
1

© 2001 P. Van Roy and S. Haridi

1

Teaching Programming
Broadly and Deeply:

The Kernel Language Approach

July 17, 2002

Peter Van Roy
Université catholique de Louvain (UCL)

Louvain-la-Neuve, Belgium

Seif Haridi
Royal Institute of Technology (KTH)

Stockholm, Sweden

© 2001 P. Van Roy and S. Haridi

2

Overview

• The goal
– Programming as a unified discipline with a practical scientific

foundation

• The kernel language approach
– The declarative programming model
– Extended models

• With exceptions, security, state, concurrency, laziness, and search

– Programming and reasoning within these models
– Programming paradigms as epiphenomena

• Practical examples of the kernel approach
– Concurrent programming
– User interface programming

• Conclusions
– The textbook and its use in education

2

© 2001 P. Van Roy and S. Haridi

3

Programming needs both
technology and science

• We defineprogramming broadly as the step from specification to
running program, which consists in designing the architecture and its
abstractions and coding them into a programming language

• Doing programming well requires two topics:
– A technology: a set of practical techniques, tools, and standards
– A practical scientific foundation: a scientific theory that explains the

technology and that is useful for the practicing programmer

• Teaching programming requires teaching both the technology and the
science
– Surprisingly, programming isnot taught in this way. It is taught as acraft

in the context of current technology (e.g., Java and its tools). If there is
any science, it is either limited to the tools or too theoretical.

• We propose a remedy,the kernel language approach

© 2001 P. Van Roy and S. Haridi

4

The kernel language approach (1)

• Modern programming languages have been developed for over 50
years and scale to millions of lines of code. Students should learn the
fundamental concepts underlying this success.

• Modern languages have been designed to solve many problems, and
are therefore rich and expressive. Unfortunately, they are superficially
very different from each other. How can a student understand this
variety in a simple and clear way?

• Thekernel language approachis to translate these rich languages into
small kernel languages. A wide variety of languages and
programming paradigms can be modeled by a small set of closely-
related kernel languages.

• For good reasons, the kernel language isnot a foundational calculus
(e.g.,λ or π), although it does have a formal semantics

3

© 2001 P. Van Roy and S. Haridi

5

The kernel language approach (2)

• Kernel languages have a small
number ofprogrammer-significant
elements

• Their purpose is to understand
programming from the
programmer’s viewpoint

• They are given a semantics which
allows the practicing programmer
to reason aboutcorrectnessand
complexityat a high level of
abstraction

• All major programming paradigms
are covered in a deep way

Full
language

Kernel
language

Foundational
calculus

Virtual
machine

For
mathematicians

For
programmers

For
implementors

© 2001 P. Van Roy and S. Haridi

6

The kernel language approach (3):
Analogy with classical mechanics

• Classical mechanics is a branch of
physics that is widely used in
engineering

• Classical mechanics is based on a
small set of physical laws

• These laws can be formulated in
three basically different ways,
which are useful for different
communities

• For engineers, the formulation
based on Newton’s laws (and its
extensions) is the most useful in
practice

Classical
mechanics

Newton’s
laws

Foundational
formulation

Computational
formulation

For
theoretical
physicists

For
engineers

For doing
simulations

4

© 2001 P. Van Roy and S. Haridi

7

The kernel language approach (4)

• The full language provides
useful linguistic abstractions
and syntactic sugar for the
programmer

• New linguistic abstractions can
be added without changing the
kernel language

• The kernel language contains a
small set of intuitive concepts

• The kernel language has a
formal semantics at high level
of abstraction (reasoning about
correctness and complexity)

Full language

Kernel language

fun {Sqr X} X*X end

proc {Sqr X Y}
{’*’ X X Y}

end
local T in

{Sqr A T}
{Sqr T B}

end

© 2001 P. Van Roy and S. Haridi

8

Linguistic abstractions

• An abstractionis a tool or device (possibly conceptual) that solves a particular
problem. An abstraction is often useful for widely different problems.

• A linguistic abstractionis a programming abstraction that has linguistic
support in the language, i.e., it is visible as a construct in the language syntax

• Linguistic abstractions are defined by giving their syntax and their translation
into the kernel language

• Practical languages contain a large number of useful linguistic abstractions

• Our kernel language is based onprocedures; useful linguistic abstractions we
build on top of this kernel language includefunctions, loops, lazy functions,
list comprehensions, choice points, classes, components, andmailboxes

• Linguistic abstractions should not be confused with syntactic sugar, which
reduces program size and improves program readability. Syntactic sugar is
also defined by translation to the kernel language, but it does not define a new
abstraction.

5

© 2001 P. Van Roy and S. Haridi

9

The first model:
declarative programming

• Nonterminals:
– <s>: statement

– <x>: variable identifier

– <v>: value expression

– <p>: pattern

• Single-assignment store
– unbound variables

– variables bound to partial
value

• Semantics in terms of a
simple abstract machine

• The model calculates
functions over partial
values, in procedural
notation

skip
<x>1=<x>2

<x>=<v>
<s>1 <s>2

local <x> in <s>end
if <x> then <s>1 else<s>2 end
case<x> of <p> then <s>1 else<s>2 end
{<x> <y>1 … <y>n}

<s> ::=

<v> ::= <number> | <record> | <procedure>
<number> ::= <int> | <float>
<record>, <p> ::= <lit>(<feat>1:<x>1 … <feat>n:<x>n)
<procedure> ::=proc {$ <x>1 … <x>n} <s> end
<lit> ::= <atom> | <bool>
<feat> ::= <atom> | <bool> | <int>
<bool> ::=true | false

© 2001 P. Van Roy and S. Haridi

10

Formal semantics (1)

• Basic concepts:
– A single-assignment storeσ is a set of store variablesx1, …, xk,

that are partitioned into sets of equal unbound variables and
variables bound to a number, record, or procedure

– An environmentE is a mapping from variable identifiers to store
variables, {<x>1 → x1 , …, <x>n → xn}

– A semantic statementis a pair (<s>,E) where <s> is a statement
andE is an environment

– An execution stateis a pair (ST, σ) whereSTis a stack of semantic
statements

– A computationis a sequence of execution states starting from an
initial state: (ST0, σ0) → (ST1, σ1) → (ST2, σ2) → ...

6

© 2001 P. Van Roy and S. Haridi

11

Formal semantics (2)

• Program execution
– Theinitial execution state is ([(<s>,φ)], φ). The initial semantic

statement is (<s>,φ) with an empty environment, and the initial
store is empty.

– At each execution step, thefirst element ofSTis popped and
execution proceeds according to the form of the element

– Thefinal execution state (if it exists) is one in which the semantic
stack is empty.

• A semantic stack can be in one of three run-time states:
– running: STcan do an execution step

– terminated: STis empty

– suspended: STis not empty but cannot do a step

© 2001 P. Van Roy and S. Haridi

12

Example: thelocal statement

• The semantic statement is (local <x> in <s>end, E)

• Execution consists of the following actions:
– Create a new variablex in the store

– Push (<s>,E+{<x>→x}) on the stack

7

© 2001 P. Van Roy and S. Haridi

13

Example: theif statement

• The semantic statement is (if <x> then <s>1 else<s>2 end, E)

• This statement has anactivation condition: E(<x>) must bedetermined,
i.e., bound to a number, record, or procedure

• Execution consists of the following actions:
– If the activation condition istrue, then do the following actions:

• If E(<x>) is not a boolean (true or false), then raise an error condition

• If E(<x>) is true, then push (<s>1, E) on the stack

• If E(<x>) is false, then push (<s>2, E) on the stack

– If the activation condition isfalse, then execution suspends

• If some other activity in the system makes the activation condition true,
then execution can continue. This allowsdataflow programming, which is
at the heart of declarative concurrency.

© 2001 P. Van Roy and S. Haridi

14

Example: procedures

• A procedure valueis a pair (proc {$ <y>1 … <y>n} <s> end, CE)
whereCE (the « contextual environment ») isE|{<z>1, …, <z>m}, whereE
is the environment where the procedure is defined and
{<z>1, …, <z>m} is the set of external identifiers of the procedure

• In a procedure call({<x> <x>1 … <x>n}, E):
– if E(<x>) has the form (proc {$ <y>1 … <y>n} <s> end, CE) , then

– push (<s>,CE+ {<y>1→E(<x>1), …, <y>n →E(<x>n)})

• This allowshigh-order programmingas in functional languages

8

© 2001 P. Van Roy and S. Haridi

15

Relationship to
other declarative paradigms

• The declarative model generalizes both strict functional
programming and deterministic logic programming

• It is functional programming with logic variables
– This increases expressiveness yet is still confluent, e.g., append is

naturally tail recursive
– There is a deeper reason for this model: it leads todeclarative

concurrency, which is both confluent and concurrent

• It is logic programming with higher-order procedures and
without search
– Higher-order is a powerful way to structure logic programs
– Search isnot necessaryfor most practical logic programs; in those

areas where it is needed, constraint programming is a good fit

© 2001 P. Van Roy and S. Haridi

16

Importance of declarative programming

• Why is the declarative model important? Two reasons:
– A declarative program can bepartitioned into components that each be written,

tested, and proved correctindependentlyof the others

– Simple reasoning techniques(e.g., reasoning with induction on data structures) can
be used in the declarative model

• Proper role of the model
– Partitioning does not work if intimate interaction between components is needed; it

cannot be « legislated away » by limiting programs to a model that does not support it

– More expressive models exist that support intimate interaction, but components
written in them are harder to prove correct

• Intimate interaction is supported by theconcurrent stateful model, but this model is difficult
to program in (reasoning on all possible interleavings)

– An important rule is thatintimate interaction should only be used where necessary and
concentrated in as few components as possible

– The programming model should support this rule by allowing both declarative and
nondeclarative programs, with no syntactic or performance penalty for declarativeness

9

© 2001 P. Van Roy and S. Haridi

17

Limitations of declarative programming

• When is the declarative model appropriate and when is encapsulated state
needed?

– An important question that arouses strongreligious feelings

– Concurrency is not a limitation of the declarative model

• We find the following real limitations:
– It leads tomodularity problems in certain situations that need hidden state or that

have observable nondeterminism. For example: an external database interface, an
instrumented program, a client-server program with more than one independent
client, and a function with memoization.

– It can lead tointricate code. This follows because declarative programs impose
more restrictions on how they are written. For example, a transitive closure
algorithm.

• We find the following are not limitations in practice:
– Programs that doincremental modifications of large data structures, e.g., for

simulations, can be efficient if written in the right way.

– Interfacingbetween declarative and non-declarative programs.

– Problemspecifications that mention statemust be encoded in a declarative way.

© 2001 P. Van Roy and S. Haridi

18

Extension for
exception handling

• The declarative model does
not allow handling
exceptional situations

• We extend the model to add
exception handling

• We add two new statements:
– try : create new exception

context

– raise: raise an exception

• Exception contexts are nested
dynamically; a raised
exception transfers execution
to the innermost context

skip
<x>1=<x>2

<x>=<v>
<s>1 <s>2

local <x> in <s>end
if <x> then <s>1 else<s>2 end
case<x> of <p> then <s>1 else<s>2 end
{<x> <y>1 … <y>n}

try <s>1 catch <x> then <s>2 end
raise <x> end

<s> ::=

Extension to the declarative model

10

© 2001 P. Van Roy and S. Haridi

19

Other extensions

skip
<x>1=<x>2

<x>=<v>
<s>1 <s>2

local <x> in <s>end
if <x> then <s>1 else<s>2 end
case<x> of <p> then <s>1 else<s>2 end
{<x> <y>1 … <y>n}
try <s>1 catch <x> then <s>2 end
raise <x> end

thread <s>end
{ByNeed <x>1 <x>2}
{NewCell <x>1 <x>2}
{Exchange <x>1 <x>2 <x>3}

<s> ::=

Thread creation
Trigger creation
Cell creation
Cell exchange

Extensions to the declarative model

• Extensions:threads, triggers(for
demand-driven execution;lazy
functionsare a linguistic abstraction),
andcells(encapsulated state;object-
oriented programmingis a linguistic
abstraction)

• The extensions vastly increase the
expressive power of the language

• For conciseness we leave out the
extensions for constraint programming

© 2001 P. Van Roy and S. Haridi

20

Complete model (so far)

skip
<x>1=<x>2

<x>=<v>
<s>1 <s>2

local <x> in <s>end

if <x> then <s>1 else<s>2 end
case<x> of <p> then <s>1 else<s>2 end
{<x> <y>1 … <y>n}
thread <s>end
{ByNeed <x>1 <x>2}

{NewName <x>}
try <s>1 catch <x> then <s>2 end
raise <x> end
{NewCell <x>1 <x>2}
{Exchange <x>1 <x>2 <x>3}

<space>

<s> ::=
Empty statement
Variable-variable binding
Variable-value binding
Sequential composition
Variable creation

Conditional
Pattern matching
Procedure invocation
Thread creation
Trigger creation

Name creation
Exception context
Raise exception
Cell creation
Cell exchange

Encapsulated search

11

© 2001 P. Van Roy and S. Haridi

21

Computation models
Declarative model
strict functional programming, e.g.,Scheme
deterministic logic programming

+ concurrency
+ by-need synchronization
declarative concurrency
lazy functional programming, e.g.,Haskell

+ nondeterministic choice
concurrent logic programming

+ exception handling
+ encapsulated state
object-oriented programming

+ search
nondeterministic LP, e.g.,Prolog

concurrent OOP
(active object style, e.g.,Erlang)
(shared state style, e.g.,Java)

+ computation spaces
constraint programming

• We show some of the relationships
between the different models

• Each model has its own kernel
language, its own reasoning techniques,
and its own programming techniques

• The kernel languages are closely
related, e.g., the declarative model is a
subset of all of them

© 2001 P. Van Roy and S. Haridi

22

Some reasoning techniques
for different models

• Correctness
– Reasoning with induction on data structures (declarative model, including

declarative concurrency)

– Algebraic reasoning and related techniques (declarative model, including
declarative concurrency)

– Reasoning with induction on invariants (declarative and stateful models)

– Reasoning on interleavings, use of atomic actions (concurrent stateful
model)

• Execution time(asymptotic complexity)
– Set up and solve recurrence equations

• Memory use
– Active memory: reachability calculation on data structures

– Memory consumption: set up and solve recurrence equations

12

© 2001 P. Van Roy and S. Haridi

23

Programming paradigms
as epiphenomena

• We have seen that the kernel approach lets us organize programming
in three levels:
– Concepts: compositionality, encapsulation, lexical scoping, higher-

orderness, capability property, concurrency, dataflow, laziness, state,
inheritance, ...

– Techniques: how to write programs with these concepts

– Computation models(« paradigms »): a model is a subset of the
concepts, realized with data entities, operations, and a language

• Programming paradigmsemerge in a natural waywhen programming
(as a kind of epiphenomenon), depending on which concepts one uses
and which properties hold of the resulting model

• It is often advantageous for programs to use several paradigms
together, as the examples we will give show

© 2001 P. Van Roy and S. Haridi

24

Practical examples
of the kernel approach

• We have given an overview of the technical side of the
kernel approach

• Now we will give examples to show that programming in
terms of concepts and not languages or paradigms is
advantageous in practice

• We give two detailed examples in this talk:
– Concurrent programming

– User interface programming

• Other good examples are given in the book:
– Distributed programming

– Constraint programming

13

© 2001 P. Van Roy and S. Haridi

25

Approaches to concurrency

• We distinguishfour forms of practical concurrency(in order of increasing
difficulty):

– Sequential programming + its variants

– Declarative concurrency + lazy execution(add threads to a functional language and
usedataflow to decouple independent calculations)

– Message passing between active objects(Erlang style, each thread runs a functional
program, threads communicate through asynchronous channels)

– Atomic actions on shared state(Java style, using monitors and transactions)

• The Java style is the most popular, yet it is the most difficult to program

• We will give examples of declarative concurrency and message passing
– Both avoid most of the complexities while still giving the advantages of concurrent

execution

• Declarative concurrencyespecially is quite useful, yet is not widely known
– All the programming and reasoning techniques of sequential declarative

programming apply (concurrent programs give the same results as sequential ones)

– Deep characterization: lack of observable nondeterminism

© 2001 P. Van Roy and S. Haridi

26

Declarative concurrency (1)

• Dataflow = block on data availability

• Add dataflow variables (i.e., logic
variables) to a functional language

declare X0 X1 X2 X3
Y0 Y1 Y2 in

Y0=1+X0
Y1=Y0+X1
Y2=Y1+X2

thread X0=1 end
thread X1=1 end
thread X2=1 end

+

+

+

X0
1

X1

X2

Y0

Y1

Y2

X0=1

X1=1

X2=1

threads

14

© 2001 P. Van Roy and S. Haridi

27

Declarative concurrency (2)

• A system can be concurrent and still be purely functional

• Declarative concurrency has this property

• Here is a simple example:

• Theresults are the same, whether or not threads are used

fun {Fibo N}
if N=<2 then 1
else F1 F2 in

thread F1={Fibo N-1} end
F2={Fibo N-2}
F1+F2

end
end

© 2001 P. Van Roy and S. Haridi

28

Declarative concurrency (3)

• Producer-consumer with dataflow

fun {Prod N Max}
if N<Max then

N|{Prod N+1 Max}
else nil end

end

fun {Cons Xs A}
case Xs of X|Xr then

{Cons Xr A+X}
[] nil then A end

end

local Xs S in
thread Xs={Prod 0 1000} end
thread S={Cons Xs 0} end

end

• Prod and Cons threads share listXs

• Dataflow behavior of case statement
(synchronizing on data availability)
gives stream communication

• No other concurrency control neededXs
Prod Cons

15

© 2001 P. Van Roy and S. Haridi

29

Declarative concurrency (4)

• Let us compare the sequential and concurrent versions
– The result of the calculation is the same in both cases

– So what is different?

• Sequential version:

Results are producedin batch: the whole calculation is done and then
all results are given at once

• Concurrent version:

Results are producedincrementally, element by element

local Xs S in
thread Xs={Prod 0 1000} end
thread S={Cons Xs 0} end

end

local Xs S in
Xs={Prod 0 1000}
S={Cons Xs 0}

end

© 2001 P. Van Roy and S. Haridi

30

Declarative concurrency (5)

• Lazy producer-consumer with dataflow

fun lazy {Prod N}
N|{Prod N+1}

end

fun {Cons Xs A Max}
if Max>0 then

case Xs of X|Xr then
{Cons Xr A+X Max-1}

end
else A end

end

local Xs S in
thread Xs={Prod 0} end
thread S={Cons Xs 0 1000} end

end

• Lazy = demand-driven

• Flow control: the consumer
decides how many list elements to
create

• Dataflow behavior ensures
concurrent stream communication

(note « lazy » annotation)

16

© 2001 P. Van Roy and S. Haridi

31

Active objects

• An active object is a concurrent entity to which any other
active object can send messages

• The active object reads the messages in arrival order and
sequentially executes an action for each message

• An active object’s behavior is defined by a class, just like a
passive object

• Active objects can be considered either as primitive or as
defined with a thread, a passive object, and a
communication channel

• Creation:A={NewActive Class Init}

© 2001 P. Van Roy and S. Haridi

32

Event manager with active objects

• An event manager contains a set of event handlers
• Each handler is a tripleId#F#S where Id identifies it, F is

the state update function, and S is the state

• Reception of an event causes all triples to be replaced by
Id#F#{F E S} (transition from S to {F E S})

• The manager EM is an active object with four methods:
– {EM init} initializes the event manager

– {EM event(E)} posts event E at the manager

– {EM add(F S Id)} adds new handler with F, S, and returns Id

– {EM delete(Id S)} removed handler Id, returns state

• This example taken from real use in Erlang

17

© 2001 P. Van Roy and S. Haridi

33

Defining the event manager

• Mix of functional and object-oriented style

class EventManager
attr handlers
meth init handlers<-nil end
meth event(E)

handlers<-
{Map @handlers fun {$ Id#F#S} Id#F#{F E S} end }

end
meth add(F S Id)

Id={NewName}
handlers<-Id#F#S|@handlers

end
meth delete(DId DS)

handlers<-{List.partition
@handlers fun {$ Id#F#S} DId==Id end [_#_#DS]}

end
end

State transition done using
functional programming

© 2001 P. Van Roy and S. Haridi

34

Using the event manager

• Simple memory-based handler keeps list of events

EM={NewActive EventManager init}

MemH=fun {$ E Buf} E|Buf end
Id={EM add(MemH nil $)}

{EM event(a1)}
{EM event(a2)}
...

• An event handler is purely functional, yet when put in the event
manager, the latter is a concurrent imperative program. This is
an example ofimpedance matchingbetween paradigms.

18

© 2001 P. Van Roy and S. Haridi

35

Defining active objects

• DefineNewActive in terms of existingNew(passive
object creation) by adding one port and one thread

fun {NewActive Class Init}
S P Obj

in
{NewPort S P}
Obj={New Class Init}
thread

for M in S do {Obj M} end
end
proc {$ M} {Send P M} end

end

For loop does dataflow
synchronization
(like case statement)

Sending to a port causes
message to appear on stream

Port P is created together
with stream S (dataflow list)

© 2001 P. Van Roy and S. Haridi

36

Concurrency - conclusions

• There are two forms of concurrency that are simpler to program with than
the shared state style: declarative concurrency and active objects

• Declarative concurrencyis the simplest. Same results as sequential
programming, yet the calculation is interleaved to make it incremental
– It is useful for stream communication (sample application: circuit simulation)

– Declarative concurrency is only usable in those situations where there isno
observable nondeterminism

• Active objectsare an extension to stream communication withmany-to-
one communication, which makes them as expressive as the passive
object / monitor approach
– Active objects can be used together with passive objects, where the active

object is used as a serializer

– Active objects require cheap threads to be practical

19

© 2001 P. Van Roy and S. Haridi

37

User interface design

• Three approaches:
– Imperative approach(AWT, Swing, tcl/tk, …):

maximum expressiveness but also maximum
development cost

– Interface builders: adequate for the part of the UI known
before the application runs

– Declarative approach: reduced development cost but
limited expressiveness

• All are unsatisfactory for dynamic user interfaces,
which change during execution

© 2001 P. Van Roy and S. Haridi

38

Mixed declarative/imperative
approach to UI design

• Using both approaches together is advantageous:
– Declarative specification is adata structure. It is concise and can

be manipulated with all the power of the language.

– Imperative specification is aprogram. It has maximum
expressiveness.

• This makes creating dynamic user interfaces particularly
easy

• This is important formodel-based UI design, an important
design methodology in the Human-Computer Interface
research community

20

© 2001 P. Van Roy and S. Haridi

39

Mixed approach

• Declarative part
– A widget is arecord. A full UI specification is a nested

record.

– The nested record specifies interface structure and
resize behavior, and all widget types with their initial
states

• Imperative part
– External events causeaction proceduresto be executed

(sequentially, in the window’s thread)

– Widgets havehandler objects, which allows the
application to control them

© 2001 P. Van Roy and S. Haridi

40

Example user interface

W=td(lr(label(text:«Enter your name»)
entry(handle:E))

button(text:«Ok» action:P))
...
{Build W}
...
{E set(text:«Type here»)}
...
Result={E get(text:$)}

Nested record with
handler object E and
action procedure P

Call handler

Construct interface
(window & handler)

21

© 2001 P. Van Roy and S. Haridi

41

Widgets

• Widget = rectangular area with particular behavior

• Examples (as records):
– label(text:«Hello»)

– text(handle:H tdscrollbar:true)

– button(text:«Ok» action:P)

– lr(W1 W2 ... Wn)

– td(W1 W2 ... Wn)

– placeholder(handle:H)

{H set(W)}

Compositional

Dynamic

© 2001 P. Van Roy and S. Haridi

42

Declarative resize behavior

• Resizing is dynamic but specified declaratively

• Declarative specification with « glue »

• Consider widget W inside another:
• W = <type>(... glue: <g>)

– nswe: stretch horizontal and vertical

– we: stretch horizontal, centered vertical

– w: left justified, centered vertical

– (none): centered, keeps natural size

W

n

s

w e

22

© 2001 P. Van Roy and S. Haridi

43

Example dynamic interface

W=placeholder(handle:P)
...
{P set(label(text:«Hello»))}
...
{P set(entry(text:«World»))}

• Any UI specification can be put in the placeholder at run-time

© 2001 P. Van Roy and S. Haridi

44

Calculating interfaces (1)

• Calculate interface directly from
internal data representation

Data=[«Name»#«Roger»
«Surname»#«Rabbit»]

Result=
{ListToRecord td

{Map Data
fun {$ L#E}

lr(label(text:L) entry(init:E))
end }}

Result=td(lr(label(text:«Name») entry(init:«Roger»))
lr(label(text:«Surname») entry(init:«Rabbit»)))

23

© 2001 P. Van Roy and S. Haridi

45

Calculating interfaces (2)
• Calculate several interfaces from the same data

• Choose between representations according to run-time condition

Data

Editable
interface

Placeholder
widget

View-only
interface

• With language support (syntax and implementation) for record
operations and functional programming this is very concise

• This is another example ofimpedance matchingbetween paradigms

© 2001 P. Van Roy and S. Haridi

46

The book and the formalism

• We have written most of a textbook that realizes the kernel language approach
– The latest draft is always available at

http://www.info.ucl.ac.be/people/PVR/book.html

• The book uses subsets of the Oz language for the different computation models,
for the following reasons:

– Oz was designed tointegrate programming conceptsinto a coherent whole

– Oz incorporates ten years ofapplication development experience: its concepts and
techniques have been tested in real use (industrial projects, deployed applications)

– Oz has a complete and simpleformal semantics

– Oz has a high-quality fully-featuredimplementation, the Mozart Programming
System (seehttp://www.mozart-oz.org)

• Oz doesnot have a Java-compatible syntax
– Java can easily be translated into Oz; see for example the CC-Java work

– In any case, computer scientists should be familiar with several notations

• We do not know any other formalism that covers so much ground so well
– But we could be mistaken: please let us know!

24

© 2001 P. Van Roy and S. Haridi

47

Conclusions
• Programming has traditionally been taught as a fragmented discipline

– There is too much emphasis on language idiosyncrasies to the detriment of
fundamental concepts

– Paradigms are considered in isolation
– The science is either limited to the paradigms or is too theoretical

• The kernel language approach is intended to remedy this situation
– Practical languages are understood by translating them to simplekernel

languagesbased on small sets ofprogrammer-significantconcepts
– The kernel languages have much in common with each other, which allows

them to show clearly the deep relationships between different languages
and programming paradigms

– We give asemanticsat the right level of abstraction for the practicing
programmer, to allow reasoning aboutcorrectnessandcomplexity

• We are finishing atextbookthat realizes this approach and we are
teach-testing it in three universities in the Fall 2001 and Spring 2002
semesters. We consider the textbook as a worthy successor to the book
« Structure and Interpretation of Computer Programs », by Abelson and
Sussman.

