Vrije Universiteit Brussel - Belgium
Faculty of Sciences
In Collaboration with Ecole des Mines de Nantes - France
and
Universidad de Chile - Chile

2002

O 2
& K 3 II
Q (m ECOLE DES MINES DE NANTES
> O —
n
o : &
% Y &
9, <&
INCERE

Reflection for Adaptable Mobile Code
in Ubiquitous Computing

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Michaél Vernaillen

Advisor: Prof. Theo D’Hondt (VUB)
Co-promotors: Dr. José Piquer (Universidad de Chile)

Contents

1 Introduction

1.1 Imtroduction. e
1.2 Goals
1.3 NotetotheReader

Concepts
2.1 MobileCode
2.1.1 Mobility Mechanisms
2.1.2 Design Paradigms,
2.1.3 Mobile Code Application Domains
2.2 Reflection and Meta-programming
221 Principleo
2.3 Reflex
2.3.1 Overview L e
2.3.2 Architecture oL
2.4 Reflex and Reference Management Policies.
2.4.1 The Network Reference Policy
2.4.2 The Rebinding Policy
2.5 Reflection and Dynamic Adaptability for Mobile Code
2.6 Summaryl e e e

Mobile Environments and Adaptation

3.1 Problems of Mobile Environments
3.1.1 Wireless Communication
3.1.2 Mobility
3.1.3 Portability

3.2 The Need for Adaptability
3.2.1 Taxonomy of Adaptation Strategies
3.2.2 Overview of Systems that Offer Adaptability
3.2.3 Adaptation Mechanisms

3.3 Summaryl

CONTENTS 9

4 Dynamic Adaptation of Migration Policies 32
4.1 Designo 32
4.1.1 Infrastructure Monitor 33
4.1.2 Application Structure 33
4.1.3 Metalevel Reasoning 33
4.1.4 Specification of the MAC 35
4.1.5 Running a Reflective Program 36

4.2 Ubiquitous Computing 36
421 Moveby Copy 36
4.2.2 Move by Copy with Synchronization 37
4.2.3 Remote Reference 40

4.3 Roaming Agents 42
4.3.1 Switching from Move by Copy to Move by Copy . . . 43
4.3.2 Switching from Copy to Remote Reference 43

4.3.3 Switching from Remote Reference to Remote Reference 43
4.3.4 Switching from Remote Reference to Move by Copy . 44
4.3.5 Multiple Agents Sharing the Same Resource and Garbage

Collection 45

4.3.6 A Concrete Example 45

4.4 Summary e e e e e e e 46

5 A PIM Application 54
5.1 The Agenda Application 54
51.1 Design 54

5.2 Adaptation Scenarios 55
5.3 Adaptable Types and Migration Policies 56
5.4 Implementation of the Metalevel 58
5.4.1 Migration Adaptors 58

5.5 Network Disconnects and Synchronization 60
5.6 The XML Specification 63
5.7 Deployment 63
5.8 Summary L 64

6 Conclusions 65
6.1 Achievements, 65

6.2 Limitations and Future Work 66

6.3 Conclusion e 67

List of Figures

2.1 Computational Environment.
2.2 Data space management mechanisms.
2.3 The remote reference migration policy.
2.4 The rebinding migration policy.

3.1 Range of adaptation strategies.
3.2 Odyssey Client Architecture.

4.1 Design of the metalevel.
At run time, migration adaptors use information from the infrastructure
monitor and other sources of information, and possibly instance filters
are applied to determine whether and how a particular object should be
migrated. L L L L Lo
4.2 Class diagram of the metalevel entities.
4.3 Application structuring and metalevel reasoning.
XML is used to structure the application and to specify the migration
adaptor for adaptable types.o ..o
44 Move by copy - o . oo
4.5 Principle of the CopyWithSyncWrapper
4.6 Extension to our XML specification to support the synchro-
nization protocolo
4.7 Classes to implement the synchronization protocol.
4.8 Principle of the RemoteReferenceWrapper
4.9 Move by remote referenceo oL
4.10 Switching from move by copy to move by copy
4.11 Switching from copy to remote reference
4.12 Switching from remote reference to remote reference
4.13 Switching from remote reference tocopy
4.14 Multiple agents sharing the same resource
4.15 Example of a roaming agent moving between 3 places, met-
alevel design. o

5.1 UML class diagram of the agenda application
5.2 The three adaptation scenarios.

LIST OF FIGURES

5.3

5.4

5.5

5.6
9.7
5.8

The adaptation strategy for fixed computers.

All the adaptable types are referenced remotely.
The adaptation strategy for small portable devices.

The agenda and the 5 relevant days are transported using the copy with
synchronization policy. All the other days are referred remotely
The adaptation strategy for big portable computers.

The agenda and all the days are transported using copy with synchro-
NEZATTON. « « « « o v v e e e e e e e e e e e e e e e e e e e
The Connector class to detect a disconnection.
Implementation of the disconnect operation.
The XML specification for specifying the MAC and synchro-
nizers for the types in the agenda application.

o7

Acknowledgments

First of all I would like to thank my co-promoter Eric Tanter for supporting
me during my thesis period, for giving me some good ideas, and for answer-
ing all my questions. He was always prepared to help me even while he had
a lot of work to do himself.

I would like to thank the people at AccessNova (the laboratory in the
university where I worked) for giving me a comfortable working environment
and helping me with my computer problem in the beginning of my thesis
period.

I would also like to thank the other students of the EMOOSE program
for the nice time we had together in Nantes. Although we had a lot work
there, we also had a lot of fun, which was important to find the courage to
continue the hard work. A special thank goes to Boris Mejias, for letting me
borrow his appartement in Santiago. This way I didn’t have to search for
an appartement when I arrived, which probably saved me a lot of troubles
and also time.

Finally, a big thank goes to all the organizers of this EMOOSE program,
Annya Romanczuck, Jacques Noyé and Theo D’'Hondt who made this won-
derful program possible. I hope they will find the courage to continue there
work so that many other generations of emoosers can follow.

Abstract

In perspective of ubiquitous computing and mobile computing, migrating
entities need to be able to adapt to the state of the environment (network
bandwidth, reliability, target host characteristics, etc.). In this work we
show how the way migrating objects are referenced (reference, copy, etc.)
can be adapted dynamically to the state of the environment.

To achieve this kind of adaptation, we use the reflective framework Re-
flex. Using Reflex, we can attach metaobjects to normal Java objects. Such
a metaobject can trap the serialization process of its base object when it is
about to migrate, and give control to other metalevel entities which then
decide what migration policy (copy, reference, etc.) to use, by accessing
different sources of information.

In this work, we design a metalevel library using this approach. We show
how this metalevel library can transparently be plugged onto any applica-
tion to dynamically adapt the way migrating parts of this application are
referenced. Furthermore we design a reusable infrastructure to allow syn-
chronization between parts of the application that migrate using the copy
policy, and finally we extend this infrastructure to support the disconnect
operation.

keywords: adaptation, adaptability, migration policy, reference man-
agement, mobile code, mobile agent, reflection, Reflex, Java, Ubiquitous
Computing

Chapter 1

Introduction

1.1 Introduction

Network and computer technologies are evolving at high speed today. Portable
devices such as PDA’s, laptops, cellular phones, are being equipped with
wireless interfaces, allowing networked communication, even when mobile.

Mobile computing constitutes a new paradigm of computing that is ex-
pected to revolutionize the way computers are used. Wireless networking
greatly enhances the utility of carrying a computing device. It provides mo-
bile users with versatile communications to other people and notification of
important events. It also permits continuous access to other services and
even resources of the land-based network. The combination of networking
and mobility will gender new applications and services.

However these new technologies seem to be very promising, the technical
challenges of this computing paradigm are non trivial. Wireless communi-
cations are characterized by low-bandwidth, disconnects and highly variable
network conditions. Mobile devices are limited by resources (small batter-
ies, not so powerful CPU’s ...). Moreover these devices have very disparate
characteristics, they interact through heterogeneous communication chan-
nels, and operated in non-static network topologies.

As a consequence of these constraints, the mechanism for mobile data
access has to be adaptive, dynamically conforming the limitations of individ-
ual clients and their current environments. Software should be adaptable to
react on changes in the environment, to make optimally use of the available
resources.

Reflection [20] seems to be very attractive to use in the area of mobile
computing, to adapt programs dynamically to the changes in the environ-
ment.

CHAPTER 1. INTRODUCTION 8

1.2 Goals

The main objective of this thesis is to achieve dynamic adaptability in mobile
programs. To this end we use Reflex [33], a reflective system for Java [26]
and written in Java. The Java programming language seems to be the best
candidate for the heterogeneous world, as applications are now developed
not knowing in advance on which operating system they will run.

In previous work [34], Reflex has been successfully used in order to spec-
ify the way objects referenced by a migrating object should be managed
(reference, rebinding, etc.). It was made possible to statically specify which
policy to use, whatever the type of the objects, achieving a nice degree of
separation of concerns.

In this thesis we want to extend this system to make it able to switch
dynamically between those migration policies, based on information gath-
ered from the environment, and other sources of information. The idea is
to create a metalevel architecture that reasons about upcoming migrations,
using information from the environment (network characteristics, device re-
sources, ...). This metalevel library can then be transparently plugged over
any application to adapt the migration policies to information gathered from
the different sources.

As an example, we want to develop a PIM! application, such as an
agenda. The user of this kind of application typically owns a workstation at
the office, a laptop at home, and probably a PDA and a cellular phone. To
avoid replication of code and data, we can design a centralized solution, in
which parts of the agenda application can be migrated from a main server
to any of these devices.

When an application (or a collection of objects) migrates from one ex-
ecuting environment to another, some parts of the object graph could be
left on the source environment and then be accessed remotely, depending on
some parameters. Or on the contrary, it could be desirable that migration
took more time, but then avoid remote access.

For the agenda application, when migrating from the application from
the server to a PDA, such a reasoning could result in deciding to transfer for
example only the data for the current day, instead of transferring everything.

1.3 Note to the Reader

This thesis is structured as following:

In chapter 1 we give a short introduction to our work, and highlight the
main goals.

In chapter 2 we introduce the necessary concepts used in this thesis:
mobile code, reflection, meta-programming and Reflex.

!Personal Information Management

CHAPTER 1. INTRODUCTION 9

Chapter 3 gives an overview of the problems current mobile environments
are faced with, and we see how adaptation mechanisms can help to overcome
those problems. We also describe some systems that offer adaptability.

Chapter 4 focuses on the dynamically switching between migration poli-
cies. We introduce the different metalevel entities needed to achieve the
switching between the remote reference and the move by copy migration
policies. Then we see how these metalevel entities are used in the world of
ubiquitous computing and roaming agents.

In chapter 5 we apply this metalevel model to a concrete example. We
start form a simple agenda application, and we see the different steps the
application programmer has to follow to apply our library for dynamically
switching between migration policies onto a base application.

In chapter 6 finally, we list all the achievements made in this work, we
expose the limitations, and see how this work can be extended in the future.

Chapter 2

Concepts

In this chapter we introduce all the concepts that are used in this thesis.
We start by defining the term mobile code, and we introduce the main
concepts and technologies used in this area. Then we give an overview
of some application domains where this technology can be used, and we
highlight its main advantages. Next we give an introduction to reflection and
metaprogramming, and we focus in particular on the Reflex [33] framework,
a reflective framework for Java. Finally we expose the relation between
reflection and the motivation of this thesis.

2.1 Mobile Code

Code mobility is not a new concept, it appears in many shapes. In the past
many systems have been designed to move code among the different nodes
of a network. Examples are Postscript [31] documents that are executed on
the printer, Java applets used for animated and interactive web-pages.

In traditional distributed systems, processes reside in the same compu-
tational environment during their entire lifetime. Distributed systems with
the mobile agent paradigm allow migration of ezecuting units ', an executing
unit can be transferred to another computational environment, and resume
its execution in the remote environment.

The most important aspects in the area of code mobility are: mobility
mechanisms, design paradigms, and application domains. Note that the
definitions given in this section are based on [14].

2.1.1 Mobility Mechanisms

Code and Execution State Mobility Executing units consist of a code
segment, and a state composed of a data space and an ezecuting state. The

!Executing units represent sequential flows of computation. Examples are single-
threaded processes or an individual thread of multi-threaded process

10

CHAPTER 2. CONCEPTS 11

data space is a set of references to resources that can be accessed. The exe-
cution state contains contains private data and control information related
to the state of the executing unit, such as the call stack and the instruction
pointer (see figure 2.1).

Current Mobile Code Systems offer two kinds of mobility, characterized
by the executing unit that can be migrated:

o strong mobility: The ability of a mobile code system to allow migration
of code and the execution state of an executing unit to a different
computational environment.

e weak mobility: The ability of a mobile code system to allow code
transfer across different computational environments. Code may be
accompanied by some initialisation data, but no migration of execution
state is involved.

Strong mobility can be realized by migration or remote cloning. For the
migration mechanism, the execution of the executing unit is suspended,
then the executing unit is transmitted to the destination computational
environment, and finally resumed. The remote cloning mechanism creates a
copy of an executing unit at a remote computational environment. The main
difference between the two mechanisms is that in remote cloning, the original
executing unit is not detached from its current computational environment.

Code Segment

< Execution State
(stack and instruction pointer)

E Data space

Resource

Computational Environment

Figure 2.1: Computational Environment.

Data Space Management The executing unit references resources that
are managed by the local computational environment. Upon migration of
the executing unit, those references must be rearranged in such a way that
the moved code has valid references in the new computational environment.
The type of the resource determines the possible data space management
mechanisms®. We can distinguish the following types of resources:

*We also refer to this mechanisms further in this work, as migration policies or reference
management policies

CHAPTER 2. CONCEPTS 12

e Transferable resources Transferable resources can be transported
over the network. Moreover, transferable resources can be free or fized.
Fixed transferable resources could be transported over the network,
but it is not the case. For example, it would be undesirable to migrate
a huge database for performance reasons.

e Non transferable resources Resources of this type must stay in the
local computational environment (e.g. a printer is not transferable).

The binding from a resource to an executing unit can be done in three
forms according to [14]:

1. By identifier: This is the strongest form of binding. In this case,
the executing unit must be bound at any time to an uniquely defined
resource. This form of binding can be used for resources which cannot
be substituted by some other equivalent resource. This means that
the executing unit is interested in the identity of the resource.

2. By walue: In this form of binding, the resource must be compliant
with a given type at any moment, and its value can not change as
a consequence of migration. This means that the executing unit is
interested in the content of the resource.

3. By type: This is the weakest form of binding. In this case the executing
unit needs, at any time, a resource with a specific type, no matter what
its actual value or identity are. This kind of binding is useful to bind
resources that are available on every computational environment, like
libraries, or network devices.

Figure 2.2 on page 21 shows the possible data space management mecha-
nisms. The executing unit that migrates is colored in grey. The figure shows
for each data space management mechanism the source and the destination
host before and after migration of the executing unit. We can distinguish
the following types of data space management mechanisms:

e move : If the resource is a free transferable unit, then the resource can
be transferred along with the executing unit to the destination compu-
tational environment. Moving away the resource can cause problems
when other executing units refer to this resource. There are two solu-
tions to this problem: either a network reference is used to bind the
unit to the moved resource (see figure 2.2 (a) bottom), or the other
bindings to the resource are removed (see figure 2.2 (a) top).

e network reference : If the resource is non transferable, a remote
reference (see figure 2.2(b)) mechanism should be used. In this case
the resource is not transferred, but when the unit has reached the
destination executing environment, the binding is changed to reference
the resource in the source computational environment.

CHAPTER 2. CONCEPTS 13

e copy : In this case, a copy of the resource is transferred to the desti-
nation environment along with the executing unit (see figure 2.2 (d)).
This type of data space mechanism is most usefull if the resource is
bound by value, as the identity of the resource is not relevant.

e rebinding : In this case the binding is voided and reestablished to
another resource on the target computational environment, after mi-
gration of the executing unit. A requirement for this kind of binding
is that at the destination computational environment, there must be
a resource of the same type then at the source computational envi-
ronment. This is the most convenient mechanism for binding by type.
(see figure 2.2 (d))

The data space mechanism that can be used for migration depends on
the type of the resource, and the form of binding between the computational
environment and the resource. Current Mobile Code Systems are limited in
choosing between the different data space management mechanisms. The
type of the resources, and the form of binding is implementation or system
specific. We come back to this issue later, as this is the starting point for
the motivation of this work.

2.1.2 Design Paradigms

Software architectures with similar characteristics can be represented by de-
sign paradigms, which define architectural abstractions and reference struc-
tures that may be instantiated into actual software architectures. To identify
the design paradigms for distributed systems exploiting code mobility, we
introduce the following architectural components:

e Components: The different parts that make up the software architec-
ture. They can be further divided into code components, that encap-
sulate the know-how to perform a particular computation, resource
components that represent data or devices used during computation,
and computational components, that are active executors capable to
carry out a computation.

o Interactions: Events that involve two or more components (e.g. ex-
change of messages between two components)

e Sites: Host for the components and support the execution of compu-
tational components

Client-Server In this paradigm, a computational component B offering a
set of services is placed at site Sb. Resources and know-how needed for service
execution are placed at site Sb as well. The client component A, located at site Sa,
requests the execution of a service with an interaction with the server component

CHAPTER 2. CONCEPTS 14

B. As a response B performs the requested service by executing the corresponding
know-how and accessing the involved resources co-located with B.

Remote Evaluation In this paradigm, a computational component A, has the
know-how to execute a task, but lacks the resources required, which are located on
a different site. Thus the component A sends the know-how to the component B,
which resides on the same site as the resource needed to complete the task. B then
executes the code using the available resources, and sends the result back to A.

Code on Demand In this paradigm, component A, residing on site Sa, has the
needed resources available, but the know-how to manipulate those resources is not
available on Sa. Consequently, A interacts with a component B on another site Sb,
by requesting the know-how that is located at Sb. B then delivers the know-how
to A, that can subsequently executes it.

Mobile Agents The mobile agent paradigm is similar to the Remote Evaluation
paradigm. A computational component A on site Sa, has the know-how to execute a
task, but (some of) the resources are located at another site Sb. Thus, A migrates
to Sb carrying the know-how and possibly some intermediate results. After A
arrived at Sb, A can execute the task by using the needed resources available on
Sb. The difference with the remote evaluation paradigm is that in the mobile
agent paradigm, A does not presume a computational component B residing on
the same site as the resources for executing the know-how. This paradigm involves
the mobility of an existing component, while the Code on Demand and Remote
Evaluation paradigms focus on the transfer between components.

2.1.3 Mobile Code Application Domains

Today applications that exploit code mobility are still very few, mainly because
of the immaturity of the technology (mostly concerning security and performance).
However the advantages of code mobility seem to be very appealing for some specific
application domains. In this section we provide the user with some key benefits
of mobile code, and an overview of mobile code applications suitable for exploiting
those benefits.

Key Benefits of Mobile Code

Service Customization Conventional Client-Sever based distributed system
provide a fixed set of services through a statically defined interface. It often occurs
that the services offered do not satisfy the needs for unforeseen clients. In this case
the server has to be upgraded, which increases its complexity without increasing
its flexibility. The ability to execute code remotely increases the flexibility of the
server, without affecting its size or complexity. In this case, the server provides
very simple and low-level services that can be composed by the client to obtain
customisable high-level functionality.

Deployment and Maintenance Mobile code supports the lasts phases of
the development process. In current distributed settings the act of installing or
rebuilding an application has to be performed locally and with human intervention.

CHAPTER 2. CONCEPTS 15

Mobile code can be used to roam over the set of hosts in the network, analyse the
local platform and perform the correct installation steps.

Autonomy Mobile code concepts and technology embody a notion of autonomy,
which is a useful property for applications that use a heterogeneous communication
infrastructures with different performance of the physical links (low-reliable, low-
bandwidth networks). It is important to cope with those differences at design
stage. In the Client-Server paradigm, a set of low level operations could be grouped
into one client-server interaction. This service could execute autonomously and
independently on the server without the need to connect to the node that send it,
except for sending back the final result.

Fault Tolerance Autonomy of application programs has fault tolerance as a
side-effect. In conventional client-server programs, the interleaving of client state-
ments with server statements can lead to partial failures. The action from migrating
code, and possibly sending back the results, is not immune from this problem. How-
ever, the action of executing code that contains a set of interactions that should
otherwise take place across the network is immune from the partial problem.

Application Domains for Mobile Code

Distributed Information Retrieval This type of applications collect infor-
mation matching some specified criteria from a set of information resources spread
over the network. This is a wide application domain, for example the information
to be retrieved might range from the list of all the publications of a given author
to software configuration of hosts on a network. Mobile code could improve the
efficiency, when the code that performs the information retrieval is migrated close
to the information source.

Active Documents In this kind of applications, passive documents (like e-
mail or web pages) are enhanced with the capability to executing programs that
are somehow related with the document contents, enabling better presentation and
interaction. Code mobility is fundamental for these applications since it enables
the embedding of code and state into documents and supports the execution of the
dynamic contents during document creation.

Remote Device Control and Configuration Those applications are used
to control and configure a set of network devices and monitor their status. In the
classical approach, monitoring is achieved by polling periodically the resource state.
Configuration is performed using a set of services. This approach, based on the
Client-Server paradigm, can lead to a number of problems. Code mobility could
be used to design and implement monitoring components that are co-located with
the devices being monitored and report events that represent the evolution of the
device state. In addition, the shipment of management components to remote sites
could improve both performance and flexibility [14].

Electronic Commerce Electronic commerce application allow users to per-
form business transactions through the network. The application environment is

CHAPTER 2. CONCEPTS 16

composed of several independent and possibly competing business entities. A trans-
action may involve negotiation with remote entities and may require access to in-
formation that is continuously evolving. There is need to customize the behavior of
the parties involved in order to match a particular negotiation protocol. It is also
desirable to move application components close to the information relevant to the
transaction.

2.2 Reflection and Meta-programming

Reflection is not a recent concept in computer science. It dates from Brian Smith’s
[25] work in the early 80s. It is a wide-ranging concept that has long been studied
in philosophy and many different areas of science. It was introduced in computer
science through artificial intelligence as it was considered as a property responsible,
at least in part, for what is considered an intelligent behavior. But it has also been
applied in the area of programming languages under the name of computational
reflection. Patty Maes [20, 21] applied the idea of reflection to Object Oriented
Programming [10]. The purpose of this section is to introduce the reader to the
main concepts of reflection in object oriented languages and meta-programming.

2.2.1 Principle
Reflection can be defined in general as [25]:

An entity’s integral ability to represent, operate on, and otherwise deal
with its self in the same way that it represents, operates on and deals
with its primary subject matter.

Bobrow et al.[4] noticed that there are two aspects of reflection, introspection
and intercession. Introspection is the ability of a program to observe and therefore
reason about its own state. Intercession is the ability for a program to modify its
own interpretation and meaning.

A reflective system is generally composed of different levels. The first level,
called base level, prescribes the tasks that must be carried out by the system.
The second level, called metalevel, interprets the base level and describes how the
previous tasks must be performed. Recursively, each metalevel i represents the
base level for metalevel i + 1. This stack of interpreters is often referred to as a
reflective tower [25]. The link between the base level and the metalevel is called the
metalink®. Meta-programming is the activity of programming metalevel entities.

Each reflective computation can be separated in two logical aspects: computa-
tional flow context switching and meta-behavior. A computation starts with the
computational flow in the base level; when the base entity begins action, such an
action is trapped by the meta-entity and the flow raises at metalevel (shift-up ac-
tion). Then the meta-entity completes its meta-computation, and when it allows
the base-entity to perform the action, the computational flow goes back to the base
level (shift-down action)

Two different kinds of reflection exist: structural and behavioral reflection [9].
The difference is that [11]:

3also known in the literature as causal connection link

CHAPTER 2. CONCEPTS 17

Structural reflection requires the reification of entities used for building the
system statically. Behavioral reflection goes further since it requires to reify entities
used to perform the computation of the system (e.g. the execution stack). Thus
these entities belong to the dynamic part of the system.

Reflective systems differ in the type of reflection they provide, as well as in
the nature of the meta-entities. There are four recognized reflective models in this
regard [6]:

the metaclass model (MICM). In this model, the reflective tower is realized by
the instantiation link [8, 5]. The metaobject reifying a base-entity is its class,
the metaobject reifying a metaobject is its metaclass, and so on. This main
problem of this model is the difficulty of specializing the meta-behavior for a
single instance, since any instance of a class has the same metaobject. Also,
dynamically changing the behavior of an object implies substituting its meta-
class, which can lead to inconsistencies and is not offered by all languages.

the metaobject model (MOM). In this model, the reflective tower is realized
by the clientship relation [17]: separate entities handle intercession and in-
trospection on each base-entity. With this approach it is simple to specialize
the meta-behavior per object. The major drawback of the model is that a
metaobject does not have access to the sender’s identity when monitoring a
message. It is the most used model, with applications in several areas.

the message-reification Model (MRM). In this model, meta-entities are spe-
cial objects called messages which reify the actions that should be performed
by the base-entities [12]. Every method call is reified into an object which
is charged with its own management and exists only for the duration of the
action it embodies. The major drawback of this model is the lack of infor-
mation continuity, since it is impossible to store information among meta-
computations.

the channel reification model (CRM). This model is an extension of the mes-
sage reification model [3]. It is aimed to overcome some of its limits, in
particular that of information continuity, while keeping its advantages.

2.3 Reflex

Reflex [33] is an open reflective extension of Java, mainly developed to overcome a
part of the limitations of the Java Reflection API [29].

Since version 1.1 of the Java Development Kit [27], the Java reflective facilities
have been successively extended. However those facilities have been restricted to
introspection: for instance, Java enables programs to know the names of the meth-
ods in a given class, and to instantiate the given class with a given string name.
On the other hand it does not enable to alter the program behavior.

2.3.1 Overview

Reflex is a system for behavioral reflection in Java based on the MetaObject Model
(MOM) as described above. With Reflex, standard Java objects can be reflective,
that is to say, they can have a metaobject attached to them. A metaobject is
responsible for extending or modifying the semantics of a language mechanism

CHAPTER 2. CONCEPTS 18

such as method invocation, object creation, serialization, ... In the case of method
invocation, control flow shifts up to the metalevel when a method is invoked on
a reflective object. Such a method call is first reified (made explicit as a first
class entity), and then passed to the metaobject, which can analyze it and operate
accordingly.

The implementation of Reflex relies on an existing library for structural reflec-
tion in Java, Javassist [7]. Javassist offers a high-level API to modify the structure
of a class at load time, through bytecode transformation.

2.3.2 Architecture

Reflex is based on a generic builder that is in charge of transforming classes at load
time in order to insert the necessary hooks for shifting control to the metalevel when
needed. The generic builder is in fact responsible for installing the infrastructure
for the required hooks. The actual transformation of bytecode to insert hooks is
done by transformers, which are components implemented with Javassist.

To specify which types should be made reflective and which hooks should be
installed, the builder of Reflex has a specification table. This table can be fed
manually or through an XML specification file.

2.4 Reflex and Reference Management Policies

The aim of the developers of Reflex was to use Reflex to achieve flexibility in a vari-
ety of domains. In [34] Reflex has been successfully applied in the area of reference
management and mobile object systems. Using Reflex, the the serialization pro-
cess of objects in Java can be controlled. A metaobject that traps the serialization
process is attached to a base object. Using this kind of metaobject, two different
reference management policies were successfully implemented: one for the network
reference policy and one for the rebinding policy. We explain here how these two
policies have been implemented using Reflex.

2.4.1 The Network Reference Policy

The Java RMI [30] mechanism already provides a mean to achieve the network
reference policy, but this mechanism is not flexible at all because the class of the
remote object has to implement a sub interface of the Remote Object interface, and
must extend another class of the RMI framework. Also the stubs and skeletons
have to be generated by hand. So it is not possible to make a non-remote object
remote dynamically. With Reflex and the metaobjects, the remote reference policy
can be applied to any object, without any constraint upon its type. However the
RMI mechanism is used for this purpose.

The idea is to transfer a blank object? instead of the huge object over the net-
work, and then forward the method invocations to the local object. To achieve this,
a special Invoker object is introduced, which is a generic remote RMI object. It is
a method invoker able to invoke any method on any type of remote reflective object.
Thus the metaobject of the remote blank object forwards all method invocations to

1A blank object is an object whose fields are all set to null, type-compatible with the
resource on the source host

CHAPTER 2. CONCEPTS 19

this Invoker (that resides on the same site as the local object), and this Invoker
will in turn forward the method call to the base object.

This design is illustrated in figure 2.3 on page 22. On host A, a reflective
resource (R) is controlled by a SendProxy metaobject. When the base object is
first serialized for migration, the SendProxy metaobject takes the control, sets up
the Invoker, and serializes itself with a reference to it (see figure 2.3). Since the
Invoker is a remote RMI object, when the metaobject will be deserialized, it will
have a reference to the server-side skeleton of the Invoker, and will thus be able
to perform remote method invocation on it. Apart from setting up the Invoker,
the metaobject also specifies that the base object should not be transmitted fully,
a blank object should be created instead.

Therefore on destination site (site B in figure 2.3) is a blank object (of the same
type) that has a metaobject of type RemoteCall that will forward any method
invocation to the Invoker on the local site (site A in figure 2.3). The Invoker
was initialised with a reference to the local resource, and can therefore forward the
method invocation to this local base object. We will come back in more detail to
this migration policy in chapter 4.

2.4.2 The Rebinding Policy

To achieve the rebinding policy, the hosts on the network must provide some way
to get a resource to a local reference based on an identifier. This way the agent
can rebind this resource when it arrives to another host, and unbind when it leaves.
A simple resource manager is used that allows a program to publish an object as
a local resource, associating a string identifier to it. An incoming agent can then
query the resource manager by using the string to get a reference to a resource
that was previously bound to this string. The design of the rebinding policy is
show in figure 2.4 . The agent holds a reference to a dumb reflective object that
acts as a proxy to a local resource published to the resource manager. This object
is controlled by a metaobject that maintains the binding the local resource (found
by querying the local resource manager) and traps all the method invocations on
the dumb object. The metaobject forwards the trapped method invocations to
the local resource. Upon migration the binding is cleared and reestablished after
migration when first needed (this is called lazy initialisation)

2.5 Reflection and Dynamic Adaptability for Mo-
bile Code

In 2.1.1 we exposed the relation between resources, executing environments and
data space management mechanisms. We highlighted that in current Mobile Code
Systems, the choice which migration policy to use, depends on the implementation
of the system, and is thus fixed. This fixed choice however does not fit to the
requirements of todays applications, as they have to cope with the limitations of
mobile networks, and the constraints of mobile devices. For example, if we deal
with a low-reliable network where a lot of disconnects can occur, it would be better
not to use the remote reference policy. On the other hand, if the client device has
only very low memory, it would be better not to use the copy migration policy.
Applications might want to adapt the migration policy according to characteristics

CHAPTER 2. CONCEPTS 20

from the environment. A first step to achieve this adaptation using reflection (in
particular with the Reflex framework) was done in [34]. In this work, it was shown
how the application programmer could implement different migration policies by
attaching metaobjects to the transferable resources, in particular the remote refer-
ence policy and the rebinding policy could be used (see 2.3). However, the choice
of which migration policy to use for which resource was still statically defined. The
motivation of this thesis is to continue on this work, in particular investigate how
the switching between different migration policies can be done dynamically, and
apply the results to a concrete case.

2.6 Summary

In this chapter we introduced all the necessary concepts used in this dissertation.

We gave a short introduction to mobile code, we defined the main concepts
that are used in this area, and finally we gave an overview of some domains where
mobile agents are applicable.

Next we exposed the main ideas behind reflection and metaprogramming. We
also introduced Reflex, a reflective framework for Java, and highlighted its main
characteristics.

We ended by giving a motivation for this thesis: implement dynamically adapt-
able migration policies to overcome the limitations of todays mobile environments.

CHAPTER 2. CONCEPTS

21

(a) By move

before

Source Computational
Environment

after

before

Source Computational
Environment

Source Computational

after

Environment

Source Computational
Environment

Destination Computational
Environment

Destination Computational
Environment

(b) Network reference

before

Source Computational
Environment

after

Source Computational
Environment

Destination Computational
Environment

(c) By copy

before

Source Computational

after

[R]

Environment

Source Computational
Environment

Destination Computational
Environment

(d) Rebinding

before

Source Computational
Environment

after

>

Source Computational
Environment

Destination Computational
Environment

Destination Computational
Environment

Figure 2.2: Data space management mechanisms.

CHAPTER 2. CONCEPTS

Before
Site A Site B

®RF =

After Remote Reference

Site A Site B

| e

. SendProxy Metaobject O Blank Object
® Resource © RemoteCall Metaobject
[] Invoker (RMI remote object) Mobile Agent

—> Metalink for Serialization —> Reference
—-» Method Call

Figure 2.3: The remote reference migration policy.

22

CHAPTER 2. CONCEPTS

before

getResource(idl)

|nque
after rebinding
invoke
invoke
O Dumb Object O Bound Resource

. Rebinder Object O Resource Manager

—>» Reference ---» Method Call
—> Metalink for Method Calls

Figure 2.4: The rebinding migration policy.

23

Chapter 3

Mobile Environments and
Adaptation

Mobile computing increases the interest of carrying mobile computing devices such
as laptops, PDA’s, cellular phones... Users can work, communicate, and use remote
services. However the technical challenges that permit the use of mobile applications
are not trivial. In this chapter we present the problems current mobile environments
are faced with. We see how applications can be adapted to these problems, we give a
classification of application adaptability strategies, and a state of the art of existing
systems that offer adaptability.

3.1 Problems of Mobile Environments

3.1.1 Wireless Communication

Constraints on mobile environments are mainly due to the following aspects:

Disconnects Today’s computers depend heavily on the network, and may cease
to work correctly during network failures. Network failure is of greater concern to
mobile computing design than traditional design, because wireless networks are
very susceptible to disconnection.

The more autonomous a mobile computer, the better it can tolerate network
disconnection. Some applications reduce network traffic by running entirely on the
mobile device, rather then splitting the application and the user interface over the
network. In environments with frequent disconnects, it is important that programs
can run as stand-alone applications.

Low bandwidth When developing programs for mobile networks, one should
take into account the low bandwidth of wireless networks. Current mobile technolo-
gies offer a bandwidth up to 2 Mbps (this is for UMTS!). However this bandwidth
is shared among the different users sharing the same cell, so the speed depends on
the size and the distribution of the population. The bandwidth also depends on
whether the user is indoor or outdoor, walking, driving or standing etc.

!Universal Mobile Telecommunication System

24

CHAPTER 3. MOBILE ENVIRONMENTS AND ADAPTATION 25

High bandwidth variability Mobile computing also suffers from much greater
variations in network bandwidth than traditional designs.

Heterogeneous networks Stationary computers stay connected to the same
network, while mobile computers encounter more heterogeneous network connec-
tions. As they move to different places, they may experience different network
qualities. In a meeting room for example, there may be better wireless equipment
installed then in a hallway.

Also they may switch between interfaces when moving from indoors to outdoors.
For example infrared can not be used outside because sunlight drowns out the signal.

Security Risks Precisely because it is so easy to connect to a wireless link,
security of wireless communication can be compromised much easier than wired
communication, especially when the transmission encompasses a large area.

3.1.2 Mobility

Users with mobile devices can move to other locations while connected to the net-
work. For example, although a stationary computer can be configured statically
to prefer the nearest server, a mobile computer needs a mechanism to determine
which server to use.

The main problems introduced by mobility are:

o Address Migration As people move, their mobile computers will use differ-
ent network addresses. Today’s networks are not designed for dynamically
changing addresses.

o Location Dependent Information For traditional computers that not move,
information that depends on location is configured statically, such as printers,
time zone... A challenge for mobile computing is to factor out this information
and provide mechanisms to obtain configuration data dynamically, depending
on the current location.

3.1.3 Portability

Today’s desktop computers are not intended to be carried, so their design is lib-
eral in their use of space, power, cabling. The design of mobile devices, on the
contrary, should strive to properties as a wristwatch: small, lightweight, durable,
water-resistant, and long battery life. Here follows a list of design issues caused by
portability constraints:

e Low power Batteries should be light and small, and the life of the battery
should be as long as possible.

e Risks to Data Portable devices are prone to physical damage, unauthorized
access, or theft. Special security considerations can be taken: encryption of
data,take copies that do not reside on the portable unit, etc..

o Small user interfaces The size constraint of mobile devices requires a small
user interface. Systems with multiple windows open at the same time are
impractical on small screens. Handwriting recognition can be used to replace
many buttons.

CHAPTER 3. MOBILE ENVIRONMENTS AND ADAPTATION 26

o Small storage capacity Storage space on mobile devices is limited by physical
size and power requirements.

3.2 The Need for Adaptability

In the previous section, we have highlighted the main problems of mobile computing.
In spite of those problems, a mobile client can offer acceptable services through
alertness and prompt reactions to changes in the environment. In other words,
mobility requires support for adaptation as Katz summarized [16]:

Mobility requires adaptability. By this we mean that systems must be
location and situation aware, and must take advantage of this infor-
mation to dynamically configure themselves in a distributed fashion.

Several systems have proposed a solution for achieving this adaptation. We
present here a taxonomy of adaptation strategies that those systems use, and we
give an overview of the three systems we investigated: Odyssey, Coda and Sumatra.

3.2.1 Taxonomy of Adaptation Strategies

The range of strategies for adaptation is delimited by two extremes, as shown in
figure 3.1. At one extreme, adaptation is entirely the responsibility of individual
applications. This laissez-faire approach avoids the need for system support, it
lacks a central arbitrator to resolve incompatible resource demands of different
applications and to enforce limits on resource usage. It also makes applications
more difficult to write, and fails to amortize the development cost of support for
adaptation.

The other extreme of application-transparent adaptation places entire respon-
sibility for adaptation on the system. This approach is attractive because it is
backward compatible without any modifications. The system provides the focal
point for resource arbitration and control. The drawback of this approach is that
there may be situations where the adaptation performed by the system is inade-
quate or even counterproductive.

Between these two extremes lies a spectrum of possibilities that we collectively
refer to as application-aware adaptation. By supporting a collaborative partner-
ship between applications and the system, this approach permits applications to
determine how best to adapt, but preserves the ability of the system to monitor
resources and enforce allocation decisions [24].

Application—aware
(collaborative)

L
! !

Laissez—faire Application-transparent
(no system support) (no changes to applications)

Figure 3.1: Range of adaptation strategies.

CHAPTER 3. MOBILE ENVIRONMENTS AND ADAPTATION 27

3.2.2 Overview of Systems that Offer Adaptability
Odyssey

Mobile hosts and therefor applications are expected to promptly react to changes in
the environment and provide an acceptable quality of service despite these changes.

Limited resources on the mobile hosts suggest that they have to interact with re-
mote servers for retrieving data, for getting local information, or querying databases.

The Odyssey [22] project aims to solve these problems at the operating system
level. It provides tradeoffs between data quality and resource consumption. Such
adaptation depends on system-provided choices and are customizable by applica-
tions. Odyssey is an example of an application-aware adaptation system, designed
as a set of extensions to the NetBSD operating system. Applications can determine
how to adapt by collaborating with the operating system. Odyssey’s application-
awareness mechanism is based on fidelity and agility.

Fidelity Fidelity is the degree to which data presented at the client for use to
an application matches the reference copy at the server. Ideally, a data item at the
client should be indistinguishable from that available on the server.

Fidelity has many dimensions, one well-known is consistency. Other dimensions
of fidelity depend on the type of data in question. For example video data has at
least two additional dimensions: frame rate and image quality of individual frames.

Agility Adaptive systems should be able to detected changes in the environment,
and to react to those changes. Ideally, a mobile client should always have perfect
knowledge of current resources available. In other words, there should be no time
lag between a change in resources available and its detection. Further, if this
change is sufficient to warrant modification of client behavior, that too should be
accomplished without delay. Thus a key property of an adaptive system is the speed
and accuracy with which it detects and responds to changes in resource availability.
We call this property agility of the system. When changes are large, only highly
agile systems can function effectively. In more stable environments, less agility can
suffice. Agility is thus the property of a mobile system that determines the most
turbulent environment in which it can function acceptably.

Agility is a complex property because of the need of managing various resources
with various degrees of sensitivity. Sensitivity changes not only according to dif-
ferent kinds of resources but also according to applications. For example, one
application might be sensitive to latency and bandwidth, while another application
is sensitive to data accuracy.

Odyssey provides a framework into which diverse notions of data fidelity as well
as agility components can easily be plugged. It allows concurrent applications to
execute on a mobile host, and coordinates and controls resource usage of individual
applications. The system monitors resource levels, notifies applications of relevant
changes and enforces resource allocation decisions. On top of that, each application
decides independently how best to adapt when notified. Finally, Odyssey tends to
be minimal and limits the number of changes for extending an existing operating
system.

In order to achieve the above application-aware adaptation and collaborative
partnership, Odyssey (figure 3.2) is implemented as a new Virtual File Systems

CHAPTER 3. MOBILE ENVIRONMENTS AND ADAPTATION 28

(VSF) in NetBSD. Odyssey maintains type-specific knowledge through components
called wardens. A warden encapsulates the necessary system-level support of a
client to effectively manage a data type. Applications always contact servers trans-
parently through wardens. Another Odyssey component, the viceroy, is in charge of
globally coordinating the resource management. The viceroy is type-independent.

Odyssey
Warden3

)
o) Warden2
Application =

Wardenl

Kernel I nterceptor

Figure 3.2: Odyssey Client Architecture.

An application can specify its resource expectations by giving a window of tol-
erance on the resource variation. The viceroy registers this request and notifies the
application whenever the resource managed by Odyssey include network bandwidth
and latency, disk cache space, CPU, battery power.

Odyssey has experimented with application-aware approach using applications
such as a video player, a World-Wide Web browser, and a speech recognizer.

Coda

Replication is the key to availability of data in networks with mobile hosts. Repli-
cation however introduces its own problems, such as data access, consistency, and
conflict resolution. Much work has been done to provide efficient data replication
at file system level. Such mechanisms are based on file caching, grouping of related
files, and consistency management using file and directory semantics. Coda [19, 18]
is an example of such a file system, it uses optimistic replica control strategy to
allow updates to cached data when disconnected. At each client, there is a com-
ponent responsible for monitoring connectivity, resynchronizing cache state upon
reconnection with servers, and detecting update conflicts. This component is called
Venus. Once a conflict is detected on a file, Venus invokes an application-specific
resolver (ASR) and lets it resolve the conflict. If the ASR succeeds, the conflict
is transparent to the user; otherwise the conflict becomes visible and has to be
repaired manually.

The importance of application assistance can be seen by considering the exam-
ple of a calendar management program. Suppose an executive and her secretary
both make appointments while the former is disconnected. Upon reconnection,

CHAPTER 3. MOBILE ENVIRONMENTS AND ADAPTATION 29

Venus detects that the file containing appointments is in conflict. But it has no
knowledge of the format of the file contents, nor of whether there is really a schedul-
ing conflict. Only code specific to the calendar program can tell, for instance, that
appointments for an hour each at 8 am and 10 am on the same day pose no problem
if they are in the executive’s office, while those appointments are impossible to keep
if they are in Nantes or Santiago.

Sumatra

Sumatra [23, 2] is an extension of the Java programming environment that supports
adaptive mobile programs.

Sumatrae is another example of an application-aware adaptation system, and it
is based on the requirements of awareness and agility.

Awareness Resource-aware programs need to be able to monitor the availability
and quality of the resources in the environment. Resource can be monitored either
on-demand or continuously. Both kinds of monitoring are useful.

e On-demand This kind of monitoring is most useful in the following three
situations:

— If the resource is used infrequently, but is expensive to use. For example
an application on a mobile host that uses a cell-modem to periodically
scan incoming mail being held at the post-office machine.

— If the availability of the resource in question changes infrequently. For
example an application that chooses the location from which it monitors
a process based on the amount of disk space available at that location

— If the resource is expensive to monitor and the cost of monitoring out-
weighs the potential gains. For example an application that accesses
large volumes of data over a very slow link

e Continuous monitoring This kind of monitoring is useful if the resource is
frequently used or if the resource changes frequently or is cheap to monitor.

For continuous monitoring, the resource-monitoring interface should allow pro-
grams to register an application-specific filter which determines the granularity of
the resource changes that should be reported.

Agility To achieve agility a mobile code language should provide mechanisms
that allow programs to react quickly to events like revocation of bandwidth, mem-
ory, or qualitative changes in network connectivity.

In the design of Sumatra [23, 2], the Java language was not altered. Sumatra can
run all Java programs without modification. All added functionality was provided
by extending the Java class library and by modifying the Java interpreter, without
affecting the virtual machine interface.

Sumatra adds four programming abstractions to Java: object-groups, execution-
engines, resource-monitoring and asynchronous events. An object-group is a dy-
namically created group of objects. Objects can be added to or removed from
object-groups. All objects within an object-group are treated as a unit for mobility-
related operations. This allows the programmer to customize the granularity of

CHAPTER 3. MOBILE ENVIRONMENTS AND ADAPTATION 30

movement and to amortize the cost of moving and tracking individual objects.
Object-groups also allow the programmer to control the life-time of objects. Ob-
jects that are included in an object-group continue to live on a host even after the
thread that created them completes execution or migrate to another host. When
an object-group is moved, all local references to the objects in the group are con-
verted into prozy references which record the new location of the object. Method
invocations on a proxy objects are translated into calls at the remote site.

An execution engine is the abstraction of a location in a distributed environ-
ment. In concrete terms it corresponds to an interpreter executing on a host.
Sumatra allows object-groups to be moved between executing-engines.

The resource-monitoring support in Summatra allows programs to either query
the level of resource availability or to control the extent to which various resources
are used by the program itself as well as library code it is linked to. Both on-demand
as well as continuous monitoring is supported.

In Sumatra asynchronous events are used to notify executing programs about
current changes in their execution environment. These notifications can either come
from the interpreter or from the external environment (the operating system, or
some other administrative process). Asynchronous notifications are implemented
as Unix signals. Sumatre allows applications to register handlers for a subset of
Unix signals. Signals can be used to inform the application about urgent events.
Using a handler the, the application can take appropriate action including moving
away from the current execution state.

3.2.3 Adaptation Mechanisms

Replication Replication is the process of making copies, so that two or more
objects can exchange updates of data. In mobile environments replication serves
to offer awvailability. When a client is disconnected from a server for example, the
client can continue working if it has local copies of the objects it needs from the
server (replicas).

Binding The binding adaptation mechanism specifies how to bind an application
object. Bindings can be remote or local. The binding policies to use depend on
parameters such as network latency, available bandwidth, locality of the server
object, and load of the server. Whenever those parameters become too poor in
regard to the needed quality of service, another binding policy could be used in
combination with the compression or filtering of data.

Filtering Filtering is intended to act directly on the data and object contents.
It can either be used to remove a part of the data or to apply a transformation on
it.

Filtering is strongly related to the application semantics as well as the type of
data sent to the client. Let us look at some examples. In the case of a World Wide
Web caching proxy, application specific filtering is usable to filter HTML pages.
We can completely remove icons or images, or reduce their size. More generally, in
the case of images or real-time color movies, a filtering strategy can reduce the size
of the images, reduce the number of colors or even switch to black and white, or
reduce the number of frames per second.

CHAPTER 3. MOBILE ENVIRONMENTS AND ADAPTATION 31

On small hosts, filtering allows to remove meaningless data such as icons,
or other disk-space and bandwidth-consuming data such as Postscript or PDF
files. On less restricted hosts, the filtering strategy can transform Mime Encod-
ing, Postscript, or PDF into equivalent text versions.

Compression Compression algorithms do not change the data, they just per-
form at transport level in order to reduce the physical size of the message. Com-
pression strategies are therefore more generic. They usually work well with any
kind of data. However, for an optimal compression, it is sometimes necessary to
take into account the data type.

Encryption Encryption strategies are very similar to compression strategies, in
the way they are supported by the system. Encryption is the translation of data
into a secret code. It is the most effective way to achieve data security. To read an
encrypted file, you must have access to a secret key or password that enables you
to decrypt it. Unencrypted data is called plain text; encrypted data is referred to
as cipher text.

There are two main types of encryption: asymmetric encryption (also called
public-key encryption) and symmetric encryption.

Tracking Environment Changes Adaptation mechanisms alone are insuf-
ficient to provide responsiveness to the environment changes. Both the system and
the application need information about the environment to trigger efficient adap-
tation. Information can be retrieved through process that monitors changes in the
environment. Applications should be able to subscribe to the environment monitor
to know about the changes.

3.3 Summary

In this chapter, we first highlighted the problems of current mobile environments.
We mentioned that mobile applications need adaptability to overcome those prob-
lems. We gave a taxonomy of systems that propose a solution for achieving this
adaptability, and we reviewed the main characteristics of those systems. Finally we
gave an overview of adaptability mechanisms that were used in those systems.

Chapter 4

Dynamic Adaptation of
Migration Policies

The idea behind the switching of migration policies originated from the constraints
current mobile systems are faced with. Consider the example where a user is run-
ning an application on his wireless device that accesses information on a remote
server. Initially the remote reference migration policy could be used for commu-
nication between the wireless device (the client) and the server. But as wireless
networks are very unreliable, the bandwidth between the client and the server could
drop suddenly or the client could even become disconnected from the server. In
this case it would be better to use the copy policy. This way computations can be
done locally, and thus there is no network traffic between the client and the server.
On the other hand, as the memory of portable devices is generally very low, the
server could decide to switch to remote reference.

In previous work [34], Reflex has been successfully used in order to specify
the way objects referenced by a migrating object should be managed (reference,
rebinding, etc.). It was made possible to statically specify which policy to use,
whatever the type of the objects, achieving a nice degree of separation of concerns.
In this chapter, we extend this work. We first design an infrastructure to make
it possible to switch dynamically between different migration policies, and we see
how this infrastructure can be applied onto a base application. Next we illustrate
how this switching between migration policies is done in the world of ubiquitous
computing and roaming agents using this infrastructure. Finally we give a concrete
example in the world of reoaming agents.

4.1 Design

The concept of our model is the following: we attach a metaobject to the resource
that is subject to migration. When the resource is about to migrate, the metaobject
consults other resources that reasons about the upcoming migration in order to
decide what migration policy to use. In this section we describe in detail how
we designed this infrastructure that enables an application to switch dynamically
between migration policies. We see how an application can be structured in order
to migrate the different parts. Finally we highlight how our infrastructure can be

32

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES33

applied onto a base application using an XML specification.

4.1.1 Infrastructure Monitor

In this design we assume the existence of an Infrastructure Monitor that can be
consulted to obtain information about the destination host (type of machine, mem-
ory available there, connection mode, etc...) and about the network connection
between the current host and the destination one. This monitor is an important
source of information for reasoning about an upcoming migration. Note that an
implementation of this Infrastructure Monitor is beyond the scope of this work. We
should look for current systems which have a similar infrastructure, that might be
integrated into our work.

4.1.2 Application Structure

In order to migrate parts of an application, we have to structure it in some way.
Our approach consists of making groups of objects according to their type. With
regards to migration, each type is classified in one of the following groups:

e transferable types

— adaptable objects of this type may migrate, depending on the result
of metalevel reasoning.

— non-adaptable objects of this type may migrate, but no metalevel
reasoning is done.

e non transferable types: objects of this type can never migrate.

Using this approach for structuring an application, we can make type-based deci-
sions upon migration.

4.1.3 Metalevel Reasoning

To preserve transparency, reasoning about upcoming migrations is done at the
metalevel. The main idea behind our model is to control the serialization process
of the object that is about to migrate. The serialization semantic! to use depends on
the result of some metalevel reasoning about information from the infrastructure
monitor and possibly other sources of information, and the application of some
filters on the object that is about to migrate. Using different serialization semantics,
we can achieve different migration policies. We give here an overview of the different
types of metalevel entities used in our model (see also figures 4.1 and 4.2).

Serialize Metaobject FEach adaptable type is associated with a serialize metaob-
ject. This metaobject traps the serialization process of the object that is about to
migrate. It first detects which kind of serialization is occurring (backup or migra-
tion) by performing type analysis of the stream object used (how this mechanism
works is described in detail in [32]). If it is migration, then decision on how the
base object will be serialized is delegated to the migration adaptor.

'Recall that the Java Serialization API [28] offers the possibility to specify an alterna-
tive object for serialization

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES34

Q MigrationPolicy O Serialize Metaobject

‘ MigrationAdaptor ® Resource

Infrastructure Monitor 10 Instance Filter

Mobile Agent Migration Adaptor
Component
CH Metalink for Serialization —> Reference >

Figure 4.1: Design of the metalevel.

At run time, migration adaptors use information from the infrastructure monitor and other
sources of information, and possibly instance filters are applied to determine whether and
how a particular object should be migrated.

Migration Adaptor This object decides which migration policy will be used,
by reasoning about information from the Infrastructure Monitor, the state of the
base object (with base object we mean here the resource R from figure 4.2), and
possibly other sources. The state of this object is then adapted to support the
chosen migration policy: remote reference or copy. To implement this, we used the
state design pattern [15]. Other migration policies can easily be added.

Instance Filters These objects are type-specific filters that encapsulate criteria
to select candidates for migration among instances of a same type. They reason
about the state of a particular instance, and decide how the object should be
serialized. An instance filter can:

o filter out certain instances: The instance filter can decide, by accessing
the state of the instance, if the instance should be migrated or not.

e transform copies of instances: If the filter decides that the instance may
migrate, it can apply a transformation on the copy of the instance that will
be transported. For example when using copy migration policy, a lightweight
version of the object could be returned for serialization (some fields could be
removed or changed).

Several instance filters can be composed into a tree-like structure using the
composite pattern, and can then be combined by logical operators using the visitor
pattern [15]. Figure 4.2 shows a UML [13] class diagram of our metalevel design to
switch dynamically between migration policies.

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES35

InfrastructureMonitor

'y

MigrationAdaptor
SerializeMetaobject 1 -policy : MigrationPolicy| 1 MigrationPolicy 1 InstanceFilter
-adaptor : MigrationAdaptor @ -base : Object
— +determinePolicy() : int - "
+handleSerialize() +iilter() : Object +filter() : Object
+setPolicy() Z>
Reference Copy
+filter() : Object +ilter() : Object|

Figure 4.2: Class diagram of the metalevel entities.

In the following, we shall refer to this group of metalevel entities as the Migra-
tion Adaptor Component (MAC see figure 4.1).

4.1.4 Specification of the MAC

The entry point of the MAC, common to all adaptable types of the application,
is the serialize metaobject. Each adaptable type is statically associated with a
migration adaptor, using XML (see figure 4.3). The remaining components of the
MAC, the migration policy and instance filters, are specified programmatically.

<applicationname="NameOftheApplication">

<transferable)

<adaptablee .- Vs
4ype name=9 4

package typenameLs> z
migrationadaptor nam
<type>
<dype name=gackage.typenamezss " e
sigrationadaptor nam
<type>
<hadaptable>
<ftransferable
</applicatior»

Q Serialize Metaobject —> Reference

__y Metalink for

MigrationAdaptor S
. 9 P Serialization

O Adaptable Type Instance

Figure 4.3: Application structuring and metalevel reasoning.
XML is used to structure the application and to specify the migration adaptor for adapt-

able types.

Note that from the information in this XML file we can generate the Reflex

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES36

specific XML file, which is used to fill the specification table like we exposed in
2.3.2.

4.1.5 Running a Reflective Program

To apply our metalevel library onto a base application, we wrote a program (called
Run) that parses the XML specification for this application. This Run program is
also responsible for generating the Reflex specific file XML (as we mentioned above
in 4.1.4). Reflex then applies the class transformations to the adaptable types in
the base application to make them reflective according to this information.

So to apply our reflective metalevel onto a base application, we simply use
the Run program, with as arguments the name of the program to run and the
location of the XML specification that contains the associations between the base
- and metalevel types. This way we don’t have to change anything to the base
application when we want to apply our metalevel library onto it when running.

4.2 Ubiquitous Computing

Ubiquitous computing [1] names the third wave in computing, just now beginning.
First were mainframes, each shared by lots of people. Now we are in the personal
computing era, person and machine staring uneasily at each other across the desk-
top. Next comes ubiquitous computing, where one person has different computers.
A person can have for example a fixed computer in his house, a portable computer
for his work, and then maybe also a PDA or cellular phone. Typically this person
wants to be able to access application data from all of these devices wherever he
is and whenever he wants. To offer this way of computing, the application data
is stored in a big central server. A user can consult and change this data from
whatever device he wants.

In this section we see how we can apply our design from the previous section in
the world of ubiquitous computing to switch dynamically between migration policies.
We expose how we designed the metalevel for the copy and the remote reference
migration policies in this world, and how the switching from one migration policy
to another is done.

4.2.1 Move by Copy

In the move by copy migration policy, the resource that is subject to migration is
copied and then transported to the destination host. Figure 4.4 shows our design of
the metalevel in this case. A mobile agent Ma has a reference to a resource R. The
agent Ma migrates from the server (A) to the client (B). When the resource R is
about to be serialized, the SerializeMetaobject traps the serialization process of
this resource. The MigrationAdaptor metaobject decides to use the copy migra-
tion policy (by accessing the Infrastructure Monitor and possibly other sources of
information), and switches its state to the move by copy migration policy. This is
done by setting the field policy of the MigrationAdaptor to the Copy policy. The
Copy object finally returns the object to be serialized (R’). In its most simple form
it will just return a copy of the original resource. Alternatively, if the Copy was ini-
tialized with an InstanceFilter, it passes the copy first to this InstanceFilter,
and then returns this filtered copy as the object to be serialized.

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES37

Before

GC

O Copy Migration Policy O Serialize Metaobject

. MigrationAdaptor GC Garbage Collected
Mobile Agent
(—> Metalink for Serializaton ~—> Reference)

Figure 4.4: Move by copy

So summarized, the following steps are done when the agent Ma migrates from
host A to host B using the move by copy migration policy for the resource R:

1. The SerializeMetaobject traps the serialization of R.

2. The MigrationAdaptor accesses the Infrastructure Monitor and decides to
use the copy migration policy.

3. The MigrationAdaptor adapts its state to the chosen migration policy (by
setting its policy field to Copy).

4. A copy of the resource is made in the Copy object.

5. The copy of the resource is passed to an InstanceFilter, which optionally
filters the copy of the resource.

6. The filtered copy is returned for serialization.

The objects that remain on hosts A and B after migration of Ma, will finally
be garbage collected, as they are no longer referenced by any objects.
4.2.2 Move by Copy with Synchronization

This is an extension of the move by copy policy we described above in 4.2.1. In
the move by copy policy, the local copies on the destination host can be changed,

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES38

which results in different objects on the source host and the destination host. One
might want to synchronize the unmodified original objects on the source host with
the modified replicas on the destination host, in order to have an updated version
on the source host.

CopyWithSyncWrapper, CopiesTable, and RemoteCopiesTable To
be able to synchronize the objects on the source host with the copies on the des-
tination host, we have to know which modified object on the destination host cor-
responds to which object on the source host. The solution we provide for this is
the following (see also figure 4.5): Instead of just sending a copy of the object on
the source host to the destination host, we send a CopyWithSyncWrapper object.
This wrapper object wraps the copy of the object together with a unique ID for
the object (which we retrieve using System.identityHashCode(Object)). On the
source host, we have a hash-table (we call this hash-table the RemoteCopiesTable)
with as key this unique ID and as value a reference to the object on the source host.

The CopyWithSyncWrapper has a readresolve method. This method allows
a class to replace/resolve the object read from the stream before it is returned
to the caller. By implementing the readResolve method, a class can directly
control the types and instances of its own instances being deserialized [28]. The
readResolve method in the CopyWithSyncWrapper returns the copy of the object
upon deserialization on the destination host, and puts in another hash-table (we
call this table the CopiesTable) the ID of the object (as the key) and a reference
to the copy (as the value).

Thus on the source host, we have for each object that was transported by
copy with synchronization, a reference to it in the RemoteCopiesTable. And we
can retrieve this object using its unique ID. On the destination host, we have
the CopiesTable which contains references to the copies of the objects that were
transported using copy with synchronization. Those references can be retrieved
using the same ID.

To synchronize the objects on the source host with the objects on the destination
host, we just have to send the copies on the destination host together with their ID’s
to the source host. The original objects on the source host can then be retrieved
using these ID’s in the RemoteCopiesTable and be updated with the changes that
where made to the copies on the destination host.

Synchronize Interface The protocol to use to update the original object on
the source host can be different for each object type. We provide a Synchronization
interface, which has a method synchronize(Object old, Object new). This
method specifies how the update from the new object to the old object should
be done. Thus for each transferable type (adaptable or non-adaptable) that has to
be synchronized, we have to implement this interface. We will refer to classes that
implement this interface as synchronizers further in this work.

Binding a type to a synchronizer The server has to now in some way, for
which type he has to use which synchronizer. To bind a type to a synchronizer, we
extend the XML specification we used for specifying the MAC (like we explained
in 4.1.4). We specify for each transferable type (adaptable or non-adaptable) which
synchronizer should be used (see figure 4.6 on page 40).

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES39

After move by copy with
A synchronization B

T~—__synchronize(Rid) __ — -~
id serialize deserialize id
® ®
CopyWithSyncWrapper CopyWithSyncWrapper

QCOPY with Synchronization Q Serialize Metaobiject
Migration Policy

. MigrationAdaptor Mobile Agent
[T T] RemoteCopiesTable [[|] CopiesTable

(H Metalink for Serialization —> Reference

o/

Figure 4.5: Principle of the CopyWithSyncWrapper

ApplicationServer and ApplicationClient To implement this synchro-
nization mechanism, we introduce two new classes, one on the source host and one
on the destination host: the ApplicationServer and the ApplicationClient (see
also figure 4.7). The ApplicationServer is an RMI remote object, and we bind an
instance of this class to the RMI registry at the source host. This object has a ref-
erence to the root of the Java application on the server. The ApplicationClient
looks up the remote ApplicationServer instance in the RMI registry at the client
side, and can get a reference the root of the application (BaseApplication in fig-
ure 4.7) that resides on the source host using the getRootApplicationObject ()
method. This method gets the root of the application from the source host, and
transports it to the destination. Note that this is the starting point of the adapta-
tion, the SerializeMetaobject traps the serialization process of the root of the ap-
plication. The SerializeMetaobject will then give control to the MigrationAdaptor,
which will decide what migration policy to use.

The ApplicationServer also has a reference to the RemoteCopiesTable (see
figure 4.7), and has a method synchronize(id, clientObject). This method is
called from inside the ApplicationClient, when synchronization has to be done,
for each object in its RemoteCopiesTable, with as arguments this object together
with the hash-value (originally received from the source host). The synchronize
method on the source host can then retrieve the original object using the hash-value
received from the destination host, and synchronize this object on the source host
with the object received from the destination host.

In chapter 5 we see a concrete example of this synchronization protocol.

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES40

<applicationname="NameOftheApplication">
<ransferable
<adaptable> R~ o

<type name="package.typenamei"> {
<migrationadaptor nam&"package.adaptorl

>

<Syncxgackage.aSynchronizers</sync>
<ltype> A
</adaptable> “..__Synchronizer classes for
<non-adaptable "7 types that have to be
<type name=package.typéname2* synchronized
<Synezpackage aSynchronizes2<sync>
</type>

<hon-adaptable
<ftransferable
</applicatior»

Q Serialize Metaobject —> Reference

. MigrationAdaptor —> Metalink for
Serialization

O Transferable Type Instance

Figure 4.6: Extension to our XML specification to support the synchroniza-
tion protocol

4.2.3 Remote Reference

In the remote reference migration policy, the resource that is subject to migration,
stays on the source host, and references to it are done remotely from the destination
host. Figure 4.9 shows our metalevel design to achieve this migration policy. In this
figure, the agent Ma has a reference to a resource R. The agent wants to migrate
from the server (A) to the client (B). When the resource R is about to be serialized,
the SerializeMetaobject traps the serialization process of this resource. The
MigrationAdaptor metaobject decides to use the remote reference migration policy
(by accessing the Infrastructure Monitor and other sources of information), and
switches its state to the move by reference migration policy. This is done by setting
the field policy of the MigrationAdaptor to the Reference policy. The Reference
object is responsible for setting up the remote infrastructure to achieve the remote
reference migration policy. This object returns a RemoteReferenceWrapper object
as the object that has to be serialized. The idea of this wrapper is the same as the
wrapper we used to implement the synchronization protocol above in 4.2.2. This
wrapper wraps the type of the class of the original resource R, and a RemoteInvoker
(which is a remote RMI object, see figure 4.8). The RemoteReferenceWrapper has a
readResolve method. The readResolve method in the RemoteReferenceWrapper,
creates and returns a blank object of the same type as the original resource R (the
wrapper contains the name of the type, and using the Java reflection APT [29] we
can instantiate an object of this type). The method also creates a RemoteCaller
metaobject (on the blank object), that traps the method invocations that or done on
the blank object, and forwards them to the remote resource via the RemoteInvoker.

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES41

Server side Client Side

BaseApplication

ApplicationServer

Synchronize ApplicationClient

+getRootApplicationObject() < 1
+synchronize() +getRootApplicationObject()
+cleanReferences()
1
1 CopiesTable

RemoteCopiesTable

Figure 4.7: Classes to implement the synchronization protocol.

Objects that had a reference to the resource R on the source host, thus now have
a reference to a type compatible blank object on the destination host.

This approach of achieving the remote reference migration policy is very effec-
tive, as we only transport the RemoteInvoker (actually only the RMI skeleton has
to be transported), and the type of the original resource R.

]

classname

serialize deserialize é)
- @ %

RemoteReferenceWrapper

—> Metalink for Method Calls -=» Method Call

[] Remotelnvoker (RMI remote O Blank Object
object)

@ RemoteCall Metaobject

Figure 4.8: Principle of the RemoteReferenceWrapper

So summarized, the following steps are done when the agent Ma migrates from
host A to host B using the remote reference policy for the resource R:

1. The SerializeMetaobject traps the serialization of R.

2. The MigrationAdaptor accesses the Infrastructure Monitor and possibly
other sources of information, and decides to use the reference migration pol-
icy.

3. The MigrationAdaptor adapts its state to the chosen migration policy (by
setting its policy field to Reference).

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES42

4. A RemoteReferenceWrapper is instantiated in the Reference object and
returned as the object to serialize.

5. The readResolve method of the RemoteReferenceWrapper, returns a blank
object (which is type-compatible with resource R) with a RemoteCall metaob-
ject attached to it when an instance of the RemoteReferenceWrapper is de-
serialized. The RemoteCall metaobject traps method invocations that are
done on the blank object, and forwards them to the remote resource R.

Before

A After remote reference B

o

Q Reference Migration Policy O Serialize Metaobject

. MigrationAdaptor O Blank Object

[] Remotelnvoker (RMI remote @ RemoteCall Metaobject
object)

—> Metalink for Serialization —>» Reference

—> Metalink for Method Calls - » Method Call

Figure 4.9: Move by remote reference

Extension to the remote reference migration policy TheRemoteInvoker
is an RMI remote object, and thus uses sockets for network communication. When
the RemoteInvoker is created, we can specify the socket type that has to be used.
We implemented successfully an example where compression sockets and encryption
sockets were used.

4.3 Roaming Agents

In this section we see how we can apply our design from 4.1 in the domain of roaming
agents for switching dynamically between migration policies. A roaming agent is

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES43

an agent that can move between a number of hosts, without any restrictions on the
order in which the hosts are visited, or the number of times each host is visited.
We consider here all the different situations that can occur when switching from
one migration policy to another, in particular the switching between the copy and
the remote reference migration policies. In the case where we have only two hosts,
there is almost no difference with the situations we described above for ubiquitous
computing. The only difference is that on the remote host, the adaptable resources
have to be reflective also, as they can now migrate further to other hosts. We
explain the different cases that can occur with three hosts, as this covers all the
situations that can occur with more hosts.

4.3.1 Switching from Move by Copy to Move by Copy

This is the case (see figure 4.10) where an agent Ma with a reference to a resource
(R) first moves from host A to host B, using the move by copy migration policy for
the resource (R). Next the agent moves from host B to host C, and the resource
R is again transported by copy. There is almost no difference with the move by
copy policy described in 4.2.1. The only difference is that here, the resources on the
destination hosts are also reflective, as the agent can move further to other hosts.
Each time the resource is moved by copy, some InstanceFilter can be applied on
it.

4.3.2 Switching from Copy to Remote Reference

In figure 4.11 on page 49 we see what happens when a resource is first moved by copy
and then by remote reference. The mobile agent Ma has a reference to a resource R.
When the agent moves from host A to host B, using move by copy for R, there is no
difference with the move by copy policy described in 4.2.1. When the agent moves
from host B to host C, we can see that the state from the MigrationAdaptor
is changed from copy to remote reference. The process of achieving the remote
reference policy is the same as described in 4.2.3.

Note that the resource on host C (see figure 4.11, after the agent Ma moved from
A to B to) has two metaobjects: one for serialization (the Serialize metaobject)
and one for trapping the method invocations (the RemoteCall metaobject).

4.3.3 Switching from Remote Reference to Remote Refer-
ence

The initial setting in figure 4.12 is the result of moving mobile agent Ma from host
A to host B, using the remote reference strategy for the resource R. When the agent
Ma then moves to host C, using the remote reference policy for R, there are two
different options concerning how to move the resource:

1. We can create a new RemoteInvoker on host C, that forwards the method
calls to the blank object on host B.

2. We can reuse the RemoteInvoker on host A, to forward the method calls to
the original resource R.

We decided to implement the second option. In the first option, all the method
invocations from host C on the resource R, would have to go through host B, which
is an unnecessary overhead, as the original resource is on host A.

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES44

Before

A B c
O

o
& ®

A After move by copy B C

. GC O

O @

® G

After move by copy B

. GC O GC

O &

®) ®

O Copy Migration Policy O Serialize Metaobject

. MigrationAdaptor

(*) Mobile Agent

(—> Metalink for Serialization

GC Garbage Collected

Ul :goo

—> Reference

Figure 4.10: Switching from move by copy to move by copy

The RemoteInvoker on host A (that was used by the blank object on B to
forward the method invocations to R) is reused by the blank object that is created
on host C. So all the remote invocations from host C to resource R located on host
A are done through the same RemoteInvoker as the one that was used on host B.
All the objects that remain on host B after migration of Ma, are garbage collected,
as they are no longer referenced by any object.

4.3.4 Switching from Remote Reference to Move by Copy

Here we describe the situation that occurs when first moving a resource by remote
reference, and then by copy (see figure 4.13). The initial situation is the result of
moving agent Ma, which has a reference to R, from host A to host B, using the
remote reference migration policy for R. When Ma moves from host B to host C,
using the move by copy policy for R, there are different options concerning how to
move the resource:

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES45

1. Move a copy of the blank object (located on host B) to host C.
2. Get a real copy of the original resource R, and not of the blank object.

We decided to implemented the second option. In the first option, we don’t really
have the copy policy. If we send a copy of the blank object to the remote host, we
actually still have a remote reference to resource R on host A, which is not really
what we wanted. To implement the second option, we have to get the a copy of
the original resource R from host A to host C. The only way to access the resource
R is through the RemoteInvoker. Using the reflection API of Java it is possible
to create a copy of R on host B, by instantiation a new object of the same type
as R and then copying the fields of R (retrieved via the RemoteInvoker) to this
type-compatible object.

The objects that remain on hosts A and B, will finally be garbage collected, as
they are no longer referenced by any objects.

4.3.5 Multiple Agents Sharing the Same Resource and Garbage
Collection

We explain here what happens when multiple agents share the same resource. Fig-
ure 4.14 on page 52 shows a situation where two agents (Ma and Mb) share the
same resource. First agent Mb moves to host B. The remote reference migration
policy is used for the resource R. When agent Ma moves then to another host
C, the RemoteInvoker that Mb uses to reference R, is reused by mobile agent
Mb. The distributed garbage collector of Java, takes care of the garbage collec-
tion of the RemoteInvoker. It uses a reference counting algorithm to remove the
RemoteInvoker when it is not longer referenced.

4.3.6 A Concrete Example

To test our implementation of the dynamically switching of migration policies with
roaming agents, we used the EzAgent [32] platform. This platform is a very primi-
tive mobile agent platform for Java, based on RMI (it does not support inter-agent
communication or any form of security). The main concepts in the EzAgent plat-
form are agents and places. An agent is an active object, that spends its life in a
so-called agent-place. Agents can be created in an agent-place, and can move be-
tween the different agent-places. An agent has a method called on-arrival, which
is automatically executed when the agent arrives on an agent-place. Each agent
also has an ID, this ID can be used to refer to the agent, and to move the agent to
other locations.

To test our design and implementation, we created three places, and one agent
that moves between those places. This agent has a reference to one resource, a vec-
tor. We made this vector an adaptable type. Thus when the vector is about to be se-
rialized, the serialization process of the vector is trapped by its SerializeMetaobject.
This metaobject has a simple MigrationAdaptor, which uses a random number
generator to decide what migration policy to use when the vector is about to mi-
grate.

When our agent arrives at a new place, he adds to the vector the name of this
place. The migration policy used to migrate the resource is thus chosen randomly
each time the agent moves. Below is the code that moves our agent between the

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES46

different agent-places (the agent-places have to be started from the command before
running this code).

//lookup the places in the RMI registry

EzPlace placel = (EzPlace) Naming.lookup("//192.168.1.144/placel");
EzPlace place2 = (EzPlace) Naming.lookup("//192.168.1.145/place2");
EzPlace place3 = (EzPlace) Naming.lookup("//192.168.1.146/place3");

//create an agent with name agentl on the first place
placel.createAgent ("ezagent.TestAgent","agent1", null);

// Move agentl from placel to place2
g p P
placel.moveAgent ("agentl", "place2");

//Move agentl from place2 to place3
place2.moveAgent ("agentl", "place3");

//move agent back to place 2 (from place 3)
place3.moveAgent ("agentl", "place2");

When we look at the above code, we can see that the agent is moved from placel
to place2, from place2 to place3, and finally from place3 back to place2.

Table 4.1 shows the transcript of each place during execution of the above
program. Our random algorithm decided to use the following migration policies:

e move by copy from placel to place2
e move by copy from place2 to place3
e move by reference from place3 to place2

When the agent arrives on place3, the vector in placel only contains the element
placel, as two times the copy policy was used when moving from placel to place2,
and from place2 to place3d. After those two moves, the vector on place3d contains the
elements placel, place2, place3. When the last move is done from place3 to place2,
using the network reference policy, the vector stays on place3, and contains the
elements placel, place2, place3, place2. Figure 4.15 on page 53 shows the structure
of the metalevel when executing the above program. Below each host, we show the
contents of the vector. We can see that placel and place3 contain a copy of the
vector after execution of the above program. The objects that remain in placel,
and place2 (after moving the agent from place2 to place3) are garbage collected.

4.4 Summary

In this chapter we exposed how we designed the metalevel to achieve dynamically
adaptable migration policies. The different metalevel entities in our design were
introduced. We exposed the concept of Migration Adaptor Component (MAC) and
showed how the main parts of this component can plugged transparently onto a base
application using an XML specification. Two migration policies were implemented,
remote reference and copy, as those are the most useful migration policies. We
applied our metalevel design to the domain of ubiquitous computing and roaming

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIESA7

| placel

place2

| place3

Adding placel to vector

[placel]

moving to place2

switching to copy policy

agent arrived

[placel]

adding place2 to vector

[placel, place2]

moving to place 3

switching to copy policy

agent arrived

[placel, place2]

adding place3 to vector

[placel, place2, place3]

moving to place2

switching to reference policy

agent arrived

[placel, place2, place3]

adding place2 to vector

[placel, place2, place3, place2]

lacel, place2
p , P

‘ [placel, place2, place3, place2] ‘

Table 4.1: Example of a roaming agent moving between 3 places - transcript.

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES48

agents, and showed how the switching between remote reference and copy was
achieved. Finally we showed that our design worked by implementing an example
in the domain of roaming agents. We implemented a mobile agent which has a
reference to a resource that moved between different locations, using the EzAgent
platform. While our agent moved between the different places, we could successfully
switch dynamically between different migration policies for the bound resource.

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES49

Before

After move by copy

GC

@)

After remote reference

GC

OO

@

Reference Migration Policy O

O

GC

Copy Migration Policy Serialize Metaobject
Blank Object

MigrationAdaptor RemoteCall Metaobject

D@00

Remotelnvoker

(RMI remote object) Garbage Collected

Metalink for Serialization
Metalink for Method Calls

—> Reference
~-» Method Call

(1)

)

Figure 4.11: Switching from copy to remote reference

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES50

Before

After remote reference

% U) S|

Reference Migration Policy O Serialize Metaobject

. MigrationAdaptor O Blank Object
U

Remotelnvoker (RMI remote @ RemoteCall Metaobject

object)
GC Garbage Collected Mobile Agent
—> Metalink for Serialization —>» Reference
> Metalink for Method Calls ---» Method Call

Figure 4.12: Switching from remote reference to remote reference

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES51

Before move by copy (after remote reference)

After move by copy

B C

GC | GC

/ Q ® 48 %
O Copy Migration Policy O Serialize Metaobject
O Reference Migration Policy O Blank Object
. MigrationAdaptor @ RemoteCall Metaobject
D Remotelnvoker (RMI remote Mobile Agent

object)
GC Garbage Collected
—> Metalink for Serialization —> Reference
> Metalink for Method Calls - Method Call

Figure 4.13: Switching from remote reference to copy

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES52

Before

@ RemoteCall Metaobject
object)

@ Mobile Agent @ Mobile Agent

— Metalink for Serialization

—> Reference
—> Metalink for method Calls

TN

--» Method Call

Reference Migration Policy O Serialize Metaobject
. MigrationAdaptor O Blank Object
D Remotelnvoker (RMI remote

Figure 4.14: Multiple agents sharing the same resource

CHAPTER 4. DYNAMIC ADAPTATION OF MIGRATION POLICIES53

placel

place2 place3
[placel]
Move by co
placel Y copy place2 place3
: : GC
[place1] [placel, place2]
Move by co
placel v copy place2 place3
: : GC : : GC O
[placel, place2] [placel, place2, place3]
[placel]
Move by reference
placel

place2

place3

GC

Dy

-

[placel] [placel, place2, place3, place2]

O Copy Migration Policy O Serialize Metaobject
O Reference Migration Policy O Blank Object
. MigrationAdaptor © RemoteCall Metaobject
D Remotelnvoker (RMIremote GC Garbage Collected
object)
—> Metalink for Serialization —> Reference
> Metalink for Method Calls --» Method Call

Figure 4.15: Example of a roaming agent moving between 3 places, metalevel
design.

Chapter 5

A PIM Application

In this chapter we see how we can plug our metalevel model, that we exposed in
the previous chapter, transparently onto any application. We start with a simple
agenda application, and we show the different steps the application programmer
has to follow to make the base application adapt to the changes in the environment
when parts of it are migrating. The agenda application from which we start is a non-
distributed application. After applying our metalevel library, the agenda becomes
a distributed adaptable application useful in the world of ubiquitous computing,
and this without making any changes to the base application.

We introduce different real-world scenarios to which our agenda application is
adapted. Those scenarios are mainly based on the different types and characteristics
of the client devices from which a person might want to access the agenda. The
migration policies used for the transferable types in the agenda are adapted to the
current, scenario. We show which metalevel entities have to be implemented by the
application programmer to achieve this adaptation, and how those entities can be
transparently plugged onto to the base application using an XML specification.

Finally we expose how support for the disconnect operation can be added to
the base agenda application, and how synchronization between objects on the client
devices and the server can be done.

5.1 The Agenda Application

The agenda application we implemented is a simple application for organizing ap-
pointments. The user of this application can create, change and remove appoint-
ments from his agenda.

5.1.1 Design

The design of the application is very simple. It has the following objects (see also
figure 5.1):

Appointment An appointment represents an appointment in the real world.
It has the following fields:

e Summary a short description of the appointment

54

CHAPTER 5. A PIM APPLICATION Y]

e Description a long description
e Start the start date and time
e End the end date and time

Day A day represents one day in a year. It is a collection that keeps the appoint-

ments for this day, and has methods for adding, retrieving, changing and removing
appointments from the day.

Agenda The agenda is a collection which keeps instances of Day. The agenda
has methods for adding, retrieving, changing and removing days and appointments.

Agenda

Day Appointment
+addAppointment() -date -start
+removeAppointement() | @—————+addAppointment() -end
+addDay() 1 « [tremoveAppointment()| L, [summary
+removeDay() +updateAppointment() -discription
+updateAppointment() +findAppointment()

+findAppointment()

Figure 5.1: UML class diagram of the agenda application

5.2 Adaptation Scenarios

The agenda application, as it is now, is not useful at all in the world of ubiquitous
computing. Typically a user of a digital agenda has several devices, like a fixed
desktop computer, a portable computer, a PDA, and maybe even a cellular phone
from which he wants to consult this agenda. To avoid replication of application
data on each of the devices, we designed a centralized solution in which parts of
the agenda application can be migrated from a central server to the different client
devices.

The migration policy that is used to transport these migrating parts depends
on the following scenarios (see also figure 5.2):

e fixed computer The user accesses the agenda from his office using a fixed
desktop computer. As this kind of computer is connected through a wired
network, we suppose that the network bandwidth is very high and reliable.

¢ big portable computer In this scenario, a big portable computer is used
to consult the agenda. Such a computer usually has a lot of disk space and
might be disconnected from the network.

e a small portable This kind of device usually has a small amount of memory,
the network is unreliable and the bandwidth is low. An example of such a
device can be a PDA or any other kind of hand-held computer. Typically such
devices are often disconnected from the network. As we remarked in 3.1.2,
those devices generally have low battery power. To save battery power, the
devices might be disconnected from the wireless network, as being connected
is very power consuming.

CHAPTER 5. A PIM APPLICATION 56

Figure 5.2: The three adaptation scenarios.

5.3 Adaptable Types and Migration Policies

Depending on one of the scenarios described above, we use different migration poli-
cies for the adaptable types of the application. We identify the following adaptable
types and their migration policies in the agenda application:

o Agenda We use the remote reference migration policy if the client device is
a fixed computer. In all the other cases we use the copy with synchronization
policy.

¢ Day

— If the client device is a big portable computer we use the copy with
synchronization policy.

— If the client device is a small portable, we use the copy with synchro-
nization policy for the five relevant days'. In all the other cases we will
use the remote reference policy. This way, if a disconnect occurs, the
user can still access all the relevant days.

Note that the type Appointment is a non-adaptable type, as appointments can be
transported also, but we don’t specify a MAC for this type, which would make it
able to switch dynamically between migration policies for this type. We could have
chosen to make the Appointment type also adaptable but we prefer to keep this
example as simple as possible to show that the idea is working. Types that are not
adaptable are always transported by copy, as this is the default mechanism used by
RMI [30].

If the Agenda type is referred remotely, then all access is done remotely (see
figure 5.3). On the other hand, if the Agenda is transported by copy, then the
non-relevant days are referenced remotely in the case of small portable devices (see
figure 5.4), and in the case of a big portable device all the days are transported
by copy (see figure 5.5). Thus if an instance of Day is transported by copy, all the
instances of Appointment in that day are also transported by copy.

!The 5 relevant days are the current day and the four days after the current day

CHAPTER 5. A PIM APPLICATION o7

- client

@4\'3@ . =

N P
e

™~ /r
®<_’——_ ll Agenda

N
@ F
®<_’—’_ Agenda

@ Appointment

. --» Remote Reference

Figure 5.3: The adaptation strategy for fixed computers.
All the adaptable types are referenced remotely.

server client

I

Agenda

Relevant day Relevant day

@ Appointment

—» Reference —-» Remote Reference

Figure 5.4: The adaptation strategy for small portable devices.
The agenda and the 5 relevant days are transported using the copy with synchronization
policy. All the other days are referred remotely .

CHAPTER 5. A PIM APPLICATION o8

server client

o

D B
@
®

@& o —
®—]
®——

ay

|

LI]

I

Agenda

Agenda @

@ Appointment
—» Reference

Figure 5.5: The adaptation strategy for big portable computers.

The agenda and all the days are transported using copy with synchronization.

5.4 Implementation of the Metalevel

5.4.1 Migration Adaptors

The application programmer has to implement a migration adaptor for each adapt-
able type. Several adaptable types can also share the same migration adaptor, but
this is generally not the case, as each adaptable type probably uses different criteria
to switch to another migration policy. The application programmer can create a new
migration adaptor by sub-classing a class we provide, the DefaultMigrationAdaptor.
This class has an abstract method determinePolicy() which has to be imple-
mented in its subclasses. This method contains the code which determines the
migration policy to use for its base object. It can reason about the state of its base
object and information gathered from the Infrastructure Monitor or other sources
of information, to make the decision.

To switch to another migration policy, the DefaultMigrationAdaptor has a
method setPolicy(aMigrationPolicy). This method just sets the policy field of
the migration adaptor to aMigrationPolicy (we used the state pattern [15] here).

For the agenda application we created two migration adaptors: DayMigrationAdaptor
and AgendaMigrationAdaptor. Those migration adaptors access the Infrastruc-
tureMonitor to determine the scenario we are in. Note that in our current imple-
mentation this Infrastructure Monitor is just a dumb object, a good implementation
of this object is beyond the scope of this work.

AgendaMigrationAdaptor This migration adaptor just checks the type of
the client device by accessing the Infrastructure Monitor and adapts the migration
policy accordingly. Here is the pseudo code of its determinePolicy () method:

void determinePolicy()

{

String clientDeviceType = InfrastructureMonitor.getType();

CHAPTER 5. A PIM APPLICATION 99

if (type.equals("fixed"))
setPolicy(new Reference());
else
setPolicy(new CopyWithSync());
}

As you can see from the above code, in the case of a fixed computer, the remote
reference migration policy is used. In all other cases, we use the copy with synchro-
nization migration policy.

DayMigrationAdaptor The determinePolicy() method of this migration
adaptor does not only access the Infrastructure Monitor to determine the current
scenario, but also reasons about the state of its base object. Here its base object is
an instance of Day. In the case of a small portable device, we use the copy policy
if the day is one of the five relevant days. Otherwise we use the remote reference
policy. For fixed computers, we always use the remote reference policy, and for
big portable computers, we always use the copy with synchronization policy when
migrating instances of Day.
Here is the pseudo code of the determiniPolicy () method of the DayMigrationAdaptor:

void determinePolicy()

{

String clientDeviceType = InfrastructureMonitor.getType();

if(clientDeviceType.equals("fixed"))
setPolicy(new Reference());

if (clientDeviceType.equals("big_portable"))
setPolicy(new CopyWithSync());

if(clientDeviceType.equals("small_portable"))
{

Day currentDay = Calendar.getToday() ;

Day inFourDays = currentDay + 4;

Day baseDay = (Day)this.getBase(Q);

//check if the days is a relevant day
if (baseDay >= currentDay &% baseDay <= inFourDays)
{
setPolicy(new CopyWithSync());
}
else
{
setPolicy(new Reference());

}

CHAPTER 5. A PIM APPLICATION 60

5.5 Network Disconnects and Synchronization

As the networks for wireless devices are generally very unreliable, a lot of discon-
nects can occur. Also a person might temporary want to disconnect his portable
computer from the network when for example moving to another room, or to save
battery power. Or he might go to a place where there is no network connection
available, and want to continue there the work he was doing when he was online.

We successfully designed a reusable infrastructure for the agenda application
to support this disconnect operation, without changing anything to the base appli-
cation.

Detecting Disconnects The first problem to support the disconnect opera-

tion, is how to detect a disconnect without changing anything to the base applica-

tion. To achieve this, we extend the two classes introduced in the synchronization

protocol in 4.2.2: the ApplicationServer and the ApplicationClient. Like we

noted in 4.2.2, the ApplicationClient gets a reference to the ApplicationServer

by looking up the ApplicationServer in the RMI registry. Recall that the ApplicationClient
can get a reference to the root of the application object graph (in the agenda ap-

plication, this is the Agenda instance), using the getRootApplicationObject ()

method provided by the ApplicationServer.

To detect a disconnection, the ApplicationClient starts a thread (called
Connector, see figure 5.6) which checks every X seconds if the ApplicationServer
is still bound in the registry. This checking is done using the Naming.lookup()
call. If this call does not respond after Y seconds, a disconnect has been detected.
The user of the agenda application can then only access the appointments of the
days that where transported by copy. He can make changes to the copies that
are locally available, but this results in inconsistencies between the objects on the
server and the objects on the client. Therefore the objects on the server have to be
synchronized with the objects on the client upon reconnection.

The objects that were referred remotely are of-course not accessible during a
disconnection. In the agenda application for example, when a disconnect occurs,
the appointments in the days that were referred remotely are not visible to the
user. Currently we don’t notify the user about this, for the user it is just as there
were no appointments during those days. However it might be possible to notify
the user through the user interface, by for example putting the inaccessible days in
a red color.

Synchronization A reconnection is detected by the Connector when the Naming. lookup ()
call returns before Y seconds have been passed. In order to do the synchronization,
we use the mechanism described in 4.2.2.
In the case of the agenda application, we had to implement two synchronizers
(recall from 4.2.2 that a synchronizer implements that Synchronization interface),
one for each adaptable type: one for the Agenda type, one for the Day type.
Here is the implementation of the synchronize method for the Agenda synchro-
nization class:

public void synchronize(Object oldObject, Object newObject)

{
Agenda oldAgenda = (Agenda)oldObject;

CHAPTER 5. A PIM APPLICATION 61

Server side Client Side

BaseApplication

1

ApplicationServer ApplicationClient

synchronize

+getRootApplicationObject() +getRootApplicationObject()

+synchronize()
+cleanReferences()
1 1
1 1 CopiesTable Connector

RemoteReferencesTable

RemoteCopiesTable

Figure 5.6: The Connector class to detect a disconnection.

Agenda newAgenda = (Agenda)newObject;
Iterator it = newAgenda.iterator();

while(it.hasNext())

{
Day currentDay = (Day)it.next();
oldAgenda.removeDay(currentDay) ;
oldAgenda.addDay (currentDay) ;

}

We iterate over all the days in the Agenda received from the client, and for each
Day that way find in this Agenda, we replace that day on the server with the day
in the Agenda from the client. The synchronizer or the Day type is very similar, we
iterate over the day, and replace all the Appointments.

Remote References upon Disconnection When the client device is dis-
connected, the objects that were referenced remotely are of course not accessible.
For implementing the remote reference migration policy (see 4.2.3) we used RMI
[30] as the underlying protocol. When the client is connected, there are (remote)
references to all the stubs on the server of RemoteInvoker (recall from 4.2.3 that the
RemoteInvoker is an RMI object used to implement the Remote Reference migra-
tion policy). When the client disconnects those reference are gone. The distributed
garbage collector of Java will notice this on some moment, and will garbage col-
lect all the stubs. So when the client reconnects those stubs will be gone, and the
remote reference will not be valid any longer.

We have to prevent the garbage collection of the objects that are referenced
remotely to be able to implement the disconnect operation. The only way to do
this is to keep an extra reference to all the instances of RemoteInvoker (in fact
the stubs at the server side). Therefore we keep a table (RemoteReferenceTable

CHAPTER 5. A PIM APPLICATION 62

in figure 5.7) in the ApplicationServer which keeps references to those objects.
Every time a new RemoteInvoker is created, we add a reference in this table to this
new instance. Thus when a client reconnects, the RemoteInvoker will be still alive,
and the remote reference will work. Of course this table has to be emptied when
the client shuts down the application, so that all the RemoteInvoker instances will
be garbage collected.

Remote Reference before disconnect
Site A Site B

Remote Reference after disconnect

Site A Site B

disconnected

. SendProxy Metaobject O Blank Object
® Resource © RemoteCall Metaobject
[] Invoker (RMI remote object) Mobile Agent

|:|:|:|] RemoteReferenceTable

) o —>» Reference
—> Metalink for Serialization
--» Method Call

Figure 5.7: Implementation of the disconnect operation.

CHAPTER 5. A PIM APPLICATION 63

5.6 The XML Specification

To associate the metalevel entities with the base level, and to associate the syn-
chronizers with the corresponding types, we use an XML specification (like we
explained in 4.2.2). Figure 5.8 shows this complete specification for the agenda
application. As we can see from this figure, we associate the type Agenda with
the AgendaMigrationAdaptor, and the type Day with the DayMigrationAdaptor.
We can also see that the Agenda uses the AgendaSynchronizer, and the Day the
DaySynchronizer to synchronize between client and server objects.

<application name ="pim agenda application">
<transferable>
<adaptable>
<type name="pim.Agenda">
<migrationadapter >"pim.migrationadaptors.AgendaMigrationAdaptor'</ migrationadapter >
<sync>"pim.sync.AgendaSynchronizer'</ sync>
</type>
<type name="pim.Day">
<migrationadapter >"policies.testing.DayMigrationAdaptor"</ migrationadapter >
<sync>"pim.sync.DaySynchronizer'</ sync>
</type>
</adaptable>
</transferable>
</application>

Figure 5.8: The XML specification for specifying the MAC and synchroniz-
ers for the types in the agenda application.

5.7 Deployment
To apply our metalevel model described in chapter 4 onto a base application (in
our example the agenda application), we had to follow the following steps:

e Identify the adaptable types of the base application.

e Implement the MigrationAdaptors for the identified adaptable types.

e Implement the Synchronization interface for the types that have to be
synchronized.

e Create the XML specification to specify which MigrationAdaptor and syn-
chronizer to use for which type.

e Bootstrap the agenda application with the ApplicationClient and ApplicationServer
classes.

We tested our implementation on two fixed computers, using Linux as operating
system and JDK 1.3 [27]. One computer acted as server, and one as client. On
the server an instance of the ApplicationServer is initialized with an instance of
Agenda as the root application object.

CHAPTER 5. A PIM APPLICATION 64

The ApplicationClient resides on the client computer. This program gets
the agenda root object from the server, by calling the getRootApplicationObject.
This method gets the root of the agenda application (the Agenda instance) from
the server, and transports it to the client. This is the starting point of our adap-
tation. The SerializeMetaobject of the Agenda type, will trap the serialization
process of the Agenda. Depending on the current scenario, like described above,
the remote reference or copy with synchronization migration policy will be used.
When the Agenda is serialized, the serialization process of the instances of Day and
Appointment that the Agenda contains, will also be trapped. The type Day is an
adaptable type, so the serialization semantic will depend on the current scenario we
are in, like for the Agenda type. For the Appointment type, the copy migration
policy will always be used, as we decided to make this type not adaptable. Both,
the ApplicationServer and ApplicationClient programs, have to be run with
the reflective metalevel attached to it. We can do this using our Run program (see
4.1.5), which parses the XML specification of the agenda application, and applies
our metalevel library onto it.

5.8 Summary

In this chapter we exposed how we can apply our metalevel library transparently
onto any base application, to make the base application adaptable. In particular,
we explained how we can dynamically adapt migration policies for the parts of
the base application that are subject to migration. We introduced three different
scenarios to which those migration policies were adapted: fized computers with
good network connection, big portable computers with a lot of memory, and small
portable computers (like PDA’s) with an unreliable network, small memories, and
a lot of disconnects.

We also explained how the disconnect operation can be implemented without
making any changes to the base application, and how synchronization between the
client and the server can be achieved transparently.

Summarized the following steps have to be taken to add adaptability to a base
application using our framework:

o Identification of adaptable types.
e Implementing the MigrationAdaptors for those types.
e Create synchronizers for the types that have to be synchronized.

e Create an XML specification to bind types with migration adaptors and
synchronizers.

e Bootstrap the application with the provided classes (ApplicationClient
and ApplicationServer).

e Run the client and server program with the Run class we provided to make
them reflective.

Note that we don’t have to make any changes to original code of the base application
to apply our framework. Very few extra application specific code has to be written,
and all this code is factored out very well.

Chapter 6

Conclusions

6.1

Achievements

The main goal of this thesis was to achieve dynamic adaptable migration policies
in mobile programs, using the reflective system Reflex. The following achievements
were made in this work:

We created a metalevel library to be able to dynamically switch between
different migration policies when parts of an application are migrating. In
particular the remote reference and the copy migration policies are supported.
To make the decision to switch to another migration policy, different sources
are accessed: the Infrastructure Monitor and the state of the objects that are
about to migrate. All this could be done at the metalevel only.

This metalevel library has been applied in the world of reaming agents and
ubtquitous computing, but can be used in any mobile code system.

We created an infrastructure to support the disconnect operation, and syn-
chronization between objects on a server and replications of those objects on
a client.

Our library can be plugged transparently onto any base application. This
means that we don’t have to make any changes at all to the code of the base
application. Only few straightforward extra code is needed, and all this code
has been factored out very well. Recall that the application programmer
should create migration adaptors, synchronizers, and the two classes to boot-
strap the base application (ApplicationClient and ApplicationServer)
by implementing interfaces we provided.

To validate our work, we implemented a simple agenda application, to which
we applied successfully our metalevel library and our infrastructure to sup-
port the disconnect operation and synchronization. We introduced three
real-world scenarios to which the migration policies for migrating parts of
the agenda were adapted.

65

CHAPTER 6. CONCLUSIONS 66

6.2 Limitations and Future Work

Infrastructure Monitor This is the source of information we used to make
decisions upon migration. In the current implementation this is just a dumb object.
This object should be able to give information about the network connection, and
the device to which parts of the application migrate. For example the type of the
device (PDA, fixed computer, ...), available memory, ... We should look for existing
systems that offer a similar infrastructure, and try to integrate it in our work.

Shutting Down the Client Application when Off-line A remaining
issue is that of supporting client application shutdowns. When the client device is
disconnected, it is not possible to shut down the client application without losing all
the changes made to local copies on the client. If changes are made to objects that
are local on the client device, all the changes will be gone after shutting down the
application, as no synchronization with the server can be done because the client
device is off-line. The local copies on the client device should be saved on disk
before closing the application, and synchronized with the server when restarting
the application and connected.

Conflicting Replicas It can be that one person makes changes to remote
referenced appointments in the agenda when connected from his fixed computer,
while another person makes changes to the local copies of the same appointments
from another device (for example from a PDA). When the PDA reconnects, the
synchronization with the server will be done. However, the synchronization protocol
will not detect that the objects on the server were changed by the first person
from his fixed computer. This means that the changes made by this person will
be overwritten by the changes made by the second person from the PDA upon
synchronization. This might not exactly be what we want, for example the changes
made from the fixed computer might have preference over the changes made from
the PDA. A system should be developed to detect and resolve those conflicts.

Note that in our case (the agenda application), we focused on the scenario
where one person owns the different devices, and thus he only accesses the agenda
application from one device at a time. Therefore no concurrent sessions are possible,
and the problem of conflicting replicas doesn’t exist.

Scalability Tests Currently we only tested our work with two fixed computers,
both using Linux as operation system, with JDK 1.3 installed. We should test our
framework more intensively. We could for example use other devices with a Java
Virtual Machine installed (for example a PDA) and with other types of network
connections (for example a more unreliable wireless connection). Also the example
agenda application we implemented had a very simple application object graph (an
Agenda which contains Days, and Days that contain Appointments). Some analysis
and tests should be done to see how our approach can be scaled to applications with
a more complex object graph.

Application Partitioning In our work, we decided to partition the applica-
tion, based on the types of the objects. We could declare types to be adaptable
using an XML specification. Other types of application partitioning should be in-
vestigated. J-Orchestra (see [35]) for example, partitions the application using a

CHAPTER 6. CONCLUSIONS 67

classification algorithm, that can detect if a class is anchored (this are system classes
that have native methods) or mobile (classes that are not anchored). J-Orchestra
also provides the user a simple Graphical User Interface to allow specify its custom
partitioning.

A similar user interface could be build for our system to generate the XML
specification.

Static Definition of Adaptable Types We use an XML specification to
specify the adaptable types. This means that all the instances of one type are
reflective when this type is declared as adaptable in the XML specification. However
we can always change or remove the metaobjects of an instance at runtime to stop
adapting it.

Performance It is obvious that we loose performance by having an extra layer
at the metalevel. But this performance loss is negligible in distributed computing,
as real performance problems generally come from network latency.

For implementing the disconnect operation, we keep for every RemoteInvoker
instance a reference in a table, in order to not garbage collect these instances when
the client disconnects. This of-course is quite costly in terms of memory usage.
Another solution could be to create only one instance of RemoteInvoker for all
objects that are referenced remotely. But then we have to pass for each method
invocation from the client to the server an extra ID, so that the RemoteInvoker
knows to which object he has to forward the method call. We also need an extra
table on the server to retrieve the resource that corresponds to this ID. This solution
is maybe better in terms of memory usage, but for each method call we need to
send an ID over the network (which means more network traffic) and we need an
extra lookup in the table to retrieve the resource on which the method has to be
invoked. Another disadvantage of this solution is that the socket type has to be
the same for each object type, as we only have one RemoteInvoker instance. This
means that we can not use compression sockets for one object type, and normal or
encryption sockets for another object type.

6.3 Conclusion

In this work we successfully created a metalevel library that can add dynamically
adaptable migration policies to a base application, using the reflective framework
Reflex. This metalevel library can transparently be plugged onto any base applica-
tion, without having to make any changes to the base application.

We showed the design of this metalevel library in the world of ubiquitous com-
puting and roaming agents. We introduced all the metalevel entities used in this
library, and we explained how this library can transparently be plugged onto a base
application using an XML specification.

Finally we saw, in a case study, the different steps to transform a non-distributed
base application into a distributed application with dynamically adaptable migra-
tion policies by applying our metalevel library onto it. We also exposed how syn-
chronization could be done between the client and the server, and how the discon-
nect operation could be supported.

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

Ubiquitous computing, http://www.ubiq.com/.

A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for
Resource-aware Mobile Programs. In Mobile Object Systems: Towards the
Programmable Internet, volume 1222 of LNCS, pages 111-130. Springer, April
1997.

M. Ancona, W. Cazzola, G. Dodero, and V. Gianuzzi. Channel Reifica-
tion: a Reflective Model for Distributed Computation. In Proceedings of
IEEE International Performance Computing, and Communication Conference
(IPCCC’98), pages 32-36. IEEE, February 1998.

D. G. Bobrow, R. G. Gabriel, and J. L. White. CLOS in Context — The
Shape of the Design Space. In Object Oriented Programming — The CLOS
Perspective. MIT Press, 1993.

J. P. Briot and P. Cointe. Programming with Explicit Metaclasses in
SmallTalk-80. In Proceedings of OOPSLA’89, volume 24 of Sigplan Notices,
pages 419-431. ACM, October 1989.

W. Cazzola. Evaluation of Object-Oriented Reflective Models. In Proceedings
of ECOOP Workshop on Reflective Object-Oriented Programming and Systems
(EWROOPS’98), 12th European Conference on Object-Oriented Programming
(ECOOP’98), 1998.

S. Chiba. Load-time structural reflection in java. In E. Bertino, editor, ECOOP
2000 - Object Oriented Programming + 14th European Conference, number
1850 in Lecture notes in computer science, pages 313-336, Sophia Antipolis
and Cannes, France, june 2000. ECOOP 2000, Springer-Verlag.

P. Cointe. MetaClasses are first class objects: the ObjVLisp model. In Pro-
ceedings of OOPSLA’87, volume 22 of Sigplan Notices. ACM, October 1987.

P. Cointe. A tutorial introduction to metaclass architecture as provided by
by class oriented languages. In Proceedings of the International Conference on
Fifth Generation Computer Systems, pages 592—608, Tokyo, Japan, November
1988. Tokyo and Springer-Verlag.

Tain Craig. The Interpretation of Object-Oriented Programming Languages.
Springer Verlag, 2001.

J. Malenfant F.-N. Demers and M. Jacques. A Tutorial on Behavioral Reflec-
tion and its Implementation. In Proceedings of Reflection ’96, 1996.

68

BIBLIOGRAPHY 69

[12]

J. Ferber. Computational Reflection in Class Based Object Oriented Lan-
guages. In Proceedings of OOPSLA’89, volume 24 of Sigplan Notices, pages
317-326. ACM, October 1989.

M. Fowler. UML Distilled. Object Technology Series. Addison-Wesley, 1997.

A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. In
IEEE Transactions on Software Engineering, volume 24(5), May 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements
of Reusable Object-Oriented Software. Addison-Wesley professional computing
series, 1995.

R. H. Katz. Adaptation and mobility in wireless information systems. IEEE
Personal Communications, 1:6-17, 1994.

G. Kiczales, J. Des Rivieres, and D. G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

J. J. Kistler and M. Satyanarayanan. Disconnected operation in the coda
file system. In Thirteenth ACM Symposium on Operating Systems Principles,
volume 25, pages 213-225, Asilomar Conference Center, Pacific Grove, U.S.,
1991. ACM Press.

M. Satyanarayana Lilly B. Mummert, Maria R. Ebling. Exploiting weak con-
nectivity for mobile file acces. Technical report, School of Computer Science
Carnegie Mellon University, 1996.

P. Maes. Computational Reflection. PhD thesis, Vrije Universiteit Brussel,
1987.

P. Maes. Concepts and Experiments in Computational Reflection. In OOP-
SLA’87 Proceedings, pages 147-155, Orlando, Florida, 1987.

Brian D. Noble, Morgan Price, and Mahadev Satyanarayanan. A programming
interface for application-aware adaptation in mobile computing. Technical
Report CS-95-119, 1995.

Mudumbai Ranganathan, Anurag Acharya, Shamik Sharma, and Joel Saltz.
Network-aware Mobile Programs. In Proceedings of the USENIX 1997 Annual
Technical Conference, Anaheim, CA, 1997.

M. Satyanarayanan. Fundamental challenges in mobile computing. In Sympo-
sium on Principles of Distributed Computing, pages 1-7, 1996.

B. C. Smith. Reflection and Semantics in Lisp. In Proceedings of the 14th
Annual ACM Symposium on Principles of Programming Languages, pages 23—
35, January 1984.

Sun Microsystems, Inc. The Java Language Specification, 1996.

Sun Microsystems, Inc. The Java Development Kit.
http://java.sun.com/products/jdk/, 1999.

Sun Microsystems, Inc. Object Serialization.
http://java.sun.com/products/jdk/1.3/docs/guide/serialization/,
2000.

BIBLIOGRAPHY 70

[29]

Sun Microsystems, Inc. Reflection API ~ Documentation.
http://java.sun. com/products/jdk/1.3/docs/guide/reflection/,
2000.

Sun Microsystems, Inc. Remote Method Invocation.
http://java.sun.com/products/jdk/1.3/docs/guide/rmi/, 2000.

Ado Adobe Systems. Postscript language reference manual.

Eric Tanter. Reflex, a reflective system for java — application to flexible resource
management in mobile object systems, msc thesis, August 2000.

Eric Tanter, Noury Bouraqadi, and Jacques Noyé. Reflex — Towards an Open
Reflective Extension of Java. In Proceedings of the Third International Con-
ference on Metalevel Architectures and Advanced Separation of Crosscutting
Concerns (Reflection 2001), volume 2192 of Lecture Notes in Computer Sci-
ence, pages 25-43, Kyoto, Japan, September 2001. Springer-Verlag.

Eric Tanter and José Piquer. Managing references upon object migration: Ap-
plying separation of concerns. In Proceedings of theXXI International Confer-
ence of the Chilean Computer Science Society (SCCC 2001). IEEE Computer
Science Press, November 2001.

Eli Tilevich and Yannis Smaragdakis. J-orchestra: Automatic java application
partitioning. Technical report, Center for Experimental Research in Computer
Science (CERCS),College of Computing Georgia Institute of Technology, At-
lanta, June 2002.

