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Abstract

THE DISSERTATION YOU ARE ABOUT TO READ, tries to solve one of the more prominent prob-
lems within open distributed systems namely: concurrency management between components
written by different manufacturers. All too often, the concurrency strategy provided or required
by a component is badly documented and rarely matches the concurrency strategy provided or
required by another component. Whenever this happens there is a concurrency interface conflict.
Solving these conflicts requires a substantial amount of resources with respect to software engi-
neering: the time necessary to understand the problem, the time necessary to solve the problem,
and above all the resources towards maintaining a working concurrency strategy that mediates
between the different components. Indeed, in open distributed systems, components can be up-
dated without prior notification and without guarantees that the new interface is backward com-
patible. Such updates can range from syntactic modifications over slight semantic differences
to completely new concurrency strategies. For example, changing a nested locking strategy to a
non-nested locking strategy or changing a non-blocking server to work synchronously.

In order to solve the problem of conflicting concurrency interfaces we will create a concur-
rency adaptor that resolves incompatibilities between incompatible concurrency strategies. We
do this in two steps: first we require a certain amount of extra information to be present: ev-
ery provided and required interface should be documented by means of colored Petri-nets and
certain checkpoints are to be placed in the code to check the liveness.

Second, we construct a concurrency adaptor that can be placed between the different commu-
nicating components. This is done by means of a hybrid approach: first the adaptor will try to
gain freedom by bypassing all the existing concurrency strategies. For a client a stub concurrency
interface is generated that will keep the client alive. For a server a stub concurrency interface is
generated that will allow anything to happen; in essence bypassing the concurrency strategy en-
tirely. The concurrency adaptor is finished by plugging in an existing, formally guaranteed to
work concurrency strategy between the two stub concurrency interfaces.

Bypassing a server’s behavior is achieved by means of a runtime formal deduction. Given
the current state of the Petri-net and the required state a prolog program deduces what should
happen. Bypassing a clients behavior is achieved with a reinforcement learning algorithm that
maximizes the reward it receives from the component itself. The rewards are based on check-
points as specified by the component itself.

When placing a guaranteed to work concurrency strategy between the different stub concur-
rency-interfaces, we need a meta-protocol that is understood by this central concurrency strategy.
This meta-protocol specifies which resources are present and which locking/unlocking opera-
tions can work upon them. The meta-protocol is deduced entirely from the Petri-nets involved.

The approach presented in this dissertation provides a substantial added value to the pro-
grammer of components in open distributed systems. He now only needs to specify what he
requires or provides as a concurrency strategy within his component. He no longer needs to take
into account the concurrency strategy offered by other components. This might reduce develop-
ment and maintenance time drastically. A second advantage of using Petri-nets is that interfaces
are not only documented, but that this information can be verified automatically: whenever nec-
essary the formal specification can be tested against the actual working of a component.
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General Glossary

API Application Program Interface: the syntactical one way description of an
interface. An API typically says which functions can be called with which
arguments and what will be returned. An API describes in a formal way
how functions should be called. Together with this it can also describe what
a function does in an informal way. We do not consider informal documen-
tation to be part of the API.

asynchronous In this dissertation we will use the term asynchronous to specify the be-
havior of a component that sends messages, without waiting for the return
value from another component. This should not to be confused with non-
blocking. It is clear that an asynchronous working client uses non-blocking
primitives, however, not all non-blocking messages will result in an asyn-
chronous working component.

behavior The behavior of a component is the result of its internal programming. Typ-
ically the behavior of a component can be seen by looking at the message
flow over its interface, however the exact program describing the behavior
exactly is unknown.

blocking Call and wait for return value.

call a call is sending a request to another object or component and waiting for
the answer. Calls always return a value (which possibly can be void)

component A component is a process that can only communicate with other components
by means of messages. Components do not share code and or data.

client in this dissertation, a client is a component that requires a certain concur-
rency strategy from another component to be able to do its work.

component system To be able to run components one needs the infrastructure that allows com-
munication, naming and multitasking. This infrastructure is called the com-
ponent system.

conflicting interface Given a) two interfaces and b) an external (not specified in the interface)
agreement on the expected behavior between the involved components,
then these two interfaces are in conflict if this external behavior cannot be
executed on the link between the two interfaces. For instance, a conflict
might arise when a message cannot be understood by one of the involved
components, or if a message will exhibit other behavior than the expected
behavior, or simply if a sequence of actions leads to corruption of the inter-
nal state of the involved components.

co-NP A problem � is co-NP if ��� is NP. co-NP problems often seem harder than
NP problems, however it is still an open question whether co-NP = NP.

xvii
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event See message.

EXPTIME A problem of size � is EXPTIME if there is a constant � and the time to solve
the problem takes at most ���

�
.

EXPTIME-complete A problem is EXPTIME-complete if it is EXPTIME and other EXPTIME
problems are reducible to it. Essentially this declares a class of problems
which can be solved within exponential time. It is known that EXPTIME

��

PTIME.

interface An interface is a connection-point to a component. It is the only means
to alter the internal state and/or the behavior of the component. In the
component system interfaces are embodied under the form of ports which
can be connected to other components.

machine The term machine is used to refer to Turing machines.

message A piece of data used to communicate between components. A message can
be sent to another component or it can be received. Message never share
data. Also called event.

multi-multi A multi on multi interface conflict is a conflict between a number of in-
terface providing components and a number of interface requiring compo-
nents. This typically occurs in peer to peer systems.

non-blocking Send a message and don’t wait for an answer.

non-deterministic A machine is non-deterministic if it may execute different branches parallel
on the same input.

NP A problem is NP if it can be solved in polynomial time by a nondetermin-
istic machine.

NP-complete A problem is NP-complete if other NP-complete problems can be reduced
to it.

one-one A one on one interface conflict is a conflict between two components. Typ-
ically one component is a server, the other component is a client.

one-multi A one on multi interface conflict is a conflict between one server component
and a number of client components.

process A process is a program which is running in a separate code and data space.
Processes can have multiple threads.

P A problem of size � is P if there is a constant � and the time to solve the
problem is at most ��� .

P-complete A problem is P-complete if it is in P and other P-problems are reducible to
it.

P-hard A problem is P-hard if itself is not necessarily in P but other P-problems
may reduce to it.

server In this dissertation, a server is a component that provides a concurrency
strategy towards a number of clients.

thread A thread is an execution environment that runs in a process. A process can
consist of multiple threads.
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whiteboard A typical application in distributed systems where many users join a place
to discuss. Every user has a view on the shared data and can modify this as
necessary. All other users will see those changes. A whiteboard is a tool in
a group discussion system.



xx LIST OF TABLES



Chapter 1

Introduction

WITH THE ADVENT OF THE INTERNET, DISTRIBUTED SYSTEMS seem to have become an ubiqui-
tous phenomenon. Ever more organizations that were are already present on the Internet with
a website start to feel the need to extend the services they offer. These vary from simple script-
ing applications (making their website a little more intelligent and appealing to the end-user),
to applications that are literally distributed and in which the cooperating nodes are technically
equally powerful and thus abandon the traditional thin-client/fat-server point of view.

Unfortunately the construction of such distributed applications is far from trivial. Not only
does one need to take into account the possibility of failures, all distributed systems are inher-
ently concurrent systems. And the construction of concurrent systems is widely accepted to be an
extremely delicate and complex problem. One of the complexities lies in the selection and correct
realization of a suitable concurrency strategy in a certain context. Such a strategy is responsible
for the correct cooperation of different concurrently operating components. The reason for the
complexity stems from the fact that the actual concurrency strategy cannot be localized in one of
the operating components but spans the entire application. Hence, the concurrency strategy is
by definition an agreement between the concurrently operating components. Its implementation
will thus leave traces in all those components. In other words, two strategies needs to be compat-
ible or otherwise the software will not work. This problem is further aggravated in the context of
open distributed systems, i.e. systems in which not all components are under control of the same
entity, and for which the components’ implementations have no control over each other.

The goal of this dissertation is to create an adaptor between the interfaces of components that
are in essence compatible with each other, but fail to cooperate simply because of conflicts be-
tween the concurrency strategies they employ. Concurrency strategies are in conflict if one of
the involved components fails to be alive and/or suffers from data races, i.e. concurrency that
results in data corruption. The adaptor we will create is responsible for mediating the differences
between the different concurrency interfaces in such a way that both components can communi-
cate in a way that makes sense. Of course, the adaptor will not affect the core functionality of the
components themselves.

In this dissertation, we will illustrate that creating such an intelligent concurrency adaptor
is possible. Throughout the thesis it should be kept in mind that we will not be solving the
inherent problems of distributed and concurrent systems. Instead they form the setting in which
we conducted our research.

1.1 Motivation

THE PROBLEM OF CONCURRENCY CONFLICTS outlined above is an instance of what one might
generally call interface conflicts in distributed systems. With the current state of the art in connec-
tion technology these interface conflicts emerge in apparently different situations which together

1
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form the broader context of our work. In the sections to come we will outline the following three
different points:

1. A first context in which the problem emerges is the one of standards in open distributed sys-
tems. In general, these are defined by companies and are a means to stay in control of how
their software is used. The interfaces used and provided by companies reflect their interest
in data exchange and cooperation. Companies with the ability to generate good interfaces
fast and with the ability to create interfaces that adapt to their environment have a strategic
advantage.

2. A second context for the problem is the emerging field of mobile multi agent systems. This
promising domain strives for the introduction of global peer to peer computing in a way
that offers vast advantages over current day standard client server architectures [CDGM97].
If this really happens, the problem of concurrency interface conflicts will be even more
prominent.

3. Following the current trend of embedded systems, we consider a last context that is the
field of connected embedded devices such as domotic systems, intelligent appliances (ambient
intelligence [DBS � 01]) and so on, all connected, using, for example, bluetooth. I.e. This
is the field of consumer electronics which are mutually connected. Here the problem of
interface conflicts is also likely to occur on a much larger scale.

We will now further elaborate on these contexts one by one.

1.1.1 First Position: Standards in Open Distributed Systems

As explained before, the first context for the problem consists of the inherent absence of standards
in the world of open distributed systems. The word ’inherent’ in the preceding phrase was chosen
deliberately. In what follows, we will argue that, in the market driven world in which companies
relentlessly compete to make their market position more stable and larger, there cannot be one
standard used by everybody. As a consequence companies have a strategic advantage if they can
resolve the problem of conflicting standards quickly.

Before ’proving’ these statements, let us first explain what we mean exactly by the term ’open
distributed system’. A distributed system is a system which consists of two or more computers
that are connected to each other by means of a network. Two computers connected with a serial
cable in the same room is as much a distributed system as are computers connected via satellites
in different parts of the world. Distributed systems can be either open or closed. Open distributed
systems are systems made of components that may be obtained from a number of different
sources which work together as a single distributed system. These systems are basically “open”
in terms of their topology, platform and evolution: they run on networks which are continuously
changing and expanding, they are built on top of a heterogeneous platform of hardware and
software pieces, and their requirements are continuously evolving [MW99, Kie96, Cro96, CD99].
The Internet is the best example of an open distributed system, because no end user, or com-
pany knows the interconnection of all the computers on the Internet. The Internet interconnects
different companies as well as end-users by means of an unknown network.

There cannot be one standard.

Programming open distributed systems is difficult... not only because the field is relatively new,
but mainly because such systems highly depend on many external factors. Not the least im-
portant of these is the market behavior of mutually competing middleware providers. Being
dependent on their products, one has to anticipate what they are planning to do, and possibly
change one’s behavior accordingly. If the providers are planning to drop support for a certain
standard, one can no longer rely on that standard and might need to look for other solutions.
This is nothing new, but for open distributed systems this highly increases the costs of evolution
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maintenance. Components that exist and are currently widely accepted can be invalid tomor-
row. Everything, including the operating environment (that is, the Internet) is so unreliable that
writing distributed programs is sometimes said to be nothing more than making some educated
guesses about what will happen and what will not happen. [OHE96, Sel01]

The problem of conflicting interfaces cannot be solved by ’requiring’ that everybody follows
the same standard. Standards evolve not only as a consequence of technological innovation but
also as a consequence of the market behavior of the companies behind it. An example of this
is the ’evolving’ web technology. E.g., whenever companies serve data on the web they are
among others dependent on the W3C HTML standard for describing the content of their data.
This turns out to be a problem in itself, because this widely used standard is interpreted and
augmented in many different ways: Mosaic, Netscape Navigator, Microsoft Internet Explorer,
Opera, Konqueror, Mozilla each have their way to understand and render webpages. Surely,
one of the reasons behind this diversification comes from the fact that the standard was not very
well defined in the eighties. So, the standard needed to grow, which it did. However it did not
become a better standard. Instead, different companies tried to redefine the standard to enlarge
their market-shares by ’adopting’ this standard and modifying it as necessary. One of them was
Microsoft. Around 1995 Microsoft was a large player in the operating system market and had the
resources to push its own modified standard [BL01] by a) bundling its browser with its operating
system, b) not releasing its API’s to its competitors Netscape, c) creating components which only
worked with its own browser (ASP) and d) creating interpreters that only worked for programs
written with its tools (Java versus J++). From these 4 techniques, the last three are centered
around the use of standards. Techniques likes this are not exclusively used by Microsoft, which
illustrates sufficiently how different standards are defined and molded through the interaction of
different companies. Standards are subject to considerations other than the ones involved with
the standard. Therefore there cannot be one single standard.

Open Distributed Systems require Interface Adaptors

As explained above, there cannot be one standard, especially not in an open distributed system.
Therefore, companies that develop open distributed applications and that involuntarily depend
on all kinds of middleware to do so, spend a lot of resources on maintaining their application(s) in
a very volatile environment. If only such a company would have the ability to solve the problem
of conflicting interfaces in an automatic way, it would have a strategic advantage compared to
others. This concludes the first position to illustrate the need for automatic adaptors between
conflicting interfaces.

1.1.2 Second Position: Mobile Agent Systems

A number of academic groups try to foresee what the Internet will be like in 10 years. One
such research track led to the concept of mobile multi agents. Originally these were conceived as
intelligent agents [CDGM97] (as defined by Pattie Maes) which would assist the user with some
daily tedious tasks such as sorting email in order of interest, looking over his shoulders and
assisting where it deems necessary (Microsoft Clippy), bringing people with the same interests
together, and performing other intelligent tasks.

As it turned out, to the contrary of what was predicted, intelligent agents currently do not
roam the web in search for information, nor do they bring users in contact with interesting op-
portunities. Writing intelligent agents requires a lot more than writing simple programs, because
much of the necessary infrastructure is missing. Such an infrastructure would connect all com-
puters with each other in a non strict hierarchical way. Every single computer would run a mobile
multi agent system, which would ensure basic operations for the agents. Agents would be able to
communicate with each other and migrate to other computers as necessary. In such a peer to
peer world, computation would emerge from the interaction between the agents, and not only in
the agents themselves. The Internet would become a large universal computer [FDF03], where
resources are shared and used as needed. Instead of buying software, users would subscribe



4 CHAPTER 1. INTRODUCTION

to software, completely ignoring where the software runs. Such applications would consist of
a large number of interacting agents, which are not necessarily written by the same company.
Users could have their personal intelligent agent on-line, which could schedule meetings with
other intelligent agents. Such agents would learn the preferences of their users and search the
net for information within that context. They could be able to book airplanes and plan travel-
routes. And when the user travels to the other end of the world, the intelligent agent would
follow him, together with his preferences. This agent would take care of recreating his virtual
environment, wherever the user goes.

However, from a technical point of view, implementing such agents is often still very difficult.
One of the reasons is that in general global peer to peer computational networks are extremely
volatile. Aside from the problems of finding communication partners (how does a text editor find
a suitable printer in a new environment), and the problems of partial failure (what should happen
if the agent dies), we have even bigger problems when interfacing the different agents. Let us
e.g. assume that a running agent wants to interface with a printer. All printers will provide a
different API. Some printers will require one to take a ticket and will call the originator back with
a request to send data. Other printers will redirect one to a printer spooler and yet others might
require one to lock them first. It is clear that a programmer will never be able to foresee all such
printer-interfaces. Even in cases where it is possible to foresee and program all currently available
interfaces, it is still impossible to support every possible future change. Indeed, by the time one
releases an agent, somebody will probably have written another implementation of the interface,
or updated an interface to offer a slightly different implementation. This can happen because
this agent, with its new implementation of this interface, needs to run on different (possibly
optimized) hardware, or because the operating system is different, or simply because the agent
is part of another application, and thus developed by other programmers.

In a global peer to peer environment with billions of users, API’s change faster than pro-
grammers can write. Every extra assumption made by a programmer about an API increases the
chance of failure at some time in the future. Hence programmers cannot exhaustively support
every possible interface one might encounter in this volatile setting. Instead, a minimal support
for some prototypical interfaces will have to be provided under the assumption that the running
agent will be able to adapt its interface automatically and dynamically.

The main reason why adaptors are necessary within mobile agent systems is that migration it-
self leads to situations where the communication partners’ implementations are unknown. They
can offer the same API, but the implementation itself will give rise to subtle semantic differences
that might lead to incorrect behavior. In section 1.3, after presenting the thesis statement, we will
discuss in more detail an example of such semantic differences.

1.1.3 Third Position: Interconnected Embedded Systems

As embedded systems become more powerful and new demands are created, the wireless in-
terconnection of different embedded systems is unavoidable. Indeed, it can be expected that, in
the near future, technologies such as bluetooth and wireless Ethernet (IEEE 802.11) will lead to
an ever further integration of domotics, PDA’s, cellular phones and so on. This is referred to as
interconnected embedded systems [DBS � 01]. This evolution will bring about new conflicts since one
no longer knows what the neighboring embedded system will be (is it a television or is it another
cellular phone we just happened to detect ?). Anticipating all potentially encountered interfaces
is simply impossible.

As explained in [BK01] conflicts arise not only because the interfaces are different, but also
because the burden of extra non-functional requirements is all too often neglected. Many of the
problems involved with embedded systems come from the requirement to do as much as possible
with as little resources as possible. This of course depends on the market for which the embedded
systems are made. Consumer devices such as remote controls and mobile phones are under much
more pressure to reduce the hardware requirements than mid-scale and large-scale embedded
systems such as routers and set-top boxes. Requirements such as real-time requirements (the
device should be able to guarantee certain deadlines), speed requirements (the device should be
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able to deliver a certain bandwidth), memory requirements (the device should be able to work
with a limited amount of memory), size requirements (the device should be not larger than ...)
and other non-functional requirements lead programmers to re-engineer their software, make it
smaller and/or more efficient. This often results in behavioral changes within the software. One
such a conflict could for instance arise from the modification of counting semaphores to binary
semaphores, simply to reduce the memory requirements.

Essentially, the problems are similar to the ones found in mobile multi agent systems. How-
ever the difference between interconnected embedded systems and the agent systems discussed
above, is that migration from one environment to another is physical migration of the device,
instead of migration of the software only, resulting in a very volatile environment in which a
developer cannot exhaustively support every possible interface one might encounter.

This wraps up the third motivation that illustrates the need for automatic adaptors between
conflicting interfaces. The three contexts outlined above are the three reasons why we investi-
gated the problem of conflicting interfaces.

1.2 Thesis

BEFORE GIVING AN OVERVIEW OF THE CONTENT OF OUR WORK in the following section, let us
first shed some light on the methodological side. First we will propose the thesis statement.
Second we will clarify our scientific methodology and validation strategy.

1.2.1 Thesis Goal

As explained in section 1.1.1 companies are currently faced with the problem of linking to all
kinds of frequently changing third party interfaces and, as seen in section 1.1.2 and 1.1.3, with
the advent of open peer to peer networks and interconnected embedded devices, this problem
will become even worse because interface conflicts will occur more frequently. Solving such
interface conflicts is generally done by inserting adaptors at the appropriate places. However,
in very volatile environments creating such adaptors manually & marketing them might be very
expensive. Therefore we will investigate how one can create intelligent adaptors that adapt their
behavior when new interfaces are encountered. This intelligent adaptor should be able to learn
how to resolve interface conflicts in such a way that a) the required behavior of the involved
components can be executed over the adapted interconnection and b) the adaptor is able to work
on-line in an open system. With on-line we aim at the penalty involved when making an error.
In an on-line setting, every wrong decision (that possibly brings an entire application down) is
far more catastrophic than the same decision in an off-line setting. This can be because end-
users have started the application and are waiting for something to happen, or because a wrong
behavior has indirectly an indirect impact on end-users because it introduces and invalid state
within the application. It is clear that an on-line setting is far more delicate than an off-line setting.

In the following sections we will explain which methodology we will use to validate this
claim and which case we will use throughout the dissertation.

1.2.2 Methodology

Regretfully, a lot of research in the context of open distributed systems and peer to peer networks
is based on unrealistic assumptions, such as ‘the Internet is fully interconnected’ or ’latency will
be neglected for the sake of the argument’. During the course of our work we have been con-
stantly taking heed not to make such assumptions. Hence, the methodology used throughout
this work is to take into account the boundaries imposed by open distributed systems, such as
high latencies, low speeds and unreliable networks. It is within those boundaries that we have
tried to create an intelligent interface adaptor.
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To construct the intelligent adaptor we tried to use deterministic reasoning algorithms as much
as possible. However, when these were not available (because of intractability), or inadequate
(because of NP-completeness or worse) we used learning algorithms with ’less certain’ outcome.
However, a plethora of learning algorithms exist, each with their own characteristics and pro-
totypical problems and/or solutions. Therefore we had to find out which are suitable ones and
which are not. As such, we investigated the use of genetic algorithms, genetic programming,
neural networks, reinforcement learning and a lot of variations on them. As we will demonstrate
in the dissertation, it turns out that they can be useful if used in the correct context and modified
accordingly. E.g., in our experiments we noticed that, although some forms of genetic algorithms
in theory are perfectly applicable, their practical deployment in the context of open distributed
systems was extremely limited because of their off-line nature.

To validate our thesis statement practically, we have selected a particular case for which we
show how to create an intelligent interface adaptor, namely an interface adaptors to solve con-
currency conflicts. It is in the context outlined above, that we have empirically validated which
algorithms were practically feasible, based on certain requirements, in order to overcome unan-
ticipated concurrency conflicts of two or more communicating components.

1.2.3 Case & Thesis Statement: Concurrency Conflicts

When two or more components interact concurrently, essentially two kinds of problems can occur
which we might call functional conflicts and non-functional conflicts. Functional conflicts emerge
when the interacting components are speaking a different language with regard to their func-
tionality. E.g. one component might be ’about’ booking flights and another might be ’about’
reserving library books. Clearly the interfaces of these components are completely incompatible
and it is not the goal of our work to do something about it. Non-functional conflicts emerge when
the components are essentially speaking about the same thing, but in a different way. Examples
of non-functional problems are concurrency problems such as race-conditions, deadlocks, live-
locks, starvation and others. These typically occur when the order in the message interaction is
wrong. To solve these problems every participating party implements a so-called concurrency
strategy. However, when different concurrency strategies do not cooperate in the right way, a
conflict arises. Having stated this, we can now repeat the thesis statement given in section 1.2.1
in its full context.

It is possible to create, for certain categories of concurrency interface conflicts, a concurrency-adaptor
that learns how to resolve the conflict in such a way that a) the required behavior of the involved components
can be executed over the adapted interconnection and b) it is able to work on-line in certain categories of
open system. We validate this by constructing such a concurrency-adaptor.

1.3 A Preliminary Example

IN THIS SECTION WE INTRODUCE a preliminary example of the problem we will investigate.
In particular this example concerns a concurrency conflict between a client and a server. After
presenting the example, we will discuss what we consider to be a conflict and what requirements
we pose upon an adaptor. Throughout this section we will give forward references to those
chapters that discus the matter in more detail.

1.3.1 What is an Interface ?

For clarity, we assume that the only way through which the state and/or behavior of a compo-
nent can be altered is through one of its access points. Such an access point (or group of access
points) will be called an interface. (See chapter 2 on page 25). Below we describe the interfaces
of our two example components by means of incoming and outgoing messages with some extra
non-formal documentation.
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The Interface of the Server Component

The server is a whiteboard that allows multiple clients to lock certain position before they can act
upon these position.

The server’s API:

incoming lock(x, y)
outgoing lock_true(x, y)
outgoing lock_false(x, y)

// lock_true or lock_false are sent back whenever a lock
// request comes in: lock_true when the resource is locked,
// lock_false when the resource couldn’t be locked.

incoming unlock(x, y)
outgoing unlock_done(x, y)

// will unlock the resource. Send unlock_done back when done.

The server component also offers some behavior on another port. This behavior is as simple as
possible.

incoming act(x, y)
outgoing act_done(x, y)

// will perform action on the component

The Interface of the Client Component

The API of the client component:

outgoing lock(x, y)
incoming lock(x, y, result)

// lock(*, *, true) or lock(*, *, false) are received whenever a
// lock request comes in. Before performing an act operation the
// server will be locked by sending out a lock.

outgoing unlock(x, y)
// will unlock the resource. No message is returned.
// This operation always succeeds.

The client component expects some behavior from the server

outgoing act(x, y)
incoming act_done(x, y)

// will perform some action on the server

Both interface descriptions should be read as messages that are sent and received at runtime,
without prior knowledge of the communication partners. This means that any interface conflicts
between those two interfaces cannot be checked at compile-time. They can only be detected when
the components execute.

1.3.2 A Syntactical Conflict

If we look at both interfaces, we see immediately 2 essential differences between the client and
the server. First, whenever the client requests a lock there will occur a syntactical conflict: the
client expects the server to return a lock(x, y,result) message, while the server will return a
lock_true or lock_false message. A second similar conflict can be found when looking at the
unlock operation. The client will only send out an unlock request, while the server will send
back an unlock_done message. This message will not be understood.

To solve this problem one can easily insert an adaptor between both communicating com-
ponents. This adaptor will offer two interfaces: one interface aimed at the server side, another
interface aimed at the client side:
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incoming lock(x, y)
outgoing lock(x, y)

// when a client requests a lock, this lock will be sent
// through to the server

incoming lock_true(x, y)
incoming lock_false(x, y)
outgoing lock(x, y, result)

// when the server responds with lock_true this request will
// be translated towards the client as lock(x, y,true).
// When the server response with lock_false this request will
// be translated towards the client as lock(x, y,false).

incoming unlock(x, y)
outgoing unlock(x, y)
incoming unlock_done(x, y)

// when a client requests an unlock, this message will be
// forwarded to the server when an unlock_done() message
// arrives from the server this message will be silently ignored

incoming act(x, y)
outgoing act(x, y)
incoming act_done(x, y)
outgoing act_done(x, y)

// similarly, the action request will be translated by simply
// passing any act or act_done message.

1.3.3 Conflicting Semantics

Aside from the syntactical conflicts between both interfaces, that in this case, can be easy medi-
ated, semantic differences can also occur. The documentation does not state how the components
implement their locking strategy. For instance, one can implement a counting semaphore or a bi-
nary semaphore as a concurrency strategy.

� Counting Semaphores: allow a client to lock a resource multiple times. Every time the re-
source is locked the lock counter is increased. If the resource is unlocked the lock counter is
decreased. The resource is finally unlocked when this counter reaches zero. These seman-
tics allow us to use routines which autonomously lock resources.

� Binary Semaphores: provide a locking semantics that doesn’t offer a counter. It simply
remembers who has locked a resource and doesn’t allow a second lock. When unlocked,
the resource becomes available again.

Differences in how the programmer considers the lock and unlock operations can give rise to
another branch of interface conflicts. This is illustrated in figure 1.1. If the client agent expects
a counting semaphore from the server agent, but the server agent offers a binary semaphore,
then, the client can lock a resource twice and expects that the resource can be unlocked twice. In
practice the server just has marked the resource as locked. If the client now unlocks the resource,
the resource will be unlocked. Acting upon the server now is impossible, while the client expects
it to be possible.

1.3.4 What is a Conflict ?

In the above example we gave an example of a conflict between a counting semaphore and a
binary semaphore. However, this conflict only pops up when the client makes use of certain
possibilities hidden within the semantics. Specifically, the client needs to decrease a lock-counter,
without bringing it to zero and then act upon the supposedly locked resource. A behavior such as
this is not necessarily present within the client component. A client component might also simply
lock a resource multiple times and then unlock it again until the lock-counter reaches zero. If the
client behaves as this, we can barely say that there is a conflict between the two interfaces (aside
from the obvious syntactical conflict).
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lock

unlock

unlock_done

lock

Client State Server State

unlockedlockcount = 0

lockcount = 1

lockcount = 2

lock_true

lock_true

act

lockcount = 1

locked

locked

Unlocked

Figure 1.1: An interface conflict when the client agent expects a counting semaphore from the server agent
and the server agent only offers a binary semaphore.

In other words, depending on the behavior of the involved components, a possible conflict
might be a real conflict or not. This leads us to define an interface conflict in terms of the required
behavior:

If the overall required behavior of a set of components cannot be executed by only using the interfaces
between the different components then the interfaces of these components are in conflict.

This definition should be clarified to a certain extent. We mention ’the overall required’ behav-
ior. This implicitly means that we assume that all the involved components have agreed to follow
a certain behavior. For instance, if all component agree to not follow a concurrency strategy then
we cannot say that the previously mentioned interfaces are in conflict. If both components have
agreed to follow a locking strategy then we can declare the interfaces to be in conflict. However, if
not all components agree to follow a certain behavior then this definition of interface-conflicts is
useless because it will be virtually impossible to resolve the conflict. E.g.: if the server requires a
concurrency strategy but the client does not agree to follow any concurrency strategy at all, then
the notion of an interface-conflict is useless because it cannot be measured against a required
overall behavior.

In this dissertation we will assume that the involved components have already agreed to
provide/require a similar behavior. In chapter To better understand the kind of conflicts we
are dealing with we will discuss different concurrency strategies and define an implicitly agreed
overall behavior in chapter 5 on page 79. After doing so, we will investigate in chapter 6 on
page 101 the conflicts that can arise in such a situation.

1.3.5 What Are the Requirements ?

To verify whether it is possible to generate an intelligent adaptor we need to specify the require-
ments for such an adaptor. Below we present the requirements which an adaptor should satisfy.
In chapter 7 on page 123 we will do this in detail for the concurrency-adaptor.

Given the definition of interface conflicts, together with the notion of overall required behavior
we can easily understand that an adaptor works when it is

1. able to mediate the communication between the involved components in such a way that
the required overall behavior can be executed.

2. The adaptor itself should be able to work at runtime and
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3. it should work by only modifying the message flow between the involved components.

If there is no full agreement on the required behavior then the adaptor should try as hard as pos-
sible to satisfy as much as possible of the required behavior. For instance, if one of the clients
doesn’t follow any concurrency strategy at all, then the adaptor should allow this client to do
whatever it wants, without interrupting the behavior of the other clients that follows a concur-
rency strategy. Similarly, when all clients expect a concurrency strategy and the server doesn’t
specify one, then the adaptor should try to coordinate the different behaviors in such a way that
everyone’s behavior is present. In particular it is useful to note that certain concurrency strate-
gies might lead to deadlocks. In this case the resulting adaptor works correctly if the resulting
behavior also leads to deadlocks in the same situations. This is consistent with the requirement
because in both examples all required behavior can be satisfied. In situations where the overall
required behavior is inconsistent, thus where it can never be completely satisfied, we will refrain
from verifying the working of the adaptor.

The reason why we require the adaptor to work at runtime is mainly because this embodies
a more realistic approach. In open distributed systems, one component might suddenly need to
talk to a previously unknown component. If the adaptor is able to work and mediate conflicts
at runtime, then it will also be able to learn how to behave when such a new communication
partner is encountered in an open system. however, if the adaptor is only able to learn a suitable
behavior off-line, then it might not be possible to adapt correctly in a running open system.

The reason why we only want to modify the message flow between the components is be-
cause in an open system it might not always be possible to modify the source of the involved
components. Therefore, the only thing that such an adaptor can be allowed is modifying the
message flow between the different components.

The high-level definition of interfaces, conflicts and the requirements given in this section can
also be found in [VHT00].

1.4 Structure of Our Work

AS WE WILL DEMONSTRATE IN THE DISSERTATION, the technical characteristics of the reasoning
algorithms and the learning algorithms we experimented with, lead us to formulate every adap-
tor as a suite of three cooperating modules. The basic idea is that a concurrency conflict interface
adaptor will consist of one ’central’ module that contains the actual solution for the concurrency
conflict; together with two peripheral modules whose task is to mediate between a component
and the central module in some way. In the following sections, will elaborate on the requirements
we impose on the developer of the interacting components in order to facilitate the construction
of the mediating modules. Furthermore we will shed some light on their functionality and on the
reasoning and learning algorithms we adopted in order to construct them.

1.4.1 Adaptors

We will now briefly sketch how an intelligent adaptor can be constructed. This adaptor will be
placed centrally between all communicating components. To a certain extent this is contradictory
to the motivation of open distributed systems. However, without the ability to intercept all com-
munication it is often impossible to solve concurrency conflicts between multiple partners. We
will come back on this issue in section 12.7.1 on page 197 and in section 6.4 on page 113 where
we will discuss possible solutions to this.

As explained, the adaptor will learn how to mediate conflicting concurrency strategies be-
tween running components. Typically this will be achieved by trying out different actions within
different situations and learning which action is appropriate at what moment in the message
sequence of those components. However, this learning-phase also happens at runtime, so the
adaptor must be sure that no chosen action interferes with the correct working of the application.
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Figure 1.2: Overview of the work.
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This forms a general problem because an adaptor does not have this knowledge available. There-
fore we will require that all components offer a full formal documentation of their interfaces. This
formal documentation will be under the form of colored Petri-nets and statically placed check-
points within the source code (the yellow boxes 2a and 2b in figure 1.2). We will further elaborate
on the documentation in section 1.4.5. With the availability of this documentation, an adaptor
can readily experiment in a runtime system with the assurance that no chosen action will corrupt
one of the running components.

As already stated, the adaptor itself (depicted as the central white box in the green box in
figure 1.2) is a chain of three smaller connected modules (the blue boxes 3a, 3b and 3c in figure
1.2), each responsible for a different role in adapting the concurrency conflicts that might exist
when one component tries to communicate with another through non-compatible interfaces. A
component that initiates a communication uses a certain required concurrency strategy in order
to communicate with the second component, which offers a provided concurrency strategy. In
general the idea is that the different concurrency strategies will be converted to an intermediate
protocol which will be used to order incoming functional requests.

1. At each step in time, the required concurrency strategy expects the provided one to be in
a certain state. It is the task of the enforce-action module (box 3b) to convert an intermediate
protocol into an effective realization of this state. In other words, the enforce-action module
assures that an expected state of the required concurrency strategy can be enforced upon
the provided concurrency strategy.

2. The liveness module (box 3a) converts a required concurrency strategy to an intermediate
protocol, suitable for a general concurrency module. Its goal is to keep the underlying
client component alive by returning a correct concurrency strategy.

3. The central concurrency module (box 3c), is placed in between the two others, and under-
stands the intermediate protocol of both modules. This module is the actual concurrency
strategy implemented. This module honors certain important criteria such as no-races, live-
ness and others... Hence, the concurrency module receives a certain set of message from
the initiator, that should be executed and will automatically insert appropriate concurrency
messages to execute the required sequence.

We will now elaborate further on every module in the following three sections.

1.4.2 The Enforce-Action Module

The enforce-action module (blue box 3b in figure 1.2) will automatically bypass the provided
concurrency strategy. This is done by analyzing the possible future traces and finding out how
certain actions (or states) can be enforced upon the component. The formal analysis we use to
bypass the concurrency strategy is done by means of a prolog program and requires a formal
documentation of the provided concurrency strategy. (yellow box 2b in figure 1.2). Bypassing
a concurrency strategy is of course a dangerous thing to do because race conditions can happen
from then on. To avoid these race conditions, all communication with the bypassed component
should henceforth go through the concurrency adaptor. In chapter 8 we explain how we do this.

1.4.3 The Liveness Module

The liveness module (blue box 3a in figure 1.2) will automatically learn what kind of messages
the required concurrency strategy would like to receive back at a certain moment during the
communication. To illustrate this, one can easily see that a component would like to receive back
a LockTrue message when it requests a lock. A LockFalse would also be possible of course, but
it is clear that in this case, this is not the answer that is favored by the component. As we will
explain in chapter 9 learning this required behavior is done by means of reinforcement learning
(Q-learning more specifically). The answer favored by the component is used to create a suitable
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reward/punishment for this learning algorithm. Of course, the algorithm itself cannot determine
the favored answer such that we will have to rely on the developer to specify this. As we will
show in section 9.2, this is done by means of checkpointing the source (yellow box 2a in figure 1.2).

1.4.4 The Concurrency Module

The concurrency module (blue box 3c in figure 1.2) is placed in between the liveness module and
the enforce-action module (hence, between the required and provided concurrency strategies).
As explained before, this central module contains the ’actual’ concurrency strategy used between
the components adapted by the other modules. The specific concurrency strategy plugged into
this module is actually outside the scope of our work: it can be any strategy of choice which
works well in the particular environment in which our techniques will be deployed in. These
contents of the module can thus be taken from a repository of ’good working concurrency strate-
gies’ or can be a learning concurrency strategy that learns how to optimize the locking strategy
to avoid rollbacks and livelocks. In chapter 10 we will elaborate further on the possibilities of
filling up this module.

1.4.5 Formal Documentation

In section 1.4.1 we explained that the reasoning and learning algorithms we used to make a
working interface adaptor, are based on formal documentation that has to be provided by the
programmer of the communicating components. More concretely, in the realization of the above
three modules, we relied on extra input, supplied by the programmer of the required and pro-
vided concurrency strategies: he has to specify when his component is ’alive’ and he has to
document the interface in a formal way. The formal documentation we use are so-called col-
ored petri-nets [Jen94,Lak94,KCJ98,EK98]. This formalism is suited for specifying which actions
are enabled at some moment in time, and, has some additional properties that are both highly
favored by human readers, and are well-suited for automatic interpretation by algorithms:

1. They are specified by means of a graphical representation. A representation that is intuitive
and covers in one drawing enough detail to understand what the represented model is
about.

2. Petri-nets have a description of both states and actions, this in contrast to state diagrams or
transition diagrams, which cover only part of the behavior of a system.

3. Petri-nets are a formalism that can describe a system at any level of abstraction. Petri-nets can
be used to describe the interaction between high level modules as well as the full interaction
within these modules. Petri-nets can be described to specify a large variety of different
systems.

4. Petri-nets are stable with respect to minor changes of the modeled system. It means that small
modifications of the modeled system do not require a complete rewrite of the Petri-net. In
many other description languages this is not the case (e.g.: finite automaton).

5. Petri-nets can be analyzed through a large number of formal techniques, by which properties
of the modeled system can be verified. This includes: construction of occurency graphs (to
determine which global states are reachable), calculation of invariants (pre- and post- con-
ditions checking), reductions (shrink down a Petri-net but still preserve a number of proper-
ties) and checking of structural properties (such as starvation or deadlocks). From these, we
need reachability analysis and checking of deadlocks.

Aside from these nice properties, we think there are even more reasons why programmers ought
to use them more often in order to document components formally. Here are some additional
advantages of using such a formal description:
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1. A first advantage is the possibility to verify automatically whether a component adheres to
its specification. With such a check one can verify that the component does not send out
certain messages when they are supposed not to be sent out.

2. A second advantage is the possibility to test the robustness of a component automatically.
By using the formal interface description, a testing adaptor can choose which message it
sends back in a certain context. Not necessarily all messages will be understood by the
program in a given context. By testing a component this way we assure that components
are robust towards their own specification.

These points are very important because they make it possible to automatically check the im-
plementation with the specification and vice versa. This leads to better communication of the
behavior of a program towards other developers. However, as we show in our work, it will also
provide us with a way to communicate the behavior of the program towards another program,
namely the algorithm that is responsible for determining the interface adaptor and resolving the
concurrency conflict. We will go deeper into the role of Petri-nets for this in chapter 3.

1.5 Scientific Approach

IN CONTRAST TO PHYSICS, CHEMISTRY AND OTHER DISCIPLINES, computer science often lacks
an objective and fixed scientific method. The non formal characteristics of many problems often
leads to a lack of investigation depth and rigor. Furthermore, given the current possibilities of
computers, it is very easy to create layers of abstraction upon layers of abstraction, often without
having the scientific yardsticks to verify their value and how they contribute to the progress of
the field. According to [MSBW94] there are three possible things one can contribute in the field
of experimental computer science.

� A proof of existence, whether a certain problem can be solved and how it can be solved.

� A proof of concept, which merely illustrates that a certain concept is useful in certain envi-
ronments.

� A proof of performance, which in general proves that a new algorithm works better than
another algorithm.

The work presented in this dissertation is essentially a proof of existence. We demonstrate that
we can write a concurrency adaptor between different conflicting concurrency strategies. We
demonstrate this in a constructive way by creating a set of steps that will lead to such a non-
trivial, correctly working adaptor. One of the side-contributions of this dissertation is a proof
of concept: by using the technique of Petri-nets to document interfaces we have clearly demon-
strated its usability for it allows automatic black-box testing of components as well as the ability
to automatically compare the documentation with the implementation.

This dissertation makes no claim whatsoever about performance. Solely for the interested
reader some performance estimates are given, but these should be read as purely informative.

1.5.1 Publications

The research presented in this dissertation, as well as the research that leads to this dissertation
has been reported on internationally:

1. Werner Van Belle, Tom Mens, Theo D’Hondt
Using Genetic Programming to Generate Protocol Adaptors for Interprocess Communication
Published in Evolvable Systems: From Biology to Hardware, Proceedings of the 5th International
Conference on Evolvable Systems (ICES2003)
Editors: Andy M. Tyrrel, Pauline C. Haddow, Jim Torresen
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Lecture Notes Computer Science 2606
Pages: 422 - 433
Springer Verlag; Mars 2003

2. Stefan Van Baelen, David Urting, Werner Van Belle, Viviane Jonckers, Tom Holvoet, Yolande Berbers
and Karel De Vlaminck
Toward a unified terminology for component-based development
ECOOP2000 workshop on Component-Oriented Programming (WCOP)
June 2000

3. Werner Van Belle, Johan Fabry, Theo D’Hondt and Karsten Verelst
Experiences in Mobile Computing: The CBorg Mobile Multi-Agent System
Proceedings TOOLS Europe 2001, volume 38, pages 1-9
Editor: Wolfgang Pree
IEEE Computer Society Press; Zurich, March 2001,
http://borg.rave.org/

4. Werner Van Belle, Karsten Verelst and Theo D’Hondt
Location Transparent Routing in Mobile Agent System – Merging Name Lookups with Routing,
Proceedings Workshop on Future Trends of Distributed Computing Systems, volume 7, pages 207–
212,
IEEE Computer Society Press, December 1999,
http://borg.rave.org/

5. Werner Van Belle and Theo D’Hondt
Agent Mobility and Reification of Computational State, an experiment in migration,
Published in International. Proceedings of Infrastructures for Agents, Multi-Agent Systems and Scal-
able Multi-Agent Systems
Editors: Tom Wagner and Omer Rana
Lecture Notes in Artificial Intelligence (LNAI)
Pages: 166 - 173
Springer Verlag; June 2000

1.6 Related Work

THE MOTIVATION THAT LEAD TO THIS RESEARCH has also motivated other researchers to inves-
tigate similar problems. In this section we discuss similar approaches such as adaptor gener-
ation by means of state machines and adaptor repositories. Afterwards we discuss alternative
approaches such as languages for writing adaptors, fundamental problems of open protocols,
ontologies and others. Related work that is technically relevant will be discussed when appro-
priate. Section 3.3.1 on page 41 discuses alternative approaches to Petri-nets. With respect to the
problem of conflicting concurrency strategies there is, to the best of my knowledge, nothing to be
found.

1.6.1 Similar Approaches

Adaptor Generation by Means of Finite Automata

In this approach an adaptor is considered to be a program that is generated when a description
of the different interfaces is known. To make the required behavior executable over the con-
flicting interfaces, a lot of research focuses around the generation of finite automata. The work
of [Wyd01,Reu] covers how such an automata-adaptor can be generated. The work itself is aimed
at the composition of software components in closed systems. The strategy used relies on the
availability of place-holders that abstractly describe what kind of interaction is required, while
an finite state machine (written down as an MSC) describes the behavior of the interfaces them-
selves. In our work we have actively sought for an example where such place-holders cannot be
written easily, i.e., where the requirements cannot easily be expressed as a finite state machine.
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We believe concurrency is such an example because a requirement such as ’no race conditions
should occur’ is difficult to write down as a finite state machine. The work of [Wyd01] also relies
on the availability of a learning algorithm, however not much detail has been given on this al-
gorithm. This kind of approach also has the problem of ’non-symbolic operation’, which means
that the finite state machines cannot express actions on arguments, such as ’add those two argu-
ments together and pass it through’. In short, finite state machines are limited in their expressive
power.

Software Integration: Adaptor Repositories

Another approach relies on a repository of adaptors that ought to work in a certain application
domain. Creating such adaptors is done off-line whenever a conflict arises. For every occurring
conflict one can develop an adaptor manually. The strength of this approach is that a) a better
quality control can be enforced upon the entire adaptation process, b) there virtually no limita-
tions are on the requirements posed upon the adaptors because they are manually written and
c) in the name of efficiency, only real occurring conflicts will be solved. The biggest limitations
of such techniques are their scalability. On one side, for every new component there exist poten-
tially as many conflicts as there exist other components. This means that the number of adaptors
might be quadratic to the number of components. By defining a common ground on which adap-
tors can be written, thus by exploiting domain specific features, one might be able to reduce the
problems of managing this growth.

The biggest reason why we didn’t investigate this track further is because it is more a pro-
cess towards a solution than a solution in itself. Nowadays, companies such as IBM are selling
’integration’ and are efficiently creating adaptors by relying on domain specific features.

1.6.2 Alternative Approaches

In this section we cover research that uses another approach than the one we have created.

Undecidability & Possibilities

The idea of creating self-adapting protocols is certainly not new. Open protocols are protocols
which optimize the communication themselves by modifying the protocol they are using at run-
time. However, research done by Vreeswijk [Vre95] shows that in general it is impossible to create
a fully open protocol. Certain restrictions will always be in place. In our dissertation this is also
the case. We had to make assumptions that limit the applicability of our work to the field of
concurrency problems and open distributed systems. Other research approaches the problem of
conflicting interfaces more philosophically by testing the boundaries and possibilities offered by
open protocols. The Talking Heads experiments is one such an experiment. Here robots learns
the ’meaning’ of words by communicating about similar objects [SKML].

Version Control and Software Evolution

An alternative approach towards interface conflicts is to avoid them. By carefully tagging dif-
ferent components with a version-number one might be able to reduce a large number of unan-
ticipated conflicts. Instead of using any component available to offer a certain functionality, it
becomes possible to select the correct version of a component. However, this does not solve the
problem, it only manages it better. After a while, different versions will be working together, thus
not necessarily avoiding conflicts. Software evolution research has pointed out that seemingly
harmless upgrades to software implementations may result in unanticipated behavior within
other parts of the system [LSMD96]. An explicit example of this is given in this dissertation in
section 6.1.1 on page 101.

With respect to versioning, [WMC01] discusses a number of different tools and approaches
toward the software versioning problem. The paper itself present a unified approach towards
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versioning. [Sug98] discusses what kind of extensions should be added to .DLL’s to make runtime
upgrades possible.

A Common Language: Ontologies

From a practical point of view, ontologies [Gru93] try to describe information contained within
a system. The representations of this information can be different from system to system. Some
research groups investigate how this information can be exchanged between different systems.
One such an example is the ’knowledge interchange format’, or KIF [GF93]. Nowadays, KIF
is being mapped onto XML [ES] such that the use of a DTD can help in interchanging data in
real-world environments. However, this kind of approach typically does not allow for active pro-
cesses. [CP95] covers an agent based ontology approach to integrate different applications with
each other. [NU97] argues that the availability of a communication channel over which agents
communicate over the language they are speaking is essential together with the availability of a
shared ontology.

Adaptor Writing

Another approach to the problem of conflicting interfaces is the creation of a language in which
one can easily express how the adaptor should work.This approach is taken by Picolla [ALSN01],
CSP [Hoa85], which is specifically suited for concurrency. Other approaches handle the problem
of conflicting interfaces by investigating how interface conflicts can be avoided by offering a
type system that allows for ’open’ communication [GK99, JB99] and others. [JB99] also explains
why standard object oriented language constructs do not easily allow for easy adaptor creation.
KQML [FFMM94] is a language that is designed to allow agents to share and communicate infor-
mation with each other. [CFL � 99] presents a system that uses KQML and Java as an underlying
language to write adaptors between conflicting components within enterprises. [BBT01, BBC]
discusses a language to coordinate the interaction between different components. Its language is
mainly based upon CSP.

In this dissertation we have investigated in what kind of language our adaptor should be
written. However, instead of creating (or using) a human accessible language, we have been
looking for a language that is better suited for automatic generation by means of computers.

1.7 Roadmap

1.7.1 Chronology

THE ORIGINAL GOAL OF THIS DISSERTATION, which is to create an intelligent adaptor between
conflicting interfaces, represents a very difficult problem. Therefore we have tried to get a grip
on it by choosing appropriate techniques and identifying important subproblems. Once a prob-
lem was identified we have restricted ourselves to it. During our work we have always tried to
minimize the number of restrictions and have tried to keep the solutions as general as possible.
However, before we were able to create a concurrency adaptor we have tried a number of dif-
ferent paths to tackle the problems involved. The path we have followed is as interesting as the
solution itself. Therefore we have tried to retain as much information as possible, such that, if an
intelligent adaptor needs to be developed for other domains, this dissertation can be used as a
guide. To help the reader in understanding the structure of this work, we will now summarize
the path we have taken. Note that this path is in chronological order and not in the order of
chapters.

1. Definition of the problem and the environment. The first thing we have done was defining the
problem and creating an environment in which we could perform our experiments. In our
case the problem were conflicting concurrency interfaces. In chapter 1 we have explained
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why we need intelligent concurrency adaptors. Before we could experiment with conflict-
ing concurrency strategies we needed a realistic model of the environment in which these
conflicts would arise and in which adaptors could be written easily. Therefore, we have
modeled our problem in a system which hides much of the technical problems program-
mers face with current day architectures. The system itself is event based and correctly
represents open distributed systems. In chapter 2 we present this event based system, to-
gether with examples of how components and adaptors can be written.

2. Explore the domain: Secondly, we have explored the domain of conflicting concurrency in-
terfaces. To do this, we have created a number of different concurrency strategies, based on
real-world examples. Chapter 5 introduces these and investigates the differences between
the different concurrency strategies. Based on these differences, which we call variabilities,
we have made a list of conflicts. In chapter 6 we cover all the conflicts we have inves-
tigated, together with a discussion how we could solve every conflict. Part of exploring
the domain consisted of a small experiment in which we tried to generate an adaptor fully
automatically. From this experiment we learned that if we want to mediate differences be-
tween conflicting interfaces, the adaptor needs more information than is commonly found
in interface descriptions.

3. Which information is needed: After the small tests, we observed the need to specify interfaces
in a formal way, such that much more information is available for creating an adaptor. In
chapter 3 we explain how Petri-nets can be used to describe interfaces.

4. Preliminary experiments: With this extra information, we tried to generate an adaptor auto-
matically, without exactly knowing what the requirements were. From these experiments
(which are detailed in chapter 11), we learned which requirements were necessary.

5. Specify the requirements: After preliminary tests, we were able to specify the requirements of
a concurrency adaptor. The requirements we will present are chosen in such a way that, if
they are satisfied, cover most of the problems investigated in the previous phase. Chapter
7 describes what exact requirements we needed for an intelligent concurrency adaptor. A
second result from the preliminary tests was that it became clear that we would have to
modularize the adaptor because we started to understand the limitations of the techniques
we were applying.

6. Modularization of the adaptor: To be able to meet all our requirements, we needed to modular-
ize the adaptor. Different parts of the adaptor were involved with different functionalities
to meet different requirements. In chapter 7 we describe (aside from the requirements) also
the way we have modularized the adaptor. The result consists of three modules. The first
module, an enforce-action module will mediate the conflict between the adaptor and the
server. Chapter 8 explains how the enforce-action module bypasses a provided concurrency
strategy. To do so it will make use of a prolog program to automatically deduce how to
reach a certain state within the server. The second module, a liveness module mediates the
differences between the adaptor and the client and will decide what to do in certain situ-
ations. This module makes use of a learning algorithm to offer correct feedback behavior
toward the clients. To explain this we have covered in chapter 4 a number of learning al-
gorithms (reinforcement learning, genetic algorithms and classifier systems). The liveness
module itself is documented in chapter 9. The last module, the concurrency module, is the
actual adaptor, which will decide what to do, given a certain situation. This module is doc-
umented in detail in chapter 10. We explain how a concurrency strategy can be inserted in
this module such that the previously stated requirements are met.

7. Experiments & Validation: To validate our solution, we have performed tests on all three
modules. The results of these experiments have been covered in the different module chap-
ters (8, 9 and 10). Chapter 12 refers back to the concurrency conflicts discussed in chapter 6
and verifies how these are solved by the three different modules. Chapter 13 wraps up the
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thesis by recalling the introduction and stating that we have shown that implementing an
intelligent concurrency adaptor is possible.

1. Introduction

2. Event Based 
Systems

5. Concurrency Strategies in
Open Distributed Systems

6. Conflicting 
Interfaces

7. Our Approach

8. Enforce-Action
Module

4. Learning 
Algorithms

9. Liveness
Module

10. Concurrency
Module

11. Performed 
Experiments

13. Conclusions

12. Discussion

3. Describing Interfaces
by means of Petri-nets

Depends on

I. Preliminaries

II. Case

III. Solution

IV. Validation

Figure 1.3: Dependencies between chapters

1.7.2 Storyline

However, the presentation of this research has been molded into a standard format, resulting in
a text which is divided into four parts: I) preliminaries, II) the case, III) our approach and IV)
validation. Part I, the preliminaries covers the event based model we use (chapter 2), explains
how Petri-nets can be used to describe interfaces (chapter 3) and introduces the learning algo-
rithms we need later on (chapter 4). The presentation of our cases (part II) covers two chapters.
Chapter 5 explains which concurrency strategies we investigate, chapter 6 contains the conflicts
we use. The presentation of our approach (part III) starts with presenting a general overview of
the solution in chapter 7, after which the different modules are presented in chapters 8, 9 and 10.
The last part of this dissertation (part IV), validates our initial claims. We will not only verify the
working of our adaptor in chapter 12 and conclude our thesis in chapter 13, but we will also give
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an overview of the preliminary experiments that have lead to the current setup of the adaptor
(chapter 11). Figure 1.3 shows the dependencies between the different chapters.

1.7.3 Conventions

Figure 1.4: Message Sequence charts used throughout the thesis

Throughout the thesis we will make use of a sort of message sequence diagram. The message
diagrams are loosely based upon UML, with the difference that we have added some notation
to support different threads and better illustrate concurrency problems. Figure 1.4 contains a
message sequence chart in which we explain the different notations used:

1. The top line of each message diagram contains the names of the relevant actors. For ex-
ample, the names of the processes involved, the names of the classes and instances that are
relevant for the problem at hand.

2. Below every actor is a vertical line, which represents a thread. The top of the line is time � .
This line is drawn differently, depending on the situation.

(a) If no execution stack is present, no line is drawn.

(b) If an execution stack is present and executing, a full line is drawn.

(c) If an execution stack is present but not executing because it is waiting for any thing to
happen, a dotted line is drawn. This means that virtually anybody can re-initiate the
execution.

(d) If an execution stack is present but not executing because it is waiting for some specific
thing to happen, a vertical line with horizontal dashes is drawn. A specific thing can
be, for example, waiting for a return of a message.

3. If the control flow jumps from actor to actor, we draw horizontal lines (or slanted lines to
illustrate network delays). On the line we put a description of the message.

4. Creating new processes is done by splitting an existing process. Here we draw a horizontal
line but keep on executing the first process.
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5. A control flow ends with a horizontal line.

Figure 1.4 illustrates this convention. Note that the difference between a call and a message de-
pends on how the control flow behaves. If the thread moves from one actor to another and returns
we call it a call. On the other hand, if a thread continues (for instance with actively waiting) after
informing contacting another thread, we call it a message send.

We will now start with the preliminaries, in which we present the event based model we use
as a basis. Afterwards, we present how Petri-nets can be used to describe interfaces and finally
we wrap up the preliminaries with a short introduction to learning algorithms.
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Chapter 2

Event Based Models for Distributed
Systems

SINCE THE GOAL OF THIS DISSERTATION is to write an intelligent adaptor between conflicting
interfaces, we need to determine what is required to be able to write such an adaptor. The first
thing we need is the ability to intercept all communication to and from a component, in fact
isolating it from its environment. We have to intercept all of a component’s communication to
the outside world, otherwise it may be impossible to adapt the behavior of components. Because
open distributed systems are very closely linked to technology, writing components and adaptors
are also closely linked to it. Therefore we need to choose a good technology that allows (or
enables) us to write adaptors easily.

Java RMI link

Component BComponent A Sockets

Shared NFS Disk

Java Shared Tuple Space

Figure 2.1: This picture shows how difficult it can be to isolate a component from its environment when all
kinds of different communication technologies are used. The red blocks show where we need to
intercept a connection.

Depending on the technology used, one can have components that can share state, that can
communicate with each other by sockets, RMI calls, tuple spaces or shared disks (see figure 2.1).
In contrast, we can have a model that simply communicates over a single link (see figure 2.2).
It is clear that writing an adaptor for the first kind of technology requires a serious amount of
code to intercept all behavior and modify it as necessary, while the second example only requires
us to intercept one or two sockets. How we can intercept such a connection and how we can
understand what is sent over such a connection will be investigated in this chapter. In general

25
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Component A Component B

Socket Connections

Figure 2.2: This picture shows how one can isolate a component from its environment when it is loosely
coupled with its environment. The only links with other components are by means of a (socket)
connection.

we will use the SEESCOA component model [SEE99], which is implemented as an event based
system that allows us to place adaptors on connections easily. This chapter discusses this model
and relates this model to open distributed systems. We will talk about the history of the model,
introduce the basic concepts, how services are found, the setup of connections, how communica-
tion takes place, management of sessions, concurrency behavior and finally we will explain how
one can write adaptors with this model.

2.1 History

THIS CHAPTER USES IDEAS from two event based systems. The first is the mobile multi agent
system Borg, the second is the SEESCOA component model.

2.1.1 Borg

Borg [BFDV01] was developed from 1997 up to 2002 by the author of this dissertation. The orig-
inal goal of Borg was to provide a platform that can run Borg components on all computers that
run the Borg virtual machine, providing strong migration and location transparent routing. The
system itself is an extension of the Pico [D’H95] virtual machine. Pico is accessible via an ex-
tremely simple language, yet its expressiveness is very high, comparable to e.g. Scheme [SJ75].
Pico semantics are defined by a set of 9 evaluation functions that are supported by a storage
model and a computational model. The storage model features full storage management and
reclamation; the computation model is based on a pushdown automaton that manages expres-
sions and continuations on a double stack. The Borg virtual machine is written entirely both in
C and in Borg itself. The user interfaces which accompany the virtual machine run on all kinds
of platforms. For Linux users: KDE 1.1.2 and a GNU readline based command line interface.
For Macintosh users there is a legacy MacOS 9 version. For windows there is a Windows user
interface, which is based on the Cygwin libraries. And finally there is a version running for the
Palm Pilot (PalmOS 3.5).

2.1.2 SEESCOA

The second event based system is the component system made for the SEESCOA [SEE99] project.
SEESCOA is a project funded by the IWT and 6 industrial partners. The project itself is a cooper-
ation between the University of Gent (UGent), Katholieke Universiteit Leuven (KUL), Limburgs
Universitair Centrum (LUC) and the Vrije Universiteit Brussel (VUB). The industrial partners are
Phillips, Agfa Gevaert, Alcatel, Barco, Imec and Siemens. SEESCOA stands for Software Engi-
neering for Embedded Systems using a Component Oriented Approach. The component model
used in the SEESCOA project is developed by the same team which developed the Borg virtual
machine. This component model was written entirely from scratch, using the experience gained
from Borg. This allowed us to introduce some necessary semantics that were difficult to capture
in Borg due to some implementation issues. The SEESCOA component model is written entirely
in Java and focuses on re-usability by means of pluggable adaptors. The fact that the project aims
at embedded systems doesn’t weaken the component model. Currently, embedded systems need
a higher degree of connectivity and, as such, the system itself becomes a distributed system as
well. As said above, the remainder of this chapter focuses on the SEESCOA component model.
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2.2 The Model

THE SEESCOA COMPONENT MODEL is largely based on the Borg mobile multi agent system.
The model itself contains four important concepts, that we explain below:

� Components: The most obvious concept is a component. A component is an entity that has
its own code and data space. Every component has only one execution stack, i.e. compo-
nents are internally single threaded, which simplifies the model. This implies that every
component will handle only one message at a time. Components never share state, they
can be compared with processes in an operating system, but without sharing pages.

� Ports: All components can have ports. Ports are used to communicate between components.
A port can accept incoming messages and can send outgoing messages. When a message
cannot be immediately sent out the message is queued until the port is (re)connected. If an
incoming message cannot be handled immediately, the message is queued as well. A port
is the software realization of an interface.

� Connections: To connect two components with each other, we need to connect a port from
the first component to a port from the second component. All connections are full duplex
and are typically set up by the component system. A message send is non-blocking and
uses pass-by-value.

� Messages: Components can never modify each other’s state directly. The only way com-
ponents communicate is by means of sending and receiving messages. Messages are self
contained, which means that, once they are sent, the content is no longer available to the
sender.

� The Component System: this is the operating environment that schedules the execution of
components. It delivers messages between ports and provides a naming service that can be
used to identify uniquely components. The component system is responsible for setting up
connections. Picture 2.3 illustrates the model.

� Within this system an application typically is a collection of interacting components, that
may be written by different vendors. This implies that a running application is a mixture
of controllable and uncontrollable components.

The above model takes ideas from Actor [AMST97] systems, the PI [Mil99] calculus and
ROOM [SGP94]. The most important difference with Actor systems is that actors are connection-
less, while we do have the concept of connections, which will become very useful, as explained
below.

2.3 Naming & Finding Services

AN IMPORTANT PROPERTY of open distributed systems is their highly dynamic nature. In com-
parison to standard object oriented technology, where a linker glues together all objects of an
application before it is started, the programmer has to set up explicitly the links themselves. This
is usually performed by specifying information on what kinds of components the programmer is
looking for, finding compliant components, and connecting to these components. This addresses
the following two subproblems: first, how can one component reference another component, so
that they can make contact and communicate and second, how can a component find out which
other components offer a certain service.

Before we can contact a component, we need the ability to reference it, just as identifiers in
an object oriented language are used to refer and contact objects at runtime. However now we
have to take into account that we have multiple applications sharing one global data space. This
means that we should be able to refer to components by using globally unique identifiers. Such
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Figure 2.3: The component model as used in this dissertation: the left side of the picture is one host, the right
side is another host. The bottom half of the picture shows that we run a full component system
on every participating host. The upper half are the components, as executed by the component
system. Every component can have ports, ports can be connected with each other.

an identifier should have the same meaning for every component in the system. In other words,
we need an identifier that we can use to send messages to the correct place in the network. The
most basic idea would be to use the IP-number and the port number of the machine hosting our
component and a local component reference. However, this requires the programmer to write
down and hard-code some frequently changing external information: the unique identifier of an-
other component. It is clear that, to ease development, the system should abstract away from
such frequently changing information. Therefore, we use local ports, that can be filled in at run-
time by the system. We call addressing components through these local ports implicit addressing.

Setting up the link between different ports is done by the underlying system, however, in
open distributed systems in general, the problem of finding the correct component that offers the
required service still remains. To solve this problem directory services (such as JINI [Edw99])
are being implemented. They offer a central point where service-providers can announce them-
selves, and where service-requesters can look up other providers. This shifts the problem from
supplying the correct service to supplying the correct description and looking up services by their
description, which is less work because this description can be manipulated at a central place.

As this is not a relevant issue for this thesis, we will not address this subject further, and we
will assume that the components already know with whom they will communicate.

2.4 Connecting & Deployment

AS SAID BEFORE, the underlying component system connects different ports to each other using
an application specific connection-broker. This broker incorporates simple lookup and name to
address translation services as well as finding other services by specifying their properties. When
deploying an application, this broker will receive an input file that describes the connections
between all the components and the links to the external environment.

Connections always take place between two endpoints: we do not support connections be-
tween more than two ports. When setting up a connection, the component system will ask both
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parties to offer a port, based on a description of the required properties of the component. The
component then normally sends a portid back to the system, which in its turn will use both por-
tid’s to connect the ports. Figure 2.4 illustrates how a broker component can request the compo-
nent system to set up a connection.

Figure 2.4: Message flow when connecting two components.

From the software development point of view this way of working is very nice. The applica-
tion programmer points to components and the system wires them together. This offers us the
possibility to place adaptors on the connections between components.

The problem with this (and other point and click methods) is their very static nature. Some-
times, we need the ability to receive messages from all kinds of really unexpected components.
For example, consider a web server, at component composition time we cannot foresee how
many clients, i.e. other components, will join.

Since the base system only allows one connection per port we can only allow a fixed number
of clients to join. To address this we have added the possibility to use multi-ports. A multi-port
is a representation of a collection of ports. One multi-port can be connected to a number of other
normal ports. If we send something to the multi-port, this message will be sent to all the ports in
the collection, implementing a multicast.

2.5 Communication

IN THIS SECTION WE EXPLAIN how communication between components can take place. We will
explain how messages can be sent and received, the explicit representation of messages and why
this allows for easy adaptor creation.

2.5.1 Sending and Receiving Messages

At component creation time a component makes a number of ports available for communication.
At a certain point the system will connect these ports to ports of other components. Sending
a message to another component is performed by offering a message to a local port (which is
connected to the port of another component). In the model we use, this is done by invoking the
sendMessage method upon a port, which will immediately return. At the moment a message
arrives on a port handleMessage will be invoked on the component. The standard handleMes-

sage behavior is to immediately invoke the method corresponding to the message. E.g.: when
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a message foo comes in, first handleMessage will be called. If that method doesn’t handle the
message, the method foo will be called. The only way in which components can communicate is
using through disciplined communication: which is sending and receiving messages to each other
using sendMessage and handleMessage

2.5.2 Message Representation

Every message in the system is explicitly represented as an association-list of parameters and ar-
guments. In the remainder of the text, we will call the key/value pairs in the association list
fields. Fields can be written or read by using the putField and getField methods of the Mes-
sage class. One predefined field is always present in every message: Invoke. This field names
the message and is used, in the default implementation, to invoke the correct method upon the
receiver. This representation of messages, along with the putField and getField methods al-
low an adaptor to handle the messages without needing to know their full content. Messages are
deep copied entirely upon sending: a copy of the parameter-strings and a deep copy of all the
arguments is made.1

The example below illustrates how one can create a message and insert fields. The example
also illustrates that the standard handleMessage behavior is to invoke the Invoke field. Hence,
ShowIt() will receive the message and can retrieve the Text field.

class MyComponent extends Component
{
public Port a;
public MyComponent()
{
a = createPort(“a”);
Message msg=new Message();
msg.putField(“Invoke”,”ShowIt”);
msg.putField(“Text”,”some text to show”);
a.sendMessage(msg);
}

public void ShowIt(Message msg)
{
System.out.println(msg.getField(“Text”));
}

}

2.5.3 Syntactical Annotation

For clarity, during the rest of this dissertation we will resort to a more simple syntax for commu-
nication2. Specifying a component is done with the component keyword, while declaring a port
is done with the port keyword. To make sure that an incoming message is immediately invoked
upon the component invoke on this can be placed behind the port declaration. If a message
needs to be handled explicitly by the component, handle on this should be used.

To designate a message handler, we use the message keyword and to create a field we use a
< and > syntax. If we want to read the value of a field we name the field between the < >, if we
want to set a field we use a : (colon). Before the colon we name the field to be set, after the colon
we place the value to be assigned to the field. To send a message we use the .. syntax. The first
word following .. is alway automatically bound to the Invoke field. E.g.:

component MyComponent
{

1Since the “Message” class is the basis for all messages and its standard behavior is to offer an association list it
is perfectly possible to optimize local communication by implementing a copy-on-write within the message. For local
communication the performance boost is 3 times faster if we do so !

2We use a precompiler to translate this extended Java notation to standard Java source code.
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port a;
message Init()
{
a..ShowIt(<Text:”text to show”>);
}

message ShowIt()
{
System.out.println(<Text>);
}

}

When programming with such explicit messages, often a type cast is needed to make fields within
the message accessible. To help with this, the notation <type|field> can be used. This simply
expands to (type)<field>.

2.5.4 Motivation

This explicit way of sending, receiving and handling messages gives us a greater flexibility when
writing adaptors. It allows us to receive all possible messages and handle these without knowing
the full message internals. E.g. in case that we want to write an adaptor we can simply override
handleMessage, ignore the content of the message, but still pass it through. For example: a
component placed between two other components which simply prints the messages out and
passes them along can be written as follows:

component Logger
{
port left, right;
public void handleMessage(Port cameover, Message msg)
{
System.out.println(“Message “+msg+” from “+cameover);
if (cameover == left) right..msg;
else if (cameover == right) left..msg;
}

}

This simple logger component can be placed between any possible two components, without
needing to rewrite the Logger component to support new interfaces as they come along.

A second observation about this kind of messages is that this system is truly peer to peer. Any
component can send messages to other components, while every other component can receive
messages. There is no distinction between server components and client components. They are all
both server and client at the same time. Also, it is not required at compile time to specify with
which partners we will connect, this is purely done at runtime.

2.6 Sessions

IN THIS SECTION WE INVESTIGATE ONE OF THE CONSEQUENCES OF NON-BLOCKING MESSAGE
SENDS: in an extended conversation between two components, we need a way to explicitly keep
track what point in the conversation we have reached, we need to remember session information.
However, due the non blocking nature of the communications such session information must
be explicitly managed. To allow this, we introduce a new mechanism which easily associates
messages with sessions.

2.6.1 Non-Blocking

As said before, the message send is non-blocking, which is a model clearly different from stan-
dard object calling conventions. However, this non-blocking model supports open distributed
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systems very well. Open distributed systems can have long latency times and variable network
speeds. Sending a message can be instantaneous are can take an extremely long amount of time,
therefore a component working in a blocking way, wastes precious time by waiting for an answer
to return. Moreover, since the network is unreliable, we have no guarantee that a return will ever
arrive, and therefore we might wait indefinitely.

A non blocking model has none of these drawbacks, however programming in a non-blocking
way is not easy. One can no longer simply ask another component something, wait for the reply
and continue afterward. To do this one needs to remember what requests have been posted to
other components and continue within the correct session when an answer to one of the previous
requests arrives. To illustrate the difficulties of such a non-blocking send, consider for example
a program that calls 3 components in sequence, where the result of one component is passed
to another component. Assuming that a blocking send is available, this could be written in a
synchronous way as follows:

component Foo
{
port a1;
port a2;
port a3;
message Init()
{
System.out.println(a3.call(a2.call(a1.call())));
}

}

On the other hand, if one wants to write this with a non-blocking sending primitive, one should
write

component Foo
{
port a1,a2,a3;
message Init()
{
a1..Call();
}

message Result()
{
if (port == a1)

a2.call(<Value>);
else if (port == a2)

a3.call(<Value>);
else if (port == a3)

System.out.println(<Value>);
}

}

In this program the port field in the Result message handler designates the port over which the
Result message arrived. Clearly, the second program is far more unreadable as the first one. In
larger programs the problem of managing different sessions will become even more difficult.

2.6.2 Session Tracking

To address this, a component should be able to map a message to a certain session, and to re-
member the state of certain values within that session. To do so, we will pass hidden fields along
with every message. These fields are passed along automatically when a message is handled and
when a new message is sent out. These hidden fields can be used by any component to mark
a message, and identify messages when they return. During the rest of the dissertation we will
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use the > and < notation (instead of ’<’ and ’>’) as a syntax for hidden fields. Using these hidden
fields is still more complicated than working with non-blocking primitives, however it cleanly
separates the session tracking from the application logic. In the example below we see how a
session counter (the >Time< field) is increased representing a notion of time.

component Foo
{
port a1,a2,a3;
message Init()
{
a1..Call(>Time:0<);
}

message Result()
{
>Time: >Time< +1<;
switch(>Time<)

{
case 1 : a2..Call(<Value:<Value>>); break;
case 2 : a3..Call(<Value:<Value>>); break;
case 3 : System.out.println(<Value>);

}
}

2.7 Concurrency

THE DESCRIBED EVENT MODEL uses messages to communicate between different components.
Because components are single threaded, concurrency problems within components themselves
are avoided, which minimizes the possible places in which they can occur. Now, concurrency
problems do not arise from the ordering of statements within the components, but only from
the order in which messages arrive. The overall application behavior is uniquely defined by
the message sequences. It is clear that this makes this model very suitable for experiments with
concurrency management.

Bank A

read()

Bank B

read()

Account

write(110)

100

100

100
write(110)

110

Figure 2.5: Bank accounting example of a concurrency problem

However some message sequences can still give rise to race conditions, deadlocks and other
kinds of unwanted behavior. A well known example is the bank accounting example. Suppose
we have three components. The first component is a server component which offers two meth-
ods: Read and Write. The second and third components both try to increase the same value at the
server component. They do this by reading the value, increasing it and storing the value again.
As is shown in figure 2.5, it is clear that the order in which the messages arrives is critical for the
correctness of the value.

Classical solution in object based systems such as synchronized and thread based mutexes
are not applicable in our situation because this is not a thread based model and it is not an object
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oriented model. Moreover these classical solutions often lead to more problems in the sense that
they are difficult to understand, difficult to debug and give rise to a large number of all kinds of
inheritance anomalies.

As we will explain in more detail in chapter 5, an important observation is the that the only
place where we can solve concurrency problems is within the component itself: the component
should offer locks for the values that can be updated. In fact, since the component already needs
to do some kind of session management when it is accessed from different points, it should at the
same time also perform concurrency management. This implies that a component actually offers
dual interfaces: an interface for its functionality and an interface for its concurrency strategy.

2.8 Writing Adaptors

WE ALREADY ARGUED that the explicit messaging system offered by the component system of-
fers us a greater flexibility to write adaptors. Above, we illustrated how one can implement a
simple logger adaptor that can be placed on any connection between components. We will now
further show how adaptors can be written by giving two examples: first we illustrate how we
can implement a flow-of-control component, which can be placed at any connection necessary.
Second we show how setup and connections of components can be dynamically modified by
means of a connection adaptor.

2.8.1 Flow Control by Means of Adaptors

Camera
Image
Decoder

Figure 2.6: A producer that produces data faster than the consumer can consume. This results in overloaded
queues at sender side (pictured as the long port at the left side).

The setup in which we will demonstrate our first two adaptor is between a producer com-
ponent on one machine and a consumer component on another machine. The producer simply
grabs images from a camera and sends them out to the receiver. (See figure 2.6). This link goes
over a network, so it is possible that the producer produces images faster than the network can
handle. This typically results in a producer with overloaded sending queues and eventually an
out of memory error on the sending machine.

Camera
Image

Decoder
Sending

Regulater
Receiving
Regulator

Regulator 
Control Channel

Data Channel
Data Channel Data Channel

Figure 2.7: A Producer and consumer pair regulated by two adaptors: a sending regulator and receiving
regulator. Both regulators communicate over a separate channel.

To solve this problem we need a regulator on the sending side that communicates with a
regulator at the receiver side to agree on dropping a certain number of messages. This can only
be done of course when the sending side knows how fast the receiving side is receiving messages.
This, in turn, turns out to be tricky, because we cannot use the same communication channel we
use to send out data: this would place the ’control’ messages in the same, overflowing, queue
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as the images themselves, making regulation substantially more difficult. Therefore we opt for a
control channel with a separate queue. An advantage of this is also that the messages on sending
side can be simply passed through to the receiving side and vice versa without the necessity to
intercept specific control messages.

Algorithm 1 Sending Regulator
component SendingRegulator

{

port camera_side handle on this;

port decoder_side handle on this;

port flow_control invoke on this;

int imagesSent;

int imagesReceived;

public synchronized void handleMessage(Port p, Message m)
{
if (p==camera_side)

{
// Image travels from camera side to decoder side.
if (imagesSent < imagesReceived-10)
{
decoder_side.sendMessage(m);
imagesSent++;
}

}
else

camera_side.sendMessage(m);
}

message FlowReceived()
{
// The number of images currently received at receiving side.
imagesReceived = <Integer|NbReceived>.intValue();
}

}

The sending regulator is given in code in algorithm 1. The sending regulator keeps track
of how many message have been sent and how many messages have already been received. If
this number is too large new messages are simply dropped. Note that the sending regulator has
a method called handleMessage() which is used to pass incoming requests from sender to re-
ceiver if there is not too much lag. The component also understands in FlowReceivedmessages,
which arrive on the flow_control port. All messages incoming on the flow_control port are
automatically invoked, and will therefore not pass through the handleMessage routine. This
makes writing the adaptor more straightforward as the programmer does not need to differenti-
ate between flow control messages and data messages.

The receiving regulator (algorithm 2) is similar: for every four incoming messages, it sends a
flow-control message describing how many data messages have arrived. Messages coming from
the sending side are simply passed on to the receiver side and messages coming from the receiver
side are simply passed along to the sending side.

To relate this work to existing technologies, such as Java RMI, compare this implementation
to how these adaptors would need to be implemented in Java RMI. For RMI, both adaptors
should implement the interface of the image receiver. This has two important drawbacks. Firstly,
both adaptors are no longer generic because they can only work with the camera-components.
Secondly, for each method declared within the interface, a pass-through implementation should
be provided, which is tedious work.
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Algorithm 2 Receiving Regulator
component ReceivingRegulator

{

port camera_side handle on this;

port decoder_side handle on this;

port flow_control invoke on this;
int imagesReceived = 0;

public synchronized void handleMessage(Port p, Message m)

{

if (p==camera_side)

{

// message is from producer side

decoder_side.sendMessage(m);

imagesReceived++;

// every 4 messages the number of received messages

// is send back to the sending regulator

if (imagesReceived % 5 == 0)
flow_control..FlowReceived(<NbReceived:imagesReceived>);

}
else camera_side.sendMessage(m);
}

}

2.8.2 Placing the control flow regulators at runtime

Camera
Image

Decoder
Sending

Regulater
Receiving
Regulator

Regulator 
Control Channel

Data ChannelData Channel
Data Channel

Component
Receiver

Connection
Broker

Regulator
Generator

CreateComponent("ImageDecoder")
CreateConnection("ImageDecoder","Camera");

CreateComponent("ImageDecoder")
CreateComponent("SendingRegulator")
CreateComponent("ReceivingRegulator")
CreateConnection("Camera","SendingRegulator")
CreateConnection("SendingRegulator","ReceivingRegulator")
CreateConnection("SendingRugulator/flow","ReceivingRegulator/flow")
CreateConnection("ReceivingRegulator","ImageDecoder")

Figure 2.8: How a regulator generator adaptor can set up adaptors dynamically.

One of the problems often encountered with such setups is that components are created and
added at runtime. Assume that the camera is always connected to a component receiver, which
will create an image decoder when, for example, a new output window of the camera is opened.
The component receiver will then automatically set up a connection between the camera and the
image decoder. The component receiver uses the connection broker to create new components
and set up connections at runtime, therefore it has a connection to the broker. The problem now
is placing two regulator adaptors on these dynamically created connections.
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Algorithm 3 The regulator generator adaptor
component RegulatorGenerator
{

port controller_side;
port viewer_side;
message CreateComponent()
{
controller_side.sendMessage(inmessage);
controller_side..CreateComponent(

<Instance: <String|Instance>+"Regulator">,
<BluePrint:"testcases.scss.ReceivingRegulator">);

}
message CreateConnection()
{
String sending=<String|Id1>;
String receiving=<String|Id2>;
sending=sending.substring(0,sending.indexOf("/"));
receiving=receiving.substring(0,receiving.indexOf("/"));
sending+="Regulator";
receiving+="Regulator";
controller_side..CreateComponent(

<Instance: sending>,
<BluePrint: "testcases.scss.SendingRegulator">);

controller_side..CreateConnection(
<Id1: <Id1> >,
<Id2: sending+"/camera_side">);

controller_side..CreateConnection(
<Id1: sending+"/decoder_side">,
<Id2: receiving+"/camera_side">);

controller_side..CreateConnection(
<Id1: receiving+"/decoder_side">,
<Id2: <Id2> >);

controller_side..CreateConnection(
<Id1: sending+"/flow_control">,
<Id2: receiving+"/flow_control">);

}
}
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As shown in chapter 3, this can be done straightforwardly by placing an adaptor, which will
be called the regulator generator, between the connection broker and the component receiver.
We will then not only change the messages sent between the camera and the decoder, but also
the messages sent between the component receiver and the connection broker. When a request
to generate a decoder arrives at the adaptor (the regulator generator), it will create three new
components: the requested decoder, a sending regulator and a receiving regulator. The single
connection request from the component receiver, which follows the creation request, is replaced
by another setup of connections between

� camera and sending regulator.

� sending regulator and receiving regulator.

� sending regulator, the flow control port and the receiving regulator flow control port.

� receiving regulator and the image decoder.

Looking again at Java RMI, there is no standard way to create components at a remote location,
and no standard way to make connections between components. Therefore it is simply impossi-
ble to write the regulator generator in a generic way, if we would to implement such functionality
in Java RMI, we need to define our own standards for component creation and component link-
ing, however this kind of modifications will require the existing components to conform to this
standards.

2.9 Summary

IN THIS CHAPTER we have introduced event based systems by means of the SEESCOA compo-
nent model. We first talked about the history of the model and introduced the basic concepts:
components, connections, ports and messages. Second, we explained why an implicit addressing
scheme is required in a dynamically changing environment, such as open distributed systems.
Third, we have shown how the system sets up connections between any two components and
how communication between these components takes place. The main ideas here are that mes-
sages are represented explicitly and that communication takes place in a disciplined way. Fourth,
we explained that the model does not support blocking sends because of the large latency times
of open distributed systems, and as a result of this, we asserted that sessions must be managed
explicitly. Fifth, we discussed the concurrency behavior of the system and last we showed by
means of two real life examples that the system allows for a greater flexibility when writing
adaptors.

Because of the flexibility for writing adaptors, the component model presented here is used
as the underlying architecture for all our experiments.



Chapter 3

Describing Interfaces by means of
Petri-nets

[About Petri-nets] Where is “Start” ??
– Dirk van Deun

WHEN WE WANT TO AUTOMATICALLY GENERATE an adaptor between conflicting interfaces,
the program that generates the adaptor needs some knowledge about the interfaces required and
provided. This chapter introduces a formal technique to specify interfaces. Specifically we will
investigate the use of Petri-nets as a formal documentation technique.

3.1 Introduction

AS EXPLAINED IN PREVIOUS CHAPTER every component has a number of ports. Every port
embodies a certain behavior. This can be compared with the interface offered by objects in an
object oriented language. This interface, typically called an application program interface (or
API for short), must be documented before someone can use the functionality offered by that
interface.

Often this API is nothing more than a standard listing of method-signatures. This is clearly
insufficient for our purposes for two reasons. Firstly, method signatures have semantics incom-
patible with the semantics of our ports because we are working in an event based model in which
’messages’ are transmitted between components. This implies that messages are passed by value
and that a message not necessarily specifies that a certain method needs to be called. A mes-
sage can be for instance something like � ��� � � � 
 . Lastly, messages, in comparison to standard
method calls, will never return a value. Therefore a simple list of method signatures is not very
well suited to document ports. A second reason why common used API’s are not suitable is that
method signatures do not specify enough information to allow a program to extract interesting
properties. This, we will show, is necessary in order to generate an intelligent adaptor. Therefore
we will now investigate which technique is usable to formally document an interface.

3.2 Formal Interface Descriptions

COMMONLY USED FORMAL SYNTACTICAL INTERFACE DESCRIPTIONS simply state what methods
can be called, with which parameters. Sometimes a type system specifies what kind of objects
need to be passed. Specifying interfaces this way suits compiler and linker, and together with an
informal explanation of what the interface is supposed to do, can be understood by humans. For
machines, on the other hand, there is a lot of information missing within such a simple syntactical
description.

39
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� They do not specify in what order certain methods can be called. This is an important draw-
back because, without this information an number of possibilities is left open. Possibilities
that almost always result in wrong behavior or errors. E.g.: a computer simply doesn’t
know when a message Init should be sent. A human might immediately start by thinking
to send an Init at the beginning and a Done message at the end of some action.

� Most of the time formal syntactical interface descriptions only state what they provide to a
client, they seldomly specify what is required from the client. Implicitly the client knows it
must be able to handle the return values. In a non-blocking systems on the other hand it
is commonplace to use callback messages. These are often specified in an ad hoc way. For
example, a whiteboard can decide autonomously to send a HasDisjoined() message to
the client.

� Session behavior is almost never specified. Typically a programmer expects an interface to
be called only by him. In a non-blocking system an interface may need to process messages
in an unknown order. Whether this is possible and how this is managed is also never
specified. For example, whether some messages are kept aside and will be processed later
is very difficult to express in a formal way.

It is important to observe that the only reason why we are nowadays using formal syntactical
interface description is because compilers need them. Without them, compilers nor linkers would
be able to do either type checking or linkage of two interfaces.

Now, let us think about machines that need to understand interfaces. It is obvious that they
cannot make much more sense out of simple API’s than they already do (that is type checking
and linking). If we want to create an adaptor, then a machine needs to understand enough of the
possibilities offered by an interface. Therefore we will do what is typical done is such situations:
specify this extra information in a formal way.

The problem that arises now is that, contrary to a syntactical description it is difficult to cap-
ture the semantics of an interface. How far should we describe the interaction ? Should we only
describe when a certain function can be called or do we also need to specify what the arguments
should look like ? If we would specify what the arguments look like do we need to specify the
maximum and/or minimum size of the data transferred ? In short, it is very difficult to describe
an interface in a formal way without capturing too much detail, or without giving a trivial de-
scription (such as: this function will be called at some time). The programmer should have the
freedom to specify what he wants in an easy formal way. The formalism should not stop him
from expressing certain requirements, it should be flexible and easy to understand. Therefore,
the formalism we will use are Petri-nets.

3.3 Petri-Nets

THE FORMALISM WE WILL USE TO SPECIFY THE BEHAVIOR of an interface will be colored Petri-
nets. Petri-nets were originally invented by Petri [Pet62]. Petri-nets have a number of very ap-
pealing properties. For an in-depth discussion of all these properties see [KCJ98].

1. They are specified by means of a graphical representation. A representation that is intuitive
and covers in one drawing enough detail to understand what the represented model is
about.

2. Petri-nets have a description of both states and actions, this in contrast to state diagrams or
transition diagrams, which cover only part of the behavior of a system.

3. Colored Petri-nets include data manipulation within the Petri-net. A colored Petri-net covers
state transition, state of a system and data manipulation in one drawing.
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4. Petri-nets are a formalism that can describe a system at any level of abstraction. Petri-nets can
be used to describe the interaction between high level modules as well as the full interaction
within these modules. Petri-nets can specify a large variety of different systems. This can
be illustrated by pointing out the number of practical situations in which Petri-nets have
helped. see [KCJ98]

5. The basic building blocks of Petri-nets are places, transitions (and tokens for colored Petri-
nets). These primitives are easy to understand and very powerful.

6. Petri-nets allows modularization of systems by means of hierarchical decomposition. Petri-
nets can be combined using certain operators, which we will not discuss here. For more
information see [BFF � 95a].

7. For real time systems and timed distributed systems, Petri-nets can be extended with a time
concept. See [PM93, BMAPY97].

8. Petri-nets are stable with respect to minor changes of the modeled system. This is illustrated
by many practical experiences. It means that small modifications of the modeled system
does not require a complete rewrite of the Petri-net. In many other description languages
this is not the case (e.g.: finite automaton).

9. Petri-nets can be formally analyzed. This means that certain properties of the modeled sys-
tem can be verified. This includes: construction of occurrence graphs (which global states are
reachable), calculation of invariants (pre- and post- conditions checking), reductions (shrink
down a Petri-net but still preserve a number of properties) and checking of structural prop-
erties (such as starvation).

A large drawback of Petri-nets nowadays is that there is essentially only a graphical notation
which is agreed on. A notation in text-format, which is absolutely necessary, is difficult to find
and certainly there is no agreement on such a notation. At the end of this chapter we will intro-
duce our own notation, which suits our needs, but before we continue our Petri-net investigation
we will look at some other existing techniques.

3.3.1 Related work

It is very difficult to find a formal documentation technique that is a) as general and formal as
Petri-nets and b) as useful as Petri-nets at the same time. Below we will shortly touch upon a
number of techniques to do so.

State Machines

Finite automatons (FSM’s) and state diagrams [Har87, JMW � 91,G.01] have problems when mul-
tiple concurrent sessions should be expressed and their size explodes very quickly with every
newly added behavior.

Reuse Contract

Reuse Contracts [LSMD96], invented at the Programming Technology lab of the VUB, are a means
to describe the behavior of an interface in an abstract way. This abstract interface description is
called a reuse contract. From reuse contracts a number of properties of an implementation can be
deduced, for instance reuse contracts can help in evolving a software system such that existing
software dependent on the framework still functions as expected. The approach described in
[LSMD96] has some drawbacks, which also form the reason why we didn’t use them in our
work:
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� Reuse contracts describe the behavior of non concurrent objects, not the behavior of con-
current components. Whenever faced with concurrent processes the formalism might not
be suitable anymore.

� Reuse contracts only specify what is provided, barely what is required from another inter-
face.

� The level of detail cannot be chosen easily without braking the deductive power.

Message Sequence Charts

Message sequence charts (MSC’s) [JCJO92, Wyd01], as a documentation technique, offers exam-
ple traces of what a component can do. However, message sequence charts typically documents
only one run through a component and are difficult to extend to include all possible traces of a
component. A second drawback of the work presented in [Wyd01] is that it is only possible to
reason about the sequence of things to happen, not about the actual content of the data trans-
mitted. For concurrent systems this is a large drawback. It is almost completely impossible to
describe the semantics of a rollback-able transaction without taking the state of the resources into
account.

Pure logical approaches

The use of purely logical approaches that specify what conditions should be met would be pos-
sible: it is not too difficult to use predicate-logic or proposition-logic to describe the behavior of
an interface to a chosen level of detail. Often this is done by using pre- and post-conditions to
describe when a message can be send or received. However, since these approaches are barely
readable and do not offer extra advantages over Petri-nets we chose not to use them to describe
the behavior of component interfaces.

Temporal logics

The use of temporal logics [KV97,Pnu77] to describe when which transition is enabled could also
have been possible. Again the drawback here is the readability and the difficulties one can have
to write down even simple statements such as: ’between every occurrence of � and � there can
only be one enable or disable transition’.

SDL

Another, well known specification technique such as SDL [OFM97,JDA97], which is widely used
to specify communication protocols, can be easily mapped onto Petri-nets [FG98].

IDL’s

The lack of a formal semantical description of interfaces in protocols has been recognized for a
long time. See [Bra01]. In the past, attempts have been made to extend CORBA IDL’s with extra
formal specifications in such a way that they could help in automatic checking of the protocols
involved [CFP � 01]. However, since we are not working with IDL’s anyway there was no use in
using these approaches. [BOP] discusses how Petri-nets can be used to describe the behavior of
CORBA objects.

Existing Petri-net tools

A lot of tools support Petri-net in all kinds of contexts. The main reason why we didn’t use them
is because we are using Petri-nets in a context in which they are generated automatically. This
includes a random element and by generating pseudo-random Petri-nets we would test every
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tool to its limits. It is not to be expected that a tool which survives all possible Petri-nets will
be found quickly. Neither would it be possible to fix bugs in such a tool because most often the
source is not free. A second reason why existing Petri-net tools have not been used is that most
of the existing tools are to be paid for.

However, there is one tool we did investigate because it looked very promising: Pep. Pep [Gra]
is a programming environment, developed at the university of Oldenburg by the parallel systems
group and is based on Petri-nets in which the programmer can design the requirements of a par-
allel system using a process algebra notation, called � � ��� 
�� [BH93], SDL [OFM97], high level
Petri-nets, called M-nets, or low level petri-nets. Along with the tool comes a set of compilers
which generate Petri-nets from the different kinds of input formats. A lot of papers have been
published how certain of these languages can be mapped onto Petri-nets [BFF � 95b, FG98]. The
Petri-nets can be visually simulated, and the possibility exists to link it with a 3D VRML en-
vironment. Automatic verification is also included in Pep, by means of an integration of other
packages such as an Integrated Net Analyzer, a symbolic verification system (developed at CMU)
and others.

Pep’s big attraction is due to the good programming documentation and documented inter-
nals. The whole abstract Petri-net notation is given in an understandable form. Its drawbacks on
the other hand are its incorrect conversion from high level petri-nets to low level petri-nets and
its wrong execution of high level petri-nets. It seems as if every high-level place acts as a queue
on which messages can come in and whenever a transition needs to be checked only the top level
elements are checked. In most cases this is suitable and this is certainly suitable if the Petri-nets
are generated automatically. However, a suitable combination of tokens, such as is required from
colored petri-nets, is not the case, which makes executing an automatically generated Petri-net
an impossible case. Another drawback of Pep is that its Petri-net file format is very rigorous and
unreadable. Specifying a Petri-net is difficult because there are cross-linked labels and references
almost everywhere. This is something which is a) unnecessary and b) difficult to keep track of
when specifying a Petri-net.

A second tool we wanted to investigate, is CPNet. This is the tool promoted by the author of
[Jen94], is sold to companies and is supposed to be free for universities. However after contacting
the authors 3 times we still didn’t get any answer.

3.4 Colored Petri-Nets

PETRI-NETS ARE OFTEN DRAWN AS BOX/CIRCLE DIAGRAMS. Figure 3.1 is a box/circle diagram
of a Petri-net describing the behavior of a non-counting semaphore. Petri-nets have a number of
concepts:

� Places: places represent the state of a system. In our example, these are the circles. The
places are Unlocked, Unlocking, Locking, Locked and Acting.

� Tokens: A place can have zero, one or more tokens. Simple Petri-nets only have boolean
tokens. A token is either there or is not there. In our example only the Unlocked place
contains a token. Tokens which contain values will be discussed when we describe colored
Petri-nets.

� Transitions: A transition specifies how a token is moved from one place to another. In
our example, we have the transitions: UnlockDone, Lock, LockFalse, LockTrue, Unlock,
ActDone and Act. A transition can be either enabled or disabled. If all the arcs coming
into a transition offer a token the transition is enabled. In our case only the transition Lock

is enabled because the only incoming arc from Unlocked offers a token. The transition
Unlock is not enabled since there is no token at Locked. When a transition is executed
all offered tokens, that take part in enabling the transition, are taken away from their place
and transferred to all the places that receive an arc from this transition. If we would execute
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UnLocked

Lock()

Lock_True()

Lock_False()

Locked

Locking

UnLock()

UnLock_Done()

UnLocking

Act()
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Figure 3.1: A Petri-net describing a non-nested locking strategy.

the transition Lock the token would be moved from Unlocked to Locking. Afterward the
transition LockFalse and LockTrue will be enabled.

� Marking: The marking of a Petri-net contains all the places that contain a certain token. The
marking is in fact the global state of a Petri-net. It is perfectly possible to have a Petri-net in
which multiple places contain a token.

The previous description describes the elementary properties of Petri-nets. Although enough
to describe the basic operation of a Petri-net, colored Petri-nets allows tokens to carry a certain
value. This small extension to Petri-nets complicates the formalism a lot. It is not clear when a
certain transition is enabled: can we specifically check the color of a token or do we only check its
presence. It is also not clear what should happen when a transition is executed, what color/value
will the outgoing token(s) have ? Is it possible to send different tokens to different places ? Below
we will explain how colored Petri-nets are defined.

3.4.1 Informal Discussion

From an informal point of view a colored Petri-net consists of places, transitions, a relation in
between them and expressions which are used to verify incoming tokens/values and create new
tokens/values. The Petri-net in figure 3.2 illustrates what an easy to understand colored Petri-net
looks like for a nested locking strategy in a whiteboard containing 32x32 squares. A number of
additional properties can be observed:

� First, every place has a type associated with it, a color set. This type declares which possible
values can be present at the given place. For instance the Locking place has a type/color������� � .

�
is the set of possible X values � ���	� � ��
 , � is the set of possible Y values � ���� � ��
 and

� is the set of possible lockcounts, � �������� . The possible colors of the tokens, or values for
short, at the locking place are tuples which belong to the set

������� � . The values � � � ��� ��
 ,
� � ��������� ����
 are valid tokens, while the values ��� ��� � � ��
 , � � � ��������� ��
 are invalid tokens.

� Second, places can contain more than one token.
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Lock()

Lock_True() Lock_False()

LockCount
type = X x Y x C

init = (0..31,0..31,0)

Locking
type = X x Y x C

UnLock()
guard: C>0 UnLock_Done()

UnLocking
type = X x Y x C

Act()

Act_Done()

Acting
type = X x Y x C

(X,Y,C)

(X,Y,C)

(X,Y,C)

(X,Y,C)

(X,Y,C)

(X,Y,C)
(X,Y,C)

(X,Y,C)

(X,Y,C)

(X,Y,C+1)

(X,Y,C)

(X,Y,C-1)

(X,Y,C)

(X,Y,C)

Color Types:
  X={0,1,2,3,...,31}
  Y={0,1,2,3,...,31}
  C={0,1,2,3,...}

Figure 3.2: A colored Petri-net illustrating a nested locking strategy for a whiteboard of 32x32 squares.

� Third, all arcs contain an expression which either describes the tokens generated or the
tokens to be matched. From the point of view of a transition

– every incoming arc describes which tokens are looked for. For example, the incoming
arc on the LockTrue transition needs a 3-tuple, if one is available, such as � � ��� � � � ��

the variables

�
,
�

and � will be bound to the values present in the token/tuple. So,� � ����� � � � ��� � � � .

– every outgoing arc describes how new tokens are generated. If the LockTrue transition
is executed all incoming tokens are removed from the input places and the output
places receive newly created tokens. For example, the outgoing arc of the LockTrue

transition contains the expression � � � � � ��� ��
 . Since the variables
�

,
�

and � were
bound to ��� , � � and � , the new token will be ������� ����� ��
 . This token will be put in the
place LockCount.

� Fourth, some transitions can contain guards. A guard is an expression which verifies
whether the transition is enabled given a number of input tokens. A guard is also an ex-
pression in some sort of language, which will be described later. A guard should evaluate
to true or false. When a guard evaluates to true the transition is enabled, when the guard
evaluates to false but still all tokens are present the transition is not enabled. For exam-
ple, the transition Unlock has a guard ��� � . Intuitively this means that a lock cannot be
released if the lock is not held. The outgoing arc of the UnlockDone transition has an ex-
pression � � � � ����� ��
 which decreases the lock counter with one. Because we are sure that
the incoming token has a lockcount larger than � , the resulting token will always be in the
set

� � � � � .
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� Fifth, the expression language used within guards and on arcs can be chosen. However if
one chooses a language too rigorous (Turing complete) a lot of analyzing power might be
lost. The language we will choose will be described below.

Lock()
Lock_True()

Lock_False()

State
type = X x Y x C

init = (avail,0..31,0..31,0)

UnLock()
guard: C>0

UnLock_Done()

(busyU,X,Y,C)

(busyL,X,Y,C)

(busyL,X,Y,C)

(avail,X,Y,C)

(avail,X,Y,C)

(avail,X,Y,C) (busyL,X,Y,C)

(avail,X,Y,C+1)

(busyU,X,Y,C)

(avail,X,Y,C-1)Color Types:
  X={0,1,2,3,...,31}
  Y={0,1,2,3,...,31}
  C={0,1,2,3,...}
  B={busyL,busyU,avail}

Figure 3.3: A nested locking strategy upon a squared whiteboard with only one place.

Given this, we can now clearly see the expressive power of Petri-nets. We can choose how
much detail we include in our Petri-net. The Petri-net given in figure 3.2 only covers the locking
of a single square with a lockcount. If we want we could add a session ID to check whether the
incoming lock request is from the same one who already has obtained a lock. The fact that we do
not need to specify this, without losing the ability to reflect over the behavior of the system is one
of the greatest strengths of Petri-nets.

It is even possible to describe the same behavior with only one place. Therefore we need to
add another color � which describes whether a certain position is in busy locking (busyL), busy
unlocking (busyU) or available (avail). The associated Petri-net, without acting logic for the sake
of simplicity is pictured in 3.3. On the other hand if we need to use this Petri-net in a larger
context, in which we only need to know whether a place is locked or unlocked we can split the
LockCount state of figure 3.2 in two as depicted in figure 3.4.

Simple Petri-nets, which we will need later on, are Petri-nets in which tokens cannot contain a
color. They only can be at a certain place. A simple Petri-net only allows for one token per place.
A simple Petri-net also doesn’t have guard, input or output expressions.

3.4.2 Formal Definition

We will now define Colored Petri-nets formally. The definition given below is based, to a large
extent, on the well known work of [Jen94]. Mainly we have removed some ��������� � ����	� and
�����
���������� 	�������� � mappings, however this does not modify the formalism it merely simplifies
it for our purposes. The often-used and referenced definition given in [Jen94] is not the first
definition given of colored Petri-nets, other definitions also exists such as referenced in [EK98,
Lak94]. However, they are not explained in as much detail as the one we will use.

Before we can explain the details of colored Petri-nets we need the ability to describe multiple
tokens at the same place. Since this is something that cannot easily be expressed with mathemat-
ical sets, we resort to multi-sets.
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Lock()

Lock_True() Lock_False()

LockCount
type = X x Y x C

init = (0..31,0..31,0)

Locking
type = X x Y x C

UnLock() UnLock_Done()
guard:C>1

UnLocking
type = X x Y x C

Act()

Act_Done()

Acting
type = X x Y x C

(X,Y,C)

(X,Y,C)

(X,Y,C)

(X,Y,C)

(X,Y,C)

(X,Y,C)
(X,Y,C)

(X,Y,C)

(X,Y,C)

(X,Y,C+1)

(X,Y,C)

(X,Y,C-1)

(X,Y,C)

(X,Y,C)

Color Types:
  X={0,1,2,3,...,31}
  Y={0,1,2,3,...,31}
  C={1,2,3,...}

UnLocked
type = X x Y

FirstLock
type = X x Y

Lock()
(X,Y)

Lock_True()

Lock_False()
(X,Y)

(X,Y)

(X,Y)

(X,Y,1)

UnLock_Done()

(X,Y,0)

(X,Y)

Figure 3.4: A large Petri-net describing the behavior of a nested locking strategy on a whiteboard consisting
of 32 x 32 squares. There are separate states for ’unlocked’ and ’locked’. When locked a lock
counter is kept.

A multi-set is a set in which every element can occur multiple times. Formally a multi-set �
is defined over a certain underlying set � as a function that maps every element of S to a natural
number: ����� ��� . The domain of the multi-set: the occurency counts of every possible element
of � are called the coefficients of � . All possible multi-sets associated with a certain set � will be
denoted as ���	� . This should not be confused with the power-set, denoted � � which is the set of
all possible subsets.

A second preliminary before we can explain the formal side of colored Petri-nets concerns
expressions. The guards and actions work on values. The way in which these are represented is
currently left open, any type of expression can be inserted into a colored Petri-net. For example,
one can use 
 expressions, or simple algebraic expressions. One can choose whatever fits best. If
one chooses a language too expressive a certain level of formal analysis will no longer be possible.
We will discuss this later on. Once one has chosen an expression language one cannot change this
anymore within the same Petri-net. In the following definitions we will refer to an expression as
��� � � . �� ��� (with a capital) refers to all possible expressions. For every expression ��� ����� ��� ���
it should be possible to obtain the type and free variables. We should also be able to evaluate it
under a certain binding of values to variables:

� A type is a finite or infinite set of possible values. For example, a type can be a set such
as ��� � � ��� � � ��� ����	��� or it can be a set such as ��� � ����� � � � ����� � � ��� ��� � � ������� � �	���� . The boolean type:
� true � false � will be referenced to as ’bool’.

� � ����	 � �� ����� � ��� is a function that returns the set of unbound variables within ��� � � .

� � 
 � �!� �� ����� � 
 � � returns the set of possible values (the type) an expression can return.

� A binding � of a set variables � associates with each element "#� � ��� an element out of
� 
 � � �$" 
 , such that � �%" 
&� � 
 � � �%" 
 .
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� The value of an expression ��� � � under a certain binding � is denoted as � � ��� � ��� . The expres-
sion is reduced similar to 
 -calculus by substituting every variable " � � ��� 	�� ��� ���	
 with the
value � �%" 
 .

We are now ready to define a colored Petri-net formally:
A CPNet is a tuple � � ��� ��� � � � � ��� ��� ��� ��	 
 where

� � is a non empty set of types, called color sets.

� � , � , � are the places, transitions and the flow relation between places and transitions. ���
� � ��� � � ��� � �	� . The flow relation A contains tuples from � � ��
 � � � . This
is in contrast to the definition given in [Jen94], in which a node-function is added to the
Petri-net which maps an arc to such a tuple. This small change however doesn’t change
any semantics associated with the net as explained in [Jen94].

� � � � � � is a color function. This function associates a type with every place. All tokens
present at a place � must be of type � � � 
 .

� � � � � �� ��� is a guard function if � �&� � � � � 
 � � � � � � 
 
 � bool  � 
 � � � � � � � � � � 
 
 
�� � 
 .
Informally speaking, we associate with every transition an expression. This expression
should result in a boolean type and all variables used within the expression should require
a known type, thus be part of � .

� � � � � �� ��� is an arc expression, or action: such that � � � � � � � 
� ��� � � � � � � 
� � �
� � 
 � � � � ��� 
 
 � � � � 
 � �  � 
 � � � � � � � � ��� 
 
 
�� � 
 where the place � the associated place
of � is. The arc expression associates with every arc an expression, which will be used to
verify or create new token-values. Every arc expression should evaluate to a set of tokens
(a multi-set over the different types allowed by the place). � contains input expressions as
well as outgoing actions.

� 	�� � � �� ��� is an initialization function such that ��� ��� � �� � � has no free variables and
� � � � � � 
 � � � 	 � � 
 
 � � � � 
��	�

� � � � � ��� � � ��� � �	�� � � � ����� � ��� � ��� � � �	������ � � � ��� 	�
�� � ��� 	�
�� � � " � ��� � �
� ��� � � � ���
� ��� ����� ��� ����� � ��� ����� ������� ���	 � ��� ��� ����� ��� ��� ������� � �����
� � � � � ��� � � � ���!��
 ���"� ���!� � � � ��� � 
 ��� � � ��� � � � ����� � ��� � 
 � �#� ����� � ��� � � � � � � � 
 �

� � � � � � �$� ������� �� 	 � 
 � �"� ������� ���	 � � � � � � � 
 � � � � � � � �%� ��� ����� 
 � �&� ��� ���!� � � � ��� � 
 �
� � � � � � �%� ��� ������� � ��� 
 � �&� ��� ���!��� � ��� � � � ��� � 
 �

� � � � � ��� � � � � � � � � � � � 
 �
� � �&� ��� ���!� � � � � � � 
 �
� � � � � � ��� � � � ������
 � �	� � "�������� � � � ��� 
�� 
 � � �#� ����� � � � ��� � 
 � �	� �%� 	�
�� � � � � ��� 
�� 
 �

� � � � ��� � � � ���!� � ��� � 
 � �	� ��� 	�
�� � � � � � � 
 � 
 � � �#� ����� � ��� � � � � � � � 
 � �	� � "�������� � � � ��� � � 
 � 
 �
� � � � ��� � � � ���!��� ���	 � � � � ��� 	�
�� � � � � ��� 
�� 
 � � �#� ������� ��� 	 ��� � � ��� � 
 � �	��� " � ��� � � � � � � 
 � 
 �
� � � � ��� � ��� ����������
 � �	� ��" ������� � � � ��� 
 � 
 ���'� ��������� � � � ��� � 
 � � � ��� 	�
�� � � � � � � 
 � 
 �
� � � � ��� � ��� ����������� � ��� 
 � �	� ��� 	�
�� � � � 
 � � 
 � 
 �
� �&� ��� ���!��� � ��� � � � ��� � 
 � �	� ��" ������� � � � ��� � ��
�� 
��

	 � � � � ��� � � �	� � "�������� ����	� � ��� ���� � � � ��
�� 
 �

Table 3.1: A Petri-net (")+*-,&./,102,435,167,98:,&;=< of the Petri-net pictured in figure 3.3. The tuple-elements
35,167,48 and ; are functions denoted as a set of couples.

The above describes the static structure of a CPNet. Figure 3.1 describes in a formal way the
the Petri-net pictured in figure 3.3.
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To describe the dynamic behavior of a CPNet we will first describe what a marking is, then
describe when a transition is enabled and finally what happens when a transition is executed.
But before we do so, some syntactic sugar is introduced.

� � � � 
 � � � � � � � � � 
 � � � � � � which returns the arcs associated with the transition t.
� � ����	 ��� 
 � � ����	 � � � � 
 
 
 � " � � � � � � � 
&��" � � ��� 	�� � ��� 
 
 �

A binding of a transition � is a function � such that

� ��� 
 � � �: � " � � ��� 	���� 
 ��� �%" 
 � � 
 � � �%" 

The set of all bindings for � is called � � � 
 . A token element is a couple � � � � 
 with � � � and

� � � � � 
 . A binding elements is a couple ��� � � 
 with ��� � and �	� � ��� 
 . The set of all possible
token elements is called � � , the set of all possible binding elements is called BE. Now we can
define a marking:

A marking is a multi-set over � � . The initial marking � � is obtained from 	 as follows

� � � � � 
 � � � ��� � � � � � 	 
 
 � � 	 � � 
 
 ��� 
 (3.1)

A transition � is enabled if a) there exist a binding satisfying the guard ( � � � ��� 
 ) and b) all
expressions placed on the incoming arcs result in something of the correct type. We will denote
this as � � �1� , which specifies that transition � is enabled under marking � . Formally,

� � �1����� � � � � ��� 
 ��� � � � � 
 � � � � � � � � � 
 
 � ���
	�� � � 
 (3.2)

During the rest of the dissertation we will us a shorthand notation �� to specify the set of all
enabled transitions under marking � .

� � � � � � � � �1� �
��� will be called the postcondition of � . When an enabled transition � is executed (fired) the

marking ��� changes to ��� � � as follows :

� � � �1��� � � � ��� � � � � ��� � � � � � 

� � � � � 
 � ������ �������! � � � � � � 
 
 � � � � � � � � � � 
 
 � � � (3.3)

A shorthand notation ��"� will be used to denote the set of all possible future markings after
firing one of the enabled transitions.

� �"� � � � �#�
� �$� � �1� � �

For both shorthand notation, ��� and ���%� , which both specify what can happen next, two
other notations exist, which describe what could have happened before. �&� is called the pre-
condition of � .

� � � � � ��� � � � � �1�#� �
�"� � � � � �#�

� � � � �1��� �
3.4.3 Simple Petri-Nets

The above formal definition of Colored Petri-nets can be scaled down to Elementary Place Tran-
sition nets. To do so, the concept of multiple tokens per place, different colors per token and
(input-, output- and guard-)expressions has to be removed. The resulting net has almost the
same dynamics as a colored Petri-net, however, because only one token is allowed per place, a
transition is only enabled when none of its output places contains a token.
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3.4.4 A Note on Implementation

Below we explain that implementing an efficient evaluator for Colored Petri-nets is in general
difficult. Later on this might pose some problems when testing verifying certain requirements.

Petri-nets can be implemented on control-flow machines, that is, machines with a ’fetch’,
’execute’, ’store’, architecture. To do so one needs to keep a marking in working memory. With
every time-step this marking is used to verify which transitions are enabled. The current marking
in the working memory is then replaced by the new marking.1 However fast in execution, a
typical control flow machine suffers from one bottleneck: the memory access: since every single
Petri-net step has to fetch and store data in the main working memory, Petri-nets are difficult to
map efficiently to commonly used hardware.

Nevertheless, in the past, data-flow machines have been built which are much more efficient
in executing Petri-nets. A data-flow machine consists of a number of registers that hold tokens;
a token is transferred from operation to operation. In a typical data-flow machine an operation
has at most two input-registers and at most two output operations. The input registers are filled
in by other instructions that want to pass a token to this operation. The destination registers
contain the addresses where to put the result in. These addresses refer to the input registers
of other operations. Every operation has also two signaling registers which are used to schedule
the passing of tokens. [Moo96] contains a description of a number of existing data-flow machines.
Not so strangely the evolution of data-flow machines follows very closely the evolution of formal
Petri-net models.

Implementing an evaluator for colored Petri-nets seems trivial: instead of checking whether a
token is present and moving the token from the input places to the output places we also have to
check a guard. Unfortunately it isn’t that simple. Remember the formula 3.2, if we want to know
which transitions are enabled we must be able to evaluate the right hand side of that expression.
This means that we must find a binding for which the guard (and accompanying expressions)
is satisfied. In contrast to an elementary net where we simply have to check whether a token
is present we now have to find out which combination of tokens is suitable to satisfy the guard.
Fortunately, when searching a suitable combination we only need to take into account the set of
all tokens present in places local to the transition under investigation. This means that we don’t
have to check combinations of tokens in places which are not immediately linked to the current
transition. This can be easily seen if we look at the two expressions within formula 3.2. The
first requirement, (there should be a � � � ��� 
 ), does not necessarily guarantee that the values are
present in the places local to � . In fact nothing indicates where the values have to come from. It
only guarantees that there is a binding which satisfies the guard and which binds all necessary
values. The second part of the expression on the other hand � � � � � 
 � � � � � � � � � 
 
 � ��� guarantees
that all the values necessary to satisfy the guard are present at the incoming places.

In practice this means that, when a transition has � tokens in total over all its input places
(this set is called

� 
 and there are 
 free variables (this set is called
� 
 we must try out all com-

binations over X. If there are many tokens this number grows exponentially. Hence we cannot
check whether a transition is enabled in � ��� 
 (as can be done with Elementary Nets). A second
aspect in evaluating a Petri-net is knowing which transitions have a chance to be enabled. If we
start with an initial marking � � we know that we only have to check the transitions immediately
bound to the places containing tokens. So we only need to check out � �� . If a certain transition
is selected to be executed we need to change the marking from � � to � � as specified in formula
3.3. In human terms this equation transfers a certain number of tokens from the input place(s)
to the output place(s), thereby changing the local states of all the input places and all the output
places, formally changing the state of � � 
���� . The transitions connected to these places: ��� � 
���� 
��
are the only ones who can possible change from disabled to enabled (or vice versa).

Because of this, it is important to have Petri-nets with enough distinct places: the number of
incoming tokens in a transition will likely be smaller if we have more places in a Petri-net. For
example, a Petri-net as in figure 3.3 is very small, with only one place. Given the fact that the net

1Instead of testing all transitions to a certain marking it would be more useful to check only all postconditions of a
marking.
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is conservative2 and that we start with 3072 tokens, and there are 5 possible enabled transitions,
we need to check out 15360 possibilities. This number rises exponentially with the number of
input tokens taken by one transition. In comparison, consider the Petri-net in figure 3.2, we start
with a token count of 1024 at place LockCount. There are 3 possible output places so we need to
check 3072 combinations.

Given the fact that we need to try out all combinations of incoming tokens we might start
thinking of using something like a logic engine to evaluate a Petri-net. Indeed, it is very easy to
write a Petri-net evaluator in prolog [Fla94]. To do so one simply needs to translate the formal
definition of a Petri-net to prolog rules as we will do in chapter 8.

3.5 The Expression Language

THE FORMAL DEFINITION of a colored Petri-net given earlier handled expressions in an abstract
way. Therefore we need to define what kind of expressions we will use. The syntax:

��� � � ��	 	���� ��� � ������
 ��� � ��� 	 	���� � � � � ����� 
 ��� ������	�	���� � � � � � � ��� ����� � ������	 	���� � � ��� � � ���
� � � � ��� ��� ��� ������	�	���� ��� � �%��� � ������� � � � � ������	 	���� ����� 
��
� � ����� 
 ��� ������	�	���� ��� � �%��� � ������
 ��� � � ��	 	���� ��� ��� � ��� 	 	���� � � � 
 �
� ��� � 
 ��� � � ��	 	���� ��� � � � � ����� 
 ��� � ��� 	 	���� � � 
 �
��� � � ��� �

�
� � � ��� ��� � ��� " � � � ��� ��� � � � � � ���

� ��� � 
 � ��� �
� � ����� 
 � � � � � ��� � � � � � � � �	� � � � � � �
� � ������� � � � ��
� � � � � � � � � � ��� � � �� � � ��� �
� � � ����� � � � ��� � ��� 	 	���� ��� �	
 �
Semantically speaking those expressions are straight forward. In the end everything evaluates

to either a token or an integer. There are no other values to work with. If a compound statement
is found, the arguments are evaluated in applicative order: they are all evaluated recursively,
after that the operator is applied to the given values.

� � , � respectively adds, multiplies all given arguments.

� � , � respectively subtracts, divides all arguments � � � � � ��
 results in � � � . ��� ��� �	� � ��
 results
in � � � . ��� ��� � ��
 results in � .

� 
 ,
�
, � are logic operations. Something is considered to be true if it is not zero.

� � � � � 	 ��� � � are comparison operators. They are not defined on tokens.

As can be seen, there is no way to store variables, everything is functional. The result of an
expression is always the same if the input is the same. No side effects can be specified. The fact
that we only work with integers is to reduce the complexity of testing our adaptor. Technically it
is not difficult to add other types such as strings, floats, structures and others. The only drawback
in doing so is that the implementation of the evaluator becomes much larger and we need to add
a substantial amount of type checking.

We now define the � � � 	 operator on expressions.

� � � 	 � � � � � � ����� � � � � ��� � � ����� � ��� �
�
� 
 � 
&� � ��

��������� �
� � � 	 � � ��� � � 


� ��� 	 � � � � � ��� � � ����� � ��� � �
� 
 � 
&� � ��

��������� �
� ��� 	���� ��� � � 


2A Petri-net is said to be conservative if the total number of tokens present doesn’t change over time.
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� ��� 	 � �
� � � ��� ��� � 
&� ���

� ����	 � � "���� � ��� ��� � 
&� � � " ��� ����� � ���
The � 
 � � operator on expressions is defined as

� 
 � � � � � � � ��� � � ��� � � ��� � �
� 
 � 
 � � � 
 � � � � ��� � � 
 � � ��� � � 
 � � � � ��� � � 


� 
 � � � � � � � � ����� � � � � ��� � � ����� � ��� � �
� 
 � 
 � � � 
 � � ��� � ����� � � �	


� 
 � � � � ������� ��� 
 � � � ��� � �

� 
 � � � ��� � � � ��� ����� 
 � � � 
 � � � �
� � � ��� ��� � 
&� � � 
 � � � � " ����� ��� � ��� 
 � � � ��� � � ��� ��� � � ����� �

with � ������� ��� either � � � � 	 � � � ��
 � � ��� and arithmetic one of � ��� � � � � . Because all operators
work on integers the values assigned to variables can only be integers.

3.6 The Language used to Express Petri-Nets

3.6.1 The Basic Language

WE ARE ABOUT TO USE COLORED PETRI-NETS to describe the behavior of a component. Since
a) programmers are supposed to write these and b) our adaptor generation software needs the
ability to read and understand them we need a text format to write Petri-nets down in a clear and
understandable way, hence:

� There should be no redundancy.
� Every piece of information that can be inferred should be inferred. This is important be-

cause it allows us later on to generate Petri-nets that will have those missing pieces deduced
instead of reported as inconsistent.

� Things should be written down at the position where people think of them.
� The format should be easy extensible.

We looked at a number of existing Petri-net formats, such as the ’Abstract Petri-net Notation’
[FKK95], the Pep internal Petri-net format [BG98], and others but none of them suited our needs,
either because they were too verbose or because the format was clearly intended for internal use.
For instance a number of Petri-net formats describe the incoming and outgoing arcs at different
places from the transition connected to them.

Therefore, we came up with the following basic Petri-net syntax. We also implemented a
prototype of a Petri-net evaluator based on this syntax in Java. The Petri-nets are based on the
expression syntax given earlier.

� � ��� � ��� � � 	 � ��� � ����� �
	 � ��� � ����� � � (place " ����� ��� � � � � � � ��� 
 )
	 � ��� � ����� � � (transition " � � � ��� ��� � � ��� � ��� ��	 � ��� � ��� � ������	�
�� � � ��� � 
 )
� � ��� � ��� ��	 � (input �$" ����� ��� � � � � � � ��� 
 
 � )
��� � ��� � � ����	 � (output �$" � � � ��� ��� � � � � ��� 
 
 � )
� � ��� � � (guard ����� ������	�	���� � 
 � )

With this notation it is easy to write down Petri-net of figure 3.2.
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(place LockCount [0..31, 0..31, 0])
(place Locking)
(place UnLocking)
(place Acting)
(transition Lock

(input LockCount[X,Y,C])
(output Locking [X,Y,C]))

(transition Lock_True
(input Locking[X,Y,C])
(output LockCount[X,Y,C+1]))

(transition Lock_False
(input Lock_False[X,Y,C])
(output LockCount[X,Y,C]))

(transition UnLock
(input LockCount[X,Y,C])
(output UnLocking[X,Y,C])
(guard (> C 0)))

(transition UnLock_Done
(input UnLocking[X,Y,C])
(output LockCount[X,Y,C-1]))

which is quite readable. Normally, colored Petri-nets have places that describe the type of the
tokens that they can hold. In our notation we did not introduce types, because often the type
of tokens present at places can be inferred from the type of the expression on the incoming and
outgoing arcs to/from transitions. In chapter 8 we will indicate how a type inferencer can be
written. We will now investigate how we can extend this notation to be more suitable in an
adaptor generation context.

3.6.2 Linking Components � Petri-Nets

Before we can actually use Petri-nets in an execution environment our Petri-nets need to be linked
to this environment. Commonly, Petri-nets have a provision for this under the form of sources
and sinks. A source is a place where ’out of the blue’ tokens can arrive without prior notifica-
tion. A sink is a place where the Petri-net can place a token and this token will be automatically
removed to perform some action.

Informally a source-place is a place for which there are no incoming arcs. A sink place is a
place for which there are no outgoing arcs. Formally this can be written down as

� is 	���� ���	� � � �
� � � � ��� � � 
&� �

Similarly,

� is 	�� � � � � �
� � � � � � � � 
&� �

However, sources and sinks are not only defined based on their presence in the Petri-net.
They also have an external behavior associated with them, which is often not expressed within
the Petri-net. Below we will define a suitable behavior for sources and sinks such that it can be
used within an event based framework.

Integration of Messages

The component framework outlined earlier (chapter 2) describes how ports and components can
be used to write adaptors easily. The main idea behind the framework is that messages should
be the only way to communicate events between components. Therefore it is a logical extension
to link every message to a token. Converting messages to tokens and vice versa is done by a set
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of conversion rules. Every rule describes what a message looks like and declares how the token
should be created. Syntactically we define this,

��� 	 	 � � � � (message
�
	 ��� � � ����� ��� ��� � )

� � � ����� (field
�
	 ����� � ��� ��� � ��� 	 	���� � )

Converting a message to a token, given a set of such message rules, is done by retrieving all of
the unbound variables, sorting them alphabetically and placing them inside a token. For instance

(message LockTrue
(field “X” X)
(field “Y” Y)
(field “Result” 1))

locked

locking

unlocking

lock-in

lock_false-in

lock_true-in

unlock-in

return_unlock_true-in

return_unlock_false-in

lock-out

lock_false-out

lock_true-out

unlock-out

return_unlock_true-out

return_unlock_false-out

  lock  

  lock_false  

  lock_true  

  unlock  

return_unlock_true  

return_unlock_false

[X Y]

[X Y]

[X Y]

[X Y]

[X Y]

[X Y]

[X Y][X Y]

[X Y]

[X Y]

[X Y]

Figure 3.5: An illustration how sources and sinks can be used to interface a Petri-net with a component.

will match any incoming LockTrue message and convert it to a token � � � � 
 . The known Result

field will not be stored in the token because it is not an unbound variable. For example,
LockTrue(12,15,1) will be matched by the above rule an will result in a token [12,15]. The
LockTrue(16,18,0) will not be matched by the above rule, and as such, not generate a token.
Likewise, when a token is converted to a message, given a certain message-rule, we simply re-
place every free variable in the message by the value at the corresponding position within the
token.

These message rules give us a means to convert messages to and from tokens. This is neces-
sary to be able to interface a Petri-net with our external component framework. The only thing
we still need to define is the way sources and sinks are written down. A source place is a place
which generates tokens. In our case, tokens are generated when messages arrive, therefore a
source place is described by means of a string (the name), an integer which specified over which
port the messages comes from and a message template. Sink places are specified in a similar way.

	 � ��� � ����� � � (source "���� � ��� ��� �
� � � ��� ��� � ��� 	 	 � � � )

	 � ��� � ����� � � (sink "���� � ��� ��� �
� � � ��� ��� � ��� 	 	 � � � )

The extra
�
� � � ��� ��� � field is necessary for sources to specify the port over which the message

comes. For sinks it is necessary to specify the port to which the message should go to. Figure
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3.5 illustrates how sources (left side, ending on -in) and sinks (right side, ending on -out) can be
used to specify a required message interaction between components.

Two Uses for Sources and Sinks

Because this kind of Petri-nets (with sources and sinks) quickly becomes very large, it is imprac-
tical to request from the developer to write down all sources and sinks and link them together.
However, there are two more reasons why a developer should not write the sources and sinks
explicitly down.

1. First, because depending on whether the interface is required or provided the sources and
sinks switch places and the Petri-net would need to be rewritten.

2. Secondly, because the sources and sinks can be used to interface a Petri-net between two
components, hence link two components together, but they can also be used to link a com-
ponent to another part of an adaptor.

The second usage will be explained in more detail, after we introduce how in-out transitions are
used to describe the linkage with the underlying component.

3.6.3 In/Out Transitions

in Lock
out LockTrue

out LockFalse

out Lock
in LockTrue

in LockFalse

UnLocked

Lock()

Lock_True()

Lock_False()

Locked

Locking

UnLock()

UnLock_Done()

UnLocking

Component/Petrinet verification adaptor

Figure 3.6: A verification adaptor based on 1 Petri-net offered by either server or client.

One of the ideas behind the component framework is that one needs the ability to specify
the inverse of an interface. To illustrate this think of a server that offers a locking strategy and
a client that expects a locking strategy. The server will specify an incoming Lock message and
outgoing LockTrue and LockFalse messages. The client on the other hand will specify exactly
the contrary: Lock messages go out and LockTrue or LockFalse messages come in. This can
be seen in figure 3.6 and 3.7. The red interface boxes (left) are the ones going toward the server,
the blue interface boxes (right) are the ones coming from the client. In practice, the colored
transitions are replaced by sources and sinks to match certain messages. The translation from
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in Lock
out LockTrue
out LockFalse
in UnLock

out UnlockDone

out AAA
in BBB
in CCC
out DDD
in EEE

UnLocked

Lock()

Lock_True()

Lock_False()

Locked

Locking

UnLock()

UnLock_Done()

UnLocking

Component/Petrinet adapting adaptor

Released

Acquire()

AcquireOk()

AcquireFail()

Acquired

Acquiring

Release()

Released()

Unc

Figure 3.7: An adapting adaptor based on 2 Petri-nets offered by client and server.

such an incoming or outgoing transition to source and sink places is however not always the
same because multiple reasons exist to create such an adaptor.

The first situation is one in which an adaptor traces the behavior of an interaction, without
adapting anything. This is useful to test the correct working of both components and the Petri-
net specification of the interface. Using such an adaptor ensures that the formal description is in
tune with the implementation of the component.

A second situation occurs when an adaptor is required to adapt the behavior of two interfaces.
In such a situation there will be two Petri-nets available: one accepting messages from the client
and one accepting messages from the server. Both Petri-nets and some ’adaption’ logic will reside
in the adaptor.

These two cases offer some problems because the behavior of the Petri-net transitions is dif-
ferent. To understand this look at the required behavior of the red and blue lines connected to
the transitions. Depending on the situation a transition should behave different

1. In the first case, (figure 3.6), a red transition is enabled only if a certain incoming message
arrives (e.g. Lock) over the left port and when triggered a message is immediately sent out
to the right port.

2. In the second case, (figure 3.7), there are two different behaviors of the red transitions and
blue transitions

(a) the Petri-net tracing the left port will only enable red transitions when a certain message
has arrived on the left port. If such a red transition is executed the adaptor is informed.
The blue transitions on the left are only executed when the adaptor logic requests so.
In response they will send out a certain message to the left port.

(b) the Petri-net tracing the right port will only enable blue transitions when a certain mes-
sage has arrived on the right port. If such a blue transition is executed the adaptor is
informed. The red transitions on the right are only executed when the adaptor requests
so. In response they will send out a certain message to the right port.

As can be seen, the actual Petri-nets generated out of interface Petri-net descriptions might need
to do completely different things. Therefore we extended the basic Petri-net syntax with two
extra transition types: in-transitions and out-transitions. From the point of view of a component
an in-transition describes a message that arrives for the component, an out-transition describes
a possible message that can be send out. Since both transitions have to handle incoming or
outgoing messages they take some extra arguments.

The extended Petri-net notation:

	 � ��� � ����� � � (intransition " ��� ����� � � � � ��� � ������	 � ��� � ��� � ��� ��	�
 � � � ��� � 

����	�	 � � � )
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	 � ��� � ����� � � (outtransition " ����� ��� � � � � ��� � ��� ��	 � ��� � ��� � ������	�
 � � � ��� � 

����	�	 � � � )
In order to be able to transform the in-transitions and out-transitions to an executable Petri-

net we have added special source and sink places (as is done in almost all Petri-net tools). In
figures 3.8 and 3.9, the source places are colored green and will contain a token when a message
arrives, the sink places are colored red and the underlying component will sent out a message
when a token arrives at those places.

intransition
Unlock(<X,Y>)

sink to 1
Unlock-out
type: <X,Y>

transition
UnLock

source from 0
name: Unlock-in
type: <X,Y>

outtransition
UnlockDone(<X,Y>)

source from 1
UnlockDone-in
type: <X,Y>

transition
UnLockDone

sink to 0
name: UnlockDone-out

type: <X,Y>

Figure 3.8: Conversion of an in-transition/out-transition to standard sources, sinks and transitions when
interpreted as a tracing adaptor.

Transforming a Petri-net to be used in a tracing Petri-net adaptor (illustrated in figure 3.8):

� (intransition " � � � ��� ��� � � ��� � ������	 ��� � ��� � ������	 � � ��� � ����	 	 � � � ) is replaced by
(source " ��� ����� � � -in 0 ����	�	 � � � )
(sink "���� � ��� ��� -out 1 ����	 	 � � � )
(transition "���� � ��� ��� � � ��� � � ����	 
 " ��� ����� � � -in ��� � ��� � ������	 
�" ����� ��� � � -out � � � � � )

� (outtransition " � � � ��� ��� � � ��� � ������	 ��� � ��� � ������	 � � ��� � ����	 	 � � � ) is replaced by
(source " ��� ����� � � -in 1 ����	�	 � � � )
(sink "���� � ��� ��� -out 0 ����	 	 � � � )
(transition "���� � ��� ��� � � ��� � � ����	 
 " ��� ����� � � -in ��� � ��� � ������	 
�" ����� ��� � � -out � � � � � )

Transforming a Petri-net to be used in an adaptor (illustrated in figure 3.9), requires another
transformation logic for the in/out transitions; For the left port this becomes

� (intransition " � � � ��� ��� � � ��� � ������	 ��� � ��� � ������	 � � ��� � ����	 	 � � � ) is replaced by
(source " ��� ����� � � -in 0 ����	�	 � � � )
(place " ��� ����� � � -out)
(transition "���� � ��� ��� � � ��� � � ����	 
 " ��� ����� � � -in ��� � ��� � ������	 
�" ����� ��� � � -out � � � � � )

� (outtransition " � � � ��� ��� � � ��� � ������	 ��� � ��� � ������	 � � ��� � ����	 	 � � � ) is replaced by
(place " ��� ����� � � -in 0)
(sink "���� � ��� ��� -out 0 ����	 	 � � � )
(transition "���� � ��� ��� � � ��� � � ����	 
 " ��� ����� � � -in ��� � ��� � ������	 
�" ����� ��� � � -out � � � � � )
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intransition
Unlock(<X,Y>)

place
Unlock-out
type: <X,Y>

transition
UnLock

source from 0
name: Unlock-in

type: <X,Y>

outtransition
UnlockDone(<X,Y>)

sink to 1
UnlockDone-out
type: <X,Y>

transition
UnLockDone

place
name: UnlockDone-in

type: <X,Y>

Figure 3.9: Conversion of an in/out transition to sources, sinks, places and transitions when interpreted as
an adaptor.

For the right port this becomes:

� (intransition " � � � ��� ��� � � ��� � ������	 ��� � ��� � ������	 � � ��� � ����	 	 � � � ) is replaced by
(source " ��� ����� � � -in 1 ����	�	 � � � )
(place " ��� ����� � � -out)
(transition "���� � ��� ��� � � ��� � � ����	 
 " ��� ����� � � -in ��� � ��� � ������	 
�" ����� ��� � � -out � � � � � )

� (outtransition " � � � ��� ��� � � ��� � ������	 ��� � ��� � ������	 � � ��� � ����	 	 � � � ) is replaced by
(place " ��� ����� � � -in 1)
(sink "���� � ��� ��� -out 1 ����	 	 � � � )
(transition "���� � ��� ��� � � ��� � � ����	 
 " ��� ����� � � -in ��� � ��� � ������	 
�" ����� ��� � � -out � � � � � )

By using these in-transitions and out-transitions we have

� increased the readability of interface description. Instead of needing to express all in-
put/output places and a transition we now simply write one statement.

� increased the flexibility of using these transitions within tools. We can either use the Petri-
nets as a tracing adaptor or in combination with another Petri-net as an adaptor.

3.7 Two More Complex Examples

IN THIS SECTION WE GIVE TWO examples of more difficult locking interfaces that can be ex-
pressed by means of Petri-nets. The first example covers a layered concurrency strategy. The
second covers a rollback-able concurrency strategy.

3.7.1 Interface Description of a Blocking Layered Concurrency Strategy

Figure 3.10 contains an example of a layered concurrency strategy that works in different stages.
This example demonstrates how well suited Petri-nets can be to describe subtle interaction pat-
terns between different ’modes’ of an interface. The concurrency interface itself describes a) the
behavior that can be executed upon certain resources and b) the synchronization behavior that
need to be used before these resources are accessible. The concurrency strategy is layered. This
means that, before the actual resources can be locked, the server needs to be locked entirely by the
client. Once all the locks are obtained the server itself can be released, such that other component
might start a set of locking operations. This example has a number of interesting features
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start
[]

waiting_join

ready

busy

not_entered
[]

entering

entered

leaving

locked
X=0..31
Y=0..31
[X Y 0]

locking

unlocking

enter

enter_ok

leave

leave_ok

lock

lock_done

unlock
(> C 0)

unlock_done

isfree
(> C 0)

return_free_true
(> C 0)

return_free_false
(> C 0)

joinactor
(> C 0)

return_joinactor
(> C 0)

set_position
(> C 0)

return_set_position
(> C 0)

[X Y C]

[X Y C]

[X Y C]

[X Y (+ C 1)]

[X Y C]

[X Y C]

[X Y C]

[X Y (- C 1)]

[X Y C]

[X Y C]

[X Y C]

[X Y C]

[X Y C]

[X Y C][X Y C]

[X Y C]

[X Y C]

[X Y C]

Figure 3.10: A Layered Concurrency Strategy expressed as a Petri-net
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Algorithm 4 Petri-net description of a blocking layered concurrency strategy.
(place "start" "not_entered" [])

(place "waiting_join" "ready" "busy" "not_entered" "entering" "entered" "leaving")

(place "locked" (foreach X 0 31 (foreach Y 0 31 [X Y 0])))

(place "locking" "unlocking")

/// SYNCHONISATION BEHAVIOR

(intransition "enter" (message "StartLocking")

(input "not_entered") (output "entering"))

(outtransition "enter_ok" (message "StartLocking")

(input "entering") (output "entered") )

(intransition "leave" (message "StopLocking")

(input "entered" []) (output "leaving") )

(outtransition "leave_ok" (message "StopLocking")

(input "leaving") (output "not_entered"))

(intransition "lock" (message "Lock" (field "X" X) (field "Y" Y))

(input "entered") (input "locked" [X Y C])

(output "entered") (output "locking" [X Y C]))

(outtransition "lock_done" (message "LockDone")

(input "entered") (input "locking" [X Y C])

(output "entered") (output "locked" [X Y (+ C 1)]))

(intransition "unlock" (message "UnLock" (field "X" X) (field "Y" Y))

(input "locked" [X Y C]) (output "unlocking" [X Y C])

(guard (> C 0)))

(outtransition "unlock_done" (message "UnlockDone")

(input "unlocking" [X Y C]) (output "locked" [X Y (- C 1)]))

/// FUNCTIONAL BEHAVIOR

(intransition "isfree" (message "IsFree" (field "X" X) (field "Y" Y))

(input "ready") (input "locked" [X Y C])

(output "busy") (output "locked" [X Y C])

(guard (> C 0)))

(outtransition "return_free_true" (message "RETURN_IsFree" (field "Result" 1))

(input "busy") (input "locked" [X Y C])

(output "ready") (output "locked" [X Y C])

(guard (> C 0)))

(outtransition "return_free_false" (message "RETURN_IsFree" (field "Result" 0))

(input "busy") (input "locked" [X Y C])

(output "ready") (output "locked" [X Y C])

(guard (> C 0)))

(intransition "joinactor" (message "JoinActor") �
(input "start") (output "waiting_join")

(guard (> C 0)))

(outtransition "return_joinactor" (message "RETURN_JoinActor" (field "Result" A))

(input "waiting_join") (output "ready")

(guard (> C 0)))

(intransition "set_position" (message "SetPosition" ...)

(input "ready") (input "locked" [X Y C])

(output "busy") (output "locked" [X Y C])

(guard (> C 0)))

(outtransition "return_set_position" (message "RETURN_SetPosition")

(input "locked" [X Y C]) (input "busy")

(output "ready") (output "locked" [X Y C])
(guard (> C 0)))
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� It shows how synchronous calls can be written down. This is visualized in the light blue
box. The Petri-net starts in the start place. Before any whiteboard action (isfree, set_position)
can be executed, the joinactor message must be sent. When this has been done, the Petri-
net puts a token in the waiting_join place. The token that was originally present in the
start place is no longer there, which means that a joinactor message cannot be received
anymore. Once the return_join message has been sent, the Petri-net will put a token in
the ready place, which enables all further whiteboard actions in the Petri-net.

� It shows how different modules can be put together. In this example, two synchronization
systems are in place. The first offering a server lock (the light green box). The second
offering a locking strategy that allows to lock positions on the whiteboard (the light yellow
box). The interaction between these two modules is minimal. Only when the server is
locked, then can a position be locked (the arrow going from the entered place to the lock

transition).

� It shows how subtle interactions between modules can be expressed. For instance,

– it is not possible to handle a second lock request as long as the first has not yet been
handled entirely (a lock_done is send back). In the Petri-net this is expressed by two
arcs. The first one pulls a token from the entered place and does not put it back. The
second one will put it back when the lock_done message is sent.

– Contrary to the locking operation, the unlock operation can be executed without a
server lock.

– when a position is locked and the server is not locked then it is possible to access the
whiteboard with the set_position and is_free operations, because both operations
only depends on the locked place and not on the entered place.

� It shows on multiple occasions how synchronous calls can be expressed. The places ready
and busy are used by all whiteboard actions (set_position, is_free, return_free_true,
return_free_false and return_set_position). Both places ensure that no new opera-
tion will be handled as long as the current operation is not yet entirely processed.

� This example also shows a Petri-net with multiple tokens per place. When initialized, the
start and not_entered place contains a token. Similarly, the locked place will be initial-
ized with zero-locks for every available position.

3.7.2 Description of a Non-blocking Rollback-able Concurrency Strategy

The example given in figure 3.11 shows how a concurrency strategy that makes use of rollbacks
can be written down. Locks can be requested, when they are granted they can be either commit-
ted or aborted. If a lock is aborted the previous state will be recalled, if a lock is committed the
previous state is forgotten. Important features of this Petri-net are:

� The square place keeps track of the current state of the whiteboard as well as all previous
states that it needs to remember. This is done by coupling to every position a color (content
of that position) and a version. The type of this place is [X Y Content Version]. The
current version is the latest version an can be found by looking at the current lock-count.
The lock counts are stored in the lock place.

� The abort operation works by pulling the current version of a certain position and decreas-
ing the lock counter.

� The commit operation works by pulling a) the current version and b) the previous version
of certain place. The content of the current state is put back with the old version number.
The lock counter is decreased by one.
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Algorithm 5 Petri-net describing non-blocking rollback-able concurrency strategy.
(place "square" (foreach X 0 31 (foreach Y 0 31 [X Y 0 0])))

(place "lock" (foreach X 0 31 (foreach Y 0 31 [X Y 0])))

(place "locking"])

(intransition "lock_request" (message "Lock" (field "X" X) (field "Y" Y))

(input "lock" [X Y Count])
(output "locking" [X Y Count]))

(outtransition "lock_false" (message "LockFalse" (field "X" X) (field "Y" Y))

(input "locking" [X Y Count])

(output "lock" [X Y Count]))

(outtransition "lock_true" (message "LockTrue" (field "X" X) (field "Y" Y))

(input "locking" [X Y Count])

(input "square" [X Y Color Count])

(output "lock" [X Y (+ Count 1)])

(output "square" [X Y Color Count])

(output "square" [X Y Color (+ Count 1)]))

(intransition "commit" (message "Commit" (field "X" X) (field "Y" Y))

(input "locking" [X Y Count])

(input "square" [X Y Color Count])

(input "square" [X Y PreviousColor (- Count 1)])

(output "square" [X Y Color (- Count 1)])

(output "lock" [X Y (- Count 1)]))

(intransition "abort" (message "Abort" (field "X" X) (field "Y" Y))

(input "locking" [X Y Count])

(input "square" [X Y Color Count])

(output "lock" [X Y (- Count 1)]))

(intransition "setColor" (message "Set-

Color" (field "X" X) (field "Y" Y) (field "C" Color))

(input "lock" [X Y Count])

(input "square" [X Y PreviousColor Count])

(output "lock" [X Y Count])

(output "square" [X Y Color Count])
(guard (> Count 0)))
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square
X=0..31
Y=0..31
[X Y 0 0]

lock
X=0..31
Y=0..31
[X Y 0]

locking

lock(X,Y)
lock_false(X,Y)

lock_true(X,Y)

  commit(X,Y)  
 abort(X,Y) 

setColor(X,Y,Color)
(> Count 0)
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[X Y Count]
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[X Y Color (- Count 1)]

[X Y (- Count 1)]
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[X Y Color Count]

[X Y (- Count 1)]
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[X Y PreviousColor Count]

[X Y Color Count]

Figure 3.11: A rollback-able concurrency strategy.

� The Petri-net itself is unbounded. This means that, at runtime, the amount of tokens can
be infinite. For every acknowledged lock, the square place will receive one token extra.
Because there is no limit on how many locks can be requested, the Petri-net is unbounded.

� The Petri-net describes an interface that works non blocking. Locks can be queued and
handled one by one by the underlying component. If there is no required order upon the
message-handling this might lead to disastrous results. For instance, suppose a client has
locked 5 times the same position and request two abort and 3 commits. Depending on
the order in which the commits and aborts are handled completely different results might
occur. Later on we will require that the Petri-net finishes executing before a new message
can be handled. This is necessary to avoid this kind of problems.

3.8 The Do-Not ’s of Interface Petri-Net Descriptions

PETRI-NETS ALLOW THE PROGRAMMER of a component to document the required and provided
interfaces of a component. Nevertheless there are some issues which should be taken into ac-
count. Not every Petri-net expresses as much as another Petri-net. For instance, one Petri-net
of a component might specify that every incoming message can be handled at any time, while
another Petri-net will carefully offer pre-conditions and postconditions for this message to be
handled. To help the programmer write down Petri-nets that make sense we introduce some
guide rules to write them:

� A Petri-net interface description should always be fully connected. If we take the transitive
closure over any transition or place we should end up with the entire Petri-net.3 This is

3The transitive closure does not take the direction of arrows into account.
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important because otherwise we would have a set of unrelated message-handlers. A Petri-
net such as: if message a comes in, then message a goes out, if message b comes in, then
message b goes out does not say much more than what a simple syntactical description also
says.

� There should be no places, other than sink-places, which have no outgoing arcs. Such places
introduce some extra information in the Petri-net that can never be used because it is not
related to anything else.

� In the Petri-net notation introduced in this chapter we never explicitly mention the type of
a place, nevertheless the type of tokens that can arrive at a place should be consistent (= the
same for every possible transition). Chapter 8.3 contains material that allows one to infer
the types within a Petri-net.

� All possible incoming an outgoing messages of a component should be documented in the
Petri-net description. It is to be avoided at all times to specify only part of an interface. To
guarantee this a tracing adaptor is very useful.

� A Petri-net description of an interface should be as specific as possible. It should leave as
few transitions enabled as possible. For instance, it is always possible to indicate that a mes-
sage can be handled at any time and return an error when somebody sends this message.
This can be described in an interface, but if it is not part of the behavior of the interface it
should not be written down. Instead one should write down a Petri-net that clearly disables
this transition when the associated action doesn’t make sense.

� When a message arrives at a Petri-net, at most 1 place should be able to accept the mes-
sage. With the Petri-net notation described in this chapter it is possible to write a tran-
sition which reacts to a message of the type (message (field “X” 1) (field “Y” Y)),
and another transition that reacts to (message (field “X” X) (field “Y” 1)). When a
message (1,1) arrives, both transitions will be enabled at once. However, this should not
be allowed. With the material in chapter 8.3 it will be possible to check these kind of con-
straints automatically. However, we will not focus on them anymore.

3.9 Defining Conflicts

By means of Petri-nets we will be able to define clearly what a conflict is. Therefore we will rely
on the existence of a certain link between two Petri-nets. This link will consist of the common
transitions and will be called the functional link. All the other transitions within a Petri-net will
be considered to be part of the synchronization interface.

We will also assume that both Petri-nets are linked in such a way that the firing of one tran-
sition is mapped onto the firing of a similar transition in the other Petri-net (this can be accom-
plished by inserting an adaptor or by hardwiring the transitions by means of inserting common
places, as we’ve done in section 3.6.3). For instance, when a SetPosition message arrives, then
the first Petri-net will fire a SetPosition. Afterward, the second Petri-net (of the outgoing link)
also needs to fire a SetPosition, otherwise no communication will occur between both compo-
nents.

If the Petri-nets are used as such, then we can define a conflict as a situation in which an
incoming functional message � can be accepted by the first Petri-net, but not by the second Petri-
net because the required preconditions does not hold. E.g, an incoming setPosition that cannot
be execute on the server because the position is not locked yet (this will be described within the
server side Petri-net and will form the blocking pre-condition of the SetPosition transition).

Formally, two Petri-nets � � and � � are, given two markings � � and � � , in conflict when a
logic transition exists that is enabled in only one of both interfaces. We will use

�
� to denote a

conflict between two Petri-net markings:
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� � ���"� � 
 �� � � � �"� � 
�� �
� � � ������ � � � � � �1�����/ � � � �1����� (3.4)

3.10 A Word on Formal Analysis of Petri-Nets

BELOW WE WILL INTRODUCE a number of formal properties of Petri-nets. Not all of them are
decidable.

� Boundedness: A Petri-net is bounded if the set of all possible markings generated by a
petri-net is finite. This property is decidable, it is even possible to check whether the max-
imum number of tokens arriving at one place doesn’t become larger than � . In this case a
petri-net is called � � bounded. In our situation, we can not always talk about boundedness
because the Petri-net descriptions of an interface contains source places that can fire at any
moment, so the number of tokens is essentially unknown.

� Reachability: A marking � is reachable from marking � � under Petri-net � if there exists
a sequence of transitions leading from � � to � : � � � � � ��� � � � � � ��� �"� . This is a very impor-
tant property because it allows us to decide whether a certain error condition can be met or
not. Recursively we can define this as follows:

� reachable under � from � � ���
� � � � � � � � � �%� � � � � reachable under � from � � (3.5)

This property is decidable and forms the basis for many other properties. In chapter 8 we will
explain in more detail how this kind of information can be obtained.

� Deadlock-freedom: A Petri-net is deadlock free if every reachable marking enables some
transition. This property is decidable because it can be reduced to the reachability problem.
This definition will later on give rise to our notion of application deadlocks within our event
based system. (section 5.2 on page 80)

� Liveness: A Petri-net is alive if every transition can always occur again. Whether this is
decidable or not is still an open question. This will turn out to be an important property,
because it tells us that a certain concurrency strategy does not lock out certain functional
behavior. For bounded Petri-nets it is known that liveness is decidable because it reduces to
reachability. However, because we cannot always rely on boundedness because our Petri-
net can receive a token at any moment, we must assume that this property is undecidable.

� Homestate-problem: A Petri-net has a home state � if this marking can be reached from
every other marking. The question to decide now is whether a given marking is a homestate
for a certain Petri-net. This problem has been shown to be decidable.

� Non-Termination: The question whether a Petri-net will never terminate is undecidable.

For a survey on the decidability of Petri-nets see [EN94]. All the above properties are valid on
elementary nets and certain colored petri-nets, depending on the expression language chosen
within the colored net. However, a lot of petri-net variants exist which somehow introduce a
check for the absence of a token. In such Petri-nets a transition can be enabled if there is no token
at a certain place. If such a construction is added to a Petri-net one loses all decidability as is
shown in chapter 7 of [Pet81].
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3.11 Summary

IN ORDER FOR AN ADAPTOR to mediate the behavior of two conflicting interfaces, it needs extra
formal documentation. The formalism we will use to represent the behavior of an interface are
Petri-nets because it allows us to

� Express interfaces in a natural way.

� Express an interface up to a chosen level of detail, but still complete.

� Simulate the behavior of an interface without actually having the implementation of the
interface at hand.

After having introduced Petri-nets we explained the link between Petri-nets and the event based
model of chapter 2. This is done by means of in- and out- transitions. Depending on the situation
we can translate these special transitions to other Petri-nets. We gave two examples of this: a
tracing Petri-net adaptor between interfaces which are known to work together and an adaptor
between two different interfaces. We also gave an overview of possible formal analysis that can
be carried out on Petri-nets.

We wrapped up this chapter with giving some guidelines to the developer to write Petri-nets
and gave a short introduction to which properties are decidable for Petri-nets.

The Petri-nets we have described here will be used further on for two purposes:

1. Describe the behavior of the components in an understandable and useful way.

2. Describe the behavior of a liveness module.

Before we do so, we will focus on the last of the preliminaries: learning algorithms.



Chapter 4

Learning Algorithm

THE FINAL CHAPTER OF THE PRELIMINARIES gives an overview of learning algorithms and how
they can be used to mediate the semantic differences between different concurrency strategies.
Given the context of open distributed systems, this problem cannot be solved automatically. This
is because we cannot expect to have an adaptor available for every possible pair of conflicting
interfaces, so we need some automatic approach.

We have a problem in which we need to create an adaptor that is able to establish meaningful
communication between two components with a conflicting interface. As already mentioned
in the introduction, the adaptor will be divided in three modules. One module, the liveness
module, will be responsible for keeping the underlying component alive, a second module, the
concurrency module, will be responsible for implementing a suitable concurrency strategy and
a third module, the enforce-action module, is responsible for bypassing an existing concurrency
strategy. The second and third modules can be implemented in a formal way, the first module
however is computationally too complex to be able to handle formally (see liveness of Petri-nets
in section 7.3.1). Therefore we will resort to a learning algorithm.

Before we can look for solutions to the problem presented we need to investigate which tech-
niques we can use to keep the underlying component alive. We need to know what we can
expect from a given learning algorithm and what kind of information it expects. In this chapter
we first explain a number of important concerns with respect to learning algorithms in general,
after which we will briefly introduce a number of different learning algorithms available. Sec-
ondly, based on this information we will explore the possibilities we have to map our problem on
existing learning algorithms. Thirdly, we explain how genetic algorithms and genetic programs
are conceived, and how we will use them in this dissertation. Fourthly, we present reinforcement
learning algorithms.

4.1 A World of Variations

A LEARNING ALGORITHM IS CHARACTERIZED by the sort of problems presented, the sort of solu-
tions to be found and the environment in which the algorithm is supposed to work. For instance,
in our case we have a problem of conflicting interfaces: the solutions we are looking for are adap-
tors between the conflicting interfaces and the environment includes all the limitations we place
upon the adaptors. Examples of such limitations are ’an adaptor is a process’, or ’an adaptor can
only handle one message at a time’ to ’the conflicts we are dealing with are concurrency prob-
lems’. All these implicit or explicit degrees of freedom define the search space of the learning
algorithm.

Sadly there is no universal learning algorithm that will work optimally in every possible sit-
uation. Therefore learning algorithms are designed to work within certain environments. Learn-
ing algorithms cannot learn what they cannot see, and they don’t work very well if they see too
much information. (This is the typical bias versus variance problem). This is a bit of a disap-
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pointment for people introduced to learning algorithms because they assume that an intelligent
algorithm should be able to look for other clues than the ones found in their environment. Learn-
ing algorithms will not exhibit such behavior [Mor96]. Nevertheless they can be helpful in certain
domains such as character recognition, robot motion planning, robot activator control, regulation
systems and others.

The number of available learning algorithms is large, and the number of variations on every
algorithm itself is even larger. We can consider different criteria for classifying learning algo-
rithms. We will discuss them below:

� On-line/off-line learning: Some learning algorithms need to be trained off-line to learn how to
react in certain situations. Once this is done the resulting configuration is fixed and used in
an on-line situation. Consequently, when new problems occur the algorithm will not adapt
itself further. Other algorithms on the other hand will immediately learn what to do in an
on-line situation and doesn’t require a separate off-line training phase.

� Supervised/non-supervised learning: supervised algorithms require categorized examples.
After presenting these examples to the algorithm, adaptations are made to the configu-
ration such that the different categories are recognized correctly in the future. With non-
supervised learning, there is no explicit set of good and bad examples.

� Classifier/parameter tuning algorithms: Classifier algorithms are algorithms which learn to
classify certain input into categories. On the other hand, some learning algorithms are
designed to maintain a certain global requirement, which is influenced by a number of
different interacting parameters. Parameter tuning algorithms are useful to find out the
correct values for these parameters.

� Basic � general and general � basic: Within the category of classifier algorithms two sub
categories can be defined: basic to general learners and general to basic learners. The basic
to general approach will try to find a suitable descriptive feature of a set of examples such
that these examples belong to the same category. A general to basic approach initially
places all examples in the same category, and afterward tries to split large categories into
more specific, smaller sub-categories.

� Numerical/symbolic learning: certain learning algorithms work with integer or float values
to represent the environment, while others work with symbols (discrete values) to do so.
Numerical approaches are very well suited in regulation systems.

� State/stateless: some learning algorithms are stateless in the sense that they cannot remem-
ber previous events. Other algorithms do have state and can, when necessary, recall a
previous event.

� The biologically inspired model they simulate: these can be genetic algorithms, neural networks,
reinforcement learning or others.

Because we have a large number of criteria for categorizing learning algorithms, in practice se-
lection of a suitable algorithm is a very complex process. Somewhere, there is an abstract notion
of a learning algorithm (a neural network, a genetic algorithm, a classifier system) which is made
very specific, depending on the situation in which it should work. Therefore we will investigate
the applicability of a number of learning algorithms by tuning certain aspects of the algorithm.
However, before doing so, we present a number of different learning strategies:

� Tree Searches: Breadth-first, depth-first, priority-first searches: by searching the entire solu-
tion space we are almost guaranteed to find a the best solution. The environment is pre-
sented in an abstract form, the possible actions are enumerated and the possible outcomes
are defined. By checking every possible solution the algorithm can finally come up with
the best answer. The problem here is that most often, the search space is too large to be able
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to find anything useful within a reasonable amount of time. Nevertheless, this technique
is often used: chess-programs with a minimum-maximum strategy are an example. Usu-
ally, programs relying on this kind of problem-solving introduce some kind of pruning: a
method of weeding out complete branches that are assumed not to contain useful solutions.
However, using pruning is a dangerous and very delicate technique that requires excellent
domain knowledge.

� Genetic Algorithms/Programming: Genetic algorithms, which are inspired on a model of evo-
lution as defined by Darwin [Dar59] (the survival of the fittest) and Mendel [Gre65] (prop-
erties of sexual reproduction). The idea behind genetic algorithms is that a population of
solutions is measured in a certain environment. The test assigns a fitness to every individ-
ual. An individual that is not fit enough dies and is replaced by a child of 2 individuals with
a high fitness. This way (and by means of mutation), new individuals are created and the
overall fitness of the population rises. Genetic programs are genetic algorithms in which
the individuals are programs and fitness is measured by executing the programs.

� Reinforcement learning [SAG98] is an on-line technique. In contrast to the above methods,
reinforcement learning algorithms are defined by the kind of problems they solves. A rein-
forcement learning problem is a situation in which a learner needs to learn which actions
should be taken to maximize the received reward in the long run. Typically there is an inter-
action between the actions, the environment and the rewards: after taking some action, a,
possibly delayed, reward is assigned and the environment will probably change. Based on
the reward (or punishment) the learner receives, its behavior will be altered in the future.
A typical problem of this approach is the tradeoff between exploring the environment and
exploiting its knowledge.

4.2 Mapping our Problem onto a Learning Algorithm

TO CHOSE A SUITABLE LEARNING ALGORITHM for our problem, we need to define the boundaries
clearly.

� On-line/off-line: Whether the adaptor should be trained on-line or off-line is an important
question because of the nature of open distributed systems: the behavior of components
may change at any time. We could argue that training an adaptor off-line in a real world
setting, with the ability to reset participating actors, and afterward inserting it in the run-
ning system would produce a suitable result. However, this is not the case because most
often an off-line trained adaptor behaves statically when inserted in the running system: it
will not adapt to previously unencountered behavior. This means that when such a situa-
tion occurs the adaptor is completely at a loss and won’t work properly. Therefore we need
an on-line learner. However, when we use an on-line algorithm we should be absolutely
sure that the algorithm doesn’t place participating components in an unstable state. Hence
it should only try out things that are allowed in the given context.

� Supervised/non-supervised: The algorithm should work in a non-supervised way, simply
because we cannot define a suitable supervisor in an open distributed system. Furthermore
supervised learning is usually performed off-line, which we have chosen not to do. For the
sake of the argument, assuming that we could use an off-line learning strategy, then still it
would be very difficult to give specific examples of good or bad concurrency strategies. We
will come back to this issue in chapter 7.

� Symbolic/numerical: a characteristic of our case is that the environment is, to a large ex-
tent, symbolic: the actions presented at an interface are discrete. The difference between a
JoinActor message and an IsFree message is as important as the difference between an
IsFree message and an Unlock message. Therefore we need a learning algorithm which
works on symbolic input and symbolic output. Processing the environmental input can be
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either symbolic or numerical. However, because the nature of the interface adaptors is typ-
ically a problem of interaction conversion: ’when to send what’, processing the input is
preferably symbolic.

Given these characteristics of our problem, reinforcement learning seems to be a correct choice to
match our requirements. However, other approaches such as priority-first searches and genetic
algorithms will become very useful to investigate the power of certain representations. Therefore,
in the sections below we will introduce genetic algorithms and discuss the basics of a reinforce-
ment learning technique.

4.3 Genetic Algorithms

Figure 4.1: A Genetic Algorithm

BELOW WE EXPLAIN THE DETAILS OF A GENETIC ALGORITHM. We will also explain how we
use them as representational testers in this dissertation.

A genetic algorithm [Gol89] is an algorithm that tries to solve a problem by trying out a
number of possible solutions, called individuals. Every individual is an encoding of a number of
modifiable parameters, called genes, and is assigned a fitness that measures how well the indi-
vidual solves the problem at hand. From the pool of individuals a new generation of individuals
is created. This can be either by preserving, mutating or crossing over individuals. This process is
repeated until a suitable individual is found. An illustrative flowchart of this process is pictured
in figure 4.1.

The standard questions before implementing any genetic algorithm are: What are the individ-
uals and their genes? How do we represent the individuals? How do we define and measure the
fitness of an individual? How do we initially create individuals? How do we mutate them and
how do we create a cross-over of two individuals? How do we compute a new generation from
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an existing one? At the moment a genetic algorithm is implemented in a way that the individuals
are themselves programs, we call it a genetic programming algorithm. In our implementation,
the individuals could be protocol adaptors between communicating processes.

4.3.1 Genetic Algorithms as Representational Testers

Genetic algorithms as an evolutionary algorithm to solve the problem of conflicting concurrency
strategies is relatively useless in a running system, because a genetic algorithm works in general
off-line and can never guarantee that the resulting adaptor will work in every possible situation.
Indeed: it is very difficult to verify certain concurrency requirements such as deadlock-freedom
or no race conditions. However, we will use genetic algorithms is such a way that we turn an
argument against them to our advantage. This argument is the representational problem: how well
does a genetic algorithm perform given a certain representation of the problem [SB92,Sch87]. Or,
stated otherwise how can we create a representation that will offer a good fitness landscape.

To illustrate this, think of a problem in which an ant has to learn how to walk a line from
left to right. If we use a representation of our individuals in which we only offer the generation
process ’go left’ and ’go right’ primitives, the genetic algorithm will very easily find a solution to
the problem. However if we use another representation of the individuals with operators such
as ’current angle’, ’current position’, ’turn left x degrees’, ’turn right x degrees’, ’forward’ and
’backward’ it will be substantially more difficult to find a solution to the same problem. We will
use this property of genetic algorithms (which is, in general, a big disadvantage), to determine
the best representation of a solution within a given environment and fitness function. Specifically,
we will keep the same environment and fitness function and will measure how fast a solution is
found given a certain representation of the individuals. We consider that if a certain problem can
be solved easily under a certain representation, it is a good representation. If the same genetic
algorithm has more trouble finding a solution the representation might not be so suitable. In
chapter 9 and chapter 11 we will use this technique to validate different representations.

However, which kind of representation are available for our problem still needs to be dis-
cussed. In general two approaches are used. First, we can use hierarchically structured, human
readable/programmable programming languages such as Scheme, Lisp, Java and others to rep-
resent the behavior of the concurrency adaptor. Unfortunately, the inevitable syntactic structure
imposed by these languages complicates the random generation of programs. Second, we can
use a representation that is more suitable for random generation, but is in general not readable.
These approaches are mainly based on classifier systems, for which we will explain the basics
below.

4.3.2 Classifier Systems

We will now introduce one of the representations we have tested because we need them in chap-
ter 11. This representation are classifier systems. Classifier systems [Gol89] in cooperation with
genetic algorithms form a genetic programming1 approach that is symbolic and easy to imple-
ment. Moreover, given our problem, their symbolic nature can be to our advantage.

A classifier system is a kind of control system that has an input interface, a finite message list,
a classifier list and an output interface. The input and output interfaces put and get messages to
and from the classifier list. The classifier list takes a message list as input and produces a new
message list as output. Every message in the message list is a fixed-length binary string that is
matched against a set of classifier rules. A classifier rule contains a number of (possibly negated)
conditions and an action. These conditions and actions form the genes of each individual in our
genetic algorithm. Conditions and actions are both ternary strings (of 0, 1 and #). ‘#’ is a pass-
through character that, in a condition, means ‘either 0 or 1 matches’. If found in an action, we
simply replace it with the character from the original message. Table 4.1 shows a very simple

1On the other hand, if we use classifier systems in a Michigan approach, then, strictly speaking it is not genetic
programming anymore.
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example. When evaluating a classifier system, all rules are checked (possibly in parallel) with all
available input messages. The result of every classifier evaluation is added to the end result. This
result is the output message list. For more details, we refer to [Gol89].

Input message list = { 001, 101, 110, 100 }

Condition Action Matches Result
00# 101 111 yes 111
01# 1## 000 no /

1## ~00# ### no /
1## ### 1#0 yes 100, 110

Output message list = { 111, 100, 110 }

Table 4.1: Illustration of how actions produce a result when the conditions match all messages in the input
message list. ~ is negation of the next condition. A disjunction of two conditions is used for each
classifier rule. The second rule does not match for input message 001. The third rule does not
match because the negated condition is not satisfied for input message 001.

Using this representation for individuals of a genetic algorithm, we can easily introduce the
necessary operators: cross-over is performed by selecting certain bits within the classifier expres-
sions (genes) and exchanging them with the same genes from another individual. Mutation is
easily implemented by selecting a number of bits and simply changing them to something else.
The technique of using entire classifier systems as individuals within a genetic program is re-
ferred to as the Pittsburgh approach [Smi]. In comparison, the Michigan approach [LF93] treats
every classifier- rule as an individual. After having introduced genetic algorithms and classifier
systems we will now proceed with discussing reinforcement learning algorithms.

4.4 Reinforcement learning

Learner

Environemnt

action

state

reward

Figure 4.2: A reinforcement learner

THE APPROACH WE WILL USE to learn how to keep Petri-nets alive will be based on a re-
inforcement learning technique. Therefore, we will now introduce what a reinforcement learn-
ing technique is. Reinforcement learning [SAG98, KLAPM96] is originally an on-line technique
where a learner tries to maximize the accumulated reward it receives from the environment. The
actions the learner can take in a given situation are initially unknown, so the learner itself needs
to discover a good way of working. The typical challenge for a reinforcement learning algorithm
is that actions taken in a certain context will influence the future environment and rewards the
learner will get.

Typical to the class of reinforcement learning algorithms is that it is defined based on the
problem at hand. Reinforcement learning is defined as a solution to the problem in which a
learner, which interacts with its environment, tries to reach a certain goal. Such a learner should
be emerged in the environment, it should be able to sense the environment and it should be able
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to act upon the environment. The goal, or goals of such a problem should also be related to and
expressible in the environment. A more formal definition of the problem in a more formal way
will be given in section 4.4.4.

There are many kinds of reinforcement learning algorithms. For this dissertation, we will
focus on one particular branch of algorithms, called �7� � 
 
 -learners [Sut88, Tes92, SAG98]. The
following sections will discuss this branch of algorithms in more detail. We will first introduce the
elements most often encountered in reinforcement learners, second we will state the difference
between episodic and continual tasks. Third, we will formally express the requirements of a
reinforcement learning problem by means of Markov Decision Processes. Fourth, we will explore
the value function and policy of a �7� � 
 
 -learner. Fifth we will discuss the tradeoff between
exploration and exploitation.

4.4.1 A Typical Reinforcement Learner

A typical reinforcement learning algorithm contains 4 elements:

1. A policy, which defines the actions the learner will take in a given context. This is typically
what should be learned.

2. A reward function which defines the goal(s) of the learner as a numerical value. This function
defines the immediate reward the learner gets from the environment. For instance, a learner
searching for food gets a reward when it perceives food at its sensors.

3. A value function, which defines the actions that are good in the long run. Generally speaking,
the value of a certain situation is the maximum reward the learner can expect to receive
starting from that situation.

4. A model of the environment which represents what actions will turn one situation into
another. In the original reinforcement approaches, models were avoided and only trial-
and-error search was possible. However, some recent reinforcement learning algorithm
approaches benefit from the use of models.

4.4.2 Episodic versus Continual tasks

In general, a reinforcement learning algorithm works on-line, i.e. emerged in the environment,
without supervision. There is never an explicit training phase that teaches how the algorithm
should behave in a real environment. However sometimes the same learner will be allowed
multiple trials, in the form of episodes, to perform a task. An episode is the run of a learner until
a terminal state is reached. Such a terminal state can be either a dead-state or a goal-state. After
reaching such a state, a new episode starts, in which the same exact problem as before needs to
be solved. However, during every episode the learner will be able to develop its behavior further
until a suitable approach has been reached. Such a task is called an episodic task.

Other learning-tasks don’t have terminal states and simply require the learner to maximize
the total amount of reward it receives in the long run. Such a task is called a continual task.

4.4.3 Elements of a Reinforcement Learning Problem

Given the above general description of a reinforcement learning problem, we can now formally
introduce the elements of a reinforcement learning algorithm. In chapter 9, we will use this
formal approach to map the liveness problem to a reinforcement learning problem.

The action a learner takes at time � will be called � � � The actions available to the learner in
a situation 	 are denoted � ��	 
 . When an action � � is executed the resulting situation is denoted
	 � � � . The reward received after executing � � is a numerical value � � � � � Time is considered to be
discrete.
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4.4.4 Markov Decision Processes

A reinforcement learner can never take all possible information into account when deciding upon
its action, because either a) not all information is available, or b) it would require too much
space to store all information. Therefore reinforcement learners require the environment to offer
just enough information for the learner such that it can proceed. The situation-signal a learner
receives should summarize in a compact way the past which has lead to this situation, such that
no relevant information has been lost. If the state-signal succeeds in retaining this information it
is said to have the Markov-property. For example, a checkers position, containing the position of
all pieces on board, has the Markov-property, because it summarizes the past in a way such that
no necessary information is lost for the future.

Formally, if the situation-signal has the Markov-property, the next situation and reward can
be probabilistically expressed in terms of the current situation and reward. In the equation below
� � denotes a probability distribution.

� � ��	 � � �
� 	 � � � � � �

� � � � 	 � � � � � �
This notation denotes a chance that 	 � � �

� 	�� and � � � �
� � � if both 	 � and � � are given. In

summary, a problem needs to have the Markov property before it can be considered to be a
reinforcement learning problem.

4.4.5 The Value Function & Policy

We will now describe the value functions � ��	 
 , � ��	�� � 
 and policy � � 	�� � 
 as used by many rein-
forcement learners. A policy describes which action is favored in a given situation. To decide
this, the policy uses a value-function, which describes the maximum possible reward a certain
action could lead to. Typically, both the policy and the value function change over time. The pol-
icy balances the exploration and exploitation phases while the value function learns how good it
is to be in a certain state.

Formally, given a certain situation, the policy decides the probability of an action to be cho-
sen: � � ��	�� � 
 returns the probability that � � � � if 	 � � 	 . The value function defines what the
maximum future reward will be given a certain policy. However, because the time a learner
might run can be infinite, the expected future reward may be also be infinite. Therefore, a dis-
count factor is introduced which makes future rewards less interesting if they are placed further
in the future.

� � � � � � � ��� �
�

� � ��� � �
�

��� � �	�� (4.1)

where � 	�� � � .
Given this definition of a future reward, we can define the state-value function, which defines

how good it is for a learner to be in a certain state. Of course, this depends on which actions the
learner will take in certain situations, hence the policy � should be taken into account.

��� ��	 
 � � � � � � � 	 � � 	 � � � � �
	
�

 � �
�


� � �



� �
�
	 � � 	 �

In the above equation, � � ��� denotes the expected return value given that the learner follows
policy � . Similarly, we can define the expected return the learner receives when it takes action �
in state 	 .

� � ��	�� � 
 � � � � � � � 	 � � 	�� � � � � � � � � �
	
�

 � �
�


� � �



� �
�
	 � � 	�� � � � � �

� � is called the action-value function under policy � .
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Both the state-value as action-value functions cannot be calculated immediately because the
expected future reward � � �



� � is unknown. The goal of most reinforcement learning algorithms

is to find approximations of these value-functions. In chapter 9 we will investigate how we can
map the liveness problem (and our solution) to a function approximation of

� � 	 � � 
 .
� One such a technique estimates these functions by keeping track of all mean rewards fol-

lowing a certain state under a certain policy. This kind of estimation methods are called
Monte Carlo methods. This technique however requires the existence of episodes, other-
wise different action-decisions cannot be measured and the necessary averages of future
rewards cannot be calculated. [AdFDJ03]

� If a perfect model of the environment is present, the value-functions are known and as such
techniques such as dynamic programming can be used. However, they are computationally
very heavy and most often there is no perfect model of the environment. [KLAPM96]

� Other estimation methods such as Q-learning [PW94] do a function approximation of the
�

value-function. The technique used by this methods is called temporal difference learning
because rewards are backwards propagated and over time the correct future rewards will
be known. We will describe this technique in detail in section 9.3.2.

4.4.6 Exploration versus Exploitation

The difference between the policy and the value-function is that a value-function estimates what
future reward could be possible, while the policy decides which action will effectively be taken.
However, this action is not always necessarily the action that will lead to the highest reward. If
the best action is taken, the policy is exploiting the value-function, otherwise it is exploring the
environment. A tradeoff between exploitation and exploration must be made. If a learner ex-
ploits too much it will be blind to possibly better solutions which could result in higher rewards,
while a learner which keeps on exploring the environment in a fully random way will end up
accumulating very little reward.

An action selection method in which all information is exploited without ever trying new
paths is called a greedy action selection strategy. The drawback of such a method is clearly that it
gets easy stuck in sub-optimal solutions. A simple but effective variant of greedy action selection
methods are the � -action selection methods, in which most of the time the best available action
is favored, but in � % of the time an action is uniformly random selected from the set of possible
actions. Eventually, all possible actions will be selected once by this method.

This wraps up our introduction of reinforcement learning.

4.5 Summary

IN THIS SECTION we have explained that we need an on-line adaptive learning algorithm that
works on symbolic input and output. The algorithm needs to work on-line because of the nature
of open distributed systems. The algorithm needs to work with symbolic input and output be-
cause of the nature of interfaces. The internal representation however can be either numerical or
symbolic. As a result the only algorithm suitable to do the job is reinforcement learning, for which
we explained the basic operation.

Second, in this chapter we introduced the use of genetic algorithms as a means to test the
representation of a system, instead of an approach to solve a problem. If a certain problem can
be solved easily under a certain representation, it is a good representation. If the same genetic
algorithm has more trouble finding a solution the representation might not be so suitable. On
the same representational track we also introduced classifier systems because we will investigate
their usefulness chapter 11.

Third, we introduced the working of reinforcement learning algorithms. We explained the
policy-function, value-function, reward function and the requirements posed upon a problem
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before it can be considered to be a reinforcement learning problem. One of these requirements
was that the environment signal should summarize the past in such a way that no necessary in-
formation is lost. This property is called Markov. In chapter 9 we will need this property to ensure
that the approach we use is indeed a valid reinforcement learning problem. The reinforcement
learning technique introduced in this chapter will be used to create the liveness module.

We have now presented the preliminaries of this dissertation. In chapter 2 we explained the
event based system we will use. In chapter 3 we introduced the use of Petri-nets as a means
to formally specify an interface and in chapter 4 we introduced the learning algorithms we will
need later on. Given these preliminaries we are now able to shift our attention to the case we will
use to validate our thesis: concurrency strategy conflicts in open distributed systems.



Part II

The Case: Conflicting Concurrency
Interfaces
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Chapter 5

Introducing the Case: Concurrent
Systems

OUR CASE FOCUSES ON THE CREATION of a concurrency adaptor. When working in an open
distributed system, multiple components will require and provide all kinds of different lock-
ing strategies. If we want to interface with other components we need adaptors between the
different synchronization approaches. The problem with this is that there are many possible syn-
chronization approaches and that the number of combinations of different approaches is even
larger. Hence we need an automatic concurrency adaptor. This chapter explains the concurrency
problems we have in open distributed systems. We will gradually investigate a number of prop-
erties of concurrency guards in open distributed systems. This will enable us to identify a set of
conflicts in chapter 6. The selection of these conflicts will be based on a number of variabilities of
the different presented conflicts. Therefore we will present these at the end of this chapter.

5.1 Introduction

IN THIS CHAPTER WE INTRODUCE OUR CASE, which is concurrency. The motivation of choosing
concurrency as a case, lies in the fact that we feel that concurrency is a problem that is often
overlooked in open systems. As we will explain, every component that can be used by third
party software, needs to offer a concurrency strategy. When multiple components offer different
concurrency interfaces, conflicts might arise that have nothing to do with the core functionality
of the component involved. This makes our case interesting because if we can mediate these
conflicts automatically, we have actually removed a non-functional concern for developers.

For practical purposes the problem of concurrency in distributed systems will be simplified
to its bare essentials. Instead of using real database servers or transaction servers and real clients,
we will create our own mini-version of the problems present in these software systems. We do
this for a number of reasons:

1. We want to offer an example of a client-server architecture, which covers all the essentials.
So, our example should include concurrency problems, it should clearly illustrate the rea-
son why one needs abstract techniques to manage concurrency and it should be able to
express the notion of resources.

2. We want to minimize the core functionality of the program, because we this makes under-
standing all the different concurrency strategies more understandable.

3. To be able to use these concurrency strategies as a case we need to implement them under
the form of components. Since it is hardly possible to find an existing combination of clients
and servers which offer all kinds of different concurrency strategies but with the same core
functionality, we had to create them ourselves.

79
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The approach we use in this chapter to present concurrency is our own work. When appropriate
we will point out papers that might be of interest to those who need more information. In this
chapter we will focus on different concurrency strategies in such a way that it allows us to define
a set of interesting conflicts in chapter 6.

5.2 Concurrency

THERE ARE TWO REASONS why distributed systems are concurrent systems. First, because they
are running on multiple computers, where all those computers run in parallel and share re-
sources. Secondly, because often distributed computations allow multiple users and have to
support sessions. Concurrency might lead to a number of problems.

1. Race conditions: these occur when at least two sessions (directly or indirectly) read and write
a shared variable in such a way that the order of the events determines the outcome of the
application. The result of race conditions is that the application behaves indeterministically:
depending on the order of execution different application states will occur. This indeter-
minism is hard to debug and all too often not wanted because it was not anticipated by the
programmer. Often people tend to believe that race-conditions require a shared memory,
however, this does not mean that race-conditions cannot occur in an event based system.
For an example of this see section 2.7 on page 33.

2. Deadlocks: A group of components is deadlocked when there exists a closed cycle of compo-
nents, each in turn waiting indefinitely for an event of the next component. Our definition
is largely based on the notion of deadlocks within state-machines. When a Petri-net arrives
in a situation where it still contains tokens, but no pre-condition holds for any transition,
then it is in a deadlocked situation. (see 3.10 on page 65 or [Mur89, EN94]). In compari-
son to the operating system definitions of deadlocks, we find all necessary and sufficient
conditions. A deadlock in operating system terminology requires [Bro97, Dic00]:

(a) mutual exclusion, which means that only one process at a time can access a resource.
In our event based system this is the case because a component can only serve one
application session at a time. However, if the components themselves do offer a con-
currency strategy that keeps track of session id’s and allows multiple sessions to access
the same resource then we might not have a deadlock. This is consistent with the Petri-
net definition, because in such a case the Petri-net would have enabled transitions to
support the new session.

(b) hold and wait, which means that a session may hold some allocated resources while
waiting for others. In our case this depends on what kind of concurrency strategy is
offered by the involved components. However, also here we can determine whether a
situation is a deadlock or not by looking at the involved Petri-net markings.

(c) no preemption, which means that no resource can be taken away by force. In our def-
inition we assume that no component can be taken away because this would make it
impossible for the application to execute.

(d) circular wait, which means that a closed chain of processes exists, such that each process
holds a resources required by the next process in the chain. In our definition this is
simply translated to the notion of components.

3. Livelocks: when measure of control is taken against race-conditions under the form of non-
waiting locks, or when a measure of control is taken against deadlocks, by means of trans-
actions, we can end up in a situation in which the system livelocks. In such a situation
two processes start locking but encounter a problem halfway and release their locks again.
They both restart again, again to release their resources after a while. In such a situation, the
system is not waiting, on the contrary, it is working very hard, but it is not doing anything
useful.
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4. Starvation: an extra problem in concurrent systems is the problem of scheduling. By allow-
ing processes to lock and unlock resources, some processes (or a group of processes) can
(each in turn) lock a resource resulting in this resource being locked for a relatively long
time thereby exceedingly slowing down other processes.

Understanding concurrency problems can be hard, solving them can be even harder, especially
if we are faced with the possibility of partial failures.

5.3 The Whiteboard Case

AS A CASE THROUGHOUT THE THESIS we will use a whiteboard. A whiteboard is an application
on which a number of different actors (users or other computer programs) can put and get ele-
ments. Normally a whiteboard is used as a support tool in group discussion systems. We will use
it as a means to illustrate concurrency problems graphically. First we will discuss the whiteboard
and its actors without any concurrency primitives. Afterward we will explain the problems and
a number of standard solutions.

Actor 1

Actor 6

Actor 5

Actor 4

Actor 3

Actor 2

Actor 7

Actor 8

Black Spot

Figure 5.1: The whiteboard: every actor is represented by a color. Actor 1, 2 and 3 are moving dots. Actor 4
is a moving line and actor 5 and 6 are flood fills.

5.3.1 The Interface

The whiteboard has a very rudimentary interface:

� in JoinActor() is an incoming message for the whiteboard. As a result
out ReturnJoinActor(<Integer|Result>) is sent. The integer sent back to the client is
the color that is assigned to that actor and can afterward be used to color squares on the
board.

� in IsFree(<Pos|Pos>) can be sent to check whether a certain position is empty or not. Pos
is an � , and 
 coordinate. As a result out ReturnIsFree(<Pos|Pos>, <Boolean|Result>)

is sent. When Result is true the position specified by Pos is free, otherwise it is not.
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� in SetPosition(<Pos|Pos>,<Integer|Actor>): to set a certain position to the actor’s
color, send SetPosition to the whiteboard. When done the whiteboard will send out

ReturnSetPosition() back to the requester. If the supplied integer ’actor’ is zero, then
the position is emptied. For illustrative purposes, when a position is cleared, a residue, in a
lighter color, will remain: if an actor puts yellow on a certain position and then clears it that
position will become lighter yellow and will be free for others to put something in. This
way a trail can be seen where the actor has already been. See figure 5.1.
out RETURN_SetPosition(): response of a SetPosition call.

The whole whiteboard itself is one component. It has one thread running and doesn’t share data
with other processes. Every actor on the whiteboard is also a component. There are 3 actors we
will discuss: the moving dot actor; the moving line actor and the floodfill actor.

5.3.2 The Horizontally Moving Dot Actor

Algorithm 6 The horizontally moving dot algorithm
��� � � � � � � � � ��

� � 	� � � � ������� � � 
 � � ������� � � 
 

loop

����� �&� � � � 	 � ��� � � �
5: if 	�	�� ��� � � ����� � 
 then

� � � � � 	�������� � � ����� � � � ��� � �	

� � � � � 	�������� � � � � 	 � ��

� � 	� � ����� �

else
10: ��� � � � � � � ��� � � �

The moving dot actor uses a simple algorithm to move over the whiteboard. It first checks
whether the next position , left or right of the current position, is free. If it is it will mark that
position and clear the old one. If the position is not free then it will change its direction. In figure
5.1, the red, orange and yellow actors are moving dots. Algorithm 6 covers the details. Please
note that in all implementations we give we have to take care of the non blocking nature of the
component system. In fact, we cannot wait until IsFree or SetPosition returns. However, for
the sake of simplicity we omitted the original complex non-blocking code and replaced it with a
more readable blocking version.

This simple actor requires and provides the following interface:

� out JoinActor() when starting up the moving dot actor will join a whiteboard. After
sending out this message the actor will passively wait for an
in RETURN_JoinActor(<Integer|Result>).

� out IsFree(<Pos|Pos>) will be sent by the moving dot actor to check whether the next
position to move to is free. The dot will wait until an
in RETURN_IsFree(<Pos|Pos>, <Boolean|Result>) arrives.

� out SetPosition(<Pos|Pos>,<Integer|Actor>) is sent out to set and clear the position
(hence, move the dot). After every SetPosition the moving dot will wait until an in

RETURN_SetPosition() arrives.

5.3.3 The Moving Line Actor

Aside from this simple actor, there is a more interesting figure that can be moved around
the board: the moving line. It is a line of 10 pixels high, with a trailing dot behind it. The
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Algorithm 7 The moving line algorithm
� � 	� � � � ������� � � 
 � � ������� � � 
 

��� � � � � � � � � ��

��������� � � � � � 	 � � � ��

� ����� ��� � � � ��� ��


5: loop
����� � � 	�� � � � 	 � ��� � � �
� � � � � 	�� ����� � ����� ������� � � � � 	 � 
 � ����������� 
 � ��

� � ��� � ��� �!� � ����� �
� � � �

10: while � � � � and � � ��� � ��� � do
� � ��� � ��� �!� � � � ��� � ��� � and 		�� ��� � � ����� � � 	 � � � ����� � � 	 � 
 � ��

� � � � � �

if � � ��� � ��� � then
��������� � � ������� � � � ��� �����

15: if ����������� 
 � � or ��� ������� 
 � � then
� ��� ����� � � � � ����� ���

for � � � � to � � � do
� � � � � 	������ � � � � � 	 � � � � � 	 � 
 � ��� � 


����������� � � � � � 	 � �
20: � � � � � 	�������� � � ������� � � � � � � 	 � 
 � ����� ��� � 
 � �� � � �	


for � � � � to � � � do
� � � � � 	������ � � � ����� � � 	 � � � ����� � � 	 � 
 � ��� ����� � �	


� � 	� � ����� � � 	
else

25: ��� � � � � � � ��� � � �

standard algorithm of the line (algorithm 7) checks whether the next line is free (lines 9,10,11 in
the algorithm). If it is, the old line will be removed (lines 17,18 ), the trail will be drawn (line 19)
and the next position of the line drawn (lines 20,21). The line’s trail goes up and down relative
to the origin of the line (lines 14,15,16). If the line bumps into something then it will change
direction (line 24). Before checking whether the next line is free, the trail is removed, otherwise
the line would not be able to turn around. (line 7). The interface required and provided by the
line actor is exactly the same as the one for the moving dot actor.

5.3.4 The Floodfill Actor

The last actor we will discuss is the floodfill actor. This actor tries to fill the whiteboard by
enlarging its own domain. The standard algorithm (algorithm 8) keeps a set of points that are
owned by the flood actor, a set of border points and a set of seed points. A border point is a point
owned by the floodfill actor, but with not all neighbors owned by the actor. A seed point is a
set of points that are possible candidates to fill. They are not yet owned by the actor. Normally
a point starts in the seed set. If the point is free, the point becomes a border and all 4 neighbor
points are added to the seed set. If a point is solely surrounded by points owned by the actor
then it becomes an owned point. Points that became owned are cleared on the whiteboard but
remain owned.This can be seen in figure 5.1. In the figure the purple and turquoise actor are
flood actors. The interface required and provided by the flood actor is exactly the same as the
one for the moving dot actor.
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Algorithm 8 The flood actor algorithm
� 	 � � ���� � ���
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 � � � 	 � � � � 
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5.4 Race Conditions

WHEN WE LOOK AT THE INTENDED BEHAVIOR of all actors, we see that it is of vital importance
that no actor crosses the boundaries of another. Dots should not go through each other, lines
should bump, dots should not enter floodfill actors and floodfill actors should not cross each
other either. Furthermore a line should always have a trail that goes up and down relative to the
origin of the line. In this section we will illustrate that none of these requirements are met if we
don’t use any concurrency primitives. Let’s investigate some of the problems

5.4.1 A Selection of Race Conditions
� Moving dots can go through each other: Figure 5.2 illustrates how two dots (as specified in

algorithm 6) can pass each other without bumping. The problem occurs when both dots
detect that a certain position is free and then both take that position. Afterward both dots
will simply continue their way and since no other dot forms an obstacle, they can proceed.
The netto result is that they did not collide, a thing they are required to do.

� Dots can enter a floodfill: As stated in algorithm 8, the floodfill actor will first enlarge its set
of possible seeds, in the next iteration a seed will be taken and checked whether it is free, if
it is free the seed becomes ours. It is in this last step that a concurrency problem can occur:
between checking whether the position is free and actually taking it. Figure 5.3 illustrates
this.

� In the same way line actors can pass each other and floodfill actors can enter each other: They
will check whether a position is free and then acquire that position, blind to the fact that
another actor has already occupied that position.

5.4.2 Different Solutions towards Race Conditions

The behavior described above is typically called a race condition. It means that two (or more)
concurrent processes try to get to the same resources and are actually ’racing’ to be the first. To
deal with this kind of problems, a number of alternate tracks exist.

1. Detecting concurrency problems: a big problem of concurrency problems is that they are very
scheduler dependent. We can work for years with the same code and after changing the
scheduling behavior of the kernel we notice how things start to fail sometimes. At the
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Figure 5.2: How two moving dots can pass each other without bumping.
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Figure 5.3: A moving dot crossing the flood actors boundaries
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moment we see these spurious errors we probably want to reproduce the bug and start de-
bugging. The problem here is that under a debugger the scheduling behavior of programs
tends to be different and concurrency problems don’t show up anymore. This is what is
called an Heisenbug. There is work done to help people debug such systems by means of
record and replay. During the record phase a debugger runs the program and simply re-
members the order in which locks or acquired or released. Afterward the debugger can
replay the original execution, with the same order of events [RB02, Gar97]. Within thread
based system, Lamport clocks [Lam77] are typically used for this. Within event based sys-
tems we can simply record all events. [CL94] discusses how such a the ordering of events
within a message passing system (such as the one we are using) can be implemented.

2. Formal verification: What we often want to do is to check programs for concurrency problems
in a more formal way. Therefore, something often done to describe and detect concurrency
problems is to specify pre- and post-conditions. In our case, for the moving dot actor, a
possible precondition could be: the next position is free and the current position is mine.
The postcondition after moving would then be: the next position is mine and the current
position is free. It is clear that such a pre- and postconditions can be used to detect race con-
ditions at runtime. If we want to check the possibility of race-conditions statically, formal
techniques exist that will automatically deduce how race conditions can be created. [CG]

The problem with open distributed systems is that we cannot verify those pre- and postconditions
if we don’t have all participating actors at hand. Now, let’s see how concurrency problems can
be solved in open distributed systems.

5.5 Centralized Atomic Operations

NONE OF THE BEFORE MENTIONED RACE CONDITIONS would exists if we modify our server a
little bit. Instead of offering only an IsFree and SetPosition operator, we could add an extra
operator to the whiteboard:

� in MoveWhenFree(<Position>, <Direction>): Position is the position of the point to
move. Direction can be either left, right, up or down. This operator will check whether
the point we’re moving to is free. If it is it will swap its content with position.After doing
so, a message out RetrunMoveWhenFree(true) will be sent. When the position was not
free a message out ReturnMoveWhenFree(false) is sent. This operator will also return
false (meaning not free), when the target position is used by the same color as the original
requester.

Figure 5.4: Moving a line with the MoveWhenFree operator.
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For most actors (the moving dot actor, the line actor and possible others), this solution might
work, however this solution cannot guarantee that every possible use of the component an be
expressed in such a way that no race-conditions occur. For instance, with this operation, it would
be very difficult to make the floodfill actor to work correctly, without race-conditions. The biggest
problem is that the floodfill actor in essence doesn’t move, instead it takes new points if they
border to the actor. As such implementing a floodfill actor in a safe way would mean that we
can only move dots away from a position that is bordered by three other flood-dots. This would
require an initial seed of at least 5 positions and would require additional code to input new
blocks in the interior of the floodfill.

This solution illustrates that extending a server to support every possible critical section in one
message is no solution at all, especially not in open distributed systems. Instead, it is a very local
solution only to solve the problem of specific clients. Therefore we need some better solution. We
cannot for every possible critical section end up modifying the server.

5.6 Non-Waiting Atomic Operations & Starvation

IN OPEN DISTRIBUTED SYSTEMS we need some form of critical sections, otherwise different actors
can change the internal state of a component, without taking into account other components.
Placing all possible critical sections at the server is not good enough because this would not
allow unanticipated behavior for other components. Therefore we need a more abstract way to
specify our critical sections. In fact, we need to specify the beginning and the ending of a critical
section in such a way that no component allows access from another component unless it has
obtained an atomic operation id. In such a scenario every component would provide a certain
synchronization interface, for instance, defined as:

in enter(<Integer|Id>)
out enter_ok(<Integer|Id>)
out enter_fail(<Integer|Id>)
in leave(<Integer|Id>)
out leave_ok(<Integer|Id>)
out leave_fail(<Integer|Id>)

The implementation of the component offering such an interface of course requires some changes.
to ensure that the requester can execute operations upon a server component, every incoming
message id should be verified. This should be checked for every action, but this can be done
quite easily.

How the semantics are defined is a bit more difficult. Two orthogonal features need to be
investigated. First there is the question whether those atomic operations are reentrant or not,
second there is the problem whether an atomic operation waits or not when entering. In total
this gives about 4 essentially different synchronization interfaces. We will explain two of them in
more detail below. The other two are reserved for the next section. We will define the semantics
of the different approaches by means of pseudo code.

5.6.1 Non-Reentrant Synchronization Semantics

Non-waiting, non reentrant enter/leave synchronization semantics. (Algorithm 9). This way of
locking allows the interface requester to start an atomic operation on the interface provider by
entering it. The enter takes an argument that should be a global unique identifier. In return
the interface provider will return EnterOk when the atomic operation could be started, Enter-
Fail otherwise. At the moment a component has an atomic operation initiated on the server it
cannot re-enter the server, not even from within the same atomic operation. This is called non
re-entrance.
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Algorithm 9 non-waiting, non reentrant, enter/leave locking semantics
������� � � � 
 � � � � � ��

incoming � � � ��� � <Id> 


if � ���!� � � � 
 � � � � ��
 then
������� � ��� 
 � <Id>

5: ������� ��	 � ��� .. � � � ��� �:� � <Id> 

else

������� � 	 � ��� .. � � � ��� � ����� � <Id> 

incoming � � � "�� � <id> 


if � ���!� � � � 
 � <id> then
10: ������� � � � 
 � � � � � ��


������� � 	 � ��� .. � � � " � �:� � <Id> 

else

������� � 	 � ��� .. � � � " ��� � ��� � <Id> 


5.6.2 Reentrant Synchronization Semantics

Algorithm 10 non-waiting, reentrant enter/leave locking semantics
������� � � � 
 � � � � � ��

������� � ��� � � � � �
incoming � � � ��� � <Id> 


if � ���!� � � � 
 � � � � ��
 or ������� � � � 
 � <Id> then
5: ������� � � � 
 � � <Id>

������� � ��� � � � � � ����� ����� � � � �
������� � 	 � ��� .. � � � ��� �:� � <Id> 


else
������� � 	 � ��� .. � � � ��� � ����� � <Id> 


10: incoming � � ��" � � <Id> 

if � ���!� � � � 
 � <Id> then

������� � 	 � ��� .. � � � " � �:� � <Id> 

������� � ��� � � � � � ����� ����� � � � �
if � ����� ����� � � � � then

15: � ����� � ��� 
 � � � � � ��

else

������� � 	 � ��� .. � � � " ��� � ��� � <Id> 


Non-waiting, reentrant enter/leave synchronization semantics. (Algorithm 10). When such an
interface is provided, the same interface client can start multiple nested atomic operations on
the server. This is especially useful when working with recursive functions. The algorithm itself
simply keeps a lock counter that is increased every time a client enters. When a client leaves an
atomic operation, the lock counter is decreased and LeaveOk is sent back. At the moment the
lock counter reaches zero lockedby is emptied and another actor can enter an atomic operation.
Currently the reentrant semantics return LeaveOk when an atomic operation is ended. This is not
necessarily always the case. It would also make sense to differentiate here. For example, return a
LeaveNested when there are still other atomic operations running and a LeaveOk when the last
atomic operation has ended. In the same way, the non-reentrant semantics could be changed to
return EnteredAlready when such an atomic operation has already been started.
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5.6.3 Discussion

The two algorithms presented here, require the client to supply a globally unique identifier to the
server. This is clearly not a realistic requirement. Normally the server will choose a number of its
own and return that as a unique identifier. In section 5.10 we will present more about this.

The two above algorithms are both non-waiting algorithms, this means that if the interface
provider returns an EnterFail message, then the interface requester will need to retry again at a
later time. This is a source of trouble, because, chances are high that the interface requester will
immediately try to enter again until he finally could start his atomic operation. This leads us to
the following problems:

� The more components are accessing the server, the more useless network traffic will take
place. This network traffic would mainly consists of enter requests and EnterFails.

� Moreover, since there is no fairness involved, the client flooding the server the most will
probably obtain the server lock first. Clients with a slow network connection, located at a
distance will have no fair chance to lock the server.

5.7 Waiting Atomic Operations & Deadlocks

TO AVOID NETWORK CONGESTION and starvation of distant components, we will now investi-
gate how the earlier defined API can be implemented with waiting semantics. We will again
distinguish between reentrant and non-reentrant semantics.

5.7.1 Non-Reentrant Synchronization Semantics

Algorithm 11 Waiting, non reentrant enter/leave locking semantics
������� � � � 
 � � � � � ��

� ������� � �� � 	 � � � new queue()
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 � � � � ��
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 � � <Id>
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10: if � ����� � ��� 
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 � � � � � ��

if � � ������� � �� � 	 � � � � � ��
 � 
 then

� � � ��� � � ������� � �� � 	 � � � � � � 
 

15: else

������� � 	 � ��� .. � � � " ��� � ��� � <Id> 


Waiting, non reentrant enter/leave locking semantics: algorithm 11). These semantics are the same
as the non-waiting locking semantics. The biggest difference is when somebody wants to enter an
atomic operation on the interface provider. At the moment there is already an atomic operation
running, the requester will be placed in a queue. As such, an EnterFail is never returned,
instead the possible EnterOk is held back for a later time. At the moment a leave request arrives
with the correct id, the atomic operation is finished and the first in the waiting list is informed
and can start with his set of atomic operations.
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5.7.2 Reentrant Synchronization Semantics

Algorithm 12 Waiting, reentrant enter/leave locking semantics
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Waiting, reentrant enter/leave synchronization semantics. (Algorithm 12). The reentrant version
has a similar protocol behavior. The only difference is that this algorithm will increase and
decrease a lock counter in response to Enter and Leave respectively. At the moment the lock
counter reaches zero, the next waiting request is considered. Some variations could exists upon
these semantics.

5.7.3 Discussion

The non-waiting atomic operations had the problem of starvation and network flooding. In the
same way, waiting locking semantics have their own problems: deadlocks. A deadlock is techni-
cally speaking a situation in which multiple processes are waiting for each other to do something.
So they are all virtually dead. There are two interesting situations.

� A typical deadlock with the non-reentrant locking strategy is a deadlock within one com-
ponent. If a client component tries to lock the server component twice, due to some nested
function, it will simply stop and place the second component in the queue. Of course since
the client component cannot proceed, because it still doesn’t have the lock, it keeps on wait-
ing, thereby never releasing the first atomic operation started by it. The result is a deadlock,
due to non re-entrance.

� Another deadlock situation happens when two components try to lock each other (due to
some external request). This is pictured in figure 5.5. Component � starts a green atomic
operation on component � . Component � accepts this. Component � starts a purple
atomic operation on component � . Component � accepts this. Component � wants to act
on component � , as a result component � needs to lock component � . This is impossible,
thus component � is placed in wait. Component � now requests component � to act.
Component � needs to start an operation on component � . This is also impossible, so now
component � is also placed in wait. As a result all components stop working.
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Figure 5.5: Mutual exclusion of two components. All components offer a waiting locking strategy.

Aside from the fact that deadlocks stop components from doing anything useful, there are some
extra problems involved. Since some components simply stop working within a deadlock, other
components that are dependent on those deadlocked components will eventually also cease to
work. In our small example, component � and component � are in such a situation. Eventually,
a whole application may end up deadlocked.

5.7.4 Different Solutions to Deadlocks

There are 3 different approaches to solve the problem of deadlocks:
� detection of deadlocks: this is a technique in which deadlocks are detected at runtime and

then broken by some means. Typically a detected deadlock is solved by removing one or
all of the offending processes. This track will not be investigated further in this dissertation
because it effectively renders the application useless. Another technique is rolling back
the entire state of one (or all) of the involved components to an older state and restarting
them from there. In our situation this is not possible because it is very difficult to roll back
a distributed state to a previous moment in time. Also the possibility of extra user input
might complete this scheme.

� avoidance of deadlocks: this technique requires the ability to know the future locking behav-
ior of the involved components. This knowledge can dynamically lead to a correct decision
to avoid deadlocks. However, this information is difficult to obtain if the components are
not written to specify which resources they will lock in the future.

� prevention of deadlocks: this technique alters the variables of the surroundings in such a
way that deadlocks doesn’t occur. Different approaches are possible

– instead of waiting for locks, a component can return a lock_false message. By doing
so, deadlocks will no longer occur. We have already discussed this approach in section
5.6. In the next section 5.8 we will discuss some problems involved with this technique.

– define a linear ordering on the locking requests such that circular waits are no longer
possible. We will discuss this in more detail in section 5.8.3.

5.8 Locking Resources & Livelocks

IN THE ABOVE MENTIONED SYNCHRONIZATION SOLUTIONS, we specify the start of an atomic
operation on the server with some form of message. Once an atomic operation is started no
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other actors can start an atomic operation. This is not always as efficient as it could be. Consider
our whiteboard example. If a client wants to set the color of two squares, it has to start an atomic
operation on the whole server. This is in essence the same as locking the full server. Suppose now
that a second actor also wants to draw some pixels but on the opposite side of the whiteboard. It
is clear that those two operations can coincide, but won’t because both need a server lock.

5.8.1 Granular Operations: Locks

A solution to this problem is to introduce a lock for every square on the whiteboard. In doing
so a client actor can request the server to lock a number of squares, which it can access after-
ward, but still concurrently with other actors that have locked other positions on the board.
The API for such a lock is extended somewhat. Instead of declaring where we want to enter
we specify what position to lock (or unlock). The semantics can be implemented in the same
way as specified before. We can have a combination of a waiting/non-waiting strategy with a
reentrant/non-reentrant locking strategy. With respect to terminology, such locks are typically
called semaphores. A reentrant lock is sometimes called a counting semaphore, while a non
reentrant lock is often called a binary semaphore. [Lea00]

We introduced a lock for each square on the whiteboard. We could also introduce a lock per
� -line or a lock per 
 -line on the field, or a lock per 4 squares on the field. We choose to map our
resources to squares.

Algorithm 13 The moving dot algorithm whereby a waiting lock protocol is expected from the
server.
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Using a waiting non reentrant locking strategy to solve the concurrency problems when mov-
ing dots, flooding the whiteboard or moving lines with their trail is easy. Algorithm 13 shows
how this can be done. Before actually checking whether a position is free, we lock the current
position as well as the next position. If the next is free, we move and release both locks. If the
position is not free, we also release both locks but we turn around. The same thing can be done
for the moving line actor and the floodfill actor.

5.8.2 Problems of Fine Grained Locks: Livelocks

With this solution there still exists a plethora of problems:

� When using a waiting lock strategy we have the problem of deadlocks. See figure 5.6. At
the moment the yellow actor wants to lock its area, that is the current position and the next
position, it will first try to obtain a lock at the next position (2,1) and then try to lock its own
position. The problem arises when the red actor now has already locked its next position
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Yellow 
Moving Dot

Red
Moving Dot

Lock_Ok(3,1,RED)

next = (3,1)
Lock(3,1,RED)

pos = (3,1)
Lock(3,1,YELLOW)

next = (2,1)
Lock(2,1,YELLOW)

Lock_Ok(2,1,YELLOW)

pos = (2,1)
Lock(2,1,RED)

Playfield with 
Waiting Square Lock Protocol

Figure 5.6: Mutual exclusion between two actors trying to lock the same area of the whiteboard. A square
layered above another square denotes a lock. So the yellow square above the Red square means
that the position is colored red, but is locked by yellow.

(3,1), our current position. In this situation both dots become deadlocked because they are
both waiting to acquire the same lock, a lock that will stay locked until one actor gets the
locks it is waiting for.

Locked
by

Green

Locked
by

Orange

Figure 5.7: Illustration of a livelock. The acquiring of locks for green and orange will continue until one
finally succeeds in getting a whole line locked. This can take some time.

� When using a non-waiting locking protocol the normal behavior of the client is to try to
lock a certain position and if it doesn’t succeed release all the locks acquired yet. This can
result in a livelock (see figure 5.7): a situation in which a number of clients try to lock the
same position over and over again and stumble every time over the same problem. In our
example this can be best visualized by using the line actor. Suppose that the line actor locks
all its squares from top to bottom when going left, but from bottom to top when going
right. At the moment both lines encounter each other at the same � -coordinate, then at
a certain moment they both will need to acquire a position, common to both. Both will
release all their locks and retry. This is called a livelock and results in starvation of both
processes. The larger the overlapping part between the lines the longer this livelock will
persist, simply because one of both lines needs to keep away from the shared part during
the entire locking operation of the other actor. The larger the shared part, the more unlikely
this becomes. In other terms: the more shared resources involved, the longer a livelock will
persist, unless an absolutely unfair scheduling system is introduced.
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5.8.3 Solutions to Livelocks

Looking at these problems, we see that there are a number of possible solutions when working
with non nested locks.

A typical solution to this kind of problems is called staircasing. Here locks should be acquired
in a certain order. In our example it would make sense to sort all squares from left to right and
top to bottom. When doing so, deadlocks are impossible. When a lock is requested and cannot
be assigned we are sure that the other actor can continue because it already has all the locks it
needs with an order smaller than the one it is requesting. As such, we don’t need to unlock any
of our already acquired locks. When using staircasing it is important to acquire the locks in order.

Algorithm 14 How locks can be acquired within one atomic operation on the server.
��� � � � � � � � � ��

� � 	� � � � ������� � � 
 � � ������� � � 
 

loop

����� �&� � � � 	 � ��� � � �
5: � � ��� �4� ������ � � � 


� ����� � ����� � 

� ����� � � � 	 

� � � ��� ������ � � � 

if 		!� ��� � � ����� � 
 then

10: � ���

Another possible solution is to make locking and unlocking itself an atomic operation, so ex-
tending the lock and unlock operations with a set of locks to acquire or release. (See algorithm 14).
The two green lines start and stop the ’atomic locking operation’. Within this atomic operation
two locks are acquired. Please note that there is no need to release the locks within a critical
section. This way we are sure that we have all the locks we need at once or none at all.

Resource Resource Resource

Resource
Lock

Resource

Resource
Lock

Resource
Lock

Resource
Lock

Server Lock Synchronisation 
of (Un)Lock requests

Synchronisation of
Resource access

Figure 5.8: Synchronization Layers

In fact we are now solving a synchronization problem between locks, and no longer between
resources. We are specifying locks themselves as resources where the access to the resource (the
acquiring of locks) should be guarded by another lock. This layering is pictured in figure 5.8.

Using the above techniques (staircasing or making locking an atomic operation by itself) is
difficult when the programmer expects nested locking semantics. Both techniques rely on the
fact that at a certain point in time the program knows all the locks it will eventually need. When
working with subroutines (or subprograms) that autonomously acquire locks this can be very
difficult. One workaround is first to ask all subroutines what they will eventually need, collect
all those locks and then acquire them within one operation.

However, if it is impractical to require that a process specifies all the resources it needs at
once, we might need to resort to transactions, which we will explain in the next section.
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5.9 Transactions & Partial Failure

A TRANSACTION IS AN ABSTRACT ATOMIC operation within which changes can be made on
a component. When the transaction is finished it can either commit or abort. Committing a
transaction means that all the changes made within its critical section become true and visible
to other participants. Aborting a transaction means that all the changes made within the critical
section are undone.

Transactions are necessary in systems where we cannot order locks because either there is no
obvious order, because we cannot force actors to respect that order, or because an actor cannot
specify all it needs at once. Another situation where we need transactions is when we think about
failures. What will happen when one of the actors on the whiteboard has locked certain positions
and then dies. Can the server recover from such a situation ? If the server supports transactions
and it can detect client-death (by means of a time-out, or by detecting a broken socket) it can
rollback the transactions owned by that client.

Algorithm 15 Semantics of a rudimentary non-waiting, non reentrant transaction system.
������� 	� � ��� � � � � � � ��� � 	�������� � 	 �� ����� � � ����	���� ���	� � 	 � ��� � 
 � �9� � � ��	
incoming � ����� � � ����� 	 �� ����� � � 


��� ��� ��	 � ��� .. ��� ��� 	 �� ����� � � � � � ��� � � ����� 

incoming � � � � ��� � ��� � 	 �� ����� � � � � 


5: � ����� 	�� � � ������	 � ��������� � ������� 	 �
������� � � � � � � �

incoming � � � � � � ����� 	 ���	��� � � ��� � 

for all ��������� ������� 	 �

������� � � � � � � do
������� � ��� 	 � setstate( � ����� � 	 � ��� � 


� � � � ��� � ����� 	 �� ����� � ��� � 

10: incoming ������� ��� � � ����	 


if
�

������� � ������� 	 �
������� � � � � � � and � ����� � ����	 � � ��	 then

������� � 	 � ��� .. ������� _ ����� � � 

else if

�
��������� ������� 	 �

������� � � � �� � � and ������� � � ��	 � ����	 then
������� � 	 � ��� .. ������� _ � ���	 � � 


15: else
������� 	�� � � ����� 	 
 � � � � � ����	�� ����	 � getState() 
��

Transactions can allow the nesting of operations. When, within one transaction another is
started and the locks required to execute the inner transaction cannot be obtained, the outer
transaction might abort also. From the programmer’s point of view this is what we want, also
from the point of view from the server transactions are good because the server will always reside
in a valid state, something that cannot be guaranteed without transactions.

The problem of livelocks still remains of course. Fortunately, this can be remedied at the
server side. The problem is no longer solely dependent on the network traffic or the behavior of
the clients, but on the scheduling behavior of the server. For instance a server may decide to set
a lock request in wait until the lock can be obtained, or it can return a lock-failure.

Depending on the context within which people talk about transactions there can be a differ-
ence between read-locks, write-locks, and the way locks are treated. If smaller locks are defined
then there is a greater flexibility to optimize the concurrent access to resources. Similar to the
granularity of resources, we can consider a lock to be a resource on its own.

Implementing a simple transaction system can be done by keeping in memory which locks
belongs to which transaction. Once a lock is released the lock keeps on belonging to the original
transaction. Only, when the transaction commits, all its locks are released. When the transaction
aborts, all its locks are released and all changes to the resources are rolled back. Algorithm 15 il-
lustrates the rudimentary semantics of a non-waiting, non recursive transaction synchronization
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interface. Such transactions can be easily used from a programmers point of view. We illus-
trate this by making the line actor movable (Figure 16). The reader interested in transactions can
read [OHE96, CDK94].

Algorithm 16 The moving line algorithm using a non-waiting transaction interface.
� � 	� � � � ������� � � 
 � � ������� � � 
 

��� � � � � � � � � ��

��������� � � � � � 	 � � � ��

� ����� ��� � � � ��� ��


5: loop
� � � � �
retry: if � � then ��� � � � � ����� 	 �� ����� � � � � 

� � � � � ���� � � � ��� 	 �� ����� � � 

����� � � 	�� � � � 	 � ��� � � �

10: if � ������� � � � � ������� ��� � � � � � 	 � 
 � ����� ��� � 
�
 
 then
goto retry

� � � � � 	�� ����� � � � ������� � � � � � � 	 � 
 � ������� � � 
�
 � ��

� � ��� � ��� �!� � ����� �
� � � �

15: while � � � � and � � ��� � ��� � do
if � ������� � � � � � ����� � � 	 � � � ����� � � 	 � 
 � ��
 
 then

goto retry
� � ��� � ��� �!� � � � ��� � ��� � and 		�� ��� � � � ����� � � 	 � � � ����� � � 	 � 
 � ��
 

� � � � � �

20: if � � ��� � ��� � then
for � � � � to � � � do

if � � ����� � � � ��� � � 	 � � � � � 	 � 
 � ��
 
 then
goto retry

� � � � � 	������ � � � � � � 	 � � � � � 	 � 
 � � 
 � � 

25: ��������� � � ����� ��� � � ���������

if ��� ������� 
 � � or ����� ��� � 
 � � then
� ��� ����� � � � � ����� ���

����������� � � � � � 	 � �
if � ������� � � � � ����� ������� � � � � 	 � 
 � ��� ������� 
�
 
 then

30: goto retry
� � � � � 	�������� � � ����� ������� � � � � 	 � 
 � ��� ������� 
�
 � ���	� � � 

for � � � � to � � � do
� � � � � 	������ � � � � ����� � � 	 � � � ����� � � 	 � 
 � � 
 � � ����� �	


� � 	� � ����� � � 	
35: else

��� � � � � � � � � � � �
� � �
� ��� � ����� 	 ���	��� � � ��� � 


5.10 Peer to Peer Concurrency & Distributed Transactions

WITHIN OPEN PEER TO PEER NETWORKS concurrency control and guarding is fairly difficult,
because in a peer to peer system several components together provide a certain global behavior.
So if one wants to take this global behavior from one correct state to another correct state, one
needs to take all participating components within one operation to this new state.

To do so we need a transaction that spans multiple components and can commit all compo-
nents or abort all components. This is called a distributed transaction. Normally distributed
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transactions are provided by one server that contacts the necessary components and commits or
rolls back transactions as necessary.

Figure 5.9: Distributed Transaction server.

In figure 5.9 we see how component � needs to go through a transaction server before it can
start certain actions on a certain set of components. The transaction server takes care of trans-
mitting all incoming messages to the other communication partners, possible mapping different
transaction id’s to the same number. In essence, all locking logic should go through this trans-
action server. The transaction server is available per group resources needed per client, which
means that all components taking part in a certain session need to go through the same trans-
action server. So in fact we added another extra layer to solve concurrency problems between
multiple components. (Pictured in figure 5.10).

The transaction manager per group is not difficult to conceive. It needs to access the transac-
tion ports on all participating components and needs to have a mapping. This mapping ensures
that when a beginTransaction comes in, the transactions started on all participating compo-
nents will be represented by one transaction id. When a lock request comes in, the supplied
transaction id should for every component be mapped to the correct effective transaction id. This
constitutes a problem because a component is normally not aware of some sort of transaction
manager. This means that all components need to agree to use the specified session transaction
manager.
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Figure 5.10: Synchronization layers within peer to peer systems

Of course, there are problems with this setup. Other concurrency strategies worked well be-
cause their behavior was unambiguous. A transaction was either committed or not, a lock was
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obtained or not and so on. The problem we have here is that with a distributed transaction we
can have transactions that are partially committed. We can have a situation where the transac-
tion server starts committing all its transactions but fails to commit the last transaction because
the involved component has died. In such a situation the resulting global state is invalid, even
when the component recovers its old state. There is not much that we can do about this, except
introducing extra redundancy. Distributed transactions are discussed in [CDK94].

5.11 Commonalities & Variabilities

WITHIN THE PREVIOUS SECTIONS we have introduced a number of concurrency strategies. All
these different concurrency strategies can be described by a set of commonalities and variabilities.
The common issue is the fact that we are talking about resources and about critical sections: how
can we ensure a valid state transition ? Below we will present a set of variabilities which can
define a concurrency strategy.

1. Syntactical: how a component calls another component, with which parameters, with what
kind of symbols and names. Syntax as a common term refers to the structural aspects of a
language. In our case we will simply stick to the symbols and data structures at hand.

2. Control flow: in what sequence do we need to send messages ? Will requests wait until they
can return, or will they return something like ’try again later’. We have seen two examples
of this: the waiting locking strategy and non-waiting locking strategy

3. Re-entrance: can the same lock be obtained multiple times or not. If it can, such as in the
counting semaphore, the locking strategy is reentrant, in the other case, such as the binary
semaphore, the locking strategy is non-reentrant.

4. Resources: what are the resources we are talking about, and more specifically, what is their
granularity ? Can we only lock the complete whiteboard, can we lock lines or can we lock
individual squares ?

5. Transition: how is time defined. This is important with respect to the state transitions. Is a
state transition always in effect immediately, or is the transition effective after committing
a transaction. If so, can we go back in time (roll back) and can we go forward in time (roll
forward after recovery)

6. Layering: most of the time multiple basic synchronization mechanisms are layered, how this
is done is another variability.

The above variabilities can be used to describe a concurrent strategy. We must now investi-
gate how they relate to each other, which variabilities can be modified without impact on other
variabilities and which variabilities are influenced when another variability is shifted. If two
variabilities do not correlate they are said to be orthogonal.

Control flow can be modified without any immediate impact on the reentrancy of the concur-
rency strategy, so these two variabilities are orthogonal. The resources covered by a concurrency
strategy are also independent of how the locks are offered, so resources are orthogonal to control
flow and reentrancy. Transition of locks, whether they can abort or are in effect immediately is
independent of the resources, control flow or reentrancy. Therefore, this criterion is also orthogo-
nal to all others. Syntax changes when the resource granularity changes, or when the control flow
changes, or sometimes even when the reentrancy changes. Therefore syntax is partly defined by
all other axes. Syntax is not a pure orthogonal variability. Figure 5.11 illustrates this.

If we now need to take into account the different concurrency strategies we must understand
that layering influences everything. Syntax changes to support an extra layer, resources change
since extra resources are added, control flow changes because different layers interact with each
other in different ways. Transition changes since lower layers need to be rolled back when an
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Figure 5.11: Projection of a hypercube illustrating the variabilities of a one layered concurrency guarding
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Figure 5.12: Projection of a hypercube of layered concurrency guarding strategies.
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upper layer decides to roll back. Figure 5.12 illustrates this. The red arrow in the figure indicates
an extra axis/dimension for layering. The axis we will work on on the other hand is slanted in
the other 5 dimensions because it is impossible to change layering without interfering with other
properties. On the other hand, we cannot express other properties solely by means of control
flow, transition, reentrancy and resources, because an extra layer needs to reason about other
resources.

However, this view on the different variabilities, should not be considered to be complete. It
suffices for our goal, which is to select a set of concurrency conflicts. For instance, syntax should
not necessarily define a separate variability, while a missing variability might be timing. We have
limited ourselves to these because they capture a great number of possible concurrency strategies
and because the resulting concurrency strategies can occur in practice.

5.12 Summary

IN THIS CHAPTER WE HAVE IDENTIFIED COMMONLY occurring concurrency problems based on a
whiteboard on which multiple different actors can draw any figure they want. We will continue
to use the whiteboard as a running example throughout the thesis.

When concurrency is, with any technique available, managed at a central place, and every-
body adheres to the concurrency strategy, there cannot be much concurrency problems. The
reason behind this is that the whole program uses the same concurrency strategy and this strat-
egy is, when well designed, suitable for the program in question. Unfortunately, we saw that this
requirement does not hold for open distributed systems.

The problem with concurrency is that it cannot be modularized. We cannot easily say where
the concurrency management should be placed, nor can we offer one interface to the outside
world which hides all our internal concurrency problems. When we place two deadlock-free
programs in the same environment, it is possible to have a deadlock between both programs.

We investigated a number of problems with their solutions, and saw that these solutions in
turn give rise to new problems:

� problem: race conditions � solution: atomic operations

– solution: non-waiting atomic operations � problem: starvation

– solution: waiting atomic operations � problem: deadlocks

� problem: performance � solution: locking per resource � problem: livelocks

� problem: partial failure � solution: transactions

� problem: multiple components � solution: distributed transactions.

We identified 6 parameters, which are sufficient to describe all the different approaches we have
seen. They are: syntax, control flow, reentrancy, resources, transition and layering. In the next chapter
we will use these variabilities to select a number of interface conflicts.



Chapter 6

Conflicting Interfaces

THIS DISSERTATION IS FOCUSED around interface conflicts. Interface conflicts arise at the mo-
ment two interfaces offer a similar, but not exactly the same, behavior. In such situations those
interfaces will be able to contact each other, but the performed actions will probably induce in-
correct behavior. We try to show that the concept of creating an automatic intelligent adaptator is
possible. To show this we need a set of conflicts on which we can demonstrate the correct work-
ing of our technique. Doing this in a formal way by selecting a statistically significant subset of
possible adaptors is impossible, therefore we will design a set of conflicts. To this end, we will
create a set of concurrency strategies based on the variabilities presented in the previous chapter.
Initially we will investigate conflicts between two non matching interfaces. Afterward we will
investigate how multiple concurrency strategies can conflict. For every conflict presented we will
investigate, as an exercise to explore the domain, how this conflict can be manually solved.

6.1 The Nature of Interface Conflicts

BEFORE WE DELVE into creation of an intelligent adaptor we need some idea of what such an
adaptor might and might not do. We will therefore illustrate that it is not always possible to
write an adaptor that will mediate differences between conflicting interfaces. It will also become
clear that most adaptors depend largely on the usage involved and that some adaptors can be
written between two conflicting interfaces but will fail to work when used in combination with
multiple conflicting interfaces.

In the explanation below a one-one conflict refers to a conflict between two components. In our
case, one being a server component and the other being a client component. A one-multi conflict
refers to a conflict that arises between one server component and multiple client components. A
multi-multi conflict refers to a conflict in which multiple servers and multiple clients are involved.
We will start with a typical one-one conflict. A client component is a component that requires a
the availability of a concurrency strategy. A server component is a component that provides a
concurrency strategy.

6.1.1 Interface Usage is of Vital Importance

We will now explain that the way interfaces are used largely determines how an adaptor should
be written.

A first trivial one-one interface conflict arises whenever a client expects a counting semaphore
from the server, but where the server only offers a binary semaphore. In such a case there an in-
terface conflict can arise. Consider the usage scenario depicted in figure 6.1: at the moment the
client locks the server a second time, the server will still think it has been locked only once.
The next unlock from the client will release the server, while the client still thinks it has a lock.
Adapting such an interface conflict can be easily done. The code for such an adaptor is pictured
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Figure 6.1: A simple conflict between a client that expects a counting semaphore on server side and a server
that only offer a binary semaphore.

in algorithm 17: basically what is done is that the adaptor keeps a counter with which it de-
termines in what state the client is supposed to be and in what state the server is supposed to
be. When necessary the adaptor will contact the server to change its state to the clients expected
state. Basically this means: the adaptor will only forward a lock request when the server is still
unlocked and the client wants a lock. Also the adaptor will only forward an unlock request when
the client has released its last lock.

Algorithm 17 An adaptor that mediates between a counting and a binary semaphore.
� ��� � � ��� � � �
incoming � ����� � 


if � ��� � � ��� � � then
	 ����"���� �� � ����� � 


5: else
� ����� � ��� � � 


incoming � ����� � ��� � � 

� ��� � � ��� � � � ��� � � ��� � �
� � � ��� � �� � ����� � ��� � � 


10: incoming � ��� ����� � 

if � ��� � � ��� � � then

	 ����"���� �� � ��� ����� � 

else

� ��� ������� � ��� � 

15: incoming � ��� ������� � ��� � 


� ��� � � ��� � � � ��� � � ��� � �
� � � ��� � �� � ����������� � ��� � 


At the moment this adaptor is only used between a waiting client and a waiting server there
will be no problems. Problems arise when the client works asynchronously. In such a situation
the client would send out a number of lock requests at the same time, each of which will be
forwarded to the server. Which brings the adaptor in an uncertain state: a number of the lock
requests will return LockFalse while others will return LockTrue. To solve this problem we
should add a queue that can hold messages until they are ready to be processed. This effectively



6.1. THE NATURE OF INTERFACE CONFLICTS 103

means that we need to process the first lock request completely before we can pass through other
requests. So we set the appropriate requests on hold.

Again, within another usage context, the client interface and server interface may be con-
nected immediately without the need for an adaptor. This happens when the client simply
doesn’t lock a certain resource more than once. These initial examples illustrate that the way
interfaces are used largely determines how an adaptor should be written.

6.1.2 Not All Conflicts can be Mediated

The next example will show that it is not always possible to write an interface adaptor. As an
example we go back to the the line actor and moving dot actors. The line actor expects a nested,
non-waiting locking strategy from the server, with a granularity at squares. The server on the
other hand provides a nested, waiting locking strategy for the whole server. With respect to the
one-one conflict between both interfaces, an adaptor can easily be written. A lock of a square is
translated to a server lock and released at the moment the adaptors lock count reaches zero.

However, in practice the whole server may be locked forever by the line actor. Such a situation
can arise at the moment the line’s trail is kept locked over a single movement. The following
sequence illustrates how this can happen:

1. line has locked the positions (5,5..15) and the trail (4,6).

2. line locks position (6,5..15) and the trail (5,7). The position (5..6,5..15) and (4,6) are locked.
Position (5,7) is locked twice.

3. the line releases its original position and its original trail. Now the positions (6,5..15) and
(5,7) are locked.

In the above scenario the line actor will always have a lock somewhere on the whiteboard and
will never release all its locks. If we are locking squares this doesn’t matter; in this case however,
the whole server will be locked. This shows that certain interfaces cannot be adapted to each
other. Whether we can only mediate trivial differences or whether we can also mediate more
difficult interfaces is an important question.

6.1.3 Adaptors Need to Cooperate

The third example illustrates how concurrency interface conflicts can be solved between two
interfaces (one-one conflicts) but afterward fail to work in the global picture (one-multi and multi-
multi conflicts), unless other interfaces are also adapted using a similar technique.

Consider therefore the case where the server supplies a locking granularity at squares, and a
client that requires a locking at whiteboard level (this is the enter/leave locking strategy). Adapt-
ing the client to work with the server may seem easy: it suffices to lock all the squares on the
whiteboard. The problem with this is that locking all fields is a relatively large task, especially
when other actors are also on the whiteboard. We cannot expect to lock all squares without any
other square being locked by somebody else. What we do in such a situation can differ, but in
both cases it will provide a sub optimal solution:

� Try and release again: If a lock cannot be acquired release all locks we already have and
try again at a later time. By doing so, the client will almost never have a lock on the whole
server when other actors are working on the server as well.

� Be persistent and once locked never release: If a lock cannot be acquired we wait until the
lock is released again. It is clear that this can lead to a deadlock.

So in any case, this simple solution: lock all squares, does not work. Luckily this can be remedied
by adapting all connections to the server. If all connections are adapted to obtain a field lock
instead of a square lock, we can easily make this situation to work. (provided that there are no
line actors that wants to lock the whiteboard whole the time of course)
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6.1.4 Brief Summary

In this section we described some of the intrinsic properties of interface adaptors:

� Adapting interfaces to each other depends largely on how the interface is used.
� We cannot always adapt any interface to any other interface: some at first sight simple

adaptors will not work in practice.
� When adapting two interfaces, indirectly linked other actors may need to be adapted also.

We will initially not investigate the latter since creating two interfaces that go along with each
other is already quite a difficult thing to do. In chapter 10 we will investigate how multiple
different adaptors can be made to work together.

6.2 A Selection of Interface Conflicts

AN INTERFACE CONFLICT is a conflict between two (or more) interfaces. This means that the
space of interface conflicts is a space with two axes for one-one conflicts and more axes for one-
multi and multi-multi conflicts. Every axis in conflict space represents all possible interfaces
(which are either provided or required). We have illustrated in section 5.11 that every interface
can be represented by a number of (not necessarily orthogonal) variabilities. This means that
conflict space is at least 12 dimensional: 6 dimensions per interface, and at least 2 interfaces for
every conflict. For one-multi and multi-multi this is even larger.

If we want to show that our approach to intelligent adaptors is valid and can provide a help
within the domain of interface conflicts we should select a number of representative interface
conflicts. The problem with this is that ’representative’ is not well defined.

6.2.1 Selecting a Set of Interface Conflicts

In practice human programmers will have the tendency to implement a certain functionality
according to existing functionalities or according to what they need. In fact there will be a lot
of interface conflicts but not as many as covered by the entire conflict space. For example, a
programmer will almost never implement a two layered concurrency strategy where the second
layer has a granularity lower than the first layer. It is important to realize that adaptor generation
algorithms are useful if they cover a lot of conflicts that will occur in real life. When an adaptor
generation algorithm is unable to generate an adaptor for a conflict that almost never occurs, it
still remains a useful algorithm.

The problem with selecting a set of real interface conflicts is that the behavior of programmers
changes over time and that we don’t have any information about current often recurring interface
conflicts. So, we cannot select a number of existing often recurring interface conflicts.

6.2.2 Designing a Representative Subset of Conflicts

To design a representative set of conflicts we will fall back to the orthogonalities we have iden-
tified earlier. The 6 different orthogonalities (which are by no means exhaustive) allows us to
investigate how we can mediate slight difference, that is differences on only one orthogonality,
and create more complex conflicts by altering multiple variabilities simultaneously. Therefore,
we will create a conflict-set which

� contains conflicts within the given domain of concurrency only.
� contains basic conflicts, that is conflicts on only one variability. We need these because

we want to know how small conflict changes compare to solving the conflicts. Hopefully
this will give some indication to the structure of the problem space because a number of
variabilities are orthogonal.
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� contains combined conflicts, that is interface conflicts that conflict on more than one variabil-
ity. This is an important issue, because we don’t know anything about the conflict space,
therefore we certainly need to randomly select a number of conflicts. How these are se-
lected will be explained later.

� contains conflicts that can be solved by humans as well as conflicts that cannot be solved,
not even by humans. We will actively search for conflicts that cannot be solved, because
this also gives some indication on the structure of the problem.

Afterward this conflict set will be expanded with other conflicts ...

� that can be solved in one-one and can be readily extrapolated to one-multi and multi-multi
situations.

� that can be solved in one-one but cannot be solved, or are substantially much more difficult
to solve, in one-multi or multi-multi situations.

� that cannot be solved in one-one but can be solved within one-multi and multi-multi situa-
tions by means of cooperation.

� that cannot be solved in one-one and cannot be solved in one-multi or multi-multi situations.

Depending on the observations with these conflict sets we can create a new conflict set that will
provide us with more information, when necessary. The remainder of this chapter will focus on
generating the set of ’designed’ conflicts, such as conflicts on one variability, or conflicts that meet
certain other requirements. The set of randomly selected interfaces will be presented in chapter
3.

6.3 One-One Conflicts on One Variability

AS DESCRIBED IN SECTION 5.11, there are 6 variabilities that we identified for concurrency strat-
egy interfaces. We will now try to obtain possible as well as impossible to solve conflicts on every
variability. An impossible conflict is a conflict that cannot be mediated by any possible adaptor.
An example of this can be found in section 6.1.2. The conflicts that are not impossible to solve are
possible to solve.

6.3.1 Syntax

Server Client Variability

Squares Squares Granularity

in Lock(<X, Y>) out Lock(<Y, X>)
out LockFalse() / LockTrue() in LockResult(<Res>) Syntax

Non-waiting Non-waiting Control Flow

Non Nested Non Nested Reentrancy

Immediately Immediately Transition

Table 6.1: One-one simple syntax conflict

Syntax conflicts can easily be found. We will use a syntax conflict between a non-waiting,
non-nesting client and server as illustrated in table 6.1. The server requires the client to define a
position on the whiteboard in �$� � 
�
 order, while the client thinks the server works in � 
 ��� 
 order.
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The server returns LockFalse when the lock could not be obtained; LockTrue when the lock
could be obtained, from the server. As a result the client expects a LockResult(<Boolean|Res>),
where res contains either true or false. This interface conflict can easily be remedied. For every
incoming or outgoing position pair the adaptor needs simply to swap the two coordinates. When
an incoming LockFalse or LockTrue comes back a new message LockResult should be sent out.

Server Client Variability

Squares Squares Granularity

in Do(<Action:0>, <Pos: X + Y * 100>) out Lock(<X, Y>)
in Do(<Action:1>, <Pos: X + Y * 100>) out UnLock(<X, Y>)

out Do(<Action:2>) in LockFalse()
out Do(<Action:3>) in LockTrue()/UnlockDone()
out Do(<Action:4>) in UnlockFailed() Syntax

Non-waiting Non-waiting Control Flow

Non Nested Non Nested Reentrancy

Immediately Immediately Transition

Table 6.2: Encoding conflict

The conflict presented in table 6.2 is a bit more difficult. The server uses some kind of calling
channel over which messages should be encoded. For example, a lock request should be encoded
to the call Do(0, ���������
	�	 ), an unlock request should be encoded to the call Do(1, ���������	�	 ).
Messages from the server to the client are also encoded through the same calling channel, with
the difference that some different returns are mapped to the same return value. In this case:
Do(3) is send out to notify success. In case of failure the server will send out an appropriate
action. Mapping these two onto each other is difficult because we need the ability to encode
the outgoing � and 
 coordinates to one position, this requires some mathematical functions.
A second difficult thing for an adaptor is distinguishing a SuccesLock from a SuccessUnlock

message. This requires some knowledge about the context, more specifically what the previous
message was.

6.3.2 Reentrancy

A reentrancy conflict is a conflict that occurs due to the fact that somebody is requesting some-
thing from the server, while the server is already doing such an action. Recursion (with some
form of stack management) is a typical case of reentrancy; shared global states often do not offer
reentrant behavior.

Server Client Variability

Field Field Granularity

Waiting Waiting Control Flow

Non Nested Nested Reentrancy

Immediately Immediately Transition

Table 6.3: Simple reentrancy conflict
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The first reentrancy conflict presented in table 6.3 is the example we explained in the begin-
ning of this chapter (see figure 6.1). A conflict arises at the moment the client expects the server
to be a counting server, while in practice the server is a simple non counting semaphore. At the
moment a client locks the server twice and then unlocks the server, the server will be unlocked
while the client still thinks it has a lock upon the server. This is a conflict that often can be solved
quit easily by means of keeping a counter within the adaptor.

Server Client Variability

Field Field Granularity

Non-waiting Non-waiting Control Flow

Non Nested Nested Reentrancy

Immediately Immediately Transition

Table 6.4: Asynchronous reentrancy conflict

The second reentrancy (table 6.4) conflict is a bit harder to solve. Like the previous conflict,
the server only supports a binary semaphore, while the client expects a counting semaphore. The
big difference now is that the client actively sends out a lot of lock requests and afterward gathers
the answers. So the client works asynchronously. As discussed in the beginning of this chapter
writing an adaptor between both concurrency strategies is possible, but is a bit more difficult
since we need the ability to set incoming messages on hold, until the server answers.

6.3.3 Control Flow

Control flow conflicts are conflicts that arise from the fact that some messages will wait before
returning while others don’t wait.

Server Client Variability

Squares Squares Granularity

Waiting Non-waiting Control Flow

Non Nested Non Nested Reentrancy

Immediately Immediately Transition

Table 6.5: Simple control flow conflict

The first control flow conflict (table 6.5) concerns a server offering a waiting locking strategy
while the client expects a non-waiting locking strategy. If the client doesn’t behave too uncon-
ventional, this will work since the client will always get a LockTrue back from the server. It is in
fact not a real conflict because the interaction between both will work out well, even without an
adaptor.1

1Some confusion can arise here. We assume that a non waiting server always returns either LockTrue or LockFalse. A
waiting server will only return when the lock could be obtained, hence return a LockTrue.
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Server Client Variability

Squares Squares Granularity

Non-waiting
Waiting Expects to do things while idling Control Flow

Non Nested Non Nested Reentrancy

Immediately Immediately Transition

Table 6.6: Control flow conflict when idling

Table 6.6 illustrates what can go wrong between a waiting server and a non-waiting client.
It has to be said that the example is a bit far fetched but can actually occur in practice. The
unconventional thing this client does, is relying on the request-lock to return false sometimes.
It relies on this to advance with some other important virtual thread. If the server never returns
such a LockFalse the second virtual thread will cease to work. This is in fact a scheduling conflict
due to the control flow between the two components.

Server Client Variability

Squares Squares Granularity

Non-waiting Waiting Control Flow

Non Nested Non Nested Reentrancy

Immediately Immediately Transition

Table 6.7: Control flow conflict that is almost impossible to solve

Another interesting conflict, presented in table 6.7, is where the server offers non-waiting
locking semantics and the client expects waiting locking semantics. The only thing an adaptor
can do in this situation is start polling the server until the server returns LockTrue. Since this
generates lots of network traffic this is clearly not a good solution. It brings down the network
and the adaptor possible gets locked out when at too large a distance from the server. Probably
there is no good general solution to this problem. Luckily solutions can be found within certain
environments. Suppose we are working on a local network where packets are queued in a fair
way, the server may be able to do exactly what is required without any explicit provisions for it.

6.3.4 Granularity

Granularity conflicts arise at the moment the size of resources differs. Sometimes a resource
encompasses a whole server, while in other cases a resource description refers to a number of
underlying data structures, while again in other cases a resource is directly mapped onto the
underlying data structures. For our whiteboard example this means that a resource can be either
a single square, a line or the whole whiteboardf.

The granularity conflict presented in table 6.8 concerns a server that offers a locking granu-
larity at the level of lines (vertical ones). The client requires a locking granularity at the level of
squares. Since the granularity that the client requires is smaller than the granularity offered by
the server it is not too hard to interface the client with the server. Instead of locking a certain
�$� � 
�
 position, the client can lock a certain line � . The client is sure that the position to lock is
certainly locked.
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Server Client Variability

Lines Squares Granularity

Non-waiting Non-waiting Control Flow

Nested Nested Reentrancy

Immediately Immediately Transition

Table 6.8: A simple granularity conflict

Server Client Variability

Lines Squares Granularity

Non-waiting Non-waiting Control Flow

Non Nested Non Nested Reentrancy

Immediately Immediately Transition

Table 6.9: A more difficult granularity conflict

The granularity conflict presented in table 6.9 is of a more difficult sort to solve. Here the
server offers a non nested locking strategy for lines, while the client requires a non locking strat-
egy for squares. This is the same as the previous granularity conflict, the only difference between
both lies in the reentrancy. The fact that the server is non nested complicates a possible adaptor a
lot. To illustrate this, think about locking two points at the same vertical line. In such a case, the
first lock request will be translated to a lock on the given line, while the second request will be
translated also to a lock on the same line. Since both are the same line on the server. Unlocking
the first point will also unlock the second point immediately. To solve this the adaptor should
keep track of positions it thinks are locked and map this on the server. The adaptor needs some
form of memory.

Server Client Variability

Squares Field Granularity

Non-waiting Non-waiting Control Flow

Non Nested Non Nested Reentrancy

Immediately Immediately Transition

Table 6.10: An impossible to solve granularity conflict

The conflict presented in table 6.10 is impossible to solve. The server offers a granularity at
the level of squares, while the client expects a granularity at the level of the full whiteboard.
Although a solution might seem easy, it won’t work properly. One might think to write an
adaptor that simple starts locking all squares within the whiteboard. Only when all squares are
locked is the field considered locked and a LockTrue is sent to the client. The problem with this
solution is that there will be other actors on the whiteboard (otherwise we wouldn’t need to lock),
so locking all resources can be a difficult operation.

Surprising about this example is that an adaptor can be generated between two components,
while in practice when multiple components are running the adaptor will simply not work. The
only good solution to this problem is either to add an extra layer or to agree between a number
of components to lock everything in a certain order.
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6.3.5 Layering

When guarding access to different components, concurrency problems often occur within the
concurrency layer itself. To solve these kind of problems, extra layers can be added until we have
reached a suitable solution. In this section we will only cover one extra layer, because other extra
layers require other topologies, which do not fit within the one-one scenarios. We will discuss
these in section 6.4.

When multiple layers are present, the conflict tables will contain a description of granularity,
control flow, reentrancy and transition for each layer. The server in table 6.11, contains two
layers. The first layer works at a granularity of squares, while the second layer (the red fields in
the server column) works at the whole whiteboard. When presenting two (conflicting) interfaces
we will put layers with the same granularity at the same level.

Server Client Variability

Squares Squares Granularity

Waiting Waiting Control Flow

Nested Nested Reentrancy

Immediately Immediately Transition

Field Granularity

Waiting Control Flow

Nested Reentrancy

Immediately Transition

Table 6.11: Simple layering conflict

The first conflict (table 6.11) occurs when the server request from the client to announce a
series of locking operations and afterward finish the lock request operation. A series of square
locking operations is announced by a single lock upon the whole server/whiteboard. Finishing
the square locking operations is done by unlocking the server/whiteboard. In this conflict, the
client in this case simply doesn’t know that such a thing should be done. This conflict can easily
be solved simply by wrapping every lock request within the required start and stop operations.

Server Client Variability

Squares Squares Granularity

Waiting Waiting Control Flow

Nested Nested Reentrancy

Immediately Immediately Transition

Field Granularity

Waiting Control Flow

Nested Reentrancy

Immediately Transition

Table 6.12: Difficult layering conflict

Table 6.12 covers a layering conflict where the server offers a single layer to lock resources.
The client on the other hand expects from the server to offer some kind of server lock to start
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and stop requesting locks. This conflict cannot be easily solved by ignoring the start and stop
operations. If we do so, we might end up with a set of deadlocks. The reason why one may need
such an extra layer is to avoid deadlocks on the server. This implies that an adaptor should be
able to detect deadlocks in some way and resolve them. Detecting them can be done with some
form of timeout. Solving them will be a bit more difficult, therefore we will need to release all the
locks we already requested, including the one pending at the moment. In this way, other waiting
parties will be able to obtain their locks.

6.3.6 Transition

Transition refers to how locks influence resources. If changes made to a resource are in effect
immediately, there is not much to say about transition: we say that the transition is immediate,
because there is no time difference between changing a state and being in that state. On the other
hand if changing a resource only results in actual changes when the lock is committed or rolled
back there is a time difference. So in this case the transition is a commit/rollback transition.

Server Client Variability

Squares Squares Granularity

Non-waiting Non-waiting Control Flow

Non Nested Non Nested Reentrancy

Immediately Abort/Commit Transition

Table 6.13: Simple transition conflict

The first illustration of such a transition conflict is illustrated in table 6.13. Here the server
has no special transition provisions. It simply does immediately what is asked. The client on the
other hand wants the ability to lock resources and then choose to abort or commit the lock. In both
cases the lock is released. The resource state becomes either what is requested (a commit) or what
the state of the resource was before the lock (an abort). Adapting these two different interfaces is
no problem. This can be done by an adaptor that obtains the state of the resource immediately
after locking.

Server Client Variability

Squares Squares Granularity

Non-waiting Non-waiting Control Flow

Nested Nested Reentrancy

Immediately Abort/Commit Transition

Table 6.14: Nested transition conflict

In the conflict represented by table 6.14, we have a nested locking strategy in combination
with a commit/abort transition. This means that for every new lock on the same resource we
can undo the changes. Suppose we lock a resource, with value � , and change that value to � ;
and afterward we lock that resource again and change that value to � , then this resource will
be brought back to value � after the first abort and back to value � after the second abort. The
conflict between two interfaces will pop up at the moment the client aborts a lock, while the
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serve is unable to undo the changes already made. This will leave the server in an unanticipated,
possibly wrong, state. In essence mediating this interface conflict is similar to conflict 6.13, with
the big difference now that the adaptor needs to have a stacked memory for every square on the
board.

Server Client Variability

Squares Squares Granularity

Non-waiting Non-waiting Control Flow

Nested Nested Reentrancy

Immidiatelly Immediately Transition

Field Field Granularity

Waiting Waiting Control Flow

Non Nested Non Nested Reentrancy

Commit/Abort Immediately Transition

Table 6.15: Typical transaction transition conflict

Scenario 6.15 covers a conflict where the server provides and the client expects two layers. The
lowest layer, the level of resources, is a simple lock/unlock interface where it always seems as if
the changes are in effect immediate. The layer above this resource-lock layer is the transaction
layer where we can start a transaction, which we can either abort or commit. Committing means
that all changes made to locked fields will be realized. Abort means that a rollback of all changes
will be done.

The “conflict” here exists in the fact that the server offers a transaction interface, but the client
simply doesn’t want to use it. Adapting these is very easy: when the client requests an unlock
operation the server is simply requested to commit the lock. The other way around on the other
hand might be more difficult.

Server Client Variability

Squares Squares Granularity

Non-waiting Non-waiting Control Flow

Nested Nested Reentrancy

Immidiatelly Immidiatelly Transition

Field Field Granularity

Waiting Waiting Control Flow

Non Nested Non Nested Reentrancy

Immediatelly Commit/Abort Transition

Table 6.16: Another typical transaction trasnition conflict

In the conflict presented in table 6.16, the server offers solely a server lock that can be re-
quested, but all changes are immediately effective. The client on the other hands want the pos-
sibility to roll back and commit. This seems to be a very difficult problem to solve because the
adaptor needs to extract some knowledge from the server (what is the state of a resource) and
needs to hold back changes to this state until a commit happens. Fortunately it isn’t. The same
technique as used with conflict 6.13 is appropriate here, as is a memory of all the locks obtained
yet and released already.
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6.4 One-Multi Conflicts

UNTIL NOW WE HAVE STAYED CLOSE to conflicts between two partners: a server that provides a
certain concurrency interface and a client that expects a certain concurrency interface. In practice,
there will be a server with a number of clients.

Figure 6.2: Non cooperating adaptors on all connections.

The problem we are now faced with is that every client connected to the same server might
expect the server to offer another concurrency strategy. One might think that simply placing
adaptors at all client-server connections would solve the problem (see figure 6.2). It is interesting
to see that this is not necessarily the case. To illustrate this we have selected a number of interest-
ing conflicts, for which a solution requires the cooperation between the different communication
partners.

Server

Client2

Client1

Client3

coordinates

coordinates

Figure 6.3: A set of adaptors on all connections that cooperate with each other.

To implement such a cooperating set of adaptors we resort to a more systematic view. The
perfect solution would be as illustrated in figure 6.3, where all connections have an adaptor-
drone whom behaviors are coordinated by one central adaptor-coordinator. The problem with
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this solution is that we not only need to create one adaptor, but a set of adaptor-filters, that
all communicate with each other to cooperate and coordinate their global behavior. This require-
ment makes a solution substantially more difficult to implement. Therefore we will only generate
a global adaptor that monitors all connections and coordinates the global behavior. This global
adaptor will exhibit exactly the same behavior as is required from separate communicating adap-
tors. In practice one might be able to split up this one adaptor into smaller pieces and migrate
those to better locations.

6.4.1 The Empty Server 1-x Conflict

Server Client1 Client2 Variability

Squares Squares Granularity

Waiting Waiting Control Flow

Nested Nested Reentrancy

Immediately Immediately Transition

Table 6.17: The empty server one-multi conflict.

Imagine a server that does not offer any concurrency strategy, the most simple kind of server.
The client on the other hand expects a certain locking strategy (see table 6.17). Interfacing these
two conflicting concurrency strategies is easy in a one-one situation. The adaptor needs only to
simulate all incoming synchronization calls in such a way that the client will continue working.
E.g.: always return LockTrue. If we would place this dummy-adaptor at all the connections
going from different clients to the same whiteboard, we will end up with concurrency problems
because there is simply no overall concurrency strategy. To solve this problem all different clients
will need to develop a certain concurrency strategy and adhere to that specification.

6.4.2 An Up-scale 1-x Granularity Conflict

Server Client1 Client2 Variability

Field Squares Squares Granularity

Waiting Waiting Waiting Control Flow

Nested Nested Nested Reentrancy

Immediately Immediately Immediately Transition

Table 6.18: A granularity one-multi conflict.

A second illustration of these not-necessarily working generalized one-one adaptors can be
found when the server offers a locking strategy with respect to the whole whiteboard and the
client requires a locking strategy at the level of squares (see table 6.18). In this case an adaptor
will simply translate every square-lock to a field-lock. The problem that can occur now is that
in certain situations a client will always have a lock somewhere on the whiteboard. In this case,
the adaptor will keep the whole server locked and no other client can do anything with the
whiteboard. This is an illustration of a conflict that is hard to solve between different adaptors.
It either requires substantial changes to the behavior of one client, or we need to override the full
server locking semantics with a simulated more granular concurrency strategy.
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6.4.3 A Down-scale 1-x Granularity Conflict

Server Client1 Client2 Variability

Squares Field Field Granularity

Waiting Waiting Waiting Control Flow

Nested Nested Nested Reentrancy

Immediately Immediately Immediately Transition

Table 6.19: A granularity one-multi conflict.

A third problematic conflict occurs when the client wants to lock the whole whiteboard, but
the server only supports locking of squares (see table 6.19). In such a situation, an adaptor will
try to lock all the squares on the board, which will take a lot of messages but after all will work
in a one-one situation. In a one-multi situation, this adaptor behavior could result in a livelock
because two similar adaptors might want to lock the whole server in a non ordered way.

Solving this conflict requires the cooperation between the different adaptors. When a server
lock should be obtained all adaptors could agree to lock only one reserved position on the board,
which means that the whole server is locked. In this case all adaptors also agree to follow this
convention. Another possibility would be agree to a certain order when starting to lock the
whole whiteboard.

6.4.4 A Non Waiting Server 1-x Conflict

Server Client1 Client2 Variability

Squares Squares Squares Granularity

Non-waiting Waiting Waiting Control Flow

Nested Nested Nested Reentrancy

Immediately Immediately Immediately Transition

Table 6.20: A non-waiting server one-multi conflict.

A fourth problematic conflict arises when a client expects a waiting locking strategy, but the
server offers only a non-waiting locking strategy (see table 6.20). This requires the adaptor to
actively poll the server constantly until the required lock is obtained. In a one-one situation this
adaptor will always immediately get a lock, in a one-multi situation on the other hand this will
result in a lot of unwanted network traffic and a non-fair scheduling behavior.

Therefore not only the interface conflicts between the client and the server should be solved,
but also differences between the implicit interaction between the different clients.

6.5 Multi-Multi Conflicts

WITH MULTI-MULTI CONFLICTS we mainly aim at the situation where a number of components
need a number of other components to reach a certain specific global behavior. We will again use
the whiteboard example to illustrate this.
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Suppose we have two board components and six actor components: a yellow moving dot, an
orange moving dot, a red moving dot, a green moving line, a blue floodfill actor and a turquoise
floodfill actor. The red moving dot together with the blue floodfill actor only move on the first
board. The orange moving dot and turquoise floodfill actor work on the second board only. The
last two actors: the yellow moving dot and the green moving line both work on both boards. (See
figure 6.4).

obtain 
first
lock

obtain
second
lock

obtain
second
lock

obtain 
first
lock

only on first board

only on first board only on second board

only on second board

Figure 6.4: Peer 2 peer concurrency problem

The actors that only work on one board follow the logic explained earlier. The actors that
work on both boards move by checking whether the next target position is free on both boards.
Only when this is the case can the actor continue with its movement. The locking logic to imple-
ment this is done very simply by locking the first board and afterward locking the second board.
It is clear that in this situation deadlocks can arise. Let’s assume that the yellow dot actor first
needs to obtain a lock on the first board and afterward on the second board, while the moving
line actor first tries to obtain a lock on the second board. In such a situation a deadlock can arise.

This is a problematic situation because:

� None of both servers can solve this problem, because none has the necessary knowledge.
No server knows what an actor does with other servers.

� None of the actors on both boards can solve this problem because they do not know each
other and certainly not in which order they should obtain the locks.
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1st Red Yellow Green Blue 2nd

Server Client Client Client Client Server Variability

Squares Squares Squares Squares Squares Squares Granularity

Non-Wait Non-Wait Non-Wait Non-Wait Non-Wait Non-Wait Control Flow

Nested Nested Nested Nested Nested Nested Reentrancy

Imm. Imm. Imm. Imm. Imm. Imm. Transition

Field Field Field Field Field Field Granularity

Waiting Waiting Waiting Waiting Waiting Waiting Control Flow

No-Nest No-Nest No-Nest No-Nest No-Nest No-Nest Reentrancy

Imm. Imm. Imm. Imm. Imm. Imm. Transition

Table 6.21: A multi multi conflict that requires the development of a distributed transaction adaptor.

The conflict presented in table 6.21 illustrates this. Here all actors adhere to exactly the same
interface, nevertheless there will occur deadlocks if we create such a situation. The reason has
already been explained above. The solution requires the development of a distributed transaction
server, within the adaptor. By doing so, we introduce a second concurrency layer, which will
guard the access to a number of different components. Of course it is perfectly possible that such
a layer is already present and that we need to adapt the differences between those layers.

1st Red Yellow Green Blue 2nd

Server Client Client Client Client Server Variability

Squares Squares Squares Squares Squares Granularity

Non-Wait Non-Wait Non-Wait Non-Wait Non-Wait Control Flow

Non-Nested Non-Nested Nested Nested Nested Reentrancy

Imm. Imm. Imm. Imm. Imm. Transition

Field Field Field Granularity

Waiting Waiting Waiting Control Flow

Nested No-Nest No-Nest Reentrancy

Imm. Imm. Commit/Rollback Transition

Components Granularity

Waiting Control Flow

No-Nest Reentrancy

Imm. Transition

Table 6.22: Another real world multi-multi interface conflict.

The conflict presented in table 6.22 is another multi-multi conflict, containing two servers.
The first server offers a lock on the whole whiteboard and places clients in wait until it is their
turn. All changes made are in effect immediately. The second server offers a commit rollback
interface. This is done by offering a transaction interface through which the client can obtain
a transaction id: when this is done the client can lock any square it wants. When all changes
are made a commit can be issued, otherwise an abort. The clients are implemented in the same
’realistic’ fashion. The yellow and red moving dot actors simply require a non-waiting locking
strategy without nesting. This is logical since the moving dot actor doesn’t need to nest locks,
and a possible livelock is easily remedied by choosing a random delay. The green moving line
is also realistic in its approach. It needs to access two servers, so it wants a locking manager to
be present. When done it requires the possibility to start a transaction on one or more servers,
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and when this transaction is obtained it can finally move the line. The last actor, the blue floodfill
actor, requires a nested locking strategy that doesn’t wait. Changes are in effect immediately. We
want to use this large multi multi conflict to verify whether the algorithms we will develop will
be able to solve this real life problem.

6.6 Summary

IN THIS CHAPTER we have presented the properties of interface conflicts. We have explained that
every interface conflict largely depends on the context in which the interfaces are used. We have
also explained that not all conflicts can be solved. And finally we have discussed the necessity of
cooperating adaptors. We not only need adaptors between two conflicting interfaces, in a lot of
cases we need adaptors that regulate and communicate their behavior, otherwise creating a good
concurrency strategy may be impossible.

Afterward we presented many one-one interface conflicts, with a description of the feasibility
of writing an adaptor. The presentation of one-multi interface conflicts focuses especially on
adaptors that cannot simply be generalized from a one-one conflict adaptor. And finally, the
multi-multi interface conflict discussion covers even more interface conflict examples.

Conflict Variability Difficulty Why
1-1 1-x

6.1 Syntax Eas Eas
6.2 Syntax Med Eas Mapping between structural

different communication channels
6.3 Reentrancy Eas Eas
6.4 Reentrancy Med Eas Requires busy-with flag

and Q management
6.5 Control Flow Eas Eas
6.6 Control Flow Eas Eas
6.7 Control Flow Eas Imp Unknown scheduling behavior
6.8 Granularity Eas Eas
6.9 Granularity Med Eas Needs to develop a memory

6.10 Granularity Eas Coop Solution for 1-1 wont work on 1-x
6.11 Layering Eas Eas
6.12 Layering Med Coop Med: Needs to detect timeouts

Coop: Can be better solved by cooperation
6.13 Transition Eas Eas
6.14 Transition Med Med Adaptor needs stack/square
6.15 Transition Eas Eas
6.16 Transition Med Med Adaptor needs stack/square and

memory of acquired locks
6.17 Empty Server Coop Needs to implement a suitable locking strategy
6.18 Nasty client Coop Needs to neglect whole-time client lock
6.19 Livelock Coop Needs to cooperate to offer a server lock

instead of square locks
6.20 Polling Coop Needs to develop token passing
6.21 Distributed Med Adaptor needs to develop

Transactions Coop a distributed transaction server
6.22 Distributed Hard Needs to develop distributed transactions

Transactions Coop and needs to mediate interface conflicts

Table 6.24: Overview of conflicts
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In table 6.24 we present an overview of all the conflicts we have discussed. The first column
refers to the summary-table of the conflict. The second column specifies which variabilities the
conflict explores. The third and fourth column represent the difficulty to develop an adaptor to
solve the conflict. The third column represents the difficulty to write an adaptor between 1 client
and 1 server. The fourth column shows how difficult it is to get the one-one solution to work in
cooperation with other (unknown) actors. Both columns use a number of abbreviations:

� Easy; The adaptor can be written in a trivial way.

� Med: medium; The adaptor can be written but is not trivial.

� Hard: it is hard to develop a correctly working adaptor. The reason why is explained in the
last column.

� Coop: In the one-multi column, coop means that an adaptor can be written only if all par-
ticipating components develop the same strategy and adhere to this strategy.

� Imp: Impossible. It is impossible to write an adaptor in this situation.

The table contains three parts. The first part are the one-one conflicts, the second part are the
one-multi conflicts and the last part are the multi-multi conflicts.

In the next chapter we will discuss how we will describe interfaces and which interfaces we
will use.
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Chapter 7

Our Approach

UNTIL NOW WE HAVE EXPLAINED how Petri-nets can be used to describe the behavior of inter-
faces, we have described which case we will use and which conflicts we will investigate. We will
now explain which solution we propose to solve the problem of conflicting concurrency strate-
gies. In general, we will do this by inserting an adaptor between the different communicating
components. This adaptor will mediate the differences between the different interfaces. To do
so, the adaptor will make use of three different modules: a liveness module, an enforce-action
module and a concurrency module. Every module will be responsible for a certain functionality,
which will meet certain requirements.

In this chapter we will first explain which assumptions we make on the components, then
we will explain which requirements we place on the adaptor and last we will describe which
modules we propose.

7.1 Assumptions about Petri-Nets and Components

BELOW WE INTRODUCE A number of important assumptions that form the basis of our research.
The first assumption we make is that the concurrency behavior of all involved components is

documented by means of a Petri-net description. These Petri-net descriptions follow the guide-
lines presented in section 3.8 and are used by the adaptor to keep track of the underlying compo-
nent behavior. For every component involved, a marking resides within the adaptor. Whenever
a message � comes in from a component, the associated Petri-net will execute the transition cor-
responding to � . As such, the adaptor always has a correct representation of the state of the
underlying components.

A second assumption is that the concurrency adaptor, which is placed between conflicting
components, needs to work at runtime. Working at runtime means that the adaptor will choose
certain synchronization actions to modify the behavior of the synchronization overall. However,
before the adaptor can verify whether this overall synchronization behavior is correct, the adap-
tor should be able to obtain some kind of feedback. However, because the adaptor itself has no
explicit supervisor, it needs some point of reference that can be used to verify its own behavior.
Such a point of reference should allow the adaptor to verify a number of requirements of the
mediated concurrency behavior, hence our point of reference should strongly correlate with the
concurrency behavior. Therefore we will assume that the core functionalities of the communi-
cating components is compatible, while the concurrency behavior of the different components
might be incompatible. In our case we will separate these as follows:

1. All messages that deal with the core functionality of the components are said to be part of
the logic interface. E.g.: the Act or SetPosition message.
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2. A concurrency strategy is an algorithm that helps synchronize the behavior of some core
functionality of the underlying component. We will say that all messages that deal with this
behavior are part of the synchronization interface. E.g.: messages such as Lock and Unlock.

Thirdly, we assume that, as good software writing practices dictate, there is a clear separation be-
tween different functionalities. This implies that we should be able to say for every concurrency
strategy whether it is required or whether it is provided. If a component requires a concurrency
strategy we say that the component is a client component, if it provides a concurrency strategy
it is said to be a server component. A second implication of a clear separation of functionalities
is that we should be able to say for every message present on an interface whether it belongs to
the synchronization behavior or to the logic behavior. Therefore we now define the � ������ and
	�
����� ��� sets formally. When given two Petri-net interface descriptions � � � � � ������� � � � ����� � 
 and
� � � � � � ��� � � � �	��� ��� 
 . We define � ������ as the set of all in-transitions or out-transitions that in-
volve no synchronization. Because all logic actions are known to be compatible, we can say that
� ������+� ���  � ������+� � � . All the other transitions of � � and � � are assumed to be synchroniza-
tion operations. Hence 	�
������� � � � � � � � ���� � and 	�
������ ��� � � � � � � ���� � . We also assume that
	�
����� ��� � � 	�
������ ��� � ��� . If this might be the case a renaming operation in one of both transition
should be used.

Fourthly, we assume that no concurrency strategy of any of the components within the conflict
locks out certain core functionality, because this would make it effectively impossible to mediate
the conflict.

7.2 Requirements for the Adaptor

GIVEN THE ABOVE ASSUMPTIONS we will now define the requirements of our concurrency adap-
tor. The three requirements we present have been introduced after doing preliminary experi-
ments (discussed in chapter 11). Initially we tried to create an adaptor between different compo-
nents simply requiring that no-conflict should arise. This however, resulted often a) in adaptors
that either behaved in such a way that no communication with the server component occurred
(by feeding always a lockFalse back to the originator), or b) in adaptors that mediated the con-
flict in such a way that race conditions were allowed.

Therefore we have introduced three requirements: the no-conflict requirement, the no-races
requirement and the liveness requirement. Below we will explain these three requirements in
more detail. Together, if satisfied, they lead to an adaptor that will mediate concurrency conflicts
in an appropriate way. However, the three requirements we will present are not exhaustive. For
instance other requirements with respect to timing, or requirements with respect to dead-locks
might need to be added in other domains.

7.2.1 The No-Conflict Requirement

If we assume that the adaptor contains Petri-nets for all participating components and that the
marking of every Petri-net represents the current state of the underlying component, then we
can intuitively declare a certain situation to be a conflict whenever one logic transition can be
executed within one Petri-net but not in the other.

Formally, two interfaces � � and � � are, given two markings � � and � � , in conflict when a
logic transition exists that is enabled in only one of both interfaces. We will use

�
� to denote a

conflict between two Petri-net markings:

� � ���"� � 
 �� � � � �"� � 
�� �
� � � ������ � � � � � �1�����/ � � � �1����� (7.1)

When � � � �"� ��
 �
� � � � �%� � 
 at the moment a � ������ message arrives then we can be sure that

the adaptor is not working correctly. We will define this to be the no-conflict requirement
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� No-conflict requirement: No sequence of actions taken by the adaptor should bring the
associated Petri-nets into conflict.

The above definition is a ’good-enough’ definition but not a ’cover-all’ definition. The defini-
tion states that the adaptor is not working correctly if the precondition doesn’t hold, but it does
not ensure that every incorrect working adaptor is detected by the precondition. In practice, this
requirement is difficult to check because there should be no possible execution trace leading to a
conflict. This means, that if we want to verify this requirement, we must be sure that we have
investigated all possible traces. We will come back to this issue later on.

7.2.2 The No-Races Requirement

The no-conflict requirement immediately results from the fact that we want to solve a conflict
between interfaces. Nevertheless, it does not guarantee that enabled actions do not interfere
with each other. To guarantee this we need to make sure that actions that are in the same critical
section (which we will formally explain in section 10.2) are executed atomically. Therefore we
need another requirement:

� No-race requirement

1. An adaptor should avoid race-conditions on actions and data. Critical sections should
be entirely executed or not.

2. An adaptor should allow some degree of interleaving. An adaptor that consecutively
executes every connected client until it terminates, cannot be considered a good con-
currency strategy.

The no-races requirement, if satisfied, guarantees that no unwanted behavior as a result from
race conditions will occur. However, often other requirements such as no-deadlocks or fairness
could be also in place. Here we assume that, whenever appropriate the no-races requirement can
be extended to include these extra requirements.

The problem with the above requirement is that it is difficult to define a critical section. Nei-
ther within the Petri-nets, nor within the components, there is a uniform notion of ’a critical
section’. Therefore we define a critical section as a set changes that cannot be interrupted with-
out bringing the corresponding Petri-nets in conflict. In section 10.2 (page 164) we will elaborate
further on this and explain more intuitively why this is a good definition.

7.2.3 The Liveness Requirement

With the above no-conflict and the no-races requirements, we do not avoid adaptors that do not
work. Adaptors that simply avoid any synchronization operation by always feeding a Lock-

False back to the requester will match both previous requirements. However, such an adaptor is
clearly not doing what is expected. Therefore we introduce the concept of liveness, or how well
a component can proceed with its core functionality. The problem with the notion of liveness is
that it can be either defined formally using Petri-nets, or informally based on some reward from
the underlying component. Below we will present two possible definitions of liveness.

� Formal Liveness Requirement: In any situation should the involved Petri-nets be alive. A
Petri-net is alive if every possible transition can always be enabled again in the future.

The first definition defines formally liveness on the Petri-nets involved. If the Petri-net is alive
we assume that the underlying component is alive as well. Liveness on a Petri-net is defined
as the number of transitions that still have an option to be enabled in the future. If under a
marking a transition exists that can no longer be enabled, the Petri-net is not alive. However,
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this formal definition is very strong because not even all Petri-nets, received from the underlying
components, will be alive when they start. For instance, a Petri-net with an Init transition might,
after executing this transition, not be alive anymore, because this Init transition will never be
enabled. This indicates that the formal definition of liveness might be a bit too strong.

� Liveness Requirement: The adaptor should try to obtain as much rewards as possible, as
defined by the underlying component.

The second definition introduces rewards. Here we assume that the underlying component
knows exactly what it wants to obtain in the future and indicates this by sending rewards to the
adaptor. A component developer could specify this kind of information as checkpoints within
the source code or as favorite transitions within the offered Petri-net. In both cases, the liveness
requirement specifies that as many as possible positive future branches need to be executed, or
in other words need to obtain as much reward as possible from the underlying client component.
How the rewards are defined will be discussed in detail in section 9.2 (page 146) and will later
on be used as the rewards within a reinforcement learning algorithm (section 9). This definition
of liveness is similar to the description given in [Lyn96].

7.3 Pure Approaches

THE PROBLEM OF CONCURRENCY STRATEGY conflicts, embodied in our case, the availability of
formal interface descriptions and the functional requirements of a solution now allow us to inves-
tigate which techniques are suitable to solve the problem. In general two techniques are possible:
formal deduction of an adaptor and learning. We will investigate for every requirement the appli-
cability of each technique. A pure application of one of both techniques will be impossible, as we
will explain below, therefore in section 7.4 we will explain how we create a hybrid, modularized
adaptor.

7.3.1 Automatic Deduction of an Adaptor

Client
Component

Client
Component

Server
ComponentAdaptor

Formal
Deduction

Figure 7.1: Formal deduction of an adaptor. Blue lines honor a logic protocol, red lines honor a synchro-
nization protocol.

Given the formal Petri-net description of all involved components and assuming that we have
a full formal definition of the requirements we might expect that it is possible to automatically
deduce an adaptor, which satisfies all requirements and honors all restrictions. Such a formal
technique would, given the Petri-nets as input, find some algorithm � that could be placed in
between the different Petri-nets such that all requirements hold. If we assume that � itself is
a Petri-net that directly links the two involved Petri-nets together, then we might not be able
to verify the liveness requirement because the formal liveness property of Petri-nets is not yet
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known to be decidable or not (see section 3.10 on page 65). From this observation, it becomes
clear that it is unlikely to create � automatically.

7.3.2 Applicability of Pure Learning Algorithms

Client
Component

Client
Component

Server
Component

Learning
Adaptor

Figure 7.2: A fully learning adaptor. Blue lines honor a logic protocol, red lines honor a synchronization
protocol.

In this section we will investigate whether a pure learning-algorithm approach (as pictured
in figure 7.2) might be suitable. Learning algorithms are applicable in situations where formal
techniques fail to offer solutions. A learning algorithm is typically a search algorithm that uses
a number of heuristics (implicitly or explicitly represented) to find solutions. However, learning
algorithms still remain probabilistic processes and proving that a probabilistic process will only
result in adaptors that satisfy all requirements might be very difficult. Especially if the require-
ments state � -behavior (=

� �
-behavior), such as the no-races or no-conflicts requirements.

� The no-races requirement is difficult to guarantee because a race should never occur.

� The no-conflict requirement is also difficult to guarantee because a conflict should never
occur.

These two no-requirements are, aside from being difficult to guarantee by a learning algorithm,
also difficult to express numerically. However, in contrast to the other requirements, the liveness
requirement can be measured numerically and spurious liveness failures are not a disaster.

7.4 Modularizing The Adaptor

IN SECTION 7.3 WE EXPLAINED that a purely formal or a purely learning based approach can-
not solve the problem of concurrency adaptors. The main reason why a purely formal approach
won’t work is because of the liveness-requirement. The main reason why a purely learning ap-
proach won’t work is because the no-conflict and no-races requirement cannot be guaranteed.
Therefore, to solve the problem of creating a concurrency adaptor we will resort to an hybrid
approach in which the no-conflict requirement and the no-races requirement are formally de-
duced, or validated, while the liveness requirement will be ensured by a learning algorithm. We
will do this by placing these three requirements into separate modules, which together form the
concurrency adaptor. Figure 7.3 illustrates how this could be done.

7.4.1 An Enforce-Action Module

The enforce-action module is placed between the server component and the remaining modules
of the adaptor (see figure 7.3). Its main goal is to prepare the server for incoming � ������ messages.
It does this by inserting appropriate synchronization messages in the message stream. For in-
stance, when an setPosition arrives, and the server has not yet been locked, this module will
lock it and send through the setPosition message.
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Formal
Method

Client
Component

Client
Component
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Component

Learning
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Adaptor

Action
Enforcer

Concurrency
Guard

Strategy
Learning
Liveness
Adaptor

Concurrency Adaptor

Figure 7.3: Cascade of components that avoids conflicts and honors a good working concurrency strategy.
Blue lines honor a logic protocol, red lines honor a synchronization protocol. The green line is a
separate protocol between the concurrency-adaptor and the learned adaptor.

This way, the adaptor fulfills the no conflict requirement, because it can always enforce re-
quested � ������ actions upon the server component. If the client component expects a certain tran-
sition to be enabled (for instance setPosition), the adaptor should be able to enable this transi-
tion at the server component. Given the Petri-net description of an interface it is not too difficult
to deduce formally what should be done to enable a certain action, or to reach a certain state. In
chapter 8 we will explain how we do this. The responsibilities of the enforce-action module are:

1. Bypass all concurrency behavior of the server component by inserting synchronization mes-
sages whenever appropriate.

2. Present the adaptor-side only a logic interface that has only the core functionality of the
server component.

7.4.2 A Liveness Module

A second important part of the concurrency adaptor are the liveness-modules. For every client-
component there will be one liveness module. Every module is responsible for learning at run-
time how to keep a client component alive, thereby honoring the constraints offered by the Petri-
net. How the rewards are defined and assigned at runtime will be described in detail in section
9.2. The working of the entire liveness module is described in chapter 9. The responsibilities of
the liveness module are:

1. Pass through any logic actions.

2. React on all synchronization messages by feeding some synchronization message back to the
client, such that no synchronization message needs to be passed through to the server com-
ponent.

3. Keep the client component alive by accumulating as much reward as possible.

4. If multiple actions can be taken in response to an incoming synchronization message, the
different possible actions and enough information to recognize critical sections, will be pre-
sented to the concurrency module, which will choose an appropriate action.

7.4.3 A Concurrency Module

The concurrency module is placed between the two other modules. However, the problem of
a good concurrency strategy is even more prominent than before, because any possible action
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chosen by the client will always be able to execute at the server (because of the enforce-action
module), resulting in data and action races. Solving this problem is the responsibility of the
concurrency module.

The concurrency module will be discussed in chapter 10. It receives from the client all the
� ������ actions that should be forwarded to the server, from the liveness modules it receives the
necessary information to be able to recognize critical sections. The concurrency module will use
this information and make the different connected client components work together in a way that
avoids colliding critical sections. The responsibilities of the concurrency module are:

1. Proxy the server component in such a way that nobody else can access the server compo-
nent.

2. Deduce which resources, actions and critical sections are present.

3. Interleave critical sections to avoid race conditions.

4. Be fair with respect to the liveness of all connected client components.

7.5 Argumentation of a Correct Construction

THE PRESENTED MODULES make our initial requirements much more accessible. Two of the ’no-’-
requirements (no-conflicts, no-races) are satisfied by known-to-work solutions and the liveness-
requirement is satisfied by means of a learning algorithm. Cascading these three modules as
pictured in figure 7.3 will result in a concurrency adaptor. In this section we will argument that
this construction results in an adaptor that honors all the previously stated requirements.

7.5.1 Satisfying the No-Conflict Requirement

The no-conflict requirement declares that at no point in time the possibility of an immediate
conflict should exist, that is a transition that is enabled in one Petri-net but not in the other.
Formulated in terms of messages, that there is no message that can be sent but not received.
The enforce-action module guarantees that it will always be able to execute any incoming ���������
message on the server-component. The two other modules present, the concurrency module and
the liveness module, literally pass through any ��������� message. So any, possible � ���� � request from
any client component will always be executed. Hence no message exists that can be posted but
not received, thus satisfying the no-conflict requirement.

7.5.2 Satisfying the No-Races Requirement

The concurrency module its main responsibility is recognizing and interleaving critical sections.
So, if we know that no component but the concurrency module can contact the server-component,
we know that there are no races. To argument this, let us assume the inverse, that the whole setup
allows for two colliding critical sections. The only place where this collision could happen is at
the concurrency module, because this is the only place where both critical sections will be present
at the same time. The liveness modules work separately, hence cannot result in an incorrect
interweaving of messages. The action enforcer module comes after the concurrency module and
simply does not interleave any message, every incoming ��������� message is simply passed through.
Thus normally all critical sections should already be serialized. Therefore, if two colliding critical
sections can occur, the fault will lie in the concurrency module. Thus, if the concurrency module
works correctly, then the interconnection of the three modules will also be correct.
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7.5.3 Satisfying the Liveness Requirement

The liveness requirement states that all components should stay alive. This will be guaranteed
by the interaction of the concurrency module and the liveness module. Every liveness module
is responsible for keeping one component alive and because the concurrency module is, among
other things, responsible for being fair with respect to liveness, all components will be alive.

7.6 Summary

IN THIS CHAPTER we have stated the assumptions we make. Firstly we assume that the core func-
tionality of the conflicting components is compatible, secondly we assume that all components
offer a Petri-net description of their concurrency behavior and that the concurrency behavior
does not hide any core functionality. Thirdly we assume that a clear separation of functionalities
exists with respect to the role of clients and server interfaces, and with respect to the role of every
message involved in an interface. Messages that take part in the core functionality of a compo-
nent are called logic messages. Messages that take part in the synchronization behavior are called
synchronization messages.

After presenting the assumptions made, we have stated the requirements of a concurrency
adaptor. These are the no-conflict requirement, the no-races requirement and the liveness require-
ment. With these requirements in mind we explained that neither a pure formal deductive, nor a
pure learning approach will work to find a solution that will satisfy all requirements. Therefore
we modularized the adaptor into three modules. The first module is an enforce-action module,
which will solve the no-conflict requirement. The second module is a concurrency module, that
satisfies the no-races requirement. And the third module is a liveness module that satisfies the
liveness requirement. Finally we have argued that, given the assumptions and the responsibili-
ties of the different modules, the interconnection of these three modules will result in an adaptor
that satisfies all three requirements. In the following chapters we will describe every module in
detail.



Chapter 8

Module 1: The Enforce-Action
Module
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Figure 8.1: Bypassing a concurrency interface

IN CHAPTER 7 we have explained that we will construct an adaptor based on three require-
ments. Every requirement will be satisfied by one module. The enforce-action module will allow
the adaptor to satisfy the no-conflict requirement. To this end, this module will bypass a pro-
vided concurrency interface by means of a logic deduction. Therefore a reachability analysis of
the Petri-net description of the provided concurrency interface will be used. In this chapter, after
presenting standard techniques to do such an analysis, we will explain how we will perform a
reachability analysis by means of prolog.

8.1 Introduction

A REQUIREMENT FOR THE MODULE we will develop is that it should be able to receive any pos-
sible action from the logic interface and execute it on a server component. To do so the necessary
synchronization messages should be generated automatically.

The adaptor itself has 3 ports (see picture 8.1). One port is connected to the concurrency mod-
ule and provides/requires a logic interface. Another port is connected to the server-component
and provides/requires a logic interface and a last port, providing/requiring a synchronization in-
terface also connected to the server component.

In essence, there are two completely different techniques which we can use to shortcut the
concurrency strategy. The first is the use of an on-line learning algorithm, which is suitable in
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this case because the learning algorithm can keep on trying to enable a certain action until it is
successful. In the meantime the concurrency adaptor can be set to wait. The reward given here is
straightforward and defined by the enabling of the required transition.

The second approach uses inductive reasoning to deduce what kind of actions should be
taken in a certain context. This is the approach we will investigate in more detail because it has a
faster response and works in most situations.

8.2 Formal Analysis

DEDUCING HOW WE CAN ENABLE a certain state within a petri-net, given its current marking
seems typically a problem of reachability, however there are some differences. A reachability
analysis of a Petri-net indicates whether we can reach a certain marking or not, often information
is included how this marking can be reached. In our case we don’t want to reach a specific
marking, we only want to know how to enable a transition as a result of a certain marking.
Formally, we want to find a way how to reach � � � � from � � .

Nevertheless, in general formal reachability analysis not only gives a yes or no answer to the
reachability question, but also gives a way to reach the target marking. Since we have a set of
target markings ( �	� ), which we want to reach, we investigate the use of these formal techniques.
Reachability is decidable [EN94]. However it might take a long time. Generally, it can be solved
in exponential time. However for a lot of Petri-net classes different results exist. For instance:

� If the petri-net is symmetric then the reachability problem is EXPTIME-complete (see glos-
sary). A petri-net is symmetric when for every transition � there is a transition � � that undoes
the effect of the first transition and returns to the original marking. This is a property which
is often found in concurrency interfaces. Once a lock is obtained it is possible to release it
again. However, aside from this intuition nothing guarantees that the petri-net also exhibits
this behavior.

� If the petri-net is conflict-free and bounded then reachability is decidable in P. (see glossary)
A Petri-net is bounded when there is a maximum number of possible tokens present at a
certain place (see section 3.10). A Petri-net is conflict-free if for every possible marking the
net is persistent. A petri-net is persistent if for every place with more than one enabled
output transition, the execution of one transition does not disable the other transition. In
the case of concurrency interfaces this is highly likely because normally multiple transitions
will not be enabled at once and the amount of resources remains fixed.

� Reachability in timed petri-nets is NP-complete [LLPY97, BP96]).

Extensions to Petri-nets may complicate these results. For instance:

� Our expression language is not a standard language so we don’t exactly know whether all
these properties hold with the given language. We assume they do, because the expression
language used is a functional language which is not Turing complete and as we will experi-
mentally observe most concurrency strategies can be written down as finite state machines.

� Colored petri-nets make all these formal approaches a bit problematic. Expanding a colored
Petri-net to a simple Petri-net may require an infinite explosion, so all these decidability
criteria need to be investigated again.

There are a number of algorithms available to decide whether a marking � � is reachable from an
initial marking � � . Below we will briefly summarize them and explain why they do not fit our
needs.

� Reachability graphs: The reachability of marking � � from marking � � is often decided by
creating a reachability-graph. Here the nodes of the graph contain a marking and the arcs



8.3. CONVERTING A PETRI-NET DESCRIPTION TO PROLOG RULES 133

contain the transition that brings one from marking a to marking b. Reachability is then
decided by creating a matrix containing on the X/Y-axis all possible nodes/markings. The
values within the matrix specify whether X is reachable from Y. With every step more po-
sitions are filled with 1, by taking the transitive closure of the reachability graph. This
approach is formally very nice; a drawback however is that it takes too much time since
often we only want to know whether A is reachable from B and not whether all possible A
’s are reachable from all possible B ’s.

� Unfolding Petri-nets: With this approach a Petri-net is unfolded into another Petri-net, usu-
ally with an infinite but simpler structure. McMillan [ERV96], proposed an algorithm for
the construction of a finite initial prefix of the Petri-net, which contains full reachability
information. However, this information is difficult to generate, and can take a long time.
Therefore we didn’t investigate this track further.

� Exploiting symmetry: It is possible to exploit symmetry between states by only looking at one
side of the symmetry. This is especially useful for colored Petri-nets. Intuitively: within a
dining philosopher Petri-net, there is a 4 way symmetry. There is no need in trying out ev-
ery philosopher, which reduces the state explosion drastically. How this is done in practice
is described in detail in [Jør].

Aside from all these techniques, there is a property of our problem which might also be exploited.
In our case, we have the ability to search for a specific solution. As stated earlier, we want to know
how to get from a certain marking � � to another certain marking � � , that enables transition � . It
is important that we are not even looking for the shortest path, but simply need to find one way
to enable � .

Now, let us turn back our attention to Petri-nets. As explained in section 3.4.4, it is difficult
to create a high performance Petri-net evaluator for colored Petri-nets because a transition is
enabled if a suitable combination of input tokens exist. This is typically a search problem and we
have argued that a logic engine (such as prolog) might be a suitable language to write a Petri-
net evaluator in. Given the fact that most reachability analysis work for elementary Petri-nets,
but have often difficulties understanding the possible expressions present in colored Petri-nets,
it seems appropriate to use prolog as a logic engine to do a reachability analysis. This is what we
will describe below.

8.3 Converting a Petri-Net Description to Prolog Rules

BEFORE WE CAN DEDUCE certain interesting properties from a Petri-net we need some represen-
tation of Petri-nets within prolog. We will now explain how we can convert Petri-nets to prolog
rules. But before we do so, we will explain how we define our markings.

Markings are declared by a set of simple rules as shown in algorithm 18. A marking is rep-
resented as an association list of place-names and place-content. The content of a place is a list
of tokens. The basic operations on markings are del_marking(input_marking, to_delete,

output_marking) and add_marking(input_marking, to_add, output_marking).
del_marking will remove a token from an input marking and create an output marking.
add_marking will add a token to a given marking. Markings can be either relative or absolute.
A marking is relative if it only mentions the necessary tokens without including all possible other
tokens that could also be present. A marking is absolute if all the tokens that are available are
specified in the marking. The notion of a relative and absolute marking is necessary to be able
to deduce which tokens should be present in a certain marking without actually having a real
marking at hand. Without the notion of a relative marking the process of finding out how to
reach a certain sub-marking might take a long time because the step predicates would try out all
possible permutations within the offered absolute marking. A relative marking is well defined
because Petri-nets do not allow an absence check of tokens, so we do not need to specify which
tokens cannot be in a certain marking.
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Algorithm 18 Definition of markings.
empty_marking([]).

del_marking([E|Y], E, Y).

del_marking([X|Y], E, [X|Z]) :- del_marking(Y, E, Z).

add_marking(X, E, R) :- append(X,[E],R).

dump_marking([]):-nl.

dump_marking([M|T]):-

write(’ ’),write(M),nl,dump_marking(T).

marking_in([],_).

marking_in([Token|Rest],M1):-

del_marking(M1,Token,M2),
marking_in(Rest,M2).

Algorithm 19 How a step is defined for the lock(X,Y) transition.
step(lock(X,Y),M,N):-

( \+ var(M), \+ var(N),
del_marking(M,[ready,[]],Markinga1),
del_marking(N,[ready,[]],Markingb1),
del_marking(Markingb1,[locking,[X,Y]],_));

( \+ var(M), var(N),
del_marking(M,[ready,[]],Markinga1),
add_marking(Markinga1,[ready,[]],Markinga2),
add_marking(Markinga2,[locking,[X,Y]],N));

( var(M), \+ var(N),
del_marking(N,[ready,[]],Markinga1),
del_marking(Markinga1,[locking,[X,Y]],Markinga2),
add_marking(Markinga2,[ready,[]],M));

( var(M), var(N),
empty_marking(Markinga0), empty_marking(Markingb0),
add_marking(Markinga0,[ready,[]],M),
add_marking(Markingb0,[ready,[]],Markingb1),
add_marking(Markingb1,[locking,[X,Y]],N)).
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The convention we will use is that step(T,M,N) declares a valid transition � which brings
marking � to marking � . E.g., step(lock(X,Y),[],N)will find all possible resulting markings
N after executing the lock(X,Y) transition. This is illustrated in algorithm 19. Depending on
whether M, N or T are known the behavior is different.

� If both � and � are known, the predicate step(T,M,N) will check whether � is a valid
transition between M and N. This is done by verifying the presence of all input tokens in M
and the presence of all required output tokens in N.

� If only � is known, � will match the resulting output. If multiple token-pulls are possible
from M, multiple answers will be placed in � .

� If only � is known, � will match the necessary input for T to result in N. If multiple
possible inputs are possible they will all match.

� If neither � nor � is known, The transition will create a relative marking � and � .

Together with definitions for steps and markings we need a way to categorize transitions, places,
incoming transition, outgoing transitions, synchronization actions, logic actions and other. These
categories are simply declared as facts. They are:

� transition: declares whether something is a transition.

� place: declares whether something is a place.

� action: an action is a message that can be received or sent over a logic interface. These
are return_joinactor(_), set_position(_,_,_), return_set_position, isfree(_,_), return_free_true
and return_free_false.

� synchro: a synchronization message. Every transition that is not an action is considered to
be a synchronization transition.

� incoming: a transition is an incoming transition if it is received from some external source.
We have no choice but to accept incoming transitions and we cannot fire them ourselves.

� outgoing: a transition is an outgoing transition if it is the result of another incoming transi-
tion. Incoming and outgoing declares the two directions in which a message can go.

An interesting property of these is that the parameterizations of a number of transition are men-
tioned as they are. For instance, the lock transition is declared as:

transition(lock(_,_)).
step(lock(X,Y),.....

where the two free variables X and Y can be filled in when appropriate. This fact allows us to
reason about a colored Petri-net in an abstract way. This is a huge performance-improvement be-
cause, we can now easily check how we can enable SetPosition(12,13) without actually hav-
ing a marking at hand. Therefore we need to check out how we can enable SetPosition(X,Y)

and try to match the resulting relative marking, which will contain a token such as locked(_,_).
This allows for the creation of an abstract description how to enable the SetPosition token,
something which would be very difficult with a completely expanded Petri-net.

8.4 Predicting the Future & Deducing the Past

WITH THE ABOVE PROLOG RULES in place we can relatively easy deduce what can happen given
a certain marking. Essentially to know all possible future branches after one step, given a certain
marking, we simple state:
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Algorithm 20 Obtaining the possible future traces given an initial marking.
fwd_step(Marking,unknown([Transition,NewMarking])):-

step(Transition,Marking,NewMarking),

\+action(Transition).
fwd_steps([],[]).
fwd_steps([Head|Tail],[NewHead|NewTail]):-

fwd_steps(Head,NewHead),
fwd_steps(Tail,NewTail).

fwd_steps(expanded(Marking,Results),expanded(Marking,NewResults)):-
fwd_steps(Results,NewResults).

fwd_steps(unknown(Cut),expanded(Cut,Results)):-
Cut = [Transition,Marking],
findall(Future,fwd_step(Marking,Future),Results).

fwd_steps(relative(M),Result):-
fwd_steps([unknown([start,relative(M)])],Result).

:- step(Transition,marking,Result)

The result will give all possible answers, including the transition executed and the result after
executing the transition. If we would like to know what possible branches exists after two steps
we simply:

:- step(Transition1,marking,Intermediate),
step(Transition2,Intermediate, Result)

If we continue this line of thought we can easily see how we can enumerate all possible future
traces given a certain depth and initial marking. Algorithm 20 shows how this can be done.
The fwd_step rule will expand a marking into all possible futures. The fwd_steps takes a list
of nodes, which can be either expanded or unknown. Unknown nodes are expanded one step
further when executing fwd_steps. Expanded nodes are simply followed. With this we can
construct a tree that can be expanded a bit further every time.

With this rule-set we can easily track down how we can enable a certain transition, or reach
a certain marking. All we have to do is check whether the transition we want to enable (or the
marking we want to reach) is present in one of the possible futures. If it isn’t we can go one step
deeper.

A small problem remains to be explained here. When finding out how we can go from � � to� � we can only investigate synchronization actions. For example, it should not be possible for
such a trace to contain a joinActor message because the adaptor cannot choose to send out its
message since it is part of the � ������ interface.

Algorithm 21 can be used to print out such a trace. For instance, given a certain initial mark-
ing, we can have a result such as:

start
. lock(_G410,_G411)
. . lock(_G594,_G595)
. . lock_false
. . lock_true
. . return_unlock_false
. return_unlock_false
. . lock(_G707,_G708)
. . return_unlock_false

This states very simply that, given the start situation, we can choose to execute lock(_,_) or
return_unlock_false. It is clear that only the first one is under control of the client, because a
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Algorithm 21 Printing out the trace tree.
trace_tree(_,[]).
trace_tree(Prefix,[Head|Tail]):-

trace_tree(Prefix,Head),
trace_tree(Prefix,Tail).

trace_tree(Prefix,expanded(Marking,Results)):-
Marking = [Trans,_],
write(Prefix),write(Trans),nl,
string_concat(Prefix,’ . ’,NewPrefix),
trace_tree(NewPrefix,Results).

trace_tree(Prefix,unknown(Marking)):-
Marking = [Trans,_],
write(Prefix),write(Trans),nl.

trace_tree(X):-
trace_tree(”,X).

Algorithm 22 Obtaining the possible past traces given an initial marking.
bwd_step(Marking,unknown([Transition,OldMarking])):-

step(Transition,OldMarking,Marking),
\+action(Transition).

bwd_steps([],[]).
bwd_steps([Head|Tail],[NewHead|NewTail]):-

bwd_steps(Head,NewHead).
bwd_steps(expanded(Marking,Results),expanded(Marking,NewResults)):-

bwd_steps(Results,NewResults),
bwd_steps(Rest,NewRest).

bwd_steps(unknown(Cut),expanded(Cut,Results)):-
Cut = [Transition,Marking],
findall(Past,bwd_step(Marking,Past),Results).

bwd_steps(relative(M),Result):-
bwd_steps([unknown([stop,relative(M)])],Result).
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return_unlock_falsemust be issued by the server. The possible tracks from there on are either
again to lock or to receive a lock_false, lock_true or return_unlock_false.

Given a Petri-net and a marking we can also, in a similar way, deduce which actions could
have led to this marking. This is illustrated in algorithm 22 and is similar to algorithm 20.

8.5 Reachability Analysis: Forward and Backward Tracing

Algorithm 23 Checks if trace1 contains a marking that can be found in trace2. If there is a com-
mon marking, the way to reach it will be printed.

trace_matches(Trace1,[Head|_]):-
trace_matches(Trace1,Head).

trace_matches(Trace1,[_|Tail]):-
trace_matches(Trace1,Tail).

trace_matches([Head|_],Trace2):-
trace_matches(Head,Trace2).

trace_matches([_|Tail],Trace2):-
trace_matches(Tail,Trace2).

trace_matches(expanded([Trans, _],Results),Trace2):-
trace_matches(Results,Trace2),
write(’->’), write(Trans), nl.

trace_matches(Trace1,expanded([Trans,_],Results)):-
trace_matches(Trace1,Results),
write(’<-’), write(Trans), nl.

trace_matches(unknown(Cut1),expanded(Cut2,_)):-
Cut1 = [Trans1, Marking],
Cut2 = [Trans2, Marking],
write(’->’), write(Trans1),nl,
write(’<-’), write(Trans2),nl.

trace_matches(expanded(Cut,_),Rest):-
trace_matches(unknown(Cut),Rest).

Algorithm 24 Finding out how to get from a given marking to another marking.
solve_trace(ForwardTrace, BackwardTrace):-

trace_matches(ForwardTrace,BackwardTrace).
solve_trace(ForwardTrace, BackwardTrace):-

fwd_steps(ForwardTrace,NewForward),
bwd_steps(BackwardTrace,NewBackward),
solve_trace(NewForward,NewBackward).

TYPICALLY, SEARCH ALGORITHMS, such as implemented in the forward or backward tracer,
behave exponentially because the search tree expands exponentially. If the search algorithm looks
at depth � , it will take approximately � � time to find a solution, with � being a constant. So, if we
can reduce the search depth by halve we can find a solution ��� times faster. With the ability to
trace into the future and into the past we can find a solution to the reachability problem faster.
The only thing we need to do therefore is going forward (from � � ) and backward (from � � )
at the same time. When a common marking exists between both traces, then we have found a
possible path. Algorithm 23 illustrates how we can check if two traces matches. Algorithm 24
will determine the different strategies possible to go from � � to � � .

To illustrate the power of these rules, we will find out how we can enable position � � �����	� 

on a whiteboard, given an initial marking. Figure 8.2 illustrates how the process works. On
one track we have a forward reasoning (the top of the figure). This process determines that a
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start

stop

lock(_G447,_G448)

return_unlock_truelock_false

return_unlock_false

lock(10,20) return_unlock_false

Figure 8.2: The trace-tree to reach a marking that bring position ( �
	 , � 	 < in locking.

possible future from the initial marking is lock(_,_). A second future is the possibility that
a return_unlock_false comes back. However, this event cannot be controlled by the client
because it is an incoming event, thus we ignore this possibility.

The second process is a backward trace (the bottom half of the drawing), which correctly
deduces that in the past a lock(10,20) could have been present, or a return_unlock_false,
return_unlock_true or a lock_false.

The process of finding a matching trace stops here because the marking at lock(_X,_Y) can
be unified with the marking at lock(10,20).

8.6 Discussion

8.6.1 Implementation Notes & Performance

THE PRESENTED ALGORITHM has been tested with all the conflicts presented in chapter 6. How-
ever, because the prolog code was not integrated within Java, we had to test the code off-line.
Therefore we obtained a start-marking from the Petri-net by exporting one from the Petri-net
evaluator. After importing it into the prolog program, we asked the reachability program to
enable a certain transition. In all cases the result was calculated immediately (no human observ-
able time delay on a standard Intel processor). To a certain extent this is normal because most
interfaces provide a certain functionality and are supposed to make state-changes easy and not
difficult. An API which requires less messages to change a state than another API is clearly easier
to use.

Now, the reachability analysis is calculated immediately, nevertheless it took some doings
before we were able to come up with such a result. Prolog is a declarative language and is
perfectly suited to find ways to prove statements. Every solution of such a prove is a way to
reach a certain marking. Nevertheless, how the evaluator ’proves’ a reachability statement can
greatly affect the performance of finding solutions. This has forced us to insert our a) own delete
operation, b) to make a distinction between delete and append, and c) split the step predicate
into 4 parts depending on which variables are bound. We now explain the details.

Why not using ’delete/3’ ?

The reason why we declare our own del_marking lies in the fact that swi_prolog (the implemen-
tation of prolog we have been using) is only able to delete one element from a list. The predicate
delete([1,2,3],X,Y). results in only one answer:
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X = 1
Y = [2, 3] ;
No

while the predicate del_marking([1,2,3],X,Y). results in all possible elements taken from the
input list:

X = 1
Y = [2, 3];
X = 2
Y = [1, 3];
X = 3
Y = [1, 2];
No

By relying on our del_marking predicate we are sure that all tokens present at a certain place
will be tried to satisfy the precondition of a transition. If we used the standard delete predicate
this was not possible.

Why not using ’select/3’ ?

Maybe it could be possible to use select/3 as an unification of a delete/3 and an append/3

operation. This however would result in drastic performance penalties because there is a subtle
difference between an append/3 operation and a select/3 operation. Select is defined as

select(X, [X | L], L).
select(X, [Y | L], [Y | R]) :- select(X, L, R).

We can indeed use this predicate to implement a delete operation. In fact del_marking(X, Y,

Z) :- select(Y, X, Z). However, if we would implement an append/3 as the inverse of a
delete, or by means of the select predicate then a simple append of two small lists, written down
as select(5, X, [6]) would result in:

X = [5, 6] ;
X = [6, 5] ;
No

This in contrast with the standard append/3 operation, which will return only one answer: ap-
pend([5],[6], X)

X = [5, 6];
No

Because the lists we are using represent tokens present at certain places the order of elements
is of no importance. However, if we use something like select/3 we would receive the same
tokens at least two times. (To be exact, we receive the same tokens � times, with � the number
of elements in the target list). Because our search algorithm is constantly adding and deleting
elements from markings, the search time would increase drastically. For every add_marking

we would create at least two new branches. On the other hand, if we simply use the append/3

operation, we avoid the introduction of useless branches in the search tree.

Why not a step with less rules ?

Wouldn’t it be better to write a step with only one set of marking modifications instead of a step
which, depending on which variables are bound behaves differently. The answer to this question
is twofold. First, if both the input marking and output marking are unknown then the behavior is
clearly different because we must assume that we are working with a relative marking (a marking
only describing the necessary tokens), hence we start with empty token sets which will be filled
up by the step predicate. The other case, when one of the input or output markings is bound
requires also different behavior for every possibility:
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� if both the input and output marking are bound then we must simply verify whether the
necessary tokens are present. We can do this by removing the elements from involved
markings.

� if only the input marking is known, we must first remove the necessary tokens from the input
marking and afterward we can put the appropriate tokens in the output marking.

� if only the output marking is known, we must first remove the necessary tokens from the out-
put marking and then we can deduce which tokens should have been present in the input
marking and put them there.

As can be seen, the order in which the tokens are investigated is important and different. This
order is not strictly necessary, however, it greatly increases the performance of one step. Finding
out what kind of tokens we could append to the unbound marking and then verifying whether
these tokens can be found in the bound marking can easily lead to an infinite list of similar
answers. Every new possible unbound variable might always be bound to the same token later
on. We consider it better to get rid, as fast as possible, of free variables by actually binding them
to one of the available tokens and then creating the required tokens for the unbound marking. By
doing so, we a) increase the speed of the reachability analysis and b) get rid of a possible infinite
amount of answers.

By implementing the step as we did, we do not break the declarative programming style. The
step predicate can be used in any way necessary. For the user of step it behaves perfectly declar-
ative. The only thing we did by introducing a verification of the boundedness of the variables is
increasing performance.

8.6.2 Verifying Places versus Verifying Enabled Transitions

The concurrency module its responsibility is to bring the server component in a required state.
More specifically, the required state is defined by the incoming � ���� � message because every in-
coming ��������� message must be accepted by the server. To make sure that the server keeps be-
having correct, we restricted the possibilities of the enforce-action module to only interleave new
	�
����� ��� messages. However, one problem was not anticipated, certain concurrency strategies
require the ability to bring a server and its resources back to an old state. These servers typically
embody a rollback mechanism. To allow this kind of logic, the reachability program must be
modified to allow the use of ��������� messages.

8.7 Summary

IN THIS CHAPTER we have shown how logic programs allow us to deduce easily how we can
enable certain transitions. The process is fairly simply described in prolog but compared to stan-
dard formal reachability techniques it is fairly advanced:

� It takes advantage of the colored Petri-net description. Instead of expanding a colored net
to all its elementary places, the process works on a high level of abstraction by keeping
variables as long as possible variable and unifying them only in the end.

� It takes advantage of the possibility to reason in an abstract way about a marking. It does
not require a fully described marking, it suffices to work only with the smallest necessary
sub-markings. This results in a distinct advantage over other methods because all the pos-
sibilities introduced by non-relevant tokens are removed.

� It reduces the search space drastically by doing a forward trace as well as a backward trace
at the same time.
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With this information, we can, given a petri-net description, a current marking and a target mark-
ing, easily deduce which actions should be taken to either a) enable a certain transition or b) place
a certain token at a certain place. This enables us to create an adaptor that effectively bypasses
the concurrency interface at a component, because all incoming actions will always be executed,
no matter what state the component is in.
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Module 2: The Liveness Module
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Figure 9.1: The keep-alive adaptor

IN CHAPTER 7 WE have explained that we will construct an adaptor based on three require-
ments. Every requirement will be satisfied by one module. The enforce-action (explained in
chapter 8) module allows the adaptor to satisfy the no-conflict requirement. The liveness mod-
ule, presented in this chapter, will learn how to keep a client component (i.e., the one that requires
a concurrency interface of the server component) alive. This is necessary to avoid concurrency
adaptors from returning messages to the client that do not allow the client to proceed. E.g.: al-
ways returning lockFalse. To achieve this, the module makes use of a reinforcement learning
algorithm that learns which actions are suitable in a certain situation. More specifically, actions
are indirectly rewarded by the client component when suitable situations arise. How the rewards
are assigned will be explained in section 9.2. The reinforcement learning algorithm will be linked
together with a situation recognition system that allows for the storage of the necessary informa-
tion to learn what to do. This situation recognition system will be Petri-net based. By constantly
adding new random transitions and letting the reinforcement learning algorithm explore these
new avenues, the correct rules will survive. This will be explained in section 9.1. Finally, in
section 9.3, we show how everything maps to a

�
-learning algorithm.

9.1 A Petri-Net Representation

IN ORDER TO BE ABLE TO recognize which representation was best suited for our purpose we
use genetic algorithms in a non-conventional way. Normally a genetic algorithm uses a certain
representation to find a solution to a certain problem. However, in our experiments we used the
genetic algorithms to test whether a particular representation is suited. To this end, we provided
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a number of problems the solutions of which were already known in advance. We checked how
well the genetic algorithm performed on these problems. Most importantly, the representation
we are looking for should lead to a solution for all presented problems. Moreover, the number of
generations needed to find a suitable solution should be as low as possible.

During our experiments, that are explained in detail in chapter 11, we compared three dif-
ferent representations that seemed to be suitable: single-message classifier systems, multiple-
message classifier systems, and Petri-nets. Only Petri-nets yielded satisfactory results. Therefore
we will now focus on the Petri-net representation of our possible solutions.

9.1.1 Requirements for a Petri-net Representation
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Logic
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Client
Component
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Figure 9.2: Schematic of the interconnection between the component, the adaptor ports and the underlying
Petri-nets.

The goal of the liveness module is to keep the client component alive in a non-intrusive way:
messages dealing with the core functionality of the client component (i.e., logic requests) are sim-
ply forwarded by the module to the server component. Synchronization messages, however, can
be used by the module to alter the synchronization behavior of the client component. This is
visualized in figure 9.2: On the left side of the figure is a client component located. It communi-
cates with the liveness module by means of two interfaces, one � ������ interface, another 	�
����� ���
interface. Every interface has been divided in two parts. One part for incoming messages, an-
other part for outgoing messages. The liveness module itself is connected to the remainder of the
adaptor by means of one ��������� port, again pictured as an incoming and outgoing part. Internally,
the liveness module will make use of two Petri-nets. One Petri-net describing and tracking the
behavior of the client component, and a second net describing the behavior of the module.

From a more detailed point of view, the liveness module will continuously extend the existing
client Petri-net with extra random transitions to introduce new synchronization behavior. The
fitness of these random transitions will be taken into account automatically by the learning algo-
rithm and as such only transitions that act correctly, will survive. However, one should take care
that the newly added transitions do not interfere with the original behavior of the client Petri-net.
For example, the extended Petri-net may enable some of the original transitions that could never
be enabled in the original Petri-net. An extended Petri-net could allow a SetPosition when the
position has not been locked yet. This is clearly undesired behavior. In general, the newly added
transitions should never invalidate the preconditions of the original transitions

We will denote the extended Petri-net as � � � � � ��� � � � � � � � � � � ��� � ��� � ��	 � 
 , while the original
client Petri-net is denoted by ��� � ��� �����	� ��� � ��� � ���	����� ����� ��	�� 
 . Obviously, ��� must be a subnet
of � � . This means that ��� � � � � ��� � � � � ��� � � � � ��� � � � � ��� � � � � �	� � � � , and �
� ��� �
where �
� and � � are the initial markings obtained from 	�� and 	 � , respectively.

The requirement that � � does not interfere with ��� is formally expressed as follows:
� � � reachable from � � under � � � � � � � � � ����	� ��� ���� ��� ��� � ��� � �
� � ������� ���
 (9.1)



9.1. A PETRI-NET REPRESENTATION 145

The definition of the multi-set of token elements � � ����	� was given on page 49 (equation 3.1).
The reachability definition was given on page 65 (equation 3.5).

9.1.2 Runtime Creating of Transitions

new
transition pure

places

source
places

pseudo
sink
places

sink
places

pseudo 
source
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tokens
automatically 
transferred

tokens
automatically 
transferred

Figure 9.3: How new transitions will be created. The big cloud at the right is the original Petri-net. The new
transition is part of the extended Petri-net.

At runtime, the liveness module knows which markings occur in the original Petri-net � � .
This knowledge allows us to optimize the process of generating random transitions. If a sit-
uation occurs in which the original Petri-net fails to take action, the module generates a new
transition specifically suited for the corresponding marking. This is called adding new behav-
ior. Otherwise, a random marking from the past is selected and the transitions related to that
marking are modified at random. This is called modifying behavior. In both cases, every new
transition generated by the module is inserted in the extended Petri-net � � .

To add new behavior, we need to analyze the current (runtime) situation. This is done by
retrieving the current marking and removing all source-places. The reason behind this is that
a source-place can never be part of the state of a component, because it represents an incoming
message. The second reason for ignoring the source-places is that every source-token is automat-
ically transferred to a sink (or pseudo-sink) place. So if we need the information that a token is
waiting we can as well look at the out-place instead of the in-places.

Removing all source-places yields a new marking that represents the (expected) state of the
client component and the messages that cannot be handled (these reside in the pseudo-sink
places). From this new marking the random generator selects two places that will form the in-
puts for the new transition. One of both places must belong to the original Petri-net, the other
one must be a pseudo-sink place. (Illustrated in figure 9.3). To guarantee the non interference
requirement (equation 9.1), new transitions must restore all consumed tokens back to their orig-
inal places in the original Petri-net. Determining possible output places for the new transitions
is also delicate. In the same way that we cannot allow a token to be removed from the original
Petri-net, we cannot add new tokens to it. Therefore, only pseudo-source places can be used as
output places. Of those, the only suitable candidates are those that enable a transition that sends
back a synchronization message to the client component.
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The expressions placed on the arcs that connect the input places to the transition and the
transition to the output places is mainly based on the available type information. This idea comes
from [Mon93, HWSS95], who argues that type information is an advantage when faced with
random generated syntax trees.

To modify the behavior of an existing transition we simply keep the current input-arcs but
modify the output arcs and expressions in the same way as above. The original transition is
removed and replaced by the freshly created transition.

The representation given in this section is the best representation we found to represent so-
lutions for our liveness problem. However, this representation now needs to be combined with
an on-line learning algorithm. Such algorithms typically require feedback, for which we did not
yet explain how we would obtain it. Therefore we will now turn our attention to the feedback
problem.

9.2 Runtime Feedback

9.2.1 Check-pointing the Component’s Source

THE PROBLEM WITH LIVENESS IS, as explained in section 7.2.3, that it is difficult to verify. In the
formal Petri-net model liveness can be defined, but this wouldn’t turn out to be a good measure
because we don’t actually know what the goal(s) of our components are. Therefore we need some
feedback from the component that quantifies its liveliness.

A technique suitable to do so is check-pointing. A checkpoint is a static place in the code
which will give rise to a reward when the code at that line is executed. Algorithm 25 illustrates
this. By counting the occurrences of every checkpoint we can deduce a fitness measure. This
fitness measure is specific for the component under investigation. Checkpoint (1a) will normally
be reached only once. Checkpoints (1b) and (1c) will occur multiple times and should correlate in
some way, because every point removed must have been once ours. Checkpoint (2) is a position
which is a situation we don’t want to encounter too much, hence when obtaining a quantitative
measure we will reward this less than the other checkpoints. The green checkpoints (3a,b,c)
measure how many lock operations are issued. By correlating the green checkpoints with the blue
checkpoints we also have a measure for the underlying concurrency interface. This approach has
a number of advantages and disadvantages.

Pros
� The component can relatively easily indicate when it is alive and when not.

� Non-determinism in the components can enhance the learning cycle by quickly removing
’hard’-coded behavior

� The rewards will always be strongly correlated to the actual working of the component.

� This form of documentation does not require much maintenance.

Cons
� It might not always been possible to place rewards in the component’s source. Especially

not in open distributed systems. Therefore, In section 13.8.2, we investigate other possibili-
ties. However, for now, we do assume that such rewards are offered by the component.

9.2.2 Correlation

In this section we will focus on an important property of checkpoints and Petri-nets, namely that
the checkpoints reached are statistically correlated to the marking of the Petri-net. Later on we
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Algorithm 25 Checkpoints in the floodactor algorithm. The green checkpoints are simple lock-
ing operations. The red checkpoint is a position we don’t want to reach too often. The blue
checkpoints are important ’mile-stones’. Every blue checkpoint has to be reached otherwise the
component is not tested entirely.

(1a) int color = joinActor();
List seeds = new Vector();
List border = new Vector();
List ismine = new Vector();
Pos pos = Pos.random();
seeds.add(pos);
while(seeds.size()>0)
{

int r=random.nextInt(seeds.size());
pos = (Pos)seeds.remove(r);
if (!lock(pos))
{

(2) seeds.add(pos);
continue;

};
(3a) if (!ismine.contains(pos) && isFree(pos))

{
(1b) setPosition(pos,color);

ismine.add(pos);
border.add(pos);
seeds.add(pos.left());
seeds.add(pos.right());
seeds.add(pos.up());
seeds.add(pos.down());

}
(3b) unlock(pos);

Iterator it=border.iterator();
while(it.hasNext())
{

pos=(Pos)it.next();
if (ismine.contains(pos.left())
&& ismine.contains(pos.right())
&& ismine.contains(pos.up())
&& ismine.contains(pos.down()))

{
lock(pos);

(1c) setPosition(pos,0);
(3c) unlock(pos);

it.remove();
}

}
}
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will need this property, and although not the case in all situations we will assume that in most
practical situations there is a statistical correlation between both.

We want to show that there is a statistical correlation between the state of the Petri-net and
the checkpoints reached. So, if we know the marking of the Petri-net we should be able to give a
probability that a certain checkpoint will be reached. It is clear that this question can be exactly
answered if we have all information available. If we would have available the entire state of the
component, then we can with a probability of 1 say which execution will be executed. To know
this we can simply simulate the execution of the program.1

However, if we don’t have all information available, this might not be possible. It is clear
that the information contained within the Petri-net is only enough to describe the concurrency
strategy of the component. It does not contain a full internal description of the state of the com-
ponent, hence we might in general not be able to link these statistically. Typically, the checkpoints
in components that cannot be statistically linked to the Petri-nets involved will use some extra in-
formation not available to the Petri-net. This information will be either information with respect
to the concurrency strategy, or information with respect to some internal logic of the program. If
the unknown information is part of the concurrency strategy, this should have been described in
the Petri-net, if it isn’t however, the information will still be in correlation with the concurrency
strategy, because these checkpoints are specifically placed at important positions with respect to
the concurrency strategy. Therefore we will further on assume that the checkpoints are statisti-
cally correlated to the marking of the Petri-net:

Assumption: the checkpoints help documenting the concurrency strategy in such a way that a
statistical correlation exists between the checkpoints and the marking of the Petri-net.

In this section we have explained how rewards can be created by placing checkpoints in the
component’s source code. This is easy to implement and allows us to offer a reinforcement learn-
ing algorithm the necessary feedback.

9.3 Reinforcement Learning

THE PROBLEM OF KEEPING A COMPONENT ALIVE by selecting the correct action in a certain situa-
tion seems to be a suitable problem for a reinforcement learning approach as described in section
4.4. The mapping of our problem to a reinforcement learning problem requires the definition of
states 	 � , rewards � � and actions � � . We will define the state to be the marking of the Petri-net
adaptor. The actions a learner can take are defined as the transitions within the net. However,
part of the transitions are under control of the learner while others are executed automatically
by the underlying component. If the action executed is not controlled by the learner it behaves
exactly as if the learner would have chosen it.

	 � � � �
� ��	 
 � � ��� 
 � � � � � � ��� � (9.2)

The rewards for the learner come from the underlying component and are assigned at the
moment a checkpoint in the component’s code is reached. Because a reinforcement learning
approach requires a reward signal at every time-step we define the rewards � � to be zero unless
the underlying component specifies otherwise. The underlying component will however send a
reward for the last action back as an asynchronous message. This means that the learner must
wait to assign a reward of zero until a new message arrives.

This definition of our liveness problem as a reinforcement learning problem is straightfor-
ward, however; before we can be sure that this problem is a valid reinforcement learning problem
we need to be sure that the problem constitutes a Markov Decision process.

1One might object and say that we cannot be sure that the program will ever stop because it is Turing-complete.
However, we know that it will stop because the components themselves are reactive and will finish always at some time.
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9.3.1 A Markov Decision Process

We will now show that the stated liveness problem constitutes a Markov decision process. A
Markov decision process is a process in which all necessary information from the past, that has
led to the current situation is retained in such a way that a decision can be taken solely on the
base of the current situation. Formally, � � ��	 � � �

� 	 � � � � � �
� � � 
 should be known2 based only on

the current state 	 � and the current action � � .
To demonstrate this we show that the current marking of the Petri-net and the current transi-

tion selected within the net define a) the next state and b) the reward that is returned. Proving a)
is easy because the Petri-net describes exactly in a consistent way the concurrency behavior of the
underlying component. Exact means that the next state 	 � � � is entirely dependent on the current
state 	 � as defined by the Petri-net. Consistent means that the underlying component will act
upon what is described in the Petri-net. Formally,

� 	 � � � � 
 � � � � ��� � � �
� 	 � � � 


So, �
� ��	 � � �

� 	 � 
 � � 	 � � � � � 	��
� ��	 � � �

� 	 � 
 � � otherwise

Showing b), that the reward � � � � is dependent on the current state 	 � and the action � � chosen
is in general more difficult because the underlying component can make use of a memory which
is not specified in the Petri-net, and which is thus not visible to the learner. However, if we go
back to the assumption that the checkpoints are correlated to the Petri-net (page 148) then we
can conclude that a reward is immediately dependent on the currently selected action and the
current state of the Petri-net. Therefore we conclude that, under the stated assumption, the given
problem is Markov.

9.3.2 � -learning

Finding out which branch of reinforcement learning algorithms is useful (Monte Carlo, �2� � 
 
 ,
Dynamic Programming) highly depends on the nature of the problem. The liveness problem
we have is a continuous task because we cannot require the underlying component (and all the
components it’s communicating with) to reset their behavior during execution. This prohibits
us from using techniques such as Monte-Carlo methods [SAG98]. The liveness problem also has
no model available to foresee when a reward will be assigned in the future, therefore dynamic
programming [SAG98] techniques are also of little interest to us. As such, we will investigate
the use of temporal difference learning. A temporal difference learning algorithm approaches the
problem of estimating the

� � 	 � � 
 and � � 	�
 value-functions in an incremental way. Every time a
certain action � � is selected the resulting state 	 � � � (or state-action couple ��	 � � � � �

�
� � 
 ) will give a

certain amount of reward to the current state 	 � (or state-action couple ��	 � � � � 
 ). The next state is
responsible for recreating its amount of accumulated reward by choosing an appropriate action.
As such, rewards are propagated backwards. If future rewards are accessed multiple times, the
current situation will always profit of it. Below we will investigate how the well known �2� � 
 

learning technique

�
-learning can be applied.

�
-learning in general works as follows:

1. Choose action � from 	 using a policy ( � -greedy for instance) and the
�

- value function.

2. Execute action � , observe � and new state 	 � .
3. Change

� ��	�� � 
&� � � ��	�� � 
 ��� � � � � �
� � ��� � � 	�� � � � 
 � � ��	�� � 
 
 . With ��	�� 	 � . A high value
for � will make the learner learn quickly. � 	 � 	 � is the discount factor. This models
the fact that future rewards are worth less than immediate rewards as explained on page 74
(equation 4.1).

2 �	� is the probability distribution
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4. The new state becomes the current state. 	 � 	��

9.3.3 State Space Compaction

The problem with implementing
�

-learning is that both methods needs to keep a memory of
� � 	 � � 
 . In our case however this is not feasible because the number of possible markings is very
large. The reason behind this is that Petri-nets can express in a compact way concurrent pro-
cesses, hence, even for small Petri-nets the number of markings can be very large. However, we
will argue that a straightforward state space compaction is possible by only assigning strengths
to transitions enabled under a certain marking. This will be a good consistent choice that will
respect the structure of the problem involved. Below we will first assume that we have an ele-
mentary Petri-net, describing the behavior of an interface (see section 3.4.3). Afterward we will
see how this naturally extends to colored Petri-nets.

Definition of � � 	 
 and
� � 	 � � 


When working with a reinforcement learning algorithm we have to define how “good” it is to
be in a certain state and how “good” it is to select a certain action in a certain state. These two
functions are called the state value and the state-action value functions. For our Petri-net the state
value function is easily defined as the best future reward possible by any action enabled under
that state, hence we define

� � 	�
 � � �
� � � ��� � 
 � � ��	�� � 
 � � � 	 � � 
 (9.3)

This definition is useful because it states that the maximum reward that can be obtained from
state 	 is either � or the maximum of the reward to be expected from all enabled transitions under 	 .
The state-action value function

� ��	�� � 
 can be deduced immediately from this definition because
the execution of � will always result in state 	 � ��� for which we know the expected future reward
by the state value function. Hence,

� � 	�� � 
&� � � � 	 � ��� 

In the above two mutual dependent definitions, a marking must be remembered for every

possible action. This is expensive because the possible markings can be very large. Therefore, we
will now define an expected reward solely on the messages being send between the components.
In the definition given below,

� ��� 
 denotes the strength of transition � .

� � 	 � � 
&� � � ��� 
 � 	 ��� ��� � � � � � 

Implementing the

�
-learning algorithm as such, is straightforward

� ��	�� � 
 � � ��	�� � 
 � � � � � � �
� � ��� � � 	 � � � � 
 � � ��	�� � 
 


� ��� 
 � � ��� 
 � � � � � � ��� � ��� � � ��� � ��� � 
 � � � � 
 


	 ������� ��� � ��� 
&� � 	 ������� ��� � ��� 
 � � � � ��� �
� � � � � � ����	 ��� ��� � � � � � � 
 � 	 ������� � � � ��� 
 

With this definition we only have to store strengths in transitions, we don’t have to remember

possible rewards for every ��	�� � 
 couple. We will now explain that very often this high compaction
ratio forms no problem. Given our definition of

� ��	�� � 
 and the assumption that all updates to
� � 	 � � 
 aim to make a better approximation of the possible future reward, we will indicate that
� � 	 � � 
 indeed defines the expected future reward.

Although a seemingly trivial statement, the real problem comes from the fact that
� � 	 � � 
 only

stores one strength for every � and not for every couple � 	�� � 
 . So an update to
� � 	 � � 
 will very



9.3. REINFORCEMENT LEARNING 151

likely modify
� � 	�� � � 
 too , which not necessarily means that an update to

� � 	�� � � 
 is appropriate.
To demonstrate that an update to

� ��	�� � 
 will never result in an inappropriate update of another
couple

� ��	�� � ��� 
 we will demonstrate that when �
�� ��� the update does not interfere and that

when 	 � �� 	  � � � � such an update will interfere, but the result is still what one would
expect. In the case that ��� �� � proving non-interference is trivial because

� � 	 � � 
 � � ��� 
 and this
strength is stored in the transition � itself. So this update does not modify

� ��� � 
 , and thus does
not modify any

� � 	�� � ��� 
 . In the other case when 	�� �� 	� � � � � an update on
� ��	�� � 
 can only

occur when � was enabled under 	 . Therefore a modification to
� � 	 � � � 
 will only occur when �

is also enabled under 	�� . If that is the case this inference is not a problem because the expected
reward under marking 	�� should also become the reward of

� ��	�� � 
 because there is a means by
which this possible higher reward can be obtained. With this we have shown that our definition
of

� � 	�� � 
 will always indicates what kind of a reward we can expect in the future. Below we give
an example of a situation where

� � 	 � � 
 and
� ��	�� � � 
 with 	

�� 	�� .
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Figure 9.4: Four Petri-net states. When a place contains a token it is colored yellow. Red transitions are
disabled, green transitions are enabled.

Example An example of such a situation is pictured in figure 9.4. We consider the case where
two different markings both have the same transition enabled. In the top left part of the figure
we see marking 	 � . In the top right part of the figure we see a Petri-net with a current marking
	 � . Both markings enable transition � � . Marking 	�� (= 	 � � � � � ) receives a reward, but marking 	 �
(= 	 � � � � � ) does not. In this case, after choosing action � � (executing transition � � ), a reward will
be assigned to � � only in the bottom right case. This might indicate that an interference between

� � 	 � � � � 
 and
� ��	 � � � � 
 is in place. However, as explained earlier, the Petri-net marking is corre-

lated to the rewards received, so we can assume that the reason why a reward is assigned for 	 � is
because place � � contains a token, while it does not contain a token in 	 � (in this particular exam-
ple). So � � will not preserve this information and not link state 	 � to a positive reward and state
	 � to no reward. Instead � � will oscillate around a certain value. The Q-learning algorithm will
back propagate rewards to any transition fired before. Hence, after a learning period, transition
� � will contain a constant value, indicating the necessity of a token at place � � . This illustrates
how the necessary information is preserved.
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The oscillation that occurs on transition � � comes from the fact that the compression of all
states (which actually constitutes a Markov Decision Process) loses too much information and no
longer represents a Markov decision process. To be able to handle these unwanted situations,
together with the need to handle specific symbolic actions (such as when [X, Y] arrives, send
back [Y-1,X-1]) we have combined the above reinforcement learning algorithm with the situation
recognizer described in section 9.1.

9.3.4 Structural Aspects of this Compaction

In the case of colored Petri-nets the above definition of
� ��	�� � 
 will lose however even more in-

formation. For instance it is possible to have a set of differently colored tokens that all enable the
same transition in different ways. Therefore, our definition of

� ��	�� � 
 loses even more informa-
tion, because a colored Petri-net typically collapses states when appropriate (as observed in the
experiments in section 11.5). Our learning algorithm will be able to make use of this structural
information. E.g. instead of learning what to do on position � ����� 
 , position ��� � � 
 , position � � � � � 

and so on, the learner will learn what to do on position �$� � 
�
 . To do so, the learner will add new
transitions every once in a while, depending on the policy. Furthermore, when necessary, the
loss of information in

� ��	�� � 
 can be compensated by creating new transitions that recognize new
situations. Once such a transition is added its strength will increase or decrease, depending on
its suitability.

9.4 Discussion

9.4.1 Experiments

TO VALIDATE WHETHER THE COMBINATION of Petri-net transitions, reinforcement learning and
statically placed checkpoints works in practice, we conducted a number of experiments. Every
experiment is based on the conflicts enumerated in chapter 6.

We now describe the behavior of our reinforcement learning algorithm by looking at some
of the more interesting experiments. The experiments performed apply a learning rate � of 0.1
and a discount factor � of ��� � . Every experiment is summarized in a figure that plots the

�
value

of a number of transitions over time. Not all transitions involved in every liveness module are
presented, only those that helped in implementing a correct behavior. For every transition the
Petri-net code is shown under the form of dynamic transitions, together with the number of times
the transition has fired during the experiment. Every line in the graphic has its own behavior, and
specifies a transition that can only be fired in certain circumstances. For instance, in figure 9.7 we
see 2 lines. The red line (dynamic transition 0) is the locking behavior, the green line (dynamic
transition 1) is the unlocking behavior. Now, some observations can be made:

1. Often transitions will be present with a fairly constant
�

value, such as the dynamic tran-
sitions 0 and 63 in figure 9.5. This typically occurs when the transition is very specific and
only works on specific positions such as row 11 and row 12. Such transitions are therefore
not often executed, hence the

�
value is not adapted as fast as the often used transitions.

2. Sometimes transitions occur which share behavior. For instance in figure 9.6 the 16th dy-
namic transition implements exact the same behavior as the 10th dynamic transition. The
state-recognizer generator currently avoid duplicates as much as possible, however in this
case the names of the temporary variables are swapped and as such are not recognized as
duplicates. However, such duplicates (dynamic transition 16) does not immediately take
away the rewards from the original transitions (dynamic transition 10).

3. In figure 9.5 the expected Q-values of the two most used transitions oscillate. This comes
from the fact that flood actor 1 not only assigns rewards when it is able to lock or unlock
a square, but also when a position can be claimed to be part of the actor, in that case a
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’dynamic.0’
’dynamic.1’
’dynamic.9’

’dynamic.63’
’dynamic.111’

(transition "dynamic-0" (7 times)
(input "lock-out"-req [TMP2 11])
(input "lock_true"-enabled [])
(output "lock_true"-act []))

(transition "dynamic-1" (4 times)
(input "unlock-out"-req [3 TMP2])
(input "return_unlock"-enabled [])
(output "return_unlock"-act []))

(transition "dynamic-9" (196 times)
(input "unlock-out"-req [TMP2 TMP1])
(input "return_unlock"-enabled [])
(output "return_unlock"-act []))

(transition "dynamic-63" (4 times)
(input "lock-out"-req [TMP1 12])
(input "lock_true"-enabled [])
(output "lock_true"-act []))

(transition "dynamic-111" (175 times)
(input "lock-out"-req [TMP1 TMP2])
(input "lock_true"-enabled [])
(output "lock_true"-act []))

Figure 9.5: Liveness module tested on floodactor 1 (non-waiting, nested, square, immediate transition).
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(transition "dynamic-0" (12 times)
(input "lock-out"-req [9 TMP1])
(input "lock_true"-enabled [])
(output "lock_true"-act []))

(transition "dynamic-1" (3 times)
(input "unlock-out"-req [TMP1 14])
(input "return_unlock_true"-enabled [])
(output "return_unlock_true"-act []))

(transition "dynamic-10" (189 times)
(input "unlock-out"-req [TMP1 TMP2])
(input "return_unlock_true"-enabled [])
(output "return_unlock_true"-act []))

(transition "dynamic-13" (182 times)
(input "lock-out"-req [TMP1 TMP2])
(input "lock_true"-enabled [])
(output "lock_true"-act []))

(transition "dynamic-16" (2 times)
(input "unlock-out"-req [TMP2 TMP1])
(input "return_unlock_true"-enabled [])
(output "return_unlock_true"-act []))

Figure 9.6: Liveness module tested on floodactor2 (non-waiting, non-nested, squares, immediate, different
syntax)
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(transition "dynamic-0" (74 times)
(input "enter-out"-req [])
(input "enter_done"-enabled [])
(output "enter_done"-act []))

(transition "dynamic-1" (73 times)
(input "leave-out"-req [])
(input "leave_done"-enabled [])
(output "leave_done"-act []))

Figure 9.7: Liveness module tested on floodactor3 (waiting, non-nested field lock, immediate transition)
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(transition "dynamic-2" (218 times)
(input "lock-out"-req [TMP1 TMP2])
(input "lock_done"-enabled [])
(output "lock_done"-act []))

(transition "dynamic-3" (15 times)
(input "unlock-out"-req [9 TMP1])
(input "unlock_done"-enabled [])
(output "unlock_done"-act []))

(transition "dynamic-13" (6 times)
(input "unlock-out"-req [TMP2 8])
(input "unlock_done"-enabled [])
(output "unlock_done"-act []))

(transition "dynamic-20" (3 times)
(input "lock-out"-req [TMP2 TMP1])
(input "lock_done"-enabled [])
(output "lock_done"-act []))

(transition "dynamic-23" (197 times)
(input "unlock-out"-req [TMP2 TMP1])
(input "unlock_done"-enabled [])
(output "unlock_done"-act []))

Figure 9.8: Liveness module tested on floodactor 4 (waiting, nested, square, immediate transition, normal
syntax)



9.4. DISCUSSION 157

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150  200  250  300  350  400  450

’dynamic.0’
’dynamic.2’

’dynamic.66’
’dynamic.’
’dynamic.’

(transition "dynamic-0" (294 times)
(input "lock-out"-req [TMP2])
(input "lock_false"-enabled [])
(output "lock_false"-act []))

(transition "dynamic-2" (27 times)
(input "lock-out"-req [TMP1])
(input "lock_true"-enabled [])
(output "lock_true"-act []))

(transition "dynamic-66" (39 times)
(input "lock-out"-req [18])
(input "lock_true"-enabled [])
(output "lock_true"-act []))

Figure 9.9: Liveness module tested on floodactor 5 (non-waiting, nested, line locking)
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(transition "dynamic-2" (11 times)
(input "unlock-out"-req [28 3])
(input "return_unlock"-enabled [VAR0])
(output "return_unlock"-act [VAR0]))

(transition "dynamic-27" (210 times)
(input "lock-out"-req [28 TMP2])
(input "lock_true"-enabled [])
(output "lock_true"-act []))

(transition "dynamic-166" (141 times)
(input "unlock-out"-req [VAR0 TMP1])
(input "return_unlock"-enabled [VAR0])
(output "return_unlock"-act [VAR0]))

Figure 9.10: Liveness modules tested on moving dot actor 6 (non waiting, non nested, square locking)
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(transition "dynamic-3" (215 times)
(input "lock-out"-req [TMP1 TMP2])
(input "lock_done"-enabled [])
(output "lock_done"-act []))

(transition "dynamic-25" (206 times)
(input "unlock-out"-req [TMP2 TMP1])
(input "unlock_done"-enabled [])
(output "unlock_done"-act []))

Figure 9.11: Liveness modules tested on line actor 9 (2 layered locking strategy. The first layer is a waiting,
nested square locking strategy, the second layer is a waiting nested field locking strategy)
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relatively high reward (10) is assigned. It is clear that this latter reward behavior does not
conform to the stated requirement that rewards should only be used to specify concurrency
behavior, however, aside from some oscillation this does not pose much problems. Figure
9.8 illustrates this even more clearly, here also the future reward after a lock operation keeps
on oscillating because the rewards are positioned at different places.

4. In figure 9.6 one of the first rules discovered (dynamic transition 0) is a rule that allow locks
on column � , however it takes a long time to discover a general rule that also works on
other columns of the whiteboard. Visually this could be perceived as a flood actor which,
during its first 12 moves, migrates only vertically. However, when a general rule is found,
it quickly spreads horizontally. A similar behavior is encountered in 9.9.

5. In figure 9.9, a reward-less lock operation is executed 294 times. This happens because an-
other transition (which knows how to lock column 18) hides the lack of reward. This comes
from the fact that the quality of a certain marking is the maximum possible reward that
can be obtained in the future. Given the fact that our colored Petri-nets collapses different
states, and does not make a distinction between column 18 and all the other columns, tran-
sition 0 will be used to claim the future reward. However, because our representation of
state-recognizers is well designed, this forms no problem, only a delay.

6. Figure 9.11 shows an experiment in which we tested how future rewards are remembered
and how fast they are forgotten. The actor involved is a line actor, which only assigns a
reward at the moment an entire line could be locked or unlocked. As can be seen, the future
reward is forgotten slowly and thus still remembered correctly at a later time to allow the
algorithm to exploit this knowledge.

7. In figure 9.11 the locking strategy contains two layers. The first layer is the layer in which
we need to specify that we will start or stop with locking operations. The second layer can
be used to lock individual squares. Because the offered Petri-nets do not allow much choice
with respect to what to do when a StartLocking request arrives, these transitions are not
included.

8. In figure 9.10 the goal of the experiment was to learn that in 50% of the cases a LockFalse

should be sent back and in 50% of the other cases a LockTrue should be sent back. Learning
this behavior has clearly failed. Currently, the amount of reward that is expected to be
received is marginal in comparison to what can be obtained. This can be seen in the quality
value of dynamic transition 166, in which at time step 400, suddenly a high reward arrives
because the algorithm has tried to send back a lockFalse. However, the reason for this
high reward cannot be remembered and is quickly forgotten again. This is an example of a
hidden correlation that cannot be learned.

Of all the components tested (16 concurrency strategies), 15 could be kept alive by the liveness
module. The one failing is component pictured in 9.10. From these experiments, we can conclude
that our liveness module works as expected, however, we can also conclude that it might be
overkill and that it seems that most concurrency strategies are in essence very simple FSM’s, in
which we don’t have to remember much of the previous history. We will come back on this issue
in chapter 12.

9.4.2 Bypassing a Concurrency Strategy

The approach we have presented in this chapter uses a reinforcement learning technique as a
means to solve the liveness problem. Because we cannot rely on the formal liveness definition,
we introduced checkpoints as a means for the developer to specify which actions are favored.
The technique presented here could also be used to learn how an adaptor can reach a certain
state. Should we want to do this, the reward could be assigned at the moment a change in
marking occurs that is closer to the target marking. If it is further away from the target marking,
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a negative reward (punishment) should be given. Implementing such a technique would be quite
similar and it would allow us to bypass the concurrency strategy of a server component without
the need to formally analyze the Petri-net.

9.4.3 Comparison with Classifier Systems and the BBA

The cautious reader may notice that there are a lot of similarities between the Petri-net transitions
we use and classifier systems. Indeed: the messages in a classifier-system can be compared to the
tokens present in the marking of a Petri-net system. In that case,

� Both, classifier rules and Petri-net transitions use preconditions to specify when they can
be fired. For classifier rules these are the classifier conditions, for Petri-net transitions, these
are the input-arcs and possible guards.

� Both have an output interface: when the preconditions hold, the classifier/transition can
be fired and certain actions will be taken. The classifier-rule can post a new message, the
Petri-net transition can place a new token.

� A classifier systems contains a number of classifier-rules which can be executed in parallel.
A Petri-net contains Petri-net transitions that can be executed in parallel. In both systems,
removing messages/tokens is done within a critical section.

Aside from these similarities, both strategies were investigated in an off-line fashion, by means
of a Pittsburgh approach (described in detail in chapter 11). This technique is inherently off-
line and the genetic algorithm requires different episodes to verify the value of every individual.
However, if we want to make this technique work on-line we might apply the Michigan-approach
[LF93], in which the different classifier rules are considered to be competing individuals. To
evolve such an on-line strategy and learn which rules are appropriate in which situations, the
bucket brigade algorithm [Hol] (BBA) might be useful. Summarized, the BBA gives each classifier
a strength. If a classifier is fired it passes on its strength to the ones that created the current
situation. In the next step, the classifier will receive a reward ’from the future’ if there is a reward
that could be obtained.

Nevertheless there are some major differences which make the BBA useless in our case. First
is the fact that the bucket brigade algorithm needs to know how specific a certain rule is. De-
pending on the specificity a higher bid can be placed. This is something that cannot easily be
transposed to Petri-nets. A second limitation of the BBA is that delayed rewards are implemented
by means of a mean future reward. This effectively means that a possible very good solution can
be hidden behind a lot of bad alternatives. A third problem with the BBA is the initial bias which
is often present when introducing new rules. Evolutionary speaking, new rules can never prove
themselves in an environment where systematically the worst rules, regardless of their age, are
removed first. This makes balancing the exploration/exploitation phase very difficult.

9.5 Summary

IN THIS CHAPTER WE HAVE EXPLAINED how we can construct a liveness module. First, we ex-
plained which representation we would use to recognize new situations, second we explained
how rewards from the underlying component could be obtained. And third, we explained how

�
-learning can be applied to the given problem. In this chapter we have developed a method

to minimize the storage-requirements of the value function, needed for
�

-learning. Thanks to
the locality property of Petri-nets we only need to store

� ��� 
 instead of
� ��	�� � 
 and by intro-

ducing state-recognizers as new transitions within the Petri-net we are able to exploit structural
properties of the colored Petri-net involved.
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Chapter 10

Module 3: The Concurrency Module
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Figure 10.1: Schematic of the concurrency adaptor

UNTIL NOW WE HAVE ADDRESSED two sub-problems. These are a) the problem of enforcing
an action on a component in such a way that the concurrency strategy is bypassed and b) the
problem of learning how a component is best kept alive. The last module, which we will now
present, is necessary to control access to resources by multiple clients.

Firstly we will explain how we can deduce which resources are involved, secondly we will
explain what exactly the problem is we want to solve. Thirdly we will explain when a component
has control over a certain resource. Fourthly, we will explain how our concurrency module can
exert control over the resources involved. And finally we explain how race-conditions can be
avoided.

10.1 Resources

BEFORE WE CAN EXPLAIN how we can manage access to the different resources we need to define
which resources we will consider.

A resource in our case is defined as all the � ���� � transitions that can be found in the elementary
net, expanded from the colored Petri-net. Every such a transition is a resource in its own right.
This approach to resources in a Petri-net is good enough for our case. Clearly the real resources
will have a much larger granularity than the definition we impose here. For instance a resource
in our whiteboard is at least the size of a square. If we consider resources to be the state of transi-
tions then we have 4 times as many resources: a setPosition(1,1), returnSetPosition(1,1),
getPosition(50,70) and returnGetPosition(14,3) for every square. However this is an ad-
vantage because it allows for a greater flexibility in aligning the resources. For instance, with
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our definition of resources one can specify that square � � 
 is locked for all operations and that
square � � � � 
 is locked for the read-operations. Furthermore, this definition of resources is also
complete in the sense that no resource can be found that cannot be expressed based on the state
(enabled or disabled) of transitions. This definition can be extended to include the state of ���������
places of the core functionality. However we will continue to work with only the transitions.

Definition: A resource within our Petri-nets is defined as every possible logic transition in the
elementary Petri-net expanded from the colored Petri-net.

With this definition of resources, we will now investigate what kind of race conditions can
occur, and why we need to manage this.

10.2 The Requirement: What is a Race-Condition ?

THE NO-CONFLICT REQUIREMENT (given in section 7.2.1 on page 124) states that no action re-
quested by the client should at any moment be impossible on the server. Simply by connecting
the liveness-module to the enforce-action module we can easily guarantee this. However, if we
do so, the no-race requirement is not satisfied. Below we illustrate why.

Client
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Figure 10.2: A race condition caused by the adaptor. The yellow and green lines are critical sections. As can
be seen the critical sections interleave (race) on the server.
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The reason why connecting the liveness module to the enforce-action module does not work
is that we effectively remove any concurrency strategy on the server. As such, a client can execute
any server action at any time it wants. This allows for a greater freedom, and effectively avoids
the conflict. However, the server can no longer guarantee that a transition that is enabled for
the first client is not reassigned to another client during execution. E.g., it is possible for an
adaptor to unlock a resource locked by � , lock the resource for component � , unlock the resource
for component � , and finally lock it again for component � . Here a concurrency problem will
occur because component � expected the resource to be locked the whole time, while in practice
another component was able to change the state of the given resource. This is pictured in figure
10.2.

To avoid this we should no longer only look at the fact whether a transition is enabled or
disabled. The real problem lies with the change of enabled to disabled transitions not with the
state they are in. If we want to make a concurrency module that avoids race conditions the
concurrency module needs to understand when which component can change the ’enabledness’
of a transition, or in other words when which component has control over which resource.

10.3 Control

IN THIS SECTION WE INVESTIGATE how resources can be controlled by the different clients. A
resource is (as stated earlier) defined as the transitions within the expanded Petri-net. When a
process has control over a certain resource it means that the process can access that resource and
use it, or modify its state. In our case, we can easily define control over a resource as the ability to
execute a transition, or modify the state of the transition. However, not all transitions of a Petri-
net can be controlled by the underlying component. Most outgoing messages (messages such
as Lock, Read, Write, Unlock) can be under control of the underlying component, however the
incoming messages (messages such as LockDone, ReadDone, WriteDone) are typically not under
control of the client component. This approach can also be found back in [MA97].

Definition: A transition is under control of a client component if it can be executed immediately
or its state can be modified directly or indirectly through using � ������ messages.

Because the � ��� � � � � � and ��� � � � � � � � ���� � messages can be sent (or involuntarily) received,
they take part in the process of verifying whether the state of a transition can be changed. Once
an ��� � � � � � � � ������ message is sent out, the concurrency module will simply pass it through to
the server component. If an � ��� � � � � � ��������� message comes back from the server, this message is
again passed through to the client component. On the other hand, ��� � � � � � � 	�
��������� messages
can be sent out by the client component, but do not need to be passed through and offer the
concurrency adaptor a choice where it can choose which enabled � ��� � � � � � 	�
��������� message to
send back. For instance, such a choice can be the request for a lock. The concurrency adaptor
has the choice to accept or reject the lock by sending back a LockTrue or LockFalse message.
However, both choices will result in different enabled/disabled ��������� transitions.

Once a LockTrue is sent back the client component can choose to execute a Read or Write,
thus the read and write transitions are under control of the client component. The messages that
can be sent back by the server component are readDone and writeDone, thus indirectly under
control of the client-component. Given a Petri-net and a corresponding marking, this controlled-
by information can be calculated automatically by means of a reachability analysis, similar to the
one described in section 8.5.

10.4 Choice-Points

BEFORE INVESTIGATING HOW WE CAN SATISFY the no-race requirement we need to know what
kind of actions can be taken by the concurrency module.
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It is clear that the concurrency module can not simply insert new ��������� transitions, because
this would alter the runtime behavior of the system. However, it should have the possibility to
insert 	�
����� ��� transitions at certain places. However, inserting this kind of messages is already
done by the enforce-action module and the keep-alive module. Nevertheless, the link between
the concurrency module and the enforce-action/keep-alive module is still not fully explained.

Therefore, to be able to let the concurrency-adaptor choose a certain action, the keep-alive-
adaptor will supply a set of possible futures, sorted according to their priority. This will allow the
concurrency-adaptor to first try to reach a certain target future and acknowledge that future. If
such a future cannot be reached without breaking the no-race requirement, another future will
be tried until a suitable one is found. If no possible future can be realized the component will be
set to wait until such a future can be realized.

From now on we will assume that the choices offered by the keep-alive module contains
information as how to select a certain future and control-information that describes which states
become under control of the given component when that future is selected. If a transition comes
under control of the component we will mark it with a ’+’. If a transition does not come under
the control of the component we mark it with a ’-’, otherwise, if it is undecided we mark the
transition with an ’?’. We will write this down as an � � � matrix, where � is the number of � ������
transitions in the exploded colored Petri-net. For instance

clearPosition joinActor getPosition ����� ��
 setPosition � � � ��

� � � � � 


Transitions for which it is undecided what the future will bring, will be considered to be under
control of the client component.

10.5 Avoiding Race Conditions

GIVEN THE DEFINITION OF RESOURCES and the possibility to choose certain futures that extend
different control over the resources, we can now explain how the concurrency module avoids
colliding critical sections.

We will do this by means of two matrices. The first matrix, called the control-matrix is of size
� �

� where � is the number of resources available and � is the number of clients available.
On this matrix the rows contains the clients. On the columns the transitions (resources) will be
placed. If a resource is under control of a client a � is placed in the matrix, otherwise a � .

The second matrix has the same layout but marks whether a certain resource is managed or
not by the concurrency module. This is necessary for two reasons. First, a resource can always
be enabled by different components (a resource like joinActor for instance) and second, some-
times certain clients don’t have a concurrency strategy at all. It is clearly impossible to manage
concurrency for a client that does not specify any concurrency strategy, or for resources that do
not take part in a concurrency strategy. Therefore, the concurrency module needs to keep track
of the resources and clients it can and will manage. If a resource/client is managed it is marked
with a � , otherwise it is marked with a � .
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The above example of the control matrix � and the managed matrix � illustrates the dif-
ference between both concepts. For instance column one and two can be a joinActor and a
returnJoinActor, For all clients (except the fourth), this joinActor and returnJoinActor are
under control of the client because the clients can choose to execute that transition at any time.
However, the fourth actor, is unable to extend control over the joinActor because it must (for
example) first call a joinLocking first. However, after the first joinLocking message, the con-
currency module will recognize that the joinActor messages are effectively managed by the
client component, hence the � matrix marks these resources and clients with a true. ( � � � � � �	� � 
 ).

The columns 3,4 and 5 are the separate operations on all the squares off the board. The first
and second client currently extends no control over the resources, however, only the second client
actually makes use of a concurrency strategy for those resources ( � � ��� � ���� 
 ). The fifth client
on those resource has currently control over the last resource � � � � � 
 , however, this control is
unmanaged by the concurrency module � � ����� 
 and as such must be treated differently when
realizing a certain future.

Therefore, we will now explain how � ������ and 	�
������ ��� messages are handled by the concur-
rency module.

10.5.1 Handling Incoming ��������� Requests

The concurrency module handles incoming ��������� requests by verifying whether the message is
allowed for that component, given the current situation. If an action is allowed it can be passed
through to the server component. If an action is not allowed, the concurrency module has no
option but to place the action in a queue and wait until a suitable configuration of the other
components arises to send the message through. An action can be allowed for two reasons.
Firstly, it can be allowed because the action itself is managed by nobody, or the clients managing
the resource currently does not extend any control over the resource. Secondly, an action can be
allowed because it concerns a resource that is managed by the client-component and is controlled
by the client. Formally:

A request � coming from client ��� is allowed ���
� � ��� � � 
  � � � � � � 
 � � � � � � � �

�� ��� � � � � � � � ��� � 
� � � ��� � 
 
 
 (10.1)

10.5.2 Handling Incoming 	�
��������� Requests

A second kind of messages that should be handled by the concurrency module are requests to
choose a certain future. These requests come from the client component only if there are multiple
futures to choose from. The responsibility of the concurrency module is to choose a correct future
that does not collide with the existing configuration of other clients. Therefore the � and �
matrices will be used. However, three things need to be discussed. First we need to discuss
how we can detect whether a resource is managed, second we will discuss when a future can be
realized and third we will discuss what happens when such a future is realized.

In the discussion below we assume that a client with identification ��� has proposed a number
of futures �!� � � � � �� � 
 . As already explained, a future is specified as a � � � matrix, where � is
the number of resources involved.

Detecting managed resources

A resource is managed at the moment a client component offers two different futures for that
resource and enables the concurrency module to choose between both. Therefore, we will update
the � matrix as follows

� � � � ��� 
 � � � ����� 
 � �

���� ��� ��� � 
 � � 
 �� � � � � 
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The above line states that a resource is managed if different futures have different control over
the resource.

Is a future realizable ?

Given this information, we can now verify whether a certain future � can be realized for client
��� . In general, a future � can be realized if its resources can be realized. A resource � can be
realized only if it realization does not block out all clients (including itself) to use the resource. To
understand better how such a situation might occur, we investigate all the possible tracks. We do
this by only looking at one resource � . If there exists one offending resource (in � ) then the entire
future is not realizable.

Intuitively, when future � specifies that it does not want to control resource � , then client ���
will not prohibit any other client from using the resource. This can be seen in equation 10.1. If
� � � � ��� 
 is false, then the term � ��� � ��� ��� 
� � � � � ��� 
 
 will be true, hence not blocking other clients
from using � . On the other hand, if � wants to control resource � then we must look at the state
of the other clients. We now look for a client (denoted � ) that might give rise to a situation that
locks out all clients.

1. � � � ��� 
 is false. This will lead intuitively to no conflict because client � does not extend any
control over the resource, hence will not collide in the future. If this is the case the module
will not prohibit F from being realized.1

2. When � � � ��� 
 is true, we have a problem. Client ��� wants to lock resource � , but client �
already has locked resource � . Now, depending on how the resources are managed different
results may be obtained:

(a) � � � ��� 
 is true. Here, resource � is managed and controlled by client � . Depending on
whether ��� manages its resource, we have different possibilities

i. � � ��� ��� 
 is true. If we would allow � from being realized then we would have
two clients accessing the same resource. This cannot be allowed, hence we must
prohibit � from being realized.

ii. � � ��� ��� 
 is false. If we allow � � ��� ��� 
 to become true, client ��� would have no access
to the resource as long as client � has locked resource � . Hence, this situation does
not prohibit the realization of � .

(b) � � � ��� 
 is false. Here, resource � is unmanaged by client � � but the resource is under
control of that client. Depending on whether � � manages the resource � , different
situations can arise. If client � � does manage the resource then client � will queue its
� ������ requests, while client � � will be allowed to use the resource. Hence this does not
prohibit � from being realized. However if client ��� does not manage the resource
either, but still claims to control it then we will might have race-condition. Of course,
this is to be expected because none of both clients manage the resource, so we should
allow this behavior.

Formally we express this intuition as:

� can be realized ��� � � � � 	 ��� �-� � � 
 �
�

��� ��� � � ��� � � ��� �#� � ��� ��� 


� ��� � ��� � �#� � ��� ��� 
��� � � � ��� 
5 � � � � ��� 
  � � � � ��� 
 

1Please note that we say ’does not prohibit � from being realized’ instead of ’allows � to be realized’. This is because

we are discussing when one client � will block a future. It is perfectly possible that client � does not block a future, but
that client �	��
 does so.



10.6. DISCUSSION 169

Realizing a future

One the concurrency module has determined which futures can be realized, it will choose one to
realize. Realizing a future is easy. The only thing we need to do is copy � to the correct place in
the matrix � . Thus:

� � � � � ��� 
 � � � � 

If no future can be realized the request is placed in a queue until it can be realized.

10.6 Discussion

BELOW WE DISCUSS THIS APPROACH. We investigate how certain clients behave when mediated
by means of this module. We will explain that our module in most cases behaves as expected,
however in certain special cases it will fail to work.

10.6.1 Server Requirements

The first observation about this module is that the concurrency strategy of the server does not
matter ! The enforce-action module uses the concurrency strategy only to bring the server in a
required state. The fact that we no longer need to take into account the offered concurrency strat-
egy is important for two reasons. First, it is a strong result because not a single server component
in such an automatically mediated conversation needs to offer a concurrency strategy. Second, it
allows us to look only at the indirect conflicts between different client components that want to
access the same server. This is what we will do now.

10.6.2 Unmanaged Concurrency

client 1 client 2 client 3 without adaptor with adaptor

unmanaged unmanaged unmanaged leads to race conditions leads to race conditions
unmanaged unmanaged managed leads to race conditions, leads to race conditions

for all clients except for client 3

We return to our conflict cases and investigate how our adaptor might improve the commu-
nication between multiple clients and a server. To do so, we first observe the behavior of a set
of clients with no concurrency strategy. Afterward we observe the same set of clients for which
only one requires a concurrency strategy.

If no client involved in a communication session specifies a concurrency strategy then the
adaptor will simply pass through all requests. To understand this, we point out that, if no con-
currency strategy is introduced, then no resource is managed, hence we end up in branch 2b
(section 10.5.2). By passing simply passing through any request, the module will not avoiding
race-conditions. Hence, the adaptor will mediate the concurrency conflict and will still exhibit
the implicitly required behavior, that is, not to manage concurrency.

On the other hand, if one of the connected clients offers a concurrency strategy, all the unman-
aged clients might need to wait until the concurrency managing client has finished its operations.
To understand this we point out that a concurrency strategy will lead to managed and controlled
resources. When one of those is present, all other clients will set to wait until the one managing
its resources has finished.

This strategy clearly improves the working of the system. If the adaptor would simply me-
diate the differences, the unmanaged concurrency clients might access the server while the man-
aged concurrency strategy is supposed to access resources exclusively. This observation shows
how our adaptor might not only mediate, but also improve the concurrency behavior.
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10.6.3 Livelocks
client 1 client 2 client 3 without adaptor with adaptor

rollback rollback rollback might lead to livelocks can avoid livelocks

The presented concurrency module does not care about livelocks. For instance, if none of the
involved components takes the possibility of starvation into account, then the resulting behavior
may exhibit a behavior that will lock out a certain client. However, it is possible to insert a
learning algorithm in the concurrency module that will learn how to avoid livelocks and learns
which timing to apply to keep all involved components alive. Because this behavior was not part
of the required interface, this is clearly an improvement. However, improving the working of the
whole is not always be possible, such as in the case for deadlocks.

10.6.4 Deadlocks
client 1 client 2 client 3 without adaptor with adaptor

waiting waiting waiting leads to deadlocks leads to deadlocks

If the involved components require a concurrency strategy which is deadlock-prone, such as
a waiting square locking strategy, then the adaptor will not avoid deadlocks. The adaptor will
still mediate the differences in syntax, control-flow, re-entrance, granularity conflicts and other
variabilities. This shows that the adaptor working as required, however it will not resolve dead-
locks automatically. It would be nice to have an adaptor that not only mediates the differences
but also avoids any concurrency problems. In section 13.8.6 we will briefly explain how we could
approach this. However, our adaptor will be able to detect a deadlock if one might arise.

10.6.5 Implicit Requirements

client 1 client 2 client 3 without adaptor with adaptor

staircasing staircasing staircasing no deadlocks no deadlocks
staircasing staircasing waiting leads to deadlocks leads to deadlocks

Another observation we can make, is that certain implicit requirements cannot be detected,
thus not mediated. Sometimes deadlocks can be avoided by cooperating clients if they apply a
staircasing technique (see section 5.8.3 on page 94). If the clients apply such a technique then the
adaptor mediates the differences and works as expected, thus avoid deadlocks. However, if an-
other client, one that does not honor this implicit requirement, joins, then the whole conversation
might deadlock. In section 13.5 we come back to this issue.

10.6.6 Virtual Resources

The only case where the concurrency module does not behave as expected is when certain re-
sources are ’virtual’, in the sense that they cannot be deduced from the Petri-net. Such a situation
occurs for instance in conflict 6.12 (page 110). In this conflict the client requires the possibility to
first lock the entire field. However, the Petri-net involved (picture 10.3) does not have any logic
transition that indicates that the entire server should be considered to be a resource. Specifically,
it is possible that the client requests to enter the server. This forms two problems. First, because
the liveness module has no choice but return enterOk. Second, because if this future is invol-
untarily realized, none of the resources come under control of the client component. In this case
the concurrency adaptor fails to work as expected. However, if the enter and leave transitions
would be coupled to real logic transitions, then this would not form a problem.

From these results we can conclude, that if we present our adaptor with a set of concurrency
strategies the result will work as expected and mediate the conflict correctly. On the other hand,
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Figure 10.3: A Petri-net of a layered concurrency strategy. The green boxes are the logic transitions which
form the resources involved.
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if the input contains virtual resources or contains implicit requirements, the resulting behavior
might be incorrect by introducing deadlocks. However, in every case, the adaptor will still me-
diate the conflict.

10.6.7 Implementation Issues

One of the implementation issues we encountered is a problem of performance. We define a
resource as a transition within the expanded elementary Petri-net. This means that for a simple

� � � � � whiteboard, the expanded Petri-net will offer around
� � � � � � � resources. Creating this

expanded Petri-net takes a long time if not optimized.
Also, because the liveness module need to specify which resources they will control, they

have to transmit relatively much information. To optimize this only change sets could be used.
Also, certain resources are similar. If an act can be done on a resource, then a getPosition is also
always possible. Deducing this information might help in optimizing this module, it might also
help in better defining what a resource exactly is, given the Petri-net.

10.7 Summary

IN THIS CHAPTER WE HAVE EXPLAINED how we can easily create a module that avoids race-
condition on the server. Firstly we explained which resources we consider. Secondly, we ex-
plained the requirement to avoid race conditions. Thirdly, we explained when a component
controls a certain resource. This was necessary to be able to specify when a resource is involved
in a critical section. Fourthly, we explained how our concurrency module is able to control the
behavior of the clients involved and how it manages to avoid race conditions.
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Chapter 11

Experiments

We have a habit in writing articles published in scientific journals
to make the work as finished as possible, to cover up all the tracks,

to not worry about the blind alleys or describe how you had the wrong
idea first, and so on. So there isn’t any place to publish, in a dignified

manner, what you actually did in order to get to do the work.

– Richard Feynman, physicist, Nobel Lecture, 1966

IN THIS DISSERTATION, until now, we have explained how we can create a on-line working
concurrency adaptor. This adaptor, however has not been created over one night. A number of
different kinds of experiments has been performed. These experiments have highly influenced
the current construction of the adaptor. Therefore, we feel it is necessary to explain these experi-
ments in more detail. In this chapter we will give an overview of them. In the following chapter
we will discuss the adaptor we have presented in this dissertation.

11.1 Introduction

Figure 11.1: Dependency graph of the performed experiments and developed tools. The orange boxes are
development boxes. The green boxes represent the addition of extra information, such as Petri-
nets, or component checkpoints. The blue boxes are off-line techniques. The yellow boxes are
on-line techniques. Solid arrows are ’need’-dependencies. Dotted arrows are ’approach based
on’ dependencies.
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PICTURE 11.1 CONTAINS A dependency graph of the experiments performed and the tools
developed. First, we designed and implemented the SEESCOA component architecture together
with a controller that can startup a number of components and connect them to each other.
This has been done in Java. Second, we created our own Petri-net evaluator and accompany-
ing tools (pretty-printer, conversion to prolog, conversion to .dia1 files, conversion to low level
nets). Third, we implemented a large variety of test components (as specified in chapter 5), to-
gether with a Petri-net representation of their concurrency strategy2. Fourth, we implemented
a connection tracer that allowed us to verify whether the Petri-net was complete, hence that no
message was not documented in the Petri-net. (described in section 3.6.3).

Below we will briefly summarize every experiment we have conducted. Initially we tried
to create one adaptor to solve the concurrency strategy conflicts. However, after some exper-
iments we took the decision to leave the track of off-line generated adaptors and focused on
the practical usability of such an adaptor, hence we tried to make it work on-line. This posed
some problems, which forced us to divide the adaptor in different modules as explained in chap-
ter 7. The details of all experiments can be found on-line at http://progpc26.vub.ac.be/ cgi-
bin/seescoacvs/component/concurrency/.

11.2 Experimental Setup

DURING THE EXPERIMENTS WE HAVE WORKED with two kinds of approaches. One approach
was an off-line approach in which components are supposed to offer a test-component (pictured
in figure 11.2). In such a setup, the learning algorithm has the opportunity to make wrong deci-
sions which brings one of the participating components in an invalid and irreparable state. The
second approach is an on-line approach in which a learning algorithm, or a learned algorithm,
was supposed to work without failure. From both approaches, clearly the second is most realis-
tic, because it can hardly be expected that in an open distributed system a component will offer
’test’-components, nor should any adaptor bring a component in an invalid state. However, as
we have already explained in section 4.3.1, the off-line genetic approach offered some valuable
insights into the representational problems we faced.

11.3 Measuring Technique

AS EXPLAINED IN CHAPTER 4, every learning algorithm needs some kind of feedback. If we
make use of an off-line strategy to generate an adaptor we should be able to measure how well
that adaptor performs (the fitness) to solve the problem.

Measuring the correctness of a generated adaptor is not at all easy because it can be a Turing
complete process, which means that we actually have to try it and cannot even see when it has
stopped, or is executing in a loop and doing something useful. If we would have enough pro-
cessing power available we could try testing all adaptors in parallel to each other. If we assume
that all concurrent processes run equally rapidly we could measure every generated adaptor over
a virtually infinite time span. All we would need to do is test all individuals concurrently and
summing up the rewards as they are received. When a certain adaptor has become the worst it is
killed and replaced by a new adaptor. However, this way of working has a major drawback: it is
immensely resource consuming, both computationally and with respect to the memory require-
ments. [DK96, GW93] Therefore we will need to fall back to another approach.

To solve this problem of measuring a possible Turing complete process we introduce the no-
tion of episodes. (such as in section 4.4.2). An episode is a finite run of a certain adaptor, that is
an execution with a limited number of messages that should be handled. The amount of fitness
received after this finite time is the reward for that episode. At the beginning of an episode the

1This is the file format in which most of the pictures of this dissertation are represented.
2To avoid confusion: Petri-nets are used to document the behavior of a component, but they are also used in a Petri-net

generator to create new behavior.
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Figure 11.2: Setup of the offline strategy

fitness is always zero (so the fitness of an adaptor does not take into account previous runs of the
adaptor.). If at the arrival of a certain message the Petri-net of the adaptor goes into a loop, we
terminate it after 2 seconds3 and assign the current accumulated rewards as a fitness. If handling
a message takes longer than 2 seconds, the component is killed. This technique of working is well
known when working with learning algorithms, however often evaluation-steps are measured
instead of real time. [Koz92]

The running time for every episode is increased slowly as the number of generations in-
creases. By doing so we not only solve the resource problem of testing all algorithms at the
same time, but we increase a number of interesting properties:

� With every new generation, every individual has to prove itself, thereby it can receive every
time a better reward because the length of the episodes is increased. Therefore, any adaptor
that has received once a good overall reward because it took a too specific action, will be re-
moved very quickly in the following generations. For example: an adaptor that specifically
works very well on position with

� � coordinate 5, because the input expressions requires
a 5 to be present at that place, will be removed in the following test round.

� Because the length of the episodes is slowly increased, the search-algorithm can find out
solutions to new problems every time a new problem is offered. For example: the search-
algorithm will first try to solve the problem of the Lock operation. A while later it will need
to solve the problem of the Unlock operation.

Below we will chronologically explain every experiment we have performed.

11.4 Experiment 1: A Scheme Representation

Goal: Creation of one adaptor program between two conflicting concurrency strategies.
Means: Genetic Programming with Scheme as a programming language.
Deployment: off-line

32 seconds is an arbitrary time which is more than enough to let a component handle 1 message.
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Input: No Petri-net description of the conflicting concurrency strategies is present.
Output: Scheme program that is supposed to mediate two conflicting concurrency strategies.

11.4.1 Description

In this small experiment we tested how a Scheme program [SJ75] could be generated automat-
ically that would solve the conflict of a nested locking strategy at one side and a non-nested
locking strategy at the other side. Essentially, this is a very easy problem to solve for an adaptor.
The only thing it has to do is keep track of a counter, which specifies how many times the client
has already locked the resource at the server.

The operations of the genetic algorithm are scheme operations such as +, -, /, *, >, <, <=, >=,
and, or, not, sendmessage, set!, define, if and handlemessage. The smallest solution we are
looking for is given in algorithm 26. In the program, the first argument given to sendmessage is
the port to which to send the message to.

Algorithm 26 Solution to the nested client locking strategy and non-nested server locking strat-
egy.

(define counter 0)
(handlemessage ’Lock’ 0

(set! counter (+ counter 1))
(if (= counter 1)

(sendmessage 1 ’Lock’)))
(handlemessage ’Unlock’ 0)

(set! counter (- counter 1))
(if (= counter 0)

(sendmessage ’Unlock’ 1)
(handlemessage ’LockResult’ 1)

(sendmessage 0 ’LockResult’)
(handlemessage ’UnlockResult’ 1)

(sendmessage 1 ’UnlockResult’))

11.4.2 Results

From this simple experiment we observed the following:

1. The random generation process was unable to create the above program. This is to be
expected because the high number of basic operations, makes creating such a program very
unlikely if done at random.

2. The random generation process highly influences the kind of generated programs. We
could tune the process to generate this simple program, however, the algorithm would
then be completely unable to generate anything else in other situations.

3. Measuring the fitness of an adaptor program is a discrete measurement, this means that the
concept of ’gradually evolving to a correct working adaptor’ is not at all easy.

4. The Scheme representation simply passes messages from one interface to another, it can
barely handle the content of the messages, unless extra operators would be added, but if
this were the case finding one suitable solution at all would become even more time con-
suming.

5. The lack of formal interface documentation was clearly observed in this program, because
we had to supply the genetic algorithm with the terminals lock, unlock, lockResult and
unlockResult.
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11.5 Experiment 2: Classifier System Representation

parameter value
individuals (genotype) variable-length classifier system

represented as bitstring
population size 100
maximum generations (100 runs) 11
parent selection ranking selection (10 % best)
mutation bitflip on non ranked individuals
mutation rate 0.8
crossover uniform

crossover rate 0.1
input/output interfacing Petri net state/transition representation
actions message sending
fitness number of successfully executed actions

Table 11.1: Parameters and characteristics of the genetic program

Goal: Create a concurrency adaptor between two conflicting concurrency strategies
Means: The Pittsburgh Approach to implement a genetic programming approach
Deployment: off-line
Input: Petri-net descriptions of two conflicting concurrency strategies & distributed fitness mea-
sure
Output: Classifier system to fill in the missing behavior

11.5.1 Description

Classifier systems (as described in section 4.3.2) are a well known technique to create algorithms
by means of a genetic program. Because the Scheme representation suffered from too many prob-
lems, we changed our approach substantially. First we introduced a formal interface description
under the form of Petri-nets, second we left the track of commonly used languages and investi-
gated the use of classifier systems. In these experiments we were using the previous example of
a non-nested versus a nested locking strategy. Both strategies offer simple enter/leave locking
semantics. For a quick overview of the parameters of our genetic program we refer to table 11.1.

The goal of this experiment was to create a classifier system automatically (the Pittsburgh
approach) that would mediate the differences between two conflicting concurrency strategies.
The classifier system should reason about the actions to be performed based on the available
input. Therefore we need to represent the external environment in some way and submit it to the
classifier input interface. We have investigated the use of two different approaches to represent
the external environment.

� Single message reactive systems: in a single message reactive system, the classifier system
receives one message that declares the whole external environment. This includes the mes-
sage that comes in, the messages that can be sent out and the state of the underlying com-
ponent.

� Multi message reactive systems: in a multi message reactive system, the classifier system re-
ceives multiple messages. Every message specifies a piece of the environment. There are
messages to describe incoming component messages, messages to describe outgoing com-
ponent messages and messages that all together declare the whole state of the Petri-net.
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Single message reactive systems

We now describe the semantics of a single message reactive classifier system.
The input of a classifier consists of the full state of the client and the full state of the server,

together with the actions which are required by either one of them. So, at first sight we should
create messages which contain the state in which the Petri-net is in and the action requested by
the client or the server. Of course, this would allow our classifier system to take invalid actions
in a certain context. The classifier could for example decide to send an act message to the server
when the server wasn’t even locked. To avoid this we decided to represent the client/server
state by means of the possible actions either one of them can perform. We can easily obtain these
because we have a Petri-net model that describes the behavior of all connected components.

In the case of simple enter/leave locking semantics, we define the semantics of our messages
as a 28 bit tuple (shown in figure 11.3), where the first 7 bits are the possible server actions, the
next 7 bits represent the possible client actions, the next 7 bits represent the requested server
action and the last 7 represent the requested client action.

Server Possible Actions Client Possible Actions
L L#t L#f U U# A A# L L#t L#f U U# A A#

Server Requested Action Client Requested Action
L L#t L#f U U# A A# L L#t L#f U U# A A#

Figure 11.3: L = lock; L#t = lock_true; L#f = lock_false; U = unlock; U# = unlock_done; A = act; A# =
act_done. A bit is set when either a certain action is possible or a certain action is required.

With these semantics for the messages, simply translating a lock from client to server requires
three rules (see figure 11.4). One which transforms the client lock request into a server-lock call
(rule 1) and two which transform a server lock return into a client lock return. (rule 2 and 3).

Condition1 Action Comments
1. 1###### ####### ####### ####### If we can call lock upon the server

####### 1###### 1###### 0###### & the client wants to call it
2. 1###### #1##### ####### ####### If we can call lock_true upon the client

#1##### ####### #0##### #1##### & the server wants to call it
3. 1###### ##1#### ####### ####### If we can call lock_false upon the client

##1#### ####### ##0#### ##1#### & the server wants to call it

Figure 11.4: The bit patterns from left to right and top to bottom: server possible actions, client possible
actions, server requested actions, client requested actions. A description of the bit semantics
can be found in 11.3.

Although this is a simple example, more difficult actions can be represented. Suppose we are
in a situation where the client uses a nested-locking strategy and the server uses a non-nested
locking strategy. In such a situation we don’t want to send out the lock-request to the server if
the lock count is larger than zero. Figure 11.5 shows how we can represent such a behavior.

Condition1 Action Comments
4. 1###### 1##0### ####### ####### If the client wants to lock and has no lock

####### 1###### 1###### 0###### we send the lock to the server
5. ####### 1##1### ####### ####### If the client wants to lock but has already a lock

####### 1###### ####### 01##### we immediately send back an lock_true.

Figure 11.5: Translating a client-lock to a server lock when necessary.
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Multi message reactive systems

We now describe the semantics of a multi message reactive classifier system.
The message that resides in the input interface of such a classifier system contains a prefix

that specifies what kind of message it is. When 000, the classifier message is about an incoming
action from the client, 001 is an incoming action from the server, 011 is an outgoing action to the
server and 010 is an outgoing action to the client. The prefix 10 describes the state of the client
and 11 describes the state of the server.

The rules of such a classifier system consist of a ternary string representation of the client
state and server state (as specified by the Petri-net), as well as a ternary string representing the
requested Petri-net transition from either the client process or the server process. With these
semantics for the classifier rules, translating a request from the client to the server requires only
one rule. Another rule is needed to translate requests from the server to the client (see table 11.2).

The number of bits needed to represent the states of each Petri-net depends on the number of
states in the Petri-net as well as the variables that are stored in the Petri-net (e.g., the LockCount

variable requires 2 bits if we want to store 4 levels of locking).

classifier condition action rule description
requested client server performed
transition state state action

00#### #### ### 11#. . . # Every incoming action from the client (00)
is translated into an outgoing action on the server (11)

01#### #### ### 10#. . . # Every incoming action from the server (01)
is translated into an outgoing action to the client (10)

Table 11.2: Blind translation between client and server processes. The last 5 characters in column 1 represent
the corresponding transition in the Petri net. The characters in the second and third column
represent the states of the client and server Petri net, respectively. The fourth column specifies
the action to be performed based on the information in the first four columns.

Although this is a simple example, more difficult actions can be represented. Consider the
situation where the client uses a counting-semaphores locking strategy and the server uses a
binary-semaphores locking strategy. In such a situation we don’t want to send out the lock-
request to the server if the lock count is larger than zero. Table 11.3 shows how we can represent
such a behavior.

classifier condition action rule description
requested client server performed
transition state state action

00 001 ~##00 ### 10 010 . . . If the client wants to lock (001) and already has a lock
(~##00) we send back a lock_true (010)

00 001 ##00 ### 11 001 . . . If the client wants to lock (001) and has no lock (##00)
we immediately send the message through (001).

Table 11.3: Translating a client process lock request to a server process lock action when necessary.

In this experiment, which is an offline experiment, two components, with accompanying
Petri-net descriptions of their behavior were offered to a genetic algorithm. The genetic algo-
rithm would create complete classifier systems to link the two Petri-nets together. Initially, a
single message reactive system was used, but as it turned out this classifier system was only able
to learn very local behavior4, therefore a multi-message reactive system has been tested. For the
single reactive system, we will now define what our individuals are, how crossover and mutation

4That is, behavior which was too specific.
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happens and what we do to measure the fitness. These choices are standard choices for classifier
systems.

Individuals are initially empty. Every time a certain situation arises and there is no matching
gene we will add a new gene. This gene, which is a classifier rule has a matching condition with
a random action on the server and/or the client from the list of possible actions. This guarantees
that we don’t start with completely useless rules which cover situations which will never exist
and allows us to generate smaller genes which can be checked faster.

Mutating individuals is done by randomly adapting a number of genes. A gene is adapted by
selecting a new random action.

To create a crossover of individuals we iterate over both classifier-lists and each time we decide
whether we keep the rule or throw it away.

Fitness is measured by means of a number of test-sets (which has already been discussed in
section 13.8.2). As explained, every test-set illustrates a typical behavior (scenario) the client will
request from the server.

The genetic programming uses a steady-state genetic algorithm, with a ranking selection cri-
terion: to compute a new generation of individuals, we keep (reproduce) 10% of the individuals
with the best fitness. We discard 10% of the worst individuals (not fit enough) and add cross-overs
from the 10% best group5. It should be noted that the individuals that take part in cross-over are
never mutated. The remaining 80% of individuals are mutated, which means that the genes of
each individual are changed at random: for every rule, a new arbitrary action to be performed
on the server or client is chosen. On top of this, in 50% of the classifier rules, one bit of the client
and server state representations is generalized by replacing it with a #. This allows the genetic
program to find solutions for problems that have not themselves presented yet.

The scenarios offered by the client are the ones that determine what kind of classifier system
is generated. We have tried this with the test scenarios, as illustrated in figure 13.6. Scenario 1 is
a sequence: [lock(), act(), unlock()]. In all scenarios, we issue the same list of messages
three times to ensure that the resource is unlocked after the last unlock operation.

11.5.2 Results

requested client server performed

transition state state action description

00 00 01 10 00 #1 11 #### 00 10 01 client?lock() & client=locked � client.lock_true()

00 00 01 10 00 1# 11 #### 00 10 01 client?lock() & client=locked � client.lock_true()

00 00 01 10 00 00 ~ 11 010 00 11 01 client?lock() & client
��

locked � server.lock()

00 00 10 10 00 1# 11 #### 00 10 11 client?unlock() & clientlock � 2 � client.unlock_done()

00 00 10 10 00 01 11 #### 00 11 10 client?unlock() & clientlock=1 � server.unlock()

00 00 11 10 ##### 11 #### 00 11 11 client?act() � server.act()

00 01 10 10 ##### 11 #### 00 10 10 server?act_done() � client.act_done()

00 01 00 10 ##### 11 #### 00 10 00 server?lock_false() � client.lock_false()

00 01 01 10 ##### 11 #### 00 10 01 server?lock_true() � client.lock_true()

00 01 11 10 ##### 11 #### 00 10 11 server?unlock_done() � client.unlock_done()

00 00 01 10 00 00 11 010 00 10 00 client?lock() & server=locked & client
��

locked

� client.lock_false()

Table 11.4: The generated classifier system for a single run.

An examination of the results of several runs of our genetic programming algorithm lead to
the following observations:

5 These values were taken from [Koz92] and gave good results during our experiments.
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1. We found that (for all 100 runs of the genetic algorithm) a perfect solution was found within
at most 11 generations. One of the classifier system that is generated by the genetic algo-
rithm, when providing as input all test scenarios, is given in table 11.4. The produced clas-
sifier system simply translates calls from client to server and vice versa, unless it concerns
a lock call that should not be made since the server is already locked. The bit patterns in
the example differ slightly from the bit patterns explained earlier. This is because we need
the ability to make a distinction between a ’transition-message’ and a ’state-message’. All
transition messages start with 00 and all state-messages start with 10 for client-states and
11 for server-states.

2. The best individuals were often created by only using mutation and creation of new genes.
In the experiments we conducted we observed that the crossover operation is not necessary
to find a suitable solution. This is because there are in essence not many parameters that
work on the fitness independently. Another reason for this behavior is that the creation of
new classifier-rules is based on a process that very actively selects a transition that is known
to be enabled in a certain situation. Since most of the time not that many messages can be
received or sent by a component, it is quickly checked in multiple generations which action
is the best action in a certain situation.

3. About 50% of the created adaptors do not manage concurrency, but shortcut the missing
behavior. That is, they offer the client a feedback behavior (such as the liveness module),
without ever contacting the server.

4. The Classifier Representation of Petri-nets is Too Low Level: A problem with single message
classifier systems is that their representation loses a lot of useful information. For instance
if a rule has been found to lock one square in a clean way, it is not at all easy to extend
this very specific rule to be a more general applicable rule. Unless the representation is
very specifically suited to do that. This is especially a problem for the single message re-
active classifier system, because the classifier system would need to invent an appropriate
adaptor-strategy for every single square. This means that we have 1024 times more work
than for one square. Above all it is not guaranteed that we will find a suitable strategy for
all possible squares, because test-runs might not access all squares systematically. A solu-
tion to this problem would be to change a crossover operation and generalize one working
set of rules to another set of rules, thereby taking into account the fact that repetitions occur
at certain places. This information is available in the Petri-net, however, it is lost within the
classifier system.

5. Classifier Systems have too Low Level Operators: In another experiment we tested the multi-
message representation. After investigating this representation it became clear that it also
was not suitable to do the job. This representation would allow the genetic program to find
a suitable conversion strategy that could translate all incoming lock request to outgoing
lock request in a way that would be automatically generalized. To allow this the coordinate
of both the incoming and the outgoing lock-request was encoded within the bitstream at
the same position. Nevertheless, if there would be a slight shift within the representation
of incoming or outgoing lock requests (e.g: the incoming � of a lock is located on bits 3 to
11 and the outgoing � is located on bits 5 to 13), then it would become nearly impossible
to find satisfactory classifiers. In general, the problem with classifier systems is in general
that their basic operations are very basic, there is not even a notion of a variable.6

6To stress this point even more: consider the implementation of an addition operation in a classifier system. To do so,
the classifier system needs to increase a binary coded number, by one. Writing down a classifier which does exactly this
turns out to be very difficult, because often more than one bit needs to be flipped. To understand this, think of writing
a set of general classifier rules that translates the bit pattern ’01111111’, which represents the decimal number 127, to
’10000000’ (the decimal number 128), such that is also suitable for other binary represented numbers. A solution to this
problem exists and is called grey-coding [KRCE01]. Here numbers are represented in such a way that the hamming
distance between two grey-coded numbers, � and � � 
 is exactly 1.
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In general these results lead us to conclude that classifier systems offer too low level operations
and are unable to exploit structural properties of the presented interfaces. These problems are rec-
ognized by [SS89]. Therefore, we investigated another representation: adaptors with an internal
Petri-net representation. By doing so we hope to take advantage of a) the structural knowledge
present in colored petri-nets and b) make use of better high level operations.

11.6 Experiment 3: A Petri-Net Representation

Goal: Create a concurrency adaptor between two conflicting concurrency strategies
Means: Genetic Programming using Petri-nets as a representation
Deployment: off-line
Input: Petri-net description of two conflicting interface & a distributed fitness measure
Output: Petri-net that links the different interfaces

11.6.1 Description

In this experiment, which is again an off-line experiment, another representation was chosen.
To avoid the problems of the classifier systems, we now create a high level Petri-net description
that will be measured at runtime. The runtime measurement is still distributed and contains two
parts. On the server part, it keeps track of how many errors occurs and warnings that happened.
On the client side the fitness is measured at how many locks could be obtained. The representa-
tion itself is already detailed in section 9.1.

11.6.2 Results

Component # generations Best Fitness Transitions Comments
BallActor1 10 38 2

FloodActor1 23 80 2
LineActor1 36 122 2
BallActor2 25 161 2

FloodActor2 26 150 2
LineActor2 59 700 2
BallActor3

FloodActor3 30 250 2
LineActor3
BallActor6 13 20 2 a

FloodActor6 30 190 2
LineActor6
BallActor9 b

FloodActor9 20 140 4 b
LineActor9 30 20 2 a,b

Table 11.5: Experimental results of the priority-first searching algorithm, using the petri-net representation
described in the text.

The results of this experiment were promising. First, we noticed that this representation had
no problem at all to find out transitions to offer a correct ’mediated’ behavior. Furthermore we
noticed,

1. that random aspects within the components behavior quickly leads to correct solutions,
while static behavior often leads to more narrow behavior.
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2. Individuals resulting from crossover operations quickly die.

3. Most generated adaptors do not manage concurrency, but rather manage it to keep the
involved components alive. It becomes clear that this is due to the non correlation of the
two fitness measures (a fitness measure at client side and a fitness measure at server side).

4. If we modified the fitness measure, to include correlation of the different fitness values, we
observed that other solutions were found. However, it was very difficult to create a suitable
fitness function that guides the algorithm to an ’adaptor’ solution. This problem has to do
with the fact that measuring the working of an adaptor is very difficult and very conflict
dependent.

5. Some adaptors implemented a feedback behavior that resulted in livelocks. From this ex-
periment, we have observed that the liveness requirement is essential.

6. Comments with respect to figure 11.5:

(a) With this actor we introduced a delayed reward. Only when a SetPosition could
be executed to move to the right or the left, a reward is assigned. This requires the
search algorithm to test out a number of different tracks until finally a reward can be
assigned.

(b) This adaptor works with two layers, hence the 4 transitions and different situations
that can be encountered.

With respect to the before mentioned experiments two things became clear. First: we have
found a suitable representation to express adaptors, however this representation does not easily
produce concurrency solvers. Second, concurrency problems can barely be measured, therefore
we started investigating how we can modularize the adaptor. To this end, we have split the
behavior of the adaptor in three separate modules, as described in chapter 7.

11.7 Experiment 4: Bypassing a Provided Concurrency Strategy

Experiment: Automatic deduction of reachability analysis
Means: prolog conversion from Petri-net description and prolog analysis
Deployment: off-line
Input: Petri-net description in prolog and a required marking.
Output: A transition to execute to come closer to this marking.
Description: The description of this experiment is entirely contained in chapter 8.
Results: We have tested the working of this adaptor with relative markings and with absolute
markings. To obtain absolute markings, we ran a number of test-components which produced
an absolute marking from a real-life situation, afterward the prolog analyzer needed to find out
how to enable that specific situation. In all cases the results were almost immediately known.

11.8 Experiment 5: Liveness and the Bucket Brigade

Experiment: Module to keep a client-component alive
Means: Classifier systems, the BBA and the earlier developed Petri-net Representation
Deployment: on-line
Input: Petri-net description of an interface, check-pointed component
Output: New transitions that will compete to keep the client component alive
Results:

1. The BBA is problematic because it specifies the mean future reward instead of a maximum
future reward
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2. One of the problems the BBA has, is that newly added transitions need an initial strength.
If this strength is too low, the transition will be removed in the next step, without it having
the ability to prove itself. If the strength is too high, slowly, good working transitions are
flushed from the system. This can happen in situation that a new transition is never verified.
To solve this problem we had to add a fairly difficult aging system, in which the strength of
classifiers was determined based on their age.

After introducing the aging system to allow new rules to prove themselves, the similarities with
reinforcement learning became clear.

11.9 Experiment 6: The Liveness Module and a Petri-net Repre-
sentation

Experiment: Module to keep a client component alive
Means: Reinforcement learning, together with the earlier presented Petri-net representation
Deployment: on-line
Input: Petri-net of the interface, check-pointed component
Output: New transitions that will compete to keep the client component alive
Description: In the experiment, we use a number of different components, with different check-
points, that will assign rewards as certain checkpoints are met (see section 9.2, page 146). We will
not document where these checkpoints are set due to space considerations.
Results:

1. Numerical results and a discussion of them have already been given in section 9.4.1.

2. Works very well in all cases, but one. Delayed rewards form no problem at all.

3. If the reward function has hidden correlations which highly influence the reward, thus
the problem being not a Markov Decision Process, the learner has much more difficulties
finding out what is exactly required.

The representation we use in this experiment, together with the reinforcement learning approach
seems suitable for the problem we are dealing with. In all tests a satisfactory keep-alive program
would develop quickly. In comparison to the classifier representation it is easy to swap two
arguments or to increase the value of an argument. In our Petri-net representation this is easy
because a) we have variables which add an extra level of structuring (the algorithm will find one
solution for all squares on the whiteboard instead of one solution / square) and b) the operations
at our disposal are of a sufficiently high level to be useful.

11.10 Implementation

The implementation of all these experiments, together with the results are available online. We
didn’t put them in appendices because this would require around 400 extra pages.

� *.component files need to be compiled to .java files by using the component system com-
piler.

� *.jjt files need to be compiled with jjtree
� *.jj files need to be compiled with javacc

� *.java files need to be compiled with javac (watch the CLASSPATH environment variable)

� *.l2net files are colored Petri-nets described in text. They should be converted to low level
nets by the Petri-net compiler.
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� *.l1net files can be used as input in the Petri-net evaluator

� *.ini files are input to the component system controller

11.10.1 The Component System
Runtime; Location: http://borg.rave.org/cgi-bin/seescoacvs/component/system/*
Runtime; Files: Component.component, ComponentSystem.component, AbstractPort.java,
AbstractMultiport.java, AbstractPortCreator.java, ComponentImpl.java,
ComponentImplFactory.java, Connection.java, DirectPort.java, ExecutionLoop.java,
Global.java, InterruptHandler.java, InvocationMessageHandler.java, Message.java,
MessageDispatcher.java, MessageHandler.java, MessageHandlerCreator.java,
MessageQueue.java, MultiPort.java, Port.java, SameHandlerCreator.java,
Scheduler.java, SetupPort.java, SinglePort.java, StandardScheduler.java,
State.java, StreamAble.java, StupidScheduler.java, SymbolTable.java,
ThreadedInterruptHandler.java
Compiler; Location: http://borg.rave.org/cgi-bin/seescoacvs/component/parser/*
Compiler; Files: Transformer.jjt, SimpleNode.java, and a large amount of parser node def-
initions. These start with Ast.*.
Controller; Location: http://borg.rave.org/cgi-bin/seescoacvs/testcases/scss/*
Controller; Files: Controller.component, ConnectionProxy.component,
ContractGenerator.component, ReceivingMonitor.component,
SendingMonitor.component

11.10.2 The Petri-net Evaluator Code
Location: http://borg.rave.org/cgi-bin/seescoacvs/component/concurrency/*
Evaluator: PetriNetEvaluator.java, PetriNode.java, StaticNet.java,
DynamicNet.java, ExecMessage.java, ExecutionTrigger.java
Places: Place.java, SinkPlace.java, SourcePlace.java
Transitions: Transition.java, InTransition.java, ArcEntry.java, InputEntry.java,
MessageTransition.java, OutTransition.java, OutputEntry.java
Expressions: AgAddOperator.java, AgAndOperator.java, AgCombinedExpression.java,
AgEqOperator.java, AgExpression.java, AgField.java, AgForeach.java,
AgGlueOperator.java, AgGrOperator.java, AgIdentifierDescription.java,
AgIdxOperator.java, AgInteger.java, AgMessage.java, AgMulOperator.java,
AgNotOperator.java, AgOperator.java, AgRange.java, AgSet.java,
AgSubOperator.java, AgToken.java, AgVariable.java, Applicable.java,
Bindings.java, EqualsExpression.java
Parser & Convertors: PetriNetParser.jj, Printer.java, PetriNet2Prolog.java,
PetriNetConvertor.java, PetriNetSimplifier.java, PetriNetNormalizer.java

11.10.3 The Adaptor Code
Location: http://borg.rave.org/cgi-bin/seescoacvs/component/concurrency/*
Using classifiers: Adaptor.component, ClassifierCondition.java, ClassifierList.java,
ClassifierMessage.java, ClassifierMessageList.java, ClassifierRule.java,
ConcurrencyCase1.java, ConcurrencyCase2.java, Gene.java, MessageArgument.java,
Scenario2_1.java, Scenario2_2.java
Component link: MessageDescription. java, MessagePlace.java,
MyInvocationMessageHandler.java, MyInvocationHandler.java
The Pittsburgh approach: NeglectSynchro.component, PetriNetGenerator.java,
PetriNetAdaptor.component, PetriNetLoader.component, PetriNetCrossover.java,
PetriNetTimer.java, PetriNetCombiner.java, StandardLoader.component
The liveness module: FitnessAction.component, LearningAdaptor.component,
ReinforcedAdaptor.component, GewogenPlace.java, GewogenTransition.java,
PtReceiver.java
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The enforce action module: anal.pl, ForceAction.component, ForceAction1.component,
ForceAction2.component, PetriNetBackTracker.java
The concurrency module: SynchroAdaptor.component

11.10.4 The Actor Components
Location: http://borg.rave.org/cgi-bin/seescoacvs/component/concurrency/*
Shared Classes: ConcurrencyException.java, ActorRoot.component, Pos.java,
ThreadCatcher.java
Server Components: PlayFieldView.java, PlayfieldCore.component, Square.java
Client Components: Actor*.component, BallActor*.component, FloodActor*.component,
LineActor*.component, Actor*.l2net

11.11 Summary

IN THIS CHAPTER we have reported on the experiments we have performed. Our solution has
changed over time from an initial scheme-representation of a concurrency adaptor, to a modular-
ized reinforcement learning Petri-net adaptor. The path we have followed is a standard, ’proto-
type, experiment, observe, adjust’ cycle in which mistakes are corrected in later experiments.

The experiments have allowed us to understand that creating a learning algorithm that will
immediately create a concurrency adaptor is not possible, because the no-race requirement is
very difficult to express and to validate.

We also learned that an off-line strategy offers certain advantages to verify the quality of the
representation. We tried four different representations of an adaptor before a suitable one was
found. These are, a scheme representation, a single message reactive classifier system, a multi
message reactive classifier system and a Petri-net representation. Because the latter suited our
needs, we stopped investigating which representation should be used.

However, afterward we turned our attention to the off-line/on-line problem. All the exper-
iments initially conducted used an off-line strategy. However, from a pragmatic point of view,
it is very unlikely that an off-line strategy can be made to work in an on-line environment. The
main reason for this is that, once an off-line strategy becomes fixed in an on-line environment it
might be unable to learn what to do in new situations, which have never been present in the off-
line context. Therefore, we turned our attention to an on-line learning strategy, under the form of
reinforcement learning. This turned out to be a very satisfactory approach.



Chapter 12

Discussion

IN THIS CHAPTER we validate our approach by observing the experimental results. First, we will
briefly summarize our approach and the results. Second, we make some important observations
based on the experiments and third we present some technical limitations of the presented work.

12.1 Introduction

WE WILL NOW BRIEFLY summarize our approach and the experimental results. In our approach
we created a general concurrency adaptor that can be used to mediate the differences between
conflicting concurrency strategies: one server and multiple clients. As stated in the introduction
section 1.3.5 on page 9, the adaptor we wanted to create should be able to mediate concurrency
conflicts in such a way that no conflict arises. We have defined a conflict as a situation in which
the mutually agreed behavior between the different communicating partners cannot be executed
over the interconnection between them. In our case study, the whiteboard, the mutually agreed
behavior between the different actors was not to cross each others boundaries.

The adaptor itself contains three modules. The first module is an enforce-action module which
bypasses the concurrency behavior of a server component. This module makes use of a prolog
program. The second modules is the liveness module. For every client component present, a live-
ness module will be created. Such a liveness module bypasses the required concurrency strategy
in such a way that the client component can continue with its core functionality. The liveness
module has been implemented by means of a reinforcement learning algorithm. Experimentally
we observe that this approach is good if the client component returns correct rewards (that is
rewards that are statistically correlated to the state of the involved Petri-net). The third module is
the concurrency module, which takes care that no race conditions occur within the message order
between the participating clients and the server. This module has been explained in chapter 10.

12.2 Observations about the Concurrency Adaptors

IN TABLE 12.2 WE give an overview of the discussed conflicts from chapter 6. The “description”
column describes which conflict we are covering. The “possibly deadlock” column contains ’Yes’
if the approach used by the clients involved in the conflict could possibly lead to a deadlock.
(for instance, a waiting locking strategy). The “Liveness” column specifies whether the liveness
module works on the involved client. If a ’No choice’ is mentioned, the liveness module has not
much choice to keep a component alive. For instance, a waiting locking strategy, where a lock

request can only result in a lockTrue. ’Non Markov’ in this column means that the rewards are
specified in such a way that the Markov property does not hold. The concurrency column spec-
ifies how the concurrency adaptor works. ’+Dead’ means that the concurrency module could
possible deadlock, if the involved components exhibit such a behavior that might lead to a dead-
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Conflict Adaptor Result
Description Possibly Module

Deadlock Liveness Concurrency Enforce

6.1: Simple Syntax Ok Ok Ok Ok
6.2: Parameter Encoding Ok Ok Ok Ok
6.3: Simple Reentrancy Yes No Choice +Dead Ok Ok
6.4: Async Reentrancy Ok Ok Ok Ok
6.5: Simple Control flow Ok Ok Ok Ok
6.6: Idle Control flow Non Markov N/A Ok Fail
6.7: Waiting client, Non-waiting server Yes No Choice +Dead Ok Ok
6.8: Nested line server, square client Ok Ok Ok Ok
6.9: Non-nested line server, square client Ok Ok Ok Ok
6.10: Square server, field client Ok Ok Ok Ok
6.11: Layered server, non-layered client Yes Ok +Dead Ok Ok
6.12: Layered client, non-layered server Ok -Dead Ok Fail
6.13:Transition Ok State State Ok
6.14: Nested Transition Ok State State Ok
6.15: Layered Transition Ok State State Ok
6.16: Transactional Client Ok State State Ok
6.17: Empty server Yes No Choice +Dead Ok Ok
6.18: Upscale granularity Yes Ok +Dead Ok Ok
6.19: Downscale granularity Ok Ok Ok Ok
6.20: Waiting clients, non-waiting server Yes Ok Ok Ok Ok
6.21: Multi-multi conflict Ok Distri Ok Out Of Scope
6.22: Multi-multi conflict 2 Ok Distri Ok Out Of Scope

Table 12.2: Overview of the conflicts and the adaptors.
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lock. ’-Dead’ means that the concurrency module will possibly introduce deadlocks, even when
the client components will not lead to a deadlock. ’State’ means that not only the resources need
to be considered, but also the content of the resources. The “Enforce” column specifies how the
enforce-action module performs on the server involved in the conflict. The result column states
whether the overall behavior will be correct or not.

We will now observe some of the behavior of the 22 adaptors:

1. The idle control flow conflict (6.6) cannot be mediated because the rewards are non Markov,
therefore it is impossible to get the liveness module to work.

2. The layered control flow conflict 6.12, occurs because a client expects a field-lock to be avail-
able, while the server doesn’t offer one. This conflict can be mediated. However, if multiple
similar clients join, the result might deadlock, while the clients are specifically designed to
avoid deadlocks by first obtaining a server lock. The reason why this layered conflict cannot
be mediated is because the resource (the server-lock) is a virtual resource.This is discussed
in more detail in section 10.6.6.

3. The transitional conflicts (6.13, 6.14, 6.15 and 6.16) can be mediated if the enforce-action
module and the concurrency module take into account the state of the Petri-net places that
are common to the involved components.

4. The two multi-multi conflicts (6.21 and 6.22) cannot be mediated because the concurrency
module is not designed to be able to handle multiple servers.

Given the required mutually agreed behavior between the different actors: not to cross each
other’s boundaries, we observe that in most cases (18 of the 20 tested conflicts) the concurrency
strategy is mediated correctly and allows the components to execute as they intended. Below we
will continue with some further observations we can make with respect to these results.

12.3 Concurrency Strategies are Very Simple

AN OBSERVATION WE CAN MAKE about the current concurrency strategies is that they are es-
sentially very simple. Even the rollback-able concurrency strategies, which are not necessarily
easy to implement, are often nothing more than finite state machines. This statement is based on
two observations. First, our reachability analysis can deduce very quickly how to bring a server
component in a certain state. Secondly, our liveness module learns very quickly what to do in
a certain situation. This is to be expected to a certain extent because we have carefully created
the representation of our situation-recognition system. However, this representation itself is also
nothing more than a finite state machine.

If we think about interfaces (not only concurrency interfaces), it is not commonplace to hide
features and functionalities within the API. On the contrary, most interfaces are designed to make
it easy to access all the necessary operations and modify the state of an object/component.

From these two observations one might think that it would have been more appropriate to
use finite state machines to describe concurrency strategies. This is not the case because the
concurrency strategies themselves often contain parallel resources that act independently. This
is very difficult to express with standard finite state machines. In section 3.7 on page 58 we have
given two examples that demonstrates the need and advantages of using Petri-nets.

12.4 Technical Observations

IN THIS SECTION WE DISCUSS some technical limitations and observations we can make, based
on the experiments we have performed.
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12.4.1 Non-Incremental Approach: The Problem of Late Joiners

A limitation to our work is the problem of late joiners. We did not investigate what will hap-
pen when a new component joins a set of already communicating components. Currently, this
situation is not allowed. However we feel this will not constitute an obstacle. A keep-alive mod-
ule can be created for every joining component and the concurrency strategy can be extended to
allow new components to join.

12.4.2 The Component System

During our research we implemented a new component system. We conclude from our experi-
ments that this component system offers a lot of advantages, especially with respect to glueing
components together. Its high level reified message representation, together with its disciplined
non blocking messaging system allows for easy adaptor creation. In comparison with object ori-
ented languages, where the problem of glueing together different libraries and programs is well
known, this is an advantage. For instance,

� The component system allows for writing adaptors in an easy, understandable way as dis-
cussed in chapter 2. Compared to object oriented languages, the problem of late binding,
polymorphism an inheritance, which complicates the writing of adaptors, is not present.

� The component system allows for transparent distribution because the model itself doesn’t
follow ’call’ semantics and is connection based.

In appendix A we discuss how difficult it would have been if we would have used something
like Java RMI to do this work.

12.4.3 Thread based versus Event Based systems

During the experiments we have used an event based component system. This allowed us to
write adaptors easily and is a model representation of an open distributed system. However,
open distributed systems are not the only area where conflicting interfaces occur and not all ap-
plications are written by using an event based approach. If we look at applications that make
use of object oriented frameworks then we encounter similar problems because not always all
upgrades of part of the application are entirely backward compatible [LSMD96]. A small alter-
ation in the provided behavior or a wrong estimate of the usage scenarios can result in a complete
application breakdown. This also happens for applications that dynamically link to external li-
braries (.DLL’s offering extra functionality or plugins). Typical for this kind of object oriented
application is its seemingly ’sequential’ behavior over object boundaries. In fact, this kind of ap-
plication is often written within a thread based context and they rely heavily on a shared memory
(in the broadest sense of the word). However, the use of a shared memory as a communication
medium between threads (or between different parts of an application) makes it very difficult to
isolate the communicating partners and modify the flow of information between them. Since it is
necessary to modify the information flow to resolve any conflicts it might be very difficult to use
a similar approach as the one we have presented. Appendix A contains an extensive explanation
of the difficulties of using such a thread based model.

12.4.4 Learning Algorithms

Another observation that can be made is that a randomized testing procedure (such as is imple-
mented by different learning algorithms) is the best guarantee to write well-tested and robust
software. Actually, our experiments took longer than expected due to the fact that our learn-
ing algorithm always created unanticipated situations. This happened in more than one area as
discussed below:
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� Petri-net evaluator: We are now able to present a Petri-net evaluator which has been thor-
oughly tested, both the evaluation of all kinds of random expressions as well as the evalu-
ation of randomized Petri-nets has been tested.

� Implementation of Actors: On the actor level a lot of unexpected interactions were detected,
such as in the flood fill algorithm 25 on page 147. During all our tests we were focused on
a flood fill that slowly increases its terrain. However we specified a Petri-net that simply
declares a non-nested locking strategy. This means that every lock can return a lockFalse.
The checkpoint (1c) in the algorithm doesn’t expect a possible lockFalse and will fail if
a lockFalse is returned in the line before. This was only found out after measuring the
fitness of the adaptor.

This has led us to use genetic algorithms not as a means to solve the problem of conflicting
interfaces, but rather as a tool which helps in creating a suitable representation and which has
helps in black box testing our Petri-net evaluator.

12.5 Observations about Petri-net Interface Descriptions

THE USE OF PETRI-NETS AS AN INTERFACE DESCRIPTION LANGUAGE allows for a better software
development process. Not only is the code documented in a readable and formal way, the formal
properties of the documentation allow for automatic testing of the underlying component. Given
the Petri-net and a correct component we then can

� check completeness: A testing program can take random walks through the Petri-net and
check whether the underlying component works as expected: it does not crash, it does not
end up in an invalid state and so on. When using timed Petri-nets, the timings can be veri-
fied and when needed memory-requirements can be verified against executed transitions.

� check consistency: A testing program can verify whether all incoming and outgoing mes-
sages from and to the component are consistent with the Petri-net. For instance, it can
check that all messages sent out by the component are enabled within the Petri-net.

� track behavior of external components: By inserting a tracing component (section 3.6.3 on
page 55) it is possible to verify whether external components honor the messages they are
allowed to sent.

� If we even go a step further, the Petri-net can help in guarding access to the component, by
disallowing unexpected messages.

� do a formal analysis to guarantee that no dead ends can be reached within the component.
It is also possible to verify whether there is a home-state that is always reachable from any
possible reachable state. This is important because this guarantees that a component can be
reset at any time.

It is clear that the advantages offered by using a Petri-net description of an interface can outweigh
the difficulties of writing one.

12.6 Performance

ALTHOUGH THIS DISSERTATION MAKES NO claim about performance, we will briefly discuss the
performance of the entire adaptor. To do so we will discuss three separate estimates. For the
entire adaptor we will investigate

1. ��� � ��� � � � : how much time is spend in handling one message ?
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2. � � � � � � � � : how much memory is required by the adaptor ? We will express this in function
of the minimum memory requirements of every involved component.

3. ��� � ��� � � � : how many messages are sent for every single message from a client to a server
and vice versa.

To make these estimates we will investigate the timing and memory behavior of the three dif-
ferent modules. Afterwards we will investigate the message count. To be able to make these
estimates we will need a number of variables:

� The number of server messages sent will be denoted � � ��� �
��� . A message is a server message

if it is sent out by the server towards one of the clients.

� The number of client messages sent will be denoted �
�
� � �
�
� . A message is a client message

if it is sent out by a client towards the server. The �
�
� � �
�
� refers to the sum of all messages

transferred from any clients to the server.

�
� ��� � ��� � 	 which is the number of clients involved.

� In the upcoming discussion we will sometimes need an estimate of how long it takes to ver-
ify which transitions are enabled in the Petri-net. Theoretically (as explained in section 3.4.4
on page 50) this is exponential because one might need to verify all combinations of tokens
versus free variables. However, in practice such situations seldom arise. As we have ob-
served experimentally, the verification whether a transition is enabled can be done in � ����
 .
However, in the upcoming discussion we will consider � � � � � � � � � � � to be the mean time over
all Petri-nets to verify whether a transition is enabled. Afterward, we will, depending on
whether we want a worst case estimate or an expected estimate, fill in � � � � � � � � � � � with an
appropriate expression.

� We also need a description of the memory-requirements of a Petri-net. We will denote
this size � � ��� �

��� or �
�
� � �
�
� , depending on which Petri-net is involved. Intuitively the size

required to represent a Petri-net is at most the size needed by the underlying component
itself. For instance, in our case the server Petri-net describing the state of the whiteboard (of
size � by 
 ) will need � �$� � 
�
 tokens. The server component itself also needs to keep track
of the same information. Petri-nets describing more different states than recognized by the
involved components are less useful (see Petri-net guidelines, section 3.8 on page 63).

We will now start with discussing the time- and speed- estimates of the liveness module, the
enforce-action module and the concurrency module.

12.6.1 The Liveness Module

Giving a performance estimate of the liveness module is difficult because the performance of
this module largely depends on how well trained it is. Initially it might need a large number of
messages and rewards to understand which behavior exactly is required by the client component.
However, once a correct behavior is installed it will behave more or less constantly, depending
on how much exploration is allowed. Here, we will only consider the case where the liveness
module exploits correctly learned information.

To give an estimate of the time spent within the liveness module, we observe that the live-
ness module needs to find out a) which transitions are enabled and b) select from the enabled
transitions an appropriate one by means of Q-learning. Step a) can be done in � � � � � � � � � � � by
using the locality property of Petri-nets. Step b) can be done in � � ��
 because the number of
active ’added’ transitions is kept constant. During execution of the liveness module, non-fit
transitions are removed and new transitions are added. The process of removing a transition
is � � ��
 and the process of adding a new transition is also � ��� 
 . This results in a time estimate of
� � � �

�
�
� � � � � ��� � � � � � � � � � � 
 .
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The memory requirements of the liveness module are the memory requirements of the Petri-
net describing the state of the client component and the newly added transitions. Because these
newly added transition are bounded to a certain maximum, we consider it to be a constant. The
size of the Petri-net is bounded by �

�
� � �
�
� . Hence � � � �

�
�
� � � � � � �

�
� � �
�
� 
 .

Later on, when giving a performance estimate of the entire adaptor it should be taken into
account that the concurrency adaptor contains multiple liveness modules. Therefore we will add
an extra index to the liveness measure: � � � �

�
�
� � ��� � � � �

�
� � �
�
� � 
 and � � � �

�
�
� � ��� � � � � � � � � � � � � � � 


12.6.2 The Enforce Action Module

Giving a performance estimate of the enforce action module is even more difficult. We currently
rely on a prolog implementation to decide how to enable a certain action. This makes it difficult
to give correct estimations. Potentially both the memory estimate as well as the timing estimate
might be exponential in function of the necessary search depth, � � � � � � �

�
� � � � � �

� 
 . So the worst
case time estimate is � � � � � � � ��� � � ��� � � � �

�
� � � � � �

� 
 . The worst case memory estimate is � �
�
�
�
�
�
��� �

� � � � ��� �
��� � �

� � � �
�
� � � � � �

� 
 because we also need to take into account the memory-requirements of
the server side Petri-net.

However, as observed during the experiments the search depth is always very small and
most concurrency strategies offer the possibility to reach a certain state quickly. Therefore we
will consider a practical time estimate of � � � � � � � ��� � � � ��
 . And, similarly, a practical memory
estimate of � �

�
�
�
�
�
��� � � ��� � ��� �

��� 
 .

12.6.3 The Concurrency Module

The concurrency module needs to keep track of all the enabled transitions for every client com-
ponent indirectly connected to it. For every client � a set of controlled transitions and managed
transitions will be kept in memory. The Petri-net of the server is not necessary within this mod-
ule. This gives a memory estimate of �

�
� � �
� �����

� �
� � ��� �

� � �
�
� �� � � � � � � �

�
� � �
�
� � 
 . The time spent

within the concurrency module is a constant. For every incoming request a cross-table is checked
and a decision is taken immediately. This leads to �

�
� � �
� ��� �

� �
� � � ��� 
 .

12.6.4 Message Sends

To determine how many messages are sent between the client components and the server com-
ponent we will consider two cases: functional messages and synchronization messages.

Functional (Logic) Messages

Every functional message going from a client toward a server will go through several connec-
tions:

� the “client component � liveness module” connection

� the “liveness module � concurrency module” connection

� the “concurrency module � enforce action module” connection

� the “enforce action module � server component” connection

Messages coming from the server and going to the client will pass the same stages in reverse or-
der. This means that for functional messages the number of messages equals � � �

�
� � �
�
� � � � � � ��� �

��� .
These results can be slightly improved by merging the concurrency module and the action-
enforce module into one module at the server side. Hence, we could have an estimate of � � � � � � ��� �

��� �
� � �

�
� � �
�
� 
 .
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Synchronization Messages

The behavior of synchronization messages is not as simple as the behavior of logic messages. The
problem comes from the fact that synchronization messages are not simply passed through from
module to module, but are a) altered to represent the possible choices between the liveness mod-
ule and the concurrency module and b) are not present between the concurrency module and
the enforce action module. However, this observation does not prohibit us from making a global
observation about the synchronization communication: We know that the synchronization mes-
sages introduced by the adaptor is minimal to support all components: the enforce action module
will only send out the necessary synchronization messages, while the liveness module will have
learned which synchronization messages are favored by the client. From this observation we
know that the adaptor will not introduce useless synchronization messages. This already allows
us to give an estimate of � � � � ��� �

��� � �
�
� � �
�
� 
 . However, to estimate how many extra messages

might be added we give a trace of a synchronization request from client to server:

� client component � liveness module: the client component sends a synchronization mes-
sage to the liveness module: �

�
� � �
�
� .

� the liveness module � concurrency module: communicates the changing state and possible
choices to the concurrency module: �

�
� � �
�
� .

� concurrency module � liveness module: in the worst case scenario, the concurrency mod-
ule must always make a choice and communicate it back to the liveness module: �

�
� � �
�
� .

In this performance estimate we will assume that this will only occur when the real server
would in practice also return a message, hence: � � ��� �

��� .
� the liveness module � client component: the liveness module sends back a synchronization

message to the client component: � � ��� �
��� .

The communication of messages from the server to the client happens only when a certain func-
tional message arrives at the action enforcer for which synchronization messages are required.
Such a message trace looks like:

� enforce-action module � server component: when necessary a message will be sent to
bring the server in the required state. So, we can assume that this is correlated with the
number of client synchronization messages: �

�
� � �
�
� .

� server component � enforce-action module: this is captured in the � � ��� �
��� variable.

This results in a number of messages of
� � � � ��� �

��� � � � �
�
� � �
�
�

From the results of the functional messages and the synchronization messages we can con-
clude with an estimate of � � � � � � ��� �

��� � � � �
�
� � �
�
� 
 .

12.6.5 Overall Performance

From the previous performance estimate we can now summarize the worst case performance:

��� � � � � � � � � ��� � � 
 �
�
� � �
�
� ��� � � 
 � � ��� �

��� 


� � � ��� � � � � � � � � � � �
�
� � � � � �

� 
 � � � � � ��� � 	 � � ��� � � � � � � � � � � 
 � � ��� � � � �
�
� � � � � �

� � � � � � � � � � � � � 


� � � ��� � � � � � � � � � � �
�
� � � � � �

� � � � ��� �
��� 
 �

� �
� � �
�
� �

� � � � � � � ��� 
 �
�
� � �
�
� � 
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If we consider, as explained before, that the time to verify a transition’s state (enabled vs
disabled) is constant and we assume that the prolog implementation is able to deduce a correct
path in � ��� 
 then we can give an expected estimate of:

� � � ��� � � � � � ��� 


� � � ��� � � � � � ��� � ��� �
��� 
 �

� �
� � �
�
� �

� � � � � ��� � � 
 �
�
� � �
�
� � 


This means that we expect that the adaptor needs as much memory as required by the differ-
ent states of all involved components. Also, the time necessary to handle one message is constant.

12.7 Motivation vs Solution

IN THIS SECTION WE WILL DISCUSS our initial motivations and compare them with the solution
we have presented. Our main focus here will be to investigate how our prototype could be made
to work within the context of open distributed systems, multi agent systems and embedded
systems.

12.7.1 Open Distributed Systems

Our adaptor as it is now does not run automatically in open distributed systems. Below we
discuss two obstacles still remaining. The first being adaptor deployment (or who decides to run
an adaptor) and the second being the problem of meta-conflicts (conflicts between the involved
Petri-net descriptions).

Adaptor Deployment

A very simple fact about our adaptor is that, before it will be used, somebody has to insert it
somewhere. We will now discuss the implications of this.

Typically, the client is the first one to observe any conflicts with the server. This means that
the client will be the first to want to introduce an adaptor. This is not necessarily easy because

� To insert an adaptor, extra formal documentation, describing the behavior of the client com-
ponent, is needed. If the software used on the client does not provide such a documentation
then it might be difficult to run an adaptor.

� Our adaptor needs the possibility to isolate the server from its environment. Hence, the
client side cannot solely take the decision to insert the adaptor because it requires coopera-
tion of the server side.

The server side on the other hand is often the last one to observe any conflicts and might not
want to introduce an adaptor for a number of reasons:

� The server administrator needs to make the decision to insert an adaptor. Technically speak-
ing this doesn’t form a problem. However, (s)he might feel the clients should upgrade.

� The performance penalty of the adaptor is considered to be too high.
� Inserting an adaptor might requires a quality tracking process (how well does it work, are

there any performance penalties, does it introduce bugs, is the end-result more stable than
the initial situation and so on) which might take too long a time.

� The extra formal documentation, describing the behavior of the server, might not be avail-
able.
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� The required extra formal documentation might not be offered by the clients. In such a
situation the server needs to ’know’ the correct definitions of different clients. This results in
conflicts because the server-side interface descriptions can be incompatible with the actual
clients.

Some of these problems are relatively subjective and closely linked with the involved business
model, however two major observations still remain. Firstly, not everybody might agree to follow
our standard of Petri-nets as a formal documentation technique. Secondly, the formal documen-
tation itself might lead to conflicts. We will discuss these two problems below.

Why would somebody want to use Petri-nets ?

One of the motivations behind this research was the fact that standards in open distributed sys-
tems are sometimes merely used as a means to stay in control of how software is used instead
of being a means to communicate with other software. If the intention of a company is to be
incompatible to force partners to make certain decisions, then there is nothing that will prohibit
such a company from doing so, not even Petri-nets. However, the description of this behavior
was only used as a motivational example and not as the problem we wanted to solve.

On the other hand, companies that want to be compatible with other software will find that
our proposal of using Petri-nets offers a big advantage that renders their usage worthwhile. The
strength of the documentation format comes from automatically checking completeness and con-
sistency. Completeness being that all messages that a component understands and uses are de-
scribed within the Petri-net. Consistency being that the documentation is compatible with the
behavior of the component. Both properties can be checked automatically. In other words, Petri-
nets help the developer in the software development process by offering better and more accurate
documentation.

Meta-Conflicts

Component A Component B

Petri-net A Petri-net BAdaptor

Meta-Adaptor Compatible Petri-net A

Figure 12.1: Stack of adaptors

In section 1.1.1 on page 2 we argued that defining one standard in open distributed systems is
unrealistic because competitors will always try to adopt the standard and unexpected incompat-
ibilities will arise. This problem could also occur between the different formal interface descrip-
tions. This kind of conflicts are meta-conflicts. The problem of meta-conflicts is wide ranged;
from slight discrepancies between the Petri-net descriptions to conflicts with entirely new, possi-
ble better, formal descriptions.

If the formal interface description are entirely compatible then it might be possible to create
a super interface description that can express all details of the different formal descriptions. The
only thing that needs to be done then is implementing converters from the different interface
description languages to this super interface description language. However, it could also be
possible that required information in one interface description language is simply not present
in another interface description language. This would complicate this method. However before
this kind of meta-conflicts can be investigated, a number of realistic conflicts between interface
description languages need to be investigated. Only then can this problem be approached prag-
matically. This remains future work.

If there are only slight differences between the Petri-net format used, or between the terms
used within the Petri-net then other approaches can help:
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� meta-adaptors based on Petri-net evaluation. Such a meta-adaptor is pictured in figure 12.1.
If we would create an adaptor similar to the one we have created for conflicting concur-
rency strategies then we need a ’common ground’ that can be used to verify the behavior
of the different Petri-nets. In our case, the common ground was the compatible functional
behavior. In the case of conflicting Petri-nets a common ground could be the fact that a
Petri-net can be verified for completeness and consistency. By tracing the incompatible net
and recreating a compatible net during such a trace it should be relatively easy to convert
an incompatible net to a compatible net. This can be investigated in more detail in future
work.

� automatic deduction of the states and transitions within a component by inspecting the code
and data segments in a typical communication. If we could avoid the need for Petri-nets of
an interface description at all, then the problem of meta-conflicts might be avoided. How
the interface of a component can be learned is discussed in section 13.8.5.

12.7.2 Mobile Multi Agent System

A second motivation for doing this work was the problem of concurrency management in mobile
multi agent systems. Because communication happens in a peer to peer manner between agents,
we now discusses how our solution relates to the problems of peer to peer systems. First, we
discuss how our adaptor preserves the required behavior if no central locking server is used.
Second, if a central locking server is used to coordinate the behavior of a group then we see how
our approach fails to offer a solution.

The Adaptor Preserves Behavior

In this section we illustrate how our adaptor correctly mediates concurrency problems in a peer
to peer application that makes no use of a central coordination server.

Agent A

Agent B
Agent C

Agent D

Is client of

Agent A

Agent B

Agent C

Agent D

Is client of

Concurrency
Adaptor B

Concurrency
Adaptor C

Concurrency
Adaptor D

Figure 12.2: Peer to peer communication between agents in a mobile multi agent system. The arrows in-
dicate which agents require behavior from another agent. The left figure is the normal inter-
connection without inserting adaptors. The right figure is the same interconnection but with
adaptors inserted at the server ports/interfaces.

In a mobile multi agent system there is at first sight not really a difference between client-
components and server-components. However, if we look at the behavior they require or provide
(or in other words, which agents implement a certain functionality), then we can actually make
the difference between a client component and a server component. A client agent will expect a
certain functionality from another agent, while a server agent will provide a certain functionality.
However, contrary to a typical client-server setting, in this situation every agent can be a server
as well as a client. To easily support such a model we will assume that the server behavior of such
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an agent is offered on one port, while the client behavior is offered on another port. This allows us
to introduce adaptors on every agent (peer) that offers a service. The resulting interconnections
are pictured in figure 12.2.

Agent A

Agent B

Agent C

Agent D

Is client of

Concurrency
Adaptor B

Concurrency
Adaptor C

Concurrency
Adaptor D

Is waiting for event from

Figure 12.3: Deadlock over the different adaptors in a peer to peer situation.

Because every agent can be a client as well as a server, it becomes difficult to identify a ’ses-
sion’. In the typical client-server architecture, the client manages a session and tries to get things
done on the server. Within a peer to peer system, sessions hop from one agent to another and
cannot be localized anymore in one agent. This might lead to deadlocks between communicat-
ing peers, without the possibility for the adaptors to do something about it. This is illustrated
in figure 12.3. The adaptors cannot resolve such a deadlock because they are part of the wait-
ing loop. However, this problem has little to do with the ability of the adaptor to ’mediate’ the
conflicting behavior. In fact, if the application is programmed in such a way that it relies on con-
currency strategies that lead to unwanted behavior then this unwanted behavior will also occur
with adaptors, otherwise it will not.

The Adaptor does not Preserve Coordination

In a peer to peer application there can also situations where our adaptor fails to work. The
example we present to illustrate this uses a central locking server that is used by all components
to identify sessions and control access to the application’s resources.

In peer to peer systems it is often necessary to bring multiple peers from one consistent state
to another consistent state. This however requires from every peer the ability to obtain a number
of locks, distributed over different peers. Once all the locks are held the session can apply the
changes on the involved resources and unlock them again. Often this is done by passing session
id’s from one peer to another such that receiving peers can verify whether the resources they
hold can be accessed by the incoming session. However, the session id’s themselves are often
provided by other components than the receiving peer itself. For instance, consider a transaction
server such as pictured in figure 12.4. The transaction server will be used by any peer that needs
a transaction id (this will be our session id). This transaction id will then be passed from peer to
peer (without going through the transaction component).

In this setup, multiple concurrency strategies can be present. First there are the concurrency
strategies offered by one peer towards another peer, secondly there are the concurrency strategies
offered from one peer toward the transaction server and thirdly there is the concurrency strategy
offered from the transaction server toward the peers. We will assume that we have mediated the
conflicts by placing at every server interface a concurrency adaptor. This might lead to problems:
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Figure 12.4: Distributed Transaction server.

� Our adaptor requires the availability of a compatible functional behavior. This poses a
problem because the only functionality our central transaction component offers is about
synchronization. If the transaction component is hardwired with respect to the resources
then we can use the common set of resources to be the functional link between them. How-
ever, if the transaction component uses first class resources: i.e. resources that are published
by clients and recognized by the central server, then it might be very difficult to find any
useful common behavior.

� If peers that have no notion of session id’s are pulled into the application then our adap-
tor will not provide them with this notion. This means that their resources will be freely
available to everybody wanting to lock them, effectively destroying the use of the central
transaction server. So, if we allow components to join in an ’open’ way then this kind of
conflict cannot be mediated.

� Even if peers have a notion of session id’s then we still have a problem because the appli-
cation is using first class session id’s and the information about such a session is localized
at one central place, while in fact all the concurrency adaptors on the peers need to know
about these session id’s. E.g: if agent E requests a session id from the transaction server,
then the Petri-net in the liveness module connected to agent E, will recognize the session
id to be owned by agent E. However, if this session id is passed to agent A, then this agent
will be completely lost, because the Petri-net in the liveness module of agent A, connected
to agent E does not recognize this session id.

� If we would be able to resolve these problems, (by not using first class session id’s or first
class resources) another problem might occur: synchronization races due to hidden com-
munication. Because our adaptor might delay the passing through of a synchronization
request until really necessary, a resource might not yet be locked if the agent wants to ac-
cess it through another channel. Even worse, this resource might never become locked if
the agent doesn’t access it directly on the transaction component.

From these examples we see that a) first class resources, b) first class sessions, c) hidden commu-
nication and d) the possibility that the concurrency strategies simply cannot be mediated, still
form a major obstacle. Investigating how these problems can be solved remains future work.
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12.7.3 Embedded Systems

One of the motivations behind this dissertation were conflicts between connected embedded sys-
tems. The rise of smaller and mobile embedded devices increases the chance of encountering
interface conflicts. In this section we investigate how suitable our solution would be for this kind
of domain. First we must note that the biggest difference between desktop software and embed-
ded software is the constraints put on it. Among others, there can be memory-constraints, speed
constraints, bandwidth/latency constraints and real time constraints. Secondly, aside from these
constraints, there is also an entire process involved in creating embedded systems. Typically first
a prototype is developed which is, as the project continues, scaled down into a much smaller
artifact. During the entire process, quality control is of utmost importance, because, especially
for consumer devices, it is not always possible to fix a bug once the device has been sold [SEE99].
From a high level point of view this provides an opportunity for our adaptor because it decreases
the likelihood of bugs introduced due to concurrency strategy conflicts. However, as embedded
systems are developed pragmatically, we will now discuss how it would be possible to reduce
the requirements of our adaptor in such a way that it could fit within certain constraints.

Memory constraints

Very often embedded systems are limited in their memory. There are two approaches that might
help in reducing the memory requirements of the adaptor:

1. Given the performance estimation earlier
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we see that the adaptor requires 4 times as much memory as for every Petri-net describing
the behavior of a client. For desktop software this doesn’t pose much problems, however
for embedded systems it would be nice to be able to reduce this number. Collapsing the
different modules into one might help, not because it reduces the amount of required ’infor-
mation’, but because the overhead of storing this information can be reduced. For instance
it is possible to store the information on whether a resource is controlled and/or managed
into the transitions of the Petri-nets themselves.

2. A second important place where storage can be optimized is our prolog module. The prolog
interpreter is needed to determine how we can force the server to be in a certain state.
To resolve this problem we can either try to remove it or try to make better use of the
interpreter.

(a) Removing the prolog interpreter: this could be done by integrating the adaptor more
tightly with the server side component. By removing the concurrency strategy at the
server component we can make progress on two ends. Firstly, removing the server
side concurrency strategy reduces memory-requirements with respect to data space
(to store locking information) and code space (to implement the concurrency strategy).
Secondly, not implementing a concurrency strategy at the server component removes
the need for an enforce-action module.

(b) Better usage: If it is not possible to remove the concurrency strategy at the server (be-
cause the embedded system is not under control of the one inserting the adaptor) then
we can make better use of the interpreter by implementing the other modules (the live-
ness and concurrency module) also as prolog programs. Making use of an interpreter
in itself would also drastically reduce the memory-requirements and might even be
better in comparison to compiling the adaptor. However, this could also introduce a
speed penalty. So, it is the standard tradeoff between speed vs place requirements.
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Bandwidth Constraints

Certain embedded systems have low bandwidth constraints, which means that they can only
send and/or receive a small amount of bytes per second. As stated in section 12.6.4, our current
implementation of the concurrency adaptor requires 3 times more messages than there are mes-
sages posted by the client and server component together. This could weigh heavily in a low-
bandwidth environment. Therefore we now investigate how we could reduce the bandwidth
used by the adaptor by decreasing the amount of extra message sends between the modules or
by making the penalty of doing so less severe.

1. reducing the amount of extra messages can be done straightforwardly by combining all mod-
ules in one embedded system such that there is no extra communication necessary between
the modules. It should also be noted that by decreasing the number of messages that need
to be sent, we might not only optimize bandwidth, but also the latency of client/server
communication and the internal speed of the adaptor (as explained in the next section).

2. decreasing the penalty: if it a) is possible to modify the server such that it doesn’t offer any
concurrency strategy or b) we can place the enforce-action module on the server-side com-
ponent, then it is possible to decrease communication towards the server because no synchro-
nization messages ought to be posted between the concurrency module and the server-side.
The only remaining messages would be functional (logic) messages.

Speed constraints

There are two distinct approaches one can use to make the adaptor more efficient with respect to
speed:

1. One of the biggest bottlenecks in the adaptor is its modularized nature. This gives rise to
sending three times as many messages as there are messages being communicated. By
demodularizing the adaptor and allowing the modules to work together in one shared
data-space it is possible to increase speed substantially. Instead of copying the messages,
pointers to the messages could be passed. Actually, by doing so it could be possible to have
no overhead at all in ’extra’ communication’.

2. As described in section 3.4.4 on page 50, Petri-nets can be implemented in hardware very
efficiently (data flow machines). This could make it possible to reduce the time necessary
to verify whether a transition is enabled, � � � � � � � � � � � , with a certain factor. It should be noted
that such a hardware implementation will only provide a marginal improvement and not
solve the combinatorial problem of searching for a matching set of tokens. Still, for embed-
ded systems, a speed increase with a certain factor is always welcome.

3. Another possibility to increase the speed of an adaptor is by parallelizing the process. By
implementing every module within a separate piece of silicon it is possible to increase speed
linearly.

Real time constraints

Real time constraints often require a much better quality control process [SEE99]. This process
should be extended to our adaptor as well.

� Embedded systems requiring real time constraints should not rely on ’learning’ approaches,
because these might behave indeterministically. Nevertheless, if such a system would be
build anyway, then the deployment phase should be carefully investigated. The learning
algorithm should, during an off-line training-phase, be allowed to learn but when placed
in an on-line setting it should no longer learn further.
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� Systems constrained by hard runtime deadlines should not rely on synchronization oper-
ations that might block the system for an unknown amount of time. Depending on the
behavior of various clients it might be possible that the concurrency adaptor decides to set
certain, possible important, real time events in wait. In case this should be unavoidable a
formal analysis of the entire software within the embedded system should be made. This
should of course be done after the system has been scaled down from a prototype to an
optimized artifact.

In this section we have discussed how our adaptor, as it is, could be used within embedded
systems, how it can be scaled down to fit extra non functional requirements.



Chapter 13

Conclusions

Figure 13.1: High level module overview

IN THIS CHAPTER we first summarize our work. Then we will elaborate on our scientific
contributions as well as on the applicability of the thesis. We point out the limitations of our
work, give guidelines how an adaptor for other conflict domains might be created and finish the
dissertation by pointing out possible future work.

13.1 Technical Summary

BASED ON THE CASE STUDY of conflicting concurrency strategies, we have shown how intelligent
adaptors can be created automatically. We have illustrated this by creating such an intelligent
adaptor as a sequence of three modules, where every module has different responsibilities.
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The liveness module learns how to keep the components behind the concurrency strategy
alive. For the concurrency adaptor as a whole, such a module is necessary to offer to the underly-
ing components an optimal feedback behavior, as opposed to for example, returning a behavior
that leads to endless live-locks such as lock-lockfalse-lock-lockfalse ad infinitum. Because
it is still unknown whether liveness is a decidable property of Petri-nets, we have decided to use
a reinforcement learning algorithm (Q-learning and an � -greedy strategy) to approach the prob-
lem. Feedback for the learning algorithm comes from the underlying component by means of
statically placed checkpoints. Every time a checkpoint is reached a reward is sent to the adaptor
and the learner can, when necessary, modify its future behavior. The reinforcement learning al-
gorithm itself has been very efficiently mapped onto the structure of colored Petri-nets, in such
a way that storage requirements are minimal, without losing essential information. This opti-
mization is mainly based on a) the explicit state information of the Petri-net already present and
b) the creation of a system that can recognize certain situations and knows how to handle them.
Our situation-recognition system is expressed as a Petri-net. During execution, new transitions
are constantly added to the Petri-net. The learning algorithm automatically explores the new av-
enues offered by these transitions and, when suitable, these new transitions are kept alive and the
new situation is remembered. The reason why we use Petri-net transitions as situation handlers
has been explained thoroughly, and possible alternative representations have been investigated.
To verify the suitability of our representation we used genetic algorithms.

The concurrency module of our concurrency adaptor inserts an appropriate concurrency strat-
egy. To do so, it communicates with the two other modules about resources (for instance the
possible squares in a whiteboard) and actions (for instance a setPosition). There is no explicit
annotation of resources and actions on resources, both are implicitly represented within the Petri-
net. This information is automatically deduced by the first module under the form of enabled
transitions and equivalent states. This, together with extra information of the liveness module
that describes which futures are possible and which futures the component would like, enables
this module to make correct decisions about what to do. Once such a decision is taken the client
component can perform its actions on the server component.

The enforce-action module bypasses the concurrency strategy of a component entirely. This
allows for more freedom in the two other modules. The enforce-action module does this by offer-
ing a logic interface to the outside world while inserting the necessary synchronization messages
at the appropriate times. To do so, the module needs to know how certain markings within the
underlying Petri-net can be reached. In this dissertation we have achieved this by means of a
reachability analysis in prolog.

In these three modules, the adaptor needs a) to analyze how to enable certain actions, b) to
know how to reach a certain state and c) to know which resources are involved. In order to be
able to know this the adaptor requires a formal documentation in the form of Petri-nets. Every
component needs to provide a Petri-net describing its own required or provided concurrency
strategy in a consistent and complete way. Consistent means that any action that is allowed by
the Petri-net should be accepted by the component and complete means that no action that is
allowed upon the component is undocumented.

13.2 Thesis Statement

WE STATED that in open distributed systems, one needs intelligent adaptors to mediate interface
conflicts. We identified three reasons why one might need an intelligent adaptor: a) in open
systems, it is very unlikely that one standard will be used by everybody, b) the highly volatile
nature of peer to peer computational networks gives rise to interface conflicts and c) with the
current advent of interconnected embedded systems and ambient intelligence the problem of
conflicting interfaces will become even more prominent. We claimed that it is possible to create,
for certain categories of concurrency interface conflicts, a concurrency-adaptor that automatically learns
how to resolve the conflict in such a way that a) the required behavior of the involved components can be
executed over the adapted interconnection and b) it is able to work on-line in certain open system. We
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have validated this by constructing such a concurrency-adaptor. Below we discuss the different
requirements and how we have satisfied them.

To show the necessity for such adaptors, we have introduced our real-world case of conflict-
ing concurrency strategies. We have investigated different concurrency strategies and explained
why components in open distributed systems need a concurrency interface. Relying on this anal-
ysis we discussed the problem: not everybody will write the same concurrency interface for his
components and thus concurrency interface conflicts will arise. We identified and explored in
much detail a large number of practical conflicts. More specifically, we investigated conflicts
that can easily occur when one or both of the concurrency interfaces is upgraded without prior
notification and without full backward compatibility.

To show that we can create such an intelligent adaptor we have constructively developed one.
The adaptor itself needs detailed information of the provided and required interfaces of all par-
ticipating components. The adaptor works by means of three modules. It contains two modules
that essentially bypass the provided or required interface and one module that actually imple-
ments a suitable concurrency strategy. To bypass a concurrency strategy we investigated two
techniques. The first technique was a reachability analysis of a Petri-net, the second technique
was a reinforcement learning algorithm. Finally we explain how resources and actions can be
detected automatically within a Petri-net. This chain of three modules constitutes an intelligent
adaptor that is able to set up a link between conflicting concurrency interfaces, for which the
adaptor does not know the exact interface beforehand. The adaptor is restricted to client server
architectures. In section 12.7.2 we have explained in detail what can go wrong with peer to peer
applications. Essentially, the adaptor does not work in open peer to peer systems because not all
communication between different parts of the application can be mediated by one adaptor.

13.2.1 Abstract Requirements

We now reconsider the abstract requirements from the introductory section.

The adaptor should be able to work on-line

This requirement was necessary to make the adaptor useful in an open system. The performance
estimates as well as the setup of the adaptor enables it to work on-line. The liveness module is
an on-line prolog program that can deduce how a certain state can be enforced upon the server,
without needing to ’test’ the server’s behavior. The concurrency module is a program that can be
executed on-line and the liveness module has been specifically designed, by selecting Q-learning
as a learning technique, to work on-line.

The adaptor should work by only modifying the message flow between the involved compo-
nents.

The adaptor is a central component that is placed solely on the connection between different com-
ponents. Hence the only modifications it can introduce is on the messages between the different
components. Therefore, this requirement has been satisfied.

The adaptor should resolve conflicts

The most important abstract requirement of an intelligent adaptor is based on the notion of an
overall required behavior. In our case study the overall required behavior between the different
conflicting concurrency strategies was to avoid actors crossing each others boundaries. As we
have experimentally observed, our adaptor supports this implicit requirement. Two cases can
occur:

1. all the components agree on an overall behavior and offer/require a concurrency strategy.

2. some components do not offer a concurrency strategy
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In the cases where there is a full agreement, we have experimentally observed that our adaptor
works. This has been described in chapter 12. If there is no full agreement on the required
behavior then the adaptor should try as hard as possible to satisfy as much as possible of the
required behavior. This requirement is satisfied because our concurrency module allows the
presence of an actor that does not manage certain resources. In such a case these actors will be
set ’on hold’ until a suitable moment arises to realize the required changes.

13.3 Contributions

THE MAIN CONTRIBUTION OF THIS THESIS is the process we have been following to create an
adaptor. Instead of trying out one technique and verifying whether it works or not, we have
kept on searching to find a (set of) suitable technique(s). To reduce the complexity of the prob-
lem we have restricted ourselves to the case of concurrency conflicts, which we have expressed
in an event based model. When necessary we have invented new techniques (The extremely
useful Petri-net documentation for describing interfaces and a new technique to verify the bias
of computer generated programs), or combined existing techniques (Petri-nets & Reinforcement
learning, the three different modules that constitute an adaptor). This has lead to the creation
of a concurrency adaptor that mediates differences between conflicting concurrency strategies.
Below we summarize the contributions.

1. Open systems need concurrency interfaces: We showed that the components of an open dis-
tributed application need concurrency interfaces. The reason is that one cannot foresee how
a component in an open distributed system will be used, therefore one cannot know which
actions are supposed to be atomic, and therefore every component should allow other com-
ponents to specify a critical section. Hence the components themselves need to offer a
concurrency strategy. We have illustrated this extensively by means of a whiteboard.

2. Open systems require concurrency adaptors: We have shown that components within an open
distributed application can offer all kinds of concurrency strategies and that it is very likely
that concurrency interface conflicts will arise between different components. We have ex-
tensively discussed a set of real-world concurrency interface conflicts and we used these
conflicts to validate our claim.

3. Petri-nets as a formalisms for interface description: We showed how Petri-nets can be used to
describe the behavior of an interface in a formal way. This formal interface description
is useful because it can always be synchronized with the source-code, as consistency and
completeness can be checked in an automatic way.

4. A concurrency adaptor: We showed how an intelligent protocol adaptor can be constructed
in order to resolve incompatibilities between communicating components. Such an ap-
proach is indispensable to cope with the combinatorial explosion of protocol adaptors that
are needed in an open distributed setting, when dealing with interconnected embedded
devices or when writing components. In all these cases components interact with other
components in unpredictable ways.

5. Automatic bias verification: We showed how genetic algorithms can be used to verify a rep-
resentation instead of providing a solution. We consider that if a certain problem can be
solved easily under a certain representation, it is a good representation. If the same genetic
algorithm has more trouble finding a solution the representation might not be so suitable.

6. Unification of Petri-nets and reinforcement learning: We showed how reinforcement learning
can be unified with colored Petri-nets in an efficient way by exploiting the structural prop-
erties of the colored nets.
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7. Component based software engineering allows for easy adaptor creation: We showed how an event
based model allows for easy adaptor creation if it is used in a disciplined way, that is, if it
is purely event based and no compromises are made to integrate with other models, such
as a thread based models, and that no communication happens outside the system.

8. Guidelines for developing interface adaptors: This dissertation can be used as a platform that
offers recommendations and guidelines for the development of conflict adaptors for other
domains.

13.4 Limitations

IN THIS SECTION WE ELABORATE ON SOME LIMITATIONS OF THE PRESENTED APPROACH:

1. Only conflicting concurrency strategies: Conflicting interfaces represent a major problem that
has to be dealt with. To approach this problem we have investigated an accessible but
smaller problem of concurrency conflicts. This limits the immediate applicability of our
technique. Nevertheless,

(a) the case itself is chosen such that its correct working cannot be measured easily at run-
time. E.g; How can one measure a race-condition ? This clearly depends on what the
components consider to be a valid state. By using such an interesting requirement,
we have investigated an interface conflict that cannot be automatically deduced from
a state-machine (such as done in [Wyd01]). Also, another requirement of our concur-
rency conflicts was the fact that the adaptor should keep the components alive. This
also made it difficult to use one standard technique to solve the problem. So, our case
is indeed a small subset of all possible conflicting interfaces, nevertheless it is certainly
not a trivial case.

(b) in the domain of open distributed systems this work is an important contribution be-
cause the problem of conflicting interfaces is often overlooked and because our work
allows for a decoupling of the required and provided concurrency interfaces. If we
would want to extend this research to other application domains, then a substantial
part of it should be redone. For instance, it might no longer be feasible to use Petri-
nets, or to use a liveness module and/or enforce action module. Later on we will
discuss a case in which conflicting socket libraries are investigated.

2. Well-working functional link: An important limitation of our work is the fact that we rely on
the availability of an existing, well-working link between the conflicting components. More
specifically, we can only generate an adaptor on non-functional requirements between two
interfaces if the core functionality of both components is compatible. Such an assumption
is not unexpected because it helps in creating a predictable environment that allows for
verification of the generated adaptor. E.g, a whiteboard offering set_position (with un-
derscores), while a client expect SetPosition (without underscores) are clearly in conflict.
Because this is a conflict on the logic interface between both agents, our adaptor will not be
able to mediate such a conflict. Some approaches might help to solve this kind of conflicts

(a) Instead of relying on a correct functional link, we could probably also rely on another
reference frame for which the correct working of the adaptor could be measured. For
instance, a requirement such as ’make sure that both partners draw a moving actor on
the whiteboard’ could result in a guiding principle for an off-line learning algorithm.
Later on, we will give an example of conflicting socket libraries to illustrate this.

(b) Similarly, other research requires the availability of a placeholder that describes the re-
quired interaction [Wyd01]. This research however is very limited to the requirements
it can describe.
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(c) Depending on the application it might be sufficient to just rely on the commonalities
between the expected and provided state of the involved components instead of rely-
ing on the common actions.

3. A Controlled Case: We have only been using one case, a whiteboard, to illustrate concur-
rency strategy conflicts. We did not investigate other examples. Nevertheless, this white-
board case has been explicitly created to illustrate practical problems. With it, we were
able to illustrate race-conditions, deadlocks, livelocks and transactions in such a way that
the nature of open distributed systems was still preserved. From an academic point of
view, this case describes everything one might need in open systems. From an industry
point of view, a lot of problems have been avoided. For instance, in the ’real world’ not
everybody agrees to follow an event based model. Also not everybody will agree to write
Petri-nets, some might even disagree with the fact that a concurrency strategy is necessary.
However, instead of seeing such a controlled case as a weakness, we would rather like to
see it as one of the strengths of this dissertation. By using a simple model, we were able
to describe all necessary issues, from simple locks to transactions in such a way that a)
their need was clearly demonstrated b) many of the concepts, necessary in the real world
are present (resources, actions, processes,....) and c) the common problem, recognized by
different solution providers are present (livelocks, deadlocks, transactions,...).

4. Component based development: We have limited our work to conflicts between components
in a component based system. We did not investigate how our work can be unified with
models that have a concept of shared memory. Neither did we investigate how our results
can be mapped on thread based models. The main reason for doing so is that in an experi-
mental model it is impossible to take into account all possible technical details. Appendix
A covers a detailed explanation of what kind of problems we have avoided by doing so.

5. Only one component system: In this dissertation we have limited our research of adaptor
creation to one component system, which we created ourselves. This was mainly due to
practical reasons. The project that financed my research, the SEESCOA project, needed a
definition of components and an implementation of a component system in Java. It was
only out of practical considerations that we have used this component system because it
allowed us to use it actively on more than one front. First, in the test-case for the SEESCOA
project and secondly as a means to carry out our own research. By doing so, we were able
to deliver a reusable and high quality component system. A second reason why we favored
the SEESCOA component system is because it has a mature design. After creating compo-
nents (agents) in the Borg mobile multi agent system, some design flaws came up, that were
not easy to fix. These design flaws have been corrected in our current implementation of
the component system. Aside from practical considerations, the component system itself
is also representative for open distributed systems, applications within open distributed
systems and can be considered as a common denominator of existing component systems.

6. Technical limitations: The adaptor created in this dissertation works when the involved con-
flicts arise from syntactical conflicts, the ordering of messages, re-entrance conflicts, con-
flicts between static resources and conflicts on the layering of concurrency strategies. How-
ever, this certainly does not cover all conflicts that might arise. For instance, our adaptor
fails to work when:

(a) First class resources and/or sessions are present and used as discussed in section 12.7.2.
(b) There is hidden communication between peers. Because our adaptor does not see this

communication it cannot adapt it. (section 12.7.2)
(c) There are non-sequence requirements. These are requirements that have nothing to do

with the sequencing of messages. Such requirements can be

i. timing: For instance, a requirement such as ’every 2 seconds an alive notification
should be sent’
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ii. memory: For instance ’when handling this message, the memory should remain
below ...’

iii. state information: For instance, “after a rollback the component should be in such
a state”. In our case this can be relatively easily added by using the places of the
Petri-net.

13.5 Application Scope of our Adaptor

IN THIS SECTION WE discuss the application scope of our adaptor, first, without giving examples
of such applications. We discuss why completely open systems are not feasible and why our
adaptor is useful even in situations where exact requirements on the interface, but also on the
usage of that interface, are necessary. Afterward we give some immediate practical applications
of our adaptor.

13.5.1 Truly Open Systems: Feasible ?

Some conflicts are impossible to mediate. In section 6.1.2 on page 103 we have given examples
of such conflicts. A notable example of such a conflict was our line example. In this example we
assumed that the line actor would always have a lock on a square somewhere on the whiteboard.
Another client required the possibility to lock the entire whiteboard. If those two actors were
to work together on the same whiteboard then the second actor (which wants to lock the entire
field), would never have a chance to do something because it would never be able to lock the en-
tire whiteboard (simply because the line actor will always keep one square locked). This conflict
is notable because it demonstrates that even realistic locking strategies can easily lead to impos-
sible to solve concurrency conflicts. In this example the conflict arises from a subtle difference
within the usage scenario involved.

This indicates that truly open systems, such as advertised by the mobile multi agent scene,
might be impossible to build: a small change to a component or to one of the involved usage
scenarios might transform a ’possible to mediate conflict’ to an ’impossible to mediate conflict’.
For open systems this means that probably the only way these systems can work is if everybody
agrees on exactly the same specification. This specification should be exact (formal) with respect to
what kind of usage scenarios and what kind of interfaces are allowed. This is clearly not realistic
for open systems.

13.5.2 Then: Why Do We Need Adaptors ?

The statement ’open systems require an agreement between all partners to follow exactly the
same specification’ might sound contradictory with our initial motivations. However an exact
specification does not prohibit from allowing certain degrees of freedom. An adaptor might shift
the problem of being compatible with a very narrow interface description to being compatible
with a wide range of allowed interfaces (within certain degrees of freedom). We explain this by
elaborating on the different possibilities (all pictured in figure 13.2)

� When the interfaces and the usage are narrowly specified, then we have an interface that is
barely usable by other components [Ore98]. If somebody wants to use the component in
a slightly different situation (a situation with other usage scenarios) it will no longer be
compatible with the exact specification of the usage scenario. A component with such a
strict requirement is very limited with respect to the client components it can serve.

� When the interfaces are narrowly specified, but the component usage is wider ranged, then
possible client components have, depending on their goals, more freedom in using the
provided interface. However, this poses a problem because certain usage scenarios are
not necessarily easy to implement over the narrow interface. E.g, implementing a field-lock



212 CHAPTER 13. CONCLUSIONS
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Figure 13.2: Interface boundaries and usage boundaries. Top of picture: small interface, limited usage.
Middle: small interface, large usage range. Bottom: large interface, large usage range.

over an interface that offers the locking of squares. If we could, in such situations, allow
other, slightly different, interfaces to access the same functionality then the development of
open systems would become easier.

� When interfaces are specified as wider ranged interface-descriptions (instead of exact syn-
tactical descriptions) and the usage scenarios are wider ranged as well, then one compo-
nent can use another as it sees fit. E.g.: one component specifies a reentrant locking strat-
egy, while another specifies a non-reentrant locking strategy. However, before such wide
ranged interface can communicate some conversion needs to take place. This is possible if
we are able to mediate the differences between the different interfaces. This is where our
adaptor comes in because it enables such scenarios.

To summarize, within certain boundaries, an automatic adaptor is useful because it allows any
component a choice in the interface it provides or requires. This can have a major impact on the
way components are developed as we will explain below. Also, it essentially offers a decoupling
of the required interface from the provided interface.

13.5.3 Impact on Component Development

We initially started our investigation trying to foresee what the Internet would be in the future.
We tried to foresee what kind of problems will arise. We concluded that conflicting concurrency
strategies would become a large problem. In the approach we have presented we tackle this
problem by assuming that every component will offer a concurrency strategy and that these
will need to be mediated. In doing so, the problem of ’writing correct adaptors’ is shifted to
the problem of ’specifying the required/provided concurrency behavior precisely’. The result of
this approach is that the developer does not have to implement the adaptors directly, but that
he instead has the responsibility of writing a complete and consistent Petri-net. The developer
can use such a Petri-net to write down a strategy specifically suited for the problem at hand.
Instead of sticking to one of the standard concurrency approaches he can now easily specify
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Figure 13.3: Demonstration how a Petri-net can be written that will immediately lock all fields necessary
for the line and its trail.

which resources need to be locked simultaneously. Depending on the required usage scenario it
might be possible to require (or provide) better suited interfaces for the needed functionality. For
instance it is possible to write a client component that specifies that it wants to lock an entire line
and its trail immediately. This is pictured in figure 13.3 and would make writing our line actor
more easy. On top of this is the fact that this Petri-net exactly specifies what is needed and thus
makes mediating conflicts involving this concurrency strategy even more easy.

13.5.4 Decoupling Client / Server

Concurrency
Server

Component A

Component B

Component C

Concurrency 
Strategy

Representation

Concurrency 
Strategy

Representation

Concurrency 
Strategy

Representation

migrate

migrate

migrate

Figure 13.4: Using a concurrency server to which components can send a concurrency representation agent.

If we follow this line of thought we end up with concurrency servers on which different
components can publish the resources they have and the behavior they need. This might become
even more interesting if, instead of supplying such a server with a Petri-net of the behavior, we
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could supply such a server with an actual program, that represents our original component. This
program can express even more behavioral information than our Petri-net descriptions. In these
cases mobility of components would be very useful. This is pictured in figure 13.4.

13.6 Some Practical Applications

Below, we describe some applications or application domains where our concurrency adaptor,
as presented here, is useful. We first give a number of examples where the adaptor is useful in
situations where the interface not necessarily changes. The applications we have been looking
for were constrained by a number of requirements

� The application should have a client-server architecture, otherwise our adaptor is not im-
mediately applicable.

� A concurrency strategy is necessary to guarantee a correct overall behavior

� the resources should be statically defined.

� when possible, the interface should change often, because this will naturally lead to numer-
ous conflicts. However, this is not strictly necessary to make our adaptor useful.

� the system must be event-based, or expressible within an event-based system.

Afterward we give an example of an interface with frequently changing semantics in which this
research can provide an added value, without relying explicitly on the previous requirements.

13.6.1 Collaborative Computer Supported Work

A computer collaborative supported work environment often contacts a central server that offers
some kind of whiteboard (in the broad sense of the word). Users can join such a whiteboard
and through it communicate with each other, while still following some rules. In this case, the
client program offers a user interface to the end-user, while the central server stores and manages
the data. In such a multi-user environment it is necessary to lock operations on the whiteboard.
Depending on the kind of locking strategy required by the client an adaptor might be necessary.
This is a case where locking is necessary, the resource can be described statically, the clients
might require a different concurrency strategy and it can be considered as an event based system.
Therefore, our adaptor is useful in this context.

13.6.2 Databases Access

Databases are another area where our work might be useful. Databases are often centrally placed
servers that allow different clients to update records. To guarantee that this happens in a con-
sistent way, a locking interface needs to be present. If such a database would, together with the
schema’s of the different tables, also supply a Petri-net that describes the offered concurrency
strategies, then it might be easier for clients to access this data because they in turn can define a
more suitable required concurrency strategy. This can make implementing clients for databases
much easier.

13.6.3 Frequently Changing interfaces: TCP/IP Sockets

We now present an example of conflicting interfaces within a domain other than concurrency
interfaces: socket interfaces. Later on we will use this example as an illustration of how (part of)
the techniques used in this dissertation can be used to implement adaptors in other domains.

When we were developing Borg, the biggest problem of creating a working version for all
platforms was, contrary to what might be expected, not the user interface, but rather the socket
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Linux Windows ’98
Operation 2.2.* 2.4.*

initialization / WSADATA wsadata

WSAStartup(1,&swadata)

opening socket() socket(...)

binding bind(...) bind(...)

hostname might append domain name obtaining local address very difficult

signaling of events signal(SIGIO,...) polling necessary
signal(SIGURG,...)

connecting connect(...) connect()

synchronous asynchronous

send error when packet too large no error when packet to large

local circular sends no deadlock might deadlock

recv seldomly incomplete receives almost always incomplete receives

closing shutdown(s,SHUT_RDWR) closesocket(s)

close(s)

blocking i = fcntl(s,F_GETFL) & ~O_NONBLOCK int i = 0

fcntl(s,F_SETFL,i) ioctlsocket(s,FIONBIO,&i)

fcntl(s,F_SETOWN,get_pid())

nonblocking i = fcntl(s,F_GETFL) | O_ASYNC | O_NONBLOCK int i = 1

fcntl(s,F_SETFL,i) ioctlsocket(s,FIONBIO,&i)

fcntl(s,F_SETOWN,get_pid())

error constants EAGAIN WSAEWOULDBLOCK

EWOULDBLOCK WSAEWOULDBLOCK

ECONNREFUSED WSACONNREFUSED

transmission error errno h_errno

connection error errno h_errno

host error h_errno h_errno

Table 13.1: Some important, barely documented, differences between Linux sockets and windows sockets.
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libraries. We have developed Borg for PalmOS, Windows, Linux and Macintosh. Every operating
system offers its own version of a socket library. This has posed major problems because not
every socket library is as easy to use as any other socket library. Table 13.1 contains the most
important differences between Linux and windows.1 Between the two presented API’s some
important differences exist:

� Syntactical differences on multiple levels. The error constants under windows are all merged
into h_errno, while under Linux, the error constants are separated in two variables, h_errno
and errno. Another syntactical conflict can be found when marking a socket non-blocking.

� Initialization of the library is different. Linux doesn’t require initialization, Windows does.
� Windows will not signal when data is received, hence the application needs either to poll

constantly the sockets it manages, or it should start a new thread. Linux will signal when
data might be available, hence not requiring a new thread or polling loop. This is a conflict
that is not easy to solve in a platform independent way.

� Between different Linux versions other conflicts might arise. In the kernel version 2.2 series,
circular sends would not deadlock but return an error, while in the 2.4 series such a circular
send will wait and deadlock. Depending on the usage scenario this might form a problem.

As illustrated by this example, interfaces that often get a new implementation, so called hotspots,
will automatically give rise to differences between implementors. This often leads to conflicts.
In this example the availability of Petri-nets to describe the semantics of the different functions
would have been extremely helpful as well as the possibility to mediate the differences automat-
ically. When we present the guidelines, we will investigate this example in more detail and give
a sketch how to approach the problem of conflicting socket interfaces.

13.7 Guidelines

CONFLICTING INTERFACES REPRESENT A major problem that has to be dealt with. To approach
this problem we have investigated a smaller, but more accessible problem. The solution pre-
sented in this dissertation is not a general solution in the sense that it can be straightforwardly
applied to other domains. Nevertheless, in identifying solutions to a subset of a smaller prob-
lem, we have tried to keep both the solution and the subset of problems as general as possible.
This allows us to identify guidelines which can help shaping new solutions to other problems
of conflicting interfaces. We will now discuss these guidelines and explain them by giving an
example of how the previous identified problem of conflicting socket libraries might be solved.
This example will be presented in another font.

13.7.1 Explore the Environment

The first thing that needs to be done is to explore the environment. The best way to get grip on
a certain domain is to explore existing real world conflicts and investigate what exactly causes
the conflicts. In this dissertation we have done this by identifying a set of concurrency conflicts
(chapter 6). The process of exploring the environment should result in a set of variabilities (that
need not to be strictly orthogonal). In a later stage the variabilities are used as input for defining
the requirements and possible solutions.

Once this is done, we should check whether it is necessary to represent these conflicts in a
scaled down model. This might be necessary to reduce the technical problems involved and/or
to speed up the process of testing conflicts (the prototyping cycle). In this dissertation we have

1The version for Macintosh and PalmOS have been omitted but can be found on the site
http://borg.rave.org/cgi-bin/borgcvs/borg/cborgcore/. The different files are named
StdLinux.h, StdLinux.c, StdWindows.h, StdWindows.c, StdPalm.h, StdPalm.c, StdMacin-
tosh.h and StdMacintosh.c.
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created our own component model instead of using standard CORBA services or other available
techniques (chapter 2).

Important questions:

1. what kind of conflicts do we want to investigate ?

2. what are the variabilities ?

3. what kind of test conflicts will be investigated ?

4. what kind of prototyping model will be used ?

Example: Our socket case has already been described in section 13.6.3. We have identified a number of
variabilities such as

� blocking vs non-blocking calls: a call can be either blocking or non-blocking. A non-blocking call
returns immediately, while a blocking call will wait until the kernel has finished doing his job.

� signaling vs polling vs waiting: will the kernel inform us when something interesting (like an incoming
packet) has occurred or do we need to poll/wait constantly?

� syntactical conflicts: how are the different calls named ? Are the same constants available, what is
their meaning ?

� initialization of the libraries, opening of sockets and shutting down.

� timing of different calls. How long does it take before a timeout occurs ?

To identify a set of conflicts we can rely on a number of different applications ported to different platforms
and kernels, such as we have done with the Borg mobile multi agent platform. In this case we don’t need an
actual model, however in defining the environment we can decide to start using a cross-compiler because
this makes it easy to quickly test different programs.

13.7.2 Goal & Reference Frame

Once the environment is explored, it is time to look for a suitable reference frame. A reference
frame is part of the environment and is common to all involved conflicts. The reference frame
should be chosen very carefully because, later on, it should allow for a measurement of the correct
working of an adaptor. In this dissertation, we have used as a reference frame the assumption
that the ’functional link’ between the involved components was compatible (chapter 7). If we
would have chosen a reference frame such as ’every component can send a message’, then we
would not have been able to define what a good working adaptor was exactly. Therefore, when
choosing a reference frame, it is important to find good answers for the following questions:

1. What is the goal of the adaptor ?

2. Where do you want to place the adaptor ?

3. What are the commonalities ?

4. Which commonalities are useful ?

Example: In our socket case, we try to make user applications, written for certain socket implementations,
compatible with other socket implementations, without modifications to either the application or the ker-
nel/library source code. We do this by inserting an adaptor between the application and the used library.
Towards the application our adaptor will offer all the necessary socket primitives and from the underlying
kernel/library, it will use the offered socket primitives. Our socket case has a number of commonalities over
different implementations.

� Everything is about communication between to computers. Clearly our adaptor works if it is able to
communicate with another program that makes use of any other socket library.



218 CHAPTER 13. CONCLUSIONS

� Everything is also about what kind of data is sent out over/received from, for instance, an Ethernet
cable. If we could compare the data one socket library puts on the cable with the data another one
wants to put on the cable then we have a common ground.

From these commonalities we will use the last one as reference frame because the protocol is the largest
common denominator between different socket implementations and because it does not require a second
computer to agree to the protocol you are using.

13.7.3 Identify Necessary Extra Information

Once a) the goal of the adaptor and b) a usable reference frame have been identified, it becomes
necessary to explicitly state the requirements of our adaptor. Before we can state the requirements
more formally, it is often necessary to introduce extra information. By analyzing the variabilities
and the problems of expressing a requirement, it becomes clear what kind of extra information is
needed. In a later stage we will need this information to create the requirements for the adaptor.

Some standard questions for every variability:

1. can we express it as a requirement ?

2. if so, how easy-to-check can we make this requirement ?

3. if not, what kind of information is missing ?

4. can this information be obtained automatically ?

Example: We go back to the variabilities we have identified earlier.

� Clearly to be able to handle syntactical conflicts, blocking vs non-blocking conflicts, signaling vs wait-
ing vs polling conflicts, we need the ability to alter the event flow between libraries. This is only
possible if we at least know what kind of event flow is requested and/or provided.

� A second important issue is timing. Socket libraries often rely on timeouts on all kinds of operations
(sends, receives, connection acceptance and so on). To be able to react to such requirements it is
necessary to understand them. Hence, the extra documentation should contain timing information.

� Without the knowledge of when a certain block of data is put on the Ethernet cable, it is virtually
impossible to understand the working of a socket library. Therefore, we need communication informa-
tion.

Summarized, we need a) message flow information (captures blocking / non-blocking, signaling / polling /
waiting and syntactical conflicts), b) protocol information (which data is put on the cable by which function)
and c) timing information. None of these is directly available in the standard syntactical API accompanying
socket libraries.

13.7.4 State the Adaptor Requirements Explicitly

Once the necessary, but missing, extra information is identified, we should be able to state the re-
quirements explicitly. To do this we can again rely on the variabilities we have identified earlier.
Which of these variabilities does the adaptor need to understand ? Can we define what a good
working adaptor is for such a variability based on the reference frame ? In this case it might be
necessary to re-investigate the reference frame, however we consider this to be part of the pro-
totyping cycle. When defining the requirements it is important to distinguish between different
kinds of requirements. These are:

1. Some requirements can be statically checked (off-line), without running the program, only by
looking at the two conflicting components a program can be generated that will satisfy the
requirement. This is a most favorable situation, however such a situation will not always
occur. In this dissertation we didn’t encounter such a requirement.
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2. Some requirements can only be checked by running the program. For instance, a requirement
such as the liveness-requirement cannot be automatically satisfied before program execu-
tion (off-line) because it requires runtime-rewards from the client component.

3. Some requirements cannot practically be checked. It should be noted that it is not because a
requirement cannot be verified (or is too resource consuming to verify), that it is impossible
to solve it. In this dissertation, the no-race requirement, is such a requirement. Checking
whether no race-condition occurs at runtime is much more difficult than solving race con-
ditions. It is clear that this kind of requirements is much more difficult to satisfy because it
requires expert knowledge of the domain and knowledge of standard programming idioms
to tackle these kind of problems.

Example: We go back to the variabilities we have identified earlier. We assume that the protocol that is
used by the conflicting socket libraries is the same and compatible. We also assume that the information
communicated by this protocol is compatible. So, the essential problem is in how the application communi-
cates with the socket library to achieve a certain effect. With this we are able to specify the requirements
informally:

� The application should be able to use any event structure it requires to realize a data stream. The
application will provide the adaptor with the required ordering of ’events’.

� The application should be able to use any timing structure it requires. The application will provide the
adaptor with these requirements

� The adaptor should only use the provided socket implementation to realize the required behavior. The
socket implementation provides a description of its event structure and its timing structure.

In the above, ’event’ refers to a call, a return, a signal, a data block sent or received. This requirements are
relatively informal, if this adaptor would be made, a more strict set of requirements would be necessary.

13.7.5 Correctly Represent Missing Information
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Figure 13.5: Petri-net description of a socket net.

The missing information must come from somewhere. Either the user of the adaptor supplies
it, or the implementors of the different interfaces have to supply it. Essentially where it comes
from does not matter, as long as it is there. To motivate users to supply the missing information,
it might be helpful to make it useful. In this dissertation we have done this with our Petri-nets,
they not only help in creating an adaptor, but they also help in detecting all kinds of interesting
features of an interface/component (see chapter 3).
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Secondly, the process of writing down the missing information should itself not be more diffi-
cult than the process of writing an adaptor. Therefore, it is necessary to carefully create a language
that is able to capture all essential information in such a way that it is intuitive and expressive
enough. However, here it should be avoided to introduce a Turing-complete language because
then a number of the requirements might suddenly become impossible to verify. So, keep an eye
on how the requirements can be validated afterward.

Questions with respect to the missing information are:

1. how can we make it useful to the one who needs to supply it ?

2. how can we present it in a language that is natural to humans and compact ?

3. how can we avoid a language that is Turing-complete ?

Example: For our socket case, which was missing event flow information, protocol information and timing
information, we will introduce timed Petri-nets, with two special places, which we describe below. By doing
so we can express all the missing information.

� event flow information will help in avoiding conflicts between blocking / non-blocking calls, signaling /
polling / waiting architectures and syntactical problems.

� timing information. By simulating the Petri-net in such a way that timers trigger certain places it might
be possible to implement ’required’ timing information’. By observing timers and detecting timeouts at
’offered’ behavior, it is possible to detect errors.

� communication: by introducing two places, a special receive-source place and a special send-sink
place it might be possible to verify the correct working of the communication link. One place is a
source-place to receive raw protocol data. The second is a sink-place that is used to send out raw
data.

However, how we present these Petri-nets to the end-user is another problem. In this dissertation we have
already created a Petri-net text format that is easy to use and can be expanded to more difficult Petri-nets
offering different kinds of behavior. In this case we will need to add optional timing information on the arcs.
Also, we cannot expect that the end-user exactly knows the underlying protocol (with the exact control data),
therefore it might be a better choice to simply store the actual data in these places. Also because the use
of buffers is an important issue in this case, it might be useful to introduce such an abstract data type into
out Petri-nets. Also a necessity is the notion of a session, this will also be marked within the tokens. An
example is given in figure 13.5.

13.7.6 Create the Adaptor

Once the missing information is present and the requirements are known, it is time to look for so-
lutions. This involves finding out which requirements can result in a compilation of an adaptor,
and which requirements require the insertion of a general algorithm. In both cases it is impor-
tant to decide what kind of internal representation will be used. In this dissertation the internal
representation of the liveness-module and the enforce-action module was similar to the Petri-net
representation, however, the representation of the concurrency module was slightly different and
more tuned toward its efficient working.

When using learning algorithms, make sure to use an automatic process to verify whether
the representation is good. In the end, a computer needs to use the representation to (re)act
correctly to certain situations. Therefore it is important to have a representation that quickly
leads to a correct behavior. In other words: the bias of the representation should be measured
and should be optimal. In this dissertation we have verified our Petri-net representation of the
liveness-module by means of a genetic algorithm. E.g, the representation of the liveness module.

Once solutions have been identified to match the different requirements investigate how these
solutions can be modularized. Afterward investigate what kind of topology is necessary to make
the entire adaptor work. Important issues:
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1. how can every requirement be satisfied ? compilation vs interpretation ?

2. when using learning algorithms: How to guarantee a correct bias ?

3. can certain requirements be modularized ?

4. what kind of topology will be used ?

Example: In our socket case, the implementation of the adaptor might be similar to the adaptor presented
in this dissertation.

� To guarantee a correct data flow, our adaptor can investigate at the application side which data it
places in the output tokens. At the kernel/library side it can do a reachability analysis to deduce how
to send data over the socket.

� Solving timing information can be done by inserting a Petri-net evaluator that knows how to handle
timing.

Probably the only two modules necessary to make this work is one module that communicates to the user
level application and a second module that communicates to the actual library/kernel. The communication
link between these two modules can be a common place, on one side understood as a receiving place, on
the other side understood as a sending place. (figure 13.5 contains dotted transitions and lines which link
them both together).
The evaluation of these socket nets should be able to handle the notion of threads: creating ones when
necessary, managing incoming threads and destroying others. This can be done by using the ’session’
knowledge present within the different tokens.

The above guidelines of course should be embedded in a typical prototype/experiment cycle.
With these guidelines it should be possible to create adaptors for domains other than concurrency
conflicts in open client server architectures. Essentially , any place where one interface is fitted
with multiple implementations is a candidate for automatic adaptation.

13.8 Future Work

13.8.1 Meta-conflicts

An area that is not investigated in this dissertation are meta-conflicts. These are conflicts that
occur between the different interface-descriptions. We have already touched this issue in sec-
tion 12.7.1 on page 198. However, before the problem of meta-conflicts can be investigated, a
large number of adaptors based on extra formal documentation needs to be available.

13.8.2 The problem of checkpoints

Test-scenarios

In our solution to the liveness problem we assumed that the programmer can easily specify check-
points in the source code. However, if this is not possible, test-scenarios can be used. A test
scenario specifies which traces are considered to be ’good’. Based on this information, rewards
can be obtained. Illustration 13.6 shows two test-scenarios. Scenario 1 shows that the client will
send out a Lock and expects a LockTrue in response. Afterward an Act will be sent out and an
ActDone is expected to return. Finally an Unlock is sent out and an UnlockDone should return.
The second scenario illustrates more or less the same, the only difference is that now two Act’s
are sent out. The second scenario can be used to teach a learning algorithm that after the first act
message multiple other act messages might be sent out. Given these two test-scenarios one can
easily implement a tracker in the Petri-net that will assign rewards when appropriate.

If we go even a step further, it might be possible to convert a number of test-scenarios auto-
matically to the Petri-net description of a component [EK98]. However such a process heavily
relies on a correct generalization. Given the two scenarios in figure 13.6, one might assume that
the component will also work for 3 or more acts at the same time. However, nothing ensures this
is the case. Depending on the algorithm another generalization might occur.
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Figure 13.6: Two test-scenarios to verify the correct working of an adaptor.

Annotated Petri-nets

Instead of using Petri-nets and separate checkpoints, the developer of the Petri-nets could also
tag arcs with a priority, which would resemble the rewards offered by the different components.

13.8.3 Other Learning Approaches ?

We have made the assumption that every future reward is statistically correlated to the current
state of the Petri-net involved. This was necessary to demonstrate that the mapping of our live-
ness problem to a reinforcement learning problem was well defined. However, if we have made
the assumption of a reward/marking correlation, we only did this from a practical point of view:
for the programmer it is easy to specify checkpoints. In the conducted experiments we have ob-
served that in general this did not form any problem, however a large scale investigation of this
property would be very useful, especially to learn the boundaries of our approach.

We have already seen that if the reward is not entirely dependent on the locking strategy some
oscillation in the

�
values will occur, on the other hand if the reward is used to express a hidden

property of the locking strategy it will not be able to learn it.

13.8.4 Peer to Peer Concurrency

In this dissertation we did not fully investigate how peer to peer concurrency could be managed.
All the examples we have presented work with only one server. As explained in section 12.7.2
there are some major problems involved with peer to peer concurrency. The biggest problem
of such an environment is that not all communication can be mediated and that different com-
ponents might communicate indirectly with other components. To solve this problem adaptors
themselves should be able to coordinate their behavior and learn how to behave to support an
implicit present overall behavior. Theoretically, game theory might be applicable.

Game theory [Nas50b, Nas50a, Nas51, Nas53] requires agents that choose a discrete action.
Depending on the action they choose they can either win or lose. The outcome of a game not
only depends on the action chosen by one agent but on the interaction between all the chosen
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actions (this is typically the situation in peer to peer networks). A game is typically characterized
by 5 elements:

1. the players, how many are there ? Is there a chance-player (or is there some random ele-
ment) ? In our situation these could be the components and the delay times when sending
messages.

2. a set of possible actions for every player. This largely depends on what kind of possibilities
a component has. Probably this will be mapped onto the sending of a message or waiting
with sending the message.

3. the information players have available when choosing their actions. It is clear that no adap-
tor in a peer to peer network will have all the information.

4. a measurement which describes the payoff for all combinations of actions. It should be pos-
sible to embody the overall required behavior into some kind of reward system.

5. a description of what every player tries to accomplish. These are the requirement of every
agent. In this dissertation we have assumed that every agent tries to accomplish the same.

The 5 elements that characterize a game are present in typical peer to peer networks, so game
theory might be a good start to investigate the problem of conflicting interfaces in peer to peer
networks.

13.8.5 Learning an Interface Description

As explained in section 12.3, all investigated concurrency interfaces behave as simple finite state
machines. Therefore it might be possible to deduce the behavior of an interface in an automatic
way. For instance, a learning algorithm could, given an API of a component’s interface, try out
which actions are possible at which time and construct a Petri-net description of the interface
automatically.

To do so a program � , that is supposed to learn a Petri-net description of component � , which
offers only a syntactical interface description � , could follow different strategies:

1. learn hidden variables of � by only accessing � . The problem of modeling the behavior of� by only looking at � is essentially finding out which variables are useful to describe the
behavior of � over � . The problem is that all too often these variables are hidden within the
semantics and not actually present at � . Therefore two ideas might help

(a) observe the behavior of a standard communication and find out hidden variables by
statistical analysis of the message flow.

(b) generation of test-messages by � to validate and/or test certain variables:

i. useful to verify whether a hidden variable is truly a distinct state and not merely
a coincidence.

ii. useful to check the boundaries of variables.

2. directly observe the component � . Instead of looking for hidden variables it might also be
possible to directly investigate the behavior of the component.

(a) observing its binary state before and after handling a message. This avoids the use of
looking for hidden variables but can easily create too large models and describe states
that are entirely redundant to model the behavior of � .

(b) observe the control flow within the program when handling a message. This should
make it possible to detect whether all branches of the component have been investi-
gated and possible how other branches can be investigated. This might help in creat-
ing the expressions on the arcs of the Petri-net.
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3. model generation & verification. Generate a random model � . Afterward � can verify, by
checking consistency and completeness whether � is a correct model of � . To do so, genetic
algorithms/programming might be useful (given the correct bias of course). After verifi-
cation of a model � , crossover and mutation could help in refining and creation of a better
model.

4. Petri-net representation in such a way that

(a) the Petri-net it is not too small. For instance, one place that captured the entire state
of the component, with 5000+ transitions describing every possible message is clearly
not a good Petri-net

(b) the Petri-net is not too large. It is also useless to create a place for every memory-cell
available to the component.

(c) the representation should only contain places to model a certain requirement such as i)
when a certain message can be send by only looking at the client, or ii) when a certain
message can be send, looking at the server, or iii) to capture the state of a component
such that it can be rolled back at a later time, or others...

(d) automatic reduction of the Petri-net might help in removing obsolete states, not nec-
essary to model � .

The above are some ideas about how one might try to learn the behavior of an interface automat-
ically. Whether it is truly possible to learn the behavior of an interface automatically remains an
open question. If we would be able to do this, then the impact of our work would be substan-
tially greater, because then we would be able to mediate differences between components in an
even more automatic way. As a trade-off, the advantages of using a formal interface specification
would be lost. We would no longer be able to verify the completeness and consistency of an
interface description.

13.8.6 Determinism versus Non-Determinism

This dissertation focuses on the generation of intelligent adaptors. We made the assumption that
we have the concurrency strategies specified as a Petri-net. From a pragmatic point of view, this
is very useful because it offers the developer all kinds of interesting information. However, the
essential reason why we need Petri-nets is to introduce determinism and avoid that the liveness
module could bring the client components in an invalid state by sending out a wrong message.
E.g., if the client component does not know that before the first setPosition, a joinActor needs
to be sent, the client component might fail to work properly.

In the enforce-action module we also need a similar deterministic property. This module
needs to know how it can bring the server component in a certain state. Here we assume that the
server is well written and that every possible synchronization action that can be invoked upon
the server can easily be undone. Of course, to avoid denial of service attacks and to increase its
robustness, every good server offers this kind of functionality. However, in general, the concur-
rency module needs be sure that it can deduce deterministically what to do and that it will always
be able to reach a certain state.

Within the concurrency module a similar deterministic problem occurs. However this problem
cannot be solved easily. The concurrency module resolves race conditions. However, it is unable
to resolve deadlocks when it detects them. The reason is that it is unable to anticipate a deadlock,
because it has no knowledge of it, and that, once it has detected a deadlock it is unable to undo
previous actions on the involved components.

From these three modules we see how required determinism poses problems. During this dis-
sertation we have tried to generate adaptors that work without making mistakes that cannot be
revised afterward. The reason why we imposed such requirement is that all real-world com-
putation happens in a controlled non-deterministic (hence deterministic) way. If two components



13.8. FUTURE WORK 225

communicate, there are exactly two components and the functionality offered by those two com-
ponents is exactly understood. If an adaptor wants to mediate the differences between those
components it should be deterministically correct, otherwise it would certainly bring disaster upon
one of both (if not both) components. This deterministic view on computation is an illusion,
for in open distributed there are many opportunities when a component might fail; all too often
the reasons lie within uncontrolled upgrades or unreliable infrastructure. Nevertheless develop-
ers still hold on to an illusion of determinism and construct programs that behave completely
deterministically.

In this dissertation we made exactly the same assumption. However, one can also approach
the problem from the opposite side. One might be tempted to embrace the non-determinism found
in open distributed systems and investigate how different but similar working components might
emerge behavior that satisfies certain requirements.

By exploiting non-determinism one might create programs, which act creatively and intelli-
gently, because they would be truly able to find and apply clues in the environment which a
deterministic process cannot see. This kind of research however is still barely started and cer-
tainly not available in the field of ’services’ offered on the Internet. Some pointers might give
a lead such as swarm intelligence [KRCE01], amorphous computing [HAAC � 00] and cellular
automata [TM87].
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Appendix A

Thread Based Models for
Distributed Systems

JAVA WAS ORIGINALLY CONCEIVED BY SUN MIRCOSYSTEMS to be used on embedded systems.
However, it turned out to be a better language for the Internet because it offered a virtual ma-
chine that could run Java applications on all kinds of different architectures. Java is an object
oriented programming language that supports automated memory management (= garbage col-
lection), threads, and interfaces. Libraries like Java RMI (remote method invocation) are available
to support semi transparent remote accessibility. This model, a typical thread based, transparent
distribution model, is the focus of this appendix. We will investigate the suitability of Java and
its thread based model for writing adaptors. This chapter explains why we opted for an event
based model. It gives also isnight into the problems of creating adaptors for such models.

A.1 Naming/Finding services

THE FIRST THING EVERY distributed application has to do before connecting a remote object, is
looking up what object it should connect to. For this purpose Java RMI uses a special server
which should be started on the machine where remote objects will be exported. This server is
called the RMI registry.

If an object wants to export itself it can use the Naming class to export its own name to the
registry. From then on all applications can ask the registry a reference for the object with that
name.

It is clear that such a mechanism is very rudimentary, because we still need to know the name
of the machine where the registry (and the objects as such) are running. To support new tech-
nologies, such as wireless embedded devices, Sun developed JINI, which allows peers (clients) to
look up other peers (servers) using a description of the required capabilities, instead of a simple
name. The initial lookup to find a JINI directory server is done with a broadcast.

A.2 Communication

JAVA PROCESSES can communicate by using Java RMI. Note that Java RMI can only communicate
between Java Processes, which is a major drawback of RMI.

Sun’s serialization and deserialization interface to Java [CFKL91] helps with exporting an
object graph to a byte stream. The standard behavior for serialization is to serialize the object
and all the objects it contains. If we want to modify this behavior we have to implement an
externalizable interface which describes how the object is to be exported.
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Figure A.1: Remote object calling in Java RMI.

To be able to contact a remote object, as if it were a local object, one should create stubs for
all the remote objects which will be contacted.1 Such a stub will implement all the methods the
remote object supports and filling in the bodies with code which contacts the remote object. The
logic of such a stub body is quite simple:

1. Contact the remote object using sockets

2. Serialize all the arguments passed to the stub by the caller.

3. Send out all arguments

4. Wait for an answer, which will be the result of the remote method call.

5. Receive/read the result

6. Deserialize the result

7. Return the result to the original caller

The object that is being exported at the server side, offers a way to be contacted by remote clients
by means of a skeleton. This skeleton contains some listening code and logic to contact the actual
exported object. The logic in a skeleton is as follows:

1. Listen for connections

2. Accept an incoming connection

3. Receive the serialized arguments

1This can be automatically done using rmic.
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4. Deserialize the arguments

5. Invoke the method call upon the correct object

6. Serialize the result of the invocation

7. Send back the result over the socket

Figure A.1 illustrates how we can transparently contact a remote object. We see how the setup is
inherently client-server. When we want to contact a client from within the server the client needs
to export an interface and become a listening server itself.

A.3 Openness & Remote Objects

ANOTHER POINT TO MAKE with respect to stubs and skeletons is that they are generated by a
compiler, called rmic. This means that stubs and skeletons are created at compile time. As a
direct consequence we cannot easily communicate with an unknown process at runtime. In the
setting of this dissertation, this is not acceptable because we don’t know the interface we will link
to.

One could think of a solution by creating stubs and skeletons as needed: any time a connection
to another machine is needed, the interface description could be downloaded from the server
and compiled into a stub class that would connect to the appropriate skeleton at the server. This
compilation phase would require a compiler or Java byte code assembler, and would consume a
lot of time for simply setting up a link to a remote object. It is clear that this is not practical and
not a good approach at all.

Another approach, as used by Smalltalk [AGR83] users, is using the meta-level interface and
overriding a method such as doesNotUnderstand. With this a simple and general stub could be
created. The only method of the stub would be the doesNotUnderstand. This method would be
called every time an undeclared method is invoked upon the object as can be seen in figure A.2.
The doesNotUnderstand in turn would look at the actual method invocation and pass it along
to the skeleton. However, as it turns out, this is impossible with Java because the meta-level
interface of Java is not strong enough.

Calling
Object

send(...)

hello()
doesNotUnderstand(hello())

General 
Stub

deserialize(...)

serialize(...)

recv(...)

Figure A.2: The behavior of a general stub, using doesNotUnderstand.
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A.4 Java Threads

IN MANY ASPECTS JAVA is an innovating language. One of these innovations is the introduction
of a standard threading library.2 A thread is an execution context which can run together with
other threads in the same environment. The difference with processes is that threads do share
memory, while processes don’t share memory.

Algorithm 27 A distributed recursive factorial.
public class FacApp extends UnicastRemoteObject

implements FacCalcer
{ ...

public int fac(int n, FacCalcer fc) throws RemoteException
{
if (n==0) return 1;
return n*fc.fac(n-1,this);
}

public static void main(String args[])
{
FacCalcer fc;
FacApp self=null;
try {

int answer;
self=new FacApp();
try {
fc=(FacCalcer)Naming.lookup("faccalcer");
answer=fc.fac(3,self);
System.out.println("The answer my friend ... "+answer);
}

catch (NotBoundException e) {
System.out.println("faccalcer bound");
Naming.bind("faccalcer",self);
}

}
catch (Exception e){...}
}

}

The availability of threads in Java is of crucial importance for the internal workings of Java
RMI as we will explain now. Java RMI, as already seen, waits before returning an answer: a client
can ask the server to execute a method and return the answer. In the meantime the client simply
waits. Now, let’s have a look at the Java program in algorithm 27 (page 230).

The FacApp class exports a FacCalcer interface. A FacCalcer is an object that calculates
the factorial of a certain number by performing a recursive call. To do the recursive call the
FacCalcer needs to receive another FacCalcer as can be seen in the definition of the facmethod.
When such a FacCalcer starts, it either becomes the master FacCalcer (by binding itself in the
registry) or a slave FacCalcer, which will initiate the calculation of a factorial.

To start this program, first an rmiregistry should be running and afterwards two instances of
the FacApp should be started. The last facapp (faccalcer2 from now on) requests the first fac-
calcer1 to calculate the factorial of 3. In return faccalcer1will request faccalcer2 to calculate
the factorial of 2... But how is this possible ? How can the original requester be interrupted while
he is still waiting ? The answer lies in the Java threading mechanism. Every time an RMI call
comes in, the server-thread will spawn a new thread which handles the request. This can be seen
in figure A.3.

2compare this with C which has all kinds of dirty libraries and tricks like setjmp and longjmp to handle multiple
sessions.
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Figure A.3: In the above figure, full lines indicate a running process, dotted lines indicate a waiting (listen-
ing) process and horizontal dashed lines indicate a ’wait for return’. In this figure we see how a
new thread is spawned every time a call comes in.
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The result of this behavior is nicely what a programmer would expect. The problem is that
this application suffers from a number of conceptual problems, which are essentially grounded
in the inherent problems of distributed systems: concurrency and partial failure. We will explain
this below.

A.5 Error handling: Exceptions

LET’S HAVE A LOOK at how failures of the underlying network and failures of processes are
caught. Java has a well-known language construct of exceptions and uses this to report errors
that occur when contacting a remote object. Technically, RMI achieves this by letting the stub
throw an appropriate exception. When, on the other hand, the skeleton fails while executing the
incoming message (because the program throws some kind of exception) it will simply serialize
the exception and send it back to the client.

Although, this solution looks nice, there is not much that can be done when such an exception
is caught. Do we reconnect with the server, do we inform the user, or what should we do ? The
main problem programmers encounter here is how to handle those exceptions in a structured
way.

To illustrate these problems, suppose we have a process � that calls another process � , which
in its turn will contact process � again. What will happen when process � dies at the moment �
is sending back its result to � ? Will process � know in what state � � is ? How will the exceptions
cascade ? Figure A.4 illustrates this. At the moment � � , i.e. at the moment process � received
a broken pipe exception from the underlying socket layers, it does not know anymore that it
originally received a call from process � . Process � cannot easily know that an internal thread � �
is still executing or not. The net result is that process � ends up to be in an unknown, probably
invalid, state.

Process BProcess A

send result

cannot send exception, just die

broken pipe
 exception

T1

T0

exception occured,send exception

process B dies

Figure A.4: An illustration what can go wrong with the nested calling conventions of Java RMI. At the
moment process � dies, process .�� does not know whether .�� has already been executed or
not. This leaves 0 in an unknown state.



A.6. JAVA RMI AND CONCURRENCY 233

A.6 Java RMI and Concurrency

A.6.1 Concurrency Primitives

SINCE JAVA IS A LANGUAGE with native support for threads, we need to investigate how con-
currency can be managed and what kind of language constructs are available. The first and most
important language construction is synchronized.

synchronized(foo)
{
int val = foo.read();
foo.write(val+1);
}

In Java all objects can have a lock, when an object is synchronized the current thread will try
to obtain a lock on that object, and if the lock is obtained, the statement block will be executed.
When leaving the block statement the lock is released again. The object locks are reentrant, so
the same thread can lock the same object multiple times. With this construct one can easily
implement a critical section. However, it is still allowed that other accesses to the foo object are
not synchronized, thereby ignoring concurrency behavior.

A second construct is the possibility to synchronize methods in an object. For example:

synchronized public void increase()
{
...
}

Which means that the increase method will only execute when the this object is locked. In fact
we can write exactly the same as follows:

public void increase()
{
synchronized(this)
{
...
}

}

Now, although a nice construct it suffers the same problems as all concurrency primitives in ob-
ject oriented languages: the inheritance anomaly. Suppose, we specify a method in a class to be
synchronized, this means that all overriding methods must be synchronized too. This effectively
means that a subclass cannot choose to be not synchronized for its own actions, and be synchro-
nized for the super calls. Aside from this annoying problem, there are a lot of other problems
with respect to synchronization and concurrent object oriented languages.

Note that, aside from these (relatively low level) synchronization mechanisms, there are other
solutions like wait-notify mechanisms, the Java Transaction interface which offers a much more
high level approach to concurrency strategies and others. For a more detailed discussion about
concurrency management and Java see [Lea00].

A.6.2 Java RMI

THE JAVA THREADING MECHANISM and the way Java RMI uses it, makes it possible for one
remote object to be invoked multiple times by different threads on a concurrent basis. This means
that the object’s state will be soon invalid if we don’t guard access to the remote method.

If we now use the standard Java keyword synchronized to guard access to the remote object,
we see that only one thread can enter the remote object at a time, thereby placing all other threads
in wait until the object becomes available again. However, this still raises some problems.
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Figure A.5: In the above figure we see how a deadlock occurs between two synchronized RMI calls, which
normally would work if not distributed.
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For example, let us take the previous factorial example and assume that the fac method is
synchronized. What will happen ? One would expect the program to produce its standard result
3,2,1,... and so on. In practice this will not happen because the thread that comes back from the
first faccalcer is different from the thread that is waiting inside a synchronized block. So this
new thread will have to wait for the lock to be released and finally deadlock because this new
thread is supposed to offer an answer before the calling thread will release the lock. In figure A.5
we see the control flow of this program.

This example illustrates that we still need some active form of session management in dis-
tributed systems. It also illustrates how concurrency problems cannot simply be solved by syn-
chronizing methods. In distributed systems every remote interface will need to export some
kind of concurrency interface, and the implementation will need to have a well thought off con-
currency management strategy. This concurrency management is typically larger than the actual
actions to perform. We will come back on these issues in detail in chapter 5.

A.7 Writing Adaptors

WE HAVE NOW SEEN how Java RMI works. We have seen how concurrency is managed and how
threads are used. Writing adaptors with Java RMI is clearly not as easy as with the component
system we have been using.

1. The Java RMI call-wait-return calling conventions makes implementing an adaptor diffi-
cult. An adaptor can receive multiple incoming calls and will spawn multiple internal
threads in response. These threads need to be guarded somehow. Writing this guarding
mechanism is not trivial since the threads themselves are implicitly started.

2. The Java RMI registry makes it difficult to plug in an adaptor between two communicating
processes. When one process contacts another it lookup the name of the remote object. If
we could rebind this name to point to the address of an adaptor this could be possible.
However it is impossible to rebind a name (let us say Server) to a new location (Adaptor).
This is necessary to make sure that all processes wanting to contact the original Server will
contact our Adaptor.

3. A typical Java RMI connection only sends data and receives one answer. If we want to
adapt data sent over connections between different processes, our adaptor will need to
implement both directions. It will need to listen to the first process, as well as to the second
process. All incoming connections must be adapted and identification of the correct remote
object should be present. An important issue here is that we don’t know beforehand which
objects are being exported by a Java Process and whether they should be adapted or not.

4. At runtime we cannot contact a process unknown at compile time because the Java RMI
reflection interface is not good enough to be able to make generic stubs.

5. The concurrency guarding implemented in a remote object is not visible to the outside
world, nevertheless it has a strong impact in how the application works and will respond
to incoming calls. The adaptor should work together with the synchronization behavior
of client and server. But since the concurrency interface is not exported this cannot be
achieved.
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clarified, 9
clarity, 6, 30

class, 72, 233
class resource, 201
classical solution, 34
classifier, 161, 180, 183, 186, 187

algorithm, 68
condition, 161
evaluation, 72
expression, 72
list, 71
message, 181
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classifier-system, 161
classifierlist, 187
classifiermessagelist, 187
classify, 68
classify learn algorithm, 68
clean, 183
clear

demonstrate, 14, 210
depend, 209
disable, 64
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petri-net, 144
request, 170
require, 108, 109, 170
required, 211
server architecture, 2
side, 7, 197
synchronization message, 196

client-component, 167
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call, 98
communicate, 27
control, 172
creation, 38
creation time, 29
developer, 126
exhibit, 189
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consequence, 3
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server, 170
software, 204
state, 224
whiteboard, 211

entity, 27
enumerated, 68
environment, 2, 4, 5, 14, 17, 38, 43, 53, 67–69, 71–75, 161, 216,

217, 222, 225, 230
include, 67
signal, 76

environmental input, 69
episode, 73, 75, 161, 176, 177
episodic, 73
equalsexpression, 187
equation, 74, 145, 149, 168
equivalent state, 206
errno, 215, 216
error, 5, 64, 215
error constant, 216
essence, 87, 92, 97, 131, 160, 183

bypass, 5
compatible, 1

essential, xviii, 6, 14, 17, 87, 135, 178, 185, 191, 207, 221, 224
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