in languages as Borg.
Therefore Java components will need to delegate certain tasks. For example, if a Java
component decides to migrate it can prepare this task for another component and then release
control to enable that other component to do the job.

However, it seems that using a supervisor has some benefits for sending objects over the
network, since they do not contain extra checking and migration code. It makes them smaller,
and reduces the time needed to migrate them, even if we did transfer almost identical
components in each case.

We can also observe that the time needed to send the objects seems almost identical for the
sending and profiling strategy. This was something we expected, as our application was
implemented to send objects of almost equal size.

The benefits of progressive mobility using component streams are best shown if we calculate
the time needed to see the first drawn fractal after we started sending the components. This

data rate 2.4 kbps 9.6 kbps 56 kbps
profiler 79044 25454 9928

supervisor 78816 25106 10015

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

2.4 kbps 9.6 kbps 56 kbps

data rate

tim
e

(m
s)

profiler
supervisor

Progressive Mobility using Component Streams

Page 120

can be seen in table 4.3. With normal sending, we have to wait until the application is
completely downloaded and started. This can be very long on low data rates. When using
progressive mobility using component streams however, we can see the first drawing after a
few seconds,

 Our experiments showed how progressive mobility using component streams is important for
low data rates environments. While no time is lost during migration on high data rates, a lot of
evaluation time is gained applying low data rates. This time can be exploited by the user,
since the application is still available. The user will also see faster results, and will not have to
wait for the application to start finally. These experiments on a real, but simple application
proved we could eliminate network latency completely. Of course there is still a question of
scalability. Future experiments may show if the progressive mobility using component
streams technique is also useful for bigger applications, which have more components and
less predictable behavior.

Other experiments may even result in new interesting techniques. For example, we could send
an interface of an application to a handheld device, and migrate the computation to it using
progressive mobility using component streams. But we would keep the computation running
on the server, which has more processing power, for as long as there is a network connection.
We would only start the computation on the handheld device when the network connection
fails. In this situation the application would run in the most efficient way during migration,
and be able to adapt itself when a problem occurs on the network.

4.6 Experiment to Reduce System Latency by Parallel Evaluation
System latency can be reduced by exploiting the implicit parallelism of a network. In this
section we describe an experiment where we split our application in two components and
design the application so as to allow parallel evaluation of the components.

In this experiment we will not only exploit parallelism between the evaluation of a component
and the migration of another component but also parallel evaluation of the two components,
one still on the sending host the other already arrived at the receiving host. This parallel
evaluation is started immediately after the migration of the first component,

We report on experiments in the Smalltalk environment to implement component streams
[Evenepoel 2003] and the exploitation of parallel evaluation. We applied the same strategy as
in the previous section: fixed migration strategy under control of a supervisor since this
environment does not support autonomously migration either. In this setup we transformed
the design of the application in order to achieve concurrent processing

4.6.1 Process Migration with Opentalk
According to the Opentalk manual, all objects can be sent over a network by value using the
asPassedByValue method. Unfortunately we discovered an important exception to this claim:
Process-objects.

Exporting a process with Opentalk by reference is straightforward, and easy to implement. A
process could be suspended, exported to a remote Smalltalk image, and resumed, as long as
the connection to the source node was kept alive. But if we want to migrate a running
application, the references to the source node must be cut off one time or another. So the
processes should be passed by value, or the process’ instance variables should be passed by
value. A deficiency in the current design of Opentalk prevented that, apparently because the
suspended context of the process could not be passed by value. We also found that we could

Progressive Mobility using Component Streams

Page 121

not export a process that was created in a workspace (an editable TextWindow), because it is
bound to an empty namespace.

4.6.2 Using BOSS
If it is not possible to transport a Process-object by value, we could not implement process
migration and application streams in Opentalk. We discovered however that Process instances
could be transported by value under certain circumstances by deploying the Binary Object
Streaming Service (BOSS), to pack objects in a binary format.

BOSS seemed to be capable of packing a (running) process. If we transport the BOSSed
process to another image on a different host, we can resume the process there. First, we pack
the process into a binary file, transport the file via File Transfer Protocol (FTP), unpack the
file at the remote location, and resume the process.

The problem here was that we used the FTP-mechanism of the underlying operating system
instead of the Opentalk environment. We know that BOSS first writes its data to a Stream, so
we can also capture the BOSS-Stream and transport it via Opentalk to another host, where the
BOSS-Stream is unpacked in a process-object.

4.6.3 Limitations in Current Smalltalk Environment
When we were trying to stream applications in Smalltalk, we discovered a number of
limitations in Opentalk and BOSS when working with Process-objects. We managed however
to develop some workarounds. We describe some of the lesser known problems in Smalltalk
related to process migration:

4.6.3.1 Passing by Value
When we wanted to pass a process-object by value to another host, an error message “A
Primitive has failed” is generated. This was caused by the fact that the Process instance
variable suspended context could not be passed by value to another image. We found a
workaround for this problem by packing/unpacking the process-object with BOSS, and
passing this BOSS object by value to another image. As an extra advantage we noticed that
sending BOSSed objects was on the average four times faster than just relying on the
Opentalk object marshalling.

4.6.3.2 Order of Object Instantiation
It is not possible to create the necessary communication objects (e.g. RequestBroker, remote
objects ...), before creating the BOSSed process. If this is the case, the transported BOSS-
stream will fail to unpack the process-object at the remote location. After a while, a “Remote
Invocation Timeout”-exception will be generated at the sender side. The workaround is to
make sure that the process is BOSSed before the communication objects are set in place.

4.6.3.3 GraphicsHandles Cannot be Stored by BOSS
If the process to be BOSSed has references to graphical containers the following error
message is generated: “GraphicsHandles cannot be stored by BOSS”.

Since the fractal experiment that we want to implement in Smalltalk contains a window we
where forced to create the graphical containers externally and draw on these containers by
sending draw-messages to a reference of these containers or by painting the fractal on any
active VisualWorks Window at the remote host.

Progressive Mobility using Component Streams

Page 122

4.6.4 Experiment setup
In order to be able to compare the different environments we implemented the same fractal
drawing application as in the previous experiment using the workarounds described above to
cope with the current Smalltalk limitations.

Again the application becomes divided in two processes: the CalcProcess responsible for
calculating the fractal and DrawProcess responsible for drawing it. We consider the strategies:

4.6.4.1 Calculate and draw the fractal, migrate afterwards
This strategy would be beneficial when the sending host has a lot of computational power,
while the remote host lacks this power. An example of this setup is a computer connected to a
PDA: the computer can calculate the fractal and send the resulting fractal drawing to the
PDA, minimizing the use of the PDA’s reduced computational power.

4.6.4.2 Start CalcProcess and migrate the DrawProcess
This strategy is appropriate when a user is waiting for the results of the DrawProcess at the
remote host; the DrawProcess can start drawing the fractal immediately after migration,
showing the user already a part of the generated image. This reduces the user interface
latency.

4.6.4.3 Migrate the CalcProcess first, then the DrawProcess
If the remote host has more computational power than the local host, the CalcProcess finishes
its computations faster, and the DrawProcess will have to spend less time waiting for new
data. This way, the total evaluation time of the application is reduced.

4.6.5 Implementation
We implement the Start CalcProces, and migrate the DrawProcess (section 4.6.4.2) strategy
because this strategy allows parallelism of the component evaluation. While the CalcProces is
evaluation on the sender the Drawprocess is migrated to the receiver. At arrival its evaluation
can start immediately and it will be able to draw the results calculated at the sender. The draw
and calculate components can now run in parallel if appropriate. Later, the Calcproces at his
turn can migrate to the receiver and continue his calculations there, this time on the same host
as the Drawprocess. We compare it with the Calculate and draw the fractal, migrate
afterwards strategy where no parallel processing is applied.15

4.6.5.1 Strategy without parallel processing
The application is composed of four loosely coupled components: CalcProcess, DrawProcess,
SupervisorProcess and a SharedQueue. This example is an example of a combination of self
triggered migration and the supervisor strategy. The processes CalcProcess and DrawProcess
trigger their own migration by letting the SupervisorProcess know that they are ready to be
migrated. Then the SupervisorProcess migrates the specific processes to the remote host. This
technique has as advantage that the processes do not have to wait actively, occupying the
processor, until the supervisor grants them the permission to migrate. The fourth component
is a SharedQueue, this provides the communication channel between CalcProcess and
DrawProcess: the Calc Process puts, after calculating a line segment and color, the data on the

15 There were two computers involved in the experiment, one Pentium II 266 Mhz Celeron 192 MB RAM, with
Mandrake Linux 8.1 installed on, and one Pentium II 266 Mhz Intel 192 MB RAM, with Windows ’98 as the
operating system. The computers are connected in a 10 MBit network.

Progressive Mobility using Component Streams

Page 123

SharedQueue, and the DrawProcess gathers these data to complete the drawing of the fractal.
When the application is started, all processes are started simultaneously; the
SupervisorProcess however runs at a slighty lower priority and waits for a signal from the
other processes. The CalcProcess and DrawProcess both having a slightly higher priority, and
signal the SupervisorProcess when they want to be migrated, after their task is finished. Once
the SupervisorProcess got both signals, it migrates the processes and the SharedQueue to the
remote host.

4.6.5.2 Strategy with parallel processing
This strategy applies the same component structure as the previous one but now the
DrawProcess is migrated immediately to the remote host, after it signaled the
SupervisorProcess it wanted to migrate. While this component is migrating, the CalcProcess
is calculating the fractal’s line segments and sends them to the SharedQueue. When the
DrawProcess has finished migrating, it starts collecting the data from the SharedQueue, and
starts drawing the line segments on a Window at the remote host. When the CalcProcess has
finished calculating, it signals the SupervisorProcess it needs to migrate too. Then the
SupervisorProcess migrates the CalcProcess and SharedQueue to the remote host. Since in
this strategy the CalcProcess and the DrawProcess are allowed to run in parallel on different
processors we expect a decrease of the total evaluation time of the application.

4.6.5.3 Results
We ran the first experiment 50 times, and calculated the average time it took to calculate and
draw the fractal and migrate the components afterwards.

The average time needed was 21 sec 397 ms with a standard deviation of 2 sec 56 ms.

We ran the second experiment also 50 times, and calculated the average time it took to
complete the application. The average time for this experiment was 19 sec 637 ms. with a
standard deviation of 2 sec 16 ms.

4.6.6 Discussion
If the workload of an application could be shared by two complementary processes running in
parallel the total time needed would be half the original one.

The gain in time in our experiment (9.1 %) is less than this hypothetical maximum of 50%.
One of the reasons is that we did not deploy a separate processor for the migration phase, this
means that the Calcprocess can only start its activity after the Drawprocess is migrated.

4.7 Design Guidelines

4.7.1 Necessary Conditions for Removing Network Latency
In order to be able to move every component in parallel with the evaluation of the application
independent of the chosen migration strategy, we identified a number of conditions that must
be satisfied (Table 13). If all these conditions are satisfied it suffices to migrate the
components at the point of time where their largest idle period starts.

If we build a new application these design rules should be kept in mind. It will not always be
possible to comply with them completely, but the more we approximate them the more the
application will benefit from the proposed technique. If we need to stream an existing
application, we may need to adapt it to comply better with the above conditions.

Progressive Mobility using Component Streams

Page 124

If the first condition is not met the technique can still be deployed but migration of the
application will then cause some delay in its evaluation. We expect however that in many
cases architectural transformations could be applied to transform the original application to an
equivalent one that complies better with the first condition.

If the second condition is not met the migration of the application will also cause some delay
in its evaluation. If the exact onset of the idle time is not known in advance it will be possible
in some cases to estimate the delay based on statistics obtained from application profiling.
Modifying the application at its design level could transform the original application to an
equivalent one that complies better with the second condition.

If the third condition is not met the migration can only be optimized for one of the conflicting
components although here also architectural transformations at the design level may resolve
the conflict.

4.7.2 Guidelines
Based on the above conditions, we will now suggest a number of guidelines for building
applications that are able to stream efficiently in an environment where efficiency, availability
and fast migration are important.

• Autonomous components
In order to obtain components that are able to migrate independent from another host without
the creation of extra inter-component communications infrastructure, the components should
be able to communicate transparently with each other without knowing or even bother where
their partners reside. Moreover the components should always communicate in an
asynchronous fashion. An autonomous component should be designed as a separate entity,
sending messages and receiving messages from other components, not as an entity which
transfers its control flow to other components [Van Belle et al. 2001].

• Numerous components
If the number of components increases so will the idle time per component. Architectural
refactorings could be applied as an optimization technique to increase the number of
components without affecting the applications behavior.

• No monopolizing components
Equal sharing of the workload over all components is the most ideal situation to allow each
component to migrate during its idle time. This equal distribution of the workload is only
possible in theory. However in practice it suffices that the component that needs most of the
time, has a workload that is smaller than the sum of the workloads of the other components.

• Strong mobility
The underlying framework should support strong mobility. If a component migrates during
the evaluation of the application it must be able to migrate including its computational state
and runtime stack.

• Separate processors
If one needs to eliminate the network latency completely the migration of the components
should be performed by a different processor than the one that evaluates the application itself.
The ideal, but mostly unpractical setup is to run each component on a different processor,
eventually a specialized co-processor.

• Intelligent supervisor
The supervisor needs to decide when which component has to move thereby freeing the
components themselves from this task. These rules can range from simple static rules to

Progressive Mobility using Component Streams

Page 125

dynamic rules that change under control of the supervisor who reasons over the dynamics of
the running program, over its rules and itself.

4.8 Summary and Conclusion

New network architectures in ambient intelligence environments where connections between
partners are no longer predictable need new solutions to support the inherent dynamics of
these environments.

Mobile code is a plausible candidate to ensure the connection between different moving
software components or devices but it will not always be possible to migrate this code as a
whole, since the connection time between, possible moving objects, is not predictable.

Ubiquitous communication in ambient intelligence environments only makes sense if the
objects that compose the network are always available to respond to the requests of other
objects even during their unpredictable migration time. Since connections between hosts in
these new environments are more volatile than in static networks there is the need for
mechanisms to split up the code in smaller parts that will fit in the limited timeframes in order
to migrate the parts of the code progressively in time to other objects.

To keep the application available during its migration we will also need to put systems in
place that allows the code to continue its evaluation during the progressive migration so that
the application remains available for users and other applications at all time.

Precaution should be taken to send the most important parts first, in a format that makes this
partial block of code immediately usable (ready for evaluation) at the receiver’s end.

In this second theme, we have built a proof of concept of a system that breaks up the code of
an application in smaller parts and sent them one by one progressively in time, while the
evaluation of the application continue.

Performance of an application is most commonly measured by overall program evaluation
time and network performance is most commonly measured in network latency but in a
mobile environment performance is also measured by application availability, invocation
latency, and user interface latency.

Overall program evaluation time is the time between the invocation of an application and
the end of the evaluation of the last instruction.

Application availability is the inverse of the time an application “freezes” during migration.

Network latency is the time the application needs to travel over the network.

Invocation latency is the time from application invocation to when evaluation of the program
actually begins.

User interface latency is the time a user has to wait between his demand and a user interface
reaction of the system.

Table 19 gives an indication of the performance of progressive mobility using components
streams in these different domains.

Progressive Mobility using Component Streams

Page 126

Table 19: Properties of the Component Stream Technique

O
ve

ra
ll

pr
og

ra
m

 e
va

lu
at

io
n

tim
e

A
pp

lic
at

io
n

av
ai

la
bi

lit
y

N
et

w
or

k
la

te
nc

y

In
vo

ca
tio

n
la

te
nc

y

U
se

r
in

te
rf

ac
e

la
te

nc
y

Component streams - +++ +++ + ++

To conclude this chapter we discuss these results in the most important dimensions of the
conceptual framework provided in chapter 2.

4.8.1 Network
We expected that network latency could be hidden by moving each component during its
idle time, this expectation is confirmed by all our experiments, network latency was hidden
completely.

Invocation latency and user interface latency could be reduced by starting up the
application at the sending host at the same time its migration is triggered (section 4.5.4.2).

It is also important to keep in mind that in an ambient intelligence environment two kind of
networks must be considered, connection-oriented networks and connectionless networks.

If application availability is the main goal to implement component streams the setup time in
connection-oriented networks is not so important since the application will remain available
at al times even if its migration is delayed somewhat. However, if the application is designed
to take advantage of the parallelism of its components then the initial setup time will delay
this parallelism.

In the case we deploy components streams with the goal to reduce user interface latency then
the setup time will play a major role and may have a great influence on the users perception of
the application.

Connectionless Networks are also the ideal environment to implement progressive mobility
using components streams. Compared to the connection-oriented networks the packets are
typically a little larger since they need to contain the complete address of the receiver but in
practice the size of this extra data can be ignored compared to the size of the actual block of
data sent.

If there is no setup time then one might also consider parallel file transfer to send more than
one component in parallel to the receiver. This might be especially useful if some components
exhibit a high degree of coupling between them. By sending these components together in
parallel, one can avoid the heavy traffic over the network between these components while
they become temporarily distributed.

Progressive Mobility using Component Streams

Page 127

4.8.2 Application
Applying component streams excels in application availability but in general we expect the
overall program evaluation time to increase since the application becomes distributed during
the streaming phase. In some cases however we might exploit the temporary parallelism to
compensate for the delay introduced by the distribution and for small applications in some test
environment as in ours we might even see a decrease in evaluation time.

We showed that application availability could be enhanced by continue the evaluation of a
component on the sender while a copy of its code is migrated in parallel to the receiver
(section 4.5.4.3).

Besides a proof of concept in Borg we provided some existential examples in other
programming environments as Smalltalk and Java in order to show that for these applications
the technique is useful.

We investigated in different designs of a fractal draw application so as to determine the
possibility to reduce system latency by introducing parallel component evaluation.

System latency could be reduced by starting up an application before the application is
completely migrated (section 4.5.4.1) and by applying parallel component evaluation (section
4.6.5.2).

We noted the importance of the design of the application in function of the migration strategy.
In this context, we provided some design guidelines.

4.8.3 Techniques
We explored three different possibilities to harness parallelism. We experimented with the
same kind of parallelism as in chapter 3, starting the evaluation of application parts already
received while the rest of the application still needs to migrate. But since the application is
already running before its migration we also exploited the parallelism of the migration of
copies of components that still are running on the sender and the parallelism between
components still running on the sender and components already arrived and running on the
receiver.

In this chapter we migrated running applications so we made use of the technique of strong
mobility.

The determination of the universal nature of the techniques or the demarcation of the domain
in which the technique proves useful is left for future work.

Progressive Mobility using Component Streams

Page 128

Progressive Anticipative Mobility using Proactive Migration

Page 129

5 Progressive
Anticipative Mobility
using Proactive
Migration

He who would travel happily must travel light
-- Antoine de Saint-Exupery (1900 - 1944)

Progressive Anticipative Mobility using Proactive Migration

Page 130

5.1 Abstract

The migration of code in ambient intelligence is needed to provide support for the
dynamic character of these environments but at the same time this is not a trivial
process. Ambient intelligent networks are more volatile than static networks,
which makes the timeframe available for the migration unpredictable.

Therefore we need some kind of mechanism to break up code into smaller parts
and send them one by one to enhance the chance that it will fit in the current
timeframe.

There is also the need for mechanisms that allows the code to continue its
evaluation during the progressive migration so that the application remains
available for users or other applications at all time.

We explored these mechanisms in the two previous chapters but we do realize that
providing application availability by the mechanism of component streams comes
with the price of reduced evaluation speed introduced by the temporarily
distribution.

In this last theme we explore an alternative mechanism to hide network latency
where we migrate the large bunch of the code in advance thereby taking
advantage of possible surplus bandwidth that will not be exploited otherwise.
When the real code migration is triggered then there is only the need to send the
difference between the current state of the code and the code that was sent in
advance. If this delta is small enough, the migration of its representation can be so
fast, that for the users perspective the application remains available at all time.

Progressive Anticipative Mobility using Proactive Migration

Page 131

In this chapter, where we provide a proof of concept of the theme of proactive migration, we
start by describing the proposed technique and more specifically the technique to calculate the
difference between computational states, here called the delta.

Then we describe an experiment to calculate the delta and discuss the expected results.

Roadmap:

• Introduction
• Proposed Technique

o Basic Observations, assumptions and restrictions
o Technique description

• Experiment to calculate the delta
• Results
• Discussion

o Expected Gain
o Applications without implicit stack operations
o Dealing with Large Deltas

• Summary and Conclusion

5.2 Introduction
With the advent of Ambient Intelligence (AmI), mobile code will become an important
medium to support this intelligent environment. Objects that do not move relatively with
respect to each other can rely upon current communication protocols to provide a stable
connection but the connection between moving objects poses new challenges.

Since connections between hosts in these new environments are more volatile than in static
networks there is the need for mechanisms that allow the code to continue its evaluation
during the migration so that the application remains available at all time.

The theme of streaming components, explored in the previous chapter, proposed such a
mechanism but it also introduced extra latency since the applications became temporarily
distributed.

In this third theme, it is our goal to build a proof of concept of a system that sends proactively
the code to a potential receiving host so that most of the migration work can be done in
advance thereby taking possibly advantage of surplus bandwidth in the network that would
not be exploited otherwise. Then when the real migration is triggered we only need to send
the delta between the computational state already sent and the new current computational
state. If this delta is small then the migration of this delta and its adaptation to the already
received code can be so fast that for the perception of the user the application remains
available at al time.

Network latency is hidden since at real migration time we only need to send a block of code
that is much smaller than the block of code we typically need to migrate.

The feasibility of the technique has been validated by implementing a prototype tools in the
Borg mobile agent environment. A simple experiment in Borg, to measure the size of the
delta, shows that it allows to migrate the application in 2% of their original migration time.

In this third theme, our contribution is the introduction of progressive, anticipative mobility
using proactive migration.

Progressive Anticipative Mobility using Proactive Migration

Page 132

Progressive anticipative mobility using proactive migration is proposed as a technique to
compensate for network latency and to enhance application availability of migrating
applications. In the same sense as progressive anticipative mobility using pre-fetching of
permuted code and progressive mobility using component streams this technique applies
progressive mobility. Progressive mobility potentially allows applications to migrate piece by
piece what may result in early startup at the receiving host and possible smooth evaluation
with limited or no disruption.

Progressive anticipative mobility using proactive migration is proposed as an optimization for
progressive mobility using component streams [Stoops et al. 2003a, Stoops et al. 2003b]. The
main property of progressive mobility using component streams is that it migrates running
code. A possible disadvantage of the technique is that applications become temporarily
distributed during the streaming phase which may slow down some types of applications. As
we will show, proactive migration has the potential to avoid this temporary distribution,
thereby allowing the migrating application to run almost continuously at full speed.

The technique presented here might be useful when we know in advance when we are going
to migrate. In ambient intelligent environments by example, where hosts are moving in
relation to each other, one may foresee that an application possible will migrate to a host that
comes physically in the neighborhood. Shopping agents [Chavez 1997] often know in
advance their migration path and even if they plan their itinerary dynamically they are often
able to decide on the next host to visit before they start the actual work on the current host.
Another possible application of mobile code is load balancing. Here too, the overload of a
host can often be predicted as well as the host to flee to.

If we manage to send the bulk of the application in advance to the receiving host we can,
when the real time to migrate has come, obtain sometimes a high-speed migration of our
running application in a fraction of the time needed for normal migration. It potentially allows
applications to migrate very fast from host to host without a significant loss of evaluation time
during the migration phase.

Given the complexity of the implementation of this technique we start by building a proof of
concept in Borg, an environment that stores the computational state of the application in one
chunk of memory and by its nature facilitates the expression of mobile components.

We demonstrate the feasibility of the technique by migrating an application in the Borg
mobile agent environment [Van Belle et al. 2001] in order to measure the difference in
migration time. In our setup the technique proves to be useful, but the determination of a
possible more universal nature of the technique is left for future work.

5.3 Proposed Technique

5.3.1 Basic Observations, assumptions and restrictions
As mentioned before, transporting mobile code over a network is in general the most time-
consuming activity, and can lead to significant delays in the migration of the application. This
is especially the case in low data rate environments such as the current wireless WAN
communication systems or in overloaded networks. In a classic migration scheme, everything
that needs to migrate is sent in one big block of data over the network.

Our approach of proactive migration allows us to send parts of the code in advance and
therefore may gives us also the opportunity to take advantage of periods of low network
traffic.

Progressive Anticipative Mobility using Proactive Migration

Page 133

We assume two preconditions to apply proactive migration in an efficient way:

1. The internal representation of the computational state is stored in one chunk of

memory.
2. The internal representation of the program code remains constant.

The Borg environment, used for our experiment, represents the application code in an
abstract syntax tree. The computational state of an application is represented by a stack (for
continuations and intermediate evaluation values) and a dictionary that contains the names of
the variables and references to a block of memory where the values of these variables reside,
called the heap. In the Borg environment these entities are contained in one chunk of
memory. This will satisfy precondition 1.

The Borg environment also allows reflection. Reflection is the ability for a program to
manipulate its code and computational state as data during its evaluation [Maes 1987]. The
expressiveness of Borg allows an application to reason about itself and its computational state
during its evaluation. In our first experiments we will allow all kind of reflective behavior
except the adaptation of the abstract syntax tree. This will satisfy precondition 2.

Here too, we assume that the know-how and know-when of the migration of partitioned code
is located in the sending host, so we apply a push strategy. However, this does not exclude the
possibility of successful combinations with a pull-strategy.

The size of the application in our experiment in Borg, is so small that it falls outside the
window (see section 2.1.6 Window of Opportunity - page 39) in which the transportation time
to send a block of code is directly proportional with the size of the block of code. This makes
it impossible to reduce invocation and user interface latency at the receiving host since the
transportation time to send the complete block of code is the same as the transportation time
to send even a small part of it.

However, it is our only goal to provide a proof of concept in this very specialized
programming environment. For the proposed technique itself, we do not make any
assumptions on the total size of the application, so we may expect it to scale to larger
applications.

5.3.2 Technique Description
The technique of proactive migration applies a progressive migration scheme. The running
application is split into two components: a snapshot of the complete application and the delta
of the computational states after a certain time. Basically the technique is a five step process:

1. Take a snapshot of the running application, i.e. take a copy of the code and its
computational state, on the sending host.

2. Copy the snapshot to the receiving host while the original application continues to
run.

3. Once the copy has arrived at the receiving host (or later when the real migration is
triggered) halt the original application.

4. Define the changes, called the delta, in the original application during the copy phase
of the snapshot. This delta contains the changes in the computational state.

5. Migrate and apply this delta to the, already migrated, snapshot and resume its
evaluation.

Progressive Anticipative Mobility using Proactive Migration

Page 134

Since each application contains parts that remain constant, the size of the delta will always be
smaller than the size of the complete snapshot. This is where we can gain in migration time.
Suppose we know five seconds in advance that we're going to migrate. At that moment we
capture the complete application including its computational state and forward it already to
the receiving host. Then, five seconds later when we really want to migrate we identify the
delta of the current computational state with the already sent computational state and only
transmit this delta across the network.

As an example, Figure 49 shows a simple Borg factorial program.

Figure 50 shows a sequence diagram that illustrates the behavior of a classic strong migration
of this example program.

Figure 49: Calculation of factorial (n) in Borg

Figure 50: Sequence diagram – classic strong migration of a factorial calculation

fac(n): if (n=1,
 1,
 n*fac(n-1)
)
fac(100)

step 5..9

Host 1 Network Host 2

fac(2)

fac(100)

fac(2)
end

code + CSfac(2)

step 1..3

step 4

Migrate

Progressive Anticipative Mobility using Proactive Migration

Page 135

We start by calculating fac(100). Suppose that the application receives an external trigger to
migrate at the start of the recursive call with parameter n equal to 2. As a result of this trigger
the first 3 steps of the classic migration scheme are launched on Host 1. If we call CS the
computational state; then we transfer over the network during step 4: (code + CSfac(2)). After
the transfer, steps 5..9 of the migration scheme allow the application to resume on Host 2.

Figure 51: Sequence diagram - proactive migration of a factorial calculation

Figure 51 shows an example of proactive migration of the same factorial program:

We start again by calculating fac(100). At fac(10) we proactively migrate the bulk of the code
and state but the application is not started on Host 2. As shown in the figure we assume that
this migration process is able to run in parallel with the application itself. Then, at fac(2), we
transfer the delta and resume the application at Host 2. We note that the migration of the bulk
of data code + CSfac(10) takes much longer then the small delta CSfac(10) - CSfac(2). This allows
the application, after the external trigger, to start up much sooner now at Host 2 resulting in a
high-speed migration of the application.

The most challenging part of the technique is the identification, extraction, presentation,
migration and reapplication of the delta. The reapplication of the delta can be seen as the
reverse process of the extraction so we will focus on the identification and extraction part.

5.3.2.1 Computing the Delta
In order to identify the delta we need to compute the difference between two computational
states. Reflection, available in Borg, allows us to capture the current computational state at
any time in the Borg language itself. To calculate the delta between two states in an efficient
way we add a native function: delta() to Borg. This function is written in C, the
implementation language of Borg.

Host 1 Network Host 2

fac(100)

fac(2)

fac(10)

fac(2)

end

code + CSfac(10)

CSfac(10) - CSfac(2)
fac(10)

Progressive Anticipative Mobility using Proactive Migration

Page 136

Taking a snapshot of the computational state is basically achieved by computing the transitive
closure of all elements starting from the root of the stack and the dictionary. This closure will
contain complete arrays, and objects pointed to by this root. In Borg this closure will also
contain the abstract syntax tree. In the remainder of this paper we will refer to the Borg
environment and our Borg prototype to explain the technique.

In order to explain the techniques to compute the delta in an efficient way we explore
gradually more complex memory operations. As to simplify the operations somewhat we
assume that the garbage collector is disabled between the capturing of two computational
states. We show later how possibly to deal with garbage collection. We will now study
consecutively:

• Non-destructive memory operations
• Destructive memory operations
• Random access memory operations

Non-destructive Memory Operations
Functional languages as Borg have the property that they never change the memory in a
destructive way. Since there is no assignment operator available in a pure functional language
the internal representation of the computational state will have certain properties that can be
exploited to calculate the delta.

As in many garbage collected languages, the memory in Borg is allocated sequentially, as is
the case with a stack data structure, and since we know that no memory content will be
overwritten, the difference in computational states will be the newly allocated memory. If we
compare the two computational states CS1 and CS2 (Figure 52) then the delta will exist of all
memory allocated after the first state capture. For easy identification of this memory block we
add a watermark at the end of the CS1 memory block. This allows the serializer (step 2 of the
migration process) to identify the newly allocated memory as the memory after the
watermark.

Figure 52: Watermark for delta definition in non-destructive memory

This technique is also used in an optimization technique known as generation scavenging
[Ungar 1984] for garbage collection. Indeed garbage collection and serialization are similar
operations. Both need to make a transitive closure. Only the serializer flattens this closure,

CS1

CS2

delta

watermark

old memory

Progressive Anticipative Mobility using Proactive Migration

Page 137

while the garbage collector compacts it. The generation scavenging technique is usable by
both.

The old memory has been transferred to the receiving host, and when the new computational
state has references to the old one (Figure 53), the pointers in memory must be adapted to
point to correct addresses on the receiving host. This adaptation takes place during step 8
(Table 1 page 26) of the migration process.

Figure 53: Possible pointers in non-destructive memory

Destructive Memory Operations
Unlike the functional language Borg, imperative languages allow destructive changes in
memory so the internal representation memory block can contain pointers in both directions
(Figure 54). Even functional languages will sometimes use invisible destructive operations in
memory for performance issues.

Figure 54: Possible pointers and watermark in destructive memory

In this case, we will need to compare both memory blocks byte by byte to determine all the
differences. Fortunately a stack structure, heavily used by modern compilers [Grune 2000], is
a friendly structure, it has no random access and once we find the 'lowest' change, we can be
sure that everything above this point has changed too. Putting a watermark on the stack at this
point makes it easy for the serializer to determine the part of memory to serialize.

CS2

delta

lowest change watermark

CS2

delta

Pointer across the watermark

Progressive Anticipative Mobility using Proactive Migration

Page 138

Random Access Operations
We have discussed how to calculate the delta in non-destructive and destructive memory
environments in a stack data structure. We will now discuss how to handle migration and
subtraction of computational states in random-access data structures. The dictionary with the
variable bindings and the values in the heap in Borg are typical random-access data structures.

When we wish to migrate a random-access structure we must explicitly keep track of the
memory involved and changed. How to do this will be largely implementation dependent, but
habitually memory can only be accessed through existing variables, so keeping a list of
changed variables is often an option. Another alternative involves maintaining an array in
which we explicitly keep track of all changed structures.

We could space-optimize this further by using dirty-bits, bits that flag a change of a memory
word. In a garbage-collected programming environment we may find that some bits are
already reserved for this kind of operation [Wilson 1992]. Under the presumption that we
won’t garbage collect we can reuse some of the spare garbage collector bits as dirty bits. This
restriction isn't as harsh as it seems, if a garbage collect were to trigger, we could just
calculate the delta and migrate early. Also, because a garbage collection and a serialization or
very similar processes, we could trigger a garbage collect together with the first migration.

5.4 Experiment to Calculate the Delta
Figure 55 shows the Borg code used to calculate the size of the streams over the network. We
declare an array a of size 100 and then declare and run an instrumented factorial function:
fac() that fills up the array with the consecutive computational states. The factorial function is
instrumented with the native function call: call(cont) that returns the complete current
computational state.

Then we apply the new native function delta() to calculate the delta d between CSfac(10) and
CSfac(2). This function is written in C, the implementation language of Borg to be able to
calculate the difference of two Borg computational states in an efficient way.

Finally we display the sizes of the serialized instances of the computational states CSfac(10),
CSfac(2) and the size of the delta between them.

Figure 55: Borg calculation computational states

a[100]:0;
fac(n):if(n<2,n,{a[n]:=call(cont); n*fac(n-1)});
fac(100);
d:delta(a[10], a[2]);
display(size(serialize(a[10])));
display(size(serialize(a[2])));
display(size(serialize(d)));

>: Size of serialized stream: 25664 bytes.
>: Size of serialized stream: 25408 bytes.
>: Size of serialized stream: 515 bytes.

Progressive Anticipative Mobility using Proactive Migration

Page 139

5.5 Results
In this factorial experiment we note that the delta between the computational states contains
515 bytes while the original computational state, including the abstract syntax tree was 25664
bytes.

For this small factorial calculation example the reduction in size is 515 / 25664 = 2% of the
original stream size or a compression ratio of: 98%.

If we envision a setup in a network where the migration time is proportional to the size of the
application (section 2.1.4.2), then the reduction in size will also lead to a reduction in
migration time of 2% of the original migration time.

5.6 Discussion

5.6.1 Gain for the Factorial Example
If we run the factorial program (Figure 49) and send our first snapshot at fac(10) and then
really migrate at fac(2) we can compare the stack and dictionary at those moments (Table 20).

Table 20: Stack and Dictionary Values during Evaluation Factorial Program

Stack Dictionary
 fac(100) n 100
 fac(99) n 99
 fac(98) n 98
 fac(97) n 97

 fac(12) n 12
 fac(11) n 11
 fac(10) n 10
 fac(9) n 9
 fac(8) n 8
 fac(7) n 7
 fac(6) n 6
 fac(5) n 5
 fac(4) n 4
 fac(3) n 3
 fac(2) n 2

Migration of the full stack and dictionary at fac(2) would consist of 297 entries: 99 stack, and
99 name/value pairs. When we migrate at fac(10) we would have to transfer 89 * 3 entries.
But if we then migrate at fac(2) and only need to serialize the entries created between fac(10)
and fac(2), this would be only 9 * 3 = 27 entries. This leads to a size compression ratio of

%9
296
27

≈ .

This gain in time can be attained if we only take the delta between the stacks and dictionaries
in account. In reality we also need to include the abstract syntax tree in our first snapshot
which will increase our gain in time even more.

proactive migration

actual migration

Progressive Anticipative Mobility using Proactive Migration

Page 140

5.6.2 Applications without Implicit Stack Operations
So far we have only looked at the factorial example. Such functions with implicit stack
operations aren't very common in practice. In practice we expect more sequential function
calls. So how does this affect the delta calculation? We will not to generalize but in this case
of very small processes it might be favorably. Consider the program in Figure 56.

Figure 56: application without implicit stack operations

We start by calling fun100(), anticipative migrate at fun10() and migrate the delta at fun2().

With each function call the stack expands. However after each function call, it shrinks again.
Therefore, at fun2(), we will have a much smaller stack as compared to the growing stack in
the previous factorial example. In fact it will only contain the data for the main function and
for the fun2() function. This implies that our delta will only contain the fun2() data.
Compared with the bulk of data anticipatively sent, this delta is so small that very large time
compressions may be expected, although there might be a possible performance loss because
of the extra delta calculation.

If the stack is very large at the time of proactive migration and at the real migration time then
the difference might be very small too. However, (1) we always need to proactively migrate
the large stack, and (2) the difference between two stacks will never exceeds the size of the
larger of the two, which will favor applications with little or no implicit stack operations.

A typical program will not behave like either of the two presented examples but will most
likely have a performance situated somewhere between these two extremes. This claim can be
supported by the fact that a typical program stack does not become very big.

5.6.3 Hardware Support
The technique of proactive migration has the potential to hide network latency and reduce
system latency at the moment that migration is triggered but possibly introduces extra latency
at other moments in time. The most time consuming actions might be:

• Taking a snapshot of the application, possibly more than once

• Migrating a copy of the snapshot, possibly more than once, to the receiving host

• Defining the delta

If the delays introduced by these actions are not acceptable then in some cases extra hardware
support could avoid some of these delays.

One can imagine a dedicated shadow memory of the same size of the actual memory in use
and connected with the main memory in order to allow snapshots to be taken in one machine
cycle.

The migration of the snapshot to the receiving host could be handled by a second parallel
processor to avoid delays in the original application.

If a shadow memory is in place, a bitwise XOR could define the delta also in one machine
cycle.

main():

{ fun100(); ...; fun10(); ...; fun2();

}

Progressive Anticipative Mobility using Proactive Migration

Page 141

5.6.4 Dealing with Large Deltas
Sometimes the size of a running application can increase a lot at a given point in evaluation
time, e.g. the initialization of the Java user interface object as was the case in section 4.5.3. If
we can foresee this increase in size it would be very beneficial to migrate the application
before this point in time but under certain circumstances it is even possible to cope with these
application enlargements afterwards.

The program in Figure 57 shows an example of code that potentially can generate a large
delta.

Figure 57: Application with a potential large delta

Suppose we migrate a first time right before the allocate and fill_up function call and transmit
the delta right after it. Then the first transmission will be reasonably fast, but the second
transmission will be a lot slower because the big chunk of new allocated memory filled up
with calculated or retrieved data has to come with it. As a result there might be nearly no
performance gain by applying proactive migration (Figure 58).

Figure 58: Large delta

Host 1 Network Host 2

main()

allocate(10000)

CS2

CS2 – CS1

CS1
code + CS1

main():
{...;
 fun: my_arr = allocate(10000);
 fill_up (my_arr);
...;
}

Progressive Anticipative Mobility using Proactive Migration

Page 142

Figure 59: Dealing with a large delta

However, in the case that there are no interactions with external entities between the
anticipative and the final migration and the application has a deterministic behavior as in our
factorial example, there is something we can exploit. If we start the evaluation of the
anticipative application immediately after arrival then the allocation of the new memory block
can also take place at the Host 2 instead of only at Host 1. This scenario is depicted in Figure
59 end described below.

When the application is anticipatively migrated to Host 2 at computational state CS1, (1)
nothing prevents this host from starting the application already (2) as shown in Figure 59. So
we can allocate the huge chunk of memory on the Host 2 (3) and continue execution there.
The equivalent chunk of memory, allocated on Host 1 at (4) and send as part of the difference
between CS2 and CS1, will finally have crossed the network possibly at a time (5). At this time
the computational state on the receiving host CS3 has already surpassed the computational
state CS2 (6), the same state as the one captured on the sending host (7).

Now we might detect that the application at Host 2 has spend more clock cycles than the
original one at Host 1 since the last anticipative migration (1). In that case, it would be of no
use to replace the current computational state CS3 with the superseded state CS2 obtained
from the original application and therefore we may ignore the received state and continue our
own thread of evaluation at Host 2.

If Host 2 has no other tasks than to wait for the application of Host 1 we could choose to start
computation always at the receiving host immediately after the anticipative load. Then if the
sending host detects the big overhead of the second transmission, and there where no
interactions with external entities since the proactive migration, it can discard the transmission
and avoid the second migration completely.

Host 1 Network Host 2

main()

allocate(10000)

allocate(10000)

CS2

CS2

CS3
CS2 – CS1

CS1

CS1

(4)
(2)

(1)

(7)

(6)

(5)

(3)

Progressive Anticipative Mobility using Proactive Migration

Page 143

If we adhere to the classic definition of network latency as: the time between the actual
sending of an application and its startup at the receiver we notice that in these cases the
application is started before the actual sending took place, so we obtain a negative network
latency. We suggest a more general strategy of this approach in future work (section 6.4.5).

5.7 Summary and Conclusion
Mobile code will become an important medium to support an ambient intelligence
environment. Objects that do not move relatively with respect to each other can rely upon
current communication protocols to provide a stable connection but the connection between
moving objects poses new challenges.

The theme of streaming components, explored in the previous chapter, proposed a mechanism
that allows the code to continue its evaluation during the migration so that the application
remains available at all time but it also introduced extra latency since the applications became
temporarily distributed.

In this third theme, we provided a proof of concept of a system that sends proactively the code
to a potential receiving host so that most of the migration work can be done in advance
thereby taking possibly advantage of surplus bandwidth in the network that would not be
exploited otherwise. Then when the real migration is triggered we only need to send the delta
between the computational state already sent and the new current computational state. If this
delta is small then the migration of this delta and its adaptation to the already received code
can be so fast that for the perception of the user the application remains available at al time.

Performance of an application is most commonly measured by overall program evaluation
time and network performance is most commonly measured in network latency but in a
mobile environment performance is also measured by application availability, invocation
latency, and user interface latency.

Overall program evaluation time is the time between the invocation of an application and
the end of the evaluation of the last instruction.

Application availability is the inverse of the time an application “freezes” during migration.

Network latency is the time the application needs to travel over the network.

Invocation latency is the time from application invocation to when evaluation of the program
actually begins.

User interface latency is the time a user has to wait between his demand and a user interface
reaction of the system.

Table 21 gives an indication of the performance of progressive mobility using proactive
migration in these different domains.

Progressive Anticipative Mobility using Proactive Migration

Page 144

Table 21: Properties of the Proactive Migration Technique

O
ve

ra
ll

pr
og

ra
m

 e
va

lu
at

io
n

tim
e

A
pp

lic
at

io
n

av
ai

la
bi

lit
y

N
et

w
or

k
la

te
nc

y

In
vo

ca
tio

n
la

te
nc

y

U
se

r
in

te
rf

ac
e

la
te

nc
y

Proactive migration + ++ ++ ++ +

To conclude this chapter we discuss these results in the most important dimensions of the
conceptual framework provided in chapter 2.

5.7.1 Network
Proactive migration excels in reducing the network latency especially for the transmission of
mobile applications over a slow network. The technique is based on the observation that we
can calculate the delta between two computational states and that this delta is always smaller
than the original computational state.

Network latency is hidden since at real migration time we only need to send a block of code
that is much smaller than the block of code we typically need to migrate.

In an ambient intelligence environment two kind of networks must be considered, connection-
oriented networks and connectionless networks.

A large setup time in connection-oriented networks is not really a problem for applying this
technique. The proactive migration can be launched even several times in advance during
periods when extra bandwidth is available or when the connection time is guaranteed for
longer time intervals. The exact point in time for this proactive migration is not important, so
a possible large setup time will not influence this migration.

The real migration should be happen as soon as possible after the external trigger but even
there is the opportunity to let the application continue its evaluation until the connection is
setup. After the connection is setup, there will be still time enough to calculate the delta en
transport it over the network. The migration itself might be delayed but from the perspective
of the user the application remains always available.

If it is necessary to migrate very fast after the external trigger then a connectionless network
is more opportune since it will not need an extra setup time before the delta can be
transmitted.

5.7.2 Application
We limited ourselves to a very small application, the process to compute the factorial of a
number. Since the environment needed to provide a high degree of computational reflection
we where restricted to a very specialized programming environment: Borg.

Progressive Anticipative Mobility using Proactive Migration

Page 145

We were not able to exploit this theme in more current environments as Smalltalk or Java.

5.7.3 Techniques
In this chapter we exploited parallelism between the evaluation of the application and the
proactively migrating of a copy of that application.

The technique migrates a running application so we also need to apply the technique of strong
mobility.

To be able to implement the proposed technique we need access to the computational state of
a running application which is not a trivial task in current classic programming environments
since they do not provide the level of computational reflection needed.

This technique might be useful when we know in advance when we are going to migrate. In
ambient intelligent environments by example, where hosts are moving to each other, one may
foresee that an application will migrate to a host that comes physically in the neighborhood. If
we manage to send the bulk of the application in advance to the receiving host, we can, when
the real time to migrate has come, obtain a high-speed migration of our running application.

At the receiver, the computational state need to be brought up to date by applying this delta to
the previous received computational state before evaluation is continued. This kind of action
will also require a high level of computational reflection.

We demonstrated the feasibility of the technique by migrating a small application in order to
measure the difference in migration time. In our setup the technique proves to be useful, but
the determination of a possible more universal nature of the technique or the demarcation of
the domain in which the technique proves useful is left for future work.

Progressive Anticipative Mobility using Proactive Migration

Page 146

Conclusion

Page 147

6 Conclusion

Conclusion

Page 148

6.1 Wrap-up
Ambient intelligence that builds on three recent key technologies: Ubiquitous Computing,
Ubiquitous Communication and Intelligent User Interfaces, poses new challenges to build the
underlying software in order to support cooperating systems. These systems will feature
dynamic context and unpredictable connection times between a diversity of devices with their
own autonomic characteristics.

The emerging technique of mobile code is a new promising way to set up communication
mechanisms between different parties but there is still much research needed to develop
techniques to support and optimize these communication mechanisms.

This thesis explores possibilities to hide network latency that can become very high if a block
of code cannot be migrated as a whole in an environment where the width of the migration
timeframes is unpredictable.

A possible solution is to break up the block of code in smaller parts and send them one by one
to the receiver. This will increase the possibility that they will fit in the temporal timeframe.
Precaution should be taken to send the most important parts first, in a format that makes this
partial block of code immediately usable (ready for evaluation) at the receiving host.

Since connections between hosts in these new environments are more volatile than in static
networks there is also the need for mechanisms that allows the code to continue its evaluation
during the progressive migration so that the application remains available for users or other
applications at all time.

In order to break open this new, complex and difficult research domain we explored three
different themes to take advantage of the implicit parallelism found in computer networks.

It was our goal to provide a proof of concept of the different scenarios developed under these
themes without pursuing completeness or universality.

6.2 Results
For the three themes we explored, pre-fetching of permuted code, component streams and
proactive migration we delivered a proof of concept and we showed that for the experiments
we performed under these themes, progressive mobility proved to be useful.

At the end of each chapter, we presented a table with some indications about the performance
obtained under these themes. Table 22 summaries these indications from the three tables. One
should take caution however by interpreting this table because a vertical comparison is almost
meaningless since each theme explored different experiments under very different conditions
and restrictions.

Again, we mention that performance of an application is most commonly measured by overall
program evaluation time and network performance is most commonly measured in network
latency but in a mobile environment performance is also measured by application availability,
invocation latency, and user interface latency.

Overall program evaluation time is the time between the invocation of an application and
the end of the evaluation of the last instruction.

Application availability is the inverse of the time an application “freezes” during migration.
Especially in control engineering environments this may be a critical property.

Network latency is the time the application needs to travel over the network.

Conclusion

Page 149

Invocation latency is the time from application invocation to when evaluation of the program
actually begins.

User interface latency is the time a user has to wait between his demand and a user interface
reaction of the system. From the viewpoint of the user this is the most crucial latency.

Table 22: Summary of the performance indications

O
ve

ra
ll

pr
og

ra
m

 e
va

lu
at

io
n

tim
e

A
pp

lic
at

io
n

av
ai

la
bi

lit
y

N
et

w
or

k
la

te
nc

y

In
vo

ca
tio

n
la

te
nc

y

U
se

r
in

te
rf

ac
e

la
te

nc
y

Pre-fetching of permuted code ++ + +++ ++ +++

Component streams - +++ +++ + ++

Proactive migration + ++ ++ ++ +

Table 22 summaries the performance indications in each presented theme. Again, note that a
vertical comparison is not meaningful.

Progressive anticipative mobility using pre-fetching of permuted code
The results of our proof of concept excel in hiding user interface latency. Exploiting
parallelism between loading and evaluation in our experiment reduced user interface latency
considerably (21% of the original time on average in the three applications tested). The
overall program evaluation time decreases since not all the code has to be transported and
compiled. The overall program evaluation time could also be significantly reduced (79% of
the original time on average in three applications tested).

Progressive mobility using component streams
The results of these experiments excels in application availability and the hiding of network
latency but in general we expect the overall program evaluation time to increase since the
application becomes distributed while streaming. In some cases however we might exploit the
temporary parallelism to compensate for the distribution and for small applications in some
test environment as in ours we might even see a decrease in evaluation time.

With progressive mobility using component streams in our setup the running code is never
halted and therefore will keep its ability to react to incoming events.

We discussed the relation between migration time and idle time of the components that
constitute the application and described the necessary conditions for removing network
latency completely. We compared different migration strategies for progressive mobility

Conclusion

Page 150

using component streams, and showed with our experiment that it is possible to migrate a
running application autonomously and under the control of a supervisor component as if there
where no network latency at all.

In our experimental setup the migrating application even runs faster during migration than
when it runs stationary. We where also able to start the visual presentation part of the
application before the complete application was migrated thereby gaining the same
advantages for user interface invocation as the progressive anticipative mobility using pre-
fetching of permuted code technique. We also showed that is possible to take advantage of
parallelism between the evaluation of components on the sender and the receiver. Based on
our experiments we provided some design guidelines for developing new mobile streaming
applications. The determination of the universal nature of the technique or the demarcation of
the domain in which the technique proves useful is left for future work.

Progressive, anticipative mobility using proactive migration
In the small experiment we conducted, we demonstrated that the technique may excel in
reducing the network latency especially for the transmission of mobile applications over a
slow network. The technique is based on the observation that we can calculate the delta
between two computational states and that this delta is always smaller than the original
computational state.

We conclude that this technique might be useful when we know in advance when we are
going to migrate. In ambient intelligent environments by example, where hosts are moving to
each other, one may foresee that an application will migrate to a host that comes physically in
the neighborhood. If we manage to send the bulk of the application in advance to the
receiving host we can, when the real time to migrate has come, obtain a high-speed migration
of our running application in a fraction of the time needed for normal migration. Our
experiment showed that the reduction in size of the data to transport and thus, possible also
the migration time is 2.01% of the original stream size or a compression ratio of: 97.99%.

Whatever the behavior of our program, the delta of two snapshots will never be bigger than
the original and therefore we will always obtain a gain in time even when we don't know in
advance when we'll migrate. Therefore, we could send the computational state every few
instructions to a potential receiving host. Or we could just transmit the program code itself to
all potential receiving hosts at the beginning of the evaluation. The size of the code is constant
and therefore should only be sent once. The determination of the universal nature of the
techniques or the demarcation of the domain in which the technique proves useful is left for
future work.

6.3 Discussion
We explored in the three themes some existential examples in order to show that it is possible
to hide network latency by partitioning mobile code and exploit parallelism. As for now, it is
still unclear how the implementation environment of ambient intelligence entities will look
like but since such a system needs to have many dynamic properties, mobile code will be one
of the key technologies to bring ambient environments to live. The explored themes suggest
different ways to harness the implicit parallelism found in even the most simple computer
networks but massively available in future ambients.

Conclusion

Page 151

Validity of the result under current research restrictions
In order to obtain our results we applied several research restrictions (see section 1.5 page 23).
Most of our experiments are conducted in fixed TCP/IP networks, but an ambient intelligence
environment, our environment under research, will rely on unpredictable networks.

However, this is not contradictory. The support for these unpredictable networks needs to be
offered by the distributed operating systems. In order to manage the ambient intelligent
environment these operating systems will need to put systems in place to cope with these
unpredictable networks and one of the tools we offer from this research path is the partition of
mobile code in several parts to enhance the chance to fit in an unpredictable time frame.

We did not run experiments in connection-based networks but we argued in the different
chapters that even with the extra setup time in a network the techniques might remain useful.

We feel that security aspects are orthogonal on all practical implementations of computer
systems and although partitioning code may introduce extra vulnerability in the system more
and more techniques to tackle these kind of security problems arise at the horizon or are
already introduced and standardized.

If there is a difference in the processing power of the hosts there will arise extra opportunities
to exploit this by running the most important parts of the code on the most powerful
processors but the basic scenario’s we introduced in the three themes will remain valid since
we never assumed a difference or equality of the hosts processing power.

We only applied a push strategy since we assumed that the know-how and know-when of the
migration of partitioned code is located in the sending host. However, this does not exclude
the possibility of successful combinations with a pull-strategy or with a pure pull-strategy.
The coordinating software that steers the progressive mobility may be located at the sender,
the receiver or even a third party and was never a critical issue in our experiments.

As far as the technical restrictions of the programming environments are concerned we where
always able to find a workaround for our proof of concepts.

However, in an ambient intelligence environment, build in current programming
environments and with current tools, we will not be able to implement all the themes we
explored in this thesis since we will largely depend on the support for strong mobility,
powerful communication mechanisms between autonomous components and computational
reflection provided by the system.

The proposed partitioning of code in this thesis is one of the first steps to the challenging
problem in order to integrate computers into an ambient intelligence environment.

6.4 Future Work
We explored different themes in order to break open a new, complex and difficult research
domain. We took the first steps in the exploration of possible network latency problems in
upcoming ambient intelligence environments.

Even in the limited domain we explored there is still a lot of research to do. In this chapter we
propose some interesting directions to further complete the explored themes.

6.4.1 Evaluate the Themes with other Criteria
During the exploration of the themes we focused mainly on the performance of the migration
process. There are however other interesting criteria that justify extra research. We mention:

Conclusion

Page 152

• Memory footprint
• CPU consumption
• Connection oriented networks
• Unstable networks
• Vulnerable networks
• Development overhead
• Maintainability of partitioned code
• Different processor speeds at sender and receiver
• Pull strategy
• Progressive mobility of data
• Practical experience, a field-test
• Deployment with realistic, reusable methodologies in a professional setting
• Different programming environments

o C++
o Java
o .NET

6.4.2 Other Topics Related to Pre-fetching of Permuted Code
For the progressive anticipative mobility using pre-fetching of permuted code technique we
need to develop a more formal approach to decide where to cut the original code and how and
where to add semaphores or other guarding systems. Just cutting a permuted file in four equal
parts will not always be sufficient.

More experiments are necessary to determine the optimal number of parts, but as shown in the
examples a simple heuristic of cutting the source in four pieces and trying to put the first
break at the point where the first GUI is built provides already significant results.

We also need to guarantee that the resulting source code behaves exactly in the same manner
as the non-permuted version. For example: in multi-threading programs each thread should be
guarded separately and for a reflective application that reasons over its own source code we
need to take in account this special dependency.

Since the progressive anticipative mobility using pre-fetching of permuted code methodology
proves to be very generic and applicable to all systems where code needs to be moved before
it is evaluated, cache optimization may become a target of the proposed technique. Cache
loading could be triggered based on high level abstractions of the original source code.

We plan also to use the technique for languages that internally represent their code as an
abstract parse tree. One of the interesting properties of Pico [D’Hondt 2003] is that the
program is internally represented as an abstract parse tree. Evaluation of the program is then
evaluated by evaluating the parse tree, i.e., the tree nodes are traversed in the order imposed
by the original Pico program. The traversal order is called the evaluation sequence. By tracing
the evaluation sequence of the nodes it would be possible to send the program node by node
to an other Pico evaluator which can start the evaluation of the nodes as they arrive, producing
the same advantages as shown in our Smalltalk experiments.

6.4.3 Pre-fetching of Permuted Code with Multi Node Hopping
An application can only migrate directly to another host if the physical topology of the
network allows this. In other cases applications may need to pass trough other hosts before
they can reach their final destination. If an application is sent in a pre-fetched way the total
transport time can be reduced significantly. Figure 60 shows the sequence diagram of an pre-

Conclusion

Page 153

fetched loaded application that passes trough host 2 before it reaches its final destination host
3. Host 2 does not have to load the complete application before it is able to start forwarding it
to the next host. The total invocation time will become approximately the load time of the
first part multiplied by the number of host it visits.

Figure 60: Multi node hopping

At a lower level in the network layers, the network layer is concerned with getting packets
from source to the destination. Getting to the destination may require many hops at
intermediate routers along the way. For communication in the internet the transport layer
takes datastreams and breaks them up into datagrams. In theory, datagrams can be up to 64
KiB each but in practice they are usually not more than 1500 bytes so they fit in one Ethernet
frame [Tanenbaum 2003]. So if the size of the datagrams is smaller than the size of the
application parts a similar effect is obtained at a lower level. The fact that the first part of the
application can be evaluated immediately after arrival remains due the pre-fetching at the
transport layer.

Some applications are evaluated on different hosts. In this case the speeding up effect of pre-
fetching the application will increase even more.

One of the first advertised applications of mobile agents lies within the field of E-commerce.
Agent technology would help the user when purchasing certain goods [Chavez, 1997].
Consider a pricing agent, which helps the user to obtain the lowest possible price for a given
good. Let us imagine that, as an example, the user wishes to buy an mp3 player. The agent,
which is located on the user's machine, will request the specifications the player should have,
e.g. the number of songs it can contain and a maximum price. Once the specifications are
gathered, the agent will migrate itself towards different known vendors of such players, and at
each vendors' location request the prices of mp3 players matching the specifications. When all
vendors have been visited, the agent will return to the user, and at this point it will present the
information it has gathered.

Host 1 Network Host 3

Load #1

Eval #1

Eval #3

Eval #2

Load #2

Load #3

Host 2 Network

Load #1

Load #2

Load #3

Conclusion

Page 154

Figure 61 shows a sequence diagram of such a multi node hopping and evaluation application.
As the figure indicates, the evaluation of the application on host 3 can start immediately after
the load time of the first part of the application. In this case the loading of part #3 of the
application to host 1 runs in parallel with the evaluation of part #2 on host 2, the loading of
part #2 to host3 and the evaluation of part#1 at host3.

Figure 61: Multi node hopping and evaluation

6.4.4 Architectural Transformations to make Applications Streamable
Not all existing applications are suited for applying the technique of progressive mobility
using component streams but we believe that architectural transformations can be carried
out to make the proposed technique applicable. The proposed transformations should be
investigated in and implemented in a transparent way.

There currently exists a trend to make a software system comply with many important non-
functional requirements, such as reusability, extensibility and adaptability, enabling the
developers to reuse major parts of it. This leads to systems in which a lot of attention is paid
to the global architecture. How the different classes in a system are combined and the
specified ways in which their objects interact becomes very important in order to be able to
easily reuse or extend the system. Proof thereof is the tremendous success of programming
conventions such as design patterns [Gamma et al. 1995]

The only way to increase the idle time per component is optimizing the system by
transforming the architecture but this should not interfere with the architecture as defined and
viewed by the designer but instead this transformations should occur during a optimization
step of the compiler. [Tourwé and De Meuter 2001]

Current compilers are not able to optimize significantly highly flexible systems because they
cannot automatically infer the intentions of the developer. A compiler does not know, for
example, why a specific abstraction is introduced, so it cannot eliminate it or introduce other

Host 1 Network Host 3

Load #1

Eval #1

Eval #3

Eval #2

Load #2

Load #3

Host 2 Network

Load #1

Load #2

Load #3

Eval #1

Eval #3

Eval #2

Conclusion

Page 155

abstractions to produce better code. Therefore, these intentions should be made explicit as in
[Tourwé and De Meuter 2001] where an annotation language is provided in which these
intentions can be expressed. In order for the compiler to be able to use this information in a
useful way, it should incorporate some knowledge on how to optimize a certain intention.
Again, this knowledge should be provided by the developer and can be expressed in the
transformation language.

A lot of user intervention is required for the optimization of a system. We believe this is
unavoidable however, as systems tend to get more complex and because there are limits to the
amount of information that can be deduced automatically by dataflow analysis techniques
[Zima and Chapman 1990].

Optimizing architectural transformations for object-oriented languages will resemble
refactorings [Fowler et al. 1999]. Refactoring is a technique to restructure code in a
disciplined way. For a long time it was a piece of programmer lore, done with varying degrees
of discipline by experienced developers, but not passed on in a coherent way. [Fowler et al.
1999]

In this context, refactorings should be interpreted as optimizations. The most obvious reason
to optimize an application for streaming is converting it from a coarse-grained
componentization to a fine-grained componentization in order to allow components to migrate
as independently as possible. The ultimate goal of a refactoring process is to restyle the
application in such a way that the model it describes maps as closely as possible to the model
of the part of the real world it tries to emulate. In our case where only optimization is pursued
this is not a concern. Our only goal here is to reduce the size of the components.

6.4.5 Progressive Mobility using Proactive Migration and evaluation
This technique is proposed as a new progressive migration scheme that also sends the code
anticipative to the remote host but, instead of waiting for the computational state update, the
incomplete application is proactively launched at the receiving host the same moment the
migration is triggered and the new computational state is fetched at run-time. This could
potentially allow applications to migrate at zero time.

Proactive migration avoids the temporary distribution of progressive mobility using
component streams and may allow the migrating application to run almost continuously at full
speed. The application might be only stalled during the period the computational difference is
calculated and transferred. Although this time might be only a few percent of the normal
migration time there is still some time the application is not available for other processes or
users.

Proactive migration and evaluation can go one final step further by eliminating the waiting
time completely by not only migrating anticipatory the application but also by starting its
evaluation up proactively. It is a generalization of the special technique dealt with in previous
section (5.6.4). Proactive migration and evaluation is a technique that needs certain
precautions to enable an immediate startup of the application in all possible cases. To
demonstrate the feasibility of the technique we built a simple prototype in Smalltalk.

6.4.5.1 Proposed Technique
The technique of proactive migration and evaluation also applies a progressive migration
scheme. The running application is split in two components: a snapshot of the complete
application and the delta of the computational states that will be fetched at run time. Basically
the technique is a five step process:

Conclusion

Page 156

1. Take a snapshot of the running application, i.e. take a copy of the code and its
computational state, on the sending host.

2. Copy the snapshot to the receiving host while the original application continues to
run.

3. Once the copy has arrived at the receiving host start the application at the receiving
host.

4. Halt the original application and define the changes, called the delta, which emerged
during the copy phase of the snapshot. This delta contains the changes in the
computational state.

5. Migrate and apply this delta to the, already running application, in the same spirit as
code pre-fetching, i.e. fetch the part of the state first that is needed first.

Since the application at the receiving host is always started before the original sending
application is halted the application could be always available and the migration will happen
in zero time. A sequence diagram that illustrates this technique is shown in Figure 62.

Figure 62: Proactive migration and evaluation

6.4.5.2 Assumptions and Restrictions
Applying the computational state to a running application is far from trivial. The most
challenging aspect of it is that by applying a new computational state, return addresses of
running functions or methods can change and in the case of recursive algorithms, the
complete run-stack with return addresses and intermediate results can become completely
different.

We may however put some restrictions on the content of the computational state to make it
more manageable.

Basically a computational state contains the current evaluation position (a high level
equivalent of the program counter, a register in the hardware processor), the values of
application variables and implicit return addresses of subroutines, possible in a recursive call
chain.

Host 1 Network Host 2

CS2

CS1 CS1
CS2 – CS1

CS1

CS2 – CS1

Conclusion

Page 157

The current evaluation position is used when the application is launched at the receiving host
and does not need adaptation later on. This leaves us with the values of application variables
and return addresses of subroutines.

If we could get rid off the return addresses and restrict the computational state to the set of
values of the application variables this would make it much easier to adapt it at run-time.

There might be a way to get rid off implicit return addresses in a computational state. You
may eliminate the administration of return addresses by just not going anywhere.

Implicit stack operations could be avoided by adapting the algorithms so that the data and
return address stack is made explicit in the application. In practice this implies that in the
application an explicit stack structure will be declared and that the application itself becomes
responsible for maintaining its state (loop counters and intermediate results) on this stack.

Calls to subroutines could be avoided by applying code inlining to the complete application.
Code inlining is an optimization technique to speedup code just by getting rid of the return
address management. Inlined code tends to grow bigger which may be not ideal for mobile
applications. In our setting however, where static code is migrated in advance this may not be
such a disadvantage. The equivalent of code inlining in object oriented programming
languages is object inlining [Andrew and Chien 2000].

If both techniques, avoiding of implicit stack operations and code inlining, are applied, our
computational state is reduced to the set of instance variables of the main application.

6.4.5.3 Handling Semaphores
Even when the computational state of an application is reduced to its instance variables they
should be handled with care. When the application is started proactively before its state is
adapted one should take care not to rely on values that are possibly changed at the sender’s
version of the program. The safest way is to guard all the variables by semaphores, in the
same spirit as the code parts were guarded in the pre-fetched code technique, and suspend
evaluation when one of them is accessed.

If a variable is accessed for a write instruction then it doesn’t matter if the original is changed
or not since the result is destroyed anyhow. This may allow us to relax the guarding policy
somewhat so that only read instructions (get methods) need to be guarded.

If a variable is updated by the sending host then the semaphore can be inactivated at the same
time. The semaphore can also be physical removed now or this task can be delegated to
dedicated garbage collecting agents.

When the migration is triggered at the sending host and before the computational state
changes are transferred a kind of change summary could be send in advance as a real avant-
première. This summary will allow the receiving host to optimize its semaphore settings by
guarding only read instructions on variables that where not changed at the sending host since
the proactive migration.

Proactive migration and evaluation can only be deployed successfully if the sequence of
adding the new computational state is chosen in such a way that the running application is not
delayed. Developing methods to permute the presentation of the computational state so that it
fits seamlessly in the running receiver may build further on the profiling techniques applied
for progressive anticipative mobility using pre-fetching of permuted code. The development
of algorithms to automatically inline objects and to avoid implicit stack operations will allow
a simplification of the presentation of the computational state. This will in turn facilitate
computational state adaptation at runtime. Also these proposed transformations should be

Conclusion

Page 158

implemented in a transparent way so that they do not interfere with the architecture as defined
and viewed by the designer but instead as the architectural transformations proposed for
progressive mobility using component streams, these transformations should occur during an
optimization step of the compiler.

The result could be that, providing that the delta is applied in the ideal sequence, the
migration can take place in no time. The application remains available at all time and the
perceived network latency is virtually reduced to zero.

6.4.6 Aspects
The dynamic behavior of the different proposed techniques is clearly identifiable but scattered
over many places in the software, cross-cutting the different software components. Aspect
Oriented Software Design is an upcoming software engineering technique that promises the
possibility to describe aspects of the proposed techniques in an insulated modularized
component. Aspect-oriented programming (AOP) is based on the idea that computer systems
are better programmed by separately specifying the various concerns of a system and some
description of their relationships, and then relying an mechanisms in the underlying AOP
environment to weave or compose them together into a coherent program [Elrad et al. 2001].

The introducing of distribution and migration generates cross-cutting concerns to the system
as there are: security, encryption and authentication of the code, buffering, proxy and routing
concerns, distributed transaction issues and the management of different possible modes of
transparency:

• Location transparent

User can not tell where resources are located

• Migration transparent

Resources can move at will without changing their names

• Replication transparent

User cannot tell how many copies exist

• Concurrency transparent

Multiple users can share resources automatically

• Parallelism transparent

Activities can happen in parallel without users knowing

In the different progressive migration techniques presented in this dissertation we distinguish
two kinds of source code where an aspect oriented approach might be appropriate, the source
code of the application to migrate (basic code) and the source code of the supervising system
that guides the migration (supervising code). For each progressive migration technique we
identify some crosscutting concerns that might be aggregated in aspects.

• Progressive Anticipative Mobility using Pre-fetching of Permuted Code

o Basic code

Instrumentation of the source code with extra code that logs the time of
invocation of each method.

Instrumentation of the source code with extra code in order to delimit the code
needed to build the GUI.

Conclusion

Page 159

Synchronization code (semaphores).

Code for removal of synchronization code after first use.

o Supervising code

Determines the number of files to create and therefore the join points in the
basic code, those places where aspect code interacts with the rest of the
system.

• Progressive Mobility using Component Streams

o Basic code

In a self triggered strategy each component need to contain the same block of
code to decide when and how to migrate itself.

o Supervising code

Determines the size of the components and therefore the join points in the
basic code.

• Progressive Anticipative Mobility using Proactive Migration

o Basic code

Instrumentation of the source code with extra code that logs the variations in
the computational state to be able to determine possible proactive migration
times and to detect possible large delta’s in the computational state.

o Supervising code

Addition of dynamically computational state monitoring code to the basic code
during its evaluation.

6.4.7 New Research Projects
One of the most satisfying results of this research is that it will be embedded as a topic in new
upcoming research projects that plan to deepen certain directions and/or will embed the
techniques in a bigger framework.

A new research project @Media (Advanced Media) is approved as a successor of the MPEG-
project and is aimed at developing prototypes and basic research. This new e-VRT research
project, in close cooperation with our national radio and television broadcast company has
started end 2003.

This project is part of the effort to develop a Content Management System to manage new and
existing content material (images, sound, graphic content, games, interactive scenarios and is
situated around mobile code and MPEG-4 [Puri and Eleftheriadis 1998] environments. This
setting will give us the real live test environment to validate our approach further on different
platforms and will allow us to get more detailed results. The project has not only the ambition
to manage and support multi channel publications of data but also behavior (i.e. code). If
users should be able to interact with certain scenes an application to support this interaction
need to be available at the users platform as soon as possible. This is where our proposed
techniques can possible play an important role.

Experiments with progressive anticipative mobility using pre-fetching of permuted code,
progressive mobility using component streams, proactive migration and proactive migration
and evaluation will be performed to migrate the code needed for interactive television to the
clients.

Conclusion

Page 160

Also a strategic basic research project CoDAMoS (Context-Driven Adaptation of Mobile
Services) is proposed and is aimed at solving a set of key challenges in the area of ambient
intelligence where personal devices will form an extension of each user’s environment,
running mobile services adapted to the user and his context.

One of the work packages includes: Progressive mobility. The objective is to establish a
framework for progressive mobility, i.e. a feature of mobile code whereby execution and
migration are interleaved in such a way that network latency is minimized. Our results will be
taken as a starting point.

In a first stage, a high-level virtual machine developed in another task will be used to explore
the various concerns of progressive mobility: partial ordering of code fragments using
symbolic interpretation (how is migration sequenced?), pushing or pulling code fragments
(who takes the initiative for migration?), evaluation overlap (destination evaluation start
before source evaluation stop), etc. In a second stage, a pragmatic subset of the results
obtained with the high-level virtual machine will be applied to a Java context, using aspect
technology.

Bibliography

Page 161

Bibliography

Amdahl 1967 Amdahl, G.M. Validity of the single-processor approach to achieving large
scale computing capabilities. AFIPS Conference Proceedings vol. 30 (Atlantic City, N.J.,
Apr. 18–20). AFIPS Press, Reston, Va. , pp. 483–485. 1967

Andrew and Chien 2000 J.Dolby, Andrew, A. Chien. An Automatic Object Inlining
Optimization and its Evaluation ACM SIG\-PLAN Notices, 2000

Arnold et al. 1999 K. Arnold, B. O'Sullivan, R.W. Scheiffer and J. Waldo, A. Wollrath. The
Jini Specification. Addison-Wesley, 1999

Attali et. Al 2000 Isabelle Attali, Denis Caromel and Romain Guider, in FMOODS 2000, A
Step Toward Automatic Distribution of Java Programs Stanford University, Kluwer
Academic Publishers, pp. 141-161, 2000,

Barbacci 95 Barbacci Mario, Klein Mark H., Longstaff Thomas H. & Weinstock, Charles B.
Quality Attributes (CMU/SEI-95-TR-021). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1995

Berners-Lee 1996 T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol
HTTP/1.0. RFC 1945. Network Working Group, May 1996

Caromel et al. 1998 D. Caromel, W. Klauser, J. Vayssiere, Towards Seamless Computing
and Metacomputing in Java Concurrency Practice and Experience, pp. 1043--1061 Editor
Geoffrey C. Fox, Published by Wiley & Sons, Ltd. 1998

Carzaniga et al. 1997 Antonio Carzaniga, Gian Pietro Picco, Giovanni Vigna. Designing
Distributed Applications with Mobile Code Paradigms. Proceedings of the 19th International
Conference on Software Engineering, 1997

Chavez 1997 A. Chavez, D. Dreilinger, R. Guttman, and P. Maes. A real-life experiment in
creating an agent marketplace, Proceedings of the Second International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology, April 1997

Chen 2002 Guanling Chen and David Kotz. Solar: An Open Platform for Context-Aware
Mobile Applications. In Short Paper Proceedings of the First International Conference on
Pervasive Computing (HPervasive 2002H) (HPDFH), August, 2002

Chilimbi et al. 1992 T. Chilimbi, B. Davidson, and J. Larus. Cache-conscious structure/class
field reorganization techniques for c and Java. Proceedings of the ACM SIGPLAN ’99
Conference on Programming Language Design and Implementation, May 1999.

Cincom 2003 Welcome to Cincom Smalltalk VisualWorks® Non-Commercial Pre-Release
7.1 Cincom Systems, Inc of March 19, 2003..

Devalez 2003 Christian Devalez. Application streaming in Java. Licentiaat thesis, faculteit
wetenschappen, departement informatica en toegepaste informatica, Vrije Universiteit
Brussel, ftp://prog.vub.ac.be/dissertation/2003/Devalez2003.pdf, Brussel 2003

Devaney 1992 Robert L. Devaney. Chaos, Fractals & Dynamica: Computer-experimenten in
de wiskunde. Addison-Wesley Nederland, p. 105, 1992

D’Hondt 2003 T. D’Hondt. Pico: programming language. http://pico.vub.ac.be, June 2003

Doherty and Kelisky 1979 W. J. Doherty and R. P. Kelisky. Managing VM/CMS systems for
user effectiveness. IBM Systems Journal, pages 143–163, 1979

Bibliography

Page 162

Dürst 1997 M. J. Dürst. The progressive transmission disadvantage. IEEE Transactions on
Information Theory, Vol. 43, No. 1, , pp. 347-350. Jan. 1997

Edward 2001 Edward B. Allen, Taghi M. Khoshgoftaar, Ye Chen Edward. Measuring
Coupling and Cohesion of Software Modules: An Information-Theory Approach. Seventh
International Software Metrics Symposium pp. 124, April 2001

Elrad et al. 2001 Tzilla Elrad, Robert E. Filman, Atef Bader. Aspect-oriented programming:
Introduction. Communications of the ACM, Volume 44 Issue 10 p. 29-32 October 2001

Ernst et al. 1997 J. Ernst , W. Evans , C. W. Fraser , T. A. Proebsting , S. Lucco. Code
Compression. Proc. ACM SIGPLAN conf. on Programming language design and
implementation. Volume 32 Issue 5, May 1997

Evenepoel 2003 Karl Evenpoel Progressive mobility in Smalltalk using Opentalk. Licentiaat
thesis, faculteit wetenschappen, departement informatica en toegepaste informatica, Vrije
Universiteit Brussel, ftp://prog.vub.ac.be/dissertation/2003/Evenepoel2003.pdf, Brussel 2003

Fisher 1992 Joseph A. Fisher, Stefan M. Freudenberger. Predicting conditional branch
directions from previous runs of a program. ACM SIGPLAN Notices , Proceedings of the
fifth international conference on Architectural support for programming languages and
operating systems, Volume 27 Issue 9 September1992

Fowler et al. 1999 Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley publishing company
isbn: 0201485672; 1st edition, June 28, 1999

Franz and Kistler 1997 M. Franz and T. Kistler. Slim Binaries. Comm. ACM Volume 40
Issue 12, December 1997

Fuggetta et al. 1998 Alfonso Fuggetta, Gian Pietro Picco and Giovanni Vigna.
Understanding Code Mobility. IEEE Transactions of Software Engineering, volume 24, 1998

Gamma et al. 1995 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software. Addison-Wesley professional
Computing Series, 1995

Ghim and Chorng 2001 O. Ghim-Hwee, C. Chorng-Meng C. Yi. A simple partitioning
approach to fractal image compression. Proc. 16th ACM SAC2001 sym. Applied computing,
Las Vegas, Nevada, US ACM Press Pages: 301 – 305, 2001

Goldberg and Robson 1989 Adele Goldberg and David Robson. Smalltalk-80 the language
Addison-Wesley publishing company isbn: 0-201-13688-0, 1989

Gruia-Catalin 2000 Gruia-Catalin Roman, Gian Pietro Picco & Amy Murphy. The Future of
Software Engineering. Anthony Finkelstein (Ed.) ACM Press, 2000

Grune 2000 D. Grune, H. Bal, C. Jacobs, K. Langendoen. Modern Compiler Design
Worldwide Series in Computer Science. John Wiley & Sons ltd London, 2000

Hauswirth 1999 Manfred Hauswirth. Internet-Scale Push Systems for Information
Distribution Architecture, Components, and Communication. PhD dissertation at Technischen
Universität Wien, August 1999

Hoare 1985 C.A.R. Hoare. Communicating sequential Processes. Prentice Hall International
Series in Computer Science, 1985

IEC 2000 IEC 60027-2, Second edition, Letter symbols to be used in electrical technology -
Part 2: Telecommunications and electronics, November 2000

Bibliography

Page 163

IEEE 1997 A Lesson in Megabytes. IEEE Standards Bearer, page 5. Portions copyright ©
1997 by the Institute of Electrical and Electronics Engineers Inc. January 1997

Intel 2002 White paper: Hyper-Threading Technology on the Intel® XeonTM Processor
Family for Servers. Intel corporation, 2003

ISTAG 2001 Scenarios for Ambient Intelligence in 2010. ISTAG Final Report, EC, Feb 2001

Jason and Patterson 1995 R. Jason, C. Patterson. Accurate Static Branch Prediction by
Value Range Propagation. Proc. ACM SIGPLAN Conf. on Programming Language Design
and Implementation, pages 67-78, June 1995

Johnson 1998 Chris Johnson. The Ten Golden Rules for Providing Video Over the Web or
0% of 2.4M (at 270k/sec, 340 sec remaining). Human Factors and Web Development, section
16: pages 207–221. Lawrence Erlbaum Associates, Publishers, Mahwah, New Jersey, 1998

Jones 1996 Neil D. Jones. An introduction to partial evaluation. ACM Computing Surveys
(CSUR) Volume 28 Issue 3 ,September 1996

Krintz et al. 1998 Chandra Krintz, B. Calder, H. B. Lee, B. G. Zorn. Overlapping Execution
with Transfer Using Non-Strict Execution for Mobile Programs. Proc. Int. Conf. on
Architectural Support for Programming Languages and Operating Systems, San Jose,
California U.S., October, 1998

Krintz et al. 1999 Chandra Krintz, B. Calder and U. Hölzle. Reducing Transfer Delay Using
Class File Splitting and Pre-fetching. Proc. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applications, November, 1999

Krintz 2001 Chandra Krintz. Reducing Load Delay to Improve Performance of Internet-
Computing Programs PhD dissertation, UCSD Technical Report CS2001-0672, May, 2001

Ladin et al. 1992 Rivka Ladin, Barbara Liskov, Liuba Shrira and Sanjay Ghemawat.
Providing High Availability Using Lazy Replication. MIT Laboratory for Computer Science,
ACM Transactions on Computer Systems, Vol 10, No. 4, Pages 360–391, November 1992

Lange et al. 1998 Lange, D.B. & Oshima M. Programming and Deploying Java Mobile
Agents with Aglets. Reading, Addison-Wesley, Massachusetts, 1998

Lee 1997 Han Bok Lee. BIT: Bytecode instrumenting tool. Master’s thesis, University of
Colorado, Boulder, Department of Computer Science, University of Colorado, Boulder, CO,
June 1997

Le Gall 1991 D. Le Gall. MPEG: a video compression standard for multimedia applications.
Communications of the ACM Volume 34 Issue, 4 April 1991

Lindwer et al. 2003 Menno Lindwer, Diana Marculescu, Twan Basten, Rainer Zimmermann,
Radu Marculescu, Stefan Jung, Eugenio Cantatore, Ambient Intelligence Visions and
Achievements: Linking Abstract Ideas to Real-World Concepts. Design, Automation and Test
in Europe Conference and Exhibition (DATE'03) Munich, Germany, March 2003

Maes 1987 P. Maes. Computational Reflection. PhD thesis, Vrije Universiteit Brussel, 1987

Milojicic et al. 1999 Milojicic Dejan, Douglis Fred, Paindaveine,Yves, Wheeler Richard,
Zhou Songnian. Process Migration. HP Labs Technical Reports HPL-1999-21 990217
External, 1999

Moore 1965 G. Moore. Cramming more components onto integrated circuits. Electronics,
Vol. 38(8), pp. 114-117, April 19, 1965

Bibliography

Page 164

Nejmeddine 2002 Nejmeddine Tagoug. Object-Oriented System Decomposition Quality. 7th
IEEE International Symposium on High Assurance Systems Engineering (HASE'02), pp. 230,
October 2002
Nierstraz 1995 Oscar Nierstrasz and Theo Dirk Meijler. Research di-rections in software
composition. ACM Computing Surveys, 27(2):262-264, June 1995.

O'Hare et al. 2004 G. M. P. O'Hare, M. J. O'Grady, S. Keegan, D. O'Kane, R. Tynan & D.
Marsh, Intelligent Agile Agents: Active Enablers for Ambient Intelligence, Ambient
Intelligence for Scientific Discovery (AISD) SIGCHI Workshop, Vienna April 25, 2004

Picco 1998 G. P. Picco, µCode: A Lightweight and Flexible Mobile Code Toolkit. Mobile
Agents, Proceedings of the 2ndInternational Workshop on Mobile Agents 98 (MA'98),
Stuttgart (Germany), K. Rothermel and F. Hohl eds., Springer, Lecture Notes on Computer
Science vol. 1477, pp. 160-171, September 1998

Picco 2001 G. Pietro Picco. Mobile Agents. 5th International conference, MA 2001 Atlanta
Preface proceedings, 2001

Plezbert and Cytron 1997 M. P. Plezbert , Ron K. Cytron. Does “just in time” = “better late
than never”? Proc.24th ACM SIGPLAN-SIGACT sym. on Principles of programming
languages, p.120-131, Paris, France, January 15-17, 1997

Puri and Eleftheriadis 1998 A. Puri, A. Eleftheriadis. MPEG-4: An object-based multimedia
coding standard supporting mobile applications. Mobile Networks and Applications 3 5–32,
1998

Sazeides 1998 Yiannakis Sazeides and James E. Smith. Modeling Program Predictability.
Colloquium Series Iowa State University Spring 1998

Shaw-Kung Jong 2000 Shaw-Kung Jong, Belka Kraimeche. QoS Considerations on the
Third Generation (3G) Wireless Systems. AIWORC'00 Academia/Industry Working
Conference on Research Challenges pp. 249, April 2000

Siegel 1996 D. Siegel, Creating killer web sites. Indianapolis: Hayden Books, 1996

Sirer et al. 1999 E.Sirer A.Gregory and B.Bershad A practical approach for improving
startup latency in Java applications. Workshop on Compiler Support for Systems Software,
1999

Stoops et al. 2002 Luk Stoops, Tom Mens and Theo D’Hondt. Fine-Grained Interlaced Code
Loading for Mobile Systems. 6th International Conference MA2002, LNCS 2535, pp. 78-92
Barcelona, Spain, October 2002

Stoops et al. 2003a L. Stoops, T. Mens, T. D’Hondt. Reducing Network Latency by
Application Streaming. International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, USA, June 2003
Stoops et al. 2003b L. Stoops, T. Mens, C. Devalez, T. D’Hondt. Migration Strategies for
Application streaming. technical report 2003 ftp://prog.vub.ac.be/tech_report/2003/vub-prog-
tr-03-06.pdf, 2003

Sun 2002 Sun Microsystems. Java Remote Method Invocation Specification.
http://java.sun.com/products/jdk/rmi/, 2002

Szyperski 2003 Clemens Szyperski, Component Technology - What, Where, and How?
Proceedings of the 25th international conference on Software engineering, May 2003

Tanenbaum 2003 Andre S. Tanenbaum. Computer Networks Prentice Hall PTR, fourth
edition, 2003

Bibliography

Page 165

Tanter et al. 2003 Eric Tanter, Jacques Noyé, Denis Caromel, Pierre Cointe. Partial
Behavioral Reflection: Spatial and Temporal Selection of Reification. OOPSLA’03, Anaheim,
California, USA, October 2003

Tourwé and De Meuter 2001 Tom Tourwé and Wolfgang De Meuter. Optimizing Object-
Oriented Languages through Architectural Transformations. Proc. Int. Conf. Software
Maintenance, Firenze, November 2001

Ungar 1984 D.Ungar HGeneration Scavenging: A non-disruptive high performance storage
reclamation algorithmH. Proceedings of the first ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software development environments, April 1984

Van Belle et al. 2001 Werner Van Belle, Johan Fabry, Karsten Verelst and Theo D’Hondt.
Experiences in Mobile Computing: The CBorg Mobile Multi Agent System. Tools Europe
2001, March 2001

van Loenen 2003 Evert J. van Loenen. On the role of Graspable Objects in the Ambient
Intelligence Paradigm. (Soc 2003) smart objects conference, Grenoble 2003

Venkatesh 1991 G. A. Venkatesh. The semantic approach to program slicing. ACM
SIGPLAN Notices , Proceedings of the conference on Programming language Design and
implementation Volume 26 Issue 6, May 1991

Weiser and Brown 1996 Mark Weiser and John Seely Brown. The Coming Age of Calm
Technology Xerox PARC October 5, 1996.

Wilson 1992 Paul R. Wilson. Uniprocessor garbage collection techniques. Proc of
International Workshop on Memory Management in the Springer-Verlag Lecture Notes in
Computer Science series, St. Malo, France, September 1992

Wirth 1995 Niklaus Wirth A Plea for Lean Software. ETH Zürich Computer, February 1995

Wolski 1998 R.Wolski Dynamically forecasting network performance using the network
weather service. Cluster Computing, 1998

Zima and Chapman 1990 Hans Zima and Barbara Chapman. Supercompilers for Parallel
and Vector Computers. Addison Wesley, 1990

Ziv and Lempel 1977 J.Ziv and A.Lempel. A Universal Algorithm for sequential Data
compression. IEEE Transactions on Information theory Vol 23, No.3, May 1977

	Introduction
	Thesis Motivation
	Latency
	Application availability
	Research Goals
	Research restrictions
	Chapter Summaries

	A Conceptual Framework for�Progressive Mobility
	Network
	Architecture
	Packet Switching
	Data Rate
	Delays in Computer Networks
	Delays in Connection-oriented Networks
	Delays in Connectionless Networks

	Performance
	Window of Opportunity

	Application
	Internal Structure
	Size
	Granularity
	Evaluation Time
	Delay
	User Interfaces
	Predictability
	Components
	Distributed Systems and Applications
	Choosing an Experimental Programming Environment
	Programming Languages Used
	Borg
	Java
	Smalltalk

	Techniques
	Mobility
	Host Mobility
	Evaluator Mobility
	Data Mobility
	Code Mobility
	Process Mobility
	Weak and Strong Mobility

	Server - Push versus Client - Pull
	Parallelism
	Reflection
	Compression
	Reordering and Pre-fetching
	Profiling
	Class File Splitting and Pre-fetching
	Non-Strict Execution for Mobile Programs

	Progressive techniques
	Other related techniques

	Progressive Anticipative Mobility using Pre-fetching of Perm
	Abstract
	Introduction
	Basic Observations, Assumptions and Restrictions
	Profiling and Reordering
	Reordering Algorithm
	Pre-fetching
	Experiment to Hide Network Latency
	Results
	Benchmark
	CoolImage
	Gremlin
	Adapted Gremlin

	Discussion
	Speedup
	Application Speedup versus Data rate
	Pre-fetching Guidelines
	Dealing with Semaphores
	Applicability in other Environments

	Summary and Conclusion
	Network
	Application
	Techniques

	Progressive Mobility using Component Streams
	Abstract
	Introduction
	Proposed Technique
	Basic Observations, Assumptions and Restrictions
	Technique Description
	Component Migration Time
	Component Idle Time
	Necessary Conditions for Removing Network Latency

	Migration Strategies
	Self Triggered after Last Instruction
	Self Triggered based on Profiling
	Under Control of a Supervisor
	Fixed Migration Strategy
	Dynamic Migration Strategy

	Discussion

	Experiment to Hide Network Latency
	Borg Environment
	Implementation
	Results
	Discussion

	Java Environment
	Implementation
	Results
	Discussion

	Experiment to Reduce System Latency in Low Data Rate Environ
	Implementation
	Finding the Size of Objects
	A Data rate Simulating OutputStream

	Adding a Graphical User Interface
	Strategies
	Results
	Time Needed to Finish the Application
	Time Needed to Send the Components
	Time Needed for the First Draw
	Time Gained in Comparison to Normal Sending

	Discussion

	Experiment to Reduce System Latency by Parallel Evaluation
	Process Migration with Opentalk
	Using BOSS
	Limitations in Current Smalltalk Environment
	Passing by Value
	Order of Object Instantiation
	GraphicsHandles Cannot be Stored by BOSS

	Experiment setup
	Calculate and draw the fractal, migrate afterwards
	Start CalcProcess and migrate the DrawProcess
	Migrate the CalcProcess first, then the DrawProcess

	Implementation
	Strategy without parallel processing
	Strategy with parallel processing
	Results

	Discussion

	Design Guidelines
	Necessary Conditions for Removing Network Latency
	Guidelines

	Summary and Conclusion
	Network
	Application
	Techniques

	Progressive Anticipative Mobility using Proactive Migration
	Abstract
	Introduction
	Proposed Technique
	Basic Observations, assumptions and restrictions
	Technique Description
	Computing the Delta

	Experiment to Calculate the Delta
	Results
	Discussion
	Gain for the Factorial Example
	Applications without Implicit Stack Operations
	Hardware Support
	Dealing with Large Deltas

	Summary and Conclusion
	Network
	Application
	Techniques

	Conclusion
	Wrap-up
	Results
	Discussion
	Future Work
	Evaluate the Themes with other Criteria
	Other Topics Related to Pre-fetching of Permuted Code
	Pre-fetching of Permuted Code with Multi Node Hopping
	Architectural Transformations to make Applications Streamabl
	Progressive Mobility using Proactive Migration and evaluatio
	Proposed Technique
	Assumptions and Restrictions
	Handling Semaphores

	Aspects
	New Research Projects

