Issue Overview
This is a preprint of an article published

] JOURNAL OF SOFTWARE
Separatlon of concerns for MAINTENANCE AND EVOLUTION:

software evolution RESEARCH AND PRACTICE 2002,
Vol.14, pp. 311-315
URL: http://www.interscience.wiley.corr
Tom Mens!"*T and Michel Wermelinger 2}

L Dept. Computer Science, Vrije Universiteit Brussel, 1050 Brussels, Belgium
2 Departamento de Informdtica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

SUMMARY

This special issue reports on approaches that apply the idea of separation of concerns
to software evolution. In this context, separation of concerns allows us to separate
parts of the software that exhibit different rates of change or different types of change.
This makes it possible to provide better evolution support for those parts that have
a higher change rate, or to provide different evolution techniques for different views
on the software. Another common way to achieve separation of concerns is by raising
the level of abstraction to the level of software architectures, business rules and
metamodels. This makes software evolution more manageable. The above ideas emerged
as important conclusions of the workshop on Formal Foundations of Software Evolution,
which was co-located with the Conference on Software Maintenance and Re-engineering
in Lisbon in March 2001. Of the 12 original position papers, 5 have been selected for
revision and inclusion in this special issue of the Journal of Software Maintenance and
Evolution. Copyright (© 2002 John Wiley & Sons, Ltd.

KEY WORDS: software engineering, formal foundations, abstraction, rates of change

SELECTED PAPERS

This special issue contains five substantially revised and extended papers that have been
selected from the position papers of the workshop on Formal Foundations of Software Evolution

*Correspondence to: Dr. Tom Mens, Programming Technology Lab, Dept. Computer Science, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Brussel, Belgium.

tE-mail: tom.mens@vub.ac.be

fE-mail: mw@di.fct.unl.pt

Contract/grant sponsor: Tom Mens is a postdoctoral fellow of the FWO (Fund for Scientific Research -
Flanders, Belgium). Michel Wermelinger was supported by ATX Software SA and by Fundagdo para a Ciéncia
e Tecnologia and FEDER through project POSI/32717/00 (Formal Approach to Software Architecture). Both
guest editors participate in an FWO research network on Foundations of Software Ewvolution [4], and in
RELEASE, an European Science Foundation research network on software evolution [3].


tommens
This is a preprint of an article published in JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE 2002, Vol.14, pp. 311–315
URL: http://www.interscience.wiley.com/


SEPARATION OF CONCERNS FOR SOFTWARE EVOLUTION 1

[9]. This workshop was co-located with the 5th European Conference on Software Maintenance
and Re-engineering, and took place at the Centro de Congressos do Instituto Superior Técnico
in Lisbon, Portugal, on March 13th, 2001. Being an official activity of the research network on
Foundations of Software Evolution [4], the goal of the workshop was to get more insight into
how formal techniques can alleviate software evolution problems, and how they can lead to
tools for the evolution of large and complex software systems that are more robust and more
widely applicable without sacrificing efficiency. In total, 12 position papers were accepted for
the workshop, which have been collected in a technical report [8]. All but one position papers
were presented during the workshop, subdivided into 3 long and 8 short presentations.

The selected paper “Evolving Hypermedia Systems: a Layered Software Architecture” by
Garcia-Cabrera, Rodriguez-Fortiz, and Parets-Llorca presents an architecture to facilitate
evolution of hypermedia systems. The architecture is composed of three subsystems
(conceptual, presentation and navigation) and two abstraction levels (system level and meta
level).

The paper “Relating Functional Requirements and Architecture: Separation and Consistency
of Concerns” by Heckel and Engels proposes to use a formal metamodelling framework based
on graph rewriting to address evolution and consistency problems among functional and
architectural sub-models of the same system.

The paper “Separating Computation, Coordination and Configuration” by Andrade,
Fiadeiro, Gouveia, and Koutsoukos, presents a 3-layered architectural approach to run-time
software evolution based on the strict separation between computation, coordination and
configuration. They define a modelling primitive, called coordination contract, to encapsulate
the interaction between components in a way that is transparent to the components. In this
way, business rules, which are typically very volatile, can be specified and evolved separately
from the core domain concepts.

The paper “Change Impact Analysis to Support Architectural Evolution” by Zhao, Yang,
Xiang, and Xu, applies change impact analysis techniques, in particular slicing and chopping
techniques, to software architectures rather than the implementation code. The intention is to
visualise at an early stage what are the high level effects of change on the system. The authors
present an architectural slicing and chopping technique and apply it to systems described with
the WRIGHT architectural description language.

The paper “Behavioural Modelling of Long lived Evolution Processes - Some Issues and
an Example” by Lehman, Kahen and Ramil, explains how the understanding of the software
evolution process (i.e., the why and what) can be of great help in seeking to master and
improve the technical aspects of software evolution (i.e., the how). This is exemplified in
the use of system dynamics simulation models to examine, for example, the performance of
an organisation in charge of evolving a software product under different, policies. The model
presented suggests that complexity control is an important activity to ensure that the evolution
of a software product is sustainable.

Copyright © 2002 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 2002; 0:0-0
Prepared using smrauth.cls



2 T. MENS AND M. WERMELINGER

SEPARATION OF CONCERNS

All workshop conclusions are summarised in the official workshop report [9]. The main
conclusion of the workshop was that separation of concerns is needed to manage the complexity
of software evolution. This result emerged from nearly all position papers in one way or another.
Although the views taken in the various papers were very diverse, they all had in common
that they separate different concerns in order to facilitate software evolution.

Within the scope of software development, the term separation of concerns is typically
used to cope with the complexity of a program by separating its fundamental computational
algorithm (i.e., the basic functionality) from specific computing requirements (such as
concurrency, distribution, real-time constraints, persistence, error handling) [5]. These so-
called concerns typically cross-cut the basic algorithm, so separating them makes the software
more manageable. This gave rise to an entirely new research area and software development
paradigm, which is commonly referred to as aspect-oriented software development [1].

In the context of this special issue, however, the notion of separation of concerns should
be seen from a much broader perspective. When investigating the evolution of software, it is
often observed that different views on the software (e.g., architecture versus implementation)
may imply different types of evolution and, consequently, require different techniques to handle
them. It is also observed that different parts of the software evolve at different rates. Hence it is
important to focus on those parts that have the highest change rate since providing automated
support for the evolution of these parts will yield the highest benefit. A similar conclusion was
made during the 4th ECOOP Workshop on Object-Oriented Architectural Evolution [7], co-
located with the European Conference on Object-Oriented Programming. To guarantee that a
software architecture should be robust towards evolution and change as little as possible, the
following definition was proposed that emphasises this requirement: A software architecture is
a collection of categories of elements that share the same likelihood of change. Fach category
contains software elements that exhibit shared stability characteristics. Additionally, a software
architecture always contains a core layer that represents the hardest layer of change. It identifies
those features that cannot be changed without rebuilding the entire software system.

To summarise, in the context of software evolution, a concern may be any criterion that
allows us to separate parts of the software that exhibit different rates of change or that have
a different impact on evolution. In the contributions to this special issue, this separation of
concerns can take on a variety of forms.

e With their coordination contracts approach, Andrade et al. claim that the coordination
part, which represents business rules, evolves at a higher rate than the computation part.
This is because the business process supported by software is typically subject to rapid
evolution to cope with highly volatile business requirements.

e Garcia-Cabrera et al. investigate hypermedia evolution and propose a clear separation
between a conceptual subsystem, a presentation subsystem and a navigation subsystem.
They agree that for hypermedia systems the conceptual subsystem is the most stable
and the navigation system is likely to evolve the most frequent.

e Zhao et al. realise that the techniques and algorithms proposed to support change impact
analysis at source code level need to be revised significantly in order to be applicable at

Copyright © 2002 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 2002; 0:0-0
Prepared using smrauth.cls



SEPARATION OF CONCERNS FOR SOFTWARE EVOLUTION 3

an architectural level as well, and suggest a novel slicing and chopping algorithm for this
purpose.

e In order to master and improve the technical aspects (i.e., the how) of software evolution,
one needs to investigate and understand the software evolution process (i.e., the why and
what). This separation of concerns between the how and the why and what of software
evolution is suggested by Ramil and Lehman. They show that the techniques required
to understand the why and what may be quite different from techniques to deal with the
how of software evolution.

RAISING THE LEVEL OF ABSTRACTION

Another common denominator in all five papers of this special issue is that they do not
restrict themselves to mere evolution at implementation level (whether it be development-
time evolution of source code, or run-time evolution of executable code). Instead, all papers
propose to raise the level of abstraction at which to perform or understand software evolution.
In agreement with what is stated in [2], this can be seen as another important way to achieve
separation of concerns: “An abstraction facilitates separation of concerns: The implementor
of an abstraction can ignore the exact uses or instances of the abstraction, and the user of
the abstraction can forget the details of the implementation of the abstraction, so long as the
implementation fulfills its intention or specification.”

Below we give an overview of how the various approaches to software evolution proposed in
this special issue raise the level of abstraction:

e Andrade et al. provide coordination contracts as an extra level of abstraction on top
of the normal object-oriented programming constructs. By decoupling computation,
configuration and coordination at this level, business rules can be expressed in a more
natural and evolvable way.

e Zhao et al. raise the level at which the change impact analysis is performed (from
implementation level to architectural level). The goal is not only to get a better
conceptual grip on the problem, but also to focus on levels where changes can have
greater impact on the overall system.

e Heckel et al. and Garcia-Cabrera et al. rely on meta models as an extra level of
abstraction. This has the additional benefit that it can help with providing domain-
independent support for software evolution. For example, the same tool could be used for
different programming languages, or for different phases in the software life-cycle.

ACKNOWLEDGEMENTS

We thank all workshop participants for their contributions, and the authors of selected papers for
their efforts in making substantial revisions. We also express our gratitude to the many reviewers that
took the time to provide detailed comments on the papers submitted to this special issue. Last, but

Copyright © 2002 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 2002; 0:0-0
Prepared using smrauth.cls



4 T. MENS AND M. WERMELINGER

certainly not least, we thank Ned Chapin for inviting us to prepare this issue and supporting us during
the process.

AUTHORS’ BIOGRAPHIES

Tom Mens is a postdoctoral fellow of the Fund for Scientific Research - Flanders (Belgium) since
October 2000. He is the main coordinator of two European research networks on software evolution
[3, 4]. He obtained his PhD on “A Formal Foundation for Object-Oriented Software Evolution” at the
Programming Technology Lab of the Vrije Universiteit Brussel. His main research interest lies in the
use of formal techniques for improving support for software evolution, and he published several papers
on this research topic. For the European Masters in Object-Oriented Software Engineering, jointly
organised by the Vrije Universiteit Brussel (Belgium) and the Ecole des Mines de Nantes (France), he
gives an advanced course on object-oriented software evolution.

Michel Wermelinger is an assistant professor at the Department of Computer Science of the New
University of Lisbon, and a researcher at the Laboratory for Global Computing at the University
of Lisbon. His main research interests are formal foundations of software architecture, software
evolution, and coordination mechanisms. For his PhD on “Specification of Software Architecture
Reconfiguration” he used rewriting, categorical, and graph techniques. He is the principal investigator
of the Portuguese Science and Technology Foundation project “Formal Approach to Software
Architecture”. He was a member of the program committee of the International Conference on Software
Engineering in 2002. He is a member of the Board of the European Association for Software Science
and Technology and of the steering committees of the “Architectures for Mobility” project, funded by
the European Commission, and of the RELEASE network [3].

REFERENCES

1. Elrad T, Filman R, Bader A (guest editors). Special section on Aspect-Oriented Programming.
Communications of the ACM 2001; 44(10):28-97.

2. Balzer R, Belz F, Dewar R, Fisher D, Gabriel RP, Guttag J, Hudak P, Wand M. Draft report on
requirements for a common prototyping system. ACM SIGPLAN Notices 1989; 24(3):93-165.

3. European Science Foundation scientific research network “REsearch Links to Explore and Advance
Software Evolution (RELEASE)” webpage.
http://labmol.di.fc.ul.pt/projects/release [19 July 2002]

4. FWO scientific research network “Foundations of software evolution” webpage.
http://progwww.vub.ac.be/FFSE/network.html [19 July 2002]

5. Hursch WL, Lopes CV. Separation of concerns. Technical Report, College of Computer Science,
Northeastern University, Boston, 1995.

6. Kemerer C, Slaughter S. An empirical approach to studying software evolution. IEEE Trans. Software
Engineering 1999; 25(4):493-509.

7. Mens T, Galal GH. 4th Workshop on object-oriented architectural evolution. In Frohner A (ed.), ECOOP
2001 Workshop Reader, Lecture Notes in Computer Science, 2323. Springer-Verlag, 2002; 150-164.

8. Mens T, Wermelinger M. Proc. of the workshop on formal foundations of software evolution. Technical
Report UNL-DI-1-2001, Departamento de Informaética, Universidade Nova de Lisboa, Lisbon, 2001.

9. Mens T, Wermelinger M. Formal foundations of software evolution: workshop report. ACM SIGSOFT
Software Engineering Notes 2001; 26(4):27-30.

Copyright © 2002 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract. 2002; 0:0-0
Prepared using smrauth.cls





