
Vrije Universiteit Brussel - Belgium
Faculty of Sciences

In Collaboration with Ecole des Mines de Nantes - France

2003

V
R

IJ
E

U

N
IV

ERSITEIT BR

U
S
S

E
L

S
C

IE
N

T

IA
VINCERE TE

N

E
B

R
A

S

ECOLE DES MINES DE NANTES

A Logic Meta-Programming Framework for Supporting
the Refactoring Process

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Francisca Muñoz Bravo

Promotor: Prof. Dr. Theo D’Hondt (Vrije Universiteit Brussel)
Co-Promotors: Dr. Tom Tourwé and Dr. Tom Mens (Vrije Universiteit Brussel)



Abstract

The objective of this thesis is to provide automated support for recognizing design flaws in object
oriented code, suggesting proper refactorings and performing automatically the ones selected by
the user.

Software suffers from inevitable changes throughout the development and the maintenance
phase, and this usually affects its internal structure negatively. This makes new changes diffi-
cult to implement and the code drifts away from the original design. The introduced structural
disorder can be countered by applying refactorings, a kind of code transformation that improves
the internal structure without affecting the behavior of the application.

There are several tools that support applying refactorings in an automated way, but little help
for deciding where to apply a refactoring and which refactoring could be applied.

This thesis presents an advanced refactoring tool that provides support for the earlier phases of
the refactoring process, by detecting and analyzing bad code smells in a software application,
proposing appropriate refactorings that solve these smells, and letting the user decide which one
to apply. This tool relies on the technique of logic meta programming, a variant of the logic
paradigm that allows to reason about code at a high level of abstraction.

Logic meta programming is used for querying about code and expressing structural relations
like message sends, usage of variables or inheritance relations. This allows our tool to detect a
number of bad smells, most of them highly time-consuming to detect manually. When a bad
smell is detected, the relevant entities are analyzed in order to propose appropriate refactorings
with the necessary parameters. For effectively applying the refactorings, the tool relies on
existing refactoring implementations provided by the Refactoring Browser.

The tool was implemented in SOUL, a logic meta-programming language on top of Smalltalk,
and validated by detecting the bad smells for three different case studies on medium-sized
object-oriented applications: The Collection hierarchy, the HotDraw framework and the SOUL
application itself. Most detected bad smells indicated situations that were worthy of attention,
and many of the proposed refactorings were actually useful to resolve the bad smells.



Thanks to all the persons who made the EMOOSE program possible, it was a great life
experience. Thanks to my advisors Tom Tourwé and Tom Mens for their continuous advice and
support. Thanks to Johan Brichau for his helpful comments and all the people behind SOUL, I
found it was an amazing application. Thanks to my fellow Emoosers for the all pleasant times
we spent together, both in Nantes and Brussels. Thanks to my family and friends in Chile, who
always kept an eye on me.



Contents

1 Introduction 1

1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Context 5

2.1 Logic Meta Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Logic Meta Programming with SOUL . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Using Logic Meta Programming for Reasoning . . . . . . . . . . . . . . . 7

2.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Definition of Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Refactoring List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 When to Apply Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 The Refactoring Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.6 Refactoring Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



2.3.1 Logic Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Applying Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Automatic Code Inspection . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Finding Code Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Assessing the Impact of Refactorings . . . . . . . . . . . . . . . . . . . . 25

2.3.6 Supporting the Whole Development Process . . . . . . . . . . . . . . . . 25

2.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Refactoring Process Using Logic Meta Programming 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Supported Refactoring Steps . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Basic Analysis Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Detecting Bad Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Our Approach for Detecting Bad Smells . . . . . . . . . . . . . . . . . . 31

3.2.2 What Smells are Detected? . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 How are the Bad Smells Detected? . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Recognizing Unused Parameters with Logic Predicates . . . . . . . . . . 36

3.2.5 Recognizing Parameter Clumps with Logic Predicates . . . . . . . . . . . 39

3.2.6 Recognizing Inappropriate Interfaces with Logic Predicates . . . . . . . . 41

3.2.7 Recognizing Duplicated Code with Logic Predicates . . . . . . . . . . . . 43

3.2.8 Weighing Bad Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Analyzing Bad Smells and Proposing Refactorings . . . . . . . . . . . . . . . . . 47

3.3.1 Proposing Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Simple Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Complex Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Applying Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ii



3.4.1 Wrapping Existing Refactorings . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Composite Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Bad Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.3 Propose Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.4 Configure Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Experiments 66

4.1 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Detected Bad Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Refactoring Unused Parameters . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Refactoring Parameter Clumps . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.4 Refactoring Inappropriate Interfaces . . . . . . . . . . . . . . . . . . . . 73

4.2.5 Refactoring Duplicated Code . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Cascaded Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Managing the list of proposed refactorings . . . . . . . . . . . . . . . . . 82

4.3.4 More accurate proposed refactorings . . . . . . . . . . . . . . . . . . . . 83

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Conclusion 84

5.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iii



5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A Bad Smell Definitions 92

A.1 Large Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Long Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Long Parameter List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.4 Magic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.5 Code Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.6 Data Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.7 Parameter Clump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.8 Refused Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.9 Refused Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.10 Inappropriate Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.11 Feature Envy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.12 Message Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.13 Middle Man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.14 Lazy Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.15 Unused Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.16 Unused Instance Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.17 Abstract Method not Implemented . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.18 Odd Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.19 Switch Statement Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

iv



Chapter 1

Introduction

During the development of object oriented software and its maintenance phase, it is very likely
that the code will experience modifications. This can happen due to a number of reasons, for
instance changes in the requirements, bug fixes or the addition of unexpected features.

All these changes affect the behavior of the system, and they are usually introduced to keep
the software up-to-date in a new or evolving environment. Any software that is related to a
real-world problem domain, must continuously adapt to new conditions and scenarios as the
problem domain changes. This constant production of new software versions is called software
evolution and it normally increases the complexity of the system.

If the changes are performed by only extending the system without preserving or simplifying
its structure, the code distances from the original design and new changes are more difficult
to implement. Even though the software continues to work, the overall disorganization has
augmented. This is reflected in bad coding practices like code duplication, lack of modularity,
classes with too much functionality or violation of code conventions.

The structural disorder that may have been introduced by behavioral changes can be minimized
by applying another kind of changes that only affect the internal structure of the system. They
are called refactorings and include transformations like renaming of entities, moving methods
between classes or hierarchy rearrangements. By applying appropriate refactorings to a system,
the legibility and robustness of the system increases, new changes are easier to insert and the
software maintenance cost is reduced.

In the following sections we give our approach for applying refactorings, the motivation and the
general and specific objectives of this thesis.

1



CHAPTER 1. INTRODUCTION 2

1.1 Approach

Even if there is no formal definition of the refactoring process as a whole, there are some basic
steps that should be performed to assure the effectiveness of the refactoring [33], [37].

1. Decide when an application should be refactored.

2. Identify which refactoring(s) can be applied, and where.

3. Assess the quality of the refactorings.

4. Perform the refactorings.

5. Evaluate the effect of the refactorings and check postconditions.

As for the questions of when and where the refactorings should be applied, Martin Fowler [26]
has defined a number of bad programming or design practices called “bad smells”, which indicate
that something is being mishandled in the software. For example too large classes, procedural
code, code duplication, etc. If bad smells are detected, the code should be refactored and the
entities where the bad smells are detected is the place where the refactoring should be applied.
Regarding to which refactoring should be applied, Fowler [26] also suggests suitable refactorings
depending on the bad smell that has been found.

To assess the quality of the refactoring it is necessary to prove that the general state of the
system will be improved after the application of the refactoring. This can be done by means of
metrics [33, 21] or by reducing the total number of bad smells.

The refactorings can be applied by automated means, and there is a large amount of theoretical
and practical research in this area. [40] [28] [46]

Sometimes due to efficiency reasons, we want to evaluate the effect refactoring after it is applied
rather than before. This includes checking for side-effects and determine the postconditions of
the entities related to the refactoring.

1.2 Motivation

Currently there are several tools like the Refactoring Browser [45], IntelliJ IDEA [16] and Eclipse
[30] that support refactorings in a safe and automated way, ensuring that the refactoring is be-
havior preserving. These tools relieve the developer from the task of making the transformations
manually, but they do not focus on the places where the code should be refactored, forcing him
to realize time-consuming manual inspections to decide where to apply the refactorings.

Other tools perform automatic code inspections like LINT for C [31], LINT for Java [1], Smalltalk
CodeCritic provided by the Refactory Browser and TogetherCC [15]. They point out the places



CHAPTER 1. INTRODUCTION 3

where the code has bugs or other technical defects like error handling, misuse of operators,
unused code or entities not following the coding standards. More advanced design issues are not
addressed, like the bad smells defined in Fowler’s Refactoring book [26].

The process of finding the right place to refactor, identify the proper refactoring and the pa-
rameters involved and see if it will improve the overall quality becomes a major task to the
developer. Taking into account that nowadays there is no tool that covers the complete process,
we propose to investigate whether automated support can be provided for performing some steps
of the refactoring process. Specifically we will analyze the code statically, focusing on finding
places containing bad smells in the code, obtaining the related entities and proposing suitable
refactorings, and performing the refactorings. For applying the refactorings automatically we
rely on existing efficient and safe implementations.

1.3 Objectives

The objective of this thesis is to provide automated help based on static analysis for recognizing
bad smells in object oriented code, suggesting proper refactorings, and performing automatically
the ones selected by the user.

In this way we expect to ease the refactoring process, so developers may be able to maintain the
software structure in a highly automated manner, without consuming unnecessary resources.

Specifically, we will provide a flexible framework with a friendly user interface that handles
bad smell definitions, analyzes these bad smells, proposes possible refactorings and performs
composite refactorings. This framework will be implemented using the technique of logic meta
programming (LMP) [57], having Smalltalk as the target language to reason about. The refac-
torings that the tool proposes will use the ones defined in the Refactoring Browser [45], but can
be redefined over other tools with similar characteristics.

In order to accomplish these objectives, the following tasks have to be performed:

• Analyze the bad smells defined in Fowler’s Refactoring book [26] and distinguish which of
them can be detected automatically.

• Extend the Refactoring Browser in order to apply the refactorings defined in Fowler’s
Refactoring book.

• Provide a generic framework to link the relevant entities of the bad smells to possible
refactorings.

• Apply the tool in different well-known applications to prove its usefulness and analyze its
results.



CHAPTER 1. INTRODUCTION 4

1.4 Organization of the Dissertation

• The second chapter introduces context, this is the technique of logic meta programming
and more details about refactoring, including related work.

• The third chapter describes the refactoring process by means of logic meta programming,
as well as the provided tool support.

• The fourth chapter details the experiments carried out on three case studies, and report
upon the results.

• The fifth chapter contains the conclusions.



Chapter 2

Context

This chapter gives a general introduction to the relevant subjects of this thesis. The first topic
is logic meta programming, a variant of the logic paradigm that allows to query about code and
express structural relations in various levels. The second topic is refactoring, a technique used
to improve the quality of the code. Finally the related work is discussed.

2.1 Logic Meta Programming

Most of the existing tools for developing software are either oriented to the high level description
of its design or to its low level API, with no relation between them. This makes it unfeasible
to express high level structural information about the implementation itself, to propagate the
changes in one level to the other automatically or to generate working code based on design
constructs.

Part of these problems can be tackled using a meta language to extract and modify structural
information of the program written in a base language [20].

Logic meta programming merges a logic language with a standard object oriented base language.
Logic languages, like Prolog, are declarative languages that use logic inference as the only control
structure, and fact and rules to establish the relation between data. In logic meta programming,
the logic language operates by making descriptive statements about the base program and using
a general control structure for stating this statements as facts and rules concerning its structure.
Logic meta programming has a declarative approach that focuses on what the base language
does by means of present entities and relations, instead of how the computations are effectuated.

This section introduces a logic meta programming language and explains how this language is
suitable for representing high level queries, code entities relationships and design concepts.

5



CHAPTER 2. CONTEXT 6

2.1.1 Logic Meta Programming with SOUL

SOUL (Smalltalk Open Unification Language) [57, 56] is a variant of Prolog [18] constructed
over Smalltalk Visualworks [13]. It provides the basic features of a logic language, which includes
prolog-like list handling, pattern matching and logic primitives (and, or, not).

Syntax

The syntax of SOUL is very similar to the one of Prolog, where a comma denotes logical
conjunction and dots are used to separate predicates. The main difference is the notation for
variables: in SOUL, they start with a question mark (?) while in Prolog they are capitalized
symbols. Regarding the separation of the predicate declaration from the body, Prolog uses the
characters :- and SOUL uses the keyword if. SOUL handles lists in the same way as Prolog,
only that the delimiters are angle brackets <?list> instead of square brackets [List] like in
Prolog. To illustrate the difference of syntax between SOUL and Prolog we define the predicate
subset which tests whether a list is subset of another:

% SOUL % Prolog
subset(<>,?). subset ([],_).

subset(<?el| ?rest >,?list2) if subset ([El | Rest], List2) :-
member(?el,?list2), member(El,List2),
subset(?rest,?list2) subset(Rest,List2).

LiCoR Library

The LiCoR library is a set of pre-defined logic predicates to reason about the base-code. These
predicates can also be extended by the user depending on his own needs. LiCoR is as language
independent as possible, relying on a language dependent meta-level interface (MLI) that exe-
cutes instructions for extracting the base language structure as seen on figure 2.1. This figure
shows the different layers that are present in this logic meta-programming approach: a query
using a predicate of LiCoR to reason about code is performed in the logic engine; the predicate
of LiCoR invokes the MLI, which consults the code repository to extract the actual structure
from the code.

In this case, the implementation of the predicates rely on the MLI, which is language dependent.
This approach allows LiCoR to be extended for reasoning about other object oriented base
languages like Java [24], but since our base language is Smalltalk, we use the MLI implementation
for Smalltalk code.

An important feature of SOUL is the manipulation of objects from the underlying Smalltalk
system. Smalltalk code can be inserted into the declarations of terms and the value of this term



CHAPTER 2. CONTEXT 7

SOUL


Inference


Engine


SOUL


Reasoning


Library


LiCoR


M
et

a 
L

ev
el

 I
nt

er
fa

ce



Base


Language


Code


Repository


if class(?x)
 class(?
c
) if variable(?
c
),


  member(?
c
,[
Soul.ExplicitMLI


    current
 allClasses
)])


allClasses


    ^
Smalltalk
allClasses


Logic query
 Appropriate rule is triggered
 Link to the base-level


Figure 2.1: The relation of SOUL with the base language

is the value returned by the evaluation of the code block. In the following code, we show how
to generate a Smalltalk Interval using the SOUL variables ?from and ?to:

equals(?interval,[ Interval from:?from to:?to ])

The predicate equals verifies if two values are equal. Expressions between brackets (‘[’ and
‘]’) are blocks of Smalltalk code, and the value of these expressions are the result of the evalua-
tion of the block. This means that [ Interval from:?from to:?to ] evaluates to an instance
of the class Interval, and that this value is bound to the variable ?interval in the only solution
for this query.

Besides their use as terms, blocks of Smalltalk code can be also used as clauses. For this, the
blocks are required to always return either true or false.

2.1.2 Using Logic Meta Programming for Reasoning

As SOUL is constructed over Smalltalk, it works directly on the current Smalltalk image and
it is possible to access Smalltalk code directly from within the SOUL environment. This makes
SOUL a dynamic and powerful environment for coding user defined extensions. Using Prolog
as the language that states the structure of Smalltalk allows to express the structure, query it
and modify it using few and usually legible concepts.

In practice, SOUL and LiCoR can be used as the base system in many software development and
analysis tools for software evolution management, design patterns management, aspect oriented
code generation [10] and refactoring for example.

In the area of software evolution management, SOUL can be used to in various ways:



CHAPTER 2. CONTEXT 8

• Express the desired structure of the software before its implementation, for generating
some code to support this desired structure and for reconstructing the structure of an
existing software. This makes it easier for new users to understand and explore the code
at a higher level, not depending on some arbitrary documentation. [17] [20]

• SOUL can also synchronize some parts of the implementation and the design, control
different software versions based on the structure, enforce the use of style conventions and
detecting structure or style violations. [57]

• Design Patterns [27] can also be stated in terms of logic predicates, expressing the classes
involved and the restrictions and relations they follow. [57] [36]

• Code generation is also possible using predicates of SOUL. It can be generated for defined
high level structures like design patterns or other kind of designs, making the implemen-
tation more structured and controlled. Code generation can also be used for refactoring
purposes, like deleting duplicated code in the subclasses and generating it in the superclass.
[36]

In this thesis we focus on providing support for the refactoring process by means of detecting
design flaws, analyzing the entities related to the flaw and proposing appropriate refactorings for
the user to apply. In order to accomplish this goal, we use the predicates provided by SOUL for
representing code entities and for reasoning about methods in detail. In the following sections,
we explain some of the predicates provided by SOUL, how to use these predicates for defining
new structural relations, and for detecting advanced design flaws.

Representational Mapping

In order to support the mentioned steps of the refactoring process, we will establish a flexible
framework over the basic relations between code entities provided by SOUL.

This is possible by combining and extending basic predicates that represent code entities as
shown in tables 2.1 and 2.2. For example class(?C) states that the variable ?C is a class that
exists in the current Smalltalk image, resulting in the unification of ?C with all the classes of the
image, see figure 2.1. If the predicate is used in the form class([Array]), it will answer true or
false if the given class belongs to the image or not. This is a direct result of Prolog’s unification
of predicates with different results. Other interesting predicate is methodInClass(?M,?C), which
states that the class ?C that has the method ?M; if a method ?M is provided, it returns the classes
that has it; if a class ?C is provided, it returns all the methods of the class; if none is provided,
it matches all the possibilities, this means that it returns all the pairs of class - method that
are present in the system; if both a class and a method are provided, it checks if the method
belongs to the class or not.



CHAPTER 2. CONTEXT 9

RepresentationalMappingPredicate Description

class(?C) ?C is a class
instanceVariableInClass(?V,?C) ?V is an instance variable of class ?C
superclassOf(?C,?P) class ?C is the superclass of class ?P
subclassOf(?C,?P) class ?C is the subclass of class ?P
abstractClass(?C) ?C is an abstract class
methodInClass(?M,?C) ?C implements the method ?M

classUnderstandsSelector(?C,?S) ?C understands the selector ?S
methodWithName(?M,?N) ?M is a method with name ?N

methodWithNameInClass(?M,?N,?C) ?M is a method with name ?N defined in class ?C

Table 2.1: Representational Mapping Predicates

MethodReasoningPredicate Description

abstractMethodInClass(?M,?C) ?C implements an abstract method ?M

argumentsOfMethod(?A,?M) ?A is the list of the arguments of ?M
temporariesOfMethod(?A,?M) ?A is the list of the temporary variables of ?M
statementsOfMethod(?S,?M) ?S is the list of the statements of ?M
methodWithAssignment(?M,?Var,?Value) ?M has an assignment of ?Value to ?Var

methodWithSend(?M,?Rec,?Msg,?Args) ?M has a send to receiver ?Rec, with message
?Msg and arguments ?Args

methodWithVariable(?M, ?Var) ?M uses a variable ?Var

Table 2.2: Method Reasoning Predicates



CHAPTER 2. CONTEXT 10

Simple Structural Relations

The predicate subclassOf is not defined in the MLI since it can be easily derived from the
predicate superclassOf.

subclassOf(?subclass ,?superclass) if
[1] superclassOf(?superclass ,?subclass)

Using the predicates defined in the MLI, we can also define logic relations for hierarchy of classes
as shown in the following code:

% first predicate
classInHierarchyOf(?P,?P).

% second predicate
classInHierarchyOf(?C,?P) if
[1] subclassOf(?D,?P),
[2] classInHierarchyOf(?C,?D)

The predicates above state that a class ?P is an ancestor of another if it is the class it-
self (first predicate), or if there exists an intermediate class ?D, which is a subclass of ?P

(line 6) and an ancestor of class ?C (line 7). Logic queries can be used to trigger the above
logic clauses. For example, the query classInHierarchyOf(?C,[Array]) determines whether
a descendant of class Array exists, and retrieves the result in the variable ?C. The query
classInHierarchyOf([LargeWordArray], [Array]) checks whether the class [LargeWordArray]

is a (possibly indirect) descendant of [Array], and returns true.

Other simple example is the predicate overridingSelector that states whether a selector of a
class is overriding another implementation in the same hierarchy or not.

overridingSelector(?class,?selector) if
[1] methodWithNameInClass(?,?selector ,?class),
[2] superclassOf(?superclass ,?class),
[3] classUnderstandsSelector(?superclass ,?selector)

Detecting Design Flaws

More high level predicates can be defined, that take into account the structure of the system. A
typical design flaw that is encountered in object oriented programs, is the definition of abstract



CHAPTER 2. CONTEXT 11

methods that are not implemented in the hierarchy. This is easily detected using logic meta
programming:

abstractMethodNotImplemented(?method ,?class) if
[1] abstractClass(?class),
[2] abstractMethodInClass(?method ,?class),
[3] methodWithName(?method ,?selector),
[4] not( one(
[5] and(methodWithNameInSubclassesOf(?subMethod ,?selector ,

?subclass ,?class),
[6] not(abstractMethod(?subMethod)) )))

This predicate checks that for an abstract class ?class (line 2) having an abstract method with
name ?selector (line 3 and 4) there is no valid declaration of a method named ?selector in
the direct or indirect subclasses of ?class (lines 5, 6 and 7). Valid method in this case means
that if a method ?submethod is found int the hierarchy (line 6), this method can not be abstract
(line 7).

The auxiliary predicate methodWithNameInSubclassesOf is defined as follows:

methodWithNameInSubclassOf(?method ,?selector ,?subclass ,?class) if
[1] classInHierarchyOf(?subclass ,?class),
[2] not(equals(?class ,?subclass)),
[3] methodWithNameInClass(?method ,?selector ,?subclass)

This predicate returns the method ?method that has the name ?selector in the hierarchy of
?class.

The predicate abstractMethodNotImplemented can be used for searching abstract methods that
are not implemented, for checking if a specific abstract method is not being implemented in the
hierarchy or for checking if a certain abstract class has a method with this characteristics.

2.1.3 Conclusion

The logic meta programming approach presents a very natural way for reasoning about object
oriented systems and detecting design flaws. This is achieved by using logic predicates to express
and query the structure of the system.

This technique can easily express structural patterns, query the state of the code or detect flaws
by means of logic predicates. The advantages of reasoning with SOUL and LiCoR for developing
our logic framework are the following:



CHAPTER 2. CONTEXT 12

• We are able to express assertions about the code in a declarative nature, hence intuitive
and readable.

• For constructing our framework, we rely on specific benefits of logic languages: Multi-way
reasoning allows the same rule to be used in many different ways; Unification provides a
powerful pattern matching mechanism; Backtracking enables finding all possible solutions
of a query.

• By using SOUL for reasoning about code, our approach becomes base-language indepen-
dent. The rules describing the structure can also be used to reason over other object
oriented languages.

• SOUL is highly customizable: we can declare and use our own set of rules to support bad
smell detection, propose refactorings and apply them to the code.

2.2 Refactoring

Refactoring is the technique that allows to change the structure of a program without affecting
its functionality. In order to understand the importance of refactoring, we explain the problems
of software evolution and how proper refactorings address some of these problems. For applying
proper refactorings, it is important to recognize which part of the code contains design flaws,
to compare the contribution of possible refactorings and finally applying a behavior preserving
refactoring.

This section explain these concepts more in detail, and includes a list of useful refactorings and
existing refactoring tools.

2.2.1 Software Evolution

Even though software maintenance is a highly resource-consuming phase, where the software
has to adapt to changing scenarios or introduce new customer requirements, the way to handle
software changes after the initial development is not clear.

The Software Life Cycle

The classic software life cycle states that software maintenance starts right after the first release
to the user. This view does not take into account that changes are inevitable necessary and
that each new change introduces architectural erosion and enlarges the amount of code, making
following changes more difficult to apply. This will lead to a point where changes are too
expensive to implement.



CHAPTER 2. CONTEXT 13

One view about software evolution called the staged model [6] has been proposed based on
empirical observation. This model represents the software lifecycle as a sequence of stages.
After the first successful release, the software has to be adapted to the ever-changing user
requirements, changing environments or new business rules. This stage is called evolution and
substantial changes are likely to be performed. The release to the user happens during the
evolution of the software, experimenting iterations before and after this milestone. The following
stage is called servicing and starts when the software is not flexible enough to perform important
changes, only minor corrections and enhancements. The later stages of software are phase out
and close down, where the software does not admit any more changes and is shut down.

Evolution is Unavoidable

Most of the changes that are demanded in the evolution phase are user-requested extensions
as well as modifications and changes in the software environment, and they all transform the
behavior of the system. The main difficulty in this analysis is that these changes cannot be
anticipated at design time and that predicted changes not always happen [34]. Even more, if
the design is made in the anticipation of future extensions, the structure increases its complexity
and valuable time is lost, as the extensions may never take place. Therefore, software must be
able to address unexpected requirements, when they are really needed, without affecting the
ability to respond to new requirements. If the initial architecture is flexible and the introduced
changes preserve the structure, the software will not lose its ability to evolve very easily.

If the architecture is inflexible from the start and new changes are introduced in a disorganized
way, the code will distance from the design and new changes will be expensive and time con-
suming. Bad coding practices will appear, like code duplication, lack of modularity, classes with
too much functionality or violation of code conventions.

Behavior Preserving Changes

The disorder introduced in the structure by changes that alter the functionality of the system
can be reduced by applying different kind of changes that only affect and improve the internal
structure. These transformations are called refactorings and include restructurings like renaming
of entities, moving methods between classes or hierarchy arrangements. Appropriate refactorings
can help to increase the legibility and robustness of the system, simplify the insertion of new
changes and reduce the cost of expected software evolution.

2.2.2 Definition of Refactoring

Refactoring is a change made to the internal structure of software to make it easier to understand
and cheaper to modify without changing its observable behavior [26].



CHAPTER 2. CONTEXT 14

The aim of refactoring is to improve the internal structure of the software without adding
functionality. Opportune refactorings improve simplicity, understandability and flexibility.

For example by using refactorings duplicated code can be removed, unused parameters or vari-
ables can be removed, classes not doing enough can be inlined in others and complex conditionals
can be turned into inheritance. In order for refactorings to be really helpful though, they should
be automated to avoid introducing new errors. Luckily, some excellent tools already exist that
allow these kind of transformations, and much more are being developed and improved.

Before applying a refactoring, the involved code entities must comply to some preconditions.
For example, the refactoring addClass receives the following parameters: the name of the class
that needs to be created, the class that will become the superclass of the new class, and the
list of subclasses of the superclass that will now extend the created class. In figure 2.2 we show
a concrete example, where the created class IntermediateCollection is added to the hierar-
chy having as subclasses OrderedCollection and LinkedList that originally were subclasses of
SequenceableCollection. The preconditions for this refactoring are: the name the class we
need to create must not define an existing class, the given superclass must be a class and the
list of subclasses must be subclasses of the given superclass. If the assertions defined by the
preconditions are satisfied, the refactoring apply the transformations to the code. On the other
hand, postconditions specify how the assertions are transformed by the refactoring. Postcondi-
tions can be used to reduce the amount of analysis for sequential or composite refactorings or to
calculate dependencies between refactorings. These precondition/postcondition definitions were
originally formalized in the context of the Refactoring Browser of Smalltalk [46] but they are
now being used for a language independent refactoring framework [52].

ArrayedCollection


SequenceableCollection


LinkedList
OrderedCollection
 Interval


ArrayedCollection


SequenceableCollection


Interval
IntermediateCollection


LinkedList
OrderedCollection


Figure 2.2: The Add Class refactoring



CHAPTER 2. CONTEXT 15

2.2.3 Refactoring List

There are several refactoring definitions and implementations in the literature, starting with
the initial study performed by Opdyke [40]. In his PhD thesis Opdyke defined several low level
refactorings related to creating, deleting, changing and moving code entities such as classes,
methods and variables.

The Smalltalk Refactoring Browser’s List

Most of Opdyke’s refactorings were shown to be behavior preserving and the ideas of Opdyke on
refactoring were augmented by Roberts Brant and Johnson [46] to create the Refactoring Browser
[45] for Smalltalk. The refactorings supported by the Refactoring Browser are mostly primitive
refactorings and composing them into more complex ones is a hard task. The refactorings
implemented in the Refactoring Browser so far are the following:

Class Refactorings: add class to the hierarchy, rename class, safely remove class, convert the
class to a sibling of its subclasses adding a new class in the hierarchy.

Instance/Class Variable Refactorings: add variable to class, rename variable, remove vari-
able, push up variable, push down variable, create accessors, abstract variable, concrete
variable.

Method Refactorings: move to another class, rename method, safely remove method, add
parameter, remove parameter, push up method, push down method, inline all the senders
within the class.

Code Refactorings: extract method, inline parameter, inline temporary, convert temporary
to instance variable, rename temporary, move a temporary to the tightest scope, extract
a message to a temporary, inline a message send.

Some Refactorings from Martin Fowler’s List

A less formal but more practical approach was taken by Fowler [26] in his Refactoring book.
He defines nearly hundred different kinds of code refactorings, some of them oriented only to
strongly-typed languages. Each of the refactoring definitions include the motivation of why
the refactoring should be performed and illustrates the mechanics of the code transformation.
Most of these refactorings have to be performed manually, and only few of them are available
in commercial tools. Some useful refactorings that will be referred in the development of this
thesis are:

Dealing with Long Methods: extract method, move method to a new class transforming the
temporaries into instance variables, replace temporary with a message call.



CHAPTER 2. CONTEXT 16

Simplifying Conditional Expressions: decompose conditionals, introduce null object in-
stead of asking for null values, replace conditional with polymorphism.

Moving Features between Objects: extract class, inline class, move method.

Organizing Data: encapsulate field, replace data value with object.

Making Method Calls Simpler: introduce a class for repeated parameters, preserve whole
object, rename method.

Dealing with Generalization: merge classes for collapsing the hierarchy, extract interface,
extract subclass, pull up method, replace inheritance with delegation.

2.2.4 When to Apply Refactorings

Now that we have stated the convenience of performing refactorings, it is important to determine
when to apply these refactorings to the code in the software development process.

Extreme Programming

Refactoring is a fundamental technique to keep design simple practiced by the eXtreme Pro-
gramming software development process [5]. They propose short iterative development cycles
where they separate code extensions and modifications from internal restructurings. Refactor-
ings are applied continuously during the development process in different circumstances like
behavioral changes and code reviews.

Every behavioral change is preceded by refactorings oriented to integrate the change properly
into the structure. Both the refactorings and the changes are followed by comprehensive testings
to ensure that no error was introduced.

Code review is a systematic and disciplined process where careful examination of the code leads
to propositions for improvement. Mainly based on common sense and the experience of the
reviewers, large or small refactorings may arise.

Many integrated development environments like Smalltalk VisualWorks [13], Eclipse [30] and
Together Control-Center [15] provide support both for applying refactorings and unit testing,
but none of them assists adequately in detecting the places where the refactoring should be
applied.

Bad Smells

A complementary approach, which states that code should be refactored when bad coding
practices or “bad smells” [26] are encountered, focus on the quality of the reviewed code. Bad



CHAPTER 2. CONTEXT 17

smells are considered as warning signs and indicate that refactoring may improve the structure.
Different degrees of automation can determine the presence of a bad smell in the code by means
of manual inspection, automated code inspection or metrics.

Metrics like cohesion-based distance are used to detect features that should belong together [48].
A tool using these measures proposes refactorings like move method, move feature, extract class
and inline class to increase the level of cohesion in the system.

Some tools perform automatic code inspections [31], [15] pointing out the places where the code
has bugs or other technical defects like error handling, misuse of operators, unused code or
accomplishment to the coding standards. More advanced design issues are not addressed, like
the bad smells proposed by Fowler.

Kent Beck and Martin Fowler have developed a list of more advanced design flaws they call bad
smells [26]. Their presence in the code indicates that the code should be considered for refactor-
ing. The detection of these smells is described by means of code structures, class interactions,
systematic changes performed and sometimes very human perceptions. Here is a description for
the smells they identified with a classification proposed in [55]:

Measured Smells: This category include smells that are easy to detect by means of software
metrics. Large Class, Long Method, Long Parameter List and Comments are smells that
belong to this category.

• Large Class: Large classes trying to do too much are difficult to understand and maintain.

• Long Method: Long methods should be decomposed for clarity and ease of maintenance.

• Long Parameter List: Long parameter lists are hard to understand and difficult to use.
Instead of passing everything a method needs, consider passing objects.

• Comments: Comments may be present in the code because the code is bad.

Duplication: One of the worst smells, where the same code structure is present in more than
one place. This duplication can be syntactic or semantic.

Data: Smells related to the usage of data in procedural means. Includes the smells Data Class,
Data Clump and Primitive Obsession.

• Data Class: Classes with just fields, getters, setters and nothing else.

• Data Clumps: Data that is used together together in lots of places like fields in classes or
parameters in method signatures should be a class of its own.

• Primitive Obsession: A primitive data type can be turned into classes to make it clear
what it is for and what sort of operations are allowed on it (like creating a Time or Date
class instead of using a couple of integers).



CHAPTER 2. CONTEXT 18

Interfaces: The usage of well designed interfaces helps the client to use them better. Some
problems related to this area are the smells Alternate Classes with Different Interfaces,
Refused Bequest and Incomplete Library Class.

• Alternative Classes with Different Interfaces: Classes that do similar things, but have
different names should be modified to share a common protocol.

• Refused Bequest: A subclass does not want or need all of the behavior of its base class,
maybe the class hierarchy is wrong.

• Incomplete Library Class: A library is not doing all it should do.

Responsibility: Unbalanced responsibilities between objects can make code very complex to
understand. Therefore identifying smells like Feature Envy,Inappropriate Intimacy, Mes-
sage Chains and Middle Man are important to keep the code clear. Some smells of this
category can also be considered as maintenance smells [54] and manifest themselves when
changing from one version to another. This smells are Divergent Change, Shotgun Surgery
and Parallel Inheritance.

• Feature Envy: A method of one class seems more interested in the attributes (usually
data) of another class than in its own class.

• Inappropriate Intimacy: Classes knowing too much about others.

• Message Chains: Too many messages in a chain are hard to follow.

• Middle Man: A class is acting as a delegate, without performing useful extra work.

• Divergent Change: One class commonly suffers many kinds of changes for different reasons,
making the system difficult to maintain.

• Shotgun Surgery: One kind of change recurrently alters many classes, making it hard to
find all the right places that do need changing.

• Parallel Inheritance Hierarchies: Whenever a subclass of a class is created, a subclass of
another one has created to match. It is a special case of the Shotgun Surgery smell.

Unnecessary Code: Entities that added for future usage but are never required, or a class that
have been downsized when refactoring are examples of unnecessary code that should be
removed. The specific smells defined are Speculative Generality, Lazy class and Temporary
Field.

• Speculative Generality: Often parameters, variables or methods are designed to do things
that in fact are not required.



CHAPTER 2. CONTEXT 19

• Lazy Class: A class that is not doing enough work should be eliminated. It can be a class
that was downsized during refactorings, or a class that was added because of changes that
were planned but not made.

• Temporary Field: Instance variables that are only set sometimes are hard to understand.
It is expected that an object needs all its variables.

Conditional Logic: Using conditionals indiscriminately can make the code difficult to under-
stand. The smell Switch Statements defines problems from bad usage of polymorphism to
poorly defined conditional expressions.

This list addresses some of the most common flaws that can be present in object oriented code,
but this list will never be complete. Different projects and domains will need to detect a different
set of code smells, for example smells that can occur in unit test code [19].

2.2.5 The Refactoring Process

The refactoring process goes from the identification of where the refactoring should take place
to the application of the refactoring. Before actually applying the refactoring, the value of the
refactoring should be taken into account. Based on this, the project manager can decide if the
proposed restructuring is worth or not in terms of a cost/effect analysis [33].

When the decision to restructure the code has been done, there are some general steps that
should be performed to assure the overall contribution of this restructuring:

1. Identify which refactoring(s) should be applied, and where.

2. Assess the quality of the refactorings.

3. Perform the refactorings.

4. Evaluate the effect of the refactorings and check postconditions.

A more detailed description of what happens in each step is shown in figure 2.3, which has been
adapted from [33]. The first step of identifying the refactoring possibilities can be performed
by detecting bad smells in the code. This provides the place where the refactoring should be
applied. By analyzing the context where the bad smell was found, like the features of the
surrounding entities, proper refactorings are proposed. In this analysis, a number of possible
refactorings may be identified. Their contribution to the quality of the code is variable, and some
of them may be harder to apply than others. The value of these refactoring possibilities should
be assessed. This allows the project manager to decide which refactoring to apply, if some,
taking into account the resources that are available and the benefits that would result. The
quality of the refactoring also has to ensure that the refactoring really solves the bad smell and
that after applying it, the behavior of the code is preserved. The following step is to determine
the details of the refactoring application responsibilities and actually apply it.



CHAPTER 2. CONTEXT 20

Original


Source Code


Refactoring


Plan


Improved


Source Code


Refactoring
Bad Smell


Refactoring


Candidates


Refactoring


Deployment


Determining


Refactoring Value


Bad Smell


Detection


Bad Smell


Analysis


Refactoring


Application


Which candidate


is more cost/effective?


Does the refactoring solve the bad smell?


Is the refactoring behavior preserving?


1


3


2


2


2


Figure 2.3: The Refactoring Process

Evaluating the Refactoring Effect

This aspect of the process focusses on the increase of quality that the refactoring entails.

[33] proposes to use coupling metrics to determine the improvement in terms of maintainability
of the program. This metric only determines the maintainability enhancement of certain refac-
torings such as extract class, extract method or move method. Other metrics are intended to
be used for covering the analysis of more refactorings.

[21] is a more extensive metric-based approach for describing the impact of refactoring on the
internal program quality that uses object-oriented metrics such as number of methods, coupling
between objects, number of children, cohesion and response for class.

In both cases, the parameters that determine the impact of different refactorings depend on
subjective data obtained in experimental manners.

A less formal approach is to weigh the bad smells in terms of how strong they are. If the
refactoring removes the detected bad smell, its value can be defined as the difference of smelling
before and after applying it. This does not mean that the bad smells have to be considered for



CHAPTER 2. CONTEXT 21

the whole system, only for the entities involved in the refactoring.

2.2.6 Refactoring Tools

Even though refactorings can be performed manually, this is an error prone and time consuming
activity. The benefits of refactoring will fade away if new errors are introduced or the functional-
ity changes in unpredictable ways. For automating the application of refactorings, research has
focused on primitive refactorings [40, 46] that can be completely automated and are provably
correct. More complex refactorings can be created by composing primitive ones, resulting in
behavior preserving compositions, but tool support for composite refactorings is lacking.

Automated tools for applying refactorings are pretty safe to use in terms of behavior preservation
and drastically reduce the time, cost and effort of performing refactorings.

Support for refactorings is provided by a number of tools, for several languages. Some tools
available for object oriented languages are described:

Smalltalk’s Refactoring Browser

The Refactoring Browser [45, 46] is the standard browser for the VisualWorks Smalltalk inte-
grated development environment (IDE). Originated on the research of Opdyke [40] that was
C++ oriented in the beginning, it is until now the most complete refactoring tool available.
The total integration with the development environment makes it a very useful and used tool,
extremely popular among Smalltalk developers.

The Refactoring Browser has a semi-automatic approach for applying refactorings. This means
the user interaction is related to the naming of new entities, as the legibility and consistency of
the system is considered fundamental in object oriented programming.

In the provided framework, every Refactoring is associated to a set of preconditions that have
to be met before applying the actual transformations. The check for the preconditions and
the application of the transformation are methods that can be accessed separately. This is a
useful feature for composing refactorings or proposing valid refactorings for a certain bad smell,
for example. Although, the Refactoring Browser itself does not proportionate an adequate
framework for composing refactorings.

Some of the reasons behind the large amount of refactorings supported by the Refactoring
Browser and their reliability are the following:

• The powerful reflective characteristics of Smalltalk. The capability of manipulating di-
rectly the entities on the code without using a separate metalanguage simplifies the refac-
toring definitions. On the other hand, the fact that Smalltalk code uses reflection also
makes it more difficult to prove that refactorings are really behaviour-preserving.



CHAPTER 2. CONTEXT 22

• The representation of the program has the form of parse trees that most of Smalltalk
implementations provide. Transformations between parse trees are reflected directly in
the code without any kind of translation.

Other Tools

Advanced refactoring tools for other object oriented languages exists and are being perfected.

C++ The more complex the language, more difficult it is to define automated refactorings.
For example in C++, an intrinsic complex language, this becomes a very hard task, and
limited refactoring support is available. Even so there is some tool support like [25].

Java Since Java is a very popular language for developing all kind of applications, it is expected
to obtain robust refactoring support from the development environments. Some useful
tools are the following:

• IDEA [16] is a complete commercial Java IDE developed by IntelliJ. It is the Java
tool that provides several quality refactorings.

• Eclipse [30] is a non-commercial Java IDE, with strong refactoring capabilities.

• TogetherCC [15] is a commercial case tool that perform various refactorings on code
and UML diagrams.

• JFactor [29] is a plugin for VisualAge.

• JRefactory [47] is a standalone tool and plugin for Elixir, JBuilder and NetBeans
IDE.

• XRefactory [58] is a refactoring plugin for Emacs.

C# Even if C# is a recently created language, it already counts with two refactoring tools:

• C# Refactory [49] is a plugin for Microsoft Visual Studio.NET IDE that provides
some useful refactorings.

• C# Refactoring Tool [42] also integrated for Microsoft Visual Studio.NET IDE.

Other Languages Tools for other languages have been developed as well, but not with the
same energy as for Java or Smalltalk. Refactoring support is being provided for languages
like Python [50] and is planned for languages like Ruby and Perl.

The oldest refactoring tools are not really utile at this point, as the languages are not
commercially used. A refactoring tool was developed for Eiffel [12] and Guru is the refac-
toring tool for Self [38]. Guru is a completely automated refactoring tool, that does not
interact with the user.



CHAPTER 2. CONTEXT 23

2.2.7 Conclusion

Software evolution is real and impossible to ignore in the software development process. Refac-
toring is a technique that helps to maintain the structure of the system while it evolves.

Although it is possible to refactor manually, tool support is considered crucial, as it is necessary
that the restructuring is performed fast and safely. A number of tools perform the refactorings
selected by the user in an automated way.

The definition of a refactoring process that includes bad smell detection and analysis, and the
validation of the possible refactorings, implies that more automated help than the existing can
be provided. More support in the detection of bad smells, links with possible refactorings and
a measurement for comparing the contribution of the refactorings to the quality of the system
is required.

2.3 Related Work

The aim of this work is to provide support for the whole refactoring process through a logic
meta programming framework. Related work can be found in the different steps related to the
refactoring process and the usage of logic as a mechanism to reason about code.

2.3.1 Logic Based Approaches

The use of logic based query approach is not new in software engineering. For example [14]
represents high level structural information like dependency relationships among modules in a
Prolog database. [11] propose a reverse engineering tool that stores all the program information
in a logic code repository to perform data flow analysis. [41] present an algebraic framework for
modeling source code and expressing high level queries over it.

2.3.2 Applying Refactorings

As mentioned, a number of tools provide support for applying refactorings. The most used ones
are the Refactoring Browser for Smalltalk, and the Eclipse and IntelliJ IDEA environments for
the Java programming language. They all provide a number of simple and safe refactorings that
can be selected and applied by the user. None of these tools is language independent, but research
is being made in this direction [52], based on the concepts of preconditions/postconditions
defined initially for the Refactoring Browser.

The Refactoring Browser’s framework provide support for composable refactorings, but the tight
integration with the user interface makes this task complicated for regular developers. The



CHAPTER 2. CONTEXT 24

separation of the preconditions and the transformations in the Refactoring Browser’s framework
provides some help for composing refactorings in an independent manner.

The possibility of stating the postconditions of refactorings, would make this task much easier.
Studies both for Smalltalk [46] and Java [39] have been done following this approach.

The mentioned tools apply the refactorings directly to the code, but recent research are also
focusing on refactoring UML diagrams [2, 51, 7, 8].

2.3.3 Automatic Code Inspection

Code Auditing

Automatic code inspection is performed by a number of tools. The most well known is the C
analyzer LINT [31], and its Java variant JLint [1] that points out the places where the code
has bugs or other technical defects like error handling, misuse of operators, unused code or
accomplishment to the coding standards.

Code Critic is a Lint-like tool [31], that has been extended to include global design information.
As such, it is not only able to detect various coding errors, but can also identify interface
conflicts (such as methods that are sent but not implemented, or vice versa) and design flaws.
For example, the Code Critic tool also detects the long method bad smell that was proposed
by Beck and Fowler [26]. The major shortcomings of this tool is that it strongly relies on the
Smalltalk environment and its powerful meta programming capabilities.

Borlands Together Control Center [15] is a complete commercial development tool that includes
statically auditing code by means of detecting superfluous code, structural weaknesses and
prevent common errors.

Generally, auditing tools adopt a very technical perspective, not addressing more advanced
design issues, like bad smell detection nor refactoring propositions.

Which Refactoring Should be Applied and Where

The detection of suitable places for applying refactorings is being studied using a number of
approaches.

[23] and [32] indicates where refactorings may be applicable by automatically detecting pro-
gram invariants. An invariant is for example “a temporary variable that holds the value of
an expression”. This represents a bad smell that is solved with the Replace temp with query
refactoring. The invariants are discovered by analyzing dynamically the behavior of the appli-
cation. This means that the inference of invariants depends on the test-suites that were defined.
Nevertheless, good results have been obtained in practice, and the dynamic approach appears
as complementary to other statical ones.



CHAPTER 2. CONTEXT 25

[48] uses object oriented metrics to statically identify bad smells and propose appropriate refac-
torings. A tool using cohesion metrics proposes refactorings like move method, move feature,
extract class and inline class intended to increase the level of cohesion in the system.

[54] detect bad smells in Java by defining the bad smells as program patterns. Programs are
represented as parse trees where nodes are program entities. The smell detection contemplates
the presence of relations between code entities or structural patterns present in parse tree. The
results are displayed graphically by showing what parts of the system are affected by bad smells
and where the concentration of smells is higher.

[22] also represents the program as a parse tree, and furthermore, provides support for applying
refactorings in the affected parts. When bad smells are detected, the parse tree is analyzed,
specially the parts that present the bad smell and the tool proposes a number of appropriate
refactorings to the user for application.

2.3.4 Finding Code Duplication

There are different approaches for detecting duplicated code in software systems. Some of them
are based on syntax tree information, while others take into account the text of the source code:

[35] uses the syntactical structure for calculating metrics over entities, expressions and control
flow of functions. Two functions are considered as clones if their metrics are similar. This
approach only detects similar methods, but not similar segments of code.

[4] gives a text based approach that detects pairs of longest textual matches of sections of code.
These matches contemplate sections of code that are textually identical except for the consistent
usage of constants, variable names and others.

[43] presents a language independent approach to detect duplicated code in an (object-oriented)
application and proposes refactorings that can eliminate this duplication. It is based around an
object-oriented meta model of the source code that looks for specific patterns in a comparison
from every line to every other. The refactorings that are proposed consist of removing dupli-
cated methods, extracting duplicated code from within a method and inserting an intermediate
subclass to factor out the common code.

2.3.5 Assessing the Impact of Refactorings

2.3.6 Supporting the Whole Development Process

[33] implements the Refactoring Assistant tool, oriented to a comprehensive support for per-
forming the refactoring process, from bad smell detection to the appliance of the refactoring.
They propose to assess the quality of the refactoring before applying it in several levels. At the
management level, the contribution of the possible refactorings that solve a bad smell should



CHAPTER 2. CONTEXT 26

be stated for being taken into account together with the time/cost resources that are available.
This would lead to an informed decision of which refactoring is most convenient to apply, if the
requirements of the project allow to do so.

A more technical approach is taken by [22], who analyzes the presence of bad smells in a
the program with a parse tree representation. Based on this analysis they propose proper
refactorings, letting the user decide which one to apply.

2.3.7 Conclusion

While several tools are implemented, there is no single tool that supports all necessary steps of
the refactoring process. Even if we do not intend to cover all these steps, we will use logic meta
programming as a mechanism for detecting bad smells, performing analysis on found bad smells
or proposing refactorings for solving them. The ability to query and modify the structure from
a declarative point of view, simplifies the legibility and extensibility of the proposed framework.



Chapter 3

Refactoring Process Using Logic Meta
Programming

3.1 Introduction

As we have seen in the previous chapter, logic meta programming is a well-suited technique for
reasoning about the code at a high level of abstraction. In the context of this thesis, we use
logic meta programming for providing support in various steps of the refactoring process.

The refactoring process involves much more analysis and decisions than just applying the refac-
toring to the code. This includes deciding when to apply a refactoring, detecting where to apply
it, which refactoring should be applied, assessing the contribution of possible refactorings, eval-
uating the effect of the refactorings and checking the valid postconditions after the refactoring
has been applied.

Some of these steps are difficult to automate, like the decision of when to apply a refactoring,
which depends heavily human criteria, and the common advice is to refactor whenever it is
necessary. Other complicated phase to achieve is assessing the effect of the refactorings before
applying them. This involves having very accurate definitions of the postconditions of the
refactorings, a situation that is not yet achieved by refactoring tools.

This chapter explains how logic meta programming is used for supporting some automatable
steps of the refactoring process. We explain in how bad smells are detected, how refactorings
are proposed and how we perform the actual application of existing and composed refactorings
from the Refactoring Browser.

Finally we describe the tool that makes this support practical.

27



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 28

3.1.1 Supported Refactoring Steps

The steps of the refactoring process we will tackle are the following:

1. Detect where to apply refactorings by recognizing bad smells in the code, and weighing
these bad smells in order of importance.

2. Help the user to decide which refactoring to apply to resolve the bad smell by analyzing
the entities involved in the bad smell and proposing a number of refactorings to solve it.
In this step, the entities that are used as the parameters of the refactorings are identified.

3. Applying the selected refactorings with the necessary information. This is achieved by
integrating our tool with an existing implementation provided by the Refactoring Browser,
which transforms the code efficiently, preserving the behavior of the system.

The third step could merely be a link that passes the relevant entities as parameters to an
existing refactoring framework. The difficulty is that the refactorings Martin Fowler suggests
to solve the bad smells, are not directly supported by any tool so far. Therefore, our approach
includes the extension and composition of basic behavior preserving refactorings through logic
predicates.

Regarding the kind of code analysis that will be performed in the distinct steps, all logic relations
we define depend on static characteristics. This means the system will not be executed for
determining the runtime behavior, and will only be analyzed statically.

Figure 3.1 shows the interrelation between the different areas we support of the refactoring
process:

The detection of bad smells generates two relevant results, the indicators of how strong the smell
is (for example, the amount of duplicated statements) and the relevant entities related to the
place where the bad smell was detected. The indicators are used to weigh the bad smells so
the user can assess their relative importance. In order to propose proper refactorings with the
necessary parameters, our tool analyzes the related entities of the bad smells.

3.1.2 Environment

The logic meta programming language we are using is SOUL, which used with the library LiCoR
allows reasoning over Smalltalk code at a high level of abstraction. Even if most of the logic
predicates are language independent, some of them describe language specific relation like the
predicate keywordsOfMethod, which takes into account the specific syntax Smalltalk uses for
identifying the parameters a method receives. For example in the method definition at: index

put: anObject, the keywords are at: and put: and index and anObject are the parameters of
the method.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 29

Detecting Bad Smells


Weighing Bad Smells


Proposing
 Refactorings


Applying
 Refactorings


related

entities


indicators


refactoring

parameters


refactoring

parameters


related

entities


indicators


SOUL


LiCoR
 (Basic Analysis Predicates, Metrics)


Refactoring

Browser


Smalltalk


Figure 3.1: Supported steps in the refactoring process: detecting and weighing bad smells,
proposing refactorings and applying refactorings

For applying the proposed refactorings, we integrate our framework with the Refactoring Browser,
which provides a number of useful but rather primitive refactoring implementations. Although
the refactorings proposed by Martin Fowler can not be applied directly by the Refactoring
Browser, we have extended and composed the available refactorings by means of logic predi-
cates. This solution increases the language independence of our approach, as these primitive
refactorings are pretty standard and are starting to be supported by many other tools.

3.1.3 Basic Analysis Predicates

In order to support the mentioned steps of the refactoring process, we will establish a flexible
framework using the basic relations provided by SOUL for reasoning between code entities as
seen in figure 3.1.

The LiCoR library contains a number of rules that describe basic characteristics and relationships
between classes, methods, interfaces, variables, symbols and other code entities. The most basic
ones are defined using the meta level interface, that strongly relies on the reflective capabilities of



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 30

the base language, like the ones mentioned in table 2.1. Other group of basic predicates are the
ones related to the characteristics of methods, mentioned in table 2.2. None of these predicates
are very useful by themselves, however they give the basis for generating more interesting results.
Some examples of existing intermediate level predicates that we will use for helping to detect
and analyze bad smells are the following:

• accessor(?class,?selector,?variable), checks whether ?selector defined in ?class is
an accessor used to get the value of ?variable.

• mutator(?class,?selector,?variable), checks whether ?selector defined in ?class is a
mutator that sets the value of ?variable.

• overridingSelector(?class,?selector), checks whether ?selector is overriding a method
definition in the hierarchy of ?class.

• highestOverridingSelector(?class,?selector,?superclass), checks whether ?superclass
is the highest class that defines ?selector, which is being overridden in ?class.

• selectorUsesParameter(?class,?selector,?parameter), checks whether ?selector defined
in ?class uses at least one time the parameter variable ?parameter.

• methodWithConditional(?method,?receiver,?message,<?trueBlock,?falseBlock>),
checks whether ?method contains a conditional message ?message (such as ifTrue:ifFalse:
in the case of Smalltalk) send to ?receiver, with arguments ?trueBlock and ?falseBlock.

Metrics

LiCoR also provides a category of logic queries that compute object-oriented metrics. These are
used to help detecting and analyzing bad smells. Sometimes they are used to find places in the
code that are worthy of further investigation because they are likely candidates for bad smells
[48]. Once these locations in the source code have been identified, we can use our other queries
to analyze these parts of the program in more detail.

Most of the defined metrics are easy to implement as they mostly count the number of results of
more complex predicates. The format of the predicate is metric(?metricName,?entity,?number),
where ?metricName is the name of the metric, ?entity is the entity that is being analyzed and
?number is the value of the metric. A simple example is the metric that computes the Number
Of Statements of a method (NOS):

metric(NOS, primitive , method(?method), ?number) if
statementsOfMethod(?statementList ,?method),
length(?statementList ,?number)



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 31

Other metrics defined in LiCoR we use are: Number Of Implemented Methods (NOIM) in
a class, Number Of Instance Variables (NOIV) in class, Number Of Temporaries of Method
(NOTM) and Number Of Parameters of Method (NOPM).

3.2 Detecting Bad Smells

For detecting the place where refactorings can be applied, we are detecting bad smells in the
code. These bad smells indicate possible bad design and coding practices, like duplicated code,
unused parameters or classes that delegate the majority of their functionality to other classes.

In the Refactoring Book [26] Martin Fowler gives a list of 22 bad smells, which address common
flaws that can be present in object oriented code. These smells are originally presented in terms
of human intuition, but many of them can be formalized for automated recognition by verifying
structural characteristics and relations present in the code. Specifically, we cover eight of these
smell completely and five of them partially.

This section explains our approach for detecting the bad smells described in section 2.2.4, recount
which bad smells are detected and which are not, describes in detail the smells Unused Parame-
ter, Parameter Clump, Inappropriate Interface and Duplicated Code in terms of logic predicates
and gives illustrative examples. The rest of the smells are explained in the appendix A.

The concrete examples given in the following sections and in the appendix are taken from the
experiments we performed over the Smalltalk Collection library, the SOUL application and the
HotDraw framework. More details are given in chapter 4 Experiments.

3.2.1 Our Approach for Detecting Bad Smells

We propose to define as many bad smells as possible in terms of logic predicates to be applied
on code entities. However, there are three kinds of smell we will not address. Smells that are too
fuzzy to be defined in automated means, smells related to maintenance, smells that need static
typing information and smells that need runtime information. Nine of the 22 bad smells defined
by Fowler satisfy these criteria. We also defined a new bad smell, Inappropriate Interfaces that
is explained in section 3.2.6.

Our bad smell predicates are applied on classes or methods and return the related entities that
will be used in later steps of the refactoring process. They also return indicators associated to
the smell that can be used for weighing the smell more properly. For example the Duplicated
Code smell returns all the entities related to the duplication, and also the indicators of the
duplication, that in this case consist on the number of duplicated statements and the amount
of places where the duplication was found.

In general, the decision of which bad smells we should consider, is intimately related to the kind of
application we are analyzing. For example different users will consider different threshold values



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 32

for the smell Too Many Statements or the minimum length that a Message Chain smell should
have. For tuning the smells depending on the usage, we include user configurable thresholds in
our tool.

With the assistance of a tool, a number of smells can be detected at the same time. It is
important for the user to categorize them properly, in order to solve the most important smells
first. A classification of the relative importance between bad smells is provided, configurable by
the user to reflect his experience and personal considerations on the matter. This classification
can be integrated with the parameters returned by the bad smells in order to weigh the smells
more properly.

3.2.2 What Smells are Detected?

Tables 3.1 and 3.2 give a comprehensive list of the smells defined by Martin Fowler and show
whether they are covered in our work or not. The first column represents Fowler’s bad smells,
and the second column describe the cases present in these smells. For example Large Class
includes the cases Too Many Methods and Too Many Instance Variables. Usually different cases
of the same smell have different solutions, so we will address them separately. We extended the
list with two bad smells. Inappropriate Interface between a class and its subclasses, and a case
of the speculative generality smell, Abstract Method Not Implemented in the hierarchy. In total
we address nine bad smells completely (including our addition) and five bad smells partially.

Even if we intend to detect as many bad smells as possible, there are some that are out of
the scope of this work. We are not addressing smells we consider too fuzzy to be defined by
automated means, smells that need dynamic runtime information, smells related to changes
through different versions, that are considered as “maintenance smells” [54], and finally, we are
not addressing smells that need static typing information.

• Fuzzy Smells

Unhelpful Comments. The classification of unhelpful is pretty fuzzy, and the possibility
of counting the comments of the code is not possible as SOUL does not consider
comments as valid entities.

Alternate Classes with Different Interfaces. Related to classes that do “similar” things,
with different interfaces. The definition of “similar” in this case is also pretty fuzzy.

Unnecessary Delegation, part of the Speculative Generality smell. It is hard to determine
automatically when a delegation is necessary or not.

• Dynamic Smells

Semantic Duplication, part of the Code Duplication smell. This refers to methods that
have the same effect by using different algorithms. This is extremely difficult to
determine by static means. However, this small can be partially addressed by using



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 33

Measured Smells

1) Large Class
Too Many Instance Variables detected
Too Many Methods detected

2) Long Method
Too Many Statements detected
Too Many Temporaries detected

3)
Long Parameter
List

Too Many Parameters detected
Redundant Parameter detected
Parameters are Values from an Object not detected (types)

4) Comments Unhelpful Comments not detected (fuzzy)

Duplication

5)
Duplicated
Code

Magic Numbers detected
Duplicated Code in Methods detected
Semantic Duplication not detected (dynamic)

Data
6) Data Class Data Class detected

7) Data Clump
Parameter Clump detected
Instance Variable Clump not detected (types)

8)
Primitive
Obsession

Primitive Obsession not detected (types)

Interfaces

9)
Refused
Bequest

Refused Interfaces detected
Refused Inheritance detected

10)
Inappropriate
Interface

Inappropriate Interface detected

11)
Different
Interfaces

Alternate Classes with Different
Interfaces

not detected (fuzzy)

12)
Incomplete
Library

Incomplete Library Class
not detected
(dynamic)

Table 3.1: (table 1 of 2). Detected Bad Smells in the following categories: Measured Smells,
Duplication, Data and Interfaces. The smell Inappropriate Interface was added to the category
Interfaces



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 34

Responsibility
13) Feature Envy Feature Envy detected

14)
Inappropriate
Intimacy

Inappropriate Intimacy not detected (types)

15) Message Chain Message Chain detected
16) Middle Man Middle Man detected

17)
Parallel
Inheritance

Parallel Inheritance Hierarchies
not detected
(changes)

18)
Divergent
Change

Divergent Change
not detected
(changes)

19)
Shotgun
Surgery

Shotgun Surgery
not detected
(changes)

Unnecessary Code
20) Lazy Class Lazy Class detected

21)
Speculative
Generality

Unused Parameter detected
Unused Instance Variable detected
Abstract Method Not Implemented detected
Unnecessary Delegation not detected (fuzzy)
Odd Name detected

22)
Temporary
Field

Temporary Field not detected (fuzzy)

Conditional Logic

22)
Switch
Statements

Switch on Type Codes not detected (types)
Switch Statement over Parameter detected
Switch with Nil Checking detected

Table 3.2: (table 2 of 2). Detected Bad Smells in the following categories: Responsibility,
Unnecessary Code and Conditional Logic. The case Abstract Method Not Implemented was
added to the smell Speculative Generality



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 35

control flow analysis and data flow analysis for determining the runtime behavior of
the system.

Incomplete Library Class. Refers to a library that is missing behavior. This smell needs
to define which classes are library classes and can only be triggered when the user
tries to add a method to these classes. This dynamic behavior makes it complicated
to implement.

• Maintenance Smells

Shotgun Surgery. One kind of change recurrently alters many classes, making it hard to
find all the right places that do need changing.

Parallel Inheritance Hierarchies. Whenever a subclass of a class is created, a subclass
of another one has to be created to match. It is a special case of the smell Shotgun
Surgery.

Divergent Changes. One class commonly suffers many kinds of changes for different
reasons, making the system difficult to maintain.

• Typing Smells

Primitive Obsession. A primitive data type can be turned into a class to make it clear
what it is for and what sort of operations are allowed on it (like creating a Date or
Time class instead of using a couple of integers). As Smalltalk does not use data
types, this smell is not detectable without using some sort of type inference engine.

Switch Statement on type codes, part of the Switch Statements smell. For detecting this
smell, we also need typing information we do not have. In this case for recognizing
different switch statements over the same type code.

Inappropriate Intimacy. Classes knowing too much about others are coupled. For know-
ing statically to whom the messages are sent or which class is being called we need
typing information.

Instance Variable Clumps. A group of instance variables of the same type appears in
several classes.

Parameters that are Values from an Object, part of the Long Parameter List smell. A
group of parameters are generated from the same object and sent as parameter in all
calls of the method. To detect that it is the same object that is the source of the
parameters in every case, we need typing information.

Considering all bad smells and their cases, we cover completely nine bad smells and we cover
partially five bad smells out of 23 (including our added smell, Inappropriate Interface). Taking
into account the different cases of each smell (listed in the second column of tables 3.1 and 3.2),
we address 23 out of 37.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 36

3.2.3 How are the Bad Smells Detected?

For actually detecting the bad smells, we use a generic predicate with the form:

badSmell(?smellName, ?entity, ?relatedEntities, ?smellIndicators)

Where ?smellName is the name of the smell, that can be simple (e.g. <dataClass>) or a list
(e.g. <speculativeGenerality,unusedParameter>). The detection of the smell usually relies
on more specific predicates that receive threshold values and find structural flaws in the code.
The ?entity corresponds to a class or a method that is being checked for bad smells. The
?relatedEntities is a list that contains the relevant entities related to the bad smell that are
analyzed for possible refactorings. Finally, the ?smellIndicators is a list with measures related
to the smell. For example the ratio of envy in the Feature Envy smell or the number of duplicated
statements and places of duplication in the Duplicated Code smell.

For example, the case Too Many Instance Variables of the smell Large Class is defined in the
following way:

badSmell(<largeClass ,tooManyInstanceVariables >, ?class , <?class >, <?
numberInstanceVariable >) if
userThreshold(<largeClass ,tooManyInstanceVariables >,

numberOfInstanceVariables , ?thresholdNumber),
classWithMoreInstanceVariablesThan(?class ,?numberInstanceVariable ,

?thresholdNumber).

In most cases there is an underlying predicate that does the “real work”, like classWithMore-

InstanceVariablesThan does in this case. The badSmell predicate is mostly used for retrieving
threshold values and handling the bad smells in a uniform way through our framework.

In the following sections we explain in detail how to detect the smells Unused Parameter, Pa-
rameter Clumps, Inappropriate Interfaces and Duplicated Code. The examples are taken from
the experiments we performed over the Smalltalk Collection library, the SOUL application and
the HotDraw framework.

3.2.4 Recognizing Unused Parameters with Logic Predicates

The Unused Parameter bad smell is a case of the more general bad smell Speculative Generality.
A method defines an unused parameter if it defines a formal parameter in its signature that is not
used in its implementation. In dynamically typed languages, all selectors with the same signature
are equivalent and polymorphic, so actually we need to check that none of the implementations
sharing the same signature uses the parameter. Given a particular class, the developer does
not know in advance which method implementation he has to inspect, or which parameter is
likely to be unused. Even if he detects manually a parameter that is not being used in a specific



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 37

method body, he has to examine all other implementations of methods with the same signature
for assuring that the parameter is not being used.

We will first show an example of the occurrence of an unused parameter and afterwards explain
how this situation can be detected automatically by using logic meta-programming predicates.
Finally we describe the generic bad smell predicate we use for detecting this smell.

Example

Figure 3.2 shows an example of the bad smell Unused Parameter. The class PosVariable in
the SOUL application, defines the selector unifyWithUnderscoreVariable: inEnv: myIndex:

hisIndex: inSource:, where none of the parameters is used in the body of the method nor in
the other implementation of the selector present in its superclass AbstractTerm.

Variable


AbstractTerm


unifyWithUnderscoreVariable: inEnv: myIndex: hisIndex:inSource:


PosVariable


unifyWithUnderscoreVariable: inEnv: myIndex: hisIndex:inSource:


Figure 3.2: Unused Parameter in the hierarchy of AbstractTerm in the SOUL application

Detecting the Bad Smell

For detecting whether a formal parameter is not used by a method, we check that none of the
methods sharing the same signature uses this parameter, including the method itself.

We use the following two logic rules to implement such an algorithm:

unusedParameter(?class,?selector ,?keyword ,?numberNotUsed) if
methodWithNameInClass(?method ,?selector ,?class),
keywordOfMethod(<?keyword ,?parameter >,?method),
classesWithSelector(?classList ,?selector),
forall(

member(?otherClass ,?classList),
not(selectorUsesParameter(?otherClass ,?selector ,?keyword))),



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 38

length(?classList ,?numberNotUsed)

Where the keywordsOfMethod predicate retrieves the pair (keyword,parameter) of the method.
This predicate takes into account the specific syntax Smalltalk uses for identifying the parameters
a method receives. For example in the method definition unifyWithUnderscoreVariable:aTerm

inEnv:anEnv myIndex:myIndex hisIndex:hisIndex inSource:inSource of the PosVariable class,
unifyWithUnderscoreVariable:, inEnv:, myIndex: and hisIndex: are the keywords, and aTerm,
anEnv, myIndex, hisIndex and inSource are the parameters of the method.

The classWithSelector predicate retrieves all the classes that contains the given selector, and
selectorUsesParameter predicate is used for checking that all those classes do not use the
keyword in question. The number of times that the parameter is not used is the same as the
amount of classes that contains the parameter, so this value is returned for weighing purposes.
Retrieving all the classes that contain a given selector is a requirement for dynamic typed
languages. In the typed language version, we traverse to the highest class that implements the
selector and retrieve the whole hierarchy for a posteriori checking of parameter usage.

selectorUsesParameter(?class ,?selector ,?keyword) if
methodWithNameInClass(?method ,?selector ,?class),
keywordOfMethod(<?keyword ,?parameter >,?method),
methodUsesVariable(?method ,?parameter)

The second predicate defines when a parameter is used or not by a selector. After determining
the name of the parameter in the specified selector, we only have to check if the method uses
the variable.

Bad Smell Predicate

The bad smell predicate for detecting this bad smell is the following:

badSmell(<speculativeGenerality,unusedParameter>, ?class, <?selector,?keyword>

, <?numberNotUsed>)

Where ?numberNotUsed corresponds to all definitions of the selector that does not use the pa-
rameter. In this case we do not return the ?class where the unused parameter was found as part
of the related entities list. And instead of returning the exact parameter that is the value the
keyword takes in the specific class, we return the keyword, that is common to all selectors. The
objective of this, is that for every class that implements the selector with the unused parameter
we obtain the same result. If we ask for the bad smell in the entire system, we will get an
identical duplicated result list for every class that implements the selector, which are easy to
discard before presenting them to the user.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 39

3.2.5 Recognizing Parameter Clumps with Logic Predicates

This bad smell is part of the more general smell Data Clump. A parameter clump is a group
of parameters with no logical object, but that naturally belong together. For detecting it in a
specific method, the developer has to choose a particular combination of keywords, and detect if
this combination is present is any other methods in the system. Detecting this smell manually
is a very hard task, as it involves a large number of possibilities, and requires the inspection of
all the signatures of the system.

For detecting this bad smell we use a heuristic, since formally we should detect groups of param-
eters of the same type, and this information is lacking in our dynamically typed environment.
Our searches for parameter clumps are based on the name of the keywords found in the selectors.

We show two illustrative examples of parameter clumps, and afterwards we explain how to
detect this smell using logic meta-programming predicates, and explain the generic bad smell
predicate.

Examples

The first example was found in the Collection hierarchy. The class ByteArray contains the fol-
lowing clump of eleven keywords:

width:atX:y:from:stride:width:atX:y:width:height:rule:

It appears in nine selectors, all starting with the prefix copyBits or tileBits, and stored in
the protocols byte processing or private.

The second example was found in the SOUL application. The clump inEnv:myIndex:hisIndex:-

inSource: repeated 73 times in the hierarchy of the class AbstractTerm, and 96 times taking into
account the whole application. They all appeared in selectors starting with the prefix unifyWith

and belongs to the protocol unifying. This may indicate that the parameters are used in a
consistent way in the found selectors. Figure 3.3 illustrates the appearance of the clump in the
hierarchy.

Detecting the Bad Smell

For detecting data clumps in the system, the specific steps we perform are the following:

1. Retrieve all the methods of the given class that have more parameters than a user-defined
threshold value.

2. Compute all subsets of these methods, with size larger than a user-defined threshold value.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 40

AbstractTerm (15)


MultiPartFunctor(2)


CompoundTerm (5)


Variable (14)


UnaryMessageFunctor (2)


SymbiosisTerm (0)


Underscore Variable (8)
 DelayedVariable (3)


NegVariable (7)
 PosVariable (3)


QuotedCodeTerm (4)


SmalltalkTerm (5)
 MessageFunctor (2)


VarArgsCompoundTerm (3)


Figure 3.3: Parameter Clump inEnv:myIndex:hisIndex:inSource in the hierarchy of
AbstractTerm

3. For each of these subsets, retrieve the keywords and compute the intersection between the
keywords of the methods.

4. Match the detected data clump with the other selectors in the hierarchy.

Note that this algorithm grows exponentially with the number of methods because of the subset
calculation. The usage of the threshold values inside the algorithm helps to reduce the calculation
time and retrieve less but more interesting results. Another possible solution that reduces the
amount of computation is a heuristic based on searching parameter clumps only in methods
belonging to the same protocol.

The two most important predicates we use for detecting this bad smell are methodsSharingKeywords
and commonArgumentsLargerThan:

methodsSharingKeywords(?allMethods ,?commonKeywords ,?subset ,?
methodThreshold ,?keywordThreshold) if
subset(?subset ,?allMethods),
length(?subset ,?length),
greaterOrEqual(?length ,?methodThreshold),
commonArgumentsLargerThan(?subset ,?commonKeywords ,

?keywordThreshold)



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 41

This predicate receives a list with the methods that are being considered in the class (all methods
with more parameters than threshold), and generates all the subsets of this methods, using the
auxiliary predicate subset. If the subset is larger than the threshold value, we call the predicate
commonArgumentsLargerThan.

commonArgumentsLargerThan (+?methods ,-?commonKeywords ,+?
keywordThreshold) if
findall(?keywords ,

and(member(?method ,?methods),
onlyKeywordsOfMethod(?keywords ,?method)),?keywordList),

intersection(?keywordList ,?commonKeywords),
length(?commonKeywords ,?length),
greaterOrEqual(?length ,?keywordThreshold)

This predicate retrieves all the keywords of the given list of methods, and calculates the intersec-
tion. If the amount of common keywords present in the intersection is larger than the threshold
value, the predicate returns the common keywords.

Bad Smell Predicate

The bad smell predicate for detecting parameter clumps is the following:

badSmell(<dataClump,parameterClump>, ?class, <?keywordList,?selectorList>,

<?numberSelectors,?sizeClump>)

Like in the Unused Parameter smell, we do not return the ?class as part of the result list.
The related entities are the list of the keywords that conform the parameter clump, and the
list of selectors where this clump is present. This means that for every class that contains the
parameter clump we obtain the same result in a global search for smells.

3.2.6 Recognizing Inappropriate Interfaces with Logic Predicates

The consistency of the interfaces is extremely important when designing flexible and reusable
object-oriented systems, as discussed in [44]. This smell consists on inconsistent interfaces
between a group of subclasses and its superclass. This means a group of subclasses have some
methods in common that are not provided by the superclass.

Detecting manually the inappropriate interface in a particular class is a complex task to perform.
The developer has to analyze an entire class hierarchy, and the interfaces it defines. All the
combinations of subclasses and interfaces they possibly share must be taken into account, which
is a very complicated task to perform without automated assistance.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 42

In what follows we will show an example of the occurrence of an inappropriate interface, and
afterwards we will discuss how we recognize the problem by using logic predicates and describe
the generic bad smell predicate that detects the bad smell.

Example

Figure 3.4 shows how the classes OrderedCollection and LinkedList declare the methods
addFirst:, addLast:, removeFirst and removeLast, which are not present in the other siblings
nor in the superclass SequenceableCollection.

OrderedCollection
 ArrayedCollection


Interval


LinkedList


addFirst:


addLast:


removeFirst


removeLast


addFirst:


addLast:


removeFirst


removeLast


SequenceableCollection


Figure 3.4: Inappropriate Interface in the hierarchy of SequenceableCollection

This situation generates confusions for two reasons:

• The classes in this hierarchy cannot be used polymorphically, at least not in a statically-
typed language (such as Java and C++), since there is no common ancestor that includes
the methods addFirst:, addLast:, removeFirst: and removeLast: in its interface.

• If a developer wants to extend the hierarchy of sequenceableCollection, it is unclear
whether the new class should contain the mentioned methods in its interface or not.

Detecting the Bad Smell

We use an algorithm similar to the one used in the smell Parameter Clump for detecting the
problem of inappropriate interfaces in a hierarchy of classes:

• Retrieve all direct subclasses of the given class.

• Compute all possible subsets of this set of classes.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 43

• For each of these subsets, compute the intersection of the interfaces of all classes contained
in the subset. Here we only take into account only the methods that are not overriding
other in the hierarchy, because we are interested in interfaces not defined in upper hierar-
chies.

Like the algorithm in Parameter Clumps, this The amount of subclasses taken into account, as
well as the size of the computed interface depends on user configurable values.

A predicate that is different from the ones presented in the smell Parameter Clumps is the one
that retrieves the interface of the class which is not overriding methods defined higher in the
hierarchy.

notOverridingClassInterface(?class ,?interface) if
findall(?selector ,and(methodWithNameInClass(?,?selector ,?class),

not(overridingSelector(?class ,?selector)) ),
?interface)

This predicate retrieves all the selectors of a class that are not overriding methods.

Bad Smell Predicate

The generic bad smell predicate we use for detecting this smell is the following:

badSmell(<inappropriateInterface>, ?class, <?class,?interface,?subclasses>,

<?interfaceLength,?numberSubclasses>)

The indicators in this case are the length of the shared interface of the subclasses, and the
amount of subclasses that share this interface.

3.2.7 Recognizing Duplicated Code with Logic Predicates

Code duplication is one of the worst smells possible, as it has many negative consequences on
maintainability, bug fixing and readability in general.

For manually detecting duplicated code segments in the system, the developer has to examine
carefully the implementation of a number of methods, making it a very time-consuming and
impractical task.

Different approaches for detecting duplicated code were given in the Related Work section 2.3.
Our approach for detecting similar code segments is to traverse the parse trees of two given
methods and check that the structures are equivalent rather than the same. Even if it is



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 44

possible to run the predicate over any pair of methods, we foresee which cases are more useful
in future refactorings. These cases are duplicated code in the same class, duplicated code in
sibling classes and duplicated code between a class and its subclasses.

Example

In the sibling classes from the SOUL application, TermSequence and MultiPartFunctor which are
subclasses of AbstractTerm, we found duplicated code in the method printForCompileFor:. The
equivalent segments of code were found at the beginning of the bodies, and the only structural
difference is present in the last statement. The code considered duplicated is the following
(method declarations are only included for clarity):

printForCompileOn : aStream

aStream write : self class name , ’ keywords : ( OrderedCollection new ’.
self keywords do:

[: keyword |
aStream write: ’add:(’.
keyword printForCompileOn : aStream.
aStream write: ’) ’]

separatedBy : [ aStream write : ’;’].

printForCompileOn : aStream

aStream write : self class name , ’ terms : ( OrderedCollection new ’.
self terms do:

[: currentClause |
aStream write: ’add:(’.
currentClause printForCompileOn : aStream.
aStream write : ’) ’]

separatedBy : [ aStream write : ’;’].

In this case the parameter names are the same, but there are different messages, literals and
different temporary variables of blocks present in the code. The different temporary variables
from the block codes are not taken into account, as they are equivalent from any point of view.
The important differences are the following: In the first statement of both methods, different
literals are sent as parameters for being written in a stream. In the second statement, the
messages terms and keywords are different, but used consistently within the methods. The
literal and message differences can be extracted to the sibling classes, for generating exactly
the same code in both siblings. From here, the refactoring possibilities are diverse: the large
duplicated segments of code could be extracted and pulled up, or they could be stored in an
intermediate class, created specially to keep the common part together.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 45

Set


Dictionary


findKeyOrNil:


IdentitySet


findElementOrNil:
 . . .


Figure 3.5: Duplicated Code in the classes Dictionary and Set

Detecting the Bad Smell

The detection of equivalent code is accomplished by the following:

• Variables are bound while the parse trees are traversed, so it does not matter if they
are parameters or temporaries. If they are handled consistently in the code they will be
considered as equivalent.

• We use the same approach for message calls. When different messages are found during
the tree traversal, they are stored in an association list, and when any of them is found
afterwards in one parse tree, the correspondent message must be found in the other parse
tree. For duplicated code in the same class though, we ask all message sends to be equal,
because of refactoring purposes that will be taken into account later on.

• Literals can take any value, except when searching duplicated code in the same class,
where they have to be exactly the same literals in the same places.

For efficiency reasons, first we run a more general structural checker, that only verifies that the
elements appear in the same places. For example, an assignment is followed by a message send,
which is followed by a block of code, in both parse trees. The statements found structurally
similar are passed to a more complex predicate that binds variables and messages, where in-
stance variables are not exchangeable with other variables. We can observe this in the following
predicate for the case of duplicated code in a subclass:

duplicatedCodeInSubclassOf(?statements1 ,?statements2 ,?subclass ,
?superclass ,?selector1 ,?selector2 ,+?thresholdNumber) if

class(?superclass),
subclassOf(?subclass ,?superclass),
methodWithNameInClass(?method1 ,?selector1 ,?subclass),
methodWithNameInClass(?method2 ,?selector2 ,?superclass),
duplicatedStructureInMethods(?statements1 ,?statements2 ,?method1 ,

?method2 ,?thresholdNumber),



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 46

findall(<?iv,?iv>,instanceVariableInClassChain(?iv,?subclass),
?ivl),

initialVariableList(?initial),
append(?initial ,?ivl,?variableList),
compareStatements(?statements1 ,?statements2 , ?variableList ,

?varAssoc , <>, ?fullMethAssoc)

This predicate detects duplicated code between methods of a given superclass and a subclass
of it. The first four predicates retrieve the methods that will be compared. After, we call
the mentioned predicate duplicatedStructureInMethods. If there is structural duplication, we
compare the statements that were found duplicated using the compareStatements predicate. We
give as parameter the initial variable association list, which contains bindings for the variables
self and super. We add the instance variables that the class understands to this list, since we
do not allow instance variables to be bound to any other variable in our search for duplicated
code. The initial method association list we use is an empty list, as we do not contemplate
restrictions in this area.

Detecting the Bad Smell

The generic bad smell predicates for detecting duplicated code have the form:

badSmell(<duplicatedCode,codeInClass>, ?class, <?duplicatedTriplet>,

<?numberStatements,?numberPlaces>)

badSmell(<duplicatedCode,codeInSiblings>, ?class, <?duplicatedTriplet>,

<?numberStatements,?numberPlaces>)

badSmell(<duplicatedCode,codeInSubclasses>, ?class, <?duplicatedTriplet>,

<?numberStatements,?numberPlaces>)

Where ?duplicatedTriplet is a list that contains triplets of class, selector and statements with
equivalent code. This means that if the same code is present in three or four siblings, we will
return only one result with all the information of the duplications. In the case of duplicated code
in subclasses, this is accomplished by finding all occurrences of duplicatedCodeInSubclassOf in
the subclasses of a given class, and grouping the results according to the duplicated statements
that were found.

3.2.8 Weighing Bad Smells

In order to discriminate all possible results that can be obtained with an automated detection
tool, it is necessary to rate the bad smells depending on their seriousness. Common sense
says that finding Duplicated Code is more important than finding Message Chains. But if the
duplicated code has two lines, and the size of the message chain is 15, we might reconsider our
opinion.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 47

As we can see in figure 3.1, we can use the information given by the bad smells for weighing the
bad smells. We propose a smellWeight predicate that, given a bad smell’s name and its smell
indicators (number of duplicated lines, ratio of delegated methods or size of a parameter clump)
gives a hint of how bad the smell actually is.

This predicate should also retrieve the user configurable values of which smell is more important
than other without taking into account the indicators. The importance of these indicators in the
calculation of the final weight is also configurable, and they should be based on the experience
of the user. Therefore, general default values can be given, but the user should state which
smells he considers worse, and how important the indicators are for this consideration.

Our first version is pretty simple, and a more accurate calculation is proposed for future work:

smellWeight(?badSmellName , ?indicators , ?weight) if
userSmellClassification(?badSmellName ,?classification),
userSmellIndicatorsRelevance(?badSmellName ,?indicatorRelevance),
mapRelevance(?indicators ,?indicatorRelevance ,?weighedIndicators),
average(?indicators ,?averageIndicators),
product(?averageIndicators ,?classification ,?weight)

Where the first predicate retrieves the user-defined classification of how important the smells
are in relation to each other. The predicate userSmellIndicatorsRelevance retrieves the user-
defined relevance of the different indicators of the smell (e.g. how important are the aount
of duplicated statements or the amount of places where the duplication is found). The third
predicate mapRelevance, calculates the actual weight of the indicators. Afterwards, our simple
algorithm just calculates the average of the weighed indicators, and multiply them with the
absolute classification value of the smell.

3.3 Analyzing Bad Smells and Proposing Refactorings

Now that we have illustrated how to detect bad smells by means of logic meta programming,
we explain how to use the information provided by the bad smell predicates for proposing
appropriate refactorings.

Bad smells do not always lead to a unique refactoring. Sometimes different refactorings solve
the same smell, for example for Duplicated Code in Siblings we can push up the method directly
to the superclass or create an intermediate class to hold the common parts. Even if there were
only one refactoring proposed, we do not intend to perform refactorings automatically without
user interaction. The developer must decide if one of the refactorings of the presented ones is
most appropriate for the situation, or decide to leave the code intact.

By analyzing the information gathered during the detection of the bad smell, we are able to
propose proper and applicable refactorings. We present only feasible refactorings for which the



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 48

preconditions are satisfied to the user. This is needed to avoid proposing refactorings that will
be refused by the refactoring engine. Sometimes the detected bad smell includes the checking
of preconditions implicitly, like the case of unused entities, where the preconditions consists on
checking that the entity is not used in the system, which is exactly what the bad smell does.
In these cases we can safely propose refactorings, knowing that the preconditions are fulfilled.
In other cases, like duplicated code, we need to check if the preconditions are accomplished
or not. Therefore, we need to access the preconditions of each refactoring in the refactoring
engine separately, which is achieved by invoking the method preconditions that is defined in
the Refactoring class hierarchy.

For different reasons, not every detected bad smell will lead to refactoring propositions. There
are some bad smells that we are able to detect because of their structural information, like
Message Chains or Middle Man, but we cannot determine the related entities that are involved,
because of the lack of typing information. The other case are smells that are easy to detect like
Large Class and Long Method, where the refactoring possibillities are various and depend highly
on the users decision. For the following smells we do not propose refactorings:

Data Class. The refactoring Fowler proposes is to see what the users of the data class do
with the information they obtain, in order to move some behavior to the data class. This
analysis needs dynamic typing information and besides it is a rather fuzzy.

Message Chains. For solving this smell, the refactoring Hide Delegate can be applied in some
points of the chain that is detected. But we do not know who the receivers of the message
sends are because this information is determined at runtime in our dynamically typed
environment.

Middle Man. There is a refactoring Remove Middle Man which applies to this case. We can
not proportionate the proper parameters to this refactoring as we do not know to whom
the methods are being delegated to. This is also dynamic information.

Nil Checking. The refactoring Introduce Null Object should be proposed, but in a detected nil
checking we do not know the identity of the object that is receiving the nil cheks, as this
is dynamic information. This means we cannot identify the class from which we want to
create a null subclass.

Parameter Conditionals. In this case, the refactoring Replace Parameter With Explicit methods
should be proposed. This consists in extracting the different code run by the conditional
into separate methods. The rest of the restructuring is rather fuzzy, as we do not know
the semantic relation of the extracted methods with the original one.

Large Class and Long Method. For the Large Class case, Fowler proposes the Move Instance
Variable refactoring, which is not supported by the Refactoring Browser, however the user
can move any methods he wants to other classes in order to decrease the size of the class.
For the smell Long Method, the user can extract any statements for decreasing its size.
These approaches have no automatization at all and depend on the users selection between
a large number of possibilities. For this reason we do not propose these refactorings, as
we cannot determine in forehand the proper parameters for them.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 49

3.3.1 Proposing Refactorings

Like in the detection of bad smells, we use a generic predicate for proposing refactorings. In
this case the predicate is proposeRefactoring, and has the following form:

proposeRefactoring(?entity,?refactoringName,?arguments)

The first argument represents the entity for which we want to detect refactoring opportuni-
ties. It can be any source code artifact, but at the moment we only use classes, methods or
variables, since these are all entities for which some refactorings have been defined [40, 26].
The second argument identifies the particular refactoring that should be applied. For exam-
ple inlineParameter, pushUpMethod, replaceMethodWithMethodObject or any other refactoring
that is defined. The last argument of the predicate identifies the list of arguments that should
be passed to the refactoring. These arguments can be any source code artifact, depending on
the refactoring.

In the next sections, we will provide concrete examples of the proposeRefactoring predicate.
We separate the proposed refactorings in two cases: the ones that just use the results of the bad
smell and the ones that need to analyze the related entities of the bad smell in different degrees
of depth. In both cases we can find more than one refactoring solving a particular smell. The
bad smells referenced in the following sections that were not defined in section 3.2 can be found
in the appendix A.

3.3.2 Simple Cases

We consider that the simple cases for proposing refactorings are the ones where the related
entities of the bad smell are not analyzed. For example, the smell Magic Number is solved with
the refactoring replaceMagicNumber. This is stated as follows in terms of logic predicates:

proposeRefactoring(?class ,replaceMagicNumber ,<?class ,?magicNumber >) if
badSmell(<duplicatedCode ,magicNumber >,?class,<?class ,?magicNumber)

,?).

This refactoring replaces all appearances of the symbol by a message call that returns the symbol
in a given class. The parameters of the refactoring are the same as the ones returned by the
badSmell predicate, and the name of the created method that returns the literal is asked to the
user. We do not need to perform a precondition check, as all we need is the symbol to be present
in the class, which we know occurs repeatedly.

Applying the query on the class ByteArray, a class with several magic numbers described in the
previous section,



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 50

if proposeRefactoring([ByteArray], ?refactoring, ?arguments)

returns the expected result:

if proposeRefactoring([ByteArray], replaceMagicNumber, <[ByteArray],32>

An example of a smell that can be solved by more than one refactoring is the Too Many Tempo-
raries smell. In this case, we propose two refactorings, where none of them analyzes the related
entities of the smell.

Replace Method with Method Object. This refactoring moves the method to a new class, con-
verting all temporaries into instance variables. We do not need to check preconditions, as
the new class will be empty, so we can safely move the method to it, and transform the
temporaries in instance variables.

Replace Temp with Query. This refactoring replaces temporary assignments with a method call.
We only propose this refactoring if the preconditions are met. Note that this refactoring
is proposed for every temporary that complies to the preconditions.

Other straightforward refactoring propositions are the following:

Unused Parameter. The removeParameter refactoring is proposed, with parameters class,
selector and parameter. The preconditions do not need to be checked as we are sure
from the bad smell that the parameter is not being used in any selector that defines the
associated keyword.

Unused Instance Variable. The removeInstanceVariable refactoring is proposed, with parame-
ters class and instanceVariable. Here, checking preconditions is also not needed, as we
know the variable is not used in the hierarchy.

Abstract Method not Implemented. The removeMethodFromHierarchy is proposed, with param-
eters highestClass and abstractSelector. The preconditions do not need to be checked,
as the bad smell ensures that the method is positively not implemented in the hierarchy.

Feature Envy. The moveMethod refactoring is proposed, with parameters highestClass and
abstractSelector. The preconditions do not need to be checked, as the bad smell ensures
that the method is positively not implemented in the hierarchy.

Odd Names. We propose renameMethod or renameClass, with no preconditions, as the new
name will be asked to the user only when he accepts to perform the refactoring.

Refused Interface. We propose replaceInheritanceWithDelegation, with the subclass that can-
cels the interface, and the superclass as parameters. This refactoring has not been im-
plemented yet.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 51

Parameter Clump. We propose introduceParameterObject, with the list of parameters that
compose the clump as parameters to the refactoring. The data contained in the clump
parameters are converted into a single object, and the signatures of all selectors containing
the clump are transformed to use this new object and obtain the data from there. This
refactoring has also not been implemented yet.

3.3.3 Complex Cases

The complex cases analyze the related entities of the bad smell in order to propose more appro-
priate refactorings.

Inappropriate Interface A more elaborate example is the case of the refactorings proposed
for solving the smell Inappropriate Interface, which was introduced in section 3.2.6. The situa-
tion is that a number of subclasses share an interface that is not supported by the superclass,
difficulting the maintenance of the involved classes. For this case there are two suitable solutions:
Either we augment the interface of the class with the missing methods by using the addMethod
refactoring as shown in figure 3.6, or we insert an intermediate superclass between the root class
of the hierarchy and the subclasses that implement a shared interface by using the addClass
refactoring, as shown in figure 3.7. Note that the last refactoring should not be proposed if the
interface is shared by all subclasses of the superclass. In this case an intermediate class would
be unnecessary.

OrderedCollection
 ArrayedCollection


Interval


LinkedList


addFirst:


addLast:


removeFirst


removeLast


addFirst:


addLast:


removeFirst


removeLast


SequenceableCollection


addFirst:


addLast:


removeFirst


removeLast


Figure 3.6: Applying the refactoring addMethod for solving the bad smell Inappropriate Interface

The first refactoring is proposed in every case, leaving to the user the decision of adding the
methods in the superclass, making all the subclasses inherit this behavior.



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 52

ArrayedCollection


Interval


OrderedCollection
 LinkedList


addFirst:


addLast:


removeFirst


removeLast


addFirst:


addLast:


removeFirst


removeLast


SequenceableCollection


IntermediateCollection


addFirst:


addLast:


removeFirst


removeLast


Figure 3.7: Applying the refactoring addClass for solving the bad smell Inappropriate Interface

proposeRefactoring(?class ,addMethods , <?class ,?interface >) if
badSmell(<inappropriateInterface >, ?class , <?class ,?interface ,?>,

?)

Note that we do not need to check preconditions for proposing this refactoring, as we have the
certainty that the methods we want to add are not defined in the class.

The second proposition depends on the characteristics of the related entities:



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 53

proposeRefactoring(?class ,addClassWithInterface , <?class ,?interface ,
?subclasses >) if
badSmell(<inappropriateInterface >, ?class , <?class ,?interface ,

?subclasses >, ?),
metric(NOSC, class(?class), ?totalSubclasses),
smaller(?numberSubclasses ,?totalSubclasses)

The refactoring addClassWithInterface is based on the Refactory Browser refactorings addClass,
that adds an intermediate class between the class and the given subclasses, and addMethods,
that adds the desired method declarations to the recently created class. We do not need to
check for preconditions because the created class will be empty, so no name clashes can occur
when adding methods.

Continuing with our example, if we apply the query proposeRefactoring over the class
SequenceableCollection we saw in the previous section:

if proposeRefactoring([SequenceableCollection],?refactoring,?arguments)

we obtain two proposed refactorings as depicted in figures 3.6 and 3.7:

proposeRefactoring([SequenceableCollection],
addMethods, <[SequenceableCollection], <addFirst:, addLast:,removeFirst,removeLast> >)

proposeRefactoring([SequenceableCollection], addClassWithInterface,

<[SequenceableCollection],<addFirst:, addLast:,removeFirst,removeLast>,

<[OrderedCollection], [LinkedList]> >)

These proposed refactorings are given with all the information needed for performing the refac-
toring.

Lazy Class The bad smell Lazy Class can also be solved with different refactorings. The
different propositions are:

Collapse Hierarchy with Superclass. This means to push methods and instance variables up
to the superclass, and remove the empty class. This is proposed if the preconditions of
the refactorings Push Up Method and Push Up Instance Variable are met, as shown in the
predicate:

proposeRefactoring(?class ,collapseHierarchyWithSuperclass ,
<?class >) if
badSmell(<lazyClass >,?class ,<?class >,?),



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 54

forall(methodWithNameInClass(?,?selector ,?class),
checkPreconditions(pushUpMethod ,<?selector , ?class >)),

forall(instanceVariableInClass(?instanceVariable ,?class),
checkPreconditions(pushUpInstanceVariable ,
<?instanceVariable , ?class >))

Collapse Hierarchy with Subclass. If the lazy class has subclasses, we apply the same reasoning
as with the superclass, but applied to the subclasses, and pushing down the functionality.
This refactoring is proposed only if the preconditions of the refactoring Push Down Method
and Push Down Instance Variable are fulfilled, as shown in the following predicate:

proposeRefactoring(?class ,collapseHierarchyWithSubclass , <?class >) if
badSmell(<lazyClass >,?class ,<?class >,?),
metric(NOSC, class(?class), ?totalSubclasses),
greaterOrEqual(?totalSubclasses ,1),
forall(methodWithNameInClass(?,?selector ,?class),

checkPreconditions(pushDownMethod ,<?selector , ?class >)),
forall(instanceVariableInClass(?instanceVariable ,?class),

checkPreconditions(pushDownInstanceVariable ,
<?instanceVariable , ?class >))

Inline Class to all the callers, with the class as parameter. This refactoring is always proposed.

proposeRefactoring(?class ,inlineClassToAllCallers , <?class >) if
badSmell(<lazyClass >,?class ,<?class >,?)

Duplicated Code The most complex case we tackle is the duplicated code, which involves
more cases, with more details to take care. The detection of this bad smell was explained
in section 3.2.7. In the three forms of duplicated code we consider there are some common
characteristics: The duplicated code statements we find can be either code segments or whole
methods. Also, all the analysis related to the renaming of methods and standardization of the
duplicated code is made within the refactoring itself, after the user has decided to apply it.
These details are explained in the following section, that discusses the applied refactorings and
their characteristics.

The refactorings we propose for duplicated code are the following:



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 55

proposeRefactoring(?class , refactoringDuplicationInClass ,
<?duplicatedTriplets >) if
badSmell(<duplicatedCode ,codeInClass >,?class,

<?duplicatedTriplets >,?).

proposeRefactoring(?class , refactoringDuplicationInSubclasses ,
<?duplicatedTriplets >) if
badSmell(<duplicatedCode ,codeInSubclasses >,?class ,

<?duplicatedTriplets >,?)

proposeRefactoring(?class , refactoringDuplicationInSiblings ,
<?duplicatedTriplets >) if
badSmell(<duplicatedCode ,codeInSiblings >,?class,

<?duplicatedTriplets >,?)

Where ?duplicatedTriplet is the list that contains triplets of class, selector and statements
with equivalent code.

3.4 Applying Refactorings

Until now, our process helps the user to detect bad smells and suggests a number of refactorings
that are possible to apply with the proper parameters. The following step is to apply the
refactoring selected by the user.

As we are using Martin Fowler’s Refactoring Book for determining the bad smells, we are also
using some of the refactorings he defines. The problem is that most of his refactorings are
not supported directly by the Refactoring Browser, although they can be. The lack of support
for composing refactorings of the Refactoring Browser enforced us to compose the existing
refactorings by logic meta-programming means.

This section explains how we wrap the refactorings provided by the Refactoring Browser and
how we define the composite refactorings we propose to the user.

3.4.1 Wrapping Existing Refactorings

In order to apply refactorings in our framework we wrap the ones provided by the Refactoring
Browser in logical predicates. For example, for the removeParameter refactoring we rely on the
implementation of the Refactoring Browser, as shown in the code:

refactoring(removeParameter ,<?parameter ,?class ,?selector >) if
symbolAsString(?parameter ,?parString),
[(Refactory.Browser.RemoveParameterRefactoring



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 56

removeParameter:?parString in:?class selector:?selector)]

If needed, we convert the SOUL parameters to the appropriate Smalltalk entities, like in this case
we do with the parameter that is converted to string by using the predicate symbolAsString(

?parameter,?parString). We give the appropriate parameters to an instance of the desired
Refactoring, and execute it if we want to apply the refactoring, or ask to check preconditions if
we want to do so. In order to invoque these refactorings, we rely on the feature of SOUL that
allows to manipulate objects from the underlying Smalltalk system inside logic clauses or terms.

For checking the preconditions, we rely on the separation of the refactoring from its precondi-
tions, provided by the refactoring browser:

checkPreconditions(removeParameter ,<?parameter ,?class ,?selector >) if
symbolAsString(?parameter ,?parString),
[(Refactory.Browser.RemoveParameterRefactoring

removeParameter:?parString in:?class selector:?selector)
preconditions check ]

By this means, we wrapped all the refactorings supported by the Refactoring Browser, mentioned
in section 2.2.3. Most of them are simple to wrap as they receive parameters we are used to
such as class names, variables names and selectors.

But a small group like extractMethod or inlineTemporary, are based on user selection from source
code, and they receive as parameters the interval of the source code positions of the portion that
needs to be extracted or inlined. This is not a problem at all, because the method representation
of SOUL includes these intervals as part of all components of the parse tree. This means that the
source code intervals are part of the nodes containing statements, message sends, assignments,
literals or variables. For example the predicate for extracting code is the following:

extractMethod(<?from,?to >,?selector ,?class) if
equals(?interval ,[Interval from:?from to:?to]),
[(Soul.ExtractMethodNoQuestionRefactoring extract:?interval

from:?selector in:?class) execute]

Here we also mannipulate Smalltalk entities in order to produce the correct parameters for the
refactoring. We use our representation of an interval that is a list with ?from and ?to values for
generating a Smalltalk interval object that the refactoring needs as parameter.

One example of how we use the refactoring extractMethod by logic means is the predicate
extractMethodWithName. This predicate receives the interval of the code that needs to be ex-
tracted, and the selector and the class containing this code. If the name the user wants to put
on the extracted code is given, the predicate extracts the code and names it with that input. If



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 57

the name is not given, the predicate asks it to the user and returns it in the term ?toSelector.

3.4.2 Composite Refactorings

Many of the refactorings that solve the bad smells we detect, are not directly implemented by
the Refactoring Browser. However, some of them can be defined by composing the the ones
that are provided. Our approach relies on the definition of few atomic primitive refactorings,
that we compose with logic predicates by stating the sequences of refactorings that we need to
apply. These constructions are essential for the scalability of our approach, since it allow us to
add and to manage composite refactorings in a clear and flexible way, without hard-coding any
relation.

For defining composite refactorings, we determine which is the sequence of refactorings we need
to perform, and which ones are prerequisites of the others. We state these relations by using
the predicate requires:

requires(?context,?refactoring,?refactoringList)

Where ?refactoring is a primitive refactoring that requires a number of refactorings ?refactoringList
to be performed before it. The term ?context specifies for which context the requirement is
valid.

For actually executing the composite refactoring, we invoque the predicate applyRefactoring

that checks for nested refactorings that need to be performed before applying the desired one.
The predicate is the following:

applyRefactoring(?context ,<?refactoring ,?arguments >) if
requires(?context ,<?refactoring ,?arguments >,?listRequirements),
checkRequirements(?context ,?listRequirements),
?refactoring(?arguments)

This predicate retrieves the requirements of a refactoring, and check that they are fulfilled. If
this is the case, it directly applies the refactoring that it receives as parameter. The predicate
for checking the requirements is the following:

checkRequirements(?context ,<>).

checkRequirements(?context ,<?refactoring|?rest >) if
applyRefactoring(?context ,?refactoring),
checkRequirements(?context ,?rest)

The checkRequirements predicate has two cases: either the refactoring has no requisites, in



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 58

which case the predicate returns true, or the requisites are a list of refactorings that also have
to be checked. Actually, both the applyRefactoring predicate and the requires, uses an extra
variable that stores the environments, for trespassing the variables while executing the composite
refactorings.

Replace Method With Method Object

For example, the smell Too Many Temporaries can be solved with the refactoring Replace Method
With Method Object. This refactoring can be composed in the following way:

• First we need to create a new class with addClass, and to add an instance variable to
the class that contains the method with addInstanceVariable. Note that none of these
refactorings have any prerequisites with respect to this context, and that the order in
which they are applied does not matter.

• Then we are able to apply the refactoring moveMethodToComponent, which moves the
method that has too many temporaries to the newly created class, leaving a reference in
the created instance variable.

• The temporaries of the moved method can now be transformed into instance variables
using the refactoring temporaryToInstanceVariable.

When the refactoring replaceMethodWithMethodObject is called with parameters ?class and
?selector, we trigger the predicate applyRefactoring. The prerequisites are logically stated as
follows:

requires(tooManyTemporaries ,
replaceMethodWithMethodObject ,<?class ,?selector >,
<allTemporariesToInstanceVariables ,<?newClass ,?newSelector >>)

requires(tooManyTemporaries ,
allTemporariesToInstanceVariables ,<?newClass ,?newSelector >,
<moveMethodToComponent ,<?selector ,?class,?instanceVariableName ,

?newClass ,?newSelector >>)

requires(tooManyTemporaries ,
moveMethodToComponent ,<?selector ,?class ,?instanceVariableName ,

?newClass ,?newSelector >,
<addInstanceVariable ,<?instanceVariableName ,?class >,

addClass ,<?newClass ,?superclass ,?subclasses >>)

requires(tooManyTemporaries ,
addInstanceVariable ,<?instanceVariableName ,?class >,
<>)



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 59

requires(tooManyTemporaries ,
addClass ,<?newClass ,?superclass ,?subclasses >,
<>)

Note that the refactoring Replace Method With Method Object does not need to check for pre-
conditions, as the method is moved to a newly created class, where no name clashes can occur.
The only checking have to be made when the user finally applies the refactoring and provides
the names for the class and the instance variable.

Duplicated code

The refactorings we perform for unifying and removing duplicated code are quite complex, and
depend on the places where the duplicated code was found.

We contemplate three cases of duplicated code: inside the same class, between a superclass and
its subclasses and between sibling classes. In all these cases, we have to take into account that
the duplicated code statements we find can be either code segments or whole methods. With
the refactoring extractCode, duplicated segments are extracted and whole methods are extracted
depending on if they are overriding or overridden methods or if there are other methods with
the same name.

In the case of Duplicated Code in Class, this process ends up with no duplicated code, because
of the characteristics of the extractMethod refactoring in the Refactoring Browser. If we extract
code that is already present in the class, the Refactoring Browser automatically replaces the
duplicated code. An improbable case that can occur is that we find two exactly duplicated
methods in the same class but with different names. In this case, after applying the refactoring
extractCode, we propose to the user to remove one of the methods with removeMethod, or the
replace the body of one of them with a call to the other by using extractMethod, as shown in
figure 3.8.

extractCode


removeMethod


extractMethod


Figure 3.8: The primitive refactorings that compose the refactoringDuplicationInClass refactor-
ing, for solving Duplicated Code in Class

The detection of Duplicated Code in Subclasses and Duplicated Code in Siblings requires several



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 60

primitive refactorings, whose dependences are depicted in figures 3.9 and 3.10 respectively. In
these cases we allow coherent differences related to literals and message sends. For making the
code equivalent to the parameters of the Refactoring Browser, the first prerequisite is to apply
the refactoring extractDifferences. This refactoring traverses the parse trees of all duplicated
segments of code, and when a different literal or message send is found, it is extracted and
replaced by a message call in all segments, with the same name. This generates duplicated
code, now with identical structure, except for the temporary variables and parameters, which
are equivalent to the Refactoring Browser, as long as they are handled consistently. Afterwards
we apply the refactoring extractCode, as we did with the Duplicated Code in Class case. The
following step is to unify the names of all the methods and extracted code. The refactoring uni-
fySelectors uses the existing refactoring renameMethod, for ensuring that all duplicated methods
end up having the same name.

For the case of Duplicated Code in Subclasses the last step is to apply the refactoring pushUp-
Method which will automatically remove the code duplication, after all the other primitive
refactorings have been applied. This is shown in figure 3.9.

extractDifferences
 extractCode
 renameMethod
 pushUpMethod


Figure 3.9: The primitive refactorings that compose the refactoringDuplicationInSubclasses
refactoring, for solving Duplicated Code in Subclasses

For Duplicated code in Siblings we need to analyze the following:

• If the selected method is already defined in the superclass, or the code is not duplicated
in every subclass, propose addClass to create an intermediate class and pushUpMethod.

• If the method is defined in the superclass propose replaceSuperclassDefinition.

The sequence for proposing these refactorings is shown in figure 3.10.

extractDifferences
 extractCode
 renameMethod


addClass


replaceSuperclassDefinition


pushUpMethod


Figure 3.10: The primitive refactorings that compose the refactoringDuplicationInSiblings refac-
toring, for solving Duplicated Code in Siblings



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 61

Other Refactorings

Other refactorings that are easy to implement are the following:

Replace Temp with Query. This refactoring replaces temporary variable assignments with
query methods. For generating it, we first extract what is assigned to the temporary using
extractMethodWithName, for asking the user the name of the method that will be created.
Then we apply inlineTemporary to the temporary variable.

Replace Magic Number with Query. This refactoring replaces all occurrences of a given symbol
by a call to a query method. This is accomplished by extracting all the occurrences of
the symbol in the class using extractMethod. The first time this refactoring will ask the
user for the name of the extracted query method, which will only return the value of the
symbol. The following times the refactoring will detect that there already exists a method
that returns the value of the symbol, and it will automatically replace the symbol by a
call to the query method.

Remove Method In Hierarchy. This refactoring does not use the Refactoring Browser’s Remove
Method refactoring, as it can only be applied if the method is not called anywhere in
the system. We are interested in removing the method without checkings, assuming that
some detected smell needs it this way, like the Abstract Method not Implemented. We use
a predicate provided by SOUL called removeMethod that does not do any kind of checking.

Add class With Interface. This refactoring adds a class with empty method definitions, that
should be filled in by the user. The names of the methods to add are received as parameter.

3.5 Tool Support

Providing tool support for our approach is indispensable, for hiding the logic programming
environment from the user, and to provide him with a straightforward and easy to use interface.
The developer can select any class of the system to be analyzed for bad smells and possibilities of
refactoring. The analysis should be performed automatically without user intervention, resulting
in a list of refactorings that can be applied. The developer must then be able to pick out the
refactoring(s) he wants to apply, and the tool makes the necessary transformation with a minimal
amount of user input.

To provide this kind of tool support, we integrated our logic meta programming approach with
the interface of the Refactoring Browser, which is the standard browser for the VisualWorks
Smalltalk integrated development environment. This browser was augmented with a SOUL
tab (see figure 3.11), which exists next to the other tabs already available (such as the Source,
Comment, Code Critic and Hierarchy Diagram tabs). The SOUL tab contains a list of logic
queries that can directly be invoked by the user from within the Smalltalk browser. Upon
selection of a class in the upper left pane, the developer can select a number of logic queries (or



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 62

Figure 3.11: Tool support for detecting bad smells and proposing refactorings in Smalltalk

all of them) and click on the Execute button. As a result, the logic query will be executed and
the results will be shown in the lower right pane.

As can be seen in figure 3.11, we have used five categories of logic queries in our experiments,
which will be discussed in the following sections: Bad Smells, Refactorings, Propose Refactorings,
Configure Thresholds and Metrics.

3.5.1 Bad Smells

This category contains all the queries that we implemented for detecting particular bad smells,
defined in section ??. For example, Is the interface inappropriate? invokes the logic predicate
inappropriateInterface. The result of applying a bad smell query is a list of smell results,
that includes the entities related to the smell, and the most relevant indicators such as the
number of duplicated statements, or the length of a Message Chain, that allow the user to



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 63

realize which smells are the strongest ones. It should be noted that we explicitly allow the
user to select a number of bad smells (or even one single bad smell) to be checked, instead of
automatically checking for all of them. This is because the user may already know that a specific
bad smell does not occur in a particular class hierarchy, or he does not consider that the smell
is important enough. A more technical reason is that the current implementation of SOUL is
not optimized, and as a consequence, checking for all bad smells on large software systems may
take quite some time.

3.5.2 Refactorings

This category provides an alternative way to access the refactorings, that are otherwise proposed
to the user after the detection of a bad smell. For example, Add subclass executes a logic
predicate that invokes the built-in refactoring that creates a new subclass of the current class,
and allows the user to select which of the current subclasses should become children of the new
subclass.

3.5.3 Propose Refactorings

This category contains only one query Propose refactorings for this class. When executed, it
invokes the predicate proposeRefactoring. In other words, it computes all bad smells in the
context of the selected class and proposes refactorings for these bad smells. In figure 3.11 we
see that this returns 4 results for the OrderedCollection class: 3 instances of the user-defined
refactoring replaceMagicNumber, and one instance of the composite refactoring pushUpMethod-
ToNewClass. Note that in the list of proposed refactorings, only those refactorings are mentioned
for which the preconditions are satisfied. The latter is needed to avoid proposing refactorings
that will be refused by the refactoring engine. Therefore, we need to access the preconditions of
each refactoring in the refactoring engine separately.

From the list of all proposed refactorings, the user can select a refactoring, that can be ex-
ecuted directly. For example, in Figure 3.11 we see that selecting the composite refactoring
pushUpMethodToNewClass opens a new window in which a new superclass needs to be specified,
to which the method will be pushed up.

3.5.4 Configure Thresholds

An important characteristic of smells is that many of them depend on the user’s perception.
A way to discriminate when a bad smell is considered a bad smell or not is to provide user
configurable thresholds. We use these threshold values in many of our defined bad smells, both
for tuning the smells and making the detection process more efficient. In this category, the user
can configure all the threshold values, like the number of methods a class should have in order to
be considered as a large class, the amount of keywords to be considered in a parameter clump,



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 64

the amount of statements code should have or the ratios for the delegating methods of a middle
man.

3.5.5 Metrics

This category contains a number of logic queries that compute object-oriented metrics, as ex-
plained in section 3.1.3. These metrics can be used to detect those places in the code that are
worthy of further investigation because they are likely candidates for bad smells. Once these
locations in the source code have been identified, we can use the bad smell queries to analyze
these parts of the program in more detail.

3.6 Conclusions

In this chapter, we have explained how to support different steps of the refactoring process
using logic meta programming. Thanks to powerful features as backtracking and unification,
we can write complicated algorithms related to the structure of the code in a straightforward,
understandable and concise way. This includes the detection of bad smells, the proposal of
refactorings that can remove the bad smell, and the application of these refactorings.

By means of logic meta programming and the appropriate predicates, we have been able to define
nine bad smells completely and five of them partially, most of them highly time-consuming to
detect manually. There are four kinds of information that limit the number of smells we can
detect: the lack of typing information, the lack of dynamic runtime information, fuzzy definitions
and the lack evolutionary information.

Some of the bad smells that we do detect, like the different cases of Measured Smells or Specu-
lative Generality are not hard to determine by means of basic auditing tools. However we also
tackle the detection of more high level smells like Inappropriate Interfaces between a class and
its subclasses, Message Chains or Refused Interfaces, which are not easy to detect with the basic
tools.

In order to present the bad smell results to the user, we propose to weigh bad smells regarding
the experience of the user and the characteristics of the presented smells in the system. This is
highly necessary due the number of bad smells our automated tool can detect, so the user can
get an overview of how strong the presented smells are.

The following step, consists on proposing useful refactorings to the user. For accomplishing this,
we analyze the context of detected bad smells by using logic meta programming. We found that
most of the bad smells are solved directly with one or more refactorings without the need of
a deeper analysis. In this case all we need is to pass the entities related to the bad smell as
parameters to specific refactorings. Other case are bad smells like Inappropriate Interface or
Lazy Class, where we must perform some extra analysis over the related entities, like the amount



CHAPTER 3. REFACTORING PROCESS USING LOGIC META PROGRAMMING 65

of subclasses involved in the smell, in order to propose certain refactorings. However, for some of
the bad smells we detect, we cannot propose proper refactorings because this requires to analyze
information related to dynamic typing or the refactoring possibillities are to many and depend
highly on the users decision like the refactorings for the smells Large Class or Long Method.

The last step we perform in the refactoring process is applying automatically the refactorings
selected by the user. This is accomplished by relying on existing safe and efficient implemen-
tations, in this case provided by the Refactoring Browser. The refactorings of the Refactoring
Browser were wrapped into logic predicates and applied directly or by means of composition.
Composite refactorings can be defined using logical predicates that state which are the prereq-
uisite refactorings that need to be performed before applying a certain one. The composition
of refactorings is also necessary for the scalability of our approach. Relaying on the definition
of a few powerful primitive refactorings, our framework allows to compose them in a clear and
flexible way by stating their dependencies with logic meta-programming predicates. With this
approach we were able to implement some of the refactorings proposed by Martin Fowler, but
not all that we would have liked to, as many of them depend on human intuition or on typing
characteristics.

Our approach defines the bad smells, the proposition of refactorings and the composite refac-
torings in a declarative way, making them very readable, scalable and easy to maintain. For
adding more smells, refactoring propositions or composite refactorings, a few predicates have to
be defined that state how the code entities will interact.

The tool that supports the detection of bad smell detection with user configurable thresholds,
propose proper refactorings and apply the ones selected by the user is integrated in the Smalltalk
development environment, and allows the user to apply our logic queries in a user-friendly
environment.



Chapter 4

Experiments

This chapter discusses the experiments we have conducted to validate our approach over three
case studies with different characteristics: the Collection hierarchy from Smalltalk Visualworks,
the HotDraw Framework and SOUL, the application we use for reasoning about code. The
experiments consist of detecting the bad smells on the cases, analyzing the most interesting
results and checking whether the proposed refactorings are useful or not. These results also led
us to discussions like possible refactorings that were not proposed by our tool, the scalability of
our approach and the opportunities for cascade refactorings.

4.1 Case studies

To perform our experiments, we selected three different applications on which we detected bad
smells and refactoring opportunities using the tool described in the previous chapter.

SOUL Application. As a first application, we chose the SOUL application itself [56, 57], one of
which we have close contact with the developers. This enables us to assess the correctness
of the identified bad smells and the usefulness of the proposed refactorings. We used
version 3.0 of SOUL, which was the latest version at the time we started experimenting.
In this version, the implementation consists of 126 classes and 1627 different method
implementations, which makes it a small to medium-sized application.

Collection Hierarchy. The second selected application is the Smalltalk Collection hierarchy.
It is an essential part of the Smalltalk programming development environment, and as
such it is heavily optimized, and not much subject to changes. Therefore, it is interesting
to analyze this hierarchy to find out whether there are still any remaining bad smells and
opportunities for refactoring. We consider the classes in the hierarchy of collection present
in the bundle Base Visualworks, from Visualworks version 7.1. In total there are 94 classes
and 1842 methods.

66



CHAPTER 4. EXPERIMENTS 67

HotDraw Framework. A final application is HotDraw [9], a small-scale application framework
in the domain of structured drawing editors. HotDraw has undergone many evolutions,
and many different versions of it exist for different programming languages. Moreover,
it is a very popular, successful, well-documented and well studied framework. As a con-
sequence, it is very interesting to verify whether we can still identify some design flaws
in this framework. We are using version 4.5.1 which contains 69 classes and 886 method
implementations.

4.2 Detected Bad Smells

This section described the results of the experiments we performed over the three case stud-
ies. This includes two tables with a list of all the occurrences of bad smells present and their
respective indicators of how strong the smell is.

Of all the presented results, in the following sections we will focus on the occurrences of the bad
smells explained in detail in section 3.2: Unused Parameter, Parameter Clump, Inappropriate
Interface and Duplicated Code. We also discuss the refactorings that were proposed and which
ones were effectively applied to remove the bad smell.

4.2.1 Summary of Results

Tables 4.1 and 4.2 show the results of detecting bad smells on the three cases. The first column
contains the name of the detected bad smell. The bold numbers correspond to the amount of
bad smells found, and the italics are the average of the indicators of how strong the smell is.
For example, in the case of Too Many Instance Variables, the Collection hierarchy presented 7
cases of classes with this characteristic. Five of the classes have five instance variables, one has
six and one has seven. This gives an average of 5.4 instance variables, which is the number in
italics. Note that we only take into account the detected cases for calculating the average of the
indicators.

The threshold values for the bad smells were subjectively determined. Here we give the values
and explain the indicators of the ones we will treat in more detail (the definition of the indicators
of the other smells can be found in appendix A):

• Unused Parameter. This smell has no threshold values. The indicator is the number of
selectors that receive the parameter but do not use it.

• Parameter Clump. Considers parameter clumps with more than 4 parameters in more
than 4 methods of a class. The indicators are the amount of parameters that conform the
clump, and the amount of methods in the system where the clump was found.

• Duplicated Code. Considers duplicated segments of 2 sentences or more. The indicators
are the amount of statements that present duplicated code, and the places where it was



CHAPTER 4. EXPERIMENTS 68

Collection HotDraw SOUL

Too Many
Instance Variables

7 variables:5.4 8 variables:5.8 11 variables:7.6

Too Many
Methods

21 methods:57.9 8 methods:54.8 25 methods:58

Too Many
Statements

10 statements:14.1 4 statements:13.25 6 statements:17.5

Too Many
Temporaries

32 temporaries:6.6 6 temporaries:6 5 temporaries:5.6

Long
Parameter List

18 parameters:9.8 0 - 9 parameters:6.8

Redundant
Parameter

27 calls:2.6 5 calls:2 10 calls:2.2

Magic Number 34 appears:7.4 16 appears:4.7 26 appears:7

Duplicated Code
in Class

40
statements:2.6

7
statements:2.1

17
statements:2.5

places:1.4 places:1 places:1.2
Duplicated Code
in Subclasses

40
statements:2.5

6
statements:2.5

15
statements:2.8

places:1.5 places:2 places:2.1
Duplicated Code
in Siblings

14
statements:2.6

8
statements:2.1

17
statements:2.5

places:1.9 places:2.3 places:1.4

Data Class 0 - 1 methods:6 0 -

Parameter Clump 2
parameters:7.5

0 - 1
parameters:4

places:8.5 places:96

Refused Interface 1
ratio:0.3

0 - 0 -
methods:9

Refused
Inheritance

22
ratio:0.9

11
ratio:0.9

11
ratio:0.9

self sends:30.1 self sends:20.3 self sends:40
Inappropriate
Interface

9
interface:3.6

1
interface:2

1
interface:3

subclasses:2.1 subclasses:2 subclasses:2

Table 4.1: (table 1 of 2). Experimental results for detecting the bad smells in the following
categories: Measured Smells, Duplication, Data and Interfaces



CHAPTER 4. EXPERIMENTS 69

Collection HotDraw SOUL

Feature Envy 8
ratio:0.9

2
ratio:0.8

5
ratio:0.9

accessors:7.6 accessors:7 accessors:11.4

Message Chain 1 length:5 1 length:5 2 length:5

Middle Man 1
ratio:0.3

1
ratio:0.5

1
ratio:0.6

delegators:4 delegators:8 delegators:6

Lazy Class 4
methods:1

0 - 12
methods:1

inst. variables:0 inst. variables:0
method size:0.75 method size:0.39

Unused Parameter 6 not used:1.3 6 not used:2.2 48 not used:1.7

Unused Instance
Variable

0 - 0 - 5 not used:1

Abstract Method
Not Implemented

0 - 0 - 7
not
implemented:1

Odd Name 52 odd words:1 23 odd words:1 97 odd words:1.3

Parameter
Conditional

53 - 12 - 20 -

Nil Checking 13 nil checks:5.7 2 nil checks:3.5 3 nil checks:7

Table 4.2: (table 2 of 2). Experimental results for detecting the bad smells in the following
categories: Responsibility, Unnecessary Code and Conditional Logic



CHAPTER 4. EXPERIMENTS 70

found. For example, in the case of siblings, in how many siblings we found the same
duplicated code.

• Inappropriate Interface. Considers interfaces larger than 2 that are present in at least 2
subclasses and not in the superclass.

Regarding the first group of smells from table 4.1, that we consider in the larger classification
of measured smells, or highly related to metrics, we see that the Collection hierachy contains
much more occurrences than the other case studies. The amount of Too Many Temporaries
(with a threshold value of five temporaries) is very high, as well as the occurrences of Redundant
Parameters. SOUL has an intermediate number of bad smells of this kind, and HotDraw is has
definitively less bad smells of this kind. Moreover, HotDraw does not contain a single occurrence
of a long parameter list, considering a threshold of six parameters.

For duplicated code, the Collection hierarchy also has more occurrences than the others, even
though the indicators for all cases are low. In the three case studies the average size of duplicated
code is around two or three statements, and the average of places where the duplicated code is
found is around two.

In the data related smells, we observe that the only detected data class belongs to the HotDraw
framework. On the other hand, this framework doe not have any parameter clump, what can
be related to the fact that it does not have long parameter lists either. The other two classes
have parameter clumps, that are discussed later in this chapter.

Regarding last group, the interface smells, we only found one Refused Interface smell, and even
this occurrence has a very low refusal ratio (30% of canceled methods from the superclass). This
is a good sign of the status of the code we analyzed, as this smell is considered as very serious
by Fowler. The lighter smell Refused Inheritance based on the analysis of the self sends, has
more occurrences. Here the amount of self sends is very high (30, 20 and 40 for Collection,
HotDraw and SOUL respectively) and the ratios of refusenes are around 90%. However, relative
importance of this smell is low.

In first group of smells from table 4.2, we see that there are no many occurrences related to
responsibility. We found a number of classes that contain methods with Feature Envy, but in
practice we need more information than the ratio of usages of accessors in order to decide to
move a method from a class to another. There were very few occurrences of Message Chains
and Middle Mans, and the occurrences that were found had low indicators.

Regarding the speculative generality smells, the one that contains the largest amount of occur-
rences if SOUL. It is the only case studty that presents Unused Instance Variables and Abstract
Methods not Implemented. These smells were recognized as serious, and were all removed afer
their detection. SOUL also has more occurrences of the Lazy Class smell, which in some cases
corresponds to classes that group others but does not contain any behaviour, and in other cases
are subclasses with low amount specialization, but that this specialization is really needed.

The Parameter Conditional occurrences are many in the Collection hierarchy. In some cases the



CHAPTER 4. EXPERIMENTS 71

detection of this smell indicates places with clear possibilities for applying polymorphism, like
the example shown in A.19.

In the following sections we discuss in more detail the results for the smells Unused Parameters,
Parameter Clump, Inappropriate Interface and Duplicated Code.

4.2.2 Refactoring Unused Parameters

As we can see in table 4.2, all three case studies present unused parameters. We discuss them
here in more detail.

Collection

The Collection hierarchy contains five instances of the unused parameter bad smell:

• The intersectsFromY:toY: method in class SPActiveLines does not use its first formal
parameter.

• The firstIntersectionBetween:and: method in class SPActiveLines does not use its first
formal parameter.

• The errorSubscriptsBounds: method in class List does not use its single formal param-
eter.

• The asNumberFromFormatString: method in class CharacterArray does not use its single
formal parameter.

• The extraAttributesForDefinitionOf: method in class GeneralNamespace does not use
its single formal parameter.

Five removeParameter refactorings are proposed based on these bad smells. A closer inves-
tigation of the source code revealed that they should all be applied to make the code more
consistent.

HotDraw

The unused parameter bad smell occurred six times in the HotDraw framework:

• The ToolState class defines a number of methods that deal with events in the user in-
terface, such as pseudoEvent:, immediateEvent:, boundsEvent: and keyReleasedEvent:.
Each of these methods defines a parameter that represents the event that occurs. This
event parameter is not used in 4 methods of the ToolState class nor in any of the other
implementations with the same selectors.



CHAPTER 4. EXPERIMENTS 72

• The canConnectFromPoint: and canConnectToPoint: methods in class Figure do not use
their single formal parameter.

Based on these 6 bad smells, 6 removeParameter refactorings are proposed. The proposed refac-
torings for canConnectFromPoint: and canConnectToPoint: were effectively applied to remove
the parameters of these methods in class Figure.

Because the other 4 bad smells and proposed refactorings all occurred in the same ToolState

class, we decided to investigate this class in more detail. A closer look to the class reveals
that it defines 24 methods for handling events, which are also defined in class Controller from
the Smalltalk’s User Interface. Curiously, none of these selectors use the parameters that are
given to them. If ToolState becomes a subclass of Controller, all unused parameter occurrences
simply disappear. Therefore, the actual refactoring that needs to be applied is changeSuperclass.

SOUL

48 occurrences of the unused parameter bad smell were identified in the SOUL application. We
explain the classes which presents the highest amount of unused parameters.

• A number of reduceAction selectors like reduceActionForLiteral3: or reduceActionFor-

Temporaries2: are defined in the Parser classes SoulParser, SmalltalkTermParser and
QuotedCodeParser. The parameter is always of type nodes. There are 300 selectors with
the reduceAction prefix, and in 25 of these cases, the methods does not use the nodes

parameters they receive.

• The SymbioticMessageTerm class is the only one that defines the selector smalltalk-

MessageResolveWithUnknownReceiverIn:startAt:, and does not use any of its parameters.

• Both classes AbstractTerm and PosVariable defines the selector unifyWithUnderscore-

Variable:inEnv:myIndex:hisIndex:inSource: without using any of its parameters.

Based on these occurrences, 48 removeParameter refactorings are proposed to remove the unused
parameters.

The 25 occurrences found in the selectors with prefix reduceAction, correspond to generated
code, based on a given grammar. Any refactoring is impractical in this kind of code, in particular
the removeParameter refactoring.

In the case the selectors from the SymbioticMessageTerm class contains the message “self no-
tYetImplemented”. So this occurrence really corresponds to the Speculative Generality smell,
where functionality is being planned but is not yet implemented.

Regarding the AbstractTerm, after consulting with the developers we decided not to apply the
refactorings. The reason is that the keywords inEnv:myIndex:hisIndex:inSource: are consid-



CHAPTER 4. EXPERIMENTS 73

ered a coding convention for all selectors related to unifying code. We can apply the removePa-
rameter, but this would confuse the usage of the selectors and deteriorate the code.

For the other 13 cases we decided to apply the removeParameter refactoring, as in this case
there is no reason for the parameters remain unused.

4.2.3 Refactoring Parameter Clumps

When detecting the smell Parameter Clump, we found one occurrence in the Collection hierarchy,
and one in the SOUL application. The threshold values considered that the clump should consist
of at least four parameters, present in at least four selectors in the class.

Collection

We found the clump private:constant:category:initializer: in four selectors of class General-
NameSpace, which are also defined in the unrelated class Class. In both cases, the selectors where
the clump is present are related to the creation of static and shared variables, and the parameters
are treated consistently in all the implementations.

The proposed refactoring is introduceParameterObject, that receives as parameters the classes
GeneralNameSpace and Class, which contains the clump, and the list of parameters that compose
the the clump: <private:, constant:,category:,initializer:>. We apply the refactoring,
as conceptually all the parameters are attributes related to the defined variables, so they can be
transformed into instance variables of a coherent object.

SOUL

The clump inEnv:myIndex:hisIndex:inSource: was present in 96 selectors of 15 classes, the
majority in the AbstractTerm hierarchy as shown in figure 3.3. All selectors containing the
clump are related to the unification of terms.

The proposed refactoring is introduceParameterObject, which we do not apply, even if the pa-
rameters are treated consistently in all selectors. Due the fact that this smell was present in 96
selector, it had already been recognized by the developement team. However all these methods
are heavily used during the evaluation of logic queries, so the introduction of an object that
needs to be created several times in this process is not acceptable in terms of performance.

4.2.4 Refactoring Inappropriate Interfaces

For the Inappropriate Interface smell, we found occurrences in the three case studies. The
threshold values involved inappropriate interfaces with at least two subclasses sharing at least



CHAPTER 4. EXPERIMENTS 74

two selectors that are not present in the superclass nor understood by it.

Collection

Collection contains 10 inappropriate interfaces with different characteristics:

• There are three cases of inappropriate interfaces in the Collection hierarchy where all the
subclasses share an interface that is not present in the superclass. Class CharacterArray

has two subclasses Text and String which contain the selectors asParagraph and has-

ChangeOfEmphasis that are not defined in CharacterArray. The second case is the class
GeneralNameSpace, which does not declare the methods reorganize and absoluteReference

defined in its two subclasses NameSpaceOfClass and NameSpace. The third case are the
subclasses of ByteArray, BinaryStorageBytes and BOSSBytes that implement the meth-
ods longAt:put, replaceBytesFrom:with:, unsignedLongAt:, swapBytesWidth:, shortAt:,
unsignedShortAt:put:, shortObjectAt:from:baseIndex:, swapColumn:with:, objectAt:-

from:baseIndex:, unsignedLongAt:put:, unsignedShortAt: and longAt:, which are not
implemented in the superclass. Moreover, longAt:put, replaceBytesFrom:with:, unsigned-
LongAt:, swapBytesWidth:, shortAt:, unsignedShortAt:put:, swapColumn:with:, unsigned-
LongAt:put:, unsignedShortAt: and longAt: are duplicated completely in the two classes.

• Interfaces shared by some subclasses but not all of them. For example the ArrayedCollection
class contains two inappropriate interfaces which do not overlap. The subclasses RunArray
and List contain the selectors addFirst: and addLast:, while the subclasses TableAdaptor
and TwoDList contain eleven selectors that are not defined in ArrayedCollection.

• Interfaces shared by subclasses that overlap. The first occurrence consists in three sub-
classes FourByte, ByteEncoded and TwoByteString define the methods asIntegerArray and
sizeInBytes which are not part of the superclass. The second occurrence consists on four
selectors including the mentioned ones plus byteAt: and byteAt:put: which are defined
in the subclasses FourByte and TwoByteString.

For interfaces present in all subclasses, three addMethods refactorings are proposed, containing
the interface that is not present in the superclass. The three refactorings were applied, defining
the methods as abstracts in the superclass. For the subclasses of ByteArray, we expect the
detection of duplicated code to propose refactorings that remove the duplicated code, so we do
not take measures against it here.

For the cases, where inappropriate interfaces occur in some of the subclasses only, seven ad-
dMethods refactorings and seven addClass refactorings are proposed. For the cases where the
interfaces does not overlap we decide to apply the addClass refactorings.

For the case where there is overlap between the inappropriate interfaces results, we apply the
addClass refactoring for the interface shared by the three subclasses. This reduces the amount
of selectors involved in the inappropriate interface detected in the two subclasses FourByte and



CHAPTER 4. EXPERIMENTS 75

TwoByteString. We can add an intermediate class by hand to solve this smell (as the conditions
have changed, the addClass with four methods is no longer valid), or detect the bad smell again
to obtain new proposals, now with the new scenario.

HotDraw

Hotdraw only contains one inappropriate interface, of two selectors displayOutlineOn: and
displayFilledOn: that are defined in two subclasses of class Figure, RectangleFigure and
EllipseFigure.

The proposed refactorings are one addMethods to the class Figure, and one addClass between
Figure and the subclasses that share the interface.

A closer inspection of these methods reveals that they have segments of code in common. If
we search for other refactoring opportunities, this code duplication will be detected, and an
intermediate class will also be proposed for extracting the common code. In both cases the
intermediate class will be proposed and will be usefull for containing the duplicated code or
the missing interface. We decide to apply the refactoring, making it easier to extract common
behaviour in future refactorings.

SOUL

SOUL contains only one inappropriate interface that consists of the three selectors fixClean:,
printForCompileOn: and prettyPrintOn:scope: present in the two subclasses of Concludable-
Clause class: Fact and Rule.

The proposed refactoring is an addMethods refactoring with the three selectors as parameters.
A closer inspection made by the developers, showed that the method printForCompileOn: was
actually “dead code”, remaining from a previous release but now obsolete. We decided to apply
the refactoring removeMehod over the obsolete method, and the refactoring addMethods with
the other two selectors as parameters. The methods added in the superclass are declared as
abstract.

4.2.5 Refactoring Duplicated Code

Due the large amount of duplicated we found in our experiments, we will give one example
of duplicated code in the same class, in subclasses and in siblings for each case study. The
threshold considers duplicated code containing more than two statements.



CHAPTER 4. EXPERIMENTS 76

Collection

Duplicated Code in Class The class SequenceableCollection contains duplicated code
in the methods = and isSameSequenceAs:, where both of them receive a parameter named
otherCollection. The difference is the first statement of the method =, that does some extra
computations. The other three statements are exactly the same as the code of isSameSequenceAs:,
as we can see in the method definitions:

isSameSequenceAs : otherCollection
| size |
(size := self size) = otherCollection size ifFalse: [^ false ].
1 to: size do: [: index |

(self at: index) = ( otherCollection at: index) ifFalse: [^
false ]].

^true

= otherCollection
| size |
self species == otherCollection species ifFalse: [^ false ].
(size := self size) = otherCollection size ifFalse: [^ false ].
1 to: size do: [: index |

(self at: index) = ( otherCollection at: index) ifFalse: [^
false ]].

^true

The proposed refactoring for this case, when one duplicated code is a segment and the other is a
whole method is to extract the segment with extractMethod, and as the extracted code already
exists in the class, our extension of the Refactoring Browser’s extractMethod refactoring will
automatically replace the code with a call to the existing code instead of creating a new.

We apply this refactoring making the code clearer, increasing the possibility for reuse of the
system. The resulting code is the following, where the isSameSequenceAs: method remains the
same:

= otherCollection
self species == otherCollection species ifFalse: [^ false ].
^self isSameSequenceAs : otherCollection

Duplicated Code in Subclasses Class Dictionary and its subclass PoolDictionary contain
the same last four statements in the selectors add: and simpleAddBinding: respectively. The
code contains assignments, conditionals and other messages and differs only in the name of the
parameter they handle, as we can see in the code:



CHAPTER 4. EXPERIMENTS 77

"add: selector from class Dictionary"
index := self findKeyOrNil : key.
element := self basicAt : index.
element == nil

ifTrue : [ self atNewIndex : index put: anAssociation]
ifFalse: [ element value: anAssociation value].

^anAssociation

"simpleAddBinding : selector from class PoolDictionary"
index := self findKeyOrNil : key.
element := self basicAt : index.
element == nil

ifTrue : [ self atNewIndex : index put: aVariableBinding]
ifFalse: [ element value: aVariableBinding value ].

^aVariableBinding

The proposed refactoring is extractMethod in both classes, which ends up with the duplicated
code replaced with a message call to a method defined in the superclass. In this case we named
the extracted method actionForAdding:key:. The resulting code is the following, which replaces
both duplicated segments:

ŝelf actionForAdding: aVariableBinding key: key

Duplicated Code in Siblings The siblings BinaryStorageBytes and BOSSBytes are the sub-
classes of ByteArray, and they contain several identical methods. The ones detected with the
threshold values are replaceBytesFrom:with:, shortAt: and swapColumn:with, where all of them
are defined in the superclass as consequence of the addMethods refactorings from the Inappro-
priate Interface smell. A closer look to the subclasses allows us to discover several duplicated
methods of one statement.

The proposed refactoring are three replaceDefinitionInSuperclass and three addClass refactor-
ings. We decide to apply the first one, and also to replace the definition in the superclass of the
duplicated methods with one statement.

HotDraw

Duplicated Code in Class The class CompositeFigure contains three duplicated statements
at the end of the selectors add: and addAll:. This is half of the size of the methods, and includes
messages send to self, and a return at the end. A closer look to the selector addLast: reveals
that its last three statements are equivalent to the ones detected as duplicated, but instead of



CHAPTER 4. EXPERIMENTS 78

assigning the value send to the messages before, as in the other cases, it calculates it in the self
send itself. The equivalent codes of the three methods are the following:

"add: "
self invalidateRectangle : figureBounds.
self mergeBounds : figureBounds.
^aFigure

"addAll:"
self invalidateRectangle : figureBounds.
self mergeBounds : figureBounds.
^aCollection

"addLast:"
self invalidateRectangle : aFigure bounds.
self mergeBounds : aFigure bounds.
^aFigure

By applying the refactoring extractToTemporary applied to the message, we leave the code
identical to the other two methods.

The proposed refactoring is to extract both segments into a common selector with extractMethod.
We apply this refactoring, naming the new selector handlingFigureBounds:for:, and manually
extract the code of the addLast: method in order to unify more duplicated code. This leaves
the duplicated code replaced by a the call:

ŝelf handlingFigureBounds: figureBounds for: aFigure

Where handlingFigureBounds:for: is defined in the same class CompositeFigure.

Duplicated Code in Subclasses The class Figure and its subclass TextFigure contain three
statements of equivalent code in the selector menuAt:. The problem is that our approach for
detecting duplicated code allows different message sends whenever they are handled consistently
in the code. In this case, the three statements contains three different messages to self:

"class Figure"
self addLineColorMenuTo : mb.
self addFillColorMenuTo : mb.
self addLineWidthMenuTo : mb.

"class TextFigure"
self addJustificationMenuTo : mb.
self addVisibilityMenuTo : mb.
self addStyleMenuTo : mb.



CHAPTER 4. EXPERIMENTS 79

The proposed refactoring involves the extraction of these differences, generating three new meth-
ods that return different messages. This does not contribute to the clarity of the system, so we
do not apply this refactoring.

Duplicated Code in Siblings The siblings RectangleFigure and EllipseFigure contains
identical selectors displayFigureOn:, and identical bodies for the methods rectangle: and
ellipse:. A previous refactoring had already created an intermediate class between these sib-
lings and the superclass Figure, which contains several other subclasses.

There are two refactoring proposed: extractMethodToSuperclass with the selector displayFigureOn:
as parameter, and a renameMethod composed with a extractMethodToSuperclass having the
rectangle: and ellipse: selectors as parameters. We decide to apply both of them for reduc-
ing duplication and grouping more common behavior between these two siblings.

SOUL

Duplicated Code in Class The class UppedObject contains two methods with the same
body of three statements. The selectors are prettyPrintAsKeywordOn:scope: and prettyPrint-

AsFunctorOn:scope:.

Since both methods are used in the system, the proposed refactoring does not include to remove
one of the methods. The proposed refactorings maintain the interfaces of the methods, proposing
two extractMethod for replacing the body of one of them with a message call to the other.

We applied the extractMethod to the body of the prettyPrintAsFunctorOn:scope:, replacing it
with a call to prettyPrintAsKeywordOn:scope:.

Duplicated Code in Subclasses The class Soul.ListTerm and its subclass PairTerm contains
two nearly dupplicated methods: listPrintOn: and printOn: respectively. The differences are
that the method in the subclass contains one extra statement, and there is a different literal in
the segment. While the superclass writes ’,’ at the beginning of a stream, the subclass writes
’<’:

"class ListTerm"
listPrintOn : aStream

aStream write: ’,’.
termsequence terms first printOn : aStream.
termsequence terms last species == Factory current makeVariable

ifTrue:
[aStream write : ’|’.
termsequence terms last printOn : aStream]

ifFalse: [ termsequence terms last listPrintOn : aStream]



CHAPTER 4. EXPERIMENTS 80

"class PairTerm"
printOn : aStream

aStream write: ’<’.
termsequence terms first printOn : aStream.
termsequence terms last species == Factory current makeVariable

ifTrue:
[aStream write : ’|’.
termsequence terms last printOn : aStream]

ifFalse: [ termsequence terms last listPrintOn : aStream ].
aStream write: ’>’

The refactoring proposes to extract the differences (with the same name), defining the mes-
sage firstString both in the superclass and overriding it in the subclass. Now the codes are
equivalent, and the refactoring extracts all statements, except the last one, in the printOn:

method, replacing the code with a call to the method listPrintOn: defined in the superclass.
The resulting code is the following:

"class ListTerm"
listPrintOn : aStream

aStream write : self firstString.
termsequence terms first printOn : aStream.
termsequence terms last species == Factory current makeVariable

ifTrue:
[aStream write : ’|’.
termsequence terms last printOn : aStream]

ifFalse: [ termsequence terms last listPrintOn : aStream]

"class PairTerm"
printOn : aStream

self listPrintOn : aStream.
aStream write: ’>’

Duplicated Code in Siblings The siblings TermSequence and MultiPartFunctor are the only
subclasses of class AbstractTerm, which has several more subclasses. They contain equivalent
code in their selectors printForCompileOn:. The difference is the structures of the last line in
each method. The rest of the body, including a complex block expression and several message
sends, are equivalent, containing only one different literal, and one different message send, as
can be seen in section 3.2.7.

The refactoring includes the extraction of both the literal and the message send defined in the
siblings and the extraction of the common code. We decided to push up the extracted code to
an intermediate class.



CHAPTER 4. EXPERIMENTS 81

4.3 Discussion

These experiments provided a number of interesting results: We found all kind of bad smells
present in the three case studies, and several of them pointed to situations that were worthy of
restructurings. In this section we also discuss the possibilities of cascade refactorings and the
scalability of our approach. This section is mainly based on the discussions we maintained in
[53].

4.3.1 Cascaded Refactorings

During the analysis of the results, we observed that in some cases, the application of a particular
refactoring opens up possibilities for performing other refactorings. For example, by adding an
intermediate superclass for solving some of the Inappropriate Interface bad smells, it becomes
possible to factor out common behaviour related to duplicated code by applying pushUpMethod
refactorings, like the case present in HotDraw explained in 4.2.4 and 4.2.5. In this case, the
application of one particular refactoring opens possibilities for other refactorings to be applied.
This phenomenon is called cascaded refactoring opportunities [53]. The logic meta programming
approach naturally allows to detect cascaded refactoring opportunities. The example we mention
can be easily expressed as follows:

proposeRefactoring(?class, pushUpMethod, <?siblings,?selector>) if

proposeRefactoring(?, addClass, <?class,?>),

duplicatedCodeInSiblings(?class,?selector,?siblings)

where the duplicatedCodeInSiblings predicate determines which the ?siblings of class ?class

define a duplicated method named ?selector.

4.3.2 Scalability

In our experiments we considered three small to medium-scaled case studies, without experienc-
ing problems. However, a different situation is to analyze large software systems. In this section
we discuss how to adapt our approach to larger software systems in terms of efficiency and the
amount of proposed refactorings.

Detecting Bad Smells more Efficiently

A problem of our approach is that some of the logic rules to detect bad smells are very intensive
in computations. This makes it unfeasible to check them on large systems, as it would take
too much time before all bad smells have been detected. Therefore, we suggest to combine our
approach with more lightweight approaches that detect bad smells more efficiently.



CHAPTER 4. EXPERIMENTS 82

We can use object-oriented metrics to detect those places in the code that are likely candidates
for bad smells, as we saw in the Related Work section 2.3. Once these locations in the source
code have been identified, we can use our logic rules to analyse these parts of the program in
more detail.

For detecting code duplication, there are more efficient approaches available than with logic
predicates, as we saw in the Related Work section. We can use some of these techiques for
detecting duplicated code, and analyze the results with our logic predicates.

4.3.3 Managing the list of proposed refactorings

In practice, the result of our bad smell detection may lead to a large list of proposed refactorings.
Considering the smells analyzed in detail, only for the Collection hierachy we obtain 117 proposed
refactorings. This list is already difficult to handle, and if we consider more bad smells and
larger software systems this number will certainly increase. Even if we configure our threshold
values for mitigating this effect up to some degree, the amount of results we obtain is still
unmanageable. Moreover, one particular bad smell can often be remedied by a multitude of
refactorings, as shown by the refactorings proposed for the inappropriate interface or duplicated
code bad smells. The list of proposed refactorings will increase even more if cascaded refactoring
opportunities (as discussed previously) are taken into account.

We identify different ways to manage the size of this list:

• Induce an order on the proposed refactorings: the smell weighing predicate we defined in
section 3.2.8 can be used to determine which of the proposed refactorings will produce
a higher improvement on the code. The refactorings proposed for solving the strongest
smells should be presented in the first place, so the user can be sure that their application
will benefite the code more than the ones that follow.

• Present clearly the proposed refactorings that overlap, and eliminate the ones that become
obsolete. For example a removeMethod refactoring overlaps with a number of removePa-
rameter refactorings for the same method, since the application of the former refactoring
makes the latter one obsolete. Whenever a refactoring is applied, the list is recomputed
dynamically to remove obsolete refactorings that appear later in the list. To achieve this,
we need to compute dependencies between different refactorings, which is considered future
work.

• Check for refactoring opportunities and apply the corresponding refactorings regularly
(as suggested in [5]). Checking for refactoring opportunities should happen at the same
time as unit testing. The unit tests will then ensure the behavioural correctness of the
application, whereas the bad smell tests will ensure its “structural” correctness.

• If a large list of bad smells and proposed refactorings exists, it might also be helpful to
analyse the bad smells visually. This approach is suggested by van Emden and Moonen
[54], who combine the detection of bad smells in Java with a visualisation mechanism.



CHAPTER 4. EXPERIMENTS 83

4.3.4 More accurate proposed refactorings

Our current approach considers the bad smells that are detected and proposes a combination
of mutually exclusive refactorings that can be applied to remove them. By taking into account
more information on the context of the bad smells, we believe we can reduce the number of
refactorings in this combination, and help the developer in choosing the appropriate one. The
duplicated method bad smell for example, yields different proposed refactorings that take into
account the characteristics of the class that can be determined with metrics or deeper logic
analysis. This contextual information can also involve the simultaneous occurrence of the same
or other bad smells in the same or related software entities. For example, the inappropriate
interface and duplicated method bad smells in the Collection hierarchy overlap to some extent:
the replaceBytesFrom:with:, shortAt: and swapColumn:with: methods are duplicated and
are not part of the interface of the ByteArray superclass. If we refactor the duplicated code
first, the other smells disappear.

4.4 Conclusion

As we can see in tables 4.1 and 4.2, the detection of bad smells gave a number of occurrences
in the three case studies. The kind of bad smells present in each of them are consistent with
the characteristics of the application. For example the Collection hierarchy has more bad smells
related to the size of its code entities than the other cases. This can be related to the fact that
this hierarchy is a large library of container classes with a lot of funcionality. The high perfor-
mance provided by the Collection hierarchy may also have an influence in the larger amount of
duplicated code and interface related smells. On the other hand SOUL is an application which is
still being developed, so it is reasonable that it presents more smells related to speculative gen-
erality for example. The HotDraw framework, smaller in size than the other two cases presents
a considerably less smells in almost every category that the other cases. This is probably related
to the fact that HotDraw has been carefully designed with not much concern about performance
requirements.

From the cases that were studied in deepness, we learned that the proposed refactorings were not
always the ones that were needed for solving the bad smells. In some cases, the user needed to
perform some extra analysis to identify which refactoring was necessary. This was for example
the case for the ToolState class in HotDraw that gave rise to 4 proposed removeParameter
refactorings, while it sufficed to apply a single changeSuperclass refactoring to solve the problem.
This confirms the idea that refactorings should not be performed automatically, and that they
are complementary to human inspection. We can try to express the reasoning that made us
propose the changeSuperclass with logic rules, but we will never be able to cover all the cases a
human mind can imagine. On the other cases, the proposed refactorings were quite appropriate,
and after inspecting the code, we decided to apply most of them.

Based on our results, we can conclude that logic meta programming has proved to be a really
good method for detecting bad smells and proposing refactorings based on statical analysis.



Chapter 5

Conclusion

5.1 Summary and Conclusion

Applying refactorings in order to improve the internal structure of software is becoming a com-
mon practice in diverse object oriented software development environments, and there are several
tools that perform refactorings in an automated way. However there are much more decisions
involved than just applying the refactoring to the code. For example deciding when to apply
a refactoring, detecting where to apply it, which refactoring should be applied, assessing the
contribution of possible refactorings or evaluating the effect of the applied refactorings.

Some of these steps are difficult to automate, like assessing the effect of the refactorings before
applying them. This involves having very accurate definitions of the postconditions of the
refactorings, a situation that is not yet achieved by refactoring tools. The decision of when to
apply a refactoring also depends a lot on management decisions, and the common advice is to
refactor whenever it is necessary or when performing unit testing.

The contributions of this thesis are the following:

• The implementation of a logic framework for refactoring, that supports important steps
in the refactoring process.

• Our approach based on logics, is language independent to a large extent.

• Our approach integrates existing refactorings provided by the Refactoring Browser, but
can easily be redefined for other existing refactoring tools.

• The experiments we performed over the case studies proved that our approach is useful in
practice.

In this work we present a tool integrated with VisualWorks Smalltalk that detects bad smells
in the code for recognizing places where refactorings could be useful. The smells are analyzed

84



CHAPTER 5. CONCLUSION 85

in order to propose appropriate refactorings with the necessary parameters. This complements
the user’s intuition and helps him to apply refactorings in a more informed way, by detecting
automatically a number of refactoring opportunities that would be very hard to recognize by
manual inspection. In our approach we did not implement the refactorings themselves, but we
rely on existing behavior preserving transformations provided by the Refactoring Browser. To
evaluate the quality of applied refactorings, we can run the bad smells again and see the bad
smell is no longer present, and that other bad smells were not introduced.

The technique we used for querying and analyzing the code at the level of structural relations
is logic meta programming, a variant of logic programming. By reasoning with logic predicates
over source code entities, we managed to define a number of bad smells, propose refactorings
for them and we even defined composite refactorings in order to apply more complex ones than
the ones defined in the Refactoring Browser.

Our approach is language independent up to some degree. Even if most of the predicates
SOUL provides can handle object oriented entities from any language, some of them rely on
the dynamically typed characteristics of Smalltalk. The relation with the refactorings of the
Refactoring Browser is also relevant, but the refactorings we apply can easily be redefined over
other tools with similar characteristics.

In order to validate our approach, we performed experiments over three case studies of medium-
sized object-oriented applications in Smalltalk: The SOUL application itself, the Collection
hierarchy of Smalltalk Visualworks and the framework HotDraw. We detected a number of
smells, some of more relevance than others, but all of them indicating sections of code that were
worthy of attention. Even more, many of the proposed refactorings were quite useful in order
to solve the bad smells and improve the legibility of the code. The experiments also reflected
some characteristics of the selected case studies. We related many of the smells present in the
Collection hierarchy with efficiency reasons and the fact that it is a large library of utility classes
with a lot of functionality. In the SOUL application we found more smells related to speculative
generality than in the other applications, as it is an application still in development process. The
HotDraw framework, containing noticeably less smells than the others, still had an interesting
number of situations that could be improved.

5.2 Future Work

Some possible directions of future work in the areas of bad smell detection and refactorings are
analyzed in this section:

• Investigate the relation with design patterns: It is possible to detect deteriorated design
pattern implementations and propose adequate refactorings to correct them.

• More complex cases that were not taken into account for proposing refactorings can also
be stated as logic rules. For example, one changeSuperclass was a more suitable refactoring



CHAPTER 5. CONCLUSION 86

than four removeParameter in one of the experiments we performed (section 4.2.2). This
refactoring was determined by using human intuition, but we are convinced that this
kind of information can be encoded explicitly in logic rules as well, allowing us to further
increase the accuracy or usefulness of the proposed refactorings.

• Integrate our approach with dynamic analysis, could help for type detection and smells
that need run time information [23], such as Incomplete Library smell or the Semantic
Duplication smell mentioned in section 3.2.2.

• Part of our bad smell definitions can be directly ported to the version of SOUL that
analyzes Java code. In this statically typed environment, all bad smells that we did not
considered because the lack of typing information could be detected.

• To weight the detected bad smells is an important step for presenting the results properly
to the user. These results can be displayed either in the form of a list, as we do with our
tool, or in the form of graphic results as proposed in [54]. The predicate we presented in
section 3.2.8 for weighing smells is very simple, but it is possible to define a more precise
weighing algorithm.

Refactoring Related Future Work

• How to attach quality characteristics to the software (using metrics), determine whether a
refactoring improves the quality, and check whether the refactored software has improved
its quality characteristics.

• State the preconditions and postconditions of every refactoring with logical predicates, in
order to ease the composition of refactorings. The usage of logic predicates enforces the
language Independence of the approach and it results very natural in this context, as the
assertions are usually declared in logical manners and the translated to the language of
interest.

• Investigate what happens with composite refactorings if refactorings are changed or intro-
duced. What is the relation when adding or changing preconditions.

• Compute the dependencies between refactorings before presenting the possibilities to the
user. This allows to separate refactorings that overlap (if one is applied, the other one is
no longer valid) and to identify more clearly which refactoring opportunities can or will
give rise to other opportunities. This means to investigate which refactorings depend upon
other ones, and how and why this is the case.

• Investigate the efficiency of the application after applying refactorings to the code. Some-
times bad design smells are preserved in the code because the developers think that per-
formance of the application will be affected if they refactor them. A deeper investigation
of the effect on efficiency of different refactorings would help to dissipate these doubts.



Bibliography

[1] Cyrille Artho and Armin Biere. Applying static analysis to large-scale, multi-threaded java
programs. In Proceedings of the 13th Australian Software Engineering Conference, ASWEC
2001. IEEE Computer Society, August 2001.

[2] Dave Astels. Refactoring with UML. In Proceedings of the 3rd International Conference
eXtreme Programming and Flexible Processes in Software Engineering, pages 67–70, 2002.
Alghero, Sardinia, Italy.

[3] Kevin Atkinson. 12dicts. http://wordlist.sourceforge.net/12dicts-readme.html.

[4] Brenda S. Baker. On finding duplication and near-duplication in large software systems. In
Second Working Conference on Reverse Engineering, pages 86–95, Los Alamitos, California,
1995. IEEE Computer Society Press.

[5] Kent Beck. Extreme Programming Explained: Embrace Change. Addison Wesley, 2000.

[6] Keith H. Bennett and Václav Rajlich. A staged model for the software lifecycle. IEEE
Computer, 33(7):66–71, July 2000.

[7] Marko Boger, Thorsten Sturm, and Per Fragemann. Refactoring browser for UML. In
Proceedings of the 3rd International Conference on eXtreme Programming and Flexible
Processes in Software Engineering, pages 77–81, 2002. Alghero, Sardinia, Italy.

[8] Paolo Bottoni, Francesco Parisi-Presicce, and Gabriele Taentzer. Coordinated distributed
diagram transformation for software evolution. Electronic Notes in Theoretical Computer
Science, 72(4), 2002.

[9] John M. Brant. Hotdraw. Master’s thesis, University of Illinois at Urbana Champaign,
1995.

[10] Johan Brichau, Kim Mens, and Kris De Volder. Building composable aspect-specific lan-
guages with logic metaprogramming. In on Generative Programming and Component En-
gineering (GPCE), 2002.

[11] Gerardo Canfora, Aniello Cimitile, Maria Tortorella, and Malcolm Munro. A precise method
for identifying reusable abstract data types in code. In Proceedings of the Proceedings of the
International Conference on Software Maintenance 1994, pages 404–413. IEEE Computer
Society Press, September 1994.

87



BIBLIOGRAPHY 88

[12] Eduardo Casais. An incremental class reorganization approach. In O. Lehrmann Madsen,
editor, Proceedings of the European Conference on Object-Oriented Programming, ECOOP
1992, pages 114–132. Springer, 1992.

[13] Cincom. Smalltalk VisualWorks. http://www.cincomsmalltalk.com.

[14] Mariano P. Consens, Isabel F. Cruz, and Alberto O Mendelzon. Visualizing queries and
querying visualizations. SIGMOD Record, 21(1):39–46, 1992.

[15] Borland Software Corporation. Together control center.
http://www.borland.com/together/controlcenter.

[16] IntelliJ Corporation. Intellij idea. http://www.intellij.com/idea.

[17] João G. Del Valle. Towards round-trip engineering using logic metaprogramming. Master’s
thesis, Department of Computer Science, Vrije Universiteit Brussel, Belgium and Ecole des
Mines de Nantes, France, 2003.

[18] Pierre Deransart, Laurent Cervoni, and AbdelAli Ed-Dbali. Prolog: The Standard Reference
Manual. Springer-Verlag, 1996.

[19] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. Refactoring test
code. In M. Marchesi and G. Succi, editors, Proceedings of the 2nd International Conference
on Extreme Programming and Flexible Processes in Software Engineering (XP2001), may
2001.

[20] Theo D’Hondt, Kris De Volder, Kim Mens, and Roel Wuyts. Co-evolution of object-oriented
software design and implementation. In Proceedings of the International Symposium on
Software Architectures and Component Technology 2000, pages 207–224, 2000.

[21] Bart Du Bois and Tom Mens. Describing the impact of refactorings on internal program
quality, 2003.

[22] Thomas Dudziak and Jan Wloka. Tool-supported discovery and refactoring of structural
weaknesses in code. Master’s thesis, Technical University of Berlin, 2002.

[23] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically dis-
covering likely program invariants to support program evolution. Transactions on Software
Engineering, 27(2):1–25, February 2001.

[24] Johan Fabry. Supporting development of enterprise javabeans through declarative meta
programming. In Object-Oriented Information Systems. Springer, 2002.

[25] Richard Fanta and Václav Rajlich. Reengineering an object oriented code. In Proceedings
of the IEEE International Conference On Software Maintenance, pages 238–246. IEEE
Computer Society, 1988.

[26] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.



BIBLIOGRAPHY 89

[27] Erich Gamma, Richard Heml, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements od Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley Publishing Company, 1995.

[28] William G. Griswold. Program restructuring as an aid to software maintenance. PhD thesis,
University of Washington, 1991.

[29] Instantiations. jFactor. http://www.instantiations.com/jfactor.

[30] Object Technology International. The eclipse platform. http://www.eclipse.org.

[31] Stephen Johnson. Lint, a c program checker, 1978.

[32] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David Notkin. Automated
support for program refactoring using invariants. In Proceedings of the International Con-
ference on Software Maintenance ICSM 2001, pages 736–743, 2001.

[33] Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji Fukaya. A quantitative evaluation
of maintainability enhancement by refactoring. In Proceedings of the IEEE International
Conference on Software Maintenance ICSM, pages 576–585. IEEE, 2002.

[34] Mikael Lindvall and Kristian Sandahl. How well do experienced software developers predict
software change? The Journal of Systems and Software, 43(1):19–27, 1998.

[35] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the automatic detection
of function clones in a software system using metrics. In Proceedings of the International
Conference on Software Maintenance, pages 244–253, 1996.

[36] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development through
declaratively codified programming patterns. SEKE 2001 Special Issue of Elsevier Journal
on Expert Systems with Applications, 2001.

[37] Tom Mens, Tom Tourwé, and Francisca Muñoz. Beyond the refactoring browser: Advanced
tool support for software refactoring. In Proceedings of the International Workshop on
Principles of Software Evolution IWPSE 2003. ACM, 2003.

[38] Ivan Moore. Guru - A tool for automatic restructuring of self inheritance hierarchies.
In Proceedings of TOOLS-USA’95, Santa Barbara, (CA), USA. Prentice-Hall, Englewood
Cliffs (NJ), USA, 1995.

[39] Mel Ó Cinnéide and Paddy Nixon. Composite refactorings for java programs. Technical
report, Department of Computer Science, University College Dublin, 2000.

[40] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana Champaign, 1992.

[41] Santanu Paul and Atul Prakash. Supporting queries on source code: A formal framework.
International Journal of Software Engineering and Knowledge Engineering, 4(3):325–348,
September 1994.



BIBLIOGRAPHY 90

[42] .Net Refactoring. C# refactoring tool. http://dotnetrefactoring.com.

[43] Matthias Rieger, Stéphane Ducasse, and Georges Golomingi. Tool Support for Refactor-
ing Duplicated OO Code. In Object-Oriented Technology (ECOOP’99 Workshop Reader).
Springer-Verlag, 1999.

[44] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Publishing Company,
April 1996.

[45] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for smalltalk. Theory
and Practice of Object Systems, 1997.

[46] Donald Bradley Roberts. Practical Analysis for Refactoring. PhD thesis, University of
Illinois at Urbana Champaign, 1999.

[47] Chris Seguin. jRefactory. http://jrefactory.sourceforge.net.

[48] Frank Simon, Frank Steinbruückner, and Clause Lewerent. Metrics based refactoring. In
Proceedings of the 5th European Conference on Software Maintenance and Reengineering,
2001.

[49] Xtreme Simplicity. C# refactory. http://www.xtreme-
simplicity.net/CSharpRefactory.html.

[50] Sourceforge. Bicycle repair man, a refactoring browser for python.
http://bicyclerepair.sourceforge.net.

[51] Gerson Sunyé, Damien Pollet, Ives Le Traon, and Jean-Marc Jézéquel. Refactoring UML
models. In Proceedings of UML 2001, volume 2185 of Lecture Notes in Computer Science,
pages 134–138. Springer-Verlag, 2001.

[52] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A meta-model
for language-independent refactoring. In Proceedings of the International Symposium on
Principles of Software Evolution ISPSE 2000, pages 157–167. IEEE, 2000.

[53] Tom Tourwé, Tom Mens, and Francisca Muñoz. Detecting bad smells and refactoring
opportunities with logic meta programming. In Proceedings of the International Conference
of Software Maintenance and Re-engineering. CWI, 2003.

[54] Eva van Emden and Leon Moonen. Java quality assurance by detecting code smells. In Pro-
ceedings of the 9th Working Conference on Reverse Engineering. IEEE Computer Society
Press, 2002.

[55] William C. Wake. Refactoring Workbook. Addison-Wesley, August 2003.

[56] Roel Wuyts. Declarative reasoning about the structure of object-oriented systems. In
Proceedings of TOOLS USA’98, IEEE Computer Society Press, pages 112–124, 1998.

[57] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of Object-
Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel, 2001.



BIBLIOGRAPHY 91

[58] Xref-Tech. Xrefactory. http://xref-tech.com/xrefactory.



Appendix A

Bad Smell Definitions

The concrete examples given in this appendix are taken from the experiments erformed over the
Smalltalk Collection library, the SOUL application and the HotDraw framework. More details
are given in chapter 4 Experiments.

A.1 Large Class

For recognizing a large class, we have to detect two independent cases. Too Many Instance
Variables and Too Many Methods. The detection is metric-based and uses the metrics Number
of Instance Variables (NOIV) and Number of Implemented Methods (NOIM).

The bad smell predicates are the following:

badSmell(<largeClass,tooManyInstanceVariables>,

?class, <?class>, <?numberInstanceVariables>)

badSmell(<largeClass,tooManyMethods>, ?class,

<?class>, <?numberMethods>)

This predicates checks that the metric value present in the class is larger than the threshold
value configurable by the user.

A.2 Long Method

Like Large Class, this is a highly metric-related smell. We take into account the amount of
temporaries and statements of the method. We use the metrics Number of Statements (NOS)
and Number Of Temporaries of Method (NOTM).

92



APPENDIX A. BAD SMELL DEFINITIONS 93

The bad smell predicates are:

badSmell(<longMethod,tooManyStatements>, ?class,

<?class>, <?numberStatements>)

badSmell(<longMethod,tooManyMethods>, ?class,

<?class>, <?numberMethods>)

A.3 Long Parameter List

As shown in table 3.1, we address two cases of the smell Long Parameter List defined by Fowler:
Too Many Parameters and Redundant Parameter.

The long parameter lists are detected by using the metric Number Of Parameters of Method
(NOPM).

For detecting that a parameter is being redundant, we check if all the callers are sending the
same literal as parameter. This means we can use that literal value in the method body instead
of receiving it as a parameter. The more general case mentioned by Fowler is that the result
of the parameter can be requested through a message to an object we know. The difficulty is
to know what the result of the parameter is, without type information. Note that the checking
for literals is already pretty slow, as we have to check that all the senders in the system use the
same arguments.

In figure A.1 we see that the selector innerScanUpTo:ignore: is defined in three classes. The se-
lector is called from each class with the same literal arguments for both keywords innerScanUpTo:
and ignore:. In this case, the parameters are not needed and they can be inlined in the code.

SmaCCScanner


SoulScanner


innerScanUpTo:ignore:


QuotedCodeScanner


innerScanUpTo:ignore:


Scanner


QuotedCodeSmalltalkScanner


innerScanUpTo:ignore:


innerScanUpTo:$' ignore:nil
 innerScanUpTo:$' ignore:nil
 innerScanUpTo:$' ignore:nil


Figure A.1: Redundant Parameters in the selector innerScanUpTo:ignore:

The bad smell predicates for detecting these smells are:

badSmell(<longParameterList,longParameterList>,



APPENDIX A. BAD SMELL DEFINITIONS 94

?class, <?class,?selector>, <?numberParameters>)

badSmell(<longParameterList,redundantParameter>,

?class, <?class,?selector,?keyword>, <?numberCalls>)

When a parameter is redundant, we return the number of calls that are made to the selec-
tor that contains the parameter, as a sign of how bad the smell is. A method that has ten calls
with the same literal is worse than one that has only one or two.

A.4 Magic Numbers

The Magic numbers smell is part of the Duplicated Code smell, and consists on a special number,
string or other value that recurs many times in the code. For example, the class ByteArray in
the Collection hierarchy of Smalltalk uses 21 times the magic number 32. Of course 32 has
a meaning in the context of a ByteArray, but the code could be cleaner if the number were
obtained from a method call.

The bad smell predicate has the form:

badSmell(<duplicatedCode,magicNumber>, ?class,

<?class,?magicNumber>, <?appears>)

This predicate retrieves the corresponding threshold value, and uses an the auxiliary class-

WithMagicNumber for retrieving the magic numbers of the class. This predicate takes all the
methods from the given class, collect strings and numbers that are used by the methods, and
count the total occurrences of magic numbers. This predicate returns one result per magic
number found.

A.5 Code Duplication

This smell is explained in detail in section 3.2.7.

A.6 Data Class

A data class contains just fields, getters, setters and nothing else. Fowler proposes that a class
with this characteristics should get more behavior with refactorings. An example of data class
was found in the HotDraw framework, the FigureAttributes class, which contains 3 instance
variables with its corresponding getters and setters.

The specific predicate for detecting a data class is the following:



APPENDIX A. BAD SMELL DEFINITIONS 95

dataClass(?class , ?numberOfMethods) if
class(?class),
one(instanceVariableInClass(?,?class)),
not(

one( and( or(methodInClass(?method ,?class),
classMethodInClass(?method ,?class)),

not(accessingMethod(?class,?method ,?)) ))),
metric(NOIM,class(?class),?numberOfMethods)

This predicate states that the class must have at least one instance variable, and there can be
no method that is not an accessor or mutator. The generic bad smell predicate that uses the
dataClass predicate is:

badSmell(<dataClass>, ?class, <?class>,

<?numberMethods>)

In this case, the indicator of how strong the smell is, is the amount of methods, this is ac-
cessors and mutators that the data class defines.

A.7 Parameter Clump

This smell is explained in detail in section 3.2.5.

A.8 Refused Inheritance

This case of the Refused Bequest smell states that a subclass is not using enough methods from
the ones provided by the superclass. This is a minor smell considered by Fowler, but still it
gives indications of a possible hierarchy disorder.

For detecting this smell, we consider the methods of the higher hierachy that the subclass
actually is using. We want to know if the class is using methods understood by the superclass,
or only using overridden versions. For this we count the occurrences of the following messages
in the class:

• The calls made to the self variable, where the call is a method that is being overridden
in the class, but contains a super call.

• The calls made to the self variable, where the call is a non-overriding method that is
present in the superclass, or understood by it.



APPENDIX A. BAD SMELL DEFINITIONS 96

With this information, we calculate the ratio of calls made to self, that are not using the
information provided by the superclass.

For obtaining more interesting results, we use user-defined threshold values for the allowd ratio
and for the minimum amount of self calls.

For example in the class TwoDlist of the Collection hierarchy, there are 14 messages sent to
self, where none of them is understood by the superclass.

The bad smell predicate is the following:

badSmell(<refusedBequest,refusedInheritance>,

?class, <?class>, <?refusedRatio,?numberSelfSends >)

A.9 Refused Interface

A subclass that refuses its interface is considered a much worse smell than a subclass that
refuses its inheritance by a low usage of methods. The smell Refused Interface consists on
a subclass that cancels methods of the superclass. This cancellation can have several forms:
empty bodies, “should not implement” messages, error messages or abstracted methods. For
example the class SortedCollection in figure A.2 cancels nine methods inherited from superclass
OrderedCollection.

OrderedCollection


addFirst:

add:after:


addAllFirst:


at:put:


changeSizeTo:


addAllLast:


addLast:


add:beforeIndex:


add:before:


SortedCollection (27 methods)


(
shouldNotImplement
)


(
shouldNotImplement
)


(
shouldNotImplement
)


(
self error message
 )


(
shouldNotImplement
)


(
shouldNotImplement
)


(
shouldNotImplement
)


(
shouldNotImplement
)


(
shouldNotImplement
)


Figure A.2: Refused interface from the class SortedCollection

The code of the auxiliary predicate that calculates the refused interface of a class is the following:

refusedInterface(?class ,?methodList ,?ratio ,+?thresholdRatio) if



APPENDIX A. BAD SMELL DEFINITIONS 97

findall(?method ,and(methodInClass(?method ,?class),
refusedMethod(?method)),?methodList),

length(?methodList ,?numberRefusedMethods),
metric(NOIM,class(?class),?numberOfMethods),
ratio(?numberRefusedMethods ,?numberOfMethods ,?ratio),
greaterOrEqual(?ratio ,?thresholdRatio)

This predicate finds all the methods in the class that are being refused. It also returns the list
of the methods that were canceled, for future usage in refactorings.

The auxiliary predicate refusedMethod receives a method and checks that the method has a
canceled form (empty body, should not implement, error message or abstract). Then it checks
that at least one class in the upper hierarchy implements the method in a proper way (this
means, it is not canceled) and that no class in the lower hierarchy implements it properly.

badSmell(<refusedBequest,refusedInterface>,

?class, <?class,selectorList>,

<?refusedNumber,?refusedRatio>)

A.10 Inappropriate Interface

This smell is explained in detail in section 3.2.6.

A.11 Feature Envy

Feature Envy is when a method of one class seems more interested in the attributes (usually
data) of another class than in its own class.

Logically, we state this as follows: A given method uses a high ratio of accessor messages from
a certain class, over all the accessors that are used in the class. For detecting which of the
messages used by the class are accessors, we select the messages sent that does not include any
argument, and check if they are accessors to an instance variable using the accessor predicate.
In the case of accessors that are only defined in one class, this approach works fine. If the
accessor is defined for more than one class, we only take into account one of them. This is
related to the lack of typing information, as we do not know statically exactly which accessor is
being used.

For obtaining more interesting results, we use user-defined threshold values for the minimum
amount of accessors we should consider, and for the envy ratio of accessors sent towards a
specific class.

The bad smell predicate for detecting this smell is:



APPENDIX A. BAD SMELL DEFINITIONS 98

badSmell(<featureEnvy>, ?class,

<?class,?selector,?enviedClass,?accessorList>>,

<?numberOfAccessors,?ratioEnvy>)

In this smell, the related entities are the class that is being envious, the class that is being
envied, and the list of accessors of the second class that the first one is using.

The indicators are the ratio of envy, or usage of a specific class and the number of accessors.

A.12 Message Chains

This smell states that too many messages in a chain are present. This makes the code compli-
cated to understand and to maintain. For example, this assignment was found in the Collection
class in the ?numberOfMessages method:
article := self class name first isVowel ifTrue: [’an ’] ifFalse: [’a ’].

It contains five messages sent in a row, which in this case is readable because many times
Smalltalk messages looks like natural language, but in the general case is a situation we should
avoid.

The code for detecting message chains is the following:

methodWithMessageChain(?method ,?receiver ,?msg,?args,?chainLength ,+?
thresholdNumber) if
methodWithOuterSend(?method ,?receiver ,?msg,?args),
nestedChain(?receiver ,1,?chainLength),
greaterOrEqual(?chainLength ,?thresholdNumber).

nestedChain(?receiver ,?num,?finalChainLength) if
equals(?receiver ,send(?nestedReceiver ,?msg,<>)),
add(?num,1,?chainLength),
nestedChain(?nestedReceiver ,?chainLength ,?finalChainLength).

nestedChain(?receiver ,?num,?num) if
not(equals(?receiver ,send(?nestedReceiver ,?msg,<>)))

For detecting message chains, we first seek for messages that are not contained in any message
send. Then we recursively traverse the parse tree while checking that the receivers of the mes-
sage sends are also message sends. We return the chain and its length if it is larger than the
user-defined threshold.

badSmell(<messageChain>, method(?method),

<?class,?selectorm,?chain,?chainLength>,



APPENDIX A. BAD SMELL DEFINITIONS 99

<?numberOfMessages,?ratioEnvy>)

The ?chain value contains all the messages and receivers of the traversed chain. The problem
is that these receivers can not directly be associated with classes, so we are not able to identify
the other entities related to this smell.

A.13 Middle Man

A class is acting as a delegate, without performing useful extra work.

Logically we can say that more methods of a class are delegated to another object than handled
by itself. By delegation we mean one of the following:

• The method has only one statement where the parameters are sent as arguments to another
receiver.

• The method has only one statement, that returns the result of a sent message with the
parameters as arguments.

• The receivers of the sent messages are neither the class or its superclass.

For example the class Bag contains four methods that are only asking results to other object:

valuesAndCountsDo : aBlock
contents keysAndValuesDo : aBlock

removeAllOccurrencesOf : anObject ifAbsent : aBlock
^contents removeKey : anObject ifAbsent : aBlock

asSet
^contents keys asSet

includes : anObject
^contents includesKey : anObject

The predicate for detecting this smell is:

badSmell(<middleMan>, ?class,

<?class,?delegators>,

<numberDelegators,?ratioDelegators>)



APPENDIX A. BAD SMELL DEFINITIONS 100

A.14 Lazy Class

A class that is not doing enough work should be eliminated. It can be a class that was downsized
during refactorings, or a class that was added because of changes, that were planned but not
made. Like with the measured smell category, here we use only metrics to detect if a class is
too light. We use the metrics Number of Instance Variables (NOIV), Number of Implemented
Methods (NOIM) and Number of Statements (NOS).

For detecting the smell, we check that the amount of instance variables is smaller than threshold,
that the amount of methods is smaller than threshold and that the size of each of these methods
is smaller than threshold. All these threshold are user-defined values.

An extreme example we detected is the class SignalCollection from the Collection hierarchy
that has no methods or instance variables at all. Other case is LargeArray, that has no instance
variables and only one method that returns the class Array.

The bad smell predicate is the following:
badSmell(<lazyClass>, ?class, <?class>,

<?numberMethods,?numberInstanceVariables,?averageSizeMethods>)

A.15 Unused Parameter

This smell is explained in detail in section 3.2.4

A.16 Unused Instance Variable

This version of the Speculative Generality smell checks if there are unused instance variables
present in the code. Logically, we retrieve the instance variables of a given class, and we check
that it is not used in any methods of the whole hierarchy. The key auxiliary predicate in this
case is methodUsesVariable, like in the Unused Parameter smell.

We found a few cases of unused instance variables in the SOUL application, but not more than
for the same class.

The bad smell predicate is:

badSmell(<speculativeGenerality,unusedInstanceVariable>,

?class, <?class,?instanceVariable>,

<?numberNotUsed>)

In this case, the indicator is the number of all subclasses in the hierarchy of the class, including
the class itself, that are not using the instance variable.



APPENDIX A. BAD SMELL DEFINITIONS 101

A.17 Abstract Method not Implemented

This smell detects methods declared as abstracts, which are not implemented (i.e. made con-
crete) anywhere in the hierarchy. It is a special case for the smell Speculative Generality, where
probably a developer was thinking on extending the functionality, which never happened. These
abstract methods should either be implemented somewhere in the hierarchy or simply be deleted.

Class Factory in the SOUL application has four abstract methods which are not implemented
in its only subclass StandardFactory.

The code for detecting this smell was given as an example of using logic meta programming for
detecting design flaws in section 2.1.2 of the Context chapter.

The bad smell predicate is:

badSmell(<speculativeGenerality,abstractMethodNotImplemented>,

?class, <?highestClass,?abstractSelector>,

<?numberNotImplemented>)

Like in other cases, we return a common result for all occurrences of the smell in the hier-
archy. ?highestClass corresponds to he highest class in the hierarchy that declares the method
as abstract.

The indicator in this case is the number of times that the method is redeclared in an abstract way
in the hierarchym this is, the number of times that the method is redefined but not implemented.

A.18 Odd Name

It is difficult if not impossible to determine when a name is odd or not appropriate for the
context.

A heuristic for detecting uncommon word abbreviations or unclear names that does not mean
anything is to check the words that are present in the names of classes or methods. We check
if they are present in a large word list of common english words. We use the 2of12inf list
provided by [3], that contains english words taken from variate dictionaries, plus their inflections,
amounting 81.520 words.

Even if this approach is not based on the structure of the system, it is easy to implement and
fits in our logical framework.

For example, in the Collection hierarchy we detected classes with names like Ephemeron or
SPActive, and also methods with names like aisDisable or subrequisites, which are not present
in our word list.



APPENDIX A. BAD SMELL DEFINITIONS 102

In order to detect this bad smell for a given entity, we split the name by the capital letters (a
common delimiter between words used in object oriented programming) and check the words in
a valid dictionary list.

The generic bad smell predicates are the following:

badSmell(<speculativeGenerality,oddClassName>,

?class, <?class,?oddWordList>, <?numberOddWords>)

badSmell(<speculativeGenerality,oddMethodName>,

?class, <?class,?selector,?oddWordList>,

<?numberOddWords>)

Where ?oddWordList is the list of odd words found in the entity.

A.19 Switch Statement Smells

Switch statements in the code usually indicate procedural behavior. In Smalltalk there are no
switch messages, but there are still conditionals.

Using the auxiliary methodWithConditional, we detect Conditionals send to Parameters and Nil
Checking.

The predicate methodWithNilCheck checks that there is a conditional in the method, and the
receiver is a nil checking send. This smell indicates that there is an object receiving a number of
nil checking in a class, and different code is performed according to the result. Fowler proposes
that this kind of object could be refactored and replaced by a null object.

For example, in the classes List, CharacterArray, TableAdaptor and DependentList the variable
dependents receives eight, twelve and eight checks of wether the variable is nil or not, in the
context of a conditional call. The threshold value of the amount of nil checks over an object is
defined by the user.

On the other hand, the predicate methodWithParameterConditional retrieves the parameters of
a given method, and for each one of them, checks whether in the method there is a parameter
that is compared to a literal, and depending on the result, different code is executed. According
to Fowler, this behaviour can be replaced with polymorphism.

For example we found the following code in the class GeneralNameSpace, in selector mapClassType:.

mapClassType : typeName

typeName == # none
ifTrue : [^# beFixed ].



APPENDIX A. BAD SMELL DEFINITIONS 103

typeName == # objects
ifTrue : [^# beVariable ].

typeName == # bytes
ifTrue : [^# beBytes ].

typeName == # immediate
ifTrue : [^# beImmediate ].

typeName == # fixedSize
ifTrue : [^# beFixed ].

typeName == # variable
ifTrue : [^# beVariable ].

Note that we do not take into account nil checking over the parameter as this is a smell detected
by the previous predicate.

The generic predicates for detecting Switch Statements are the following:

badSmell(<switchStatements,nilCheck>, method(?method),

<?class,?selector,?nilCheckList>, <?numberNilChecks>)

badSmell(<switchStatements,parameterConditional>,

method(?method), <?class,?selector,?parameterCheckList>,

<?numberParameterChecks>)


