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Design and Implementation of a Reflective Hybrid
Functional /Prototype-Based Language Kernel

Abstract

A frequent dilemma in programming language design is the choice between a language with
a rich set of notations and features, and a small, simple core language. In this work, the
dilemma is addressed by proposing a syntactical and semantical extension mechanism based
on the programming language Pic% developed at VUB. The result is a language whose kernel
is basically a reduction of Pic%’s. This kernel defines a very simple functional language whose
core syntax and semantics can be grown as needed. The extension process is performed from
within the language itself, using a set of reflective facilities, and such process is dynamic (i.e.
performed at run-time), thus enabling the programmer to use new constructs as soon as they
are defined. The tools provided are: a small and well-defined core semantics, an evaluation
environment playground, and a set of meta-level functions which conform the meta-level
interface (MLI) of the language. The MLI contains utilities to extend the language grammar
and assign a semantics to each extension. With these tools, it is shown that a complete
and consistent object-oriented model can be defined by means of syntactic extension and
assignment of the corresponding semantics. The OO layer is inspired on prototype-based
programming, thus the language, called xPic% (extensible Pic% ), is transformed to be both
a functional and a prototype-based programming language. As far as we know, an MLI for
this kind of combination is unique.

Word count: 251
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Chapter 1

Introduction

The design and implementation of programming languages is one of the oldest fields in com-
puter science. It is also one of the most fundamental. If many find computer programming
an exciting activity, the meta-activity of describing how to describe, i.e. of designing and
implementing programming languages, cannot be less but fascinating. Now, through com-
putational reflection, part of this fascination, and most importantly part of the power of a
language’s designer can be put to the service of the language’s user. Reflection has the po-
tential to permit the long deferred promise of truly open programming languages and systems
to be realized.

Since more than a decade now, the area that have got the most attention is object-oriented
programming. Object-oriented programming has settled down firm bases in the realm of
computer science. The computational model it provides has proven to be useful in a large set
of domains. Insight into the very nature of object computation has been gained due in part to
its marriage with computational reflection. This union holds out the promise of dramatically
changing the way we think about, organize, implement, and use programming languages and
systems. Such an insight has not been gained in the combination of object-oriented and
functional programming languages with reflective meta-level architectures. The benefits of
this hybrid approach are a question that is lacking a sound answer. In this dissertation, we
explore an hybrid functional/prototype-based language that allows its configuration through
reflection, not only to tweak its semantics but also its syntax.

One particular area of application is domain-specific languages (DSLs). In the literature, they
are also called little, lightweight or micro languages [1]. DSLs, tailored towards the specific
needs of a particular domain, can significantly ease building software systems for that domain.
They are less cryptic and easier to learn for domain experts, since they are usually small,
offering only a restricted suite of notations and abstractions: while such languages provide a
natural vocabulary for concepts that are fundamental to the problem domain, with general-
purpose languages one is reduced to idiom.

By means of a highly reflective architecture, this dissertation aims at constructing a “language
laboratory” that allows the exploration of language designs in the symbiosis of two paradigms,
the functional and object-oriented, with the possibility of defining an appropriate set of
notations for the problem domain at hand.



1.1 Objective

The main goal of the thesis is to design a meta-level interface for a reflective language, founded
on an hybrid functional/prototype-based paradigm. The meta-level interface should allow the
syntactic and semantic extension of the language with new, unpredicted constructs.

As a starting point, the design should be based in the programming language Pic%. The new
language should maintain the existing qualities of Pic%, namely:

1. A very simple semantics.

2. An intuitive syntactic front end.

3. The natural symbiosis of the object-oriented and functional paradigms, e.g.:

object <+— evaluation environment
method +— function

4. A clearly structured metacircular implementation that serves as a specification of the
language and a testbed for its extension.

Furthermore, the extension mechanisms of the new language should support the exploration
of concepts in object-based computational models, apart from those already present in Pic%.

1.2 Methodology

To achieve the goal of this thesis, a reflective language kernel was developed. The basic design
of the kernel is inspired on Pic%’s kernel (syntactically and semantically). It supports the
requirements stated in section 1.1 in the following way:

e It has a (default) semantics which is even simpler than Pic%’s, hence requirement 1 is
met.

e The syntax of the language is extensible, to cope with requirement 2. Syntax extensions
provide syntactic sugar for problem-specific abstraction.

e The model for object-orientation defined using the language kernel has the same foun-
dation as Pic%’s model, thus meeting requirement 3.

e To support the exploration of new mechanisms in object-based programming, part of
the language semantics is extensible in a reflective way, i.e. it is possible to modify the
evaluator of the language at run-time via reflective facilities.

e The kernel was implemented in Pic%, and such implementation has approximately the
same level of complexity than the previously existing implementation (requirement 4).
This document contains, throughout chapters 3, 4 and 5, the most important parts of
the metacircular code, with detailed explanations.

1.3 Context

The following main forces surround and give impulse to the work of this thesis:



1.3.1 Advocation of prototype-based programming

Object-oriented programming languages (OOPLs) are gaining acceptance, partly because
they offer a useful perspective for designing computer programs. However, they do not all
offer exactly the same perspective; there are many different ideas about the nature of object-
oriented computation. The concepts of object, class, type, message, inheritance, polymor-
phism, encapsulation and reflection can be combined in different ways to produce a variety
of definitions of object-oriented programming. This has lead to the development of a number
of object-oriented programming languages including Simula, Smalltalk, CLOS, C++-, Eiffel
and Java. Although the predominant OOPLs are based on the concept of class, there is
an interesting category of object-oriented languages in which there are no classes at all. In
this object-based model, all programming is done in terms of concrete, directly manipulable
objects that are often referred to as exemplars or prototypes. These prototypical objects
resemble the instances in class-based languages, except that prototypical objects are more
flexible in several regards. For instance, unlike class-based languages in which the structure
of an instance is dictated by its class, in prototype-based languages it is usually possible
to add or remove methods and variables at the level of individual objects. Other differences
include that in prototype-based languages object creation usually takes place by copying, and
that inheritance is replaced by some other, less class-centered sharing mechanism. Prototype-
based languages are conceptually elegant and posses many characteristics that make them
appealing. Moreover, these languages are seemingly closer to some of the cognitive theories
presented by psychologists and philosophers in the last century. In general, when working
with prototypes, one typically chooses not to classify, but to exploit alikeness. Rather than
dealing with abstract descriptions of concepts, the designer is faced with concrete realiza-
tions of those concepts. For these reasons and more to come in section 2.2, this thesis work
advocates the usage of prototype-based programming.

1.3.2 Exploration of the design space of prototype-based languages

If the intent is to explore the alternative models of object-oriented computation offered by
prototype-based approaches, there is a need for languages to specify them conveniently. As in
the case of class-based programming, the design space of prototype-based programming is rich
enough to leave room for a plethora of such languages: Self [2], Kevo [3], Agora [4], Garnet
[5], Moostrap [6], Omega [7], Obliq [8], NewtonScript [9] and more. Mixing prototype- and
class-based concepts has also been proposed [10, 11]. A very general and informal character-
ization of these languages is rather simple [12]: they propose a programming model in which
there is one kind of object equipped with attributes and methods, a primitive way to create
objects (ex-nihilo creation, cloning or differential description) and one primitive computation
mechanism (message sending). Beyond this general characterization, these languages exhibit
slight differences in the definition of their fundamental mechanisms that turn out to have a
profound impact on their programming models. This is one of the reasons that motivate this
thesis work: the exploration of the design space of prototype-based programming languages
and the need for a playground to test and validate their fundamental mechanisms.

1.3.3 Research in the design of a language for educational purposes

This thesis work is inspired on Pic% [13], a prototype-based language designed at VUB by
Professor Theo D’Hondt for educational purposes. One of the main forces driving the design
and implementation of Pic% is its application as an educative tool [14]. Many elements in



Pic% make it a very well suited device for teaching:

1. Tt is prototype-based, thus it seizes on some fundamental benefits of the paradigm:
a simpler model of object-oriented computational systems, and thus less concepts to
be exposed in a first introduction to OOP. Apart from simple, the prototype-based
approach makes OOP a more intuitive and concrete experience, an interesting example
of which can be found in [15].

2. It has a simple semantics with an intuitive syntactical front end. Both are specified in
a metacircular implementation of the language which is small enough for students to
grasp in a small period of time (one proof of it is the case of the author himself).

3. It introduces students to a number of fundamental concepts in the structure and in-
terpretation of computer programs [16]; Pic% constitutes a self-contained technological
framework for uniting all the relevant notions and concepts. Skirting any really formal
approach to syntax and semantics of programming languages, students are exposed to
a rigorous treatment of the matter of building a consistent language processor [14]. The
methodology is based on the examination of the Pic% metacircular implementation.

The language kernel proposed in this thesis inherits the “pedagogical side” of Pic%. Thus
one of the design lines is to maintain conceptual simplicity and ease of use in the language.
For example, the meta-level interface does not provide at the base-level (i.e. from the user’s
perspective) all the functionality available at the meta-level (i.e. from the language imple-
mentor’s perspective).

1.3.4 Programming and meta-programming with multiple paradigms

Reflection, understood as the construction of self-awared systems, is a persistent source of
challenge. The mere feeling of touching the essence of computing, but also the tremen-
dous potential for new applications insure a continuous quest for understanding its foun-
dations. Object-oriented meta-programming in class-based systems is dominated by the
class/metaclass approach that provides a highly satisfactory solution to the problem of struc-
tural reflection [17]. In the case of prototype-based programming, although there is not a
broadly accepted approach, the development of many reflective models (take for instance [4])
confirms that reflection is possible and even easier as a consequence of the simpler underlying
computational model. Indeed, there are cases [17] in which prototype-based programming has
been chosen as a testbed for reflection since it avoids the unnecessary complexity of classes
before a reflective facility is fully understood.

What has not been studied thoroughly is reflection in multi-paradigm environments, particu-
larly in the symbiosis between the functional and object-based computational models. Thus
a final and very important driving force of this thesis is the exploration of reflection in an
hybrid functional/prototype-based setting.

1.4 Scope of the work

The work presented here is not about:

e An exhaustive exploration of prototype-based languages and their semantics. The aim
of the kernel proposed in this thesis is to allow the exploration of language concepts,
i.e. it is a research tool. One of the hypotheses of this work is that the design space of



prototype-based languages is big enough to justify the creation of such tool. To validate
the language kernel, some concepts are explored (section 5.3) but to carry out a broad
exploration of prototype-based programming mechanisms is out of our scope.

e Full behavioral reflection. There is no reification of the computational state at the
base-level, thus the full requisites of behavioral reflection are not met (note though
that the newest versions of Pic% have first-class computational state, but this work
didn’t include this feature since it is based on an older version).

e Reasoning about grammars. There is not a focus on either assessing properties of the
language’s grammar (e.g. ambiguity), nor on automatic transformation of grammars
(e.g. grammar simplification). The language kernel is “passive” in the sense that in
only manipulates the grammar on user request, but it never engages into finding facts
about the grammar or modifying it automatically.

1.5 Outline of this dissertation

In this chapter, the objectives of this thesis and the way to achieve them have been established.
The reasons that motivate the work and the main design lines were exposed. Finally, the
limits in scope were established. A description of the contributions of this work will be
delayed to the conclusions (chapter 6).

The rest of the dissertation is organized as follows:

In the next chapter, the background concepts necessary to understand the core part of the
thesis are presented.

The interpreter of the language developed in this work is composed of three sub-machines:
the lexical, syntactical and semantical analyzers. The first two are presented in chapter
3. Therein, a description of the techniques employed to achieve a syntactically extensible
language is given. The last sub-machine, the semantical analyzer or evaluator of the language,
is the subject of chapter 4.

A validation of the reflective language kernel developed in chapters 3 and 4 is given in chapter
5. This chapter assesses the ability of the kernel to emulate some constructs of the languages
Pico [13], Pic% [13] and Agora [4], therefore providing a better understanding of what the
extensible framework is capable of.

Finally, the conclusion in chapter 6 provides a unified view of the elements composing the
language kernel and a few non-expected achievements of the work.

1.5.1 Roadmap for the busy reader

This introduction hopefully gave the reader an understanding of what this work is about.
Now, to quickly grasp the core elements should the following guide be of any help:

1. If terms like ‘reify’, ‘meta-circular’, ‘base-level’ or ‘meta-level’ are unfamiliar, see sec-
tion 2.1.

2. An initial description of prototype-based programming was presented in section 1.3; for
a more complete background, see section 2.2.



3. The explanations of this document are based on metacircular code written in Pic%,
therefore it is important to have a notion of its syntax and its semantics. To get
acquainted with the basics of Pic%, read sections 2.3 and 2.4.1.

4. To see how syntactic extensions are achieved, first take a look at the beginning of section
3.6 to know how the grammar of the language looks like and in which points it can be
extended. The base-level tools to perform such extensions are then described in section
3.7; these tools for syntax extension conform the first part of the meta-level interface
of the language.

5. To know what the core semantics of the reflective kernel is, see section 4.2. Some of the
contributions of this thesis concern this part; the semantics are described in a “neutral”
manner in that section and then the contributions are highlighted in the conclusions,
sections 4.4 and 6.2.

6. The tools provided at the base-level to allow the implementation of language extensions
are described in section 4.3. These conform the second part of the meta-level interface
of the language.

7. Examples of how the language can be extended using the meta-level interface can be
found throughout section 5.2. This section also constitutes an example of how the user
can explore the design of language mechanisms and the issues that arise (e.g. in the
case of closure-based boolean systems, see section 5.2.4).

8. The symbiosis between the functional and object-based models is shown in section 5.3;
the kind of symbiosis proposed is an idea inherited from Pic%; some differences are
exposed and a few further prototype-based mechanisms are explored.

9. A final unified view of the language kernel is provided in section 6.1.
10. The achievements and contributions of this thesis can be seen in sections 3.8, 4.4 and

6.2.

What the reader would miss by following this roadmap is basically the internals of the inter-
preter (which allow syntactic and semantic extensibility); the internals include some inter-
esting techniques like parser combinators.



Chapter 2

Background Concepts

This chapter presents all the concepts that are used without an explanation in the remainder
of this document. Since xPic% is reflective, a general notion of meta-programming and
reflection is necessary (section 2.1). The paradigm in which xPic% is circumscribed is an
hybrid between functional programming and prototype-based programming. The notions
of functional programming are assumed and thus not provided here (a good starting point
is [16]). Regarding prototype-based programming, its basics are the subject of section 2.2.
xPic% is derived from the programming language Pic%. Furthermore, Pic% is used to specify
and implement xPic%, thus a general idea of what Pic% is and how it looks like is perhaps
the most important background knowledge to have; an overview is available in section 2.3.
Section 2.4 provides a global picture of how the xPic% interpreter is realized.

2.1 Meta-programming and computational reflection

In this section a crash introduction to meta-programming and computational reflection is
presented. It synthesizes information from various sources [18, 19, 20] into a hopefully well-
integrated view of the subject.

2.1.1 Basic concepts

This section establishes the terminology for the concepts in which meta-programming and
reflection are based. In fact, this definitions will hold for the entire scope of this document.

Computational systems and their specification

To a big extent, computer science can be regarded as the study of complex processes by means
of executable models. These models are called computational systems, or systems for short.
Computational systems exhibit a specific behavior over time, which advances in discrete steps.
Describing a system involves specifying how it evolves during its successive time steps. This
description activity is called programming, and its product — a formal, executable specification
of a computational system — is called a program. Programs are expressed in a formalism, the
programming language, that can be interpreted automatically using some machine. By means
of interpretation, the behavior of the computational system is obtained.
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Figure 2.1: A computational system; two elements in the universe of discourse are reified,
one is not. In the system, two structures are reifiers and the other two have a purpose other
than representing domain elements.

Domain of a computational system

The domain or universe of discourse of a computational system is the collection of elements
(entities or concepts) which the system can reason about. For example, an address book
application is a system that reasons about a universe of discourse which contains (real)
persons, names, phone numbers, days, addresses, etc. The computational system manipulates
representations of these elements. However, not all the elements in the domain need to be
represented explicitly in the system. Whenever an element has an explicit representation it
is said to be reified, and such representation is called the reifier. Figure 2.1 illustrates the
idea.

Relation between a computational system and its domain

A system is said to be causally connected to its domain if the internal structures and the
domain elements they represent are linked in such a way that if one of them changes, this
leads to a corresponding effect upon the other. A system steering a robot-arm, for example,
incorporates structures representing the position of the arm. These structures may be causally
connected to the position of the robot’s arm in such a way that, if the robot-arm is moved
by an external force, the structures change accordingly and, if some of the structures are
changed (by computation), the robot-arm moves to the corresponding position. So a causally
connected system always has an accurate representation of its domain and it may actually
cause changes in this domain as mere effect of computation.

2.1.2 Meta-programming

Programs can be constructed to reason about almost anything imaginable. In particular,
programs that reason about other programs. Examples of such programs are compilers,
interpreters and code generators. A program whose universe of discourse contains programs,
is called a meta-program or meta-level program. The computational system it specifies is
called a meta-system. The programs in the universe of discourse are called base-programs or
base-level programs; they specify the base-system (figure 2.2).

2.1.3 Computational reflection

Reflection is a wide-ranging concept that has long been studied in philosophy and many
different areas of science. It was introduced in computer science through artificial intelligence
as it was considered as a property responsible, at least in part, for what is considered an



“intelligent behavior”. In the area of programming languages it has been applied under the
name of computational reflection. Computational reflection dates from Brian Smith’s work
in the early 80s [21].

A reflective program is a special kind of meta-program whose universe of discourse contains
aspects of its own computational system (figure 2.3). A reflective program has access to
data structures which reify its computational system or aspects thereof; the sum of these
structures is called the self-representation of the system. This self-representation can be
inspected or it can be acted upon. Because the self-representation is causally-connected to
the aspects of the system it represents, the system always has an accurate representation
of itself, and it can actually bring modifications to itself by virtue of its own computation.
Computational systems specified by reflective programs are called reflective systems. Their
main characteristic, as we have explained is to have a “causally connected self representation”.

The difference between meta-programming and reflection is that, in the former, the base-
system does not have access to its self-representation: such a representation is available from
the meta-level only.

Reflective computation

Reflective computation occurs when reflective code is executed, i.e. code performing compu-
tation about the system itself. Examples of reflective computation are to keep performance
statistics, computation about which computation to pursue next (reasoning about control),
self-modification and self-activation (through monitors or daemons).

A distinction is made on the nature of the reflective computation: observing the base level is
distinguished from actually modifying it. Thus there exist two kinds of reflective operations
[22]:

e Introspection is the ability of a program to observe and therefore reason about its own
state.

e Intercession is the ability of a program to modify its own execution state or alter its
own interpretation or meaning.

These operations require a reification mechanism that allows them to do such manipulations.
As will be seen in chapters 3, 4 and 5, the language kernel proposed in this work allows
reflective computation; both introspective and intercessive facilities will be defined.
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Figure 2.2: The idea of meta-programming: programs whose universes of discourse contains
other programs. Causal connections among each level may exist.
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Figure 2.3: Reflection: parts of the computational system are about the system itself; some

others are about the application’s main domain

Structural vs. behavioral reflection

Two kinds of reflection are distinguished, structural and behavioral reflection [20]:

e Structural reflection is concerned with the ability of the language to provide a complete
reification of both the program currently executed as well as a complete reification of
its abstract data types.

e Behavioral reflection is concerned with the ability of the language to provide a complete
reification of its own semantics and implementation (processor) as well as a complete
reification of the run-time system. By definition, behavioral reflection allows a program
to modify, even at run-time, its own code as well as the semantics and the implemen-
tation of its own programming language. This late-binding of the language semantics
favors interpretive techniques. Interpreters ease modifications and react to them as
soon as they occur.

Structural reflection requires the reification of entities used for building the system statically.
Behavioral reflection goes further since it requires to reify entities used to perform the com-
putation of the system (e.g. the execution stack); these entities belong to the dynamic part
of the system.

The language kernel to be presented in the following chapters supports structural reflection
but it does not allow full behavioral reflection. Although it is possible for a program to modify
its own code at runtime, as well as part of the language semantics, there is no reification of
the run-time system (the dynamic part of the evaluator).

2.1.4 Reflective architectures

A programming language is said to have a reflective architecture if it recognizes reflection as
a fundamental programming concept and thus provides tools for handling reflective compu-
tation explicitly. Concretely, this means that:

e The interpreter of such a language has to give any system that is running access to data
representing aspects of the system itself. Systems implemented in such a language then
have the possibility to perform reflective computation by including code that prescribes
how this data may be manipulated.

e The interpreter also has to guarantee that the causal connection between the data and
the aspects of the system it represents is fulfilled. Consequently, the modifications
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these systems make to their self-representation are reflected in their own status and
computation.

Reflective architectures provide a fundamentally new paradigm for thinking about computa-
tional systems. In a reflective architecture, a computational system is viewed as incorporating
an “object part” and a “reflective part”. The task of the object computation is to solve prob-
lems and return information about an external domain, while the task of the reflective level
is to solve problems and return information about the object computation.

The language developed in this work (xPic%) has a reflective architecture.

2.1.5 Conclusion

Reflection facilitates the design of specialized interpreters. Indeed, OO programming is a field
in which experiments were extensively carried out to determine the best choices of design (see
for example [23]). Some designs are appropriate for some applications but not for others. But
reflective facilities make languages open-ended: in particular, reflection makes it possible to
make local specialized interpreters of the language from within the language itself. This is
one of the key points that motivate the creation of a reflective language kernel like xPic%.

2.2 Prototype-based programming

An Object-Oriented Computational System is nothing but objects sending messages to each
other; every object has a state which is altered in convenient ways by means of message
sending. Often a biological metaphor is used: messages are regarded as stimulus to which an
object — like a cell — reacts, changing its state and provoking the emission of new messages
to other objects that collaborate in the process; the exact way of transmitting the message is
in principle irrelevant (it can be to ‘neighboring’ objects or to remote objects via ‘conduits’),
and the exact reaction to a message depends on the specific nature of the object. In this
metaphor of objects as cells, the concepts of state encapsulation and object behavior are
made clear.

The very basic concepts of object-oriented systems are thus objects and messages (with the
associated concepts of state encapsulation and object behavior). Object-Oriented Program-
ming Languages (OOPLs) are the formalisms in which the specification of an object-oriented
computational system is expressed. Although this foundation is already operational, further
concepts must be added in order to make it practical (i.e. to allow the construction of large
object-oriented systems). Historically the first alternative introduced was the concept of
class, based on the observation that in almost any system there are groups of similar objects,
for instance in the Earth planet, there are animals, minerals and plants. Among animals
there are mammals, fish, birds, and so on. A class describes the similarities among a group
of objects, defining the state space and behavior of all its instances, whereas the instances
hold the local data representing the particular state of objects. In broad terms, a class rep-
resents a concept, while an instance represents an individual, or a particular occurrence of
a concept. This view of classes as concepts comes from the original Scandinavian school
of object-oriented programming, started by Ole-Johan Dahl and Kristen Nygaard through
their design of the programming languages Simula I and Simula 67 [24]. We will stick to this
view; others regard classes as a sort of abstract data type, or a more implementation-oriented
facility.
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Here starts the divergence of two main branches in the OO paradigm, in one of which we are
interested the most. We will call class-based languages those that have the concept of ‘class’,
and prototype-based languages those that do not [25]. Most of the main-stream OOPLs in
use nowadays are class-based. The question is, why should we worry about prototype-based
languages?

2.2.1 Philosophical background

The material exposed in this section is mostly based on Taivalsaari’s excellent introduction
to the field of prototype-based programming [26]. As he explains,

Some of the central concepts behind OOP —classes, instances and classification—
have been of interest to human beings for centuries. The earliest characterization
of classes versus instances was given by Plato over two thousand years ago. Plato
made a clear distinction between forms — i.e. stable, immutable, “ideal” descrip-
tions of things — and particular instances of these forms. He regarded the world
of ideas as much more important than the world of instances, and contended that
forms always have an existence that is more real than the concrete entities and
beings in the real world.

Research into classification (to be precise: biological classification) was con-
tinued by Plato’s student Aristotle (384-322 b.C.) who had an endless interest in
understanding and organizing the world to its smallest details. Whereas Plato was
interested mainly in ideas and “eternal” concepts, Aristotle was the first philoso-
pher interested especially in natural phenomena. In his works — over 170 in total
— Aristotle aimed at providing a comprehensive, detailed taxonomy of all natural
things — animals, plants, minerals, and so on. His classifications were based on the
same idea that underlies object-oriented programming today. A group of objects
belongs to the same category if the objects have the same properties. [...] New
categories can be defined in terms of other categories if the new categories have
at least the same properties as the defining (‘genus’) categories. The general rule
for classification can be presented as follows:

essence = genus + differentia

In other words, categories are defined in terms of their defining properties and dis-
tinguishing properties. This corresponds precisely to the idea behind traditional
class-based object-oriented programming, in which a class is defined in terms of
its superclass (genus) and a set of additional variables and methods (differentia).

Class-based languages such as Smalltalk, C+4 or Simula are platonic in their explicit use
of classes to describe collections of similar objects. To dig up into the Aristotelian view of
class-based programming, the reader is referred to [27].

The eastern world has been more holistic than the western. There seems to be a need in the
western world to subdivide and classify things. Not only we classify but Aristote’s work has
lead to the idea that there is a single correct taxonomy of natural things, a universal clas-
sification. The Aristotelian ‘classical’ view stood unchallenged a long time. Categories were
regarded as well-understood and unproblematic. It was the 19" century when philosophers
started to deny the existence of universal rules to determine what properties to use as a basis
of classification of objects. They argued that classification is not a mechanical process but
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it requires creative invention and evaluation. Consequently, there are no objectively ‘right’
classifications. People have many ways of making sense of things, depending on their cul-
tural background, personal experience and their capacity to perceive, learn and remember,
organize the things learned and communicate them efficiently. Thus taxonomies of all sorts
abound.

Wittgenstein continued the criticism of classifications in the past century (1953), observing
that it is difficult to say in advance what characteristics are essential for a concept. He
gave several examples of seemingly simple concepts that are extremely difficult to define in
terms of shared properties. A classical example is the concept of ‘game’. Some games involve
mere amusement, with no competition — winners or losers — though in other games there is
competition. Some games involve luck, others involve skill, or a mixture of them to varying
degrees. The number of players may also vary considerably from one, (solitaire), to hundreds,
thousands, or even millions, as in lottery or race betting. There are even games in which no
players are needed at all, such as the Game of Life (although some do not regard those as
‘real’ games). Another concept that is hard to define in terms of shared properties is ‘work
of art’, since no one can really define clear boundaries for what is art and what is not.

In view of the mentioned flaws in the cognitive model of categorization, a new model was
called for.

A new cognitive model: the Theory of Prototypes

How do humans better express concepts? By describing abstractions or remitting to signi-
ficative examples? The expression of concepts by abstraction is the process of finding the
defining properties of entities we observe in the real world. This is akin to the process of
defining a set by comprehension in mathematics, with a predicate that describes the nature
of its elements. It is argued that abstractions are usually discovered by generalizing from a
number of concrete examples and that the abstraction process is likely to succeed much better
if we have a lot of experience with the problem domain. In this direction, after criticizing
the classical model of categorization, Wittgenstein defined what can be seen as the origin
of prototype-based programming: the notion of ‘family resemblance’. But it was Eleanor
Rosch who introduced prototype theory in the mid-1970s. One of the central results of the
prototype theory by Rosch and others is the observation that not all concepts and categories
are equal. Rather, there are categories that are more ‘basic’ than others and objects that
are ‘better’ representatives of categories than other objects. For instance, when one thinks
of numbers, 1, 2, 3 pop to the mind, more than 5535, 1.666 or /2. This alternative point of
view argues that knowledge may be hold in terms of the representatives which capture the
main essence of the concept, the paradigms or prototypes of such concept [28]. In cognitive
science, a prototype is a ‘typical’ member used to represent a family or a category of objects.

A (now) classical example was given by Lieberman in the mid-1980s [28], when prototype
theory finally made its way through the world of OOP. If the elephant Clyde is our only
experience with that kind of pachyderm, our concept of an elephant can really be no different
than the concept of Clyde. We can consider Clyde to represent the concept of a prototypical
elephant. After meeting other elephants, the analogies we make between them serve to pick
out the important characteristics of elephants, allowing us to abstract better.
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2.2.2 Limitations of class-based programming

The philosophical dilemmas exposed have in fact an impact in object-oriented programming.
Until recently, most people have considered the notion of class an essential, inseparable
part of OOP. However, the community have gradually become aware of the limitations and
complexity of this approach. Taking into account the conceptual similarity of the Aristotelian
model and the traditional OO paradigm, it is fairly obvious that the class-based OOPLs of
today have pretty much the same shortcomings when it comes to modeling the real world.

No optimum class hierarchies There are no ‘optimum’ class hierarchies. As a conse-
quence, designers of OO software should always be prepared for change. No matter
how well designed a class library is, requirements may change in such a manner that
substantial changes in the library are needed. It also happens that the point of view
from which a hierarchy is designed doesn’t fit well in other contexts, where the decom-
position of the system (i.e. its classification) is done from a different point of view.
There are no perfect taxonomies, thus problem domains usually admit more than one
valid decompositions into classes; class-based programming allows to express only one
of them in a given system.

Unnatural implementation processes An interesting observation is that when classes
are organized into taxonomic hierarchies, the commonly used classes typically end up in
the middle of the class hierarchy. In contrast, those classes that are at the top (root) or
at the bottom (leaves) are typically of less interest, either because they are overly generic
or overly specific for the purpose of examination. However, the implementation of an
OO class hierarchy always proceeds (technically) from top to bottom, i.e. superclasses
must exist before their subclasses. Therefore there is an inherent conflict between the
classification process and the implementation of a hierarchy: the generic, more abstract
classes can only be found when a substantial amount of expertise on the problem domain
has been gathered, but those classes need to be implemented first. If the implementation
is started before a sufficient level of expertise on the problem domain has been reached,
substantial iteration in the development process is inevitable, since later knowledge is
bound to reveal generalizations and new abstractions that will necessitate changes in the
superclasses. But we cannot postpone implementation until the ‘final’ classification of
the problem domain has been reached since we already know that a perfect classification
is rarely possible. Thus the construction of a class library is inherently an iterative
process: it will undergo a number of modifications till it becomes conceptually and
technically satisfactory.

Singletons There are problem domains where unique objects exist. The GOF suggests the
singleton design pattern to deal with this case [29]. It seems counterintuitive, however,
to define a whole class of objects that contains in fact only one exemplar.

Idiosyncratic Behavior Aristotle realized himself that his model had problems and noted
that many objects have ‘accidental’ properties, characteristic of the object under con-
sideration but atypical for those kind of objects in general. Thus, the actual substance
of concepts was defined in terms of two aspects: the essence and the accidents [27].

Since all objects of a class share the same behavior, it is unnatural to model this
‘accidents’ or idiosyncratic behavior of particular objects, which exhibit some particular
properties but those do not set them apart from the family to which they belong.

Too many roles Classes usually have many roles in an OOPL:

e Abstraction of concepts.
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e Instance descriptors and creators.
e Hierarchical categorization.
e Code sharing mechanism.

e Typing.

This role overloading makes classes conceptually less clear and difficult to manage. The
proof of this is that everybody seems to agree in taking out the typing role from classes,
like it happened in Java: the role was assigned to interfaces, i.e. pure typing constructs.
This change made possible much cleaner designs in the Java API. The author doesn’t
know about studies that further simplify the role of classes in OOPLs.

Meta-class regression If classes are first-class (i.e. they are reified as objects), and since
every object in class-based systems is an instance of a class, the well-known theoretical
difficulty of infinite meta-regression occurs: a class, being an object, is an instance of
a class, call it its meta-class. This meta-class is also an object, thus it must be an
instance of a meta-meta-class, ... oo

Lack of flexibility Class-based languages constrain objects too tightly. For example, they
require every individual instance of a class to have the same behavior. They also forbid
inheritance between objects, which could be used to share values of instance variables.

Unnatural programming experience The emphasis on classes in the programmer’s in-
terface is at odds with the goal of interacting with the computer in a concrete way (in
systems like Smalltalk that promote exploratory programming). When designing a new
object, one must first move to the abstract level of the class, write a class definition,
then instantiate and test it, rather than remaining at one level, incrementally building
an object.

The OO community has took sometimes ad hoc or unnatural solutions to these theoretical and
technical difficulties, for instance the way that the meta-regression is prevented in Smalltalk
(Metaclass class is both the class and an instance of Metaclass) or the singleton design pattern
in class-based OO design. Sometimes, we also observe an impact in software engineering,
with the need for CASE tools and complex methodologies.

2.2.3 Metaphors & mechanisms in prototype-based programming

The limitations presented in the previous section have lead a small group of researchers to
the roots of the object-oriented paradigm (nothing but objects and messages) to look for
alternative models. Some of the results they obtained are presented in this section: the
set of metaphors, mechanisms and techniques they invented constitute the field of prototype-
based programming. Hence, this section describes the concrete way in which the philosophical
basement presented in section 2.2.1 is realized. The purpose of this section is not to provide
a deep understanding of the issues raised by each mechanism but to give a general view of
the subject. To organize the presentation, the different mechanisms have been split up in
categories. This division is inspired in [12] and [23].

Object representation

Objects in prototype-based languages are defined by a set of properties, which are basically
bindings of names to values. Some languages distinguish two types of properties, attributes
and methods, whereas others amalgamate them into slots. Both approaches have advantages
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and disadvantages. One argument in favor of slots is that they allow users to access attributes
and methods the same way, and they permit overriding of an attribute with a method and
conversely a method with an attribute.

Object creation

Objects in prototype-based languages can be created in two ways: an object can be created ex
nihilo (from scratch) or it can be created from an existing one (either by cloning or extension):

e Ex nihilo creation just produces new empty objects.

e Cloning consists in creating a new object and installing in it a copy of the bindings
of the original object. This copy process has two variants: either shallow copy, where
each value gets replicated, or deep copy in which not only the values are replicated,
but pointer values are followed to replicate the pointed value. In contrast with deep
copying, the bindings in a shallow copy point to the same values as the corresponding
bindings of the original object. Most of the time, cloning performs a shallow copy of
the object behavior, and a deep copy of the object state.

e In object extension, objects are obtained from an existing one by simply creating a new
object and setting its parent-link to point to the original object.

Object evolution

An important issue about object definition is whether this definition can evolve after the
object has been created or not, i.e. if bindings can be added, modified or removed from an
object. In particular, if objects are created ex nihilo, dynamic modification of structure is a
must (otherwise they would remain uselessly empty). Another use of dynamic evolution is to
allow idiosyncratic behavior: to configure specific objects with different method definitions,
or to add new definitions.

Sharing mechanisms

In reality almost every object has idiosyncratic behavior. As it is impractical to define by
hand every object in the universe of discourse (in fact set definition by enumeration), every
object-oriented system should provide a way of sharing behavior and state among objects.
Organizing a large object-oriented system requires this ability [30]. In The Treaty of Orlando,
Stein et al. [23] made explicit the alternatives regarding sharing:

Static vs. dynamic sharing depending on whether the system requires patterns of sharing
to be fixed when an object is created or when it actually receives a message.

Explicit vs. implicit sharing depending on whether the language allows manipulation of
the sharing patterns or not, for example selection of the specific method implementation
to process a message.

Group sharing vs. individual objects depending on the way behavior is attached to ob-
jects: in mass or individually.

Anticipated vs. unanticipated sharing depending on whether the language permits an-
ticipated structural description of the problem domain or is more suited to addition of
behavior where it has not been foreseen.

There are many ways in which these sharing alternatives can be realized. In the following
paragraphs, three sharing mechanisms will be presented.
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Inheritance Inheritance is a well-known sharing mechanism. It should be noted that it is
not exclusive of class-based programming; for instance, Pic% has normal inheritance. With
respect to the criteria presented above (The Treaty of Orlando’s terms), inheritance is a static
mechanism to specify the implicit sharing of behavior for a group of objects.

Some languages allow an object to change its parent at run-time; this is sometimes called
dynamic inheritance.

Delegation To explain delegation, suppose that an extension object is constructed from
one or more prototypes. When it receives a message, an attempt is made to respond with
its own ‘personal’ behavior; if it fails the message is forwarded to one of its prototypes,
together with a reference to the object which originally received the message. This process
of delegation goes on through the delegation chain until the message is handled. The key-
point of delegation is that the self pseudo-variable inside a method refers to the original
object that received the message, even if the method used to answer the message is found in
one of its parents. So when messages are delegated, the original object has the opportunity
to answer; that’s why the metaphor between a delegator and a delegatee is used: “I don’t
want to do all this job by myself, so I'll delegate you this particular part... if you have any
questions just come back and ask me how to do it”. In The Treaty of Orlando’s terms (that
were presented above), delegation is a dynamic, implicit, individual sharing mechanism.

There are two alternatives in the semantics of delegation: a distinction is made between
implicit and explicit delegation.

e In implicit delegation, when an object cannot answer a message, the interpreter au-
tomatically delegates it to another object; objects have a parent link to indicate to
the interpreter to which object messages should be delegated. Some languages allow
objects to have more than one parent. There is no conceptual problem with multiple
delegation, although it raises similar problems to multiple inheritance.

e In explicit delegation, on the other hand, the delegation of messages is done explicitly
for each message to be delegated; the delegating object names the object to which
the message has to be delegated. Explicitly delegating a message resembles externally
to normal message passing, except that the method invoked by explicit delegation is
executed in the context of the delegating object (i.e. self still points to the delegator
instead of the object to which the message is being delegated).

Both explicit and implicit delegation solve “the self problem” pointed out in [28]. An example
of a possible usage of delegation is to implement the Delegation design pattern of the GOF
book [29]. As we mentioned above, the metaphor of delegation says: “if you have any
questions just come back and ask me”. Without delegation, the “self problem” arises: a
delegatee cannot refer any longer to the delegator. Hence, the Delegator pattern as stated
in [29] (in the context of class-based languages) is not true delegation. In a language with
delegation semantics, the problem is solved.

Propagation Languages like Kevo [3] do not support inheritance or delegation in the tra-
ditional way. Instead of these and other mechanisms that put a heavy emphasis on sharing,
Kevo objects are logically stand-alone and typically have no shared properties with each
other. New objects are created by cloning, and the essence of inheritance, incremental mod-
ification, is captured by providing a set of module operations that allow the objects to be
manipulated flexibly. Indeed, when no delegation mechanism is provided, life-time sharing
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between objects requires other “group-wide mechanisms” to automatically handle clone fam-
ilies in the system; the “clone family” of an object obj is defined as the transitive closure
of the relation “is-a-clone-of(obj)”. Kevo provides a mechanism called propagation allowing
the application of operations like method addition to all objects of the same clone family.
Regarding The Treaty of Orlando’s terms, propagation is a dynamic, implicit, group and
unanticipated sharing mechanism.

Split objects

Delegation raises an interesting issue, “the meaning of self” in a language [31]. More than
message forwarding, delegation can also be interpreted as an extension mechanism. An object
B that delegates to another object A, can be viewed as an extension of A. An extension object
and its parent can be seen as different parts of the representation of the same domain entity.
To split a representation in several objects in a delegation hierarchy is then a natural way of
representing viewpoints. Taking an example from [12],

Consider objects collectively representing a person — say “Joe” — in a delegation-
based system. The object JoePerson holds the basic information about Joe
(address, age, and so on), while the object JoeSportsman, an extension of
JoePerson, holds information related to Joe as a sportsman. Creating JoeSportsman
as an extension object instead of simply adding the slots stamina and weight to
JoePerson also facilitates subsequent extensions, e.g. JoeEmployee. Any modi-
fications to JoePerson are automatically seen by its extensions. Also, changes to
Joe can be made through its extension objects: for example, if Joe the employee
changes its personal address, the change will naturally be made at the person
level and will be effective for all extensions of this person.

A split representation is a set of objects linked by delegation, representing a single entity of the
domain such as the person Joe. There is no way to handle split representations as first-class
objects, entities for which the term split objects has been coined, in today’s prototype-based
languages. Making split objects first-class would mean being able to create them, refer to
them, clone them and otherwise deal with them as with other (atomic) objects. This is an
open issue that is currently being investigated [12].

2.2.4 Class-based vs. prototype-based languages

The epistemological dichotomy between the two standpoints, classes vs. prototypes (rational
vs. empirical) has direct implications in the way we express knowledge, and so does it in
the design of OOPLs as our tools to represent reality and capture concepts in the digital
domain. Here we make a comparison which puts in perspective the advantages and disadvan-
tages of prototype-based programming using for this purpose a comparison with class-based
programming.

Flexibility Prototype-based languages are intended to be more flexible than class-based
languages; typically their origins are in the Lisp, Smalltalk and artificial intelligence commu-
nities where extreme flexibility is highly valued.

Maturity The main features of class-based languages begun with Simula in the mid-sixties
[24]. In contrast prototype-based languages have emerged more gradually; their main prin-
ciples were first gathered in the Treaty of Orlando. To a large extent, even their most basic
notions are still evolving [25].
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Metaphors Prototype-based languages are based on a biological metaphor: cloning and
mutation of objects. Class-based languages are more mathematical-oriented, as they ask for
classification which is set definition by comprehension.

Concreteness Prototype-based systems represent a view of the world in which one does
not rely so much on advance categorization and classification, but rather tries to make the
concepts in the problem domain as tangible and intuitive as possible, starting from experience.
Some researchers [15] push to the limit this idea taking into account not only the language
semantics but also the development process, the user interface and programming environment,
to make the whole user experience enjoy of tangibility, simplicity and responsiveness.

Natural apprehension process A typical argument in favor of prototypes is that people
seem to be a lot better at dealing with specific examples first, then generalizing from them,
than they are at absorbing general abstract principles first (classifying) and later applying
them in particular cases (instantiating).

Simplicity A goal of prototype-based programming is to offer a simpler and orthogonal
programming model, with fewer concepts and primitives.

Purity State access, method invocation and other language elements tend to stick more
closely to the OO paradigm than their class-based counterparts. Agora [4] illustrates this
point. Another (somewhat extreme) example is Self [15], in which even method activation
records are cloned objects of a prototype record.

Language kernel complexity No general comparison exists with respect to size of the
language kernel. For instance Smalltalk has a very small kernel, yet it is class-based; C++
has a huge language kernel. Prototype-based languages tend to have small kernels.

System construction process In the class-based approach we have a common universe
(the set of all objects modeled by the class Object) and our task is to define interesting
subsets. The mechanism used is specialization or subclassing. Prototype-based systems go
the other way around: the description of prototypes comes first and then we allow some
aspects of the concept to vary. The prototype approach corresponds to generalization.

Object creation In class-based languages, object descriptions provide the templates from
which object instances are generated; object construction may be a relatively complex pro-
cedure, involving message passing with possibly many collaborators. In prototype-based
languages, instead, concrete and fully functional instances are built first; the process of in-
stantiation (cloning) is semantically and computationally simpler.

Other advantage is that the client doesn’t have to know the very specific nature of the object
being created, it just has to send a ‘clone’ message: in a certain way a prototype follows
the factory pattern, it can be used as a source of objects. The disadvantage of cloning
with respect to class-based construction is that there is only one initial state for instantiated
objects, i.e. the creation process is not parametrized. To solve this it would be possible to
think of many prototypes for a family of objects, representing different initial states; those
prototypes should be in close relation to the problem domain: if three typical objects are
found in a certain application area then three prototypes could be maintained for object
instantiation.

Safety Little attention has been devoted to designing statically typed prototype-based
languages; as a consequence they are not as safe at runtime as some class-based languages.
Class-based systems are less exposed to semantic inconsistencies (when they have a static
type system).
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Efficiency Static type systems allow efficient implementation of message dispatching. Many
class-based languages have static typing thus they are more efficient than the majority of
classless languages, which in general have a dynamic typing.

Rapid prototyping Classless environments are best suited to exploratory programming
and rapid prototyping (proof of concept systems) than class-based environments, since making
good designs from scratch is pretty time-consuming, and design errors, which are common in
those application domains, are difficult to fix because of class coupling and lack of cohesion.
Class-based environments are better in areas where the problem domain is well defined,
making software models (class hierarchies) possible.

Maintainability One of the big problems with classless environments is that many struc-
tural aspects of the system are implicit due to the highly dynamic interaction between objects:
there is a hidden network of collaboration. Class-based systems make explicit the relation-
ship among instances through classes, so there is a considerable amount of information about
system architecture available in the code.

2.2.5 Conclusion

The reader should note that there is much more to prototype-based programming than the
material presented here; a good treatment is available in [32]. Section 2.2.2 shown why it is
interesting to look at alternatives to class-based languages in object-oriented programming.
Section 2.2.3 shown that the design space in prototype-based programming languages is
big enough to make an extensible prototype-based language a useful tool. The different
mechanisms presented in that section have deep implications in the programming models of
prototype-based languages, a discussion which is out of scope in this dissertation. Section
2.2.4 aimed to putting in perspective the field of prototype-based programming by means
of a comparison with class-based programming. But do prototype-based languages help
overcome the limitations of the Aristotelian tradition that constrains the modeling capabilities
of current class-based languages? (recall section 2.2.2) Unfortunately, as Taivalsaari replies
[26], this is not really the case:

Most prototype-based languages of today are motivated by relatively technical
matters. For instance, prototypes are commonly used for reaching better reusabil-
ity through increased sharing of properties and more dynamic bindings of objects,
or for providing better support for exploratory programming. In contrast, they
do not usually take into account the conceptual modeling side, let alone pay at-
tention to the philosophical basis that underlies object-oriented programming. In
a way, thus far the developers of prototype-based languages seem to have been
even more ignorant to these underlying conceptual and philosophical issues than
the Scandinavian inventors of the class-based paradigm.

Since prototype-based programming is not new, there is no imminent reason to see a switch
of paradigms in the following years. As the Treaty of Orlando states [23], and as happens
in almost every computer science discussion there is no “winner”; different contexts call for
different OO sub-paradigms, and there will be always strong arguments from both sides of
the OO field.
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2.3 Pico and Pic%

Pic% is an object-oriented extension of Pico'. Pico is a functional language designed by

Professor Theo D’Hondt at the Programming Technology Lab of Vrije Universiteit Brussel.
From the Pico web site [13]:

The fundamental aim of Pico is to introduce the essentials of computer pro-
gramming to undergraduate students in the basic sciences other than computer
science. In conceiving Pico we were strongly inspired by the approach used in
Abelson and Sussman’s book ”Structure and Interpretation of Computer Pro-
grams” [16] and equally strongly repulsed by the various standard efforts to teach
computer programming at the high-school and academic level. Pico can actually
be viewed as an effort to render Scheme palatable and even enjoyable to people
unable or unwilling to make the intellectual effort necessary to grasp its elegance
and power. We do so by adapting Scheme’s syntax (significantly) and semantics
(subtly) in order to use what (little) understanding the novice science student has
of specification languages.

The word Pico should be interpreted as synonymous with very small (according
to Webster’s). The idea was indeed to have a very small language with a very
general impact.

We were also strongly driven by the ambition to return to the original attrac-
tion exerted by computer programming on young people; we strongly deplore the
current situation where most of these regard programming as a mind-numbing
chore. Pico is essentially the result of sugar-coating the hard essentials of com-
puter programming in such a way that students cannot help but enjoy it.

Pic% is a simple yet conceptually-rich language. In the experience of learning it, the stu-
dent gets exposed to many concepts of language theory and implementation. It is quite
sui generis in the sense that it has all this teaching philosophy behind, and an hybrid
functional/prototype-based paradigm.

The whole work of this thesis is explained using Pic% concepts and syntactic constructs,
hence it is necessary to become familiar with it before proceeding to chapters 3, 4 and 5.
A presentation of Pic% will be given in the following subsections, but the reader should
notice that it is not a complete manual: only the parts of Pic% that are necessary to make
this document self-contained are presented. Furthermore, some definitions have been slightly
changed to suit better our context.

2.3.1 Basic concepts

Almost all the concepts in Pic% are “basic” in the sense that they are pretty fundamental;
Pic% hardly has non-essential features. Here we present the minimal set of concepts needed
to understand how Pic% works.

Primitive value types

The following seven value types are available:

'The percent symbol in the name stands for object/oriented — o/o — %
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name, bindings
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Figure 2.4: conceptual schema of a single dictionary (left) and a dictionary hierarchy (right).
In the right, the distinction between the variable and constant parts of a dictionary has been
illustrated.

void void — no value, nothing,
numbers 89, 0, -44 — i.e. integers,

fractions 4.56, -8.76, 10e-12 — i.e. floating-point numbers,

text "hola" — i.e. strings of characters,
tables [ 1, "hola", 5.5, void ] — analog to Scheme lists,
functions f(x): x + 1 (first-class citizens like in Scheme), and

dictionaries explained below.

The functions is_void (), is_number (), is_fraction(), is_text (), is_table(), is_function(),
and is_dictionary() can be used to query the type of a value.

Note that booleans are not primitive value types; the boolean system of Pic% (Church
Booleans) is cleverly defined in terms of other basic language constructs. Section 5.2.4 gives
the idea of such definition. Anyhow, it is not a required concept in this document.

Dictionaries

The notion of dictionary is essential in Pic%. The importance of dictionaries is due to their
use as evaluation environments for expressions.

A dictionary is in charge of maintaining bindings between names and values associated to
those names. There can be constant bindings and variable bindings; constant bindings cannot
be modified once entered into the dictionary. A dictionary can have a parent dictionary, thus
hierarchical arrangements of dictionaries are possible. The topmost dictionary is called the
global dictionary. Figure 2.4 illustrates the idea. The following dictionary operations are
available:

lookup_all(name) tries to find a binding (either constant or variable) corresponding to name;
failing to do so will result in a similar lookup in the parent dictionary, if any. The search
proceeds upwards the chain until the binding is found or void is returned by the global
dictionary.

lookup_const(name) the same as lookup_all() but the search process is performed consid-
ering constant bindings only.
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lookup(name) is the default lookup operation; it can be lookup_const (name) or
lookup-all(name), depending on whether the dictionary is protected or not. This
functionality will be used in section 4.3.2.

define(name, value) enters a new variable binding [ name, value ] into the dictionary.
It will overwrite a previously variable binding with the same name, but it is not possible
to override constant bindings.

declare(name, value) enters a new constant binding [ name, value ] into the dictionary.
It is not possible to override a previously existing binding, either constant or variable,
with a constant binding.

assign(name, value) Changes the value of the binding corresponding to name, with the
given new value. An attempt to modify a constant binding results in an error.

Many implementation strategies may be used for dictionaries, e.g. the metacircular imple-
mentation of Pic% employs linked lists of bindings, and xPic%’s implementation uses objects
that encapsulate variable-size tables.

2.3.2 Basic syntax and semantics

We will review in this section the main syntactical constructs of Pic% and their associated
semantics.

References

A reference is just an alphanumeric name used to identify a binding [ name, value ] in a
certain dictionary. The following operations can be applied with references:

name : exp Defines a variable binding [ name, eval(exp) ] in the current dictionary.
= define(name, eval(exp)).

name :: exp Declares a constant binding [ name, eval(exp) ] in the current dictionary.
This implies that the value bound to name cannot be changed afterwards.
= declare(name, eval(exp)).

name := exp Modifies the value of the binding associated with name.
= assign(name, eval(exp)).

name Accesses the value associated with name in the current dictionary,
= lookup(name).

Some examples are:

name : "Pic%"
pi  :: 3.1415
i = 1+l

The : operator is called the definition operator, :: is the declaration operator, and := is the
assignment operator.
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Tables and tabulations

Tables are the analog of ‘arrays’ in other languages. The operation of accessing a table entry
by its positional index in the table is called a tabulation.

[expi, ... , exp,] Denotes a table of size n, whose entries are the result of evaluating the
given expressions.

name [exp] This is a tabulation, it retrieves the entry with index eval(exp) from the table
bound to the reference name.

name [exp;]: expy Defines a new table of size eval(exp;) in the current dictionary. Each
entry in the table will be initialized (in order) by evaluating exps; if exps has side
effects, it is possible to have entries initialized with different values, e.g.

idx: 0;
tbl[5]: idx:= idx+1;

will create the table [ 1, 2, 3, 4, 5 1].

name [exp;] :: expy Analogous, but the table bound to name cannot be changed afterwards;
note however that it is possible to modify the table entries — what is constant is the
binding of the table and its name, not the table content.

name [exp;] := expy Sets the value of the entry at position eval (expy) to eval(exps) in the
table bound to the reference name.

One important function related to tables that will be used is size(t): it returns the number
of entries of the table t.

Functions and function application

A function definition consists of a name, a list of formal parameters and a body (the code of
the function):

name(xy, ... , X,): expp Defines a new function whose body expp is parametrized by x;,
. »X, and enters it in the current dictionary under the given name. The arity of the
function is fixed and equal to n. Example,

prepend(elem, list): [elem, list]

defines the prepend () function which returns a new table [elem, list] when applied
— in analogy with Scheme’s cons function.

name@x: expp Defines a new function whose body expp is parametrized by the sole pa-
rameter x and binds it to name; when the function is invoked, the arguments of the
invocation are passed as a table bound to the parameter x, so the body can access each
one by means of tabulation. The arity of the function is variable (it is size (x) for each
invocation). Example,

head@list: list[1]
tail@list: list[2]

define the function head which returns the first element of a list (like Scheme’s car)
and tail which returns the ‘rest’ of a list, discarding the head (like Scheme’s cdr).
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name(x;, ... ,X,):: expp , name@x:: expp The same as the colon operator (:) except
that the binding produced between the function and the name is constant.

name(x;, ... , X,):= expp , name@x:= expp The same as the colon operator (:) except
that an existing binding (corresponding to name) is modified instead of entering a new
one into the current dictionary.

A function application has two syntactic forms:

name (expy, ... , exp,) Application with fixed arity = n. This is the most common notation
in programming languages. Examples have already been seen in this document:

define (name, eval(exp))
size(t)

name@exp Application with variable arity = size(exp); the result of evaluating exp must be
a table. Two examples of this kind of function application are:

tail@prepend(1l, prepend(2, prepend(3, []1))) evaluatesto [ 2, [ 3, []1 1 1,
head@[ 1, [ 2, [ 3, [1 1 1 1 evaluates to 1.

When a function is applied, a new evaluation environment is created, whose parent link is the
the current environment. In this new environment, the actual arguments of the invocation
are bound to the formal parameters of the function, a process that will be described in detail
in section 4.2.2. Then the body of the function is evaluated using the extended dictionary,
which is holding the bound parameter values. Function application is detailedly explained in
section 4.2.3.

The ‘name’ of a function needs not be alphanumeric, it can also be a sequence of one or more
operator characters: < =># ~ $ %+ -1 &/ \ ! 7 ~. For example -#-(x, y, z) is
a valid function application, the name of the function is —#-. Functions named in this way
are called operators. In the case of unary or binary operators, Pic% allows to have prefix and
infix notations respectively,

e exp is in fact the function application with arity 1: e(exp).

exp; e exps is the function application with arity 2: e(exp;, exps).

In the code of chapters 3 and 4, an operator will sometimes be used, >--. This operator
allows dynamic inheritance. It is invoked using prefix syntax:

>-- parent

which means “set parent as the parent of the current dictionary”. Hence in Pic% it is
possible to change at run-time the hierarchical structure of dictionaries that was illustrated
in figure 2.4. The implementation of the >-- operator will be shown in section 4.4, although
it is not necessary to know its internals; only the fact that it is used for inheritance should
be kept in mind.

Begin blocks

To implement an algorithm, it is often necessary to evaluate a sequence of expressions. With
the tools we have now this is already possible to achieve, by evaluating a table with the de-
sired expressions: [expy, ... ,exp,]; Pic% semantics ensures that all the expressions will be
evaluated, from left to right. But this has two drawbacks: it is a ‘hack’ (i.e. not conceptually
clean) and the result of evaluating the group of expressions is a table, whereas we would like,
when defining function bodies, to return other kind of values as well. The begin() function
serves this purpose,

25



begin@t:: t[size(t)]
It comes predefined in Pic%. Thus we can use
begin(expy, ... , expy)

The expressions are evaluated in order and the table of result values is passed to begin(),
which will take the last entry (i.e. t[size(t)]) as the resulting value of the function.

To make programs more readable, syntactic sugar for begin blocks is available:

{ expy; ... ; exp, } = Dbegin( exp;, .. , exp, )

Begin blocks are the last basic construct we needed to explain. Next, the object-oriented
part of Pic% will be presented.

2.3.3 0O programming in Pic%

Object-orientedness in Pic% is minimalistic: Pic% doesn’t provide a rich set of constructs to
work with objects, yet it is pretty much what can be done with them. We will see now how
the principal concepts of prototype-based programming are mapped in Pic%.

Objects, methods and message sending
As we said in the introduction of this chapter,
object = encapsulated state + behavior

In Pic%, an object is represented by a dictionary. The object’s state can be seen as the
values currently present in the dictionary, and the particular values which are functions as
the behavior. Thus object methods in Pic% are in fact functions being held in the object.
Sending a message to an object is done through function application over a receiver:

receiver.name (exp;, ... , €Xpy) —or — receiver.name@exp

name is looked up in the constant part of receiver, and the resulting value, which should
be a function, is applied to the given arguments using receiver as evaluation environment,
instead of the current dictionary. In this way encapsulation comes into play: a method is
never looked for in the variable part of the object. So the designer of the object should
declare (with the double-colon operator ::) the public methods and define (with the colon
operator :) those that are private to the object. All non-functional values should be kept
private to achieve state encapsulation (a public variable cannot be modified since it is a
constant binding but it would allow anyway to peek into the object’s state).

Within a method, the way to send messages to the parent object (i.e. to the parent dictionary)
is to omit the receiver,

.name (exp;, ... , €Xpp) — Oor — .nameQexp.
A useful function when working with objects is this(): it returns the current dictionary.

There is no pseudo-variable pointing to the current receiver like this in Java or self in
Smalltalk.
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Figure 2.5: object cloning in Pic%

Object creation

The native function clone () provides a way to create objects. When invoked, it deep-copies
the variable part of the current dictionary, and shallow copies the constant part. Recall figure
2.4; now in figure 2.5 (with dictionaries illustrated in a sightly different manner) the process
of cloning is shown. To clone an object, a new object is created. The constant part is set to
point to the constant part of the prototype. The variable part is copied completely and the
parent of the clone is set to a clone of the parent of the prototype. The following pseudo-code
illustrates this mechanism:

clone(prototype) : {
constant: get_constant_part(prototype);
variable: get_variable_part(prototype);
parent: get_parent(prototype);
new_dictionary(constant, copy(variable), clone(parent)) 7

Cloning is the only tool needed, apart from objects and messages, to start programming in
an object-oriented way in Pic%. For example:

make dictionary(): {
keys[10]: void;
values[10]: void;
get (key) ::
put (key, value)::
clone() };
dictionary proto: make_dictionary()

dictionary_proto will be a dictionary with two constant bindings 'put’ and ’get’, and two
variable bindings 'keys’ and ’values’. Only the two methods will be visible. The structure
of objects is fixed once they are created: no bindings (of methods or variables) can be added
or removed afterwards.

There is a second way of creating objects, using the function clone () seen before: the object
to be cloned can be passed as an argument. The same cloning process takes place, but using
the given object instead of the current dictionary. In fact clone() = clone(this()). Once
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Figure 2.6: A read-eval-print (REP) machine.

we have a prototypical instance, we can copy it using this second form of clone (). Continuing
the example,

moons: clone(dictionary proto);
moons .put ("Phobos", 22);
moons .put ("Deimos", 8);
moons .get ("Ganymedes") ;

2.4 Interpretation of programs

Like Pic%, xPic% is an interpreted language. In this section some concepts about interpreta-
tion are given. Surely enough, a whole treatment of the subject requires a book [16]. Hence
we review only a few ideas that give a global picture of how xPic% works. In particular
section 2.4.1 helps to understand better the role of the syntactical and semantical analysis
machines in the interpretation process; such machines will be the subject of chapters 3 and 4.
The following discussion applies equally to Pic% and xPic%, thus for brevity only the latter
will be mentioned. The reader should keep in mind, though, that these ideas were origi-
nally applied in Pic%; the interpreter of xPic% inherits its global architecture from Pic%’s
interpreter.

2.4.1 REP machines

The xPic% interpreter is a traditional read-eval-print (REP) machine. This means that the
interpretation process is divided in three phases:

read When a program is entered by the user, this program is just a string, a sequence of
characters. Before the core of the evaluator can do something reasonable with it, it has
to be checked whether that sequence of characters indeed constitutes a valid program.
If it does, the read phase transforms the text into a tree data structure, the so-called
abstract syntax tree (AST). This tree represents the structure of the program and no
longer contains irrelevant information such as whitespace and comments. Furthermore,
such representation is much more appropriate for implementation of algorithms that
depend on the structure of the program (like evaluation, the next phase).

The main tools for the realization of this phase are the lexical and syntactical analyzers
of xPic%. They are described in chapter 3.
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eval Analyzes an AST and executes the required actions according to the language semantics;
the result of this phase is a value. In almost every case this analysis boils down to
performing a recursive process on the tree. Hence, the evaluator is a tree recursive
process that consumes an AST and returns a value.

The main tool used here is the semantical analyzer or evaluator of xPic%, described in
chapter 4.

print Presents in the user interface, a legible representation of the value produced by the
evaluation phase.

Although Abelson and Sussman [16] take as synonyms evaluator and interpreter, we will refer
with the former to the semantical analyzer exclusively, and the latter will denote the whole
interpretation system (lexical 4+ syntactical + semantical analysis machines + printer).

The read and print phases are stateless: their execution depends only on the input. The eval
phase is stateful, this is, the execution of an expression depends on the history of previously
executed expressions. The only reason for which the evaluator is stateful, is that it holds a
dictionary, the current dictionary. Each time an expression is evaluated, the current dictio-
nary is used to resolve variable references and modify bindings as needed. This implies that
expressions are able to have side effects, therefore xPic% is not purely functional (just like
Scheme).

This is all what we need to know about the general structure of interpreters. Now we proceed
to describe a commonly used technique to describe them.

2.4.2 Meta-circular interpreters

An interpreter that is written in the same language that it interprets is said to be meta-
circular. In the chapters to come, the semantics of the language xPic% will be formally
defined using programs capable of executing it; these programs will be written in Pic%. As
xPic% is a subset of Pic%, we still consider the interpreter of xPic% (which is written in
Pic%) to be meta-circular. Studying a metacircular evaluator is a useful activity because:

e By studying this amount of Pic% code, the reader gets to know Pic% much better than
by studying small code examples or the general description presented in section 2.3.

e By studying the code, the reader gets a precise definition of the semantics of xPic%. In
fact, the code for the evaluator is the only precise definition of the semantics.

e Although the evaluator studied is written specifically for xPic%, it contains the essential
structure of an evaluator for any computer language. Thus by studying the metacircular
evaluator, the user gets acquainted to the discipline of interpreter building in a very
accessible way.

Meta-circular interpreters and reflection

We will use Pic% as an example to illustrate some aspects of meta-circular interpreters.
Suppose the only definition we have of a Pic% interpreter is written in Pic%, i.e. suppose
we only have a meta-circular implementation of the interpreter. If Pic% is evaluated using
an interpreter written in Pic%, how runs in its turn the code of the interpreter? Another
instance of the meta-circular interpreter is the only possible answer. This other instance is
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Figure 2.7: An infinite tower of Pic% interpreters.
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Figure 2.8: The tower of interpreters used to run Pic% programs.

also written in Pic%, so an interpreter of Pic% must run it, and the only one we could use
is meta-circular... oco. Virtually, the interpretation of Pic% consists of an infinite tower of
meta-circular interpreters, each one interpreting the meta-circular interpreter below (figure
2.7). Technically, this infinity is realized by the presence of a second interpreter written in
another language, which is able to interpret the circular interpreter (and which should be
guaranteed to generate the same behavior as the circular one). Figure 2.8 illustrates the
idea in the case of Pic%; the infinite tower is cut by the interpreter written in C. The C
interpreter (which has been translated to machine language) relies on the circuitry of the
computer (which uses the language of digital logic); the electronic interpreter is written in
the language of physics (electricity, conductors, etc.). In this way, we have a finite chain of
interpreters, making the interpretation process possible.

Meta-circular interpreters constitute a simple technique to achieve reflection (recall section
2.1.3). For instance, they present an easy way to fulfill the causal connection requirement.
The self-representation that is given to a system is exactly the meta-circular interpretation-
process that is running the system. The consistency between the self-representation and the
system itself is automatically guaranteed because the self-representation is actually used to
implement the system. So there is not really a causal connection problem. There only exists
one representation which is both used to implement the system and to reason about the
system. Note that a necessary condition for a meta-circular interpreter is that the language
provides one common format for programs in the language and data, or more precisely, that
programs can be viewed as data-structures of the language.

One problem with meta-circular interpreters is that a self-representation has to serve two
purposes. Since it serves as the data for reflective computation, it has to be designed in such
a way that it provides a good basis to reason about the system. But at the same time it is
used to implement the system, which means that it has to be effective and efficient. These
are often contradicting requirements.
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2.5 A note about multi-paradigm programming

It is widely accepted that different types of tasks can be best implemented in different
paradigms. As an example the logic programming paradigm is particularly well suited to ex-
perts systems, the functional programming paradigm allows to elegantly express algorithms,
and the object-oriented paradigm is good for modeling well-structured systems.

A multi-paradigm language is a programming language designed to support different paradigms
with equal ease: logic, functional, imperative, constraint, object-oriented, sequential, concur-
rent, etc. Some of the problems in achieving multi-paradigm programming in a language
are:

e accommodation of different syntactic notations,
e accommodation of diverse execution models, and

e support for different implementation strategies.

Pic% is both a functional language (since it is a superset of Pico) and a prototype-based
language. Multi-paradigm programming in Pic% can allow each part of a system to be im-
plemented in the most suitable of the two paradigms. The issues mentioned above were dealt
with in the particular case of Pic%. The symbiosis between the functional and prototype-
based paradigms happens to be quite clean: there is not much interference from one into
the other from the syntactical, semantical and implementation points of view. Thus the
mix of paradigms is not forced. It should be taken into account that Pic% is not purely
functional, which makes the symbiosis easier regarding semantics. The imperative nature of
object-orientedness could enter in conflict with a purely functional language semantics.
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Chapter 3

Syntactic Extensibility

One of the two core elements of the extensibility framework of xPic% is syntactic extensibility.
In this chapter we will explain all that is necessary to understand it; this knowledge will be
used later, in chapters 4 and 5.

The end product of this chapter is a tool set made available at the base-level to the xPic%
programmer. This tool set consists of meta-functions that enable the modification of the
language syntax at run-time; they belong to the meta-level interface (MLI) of the language.
Section 3.7 (the last) presents this end product. The sections before give the necessary
preliminar concepts (for instance the definition of the xPic% grammar) and show how the
meta-level manages to support run-time syntax extensibility.

3.1 Overall architecture

The syntax extension architecture is depicted in the following figure:

e N

input stream lexical syntax =+ abstract syntax tree

analyzer analyzer

———pm——— -

extensible grammar

- J

Figure 3.1: The xPic% parser

We can think of this architecture as an abstract machine that takes as input a character
stream representing a program in xPic% and produces as output an abstract syntax tree
(AST) — the same program but represented in the language understood by the abstract
evaluator machine, which we will describe in chapter 4. Character input is transparently
read from the user interface or from a file.

The architecture depicted in figure 3.1 is pretty standard in interpreters and compilers. What
makes it different is the extensible grammar part: that the grammar encoded in the parser
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is not fixed but can vary at run-time. We will briefly describe the xPic% lexical analyzer in
section 3.2 and then devote the rest of the chapter to the syntax analyzer and its extensibility
mechanisms.

3.2 Lexical analysis

The principal job of a lezical analyzer or scanner is to place a first level of abstraction over
a raw stream of characters given as input, in order to make it semantically richer for client
code (in our case, the parser). To achieve this, there are two abstraction sub-layers. The
first consists in representing the input and output as streams, thus enabling the scanner to
be independent from the concrete source of input characters and the client of the produced
output. This simple layer will be described in section 3.2.1. The second and most important
sub-layer consists in representing, as a unit, a logically cohesive sequence of atomic symbols;
this unit is called token [33]. For example in the string “year:= 1492”, the individual char-
acters 1, 4, 9, 2 represent a same entity, the number 1492. The job of the scanner is to find
this groupings and present them as tokens to client code.

Example 3.2.1 Consider the character input stream as seen by the scanner:
we—>d—oi—=s—>polosasy—> (2" 2x=>2P2iosec>%—" =) —
It would yield the output token stream:

... = [ NAME, “display” | — [ CHAR, “(” ] — [ STR, “xPic%” | — [ CHAR, “)” | —

The first element of each token is a tag (normally an integer) that identifies the type of entity
found, the second is its representation. This stream is semantically richer for the parser
than the pure characters alone. In addition, characters that are not semantically relevant are
wiped from the input, such as white space and comments; they don’t get a representation as
tokens in the output stream g

The figure illustrating the lexical analysis sub-machine of figure 3.1 is thus very simple:

character stream ( \ token stream
»| scanner >

3.2.1 Streams

The stream abstraction is useful to make transparent to the client code the specific source of
elements it consumes:

make_abstract_istream(): {

peek () :: <abstract>

skip():: <abstract>

mark() :: <abstract>

next () :: { item: peek(); skip(); item };
exhausted():: is_void(peek());
rollback(mark)::

clone() }
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peek() Returns the next character available or void when the input is exhausted.
skip() Advances the stream position one character.
mark() Returns the current position of the stream.

rollback(mark) Sets the current position of the stream to the given mark.

Because of the parsing technique we will be using (described in section 3.3), mark() and
rollback() will prove to be useful when a parser needs to go back in the parsing process in
order to try out more alternatives at a given point of the input.

In terms of the abstract input stream it is possible to define two types of concrete streams,
a character input stream,

make_char_istream(string) — like the first stream shown in example 3.2.1
which encapsulates a string of characters and is used by the scanner, and a token input stream,
make token istream(scanner, char_istream) — like the second stream of example 3.2.1

which encapsulates a scanner and a character stream to yield a sequence of tokens useful
to parsers. The implementation of make token istream() can be seen in section A.1 (of
appendix A), where a technique to avoid scanning the input more than once is described.

3.2.2 The xPic% scanner

The xPic% scanner is based on an abstract scanner,

make_abstract_scanner(): {

next (char_istream):: <abstract>
register_token_tag(name)::
get_token_tag(name) ::

clone() }

next() Returns the next available token found in the stream given as argument. Note thus
that the scanner is stateless: a different stream can be passed each time.

register_token_tag(), get_token_tag() An abstract xPic% scanner maintains a dictionary
of the numeric tags it uses to identify tokens. When a scanner is attached to a parser,
the parser can query which tags correspond to the tokens it needs; the tokens are
identified by strings. It can happen that the scanner doesn’t support a specific token
type, in which case the scanner and parser are incompatible and cannot be plugged
together!. This architecture makes scanners and parsers independent from each other
and thus reusable in different interpreters (or compilers).

The concrete xPic% scanner does two things: it registers the specific tokens it supports and
implements the next () method:

!The message "token name not supported by scanner" appears in the user interface.
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xpicoo_make_scanner(): {
>-— make_abstract_scanner();

token_NAME: register_token_tag(’name’);
token_STRING: register_token_tag(’string’);
token_NUMBER: register_token_tag(’number’) ;

next (char_istream):: {
state: state_START;
token_tag: void;
scanned_data: ’’;
while(is_void(token_tag), {

3
[ token_tag, scanned_data ] };

clone() };

xpicoo_scanner: xpicoo_make_scanner ()

The >-- operator means “inherits from”, it is a (reflective) extension of Pic% to support
dynamic inheritance (recall section 2.3.2).

The scanner is implemented as a finite state automaton using state transition tables (which are
normal, hard-coded Pic% tables). From the next () method we can see that the automaton
is initialized and then executed in a while loop. In the last line of next () it can be seen that
the result token is made of an identifying tag and its associated lezical value (i.e the scanned
data: it can be empty, a number, a string, etc.).

The possibility of making the scanner extensible was not explored in this work. However,
being based on state transition tables, the architecture wouldn’t be difficult to modify in
order to support extensibility.

3.3 Syntactic analysis

Having explained the first layer of abstraction provided by the scanner, we can focus our
attention now on the syntactic analysis sub-machine. The key tools to build the syntactic
analysis framework are parsers. A parser expects as input a stream of tokens conforming to
a concrete grammar, and imposes a hierarchical structure on the token stream to produce
as a result an abstract syntaz tree (AST), conforming to an abstract grammar. Whereas
the concrete grammar encodes programs as understood by the programmer, the abstract
grammar is the language understood by the evaluator machine. The syntactic analysis phase
is in charge of performing the translation between the two representations:

token stream ( \ abstract syntax tree
I > parser I >
I ~— I

1 r - - - ==
} , abstract grammar !

U I |

This illustration corresponds to the syntax analysis sub-machine of figure 3.1.
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In our case, the concrete grammar is the grammar of the xPic% programming language, used
to write valid xPic% programs, and the abstract grammar is the specification of valid ASTs
for the xPic% evaluator. Both the concrete and abstract grammars are extensible. We will
see how this is achieved in the following sections.

3.3.1 A simple parser library

The parser of xPic% is not one big, complex unit but rather a combination of many simple
parsers. All of them are based on a generic parser:

abstract():: {

parse(token_stream) :: <abstract>
set_ast_cons(new_ast_cons)::
get_ast_cons()::

c;L‘;>ne O 3

parse() Returns the abstract syntax tree it finds in the given token stream, or void in case
the input doesn’t match any pattern recognized by the parser.

set_ast_cons() Changes the function used by the parser to build the resulting AST in each
invocation of parse(). This will be discussed further in sections 3.5.2 and 3.5.3.

get_ast_cons() Returns the constructor currently in use by the parser.

Deriving from this generic parser, some concrete, primitive parsers are provided. As the
syntax is extensible, there aren’t many predefined parsers: complex parsers are supposed to
be built up from the simple ones, using the technique described in section 3.4. The set of
parsers is:

make_parser_library(scanner): {
abstract()::
failure(Q)::
success()::
terminal (terminal_name) ::
char_satisfy(predicate):: ...
char_literal(char)::
char_literal_string(_string) ::

s
parselib: make_parser_library(xpicoo_scanner)
We already described the abstract() parser. Regarding the others,

parselib.failure() Is a parser that always fails without consuming any input; it always
returns void.

parselib.success() Is a parser that always succeeds without consuming any input; it returns
an empty AST.
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parselib.terminal(terminal name) Recognizes a terminal of the grammar, i.e. a single
token, identified by the string terminal name. This string is used to ask the scan-
ner for the numeric tag it uses to identify tokens of that type (recall the method
get_token_tag() in section 3.2.2). This is the way of fitting together lexical and syntax
analyzers: the scanner must support all the terminals required by the sub-parsers of
type terminal () that conform the main parser of a grammar.

These three primitives are all that is required to build the framework. Other three parsers
prove to be useful, however:

parselib.char_satisfy(predicate) Expects a ‘character’ terminal whose associated data
(i.e. the character itself) satisfies the given predicate; the argument predicate must
be a boolean function.

parselib.char_literal(char) Matches literal occurrences of characters, for instance “ (” and
“)” which are used to delimit argument lists in function application. This characters
cannot be special (such as digits or double quotes) because those are consumed in other
type of tokens (numbers, strings), not in tokens of type ‘character’.

parselib.char_literal_string(string) Like char_literal() but matches a whole string in-
stead of a single character.

These three parsers can be defined in terms of the former three ones. In the implementation,
the former three are in fact manually in-lined in the latter three for efficiency reasons.

With this simple set of six parsers, we can proceed to build more complex ones, using the
technique described in the following section.

3.4 Parser combinators

In functional programming, a popular approach to building recursive-descent parsers is to
model them as functions. To implement grammar constructions such as sequencing, choice,
and repetition, higher order functions (i.e. functions whose parameters are functions) are
used. These higher-order functions are called parser combinators [34]. The technique can
be easily expressed in object-oriented terms. We already defined what an abstract parser is
(section 3.3.1); a combinator will be an object conforming to this abstract specification, i.e. it
is a parser, whose job is to compose together other parsers in different ways (to be explained
next). Since a combinator is also a parser, combinators of combinators are also allowed, like
in the Composite design pattern [29]. Parser combinators are the tool that will enable us to
build and manipulate dynamic grammars easily.

3.4.1 A simple combinator library

We will explain combinators using the small yet complete combinator library available in the
implementation of xPic%:

make_combinator_library(parselib): {
all@parsers::
anyOparsers::
repeat (parser) ::
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optional (parser)::
strict_repeat (parser)::

s
comblib: make_combinator_library(parselib)

Each one of these combinators inherits (by means of the operator >--) from the abstract
parser and redefines the parse () method, for example:

all@parsers:: {
>-- parselib.abstract();
parse(istream)::
clone() }

For the other combinators the structure is similar. Now, what is the job of each combinator?

comblib.any@parsers Takes an arbitrary list of parsers and applies each one in order to
the input stream. As soon as one of them succeeds, the combinator succeeds with the
resulting AST of that parser. Between each try, the combinator marks and rolls back
the stream pointer (recall section 3.2.1) so that each parser tries to parse the input
starting from the same point. Example:

comblib.any(parselib.char_literal("+"), parselib.char_literal("*"))

is a parser that tries firstly to match the character “+”; if it succeeds, the corresponding
parse tree is returned (which actually is just the Pic% table ["+"] as will be seen in
section 3.5); if doesn’t succeed, an attempt is made to match the character “*”, and
the parse tree is returned on success or void otherwise.

The comblib.any@parsers combinator is like an existential qualifier 3 that asserts
(constructively, since the result is obtained): ‘in the given set of parsers, there exists
at least one that matches the input stream’. An empty list of parsers will produce an
always-failing parser, equivalent to parselib.failure (), which is in concordance with
the semantics of the existential qualifier: in absence of a solution the predicate is false.

comblib.all@parsers Takes an arbitrary list of parsers and applies each one in order. If
one of them fails, the whole combinator fails (and the input stream is rolled back),
otherwise an AST composed of all the sub-trees produced by the parsers is returned.
Example:

comblib.all(parselib.char_literal("+"), parselib.char_literal("x"))

is a parser that matches a “+” followed by a “*”; the produced parse tree, in case of
success, is [ ["+"], ["*"] 1, or void otherwise.

The comblib.all@parsers combinator is the analogous of an universal qualifier V,
testing that all the parsers in the given set match the input stream; an empty set
of parsers produces an always succeeding parser, equivalent to parselib.success().
This conforms with the semantics of the universal qualifier.

comblib.repeat(parser) Applies the given parser as far as it doesn’t fail, thus consuming
many times the same syntactic construct if it is available in the input stream. Fail-
ing to apply the parser at least once results in a trivial success (i.e. it behaves like
parselib.success()) . For example,

comblib.repeat (parselib.char_literal_string("=>"))
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is a parser that matches the string “=>” as many times as it is present in the token
stream.

Even though these three combinators are expressive enough to implement all the grammatical
constructs of xPic%, two other combinators are included to make the library closer to a regular
expression library (more on this in section 3.4.2 below):

comblib.strict_repeat(parser) The same as the comblib.repeat() combinator except
that failing to apply the parser at least once results in a failure. This combinator can
be implemented in terms of previously existing combinators:
comblib.strict _repeat(parser) = comblib.all(parser, comblib.repeat(parser)).

comblib.optional(parser) Tries to apply parser and, if it succeeds, returns the resulting
parse tree; otherwise, the combinator succeeds trivially. This combinator can be imple-
mented in terms of previously existing combinators and primitive parsers:
comblib.optional (parser) = comblib.any(parser, parselib.success()).

Although it is not a formal restriction, notice that all the combinators shown are constructed
exclusively in terms of other parsers given as arguments, making the library design concep-
tually clean.

3.4.2 Using combinators to express EBNF rules and regular expressions

Combinators allow to express regular expressions [33] on parsers:

union operation
The analog of comblib.any@parsers is the operator |, that is to say

comblib.any(parser;, ... , parser,) = parser; | parsers | .. | parser,
concatenation operation
The analog of comblib.all@parsers is the default concatenation operator, which

doesn’t have a symbolic representation because it is the default operation in regu-
lar expressions:

comblib.all(parser;, ... , parser,) = parser; parsery ... parser,

Kleene closure

comblib.repeat (parser) = parser x

positive closure

comblib.strict repeat(parser) = parser+

zero or one instance

comblib.optional (parser) = parser?

On the other hand, for specifying the syntax of a language, there is a widely used notation
called the Extended Backus-Naur Form (EBNF [33]). A sample EBNF rule used in the Pic%
grammar is:

<operation> ::= <comparand> | <comparand> <comparator> <operation>

The combinators comblib.any@parsers and comblib.all@parsers can be used to translate
this rule into Pic% code:
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operation:
comblib.any (comparand, comblib.all(comparand, comparator, operation)))

It can be seen that the correspondence with EBNF notation, as in the case of regular expres-
sions, is straightforward.

RegExp/EBNF notation

In EBNF notation, some common constructs like repetition or optional elements need two
rules or two options in a rule to be expressed. We can think of a mix between EBNF and
regular expressions to ease the expression of these routine constructs in a grammar. For
example the rule shown before can be written as:

<operation> ::= <comparand> (<comparator> <comparand>) %

We will call this mix of both EBNF and regular expression notations, RegEzp/EBNF notation.
Because of the correspondences

1. combinators <— regular expressions, and

2. combinators «— EBNF rules

shown before, it is very easy to translate RegExp/EBNF grammars into Pic% code and vice
versa. A more complex example used in the grammar of xPic% is function application:

<application> ::= < reference = “(” (<expression> “,”) * <expression> | <success = “)”
The notation < terminal = will be used to differentiate terminals and non-terminals in the
grammar. The above rule maps to:

entry_comma_parser:
comblib.all(expression_parser, parselib.char_literal(","));
mult_entries_parser:
comblib.all(comblib.repeat(entry_comma_parser), expression_parser);
args_parser:
comblib.all(parselib.char_literal(" ("),
comblib.any(mult_entries_parser, parselib.success()),
parselib.char_literal(")"));
application_parser:
comblib.all(reference_parser, args_parser);

The point in favor here is that RegExp/EBNF notation is much easier to read when design-
ing and documenting the grammar — it can be better than pure EBNF notation since a lot
of routine grammatical constructs can be expressed concisely and intuitively. The second
advantage is that a very direct translation is available to make such an specification a re-
ality (i.e. to obtain an implementation), which makes the code clear and the translation of
grammar into code less prone to errors, and the inverse process as well: the grammar rules of
xPic% presented in this document were reverse-engineered from the implementation made in
terms of combinators. In the remainder of this thesis, we will specify xPic% grammars using
RegExp/EBNF grammar notation.
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3.4.3 Primitive parsers and combinators as reificators of the grammar

From the meta-programming point of view (recall section 2.1), primitive parsers are a reifi-
cation of the concept of terminal at the base-level grammar, and combinators reify the rules
used to build non-terminals in that grammar. Consider for instance the application parser
shown in the previous section. It is able to recognize function applications such as £ (), £ (x)
and f(x,y,z); it uses primitive parsers to reify the terminals “(” “,” “)” and < success >,
and comblib.all(), comblib.any() to reify the different parts of the given grammar rule.
The resulting parser, application _parser, which is in fact the outermost comblib.all com-
binator, reifies the non-terminal <application> as a whole.

3.4.4 Syntactic extensibility through the disjunction combinator

Now that we know what combinators are, we will see how to use them to build extensible
grammars. The only way of extending a grammar is by adding rules, or by adding options to
a rule by means of the operator |. The approach we present uses the second alternative. As
will be shown, this will enable us to extend grammars in a controlled manner: the grammar
will be configurable only at certain spots and in certain ways.

If we are going to add options to rules with the disjunction operator | of RegExp/EBNF,
our main tool for extensibility will be its corresponding combinator, comblib.any@parsers
(recall the beginning of section 3.4.2). Creating the combinator

rule: comblib.any(parser;, parsery, ... , parsery)

yields the rule in the grammar:
rule ||= parser; | parserp | ... | parser,

We will call these configurable rules because, as we will see next, they can be modified after
they have been created. Notice that we use the notation ||= instead of ::= to highlight the
fact that these rules are a special kind of disjunction in a grammar: an extensible one.

As said in section 3.4.1, an empty disjunction is equivalent to an always failing parser (cor-
respondingly an always non-matching rule), thus the combinator

rule: comblib.any()

yields the rule
rule ||= L

which matches no stream of tokens whatsoever. Empty rules will be seen in the default
grammar of xPic%, in section 3.6.

Now that configurable rules have been defined, a way to modify them is needed in order to
allow syntactic extensibility. To this end, the disjunction combinator comblib.any@parsers
has two methods more than the other combinators:

any@parsers:: {
>-- parselib.abstract();
parse(istream)::
add_before(after_parser, new_parser)::
append (new_parser) : :
clone() }
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The tool to extend disjunction rules is those two methods,

add_before(after_parser, new_parser) Inserts new_parser as a new option of the rule,
with precedence over the already-existing option after_parser. When the combinator
is invoked, it will try to match new_parser before it tries to match after_parser. The
rule option after_parser must exist for add _before() to succeed.

In terms of grammar rules,

rule ||= parser; | parsers | ... | parsery,

will be transformed after a call to rule.add before(parser;, new_parser) into
rule ||= parser; | parsers | ... | new_parser | parser; | ... | parser,

append(new_parser) Similar to add_before(), but the given parser will be added as the
last option of the rule.

A method add_after () could also have been defined but it didn’t turned out to be necessary.

In section 3.6 we will see how configurable disjunctions are used to make the xPic% grammar
extensible at certain predefined spots, therefore achieving controlled grammar extensibility.
With the ||= notation, it will be easy to locate them at a glance in the grammar definition,
for instance in the grammar:

<operand>  ||= <string> | <number > | <reference> | <table> | <application>
<table> = “[” <expression> x “]”

<application> ::= <reference > “@Q” <operand>

<expression> ||= <operand>

3.4.5 Drawbacks of parser combinators

Parser combinators have two drawbacks:

1. The parsers built are recursive-descent with unlimited lookahead, thus the kind of
grammars that can be parsed is restricted to the family LL(n).

2. The constructed parsers can be quite slow.

A solution to problem 2 is discussed in appendix A; regarding item 1, it constitutes a more
fundamental limitation and cannot be overcome unless other parsing techniques are used. One
challenging direction for future work is to study extensible syntax mechanisms in LR parsers:
how to modify the transition tables of the stack automaton that encodes the grammar, when
a change in the syntax of the language is requested by the user at runtime. Note however that,
in spite of limitation 1, LL(n) grammars are expressive enough to describe most syntactic
constructs in programming languages [33].

3.5 Building ASTs

Until now, we know how to obtain parsers for LL grammars using primitive parsers and
parser combinators. There is still an open issue: what kind of trees those parsers return?
The answer to this question is important if the produced ASTs must conform to the abstract
grammar expected by the evaluator machine (recall section 3.1).
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[ 12, [ 4, "display" ], [ 5, [[ 3, "hola" ]11]]

12

4 display 5

3 hola

Figure 3.2: representation of trees using Pic% tables

ASTs are represented using Pic% tables, as illustrated in figure 3.2. In this section we will
see how basic parse trees are obtained and how to build valid abstract syntax trees starting
from these basic trees.

3.5.1 Primitive parse trees

The most basic trees are returned by primitive parsers:

parselib.failure() — void
The always failing parser never returns a tree.

parselib.success() — [ ]
The always succeeding parser returns an empty parse tree, i.e. an empty table.

parselib.terminal(terminal name) — [ data ]
Returns a tree containing the value associated with the recognized terminal. Thus a
parser for terminals of type “number” returns trees containing single numbers, a parser
for “string” terminals returns trees containing single strings, and so on.

parselib.char_satisfy(predicate), parselib.char_literal(char) — [ char ]
For both parsers the result is a tree containing the literal character found.

parselib.char_literal string(string) — [ string ]
Always returns the tree containing the literal string matched in the input.

Recall that parsers return a tree only if they succeed, otherwise they return void. The trees
returned do not comply with the abstract grammar of the evaluator, for instance their first
element is not a numeric tag identifying their type, which is a requirement in valid abstract
syntax trees (as will be shown in chapter 4). In the next section, the way to obtain valid
ASTs from primitive parse trees is explained.

Remark

As we saw in section 3.2.2, the scanner produces tokens [ token_tag, scanned data ]
annotated with a tag and the scanned data; the trees returned in the last four parsers above
contain in fact the scanned data taken from the tokens found in the input stream. On the
contrary, note that the token_tag, although may be accessed inside the parse() method
of some of the parsers, is never used in the final trees produced. This implies that the
resulting trees are completely independent from the particular scanner used, since they never
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contain scanner-specific information. The tags are an “internal protocol” for the scanner to
communicate with the parsers. This remark is made because, as explained in the following
section, ASTs are also identified with a numeric tag; however, this tag is not related in any
way with token tags.

3.5.2 Basic AST constructors

Recall, from section 3.3.1, the method set_ast_cons () available in every parser. This method
receives as argument a function, and installs it as the new AST constructor of the parser. An
AST constructor is in charge of transforming trees so that they become valid with respect to
the abstract grammar. Consider the parser for terminals of type “string” in xPic%),

string parser: parselib.terminal(’string’)

If we have the expression "hola", its parse tree will be

[ nholan :]

which doesn’t comply with the abstract grammar of the evaluator. Here AST constructors
become very important: we can change the way string _parser produces its trees. To fix
string_parser we can do:

string parser.set_ast_cons( lambda(string): [ tag.STR, string ] )

where tag_STR is a predefined numeric tag that identifies string expressions. Now, for the
same example expression "hola", and with with tag_STR = 3, the produced tree would be:

[ 3, "hola" ]

which is a valid AST, representing the string. In this way string_parser produces output that
can be used to compose more complex ASTSs, or it could be passed directly to the evaluator
machine for evaluation. For other types of primitive parsers the AST constructors are analog:

number_parser: parselib.terminal (’number’);
number_parser.set_ast_cons( lambda(number): [ tag_NUM, number ] );
ref_parser: parselib.terminal(’name’);

ref_parser.set_ast_cons( lambda(ref): [ tag_REF, ref ] );

and so on.

A note about meta-programming

The tree [ 3, "hola" ] is in fact a representation of the base-level string "hola" at the
meta-level (recall section 2.1). Suppose that tag REF = 4, tag NUM = 2 and tag TAB = 5;
then some examples would be:
e [ 4, "hola" ] is the meta-level representation of the base-level variable called “hola”,
e [ 2, 1492 ] is the meta-level representation of the base-level number 1492, and

e [ 5, [ [ 2, 11, [ 2, 21 1 1isthemeta-level representation of the base-level table
[1, 21.
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Management of tags in the abstract grammar

The concrete value of tags like tag_STR, tag_NUM, tag REF or any other tag is never encoded
‘by hand’ in AST constructors; in fact the actual value of tags is not predefined, but estab-
lished at runtime. In this section, we have shown AST constructors with hard-coded tags to
make the explanations easy to understand. But, as an example, the true AST constructor
used for strings is in reality:

string_parser.set_ast_cons(lambda(string): meta.deify_string(string))

and there are analog constructors for all the other value types. The meta object is in charge
of keeping track of the available tags in the abstract grammar of xPic%.

3.5.3 More elaborated AST constructors

Now that we have seen AST constructors, the aim of this section is to show more elaborate
examples using them to configure combinators, instead of primitive parsers. AST constructors
are specially useful when used with combinators. Let’s take as an example the quoted code
parser of xPic%,

quoexp_parser: comblib.all(parselib.char_literal("’"), expression_parser);

Recall from section 3.4.1 that the comblib.all@parsers combinator produces a tree that is
just an ordered grouping of the trees returned by the sub-parsers. In the example, the first
subcomponent parselib.char_literal("’ ") always returns the primitive tree [ "> " 1,
and the second subcomponent returns a whole AST corresponding to the arbitrary expression
that is going to be quoted. Suppose we want to parse the expression:

’display("hola")

The AST corresponding to the subexpression display("hola") (i.e. without the apostrophe)
is shown in figure 3.2; thus the resulting AST produced by quoexp_parser would be:

[ ["°"], [ 12, [ 4, display ], [ 5, [ [3, hola1111] (3-1)

which is not a valid AST because its first component is not a numeric tag. We can tweak the
parser, as in section 3.5.2, using the AST constructor:

quoexp_parser.set_ast_cons( lambda@tree: [ tag_QU0, tree[2] 1 )

In the function lambda@tree, the component tree[2] corresponds to the tree of the expres-
sion to be quoted, [ 12, [ 4, display 1, [ 5, [[ 3, hola 11]1]. Notice that the newly
installed AST constructor never uses tree[1], whose value is always ["’ "], so it can be
discarded safely since it provides no new information. The second component tree[2] is
used to build the final AST. Supposing that tag_QUO = 13, the result would be:

[ 13, [ 12, [ 4, display 1, [ 5, [ [ 3, hola 1 1111

One final example for parsing function applications with @-syntax:

at_application_parser:
comblib.all(ref_parser, parselib.char_literal(’@’), operand_parser);

at_application_parser.set_ast_cons(lambda@apl: [ tag_APL, apl[1], apl[3] 1);
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<operand> ||= <string> | <number > | <reference> | <table> | <application>

<application> n=  <reference > “@Q” <operand>

<table> n= “[” (<expression> “,”)x <expression> | <success> “]”
<power_op> = L

<power> = <operand> ( <power_op> <operand> ) %
<product_op> = L

<product> u=  <power> ( <product_op> <power> ) x
<addition_op> = L

<addition> m=  <product> ( <addition_op> <product> )
<comparison.op> ||= L

<comparison> u=  <addition> ( <comparison_op> <addition> ) *
<operation> »=  <comparison>

<expression> ||= <operation>

Figure 3.3: The bare-bones xPic% concrete grammar

It can be seen in the AST constructor that only the first and third components of the parse
tree produced by the combinator are used to build the final AST, and the second subtree,
corresponding to the “@” symbol, is discarded since it doesn’t give any new information.

3.6 The xPic% concrete grammar

Now that we have set up the base of the extensibility framework, we will proceed to describe
the bare-bones xPic% concrete grammar: the syntactic base needed to have a language which
is usable. What remains to be explained of the syntactic extension mechanism will start from
this basic grammar definition. The extension mechanism will enable us to evolve the basic
grammar into the full grammar of standard Pic% (section 5.3). Further extensions will also
be possible.

xPic%’s basic or bare-bones grammar is depicted in figure 3.3. A typical xPic% program that
uses this grammar looks like:

fo[ go[x, "example"l, y ]

We will see a complete example of a program with this same syntax in the bootstrap code of
xPic% (section 5.1). Basically, the bare-bones grammar defines a language of infix operations
with 4 different levels of precedence, on top of a simple functional syntax, as seen in the
example expression above. The different configuration spots are commented in the next
section, and a discussion of how could the initial grammar be yet smaller is the subject of
section 3.6.2.

3.6.1 Grammar configuration spots

As can be observed in figure 3.3, the following configuration spots are available:

<expression> Thisis the goal of the grammar. Every program is an expression, thus being
able to configure the <expression> rule means being able to configure what a program
is in xPic%. In particular, this configuration point will be used to install the syntax for
definition (:), declaration (::) and assignment (:=) of Pico (section 5.2.2).

<comparison_op>, <addition_op>, <product_op>, <power_op> The grammar de-
fines binary operators with 4 different levels of precedence (in ascending order): com-
parison — addition — product — power. As initially there are no operators present
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in the grammar, the addition operator + (for instance) won’t be recognized. If for
example we add “+7” as an option of the rule <addition_op> and “*” as an option of
the rule <product_op>,

<product_op> ||= “k
<addition_op> ||= wy»

then expressions, such as 1+2%3 would be recognized as valid. Because outer rules (e.g.
<addition>) are defined in terms of deeper rules (e.g. <product>), the latter will be
recognized before the former (e.g. a try to match multiplicative operations will be done
before a try to match additive ones). This is the standard way of enforcing operator
precedence in a grammar: 1+2*3 will be recognized as 1+(2*3) instead of (1+2)*3 as
would happen if we didn’t have precedence in operators.

After adding an operator to one of the rules, it becomes available, with:

e infix notation,

e the level of precedence corresponding to the point where it was added (comparison,
addition, etc.), and

e left associativity; notice that the grammar doesn’t say anything about operator
associativity. To define associativity within a level of precedence, AST constructors
are used (see section 3.6.3).

Note 1 We considered the possibility of having arbitrary levels of precedence. This is
not included because such amount of flexibility is not necessary for practical purposes.
Nevertheless, it would not be difficult since, as can be observed in figure 3.3, all four
types of operations (i.e. all the precedence levels) have the same syntactic structure,
suggesting the kind of generalization that could be used. In this case, the initial xPic%
grammar would be minimal (see section 3.6.2) since it wouldn’t have any rule concerning
infix operations.

Note 2 Although not used in the extensible framework presented here, it is possible
to configure operator associativity within a given level of precedence to have right
associativity; how is this achieved will be a subject of section 3.6.3.

<operand> Here, expressions that are the target of infix operators can be defined. Some

options come already installed in the default grammar of xPic%: numbers, strings,
function applications, etc. (see figure 3.3). Other operand types that could be added
are, for example, tables (denoted in Pic% with “[” and “]”) and begin blocks (denoted
with “{” and “} 7).

3.6.2 Becoming minimalistic

The concrete grammar presented in figure 3.3 can be simplified. Initially, there are no pre-
defined operators, i.e. all the operator rules are empty (). The 4 rules for operations can
be reduced, consider <addition> for instance:

<addition> == <product> ( L <product> ) x

since the empty rule never matches the input, this is the same as

<addition> 1= <product>
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<operand>  ||= <string> | <number > | <reference> | <table> | <application>

<table> = “[” (<expression> “,”)x <expression> | < success> “]”
<application> ::= <reference > “@Q” <operand>
<expression> ||= <operand>

Figure 3.4: The minimal xPic% grammar

that is, an addition is initially the same as a product. All the operation rules can be reduced
in this way, making in the end <expression> equivalent by reduction to <operand>. We
obtain the grammar shown in figure 3.4. This grammar is the simplest possible, it is called
the minimal grammar. 1t defines the absolutely least number of syntactic constructs needed
to have a language which is usable at all. In this document, a different terminology is used
to distinguish the grammars of figure 3.4 and 3.3: one is the minimal grammar and the
other is the basic or bare-bones grammar. To be able to grow the minimal grammar into
the bare-bones grammar of xPic%, the only element missing in the extensibility framework
is the definition of arbitrary levels of precedence; an idea of how this could be achieved was
mentioned in section 3.6.1.

The only non-trivial constructs in the minimal grammar are function application and table
definition by enumeration of elements. Hence it defines a very simple, pure functional syntax,
analog to Scheme’s: nothing more than either primitive values (strings, numbers, references,
tables) and function applications. Although the minimal grammar is the simplest Pico-
compatible grammar possible, note that it isn’t the simplest grammar ever: Scheme’s is
simpler, since it has no special rule for function application. But, as was mentioned in the
introduction of section 2.3, one of the objectives of Pico is precisely to be a bit syntactically-
friendlier than Scheme; function application is one of the points where this is achieved.

3.6.3 Reification of the concrete grammar & grammar management

Now that we have presented the xPic% grammar, how can it be represented at the meta-level?
One requisite to enable an extensible syntax is to reify the grammar of the language as an
object, in order to be able to manipulate it. Firstly we define a generic grammar object:

make_abstract_grammar(): {

register(name, parser):: ...
get(name) :: ...
clone() }

This grammar object is in charge of registering the grammar terms by name and later fetching
them on demand. Note that, conceptually, this grammar object is not the only object that
conforms the reification of the xPic% grammar, but, as we mentioned in section 3.4.3, also
the primitive parsers and combinators that reify individual terminals and non-terminals.

Secondly, we need a set of tools to enable grammar manipulation. A refinement of the generic
grammar object is made to support the particular extensibility framework of xPic%:

xpicoo_make_grammar(scanner, meta): {
>-- make_abstract_grammar (scanner) ;
install_disjunction(name): ...
install_disjunction_alternative(disjunction, name, priority, parser):: ...
install_userdef_alternative(level, name, priority, parser):: ...
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infix_operator_category(operand, operator): ...
clone() };

xpicoo_grammar: xpicoo_make_grammar (xpicoo_scanner, xpicoo_meta);

These tools to manipulate the grammar on the meta-level will be described next. They are
used in section 3.7 to allow the manipulation of the grammar from the base-level.

Setting up disjunction points and adding options

The function install_disjunction(name) is used to install a new disjunction point in the
grammar. It creates a new comblib.any combinator and registers it under the given name,
so that it can be fetched later. For instance, the configurable rule <expression> is installed
in the xPic% grammar using:

expression parser: install disjunction(’expression’);

A new comblib.any parser is installed under the name “expression”; it is ready for receiving
sub-parsers as discussed in section 3.4.4. The other configuration spots are installed in a
similar manner:

operand parser: install disjunction(’operand’);

power_operator: install disjunction(’power operator’);
product_operator: install disjunction(’product operator’);
addition_operator: install disjunction(’addition operator’);
comparison operator: install disjunction(’comparison operator’);

Once disjunction points are created, new alternatives can be added to them with the function
install disjunction_alternative(disjunction, name, priority, parser), which uses
the functionality of the comblib.any combinator described in section 3.4.4. If the priority
argument is void, the alternative is installed using disjunction.append(parser), otherwise
disjunction.add before(priority, parser) isused. The new alternative is registered un-
der the given name. The alternatives that come installed by default in the basic grammar of
xPic% are set up in this way. We give three examples:

install_disjunction_alternative
(operand_parser, ’string’, void, string_parser);

install_disjunction_alternative
(operand_parser, ’application’, ref_parser, application_parser);

install_disjunction_alternative
(expression_parser, ’operation’, void, operation_parser);
Creating operator categories

To create each level of precedence in the grammar, the following combinator is used:

left_operation_parser:
comblib.all(operand, comblib.repeat (comblib.all(operator, operand)));
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Note that it is a direct reification of the RegExp/EBNF rule
<operation> ::= <operand> (<operator> <operand>) x

which is a generalization of the operations <comparison>, <addition>, <product> and
<power> found in figure 3.3.

Supposing that “-” is installed as an option of the rule <addition_op>, left_operation parser
would produce the following parse tree for the expression 1-2-3:

cf2, 11,0 0"-"1, 2,211, [ ["-"], [2,3]1]11]
—— ~ .

operand comblib.repeat(comblib.all(operator, operand))

We need to install an AST constructor to convert this parse tree into a valid AST. The
following constructor will do the job:

left operation parser.set_ast_cons(
lambda@tree: fold_left(left_ast_term, tree[1], treel[2]));

It will create left-associative ASTs. The function fold_left (operation, zero, operands)
takes a binary operation, the neutral element ay for that operation, and a set
[a;, a2, ag, ... , ay] of operands; it then applies to the left the binary operation over the
operands:

fold left(operation, ap, [ ai;, as, ..., ap 1)

yields the value
operation(operation(operation(ag, ai), az), ... ), ap)
or just the neutral element ay if the set of operands is empty (n=0).

It would be too much detail to describe the function left_ast _term(op;, ops) passed as an
argument to fold left (); it suffices to say that it constructs valid left-associative ASTs for
binary operations. For instance if the tag for the “-” operator was 25, 5 for tables and 2 for
numbers, the produced tree would be:

(25, [5, LC2, 5, [[2,1],(2,21111, (2,3 11]1]

The subtraction operator doesn’t receive just two numbers, but a base-level table containing
two numbers. This is because base-level functions implementing user-defined operations do
not necessarily need to be binary (more on this in chapter 4). We can see how left associativity
is encoded in the above tree (subtraction is applied first to 1 and 2, and afterwards to 3).
Right associativity can be achieved in a very similar way, using the combinator

right_operation_parser:
comblib.all(comblib.repeat(comblib.all(operand, operator)), operand);

which encodes the rule
<operation> ::= ( <operand> <operator> )* <operand>
and then installing the AST constructor

right_operation parser.set_ast_cons(
lambda@tree: fold right(right_ast_term, tree[l], treel[2]));
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where fold_right (operation, operands, zero) applies the operation to the right over the
set of operands.

In this section we have seen the way in which the meta-level representation of the grammar
allows extensibility. Now our aim is to put such tools at the disposition of the xPic% user in
the base-level.

3.7 User-end tools for syntactic extensibility

Until now, we have seen how the internals of the syntax extension mechanism work. In this
section we present the tools made available at the base-level to the end users of xPic%. These
tools are a set of meta-functions that enable the modification of the language’s grammar at
runtime; they are a part of the meta-level interface (MLI) of xPic%.

3.7.1 Defining new syntactic constructs

The possible ways in which syntax can be extended are divided by operator arity:

Fixed-arity operators. Within this category, we have:

prefix operators, o like —x in Pic%

infix operators, Tey like x+y in Pic%

postfix operators, T e like x++ in C

fixed mixfix operators, = e y ey ... o, z like C’s conditional x?y: z

In general any operator that is not either prefix, infix or postfix, is called a mizfiz
operator. We call the last operator type a fired mixfix operator because it has a fixed
number of arguments.

Arbitrary-arity operators. There is only one type:
variable mixfix operators, ®giar; T1 ®sep T2 ®sep ... ®sep Tn ®end

like Pic%’s begin blocks, { expi, exps, ... , exp, }. We carry on with the “mixfix”
nomenclature, but adding the adjective variable to specify that the number of operands
is not predefined.

This division of operators by arity inspires the definition of two base-level functions,

var mixfix operator() and fix mixfix operator (). These allow the user to create parsers
in a controlled way, without all the freedom that would give the deification into the base-level
of the tools available at the meta-level (primitive parsers and combinators).

‘var_mixﬁx_operator(block_start, block_sep, block_end) ‘

This function creates a parser for the RegExp/EBNF rule

< block_start = (<expression> < block_sep =) * <expression> < block_end >~
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this is, a list of expressions of arbitrary length delimited by < block start >, < block_end >
and separated by <Dblock sep~. For instance the way to create a parser for Pic% begin
blocks would be:

var mixfix operator ("{", ";", "}"), and for Pic% tables,

var mixfix operator("[", ",", "1").

fix_mixfix_operator(arg;, args, ..., argy,) ‘

fix mixfix operator() creates a parser for the RegExp/EBNF rule
<argp> <arge> ... <argp>

which means that in principle it just concatenates its arguments, but, to make its usage
easier, not all the arg; need to be parsers: some of them can be strings.

Each argument arg; can be a string or a parser. If it is a string, the parser

parser; : parselib.char_literal string(arg;)

is used instead (recall section 3.3.1). If it is a parser,

parser; : arg;

is used (i.e. the parser arg; without modifications). In the end a list of parsers

[ parser;, parsers, ... , parser, ]

is obtained. The fix-mixfix parser is then comblib.all@parsers.
Example 3.7.1 The following examples illustrate some fix-mixfix operator definitions:

fix mixfix operator("(", expression, ")")
defines a parser for subexpressions within parenthesis,

fix mixfix operator(reference, "[", expression, "]")
is a parser for standard Pic% tabulations,

fix mixfix operator(".", operand)
is a parser for standard Pic% super sends, and

fix mixfix operator
(reference, ".", reference, varmixfix operator("(", ",", ")"))
is a parser for standard Pic% message sends. A variable-mixfix operator is used to
recognize the list of arguments of the invoked method.

The combined use of fix mixfix operator() and var mixfix operator() can be quite
powerful. The last example shows that, even though syntactic extension is performed in a
controlled way, the framework is expressive enough to allow simple specifications for relatively
complex constructs m

One last parser constructor that turns to be useful at the base-level is:

literal_operator(representation) ‘

It just returns a deification of parselib.char literal_string(representation), which
makes it possible to define parsers for literal occurrences of operator characters:
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literal_operator (">")
literal_operator ("+")
literal_operator("=")

and so on.

3.7.2 Installing & accessing syntactic constructs

New syntactic constructs can be defined using the tools shown in the previous section. Now
a way of adding them in the configuration spots of the grammar is needed. The meta-function

install_syntax(disjunction, name, priority, parser) ‘

is used to install new syntactic constructs in the grammar. Basically, it is the base-level
equivalent of the meta-level function install disjunction alternative() seen in section
3.6.3. The only slight difference is that, for each new parser installed, a new value type, with
a corresponding freshly assigned abstract grammar tag, is created, and the AST constructor
of the user-provided parser is modified so that is constructs ASTs identified with this new
tag. The produced trees look like:

[ tag, subtree ]

where subtree is the the tree that would originally be returned by the user-supplied parser
if its AST constructor was not modified. The job of the new AST constructor is just to tag
the otherwise untagged tree returned by the given parser. In this way the abstract grammar
of xPic% gets extended: by installation of new AST types.

Example 3.7.2 An example of installing a new syntactic construct from the base-level is
install_syntax(operand_parser, "braces block", void,

var_mixfix_operator("{", ";", "}"))

which defines syntax for Pico begin blocks. The <operand> configuration spot (recall section
3.6.1) is the target of the addition. Since the third argument is void, the new grammar term
<braces block> is appended as the last option of the disjunction (recall figure 3.3):

<operand> ||= <string> | <number > | ... | <application> | <braces block> n

Example 3.7.3 The user can execute

install_syntax(expression_parser, "standard definition", operation_parser,
fix_mixfix_operator(operation_parser, ":", expression_parser)),

to install <standard definition> as an option of the rule <expression>; the option is added
with priority over (i.e. as immediate predecessor of) <operation>:
<expression> ||= <standard definition> <operation>

After this syntax has been installed, expressions like id(x) : x (the definition of the identity
function) are recognized as valid. Many more examples will be seen in chapter 5 g

To access an installed syntactic construct at the base-level, the function

grammar_term(name) ‘

is available. For instance operand parser: grammar_term("operand") fetches the parser
object that reifies the rule <operand>.
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3.7.3 Syntactic maps

It is possible, using parser.get_ast_cons() (section 3.3.1) to get the AST constructor of a
parser. This makes it possible to define another AST constructor in terms of the original. The
“wrapping” constructor can invoke the original constructor to obtain the tree it produces,
and then transform it as needed. This technique is used, for instance, to tag parse trees in
the function install syntax() of section 3.7.2. Another example of post-processing would
be partial evaluation of abstract syntax trees.

There is yet another usage of post-processing:

install_syntactic_map(parser, function) ‘

replaces the AST constructor of the given parser by one that firstly invokes the original
constructor to obtain an AST, and subsequently applies the given user-defined function to
it. The original AST constructor is “wrapped” with a new constructor that post-processes
the produced trees in a user-defined way. These user-defined AST transformers are called
syntactic maps in xPic%.

Example 3.7.4 An example of the usage of syntactic maps is to define syntax for “weird
function applications”:

install_syntax(operand, "weird application", reference,
fix_mixfix_operator(reference, var_mixfix_operator("-<", " ", ">-1")));

install_syntactic_map(grammar_term("weird application"), application)

The function application(functor, args), as will be seen in section 4.3.3, builds the AST
of a function application given a target function and the arguments to which it should be
applied. With this syntactic map installed, the code

display-<"this is a weird application'">-

would be transformed at parse time into the AST of a normal function application, as if the
original code would had been

display("this is a weird application") nm

Regarding efficiency, the penalty in execution time of syntactic maps occurs at parse-time,
since the syntactic map has to be applied whenever the corresponding syntactic construct is
found. Syntactic maps do not affect evaluation speed, though.

3.8 Conclusion

This chapter has shown how the syntactic analysis machine works and the tools it offers
for syntax extensibility at the meta-level. These tools are used to implement a set of meta-
functions that allow the user to extend the syntax of the language within the language itself,
at the base-level. These functions are part of the meta-level interface (MLI) of xPic%. The
intention is not to have a 1-1 correspondence between meta-level and base-level functionality;
instead, expressible enough tools are provided so that the end-user can install syntactic
constructs easily, without the burden of specifying individual parsers and combinations of
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parsers. To this end, the framework is based on a very general notion of “operator”, and
the functions in the MLI allow to define and install new operators. This meta-level interface
happens to be enough for almost any syntax extension, a result that will be shown in chapter
5. In that chapter, the minimal syntax of xPic% will be grown into the full syntax of Pic%
and beyond.
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Chapter 4

Semantic Extensibility

Semantic extensibility is the second core element of the extensibility framework of xPic%. It
enables the user to assign a meaning to any syntax extension. As in the case of the previous
chapter, the end product of this chapter is a tool set of meta-functions made available at the
base-level. This tool set is the second part of the meta-level interface (MLI) of the language; it
will be exposed in section 4.3. The sections before provide the necessary background concepts
and an understanding of how this part of the MLI is realized.

4.1 Overall architecture

The AST produced by the xPic% parser (recall figure 3.1) is the description of a computa-
tional system, i.e. it is a program. The behavior of such system can be obtained using a
semantic analysis machine to interpret the program. The xPic% semantic analysis machine,
also called the xPic% evaluator, is sketched in figure 4.1.

(. 1.

abstract syntax tree > top-level evaluator > abstract syntax tree

Figure 4.1: The xPic% semantic analysis machine.

The input AST passed to the evaluator must be valid; the output AST will be valid also. We
say that a given AST is valid if it complies with the abstract grammar of the language. Note
that the machine is completely independent from the source code, hence it would be possible
to execute programs written in languages other than xPic%, if they are first translated by
an appropriate parser to a valid xPic% AST, and this AST is passed as input to the xPic%
evaluator.

As seen in figure 4.1, the entry point of the evaluation process is the top-level evaluator: an
algorithm that, when applied to a valid AST, performs the actions required by the language
semantics, and returns the result of such computation. We proceed now to describe the
top-level evaluator.
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4.1.1 The top-level evaluator

The main job of the top-level evaluator is to delegate the responsibility of evaluating an AST
to other evaluators maintained in a pool. These evaluators are called semantic actions. For
each AST type, the top-level evaluator keeps an associated action. When an AST is passed
to the top-level evaluator, the tag that identifies the AST type is used as an index to look for
the corresponding action in the evaluator pool, and this action is executed. A small protocol
is enough to maintain the pool and perform evaluation:

make_abstract_evaluator(): {

register(exp_type_name, action):
evaluate (exp) ::
clone() }

register(exp_type_name, action) Looks for the abstract grammar tag corresponding to
exp_type_name and associates the given action with it. Each time a subtree of type
exp-type_name is to be evaluated, the action will be executed. If there was a previous
action associated to exp_type_name, it gets overwritten. Note that client code doesn’t
need to know the particular tag value but a human-readable string which is in a 1-1
correspondence with it.

evaluate(exp) Invokes the appropriate action for the given expression, using the information
that has been installed up to that moment using register (). The top-level evaluator
is just a dispatcher, all the “real” work of evaluating an expression is delegated to
semantic actions. The expression exp must be a valid AST.

It is possible to extend or modify behavior, but not to remove it. Although there is no a
priori reason to forbid behavior removal, that possibility was not considered in this work.
It would be enough with a method remove () in the top-level evaluator that unregisters an
action for a given value type.

Example 4.1.1 (action definition and registration) The action associated with num-
bers in xPic% is

register (’number’, id(x): x)

i.e. it is the identity function, hence the result of evaluating a number is just the number
itself. More examples will be given in section 4.2.3 m

As has been explained in this section, for each AST given as input the evaluator is in charge of
performing the actions required by the language semantics. Now we proceed to describe such
semantics. Firstly, the part of the semantics that is built into the language will be explained.
This is called the intrinsic semantics. Afterwards, the tools to extend the semantics with
user-defined actions will be shown. This extended part is called the eztrinsic semantics of the
language. The intrinsic semantics will be explained in section 4.2, and the tools to extend it
are shown in section 4.3.
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4.2 xPic% intrinsic semantics

In this section the inherent or intrinsic semantics of xPic% is defined, i.e. the kernel of con-
cepts and rules that conform the operational definition of the language. This is a cornerstone
of the interpretation process.

In xPic%, there is no difference between programs and data, they are both ASTs at the
meta-level. Said in another way, “expression” is synonym of “value” in xPic%. Handling
values (equivalently, expressions) is all what the xPic% intrinsic semantics is about. The
three main concerns are:

e what is the set of value types provided,

e what is the binding semantics of value types (that allows for instance to pass values as
arguments of functions), and

e how values should be evaluated, i.e. what the semantic actions associated with each
value type.

We will explain these three points in the following sections: 4.2.1, 4.2.2 and 4.2.3.

4.2.1 Value types

The value types that come installed in a fresh interpreter of xPic% are shown in this section,
together with their respective ASTs. It helps in acquiring a precise idea of how base-level
values are represented and the kind of information required for each one. As xPic% is
dynamically typed, every single value comes annotated with its type.

void = [ tag.VOI 1]
a trivial value, represents the absence of information.

number = [ tag NUM, num ]
a base-level number; num is a meta-level number.

string = [ tag_STR, str ]
a string of characters, called “text” in Pic%; str is a meta-level string.

table = [ tag_TAB, tab ]
a base-level table; tab is a meta-level table.

reference = [ tag REF, ref ]
a variable identifier, given by the string ref.

quotedexp = [ tag-QUO, exp ]
a ‘frozen’ expression; exp can be any valid AST.

function = [ tag.FUN, param, body ]
a base-level function. Only the formal parameters (param) and the body of the function
(body) are kept. The function name is not relevant, since the same function can be
stored in many dictionaries with different names. The type of the parameters determine
the way arguments are bound when the function is applied, according to the semantics
of value binding that will be defined in section 4.2.2. The body is an expression (i.e.
an AST) whose evaluation process is explained in section 4.2.3.
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nativefun = [ tag NFN, param, type, impl ]
a base-level representation of a meta-level function. Native functions are similar to
functions defined in the base-level: the param component is the same, and the impl
component is equivalent to body but is consists of native code instead of an AST. The
type entry is used for parameter type checking: it avoids having to implement the
checks by hand for each native function defined. It is a table [pred;, ... , pred,] of
boolean functions (i.e. predicates) that check the type of the value passed as argument.
There is a type checker for each value type: is_base_str(), is_base num(), and so on.
When more than one type is allowed for a parameter, a function of the style lambda (x) :
or(is_base_dct(x), is_base_str(x)) can be used (in general any predicate is valid).

closure = [ tag CLO, fun, dct ]
a function fun, which can be user-defined or native, together with the environment dct
where it should be evaluated.

application = [ tag APL, fun, args ]
represents the application of a function fun to the actual arguments args, as explained
in section 4.2.3.

dictionary = [ tagDCT, dct ]
a base-level dictionary; every evaluation environment in xPic% is a value of type this
type, hence its importance. The entry dct is a meta-level object with the protocol
presented in section 2.3.1 for Pic% dictionaries. One way of creating dictionaries is
by cloning (shallow copying a previously existing dictionary). A second way is the
meta-level function:

xpicoo_build_dictionary(var_env, const_env, parent): {
define(name, value)::
declare(name, value)::
assign(name, value)::
lookup_all(name) ::
lookup_const (name) : :
lookup::

cigne() }

There are more ways of creating dictionaries, for instance there are also “protected”
dictionaries, which will be explained later in this chapter. Any object conforming to
the required protocol could be used.

nativedict = [ tag NDC, dct ]
a base-level representation of a meta-level object; dct can be any Pic% object present
at the meta-level, including but not limited to dictionaries. For instance, the function
grammar_term() from section 3.7.2 returns meta-level parsers, which are represented at
the base-level as values of type nativedict.

Note that six of these value types were introduced in section 2.3.1 from the user’s perspective
(i.e. base-level perspective). The presentation in this section has been carried out from the
language’s implementor perspective (i.e. the meta-level perspective).
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User-defined value types

The set of value types is not fixed, but it grows as the language gets extended. The format of
user-defined value types is [ tag, exp ], where tag is an abstract grammar tag (an integer)
created when the user installs a grammar rule, and exp is any valid AST; this process was
explained in section 3.7.2.

4.2.2 Value binding
Value binding is a general process that allows the evaluator to perform some fundamental
tasks, such as variable definition or function application.

To bind a pair of values x <——— y means to associate them using a given operation assoc. The
left-hand side value will be called the parameter and the right hand side value the argument.
Value binding is performed by the function:

bind_param(param, arg, assoc)

The assoc parameter is a binary function which associates the parameter with the argument:
the most commonly used associations are the methods define (), declare() and assign()
of dictionaries (recall section 2.3.1).

Example 4.2.1 The meta-level expressions

bind_param(meta.deify_ref ("x"), meta.deify_number (1), cur_dct.define)
bind_param(meta.deify_ref("y"), meta.deify_number(2), cur_dct.declare)
bind_param(meta.deify_ref ("x"), meta.deify_number (3), cur_dct.assign)

are equivalent (using standard Pic% syntax) to the base-level expressions

x: 1 - defines x as a variable initially holding the number 1
yr: 2 - declares y as the constant number 2
x:= 3 - assigns x the value 3

respectively. Another example will be seen in section 4.2.3, where function application is
explained: bind param() is invoked with the function’s formal parameters, the actual argu-
ments, and paramdct.define (the environment in which the parameters should be bound
to the arguments). Thus function parameter binding follows the exact same semantics as
variable definition; in fact, the terminology “parameter/argument” is inspired on function
applications. Nevertheless, it is important to note that value binding is a general process,
not exclusively related to function parameter binding m

The way in which the binding process occurs depends on the type of the parameter: based
on the type of param, the function bind param() delegates its job to more specific binding
routines. Now we proceed to describe these routines.

Binding to a reference

The simplest case is binding to a reference:

bind_ref_param(ref, arg, assoc):
assoc(meta.get_ref_name(ref), evaluate(arg))
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arg is evaluated and associated to the reference. If (for instance) assoc = dct.declare,
then dct.declare(meta.get ref name(ref), evaluate(arg)) is executed.

This is the only binding procedure that applies assoc. As will be shown, all the others
delegate their work back to bind param(), so they just pass around assoc but they never
use it. Hence the point where associations are finally performed has been isolated. Currently,
xPic% does not benefit from this fact, although it might be useful in future evolutions of the
language’s design.

Binding to a quoted parameter

This binding semantics in new, it does not exist in Pic%. When it is invoked, the parameter
gets unquoted, the argument gets quoted, and both results are bound:

bind_quo_param(quoparam, value, assoc):
bind_param(meta.unquote_exp(quoparam), meta.quote_exp(value), assoc)

Examples:

Cx): 1 Defines x as a quoted expression of type number: ’1

Cy): this() Defines y as a quoted expression of type application: >this ()
quotation(’x): x Defines a function that returns a quoted version of its argument.

In the first two examples, the parentheses are needed to force the binding of a quoted reference
(’x and ’y) to an expression (1 and this() respectively); if the parentheses were omitted,
evaluating for instance the expression *x: 1 would just quote the whole definition x: 1, and
no binding process would take place. The same applies for y.

Binding to a function application

Suppose that a parameter apl is a function application with the form: functor(x,...,x,).
Then binding a given argument body to apl constructs a closure. Firstly, a new function
with formal parameters x;,..., x, and the given body is created (recall the function value
type from section 4.2.1). Secondly, a new closure is built using this function and the current
environment (recall the closure value type from the same section). Finally, this closure is
bound to the application’s functor:

bind_apl_param(apl, body, assoc): {
functor: meta.get_apl_functor(apl);
params: meta.get_apl_arg(apl);
function: meta.deify_function(params, body) ;
closure: meta.deify_closure(function, get_cur_env());
bind_param(functor, closure, assoc) }

Example 4.2.2 functor usually is a reference and assoc is the definition operation, so the
whole effect of the binding process is to have a new closure defined in the current environment
with the name given by functor:

a(): 1 the variable a holds a closure whose body is the number 1.
f(x): x+a() the variable £ holds a closure that increments a given argument by 1.
id(x): x the identity closure (same as in example 4.1.1).
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Binding to a table

If the target of a binding operation is a table, then the argument must be a table of the
same size. The entries of the target table are considered a parameter each, and similarly the
entries of the source table are considered arguments. A 1-1 binding process is then applied
over such sets of parameters and arguments:

bind_tab_param(base_params, base_args, assoc): {
if (meta.is_base_table(base_args), {
params: meta.reify_table(base_params);
args: meta.reify_table(base_args);
size_params: size(params);
size_args: size(args);
if (size_params = size_args, {
for(i: 1, i:= i+1, not(i > size_params),
bind_param(params[i], args[i], assoc));
base_args 1},
eval_error(’wrong number of arguments’)) },
eval_error(’argument must be a table’)) }

This kind of binding is used when a fixed-arity function is applied: to bind the table of formal
parameters to the table of actual arguments.

Example 4.2.3 The following definitions illustrate table binding in xPic%:

[a, b]: [1, 2] defines two variables a and b initialized to 1 and 2 respectively.
[’x, id(x)]: [1, x] defines the variables x as >1 and id as the identity function.

In Pic%, although the semantics of table binding are programmed into the evaluator, it is
only used implicitly during function application, but it cannot be invoked explicitly as shown
here: the two expressions above are invalid in Pic%. The example shows the benefits of
regarding binding as a general process, that transcends the frontiers of function parameter
binding m

4.2.3 Default actions

As was seen in section 3.6.2, bare-bones xPic% is a very simple functional language, thus
its main semantics is straightforward to define. An important part was already specified in
section 4.2.2. What remains to explain is so small that it takes just a few paragraphs. There
are only three non-trivial cases; the most important is function application, which will be
shown as the last one. The trivial cases are mentioned first.

Trivial cases

The easiest cases are:

register(’void’, id);
register(’number’, id);
register(’string’, id);

register(’quotedexp’, id);
register(’function’, id);
register(’closure’, id);
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register(’nativefun’, id);
register(’dictionary’, id);
register(’nativedict’, id);

i.e. no action is performed for these value types; the result of evaluation is the value itself
(id is the identity function as in example 4.1.1).

References

To evaluate a reference implies to look for its value in the current dictionary; this value is
the result of evaluation:

register(’reference’, eval_ref(base_ref): {
dct: get_cur_env();
value: dct.lookup(meta.get_ref_name(base_ref));
if (is_void(value), meta.deify_void(), value) })

Tables

To evaluate a table implies to evaluate each entry in order and to put the results in a new
table which is the result of evaluation:

register(’table’, eval_table(base_table): {
table: meta.reify_table(base_table);
i: 0;
eval_table[size(table)]: evaluate(table[i:= i+1]);
meta.deify_table(eval_table) })

Function application

To evaluate a function application means to obtain the function value, the table of actual
arguments, and to apply the function to them:

register(’application’, eval_application(base_apl): {
base_function: evaluate(meta.get_apl_function(base_apl));
base_args: meta.get_apl_args(base_apl) ;
base_args:= if (meta.is_base_table(base_args),
base_args, evaluate(base_args));
apply(base_function, base_args) })

When “func(arg;, ..., arg,)” syntax is used, [ arg;, ..., arg, 1 is the table of ar-
guments, whereas in “func@args” syntax there is just one function argument, the reference
args, which needs to be evaluated to obtain the final table of arguments (that’s the purpose
of the if statement in the code above).

Whether the function is of type nativefun, closure or function (recall section 4.2.1) will make
apply () decide for a different algorithm. The application algorithm for native functions is
not of interest in this discussion. For plain functions and closures we have:

apply_function(base_function, base_arg, env): {
origdct: get_cur_env();
paramdct: xpicoo_make_dictionary(env);
base_param: meta.get_function_parameter (base_function);
if (is_void(bind_param(base_param, base_arg, paramdct.define)), void, {
set_cur_env(paramdct) ;
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result: evaluate(meta.get_function_body(base_function)) ;
set_cur_env(origdct) ;
result }) }

where env can be the current environment (for plain function application) or the closure’s
environment. As can be seen, to apply a function basically means to evaluate the function’s
body in an environment which is the augmentation of env with the bound parameters of the
function. Parameter binding was described in section 4.2.2.

That is all about the intrinsic semantics of xPic%; it only remains to see the tools that
are made available at the base-level to allow the definition of the extrinsic semantics of the
language.

4.3 The xPic% meta-level interface

The intrinsic semantics of xPic% has been specified in section 4.2. Now we present the tool
set to build the eztended or eztrinsic semantics, this is, behavior that can be specified from
the base-level instead of being embedded in the interpreter. This tool set contains the meta-
functions which conform the second part of the meta-level interface of xPic%, complementary
to the first part presented in section 3.7.

Note

The extrinsic semantics is not defined in terms of meta-functions exclusively, non-reflective
functions like

tabulate(tables, index) to access the table’s entry at position index,
size(table) to get the number of entries in a table,

binary_sum(opl, op2) to sum two numbers,

binary eq(opl, op2) to test for equality,

are used also. It would not be worth however to describe a complete APT of functions in this
document. What interests us the most is the set of functions that provides access and allows
manipulation of interpreter structures otherwise unavailable to the programmer.

4.3.1 Evaluator registration

There is a base-level equivalent of the meta-level function register() which was used in
section 4.2.3 to associate semantic actions with each expression type:

assign_semantics(exp_type_name, function) ‘

registers a user-defined function as the evaluator for expressions of type exp_type_name.
Any previously existing evaluator is overwritten. Each time an abstract syntax tree (say
ast) of type exp_type_name is passed to the top-level evaluator, the given function will be
applied passing the tree as argument, i.e. function@ast.

Example 4.3.1 The principal usage of assign_semantics() is to assign a semantics to user-
defined syntax extensions defined with install_syntax () (recall section 3.7.2). An example
is to give a meaning to the ~ operator:

64



install_syntax(power_operator_parser, "standard power", void,
literal_operator("""));

assign_semantics("standard power", binary_pow)

The natively-defined function binary_pow(a, b) raises a to the power of b g

4.3.2 Working with evaluation environments

Functions to work with evaluation environments are shown in this section. Some related
concepts were presented in section 2.3.1. One of the most basic functions is:

this()

which returns the current evaluation environment (i.e. the dictionary currently in use by the
evaluator).

‘deﬁne(dct, target, Value)‘ ‘declare(dct, target, value) ‘ ‘assign(dct, target, value) ‘

These 3 functions give access to the value binding semantics of xPic%. Recall from section
4.2.2 the function bind param(param, arg, assoc); we have:

bind_param(target, value, dct.define)
bind_param(target, value, dct.declare)
bind_param(target, value, dct.assign)

define(dct, target, value)
declare(dct, target, value)
assign(dct, target, value)

The expressions to the left are base-level code and to the right is the meta-level code that
gets actually executed. As can be seen, normal variable definition follows the same semantics
as parameter binding in function application. This makes the intrinsic semantics of xPic%
smaller and homogeneous.

The dictionary functions dct.define(), dct.declare() and dct.assign() were explained
in section 2.3.1; do not confuse these meta-level methods with the base-level functions pre-
sented here. The parameters target and value must be quoted expressions, the dct param-
eter can be omitted, in which case it is assumed to be this().

Example 4.3.2 The following three examples illustrate define ().

define(this(), ’a, ’1) in xPic% has the same effect as a:1 in Pic%,

define(this(), ’id(x), ’x) is equivalent to id(x) :x, and

define(this(), ’[a, id(x)], ’[1, x]) has the same effect as the previous two expres-
sions together.

Similar examples hold if define() is substituted by declare() and assign() m

‘ lookup(dct, sym) ‘

lookup() searches the symbol sym (which should be a quoted reference) in the dictionary
dct; returns the bound value if found, or void otherwise.

parent(dct) setparent(dct, parent)
| || |
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parent (dct) returns the parent dictionary of dct (recall section 2.3.1); setparent () changes
the parent dictionary of dct to parent (which must be another dictionary or void).

‘ clone(dct) ‘ ‘ extend(dct) ‘

Cloning was explained in section 2.3.3; extend(dct) creates a new empty dictionary, whose
parent link is set to dct. Thus initially all the symbols available in dct are also seen from
the extension. New symbols introduced in the extension do not affect dct, so the only way
of affecting the parent dictionary of an extension is through assign().

‘ protect(dct) ‘ ‘ unprotect(dct) ‘

protect () returns a protected version of the given dictionary. A protected dictionary hides
its variables, leaving visible only the constants. To this end, the lookup() method of the
dictionary is redefined to be lookup_const() (recall section 2.3.1). The implementation
clearly illustrates it:

make_protected_dictionary(dct): {
lookup:: dct.lookup_const;

obj: clone(); (get an object obj with the redefined lookup method)
obj -->-- dct; (change the parent of obj to dct)
obj } (return the protected version of the dictionary)

unprotect () is similar but it redefines the lookup() method as lookup_all() instead of

lookup_const (). Thus in an unprotected dictionary both variables and constants are acces-
sible.

‘become(fromdct, intodct) ‘ ‘ancestorbecome(ftomdct, intodct) ‘

become () transforms all the references to the dictionary fromdct present in the system into
references to the dictionary intodct. The function become () is inspired in actor languages.

Like become (), ancestorbecome () transforms all the references to the first argument into
references to the second argument, but with the extra knowledge that the former is an
ancestor of the latter in the hierarchy of dictionaries (recall figure 2.4). If become() were
used to convert all the references to a dictionary into a reference to one of its descendants,
the following (wrong) transformation would be performed (c is a parent-link reference and a,
b are other references in the system):

i.e. a loop in the inheritance chain; ancestorbecome() avoids this problem by changing
all the references in the system ezcepting the parent links (if any) that point to fromdct.
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Hence after a call to ancestorbecome (), fromdct is still reachable, by navigation of the
dictionary hierarchy (using for example the function parent () presented above). In the case
of become (), all references to fromdct are lost.

Remark

A final note before finishing the explanation about environment manipulation functions: the
argument dct in many of the presented functions can be omitted, whenever it makes sense
to do so; in that case the current environment is used. For instance:

define(this(), x, y)
parent (this())
clone(this())

define(x, y)
parent ()
clone()

4.3.3 Expression manipulators

The xPic% evaluator manipulates nothing but values. We use interchangeably the terms
“expression” and “value” much in the spirit of Scheme: programs and data should not be
treated differently. Thus the ability to create or modify any type of value at run-time allows
programs not only to perform computation about the domain of the application, but also
about themselves, which is one of the corner stones of reflection (recall section 2.1.3). To
this end, not only numbers, strings or functions are first-class citizens, but also programming
constructs like references and function applications are manipulable at run-time. We refer
to the functions in this part of the meta-level interface as value manipulators or expression
manipulators.

Values — equivalently, expressions — are always represented by abstract syntax trees. The
reader will notice that the signatures of all the value manipulators presented here are related
to their respective ASTs in section 4.2.1.

‘ reference(name) ‘

Creates a reference to a variable identified by the string name, for instance
reference ("x")
is equivalent in Pic% syntax to just writing down the reference:

X

‘ quote(value) ‘ ‘ unquote(value) ‘ ‘ quotation(value) ‘

quote () evaluates the value passed as argument and returns the quoted result; unquote ()
expects a quoted expression as argument, and it returns the unquoted version; quotation()
literally quotes the value passed as argument, without evaluating it: quotation(exp) is
equivalent to ’exp. The difference between quote () and quotation() is illustrated with the
following example:

quotation(1+1) gives as a result: ’1+1
quote (1+1) gives as a result: ’2
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Note that quotation() can be implemented in the base-level, using the semantics for quoted
parameter binding: quotation(’exp): exp. However, this makes use of the ’-syntax for
quoting expressions, and the semantics for this syntax is defined with quotation() (as will
be seen in section 5.1.1), so we have a chicken-and-egg problem. In xPic%, quotation() is
defined as a native function: the aim is to have as less syntax as possible.

‘ table(size, entryexp) ‘

Creates a table of the given size; the entries are initialized in order with the result of
evaluation of entryexp, which should be passed as a quoted expression. The Pic% syntax

name [size]: entryexp

is equivalent to
define(this(), name, table(size, entryexp))

As an example, if the variable i is defined as 0,
x: table(5, i:=i+1) or x[B]: i:=i+1

are equivalent to
x: [1, 2, 3, 4, 5]

‘ function(param, body) ‘

Constructs a function with a formal parameter param and a given body, both to be passed
as quoted expressions. Thus the standard Pic% syntax

name@param: body

is equivalent to
define(this(), name, function(param, body))

If param happens to be a table of parameters [param;, ... , param,], we would have

name@[param;, ... , param,]: body

which is the same as
name (param;, ... , param,): body

This means that function() can create both variable-arity and fixed-arity functions, depend-
ing on whether param is a single parameter or a table of parameters (respectively). In many
functional languages the function() constructor is called lambda (for instance in Scheme).
In A-calculus it is the main operation, .

‘ closure(function, env) ‘

Constructs the closure of a given function, with a given evaluation environment. If the
environment is omitted, the current environment is used. Recall from section 4.2.1 that
function can be either a plain or native function.
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‘ application(functor, arg) ‘

Receives a quoted functor and the argument arg to which it should be applied, and returns
a value of type application (recall section 4.2.1) equivalent to

functor@arg

in Pic% syntax. As in the case of the function() constructor, if arg happens to be a table

of arguments [arg;, ... , arg,], then the constructed application would be equivalent to
functor@[arg;, .. , arg,]

which is
functor(arg;, .. , arg)

Thus application() can create both variable-arity and fixed-arity invocations. Example
3.7.4 already illustrated a possible usage of this value constructor.

dictionary(dct) ‘

Creates a new empty dictionary. The optional argument dct, if provided, is the parent
dictionary. After a dictionary is created, it can be manipulated with the functions presented
in section 4.3.2.

Remarks
Some remarks are necessary before finishing the presentation about expression manipulators:

e It makes no sense to define constructors for the value types nativefun and nativedict.

e For void, number and string it would be possible to have constructors void (), number ()
and string() returning void, 0 and " " (an empty string), respectively, but it is easier
to use the built-in syntax for numbers and strings, and the pseudo-variable void comes
predefined in the global environment.

e Most expression manipulators presented in this section are wvalue constructors. Note
however that, for each value type, there are also walue accessors. For instance for
values of type dictionaries, section 4.3.2 presented the function parent() to access
the parent of a dictionary. Although they are not mentioned here, there are similar
accessors for other value types. For instance, for function applications, the accessors
application_functor() and application_arg() retrieve the application’s functor and
argument respectively; for closures, closure function() and closure_environment ()
retrieve the encapsulated function and its evaluation environment. Listing all the ac-
cessors would make the presentation too lengthy; they can be inferred naturally from
the value type definitions given in section 4.2.1.

e Finally, there are also predicates (boolean functions) that enable a program to find
out the type of a value at hand. These predicates are is_void(), is_number(),
is_string(), and so on for each value type.
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4.3.4 Accessing basic mechanisms of the interpreter

The functions read (), eval() and print () give access to the three main phases of the REP
machine that is interpreting the program (recall section 2.4.1):

‘read(str) ‘ ‘eval(exp, env) ‘ ‘print(exp) ‘

read () receives as argument a string and, by means of the xPic% syntactical analysis machine
(explained in chapter 3), returns the corresponding AST. This AST is a normal xPic% value,
with one of the types defined in section 4.2.1.

eval () receives as argument an expression and an environment in which the expression should
be evaluated; it evaluates the expression by invoking the top-level evaluator (described in
section 4.1.1). If the argument env is omitted, the current environment (this()) is used.

print () receives as argument an expression and shows a human-readable representation in
the user interface of the interpreter.

With these three functions, the REP-evaluation process of an xPic% program can be imple-
mented at the base-level:
print(eval(read(program)))

where program is a string containing the source code of a program. The syntax of this
program must comply with the concrete grammar of xPic% as defined at that moment.

Finally, there is another commonly used function that gives access to the fundamental mech-
anisms of the interpreter:

‘apply(function, arg, env) ‘

applies a function function to a given argument arg, using as application environment
the dictionary env. The function application process is defined by the meta-level function
apply_function() described in section 4.2.3.

4.4 Conclusion

We have seen in this chapter the core elements of the xPic% semantical evaluator machine.
The semantics was divided into the intrinsic semantics of the language and the extended,
user-defined or extrinsic semantics.

Regarding the intrinsic semantics, the default value types supported by the machine were
described, and a meaning (i.e. default semantic action) was defined for each one of them.
Furthermore, a way of associating values was described for a subset of the default value types.
This binding semantics is used during variable definition, declaration, assignment and during
function application; in xPic%, function parameter binding has the exact same semantics as
variable definition. Some benefits of viewing value binding as a general process were shown,
like the ability to bind tables to tables: [x,y]: [1,2], a feature which is not present in
Pic%. The extra functionality is obtained at no cost as a consequence of the very simple
and orthogonal intrinsic semantics. A second binding semantics which is a novelty is the
binding of quoted parameters. It allows, for example, to quote function arguments from the
function definition itself, without requiring the client of the function to do so. For instance,

70



the function alternativedef (’name, exp): define(this(), name, quote(exp)) allows
to define variables in the current environment. An invocation like alternativedef (a, 1+1)
would bind a to the value 2. It is not necessary to quote the reference a before it is passed
to alternativedef (): the function itself takes care of this. In Scheme, a special form would
be needed to achieve a similar result.

Regarding the extrinsic semantics, an MLI was defined to support the extension of the default
language semantics with evaluators defined at the base-level. The function assign_semantics()
can be used to install this user-defined evaluators. The evaluators can be implemented using
the other functions available in the MLI, apart from standard functions in the API of xPic%.
The functions in the MLI are a complement to the standard API to better support reflective
computation: xPic% programs can find out information about their execution environment,
and inspect and modify any kind of value found in the environment (including parts of the
program itself). This means that the MLI enables both introspection and intercession (recall
section 2.1.3) in xPic% programs. Note, though, that Pic% is also a reflective language. The
contribution of xPic% in this area is to extend the set of reflective facilities and to provide
a standardized way of accessing and modifying values. The way in which reflective com-
putation is performed in Pic% was not explained; currently, the only problem is that it is
implementation-specific. As an example, the definition of the >-- operator used throughout
chapter 3 is:

>-- proto(): {
curenv: protol[2];
super: proto();
curenv[3] := super;
super }

The hard-coded indices 2 and 3 depend on the C implementation of the Pic% interpreter.
They are used, respectively, to access the environment of the closure proto and the parent-link
of that environment. In Borg [35], a language derived from Pic%, the indices are different.
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Chapter 5

Validation of the Language Kernel

A language extensibility framework has been explained in chapters 3 and 4. Here we give
a “test-drive” of the possibilities that it offers, thereby validating our work. Both syntactic
and semantic matters are discussed. The chapter starts by showing how to perform an initial
extension of xPic% that provides some basic constructs (section 5.1); from this version of the
language, it is easier to express further extensions. In particular the way to transform xPic%
into Pico will be shown in section 5.2. After a Pico-equivalent language is obtained, the
basic object-oriented layer of Pic% is defined, followed by some further constructs inspired
on prototype-based languages (section 5.3).

All the code shown in this chapter is base-level code: we will not be talking anymore about
the internals of the xPic% interpreter, which was defined in chapters 3 and 4 using a meta-
circular implementation. The examples in the first sections are harder to read than later
examples, but, as new syntax is defined, things get easier and easier to express.

5.1 Bootstrapping the language

Each time a bare-bones interpreter is started, it executes a program whose purpose is to
install a few basic syntactic constructs and function definitions. This bootstrap process leaves
the language into a more user-friendly state. When the interpreter starts using the minimal
syntax of xPic% (recall section 3.6.2), the main jobs of the bootstrap process are:

1. To provide syntax for quotations (e.g. ’exp).

2. To provide syntax for function application using “parentheses syntax” (e.g. £ (x)), since
the basic grammar includes syntax for @-applications only (e.g. £@[x]). The @-syntax
is the more general but it is less intuitive and common than parentheses syntax.

3. To provide syntax for plain function definition (e.g. £(x):- x). Recall that the syntax
f(x): x defines a closure, not a plain function.

We proceed to show how this extensions are performed.
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[ - declare needed variables -°

declare@[quotation@[operand_parser],
quotation@[grammar_term@["operand"]]],

declare@[quotation@[expression_parser],
quotation@[grammar_term@["expression"]]],

declare@[quotation@[reference_parser],
quotation@[grammar_term@["reference"]]],

4 4

- install function application and quotation syntax -

install_syntactic_map@[
install_syntax@[operand_parser, "standard parentheses application",
reference_parser, fix_mixfix_operator@[
reference_parser, var_mixfix_operator@["(", ",", ")"]]],
application],

install_syntactic_map@[
install_syntax@[operand_parser, "standard quotation", void,
fix_mixfix_operator@["’", expression_parser]],
quotation],

display@["language bootstrapped"] ]

Figure 5.1: Growing the basic grammar of xPic% to obtain quotations and parentheses
applications

5.1.1 Growing the minimal grammar

Code written using the basic syntax of xPic% can be very difficult to understand, since every-
thing has to be performed by means of function applications (figure 5.1 shows an example).
Some “syntactic sugar” would render the language syntax more readable. First of all, syntax
for parentheses applications and quotations — two of the most commonly used constructs
— will be defined. The program shown in figure 5.1 does this job; it is (of course) written
using minimal constructs only. Looking at the first part of the code, three variables are first
declared to refer the natively-installed parsers that reify the grammar terms <operand>,
<expression> and <reference> (recall figure 3.4). These variables are used in the second
part of the code to install two syntactic maps, that transform the ASTs produced by the
user-defined fix-mixfix parsers into ASTs corresponding to a quotation and an application,
respectively. To this end, the value constructors quotation() and application() presented
in section 4.3.3 are passed as the second argument of install_syntacticmap(). Note that
the term <standard parentheses application>> is installed with priority over <reference>, oth-
erwise it would never be invoked. For <standard quotation> there are no priority problems,
thus the third argument of install_syntactic map() is void in this case.

Note

There is no difference in evaluation speed between an interpreter that comes with the basic
grammar and is extended with the code shown in figure 5.1, and one that comes with the
extended grammar natively installed. The reason is that, for every expression, the evaluator
receives the exact same ASTs in both cases (the two syntactic maps are responsible for this
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in the former case). In contrast, parsing efficiency is affected. The penalty in execution time
of the parsing process comes from applying the functions quotation() and application()
each time a quoted expression or a ()-application are found in the source code. The current
implementation of xPic% actually uses a native grammar which is a bit bigger than the basic
grammar. The native implementation is equivalent to an interpreter that comes with the
basic xPic% grammar and is extended with the code of figure 5.1. This is however just a
matter of parse-time efficiency, there are not fundamental restrictions in starting up from the
basic grammar. In fact, the code of figure 5.1 was tested in a version of the interpreter that
starts up with (strictly) the basic grammar installed.

Now we proceed to describe the second important extension performed by the bootstrap
process: syntax to make plain function definition concise and easy to read.

5.1.2 Installing syntax to create functions

Recall that plain functions are not the same as closures (section 4.2.1). Even though standard
Pico has the concept of functions, it provides no syntax to define them; only closure definition
is possible. In xPic% it is possible, since we can define any arbitrary syntax for it, and the
tools to create functions are available at the base level. The following syntax was chosen
(recall the meaning of definition, declaration and assignment from section 2.3.1):

name (arg;, .. , argy):— body for function definition,
name (arg;, .. , argy)::- body for function declaration, and
name (arg;, .. , argy):=- body for function assignment.

and analog syntax for @-definitions. We show how the extension is achieved for the “:-”

case; declaration and assignment are practically identical:

install_syntax(expression_parser, "standard function definition",
operation_parser,
fix_mixfix_operator(application_parser, ":-", expression_parser))

assign_semantics("standard function definition",
function(’[’apl, ’body],
’define (parent (),
quote (application_functor(unquote (apl))),
quote (function(quote(application_arg(unquote(apl))), body)))))

The semantics are defined by a function that receives the application (apl) and the body
(body) as quoted parameters, then it applies define() to bind the function name, obtained
with application functor(), to a new function created on the fly by means of the value
constructor function(). The function formal parameters are obtained from the arguments of
apl using the accessor application_arg() and the body is readily available in the parameter
body. The reason to use parent () as the environment of definition is given in section 5.2.2.
This example illustrates many aspects of the framework: creation of syntactic constructs,
usage of quoted function parameters and creation and manipulation of values (functions,
applications, and quotations). The code is a bit complex to read since we are at a low-level
stage of the extension process.

This is all for the bootstrap process, in the following sections further extensions will be
performed using the base we have established here.
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5.2 Going from xPic% to Pico

This section shows how xPic% can be extended to become Pico-compatible (syntactically
and semantically). This is neither an unexpected nor a hard result to obtain since the core
syntax and semantics of xPic% were distilled from Pico’s. Nevertheless, the exploration of
the Pico language definition raises some interesting issues that are presented in the sections
to follow, in particular 5.2.3, 5.2.4 and 5.2.5. Also, the sample extensions give insight into
the way the extensibility framework can be used and the aspects that have to be taken into
consideration.

5.2.1 Basic constructs
In this section the easiest extensions are shown:

Begin blocks

One of the most heavily used syntactic sugarings in Pico is “begin blocks” (recall section
2.3.2):
{ exp;; exp2; ... ; exp, } = begin(exp;, ... , expy)

Not the syntax nor the semantics (the function begin()) exist natively in xPic%, but they
can be defined:

install_syntax(operand_parser, "braces block", void,
var_mixfix_operator("{", ";", "}"))

begin@arg:- tabulate(arg, size(arg))

assign_semantics("braces block", begin)

The tabulate() and size() accessors where presented in section 4.3. Note that the “:-”
syntax for function definition of section 5.1.2 makes the code easier to read, otherwise the
function() constructor and define () would have to be used.

When the construct { exp;; exps; ... ; exp, }isfound, begin@[exp;, exps, ... , expy]
will be invoked. Upon invocation, the table of arguments will be bound to the parameter arg
of begin. According to the binding semantics presented in section 4.2.2, this means that the
table will be evaluated and the result bound to arg. Evaluating the table means to evaluate
in order each of its entries exp; and to store the results in a new table, thus the actual value
of arg will be this table of results. The body of begin simply returns the last of such results,
i.e. the result of evaluation of exp,. The overall effect of the assigned semantics is that all
the expressions in the group { exp;; expa; ... ; exp, } are evaluated from left to right
and that the result of the last one is returned.

This example aimed at showing the detailed semantics of how a user-defined function handles
the ASTs produced by a user-defined parser. Even though the begin function looks simple,
many processes are triggered when it is invoked. It can be seen how important the binding
semantics is; for other syntactic constructs, like definitions (section 5.2.2), value binding is
central.
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Arithmetic and boolean operators

Most of the extensions presented in previous chapters have used the <expression> and
<operand> configurable rules of the basic xPic% grammar (defined in section 3.6.1), but there
are not many examples of operator definition using the configuration spots <comparison_op>,
<addition_op>, <product_op> and <power_op>; here we give some. The standard Pico
boolean operators are defined as:

install_syntax(comparison_operator_parser, 'standard less than", void,
literal_operator ("<"))

install_syntax(comparison_operator_parser, "standard greater than", void,
literal_operator (">"))

install_syntax(comparison_operator_parser, "standard equality", void,
literal_operator("="))

assign_semantics("standard less than", binary_lt)
assign_semantics("standard greater than", binary_gt)
assign_semantics("standard equality", binary_eq)

The relational operations binary_1t (), binary_gt() and binary_eq() are natively defined
functions. All the relational operators are installed in the same level of precedence (<comparison>),
thus left-associativity applies for chains of operations, e.g. a < b = ¢ > d is treated as

((a < b) = ¢) > d (recall sections 3.6.1 and 3.6.3). For arithmetic operations the extension

is very similar:

install_syntax(addition_operator_parser, "standard addition", void,
literal_operator ("+"))

install_syntax(product_operator_parser, "standard multiplication", void,
literal_operator ("*"))

assign_semantics("standard addition", binary_sum)
assign_semantics("standard multiplication", binary_mul)

Arithmetic operators in the same level of precedence are also left-associative.

5.2.2 Standard definition, declaration, and assignment

As we know from section 2.3.2, Pico comes with syntax to define new variables, new constants
and to change the value of a variable (with the syntaxes : , :: and := respectively). We
W,

show here how the “:”-syntax for variable definition can be obtained; for declaration and
assignments the constructs are similar.

install_syntax(expression_parser, "standard definition", operation_parser,
fix_mixfix_operator(operation_parser, ":", expression_parser))

assign_semantics("standard definition",
lambda(’target, ’value):- define(parent(), target, value))

An explanation of why the parent () environment is used follows. When lambda() is in-
voked, its body is evaluated in an extension of the current environment. The purpose of this
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extension is to hold the bound parameters target and value of the function (recall the se-
mantics of function application in section 4.2.3). Suppose that the definition being evaluated
is a:this(); as target and value are quoted parameters, the expressions a and this() are
quoted and passed to define(), which unquotes them and performs the binding between
the two (using bind param() from section 4.3.2). In this moment the expression this() is
evaluated. Normally, this() would return the environment of execution of the define()
function, but define () ensures that the binding is always performed in the parent environ-
ment, which in this case is lambda()’s evaluation environment; this() would then return
that environment, which is not the original environment where the “:” syntactic construct
was used. Passing parent() to define() makes the binding to occur in the environment
where the syntactic construct was used.

The aim of this section was to give an example of how the semantics of function application
and parameter binding enter into play when defining syntactic constructs and their evalua-
tors. This same explanation holds for section 5.1.2, where the “:-” syntax was defined. The
explanation was delayed to this section because at that time we couldn’t easily talk about
the evaluator lambda, since an anonymous function was used.

5.2.3 Table definition and table entry assignment

In Pico, the : , :: and := operators can be used to define or declare tables, or to assign
table entries respectively; some examples to have the idea from section 2.3.2 fresh in mind:

al2]: void yields a = [ void, void ]
al1]l:= 2 yields a = [ 2, void ]
i:0; b[6]:: i:=i+1 yields b [1, 2, 3, 4, 5]

In xPic%, the semantics defined in the previous section for the operators : , :: and :=
do not work in the case of tables, simply because there is no predefined semantics to bind a
tabulation (e.g. b[5]) to an expression (e.g. i:=i+1). Thus separate syntax and semantics
have to be defined to deal with table definition and table entry assignment.

To start with, syntax and semantics for standard Pico tabulations can be defined:

install_syntax(operand_parser, "standard tabulation", reference_parser,
fix_mixfix_operator(reference_parser, "[", expression_parser, "1"))

assign_semantics("standard tabulation", tabulate)
Then, syntax for standard table definitions is easy to achieve:

tabulation_parser: grammar_term("standard tabulation")
standard_definition: grammar_term("standard definition")
install_syntax(expression_parser, "standard table definition",
standard_definition,
fix_mixfix_operator(tabulation_parser, ":", expression_parser))

The grammar term <standard definition> was defined in section 5.2.2. Here, the <standard
table definition> rule is defined to have priority over it; thus a try to recognize a table
definition will always be made before a try to recognize a standard definition. If this were
not the case (i.e. if void is passed as the third argument of install_syntax()), a standard
definition would always be recognized first and the interpreter would reply after trying to
perform the normal binding process:
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evaluator: cannot bind a value of type <standard tabulation>

since binding is defined for just a few predefined value types (recall section 4.2.2), but never
for user-defined types.

To define semantics, standard table definition makes use of the table () value constructor
(section 4.3.3):

assign_semantics("standard table definition",
lambda(’name, size, ’entryexp):-
define(parent (), name, quote(table(size, entryexp))))

A similar extension can be used for table declarations (replacing “:” by “::” in the operator

definition and define() by declare() in the semantics) and for table entry assignment,

replacing “:” by “:=” and using the semantics:

assign_semantics("standard table entry assignment",
lambda(table, index, entryval):- set_table_entry(table, index, entryval))

set_table_entry() is one of the value manipulators presented in section 4.3.3.

The three operators : , :: and := deal with dictionary operations (define, declare and
assign). The same happens with table definition and declaration. However, table entry
assignment is slightly different: its semantics has nothing to do with dictionaries, it just
modifies an entry of a table.

5.2.4 The boolean system

The boolean system of xPic% is the same as Pico’s (Church booleans) with one exception
that will be mentioned below. The idea is to define booleans as functions that choose between
two options given as arguments (ignore the “*” syntax for a moment):

true(’t, ’f):- ~t

false(’t, ’f):- °f

and(p, ’q):- p(~q, false)

or(p, ’q):- p(true, ~q)

not(p) :- p(false, true)

so for instance true("hola","adios") = "hola" and false(1,2) = 2; also the standard

boolean logic rules hold: and(true,false) = false, not(false) = true, etc.

The difference between this boolean system and Pico’s boolean system is that the latter uses
closures instead of quotation. As an example, true is defined in Pico as

true(t(O),f0)): t(O)

A problem similar to that shown in section 5.2.2 arises. Suppose true(this(),void) is
evaluated; then the closures t () :this() and f() :void are passed as arguments to true().
When it applies t () (its first argument), the closure’s environment, which is the environment
where the original expression true (this(),void) was evaluated, is obtained and extended
with the environment supposed to hold the bound parameters of t() (even though t()
doesn’t have parameters, such an environment is always created). Thus the call to this()
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returns this extended environment, which probably is not what the user expects'. With the
quotation-based boolean system shown above, this problem is avoided.

The “~” syntax used above is a shorthand for the function
eqp(exp) : - eval (unquote (exp), parent(parent()));

which evaluates the given expression in the parent of the parent of its execution environment.
One parent () call is made to get out of eqp’s environment and one more to get out of true()’s
evaluation environment (or whatever function that uses the ~ operator). The acronym eqp
stands for “(e)valuate (q)uotation in (p)arent environment”.

5.2.5 Execution control

The execution control functions rely on the way the boolean system is defined. They mimic
their counterparts of Pico, except that (again) they are based on quotation rather than
closures. One of the fundamental forms of execution control is conditional execution:

if(cond, ’then, ’else):- cond("then, “else)

Evaluating for example if (true, x:1, x:2) will leave a variable x defined in the current
environment with value 1. For the same reasons of section 5.2.4 a definition like

if(c, tO), eD):- ctO, e))

would not work in the way users expect.

The other fundamental form of execution control is iteration. In Pico, it is based on recur-
sivity. The following example is Pico’s while translated to the quotation system:

while(’cond, ’exp):— {
loop(value, pred):- pred(loop(“exp, “cond), value);
loop(void, ~“cond) }

Notice how easy is to express constructs now that we have a more complete grammar.

5.3 Object-oriented extensions

This is the last part of the extension tests: to build up an object-oriented system on top
of the functional system provided by xPic%. There is not a single object-oriented concept
present in the intrinsic semantics of the language. To define the OO layer, the tools that will
be used are syntactic extensibility, the meta-level interface, and the evaluation environment
playground provided by xPic%.

As was mentioned in the introduction of section 2.2, an object-oriented computational system
consists of nothing but objects sending messages to each other. A way to create objects will
be shown in section 5.3.1; message sending is described in section 5.3.2. The addition of
this two concepts transforms xPic% a complete and consistent object-oriented model. After
this minimal OO system is established, some more mechanisms inspired on prototype-based
languages are defined as a way of showing the potentialities of the extensibility framework.

! Actually, the C implementation of Pico doesn’t use a closure-based boolean system: it is implemented
natively with a slightly different semantics, so the example expression works. However, the metacircular
implementation of Pico uses closures and standard semantics for function application; in this case the example
fails.
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5.3.1 Ex-nihilo creation of objects

First of all we need objects. An object will be defined as an evaluation environment (a
dictionary), like in Pic%. So we know what objects are. Next, a mechanism to create them
is necessary. The reader already knows one mechanism, Pic%’s way of object creation, in
which an object is a clone of the evaluation environment of a function; thus no special syntax
or semantics has to be introduced into xPic% to achieve this mechanism. As an example, the
following code creates an object representing a person:

make_person(name, age): {
getname () : : name;
getage():: age;
clone() };
john: make_person("John Coltraine", 40)

To create a concrete object, the function make person() has to be defined and invoked. This
extra steps go against the philosophy of prototype-based programming, which is to be as
direct and concrete as possible (recall section 2.2.1). To bring the language closer to this
philosophy, we will introduce in the language an alternative mechanism for object creation
commonly used in prototype-based programming, ex-nihilo creation of objects. Creating an
object will be as simple as listing its slots in a block delimited by {- and -}, for example:

john: {-
getname () :: "John Coltraine";
getage():: 40 -}

The syntax for ex-nihilo object creation is obtained with:

install_syntax(operand_parser, "ex-nihilo object block",
void, var_mixfix_operator("{-", ";", "-}"));

and the associated semantics are:

ex_nihilo_creation@’objdef:- {
object: dictionary(parent());
eval (unquote (objdef), object);
protect(object) };

assign_semantics("ex-nihilo object block", ex_nihilo_creation)

The dictionary() value constructor (from section 4.3.3) is used to create a new dictionary.
The parent of the ex-nihilo created object is the environment where the {- -} block is being
evaluated (which is obtained with parent () to skip ex nihilo_creation()’s environment).
The object definition found in the block, which is frozen thanks to the quoted parameter
objdef, is unquoted and evaluated using the freshly created dictionary as evaluation envi-
ronment, thus installing all the definitions in it. Finally, the object is protected and returned.
In this way state encapsulation is achieved (so for instance method lookup doesn’t reveal pri-
vate methods, as will be seen in next section).

5.3.2 Message sending

After having objects, we need messages. First we define the syntax:
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install_syntax(operand_parser, "standard send", reference_parser,
fix_mixfix_operator(reference_parser, ".", application_parser));

which corresponds to the classical “dot” notation of object oriented languages; it looks like:
receiverobj.message(arg;, ... , argy); also @-syntax can be used:

receiverobj.messageQarg.
The following function defines the corresponding semantics:

standard_send(object, ’apl):- {
method: lookup(object,
quote (application_functor (unquote(apl))));
if (is_void(method),
display("message not understood"),
{
npobj: unprotect(object);
extenv: extend(npobj);
declare(extenv, ’self, quote(npobj));
declare(extenv, ’super, quote(parent(npobj)));
apply(method, application_arg(unquote(apl)), extenv)
DX

assign_semantics("standard send", standard_send)

So to send a message means to look up its selector in the the object (which is protected
so private slots will not be searched), and, if the method is found, to apply its body. The
environment of evaluation of the body is an extension of the object which is unprotected
in order to allow the method to see the private state of its host object. Also, the constant
binding self is defined to refer to the receiver object. This extra “hidden” argument passed
to object methods is present in most OO languages: for instance it is also called “self” in
Smalltalk and Self, and it is called this in Java and C++4. Similarly, a binding super is
declared to point to the parent of the receiver so that the method can refer to its parent;
“super” is also present in some languages (e.g. Smalltalk and Java). The advantage of using
the self and super bindings is that the message passing mechanism is very homogeneous:
there is only one syntax and one semantics for all possible types of messages.

This is all about message sending in xPic%. A final remark will be made which can be
skipped if the reader is not interested in knowing how the semantics of message sending that
has been defined slightly differs from that of Pic%.

Remark

Objects created with the Pic%’s way of object creation (instead of ex-nihilo creation) work fine
with the message sending semantics defined above, although one remark has to be mentioned.
Retake the example from section 5.3.1; it should be modified slightly:

make_person(name, age): {
getname () : : name;
getage(): age;
protect(clone()) };
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The difference is the call to protect (). With the message sending semantics defined in this
section, returning an unprotected clone would render visible the private methods of the object
being created.

In order to have the exact same object creation mechanism as Pic% (i.e. without the
protect () call), we could modify the message sending semantics to use lookup_const ()
(which restricts the search to the constant part of the dictionary) instead of lookup() when
searching for message selectors:

picoo_send(object, ’apl):- {
method: lookup_const(object,
quote(application_functor (unquote(apl))));
if (is_void(method),
display("method not found"),
apply(method, application_arg(unquote(apl)), object)) }

This is the exact same semantics of message sending of Pic%. Note that the bindings self
and super are no longer defined. “Self sends” as understood in Pic% (unqualified method
invocations like msg()) will work thanks to the default lookup mechanism of the interpreter.
To allow super sends, Pic% introduces special syntax. In Pic%, the expression .msg() means
the same as super.msg() would mean with our message passing semantics. We can extend
xPic% with this syntax:

install_syntax(operand_parser, "Pic) super send", void,
fix_mixfix_operator(".", application_parser))

and assign it an appropriate semantics:

picoo_super_send(’apl):- {
parentobj: parent(parent(parent()));
method: lookup_const(parentobj, quote(application_functor (unquote(apl))));
if (is_void(method),
display("method not found"),
apply(method, application_arg(unquote(apl)), parentobj)) }

Note that three parent() calls are required, the first to get out of the environment of
standard super_send(), the second one to get out of the method where the super mes-
sage send is being performed (i.e. where the .msg() syntax was used), and a final one to get
out from the current object to finally reach its parent, which is the addressee of the message.

To install Pic%’s semantics, it suffices to do:

assign_semantics("standard send", picoo_send);
assign_semantics("Pic)% super send", picoo_super_send)

The “standard send” semantics, standard_send (), gets overwritten by picoo_send(). The
semantics for “Pic% super send” is new.

Whether to use a single message sending syntax and semantics like we saw at the beginning
of this section, or to use special syntax for special kinds of messages, is a user choice. In the
author’s opinion, homogeneity (the former) is the best of the options. Although the object-
oriented layer of Pic% can be emulated in xPic% with the same syntax and semantics, we
prefer to develop our OO layer using ex-nihilo creation of objects and the message sending
mechanism presented at the beginning of this section.
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5.3.3 Agora’s views and mixins

In this section some mechanisms of the prototype-based language Agora will be installed
into xPic%. The reader is referred to [4] for a good overview of what Agora is and the
mechanisms we are going to present here. Consider the following example (Agora’s syntax is
Smalltalk-like):

listnode VARIABLE:
[ next VARIABLE: null;
getnext METHOD: SELF next;
setnext:n METHOD: SELF next: n ]

It defines a listnode variable which refers to an ex-nihilo created object. Ex-nihilo creation
of objects in Agora is achieved with the delimiters [ ... ; ... ; ... 1. The object has one
variable next and two methods getnext and setnext:. Up to this point, we have enough
mechanisms in xPic% to emulate the same behavior as the code above. The equivalent code
is:

listnode: {-
next: void;
getnext () :: next;
setnext(n):: next:=n -}

But METHOD: is not the only way to create a method in Agora. There are three other method
types we are interested in: cloning, view and mixin methods. They can be installed with
the CLONING:, VIEW: and MIXIN: keyword messages respectively. All these method creators
receive an expression, called the body, which they use in different ways:

Cloning methods Upon invocation of a cloning method, its body is executed in the context
of a clone of the receiver instead of the context of the receiver itself. Example:

point VARIABLE:
[ x VARIABLE: 0;
y VARIABLE: O;
newx:coordx y:coordy CLONING:
{ SELF x: coorx;
SELF y: coory } 1

A new cloning method newx: y: is installed in the ex-nihilo created object point. Upon
invocation, the x and y variables in the copy are initialized with the given arguments.

View methods A view evaluates the body in a new object that has the receiver as parent,
i.e. in an extension of the receiver. For example in

point VARIABLE:
[ x VARIABLE: O;
y VARIABLE: O;
circle:r VIEW:
{ radius VARIABLE: r;
getradius METHOD: SELF radius } ]

circle views can be laid down onto the point by sending the message circle:. A
view does not destructively change the receiving object. When a circle: message is
sent to the point, a new object is created with the point as parent. The slots radius
and getradius are installed by evaluating the body of the view in the context of the
extension.
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Mixin methods In contrast with views, mixin methods destructively change the receiving
object. In the following example, sending circle: to point really adds a radius
variable and a getradius method to the original point. All the objects in the system
that can access the point, can now access radius a getradius:

point VARIABLE:
[ x VARIABLE: 0;
y VARIABLE: O;
circle:r MIXIN:
{ radius VARIABLE: r;
getradius METHOD: SELF radius; } ]

While views put an extra inheriting layer (i.e. a new object) around an object, mixins
change the object (i.e. the very object).

In xPic%, we can define three functions that implement the semantics of Agora’s CLONING:,
VIEW: and MIXIN: methods. They will be explained one by one:

cloning() Let’s translate the example used when CLONING: was explained to xPic%:

point: {-
x: 0;
y: 0;

new(coorx, coory):: cloning(
’{ x:= coorx;
y:= coory }) -}

As can be seen, a quoted group of expressions is passed to cloning() for evaluation;
cloning() will “unfreeze” the block (i.e. unquote it) and evaluate it in the context of
a clone of point; in other words:

cloning(def):- {
cloneobj: clone(parent());
eval (unquote(def), cloneobj);
cloneobj };

The parent () call is necessary to skip cloning()’s own execution environment. The
environment obtained is the execution environment of new(coorx, coory). Thus the
references to coorx and coory in the block will be resolved without problem. Finally,
the clone is returned as the result of calling cloning().

view() Consider the example used when VIEW: was defined, now translated into xPic%:

point: {-
x: 0;
y: O;

circle(r):: view(
’{ radius: r;
getradius():: radius }) -}

Like in cloning (), a quoted expression is passed as argument; view() will unquote and
evaluate it in the execution environment of circle (), which is already an extension of
point:
view(def):- {

viewobj: parent();

eval (unquote(def), viewobj);

viewobj };
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As in the case of cloning(), the variable references within the block will be resolved
appropriately. The extension is returned as the result of view().

mixin() The translated example is very similar:

point: {-
x: 0;
y: O;

circle(r):: mixin(
’{ radius: r;
getradius():: radius }) -}

and the implementation as well:

mixin(def):- {
mixinobj: parent();
eval (unquote(def), mixinobj);
ancestorbecome (self, mixinobj);
mixinobj }

Like view(), unquotes and evaluates the expression def in the context of an exten-
sion, in this case circle ()’s execution environment. The only difference is the call to
ancestorbecome (), which transforms all the existing references to the receiver object
self into references to the created extension, preserving the inheritance relationship.
The function ancestorbecome () was presented in section 4.3.2.

A final remark to end the discussion about implementing Agora’s cloning, view and mixin
methods, is that the quoted expressions passed as the argument of cloning(), view() and
mixin() do not necessarily have to be defined in-situ as we did in the examples above; quoted
expressions can be stored in variables and passed around before they are finally used as the
argument of cloning(), view() or mixin().

5.4 Conclusion

This chapter was about assessing the expressiveness of the extension framework and giving
further examples of its usage. The computational model provided by xPic% — functions and
their evaluation environment playground — proved to be sufficient to implement, using base-
level tools only (i.e. in a reflective way), a complete and consistent object-oriented model.
After a minimal OO system was at hand, some further extensions inspired on prototype-
based programming were developed. The object model of xPic% differs slightly from that of
Pic%, although it would be possible to implement the latter with the exact same syntax and
semantics.

One of the good points about building up a language from within the language itself, is that
the user is not distracted with many implementation details. As we could see, the user-
defined evaluators (that give a meaning to syntax extensions) have no more than 10 lines of
code. What requires a bit more attention are the subtleties of parameter binding, function
application and the relationships among evaluation environments. It is very important to
have a precisely defined semantics (from chapter 4) to perfectly understand what is going on
at every point of execution.
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Chapter 6

Conclusion

The goal of this thesis was to build a “programming language laboratory” in which funda-
mental concepts of a multi-paradigm (functional/object-oriented) programming environment
can be explored. The result is the design of a language kernel which is basically a reduction,
and at the same time a generalization, of Pic%’s kernel, a language designed by professor
Theo D’Hondt at VUB. In chapter 5 this kernel was validated by extending it to equal Pic%’s
and then with some further constructs inspired on prototype-based programming. Section 6.1
will put together the elements of the kernel, which is the major outcome of this work. This
elements have been presented in chapters 3 and 4. Some other achievements are presented in
section 6.2. Section 6.3 states the limitations of our approach, and some areas that we think
could be interesting given the experience of this thesis work.

6.1 The reflective language kernel

From the experience gathered in this work, it is concluded that to build up a full-fledged
hybrid functional/prototype-based programming language the necessary elements are:

1. The minimal grammar depicted in figure 3.4.
2. The language intrinsic semantics seen in section 4.2.
3. The following parts of the xPic% meta-level interface:

e a syntax extension tool set: varmixfix operator(), fix mixfix operator(),
grammar _term(), install_syntax(), install_syntacticmap() and
assign _semantics() (from section 3.7).

e an evaluation environment playground, i.e. first-class evaluation environments and
the ability to manipulate them through this(), parent() clone(), extend()
and the other functions of section 4.3.2. First-class evaluation environments were
fundamental to develop the prototype-based layer of xPic%.

e a value manipulation tool set: table(), function(), application() quotation(),
and the other functions of section 4.3.3. This set is particularly useful to imple-
ment syntactic maps and base-level evaluators of user-defined syntactic constructs
(recall install_syntacticmap() and assign semantics()); thus it serves as a
“glue” between syntax and semantics.

86



The language kernel thus obtained is extensible both syntactically and semantically. As
was mentioned in section 2.5, the symbiosis between the functional and prototype-based
paradigms happens to be quite clean, due in part to the fact that the functional part of the
kernel is not pure (like Scheme); this goes well along with the imperative nature of object-
orientedness. The kernel proved to be flexible enough to allow the emulation of language
constructs found in Pico, Pic%, and Agora. Although available, some mechanisms were not
explored, like the function become() inspired in actor languages, or dynamic inheritance
through setparent ().

The so-called “little languages” or domain-specific languages were proposed as an application
area of the language kernel, which, by means of a highly reflective architecture, allows its
configuration to suit particular domains. A second application area is the exploration of
the language design space that results from the symbiosis of the functional and prototype-
based paradigms. Such exploration can be performed within the language itself, i.e. in a
reflective way, thus allowing the user to stay at one level, the base-level; it is not necessary
to know the internals of the language. The code needed in the base level for performing
extensions is usually very short, as was shown in chapter 5. Yet another application area,
inherited from Pic%, is education: the kernel helps in understanding fundamental elements of
programming languages; notably, a sharp division is established between the language “skin”
and its “guts”, i.e. between its syntax and semantics. Students can explore both of them at
will, and understand their interaction.

6.2 Other achievements

The following are non-expected outcomes of the thesis:

Quoted parameters Functions can have quoted parameters, take for instance:
quotation(’exp): exp

As was explained in section 4.2.2, the semantics is that, on invocation, the formal
parameter gets unquoted, the actual argument gets quoted, and the binding process
is invoked again with this two new values. For example, if quotation(a) is applied,
then the parameter exp will be bound to the value ’a and this quoted reference is the
result of the application. Another example is available in section 4.4 (the conclusions
of chapter 4). The idea of quoted parameters is new up to the author’s knowledge.

From this parameter binding mechanism emerges the idea of generalizing parameter
binding with user-defined semantics for user-defined constructs, a line of future work
which is exposed in section 6.3.5.

Generalization of the notion of binding In xPic%, there is no difference between func-
tion parameter binding and the process of defining variables (with the : syntax or using
the function define()): both are performed using the simple value binding semantics

of section 4.2.2. As an example, if a function f(x,y): ... is defined, then upon the
invocation £("a","b"), the binding [x,y] w ["a","b"] is performed in the func-
tion’s environment. This same process occurs if the definition [x,y]: ["a","b"] is
evaluated. An application of this sample case (binding of tables) is to easily handle

multiple values returned by a function in a table.

The binding process has a recursive nature: all the bind * procedures “bounce” the
responsibility back to bind_param() excepting bind ref_param() which finally invokes
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the association assoc (recall section 4.2.2). Due to recursivity, a kind of pattern-
matching binding semantics is obtained; for instance, the following expression is valid
in xPic%: [x, [f(t),’r]1]: [1,[t+1,h*2]]; it leaves the variables x, £ and r bound
in the current environment to a number, a closure and a quoted expression respectively.
Note that the table to the left could be the parameter list of a function, i.e.
f(x,[f£(t),’r]): ... If it is applied with the arguments of the previous example:
(1, [t+1,h*2]), the same binding process would take place, and the variables x, f
and r would be available in the environment of evaluation of the function’s body. This
general notion of binding is not present in Pic%, thus parameter definitions like in
f(x,[£f(t),’r]) are not possible.

6.3 Limitations and future work

The areas in which future work is devised have been split up into sections. The first ones are
more “fundamental” and the final section (6.3.7) presents work which is not far from being
achieved starting from the base presented in this document.

6.3.1 Reasoning about the grammar

This thesis made no emphasis in finding out grammar properties such as ambiguity or left
recursion (as the constructed parsers are recursive-descent, left-recursion in the grammar is
an issue). Although the user can extend the grammar in a controlled way, i.e. at certain spots
and with a set of tools which is not as general as combinators, it is still possible to introduce
left-recursive or ambiguous constructs. The user should receive, tough, as much assistance
as possible from the system during the language extension processes. The following are some
areas of future work in this direction:

Grammar navigation No tools were defined at the meta-level to navigate the grammar
structure, for example to iterate over its rules and each disjunction option. Under the
framework presented, navigability is not difficult to achieve, since the grammar elements
are already reified at the meta-level; it only remains to define accessor methods for each
reifier object. Navigation is a requisite for grammar reasoning.

Usage of techniques from language theory Once the grammar is navigable, the adop-
tion of existing techniques from classical language theory to detect and manage grammar
properties would help the user in appropriately extending it.

Seizing on meta-information As there is plenty of information available at the meta-level
about the grammar, including human-readable names for every token type, grammar
terminal and non-terminal, it would be interesting to seize on that information, for
instance, to give good error reports.

6.3.2 Language safety, constrained extensibility

Reasoning about the grammar is to provide safety at the syntactic level. In the current
interpreter of xPic%, it is possible to override the fundamental semantics of the language,
like function application (which renders the language unusable). This could be improved by
restricting language extension to a set of constraints.
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6.3.3 Other parsing techniques

One challenging area of work is to study reflective grammar extensibility for grammar types
other than the LL(n) family, for instance LR(n) grammars. Normally the parsers for this kind
of grammars consist of a stack automaton; the idea would be then to modify the transition
tables of the automaton as the user performs syntax extensions at run-time.

6.3.4 Localized extensions

Usually a big system is split up into parts, each one dedicated to a specific purpose. Within
each part some extensions to the language may be handy to deal with the specific domain of
the part, i.e. domain-specific sub-languages can be useful. In the framework presented in this
work, extensions have a global scope: semantical and syntactical changes globally affect the
interpreter. One area of future research would be to study the possibility of having localized
extensions, i.e. extensions which have an effect in a certain environment, but not in the whole
interpreter.

6.3.5 User-defined value binding semantics

One of the core elements in the language semantics is value binding: how to associate two
given expressions in a dictionary. The definition of such semantics for xPic% was provided
in section 4.2.2; it is inspired on Pico’s. The addition of quoting in the core (intrinsic)
semantics of the language inspired one of the contributions of this work: to define a semantics
for binding of quoted parameters. It would be possible, as was done for quoting, to define
binding semantics for new value types introduced in the language. Given that the set of value
types in xPic% is extensible (recall section 4.2.1), the interesting part would be to design a
mechanism in which user-defined binding semantics are assigned, from the base-level, to user-
defined value types. For instance, one application of such a possibility is to introduce type
checks in function parameters. Recall from section 5.2.2 the introduction of the following
syntax in the language:

install_syntax(expression_parser, "standard definition", operation_parser,
fix_mixfix_operator (operation_parser, ":", expression_parser)),

We could think of a function which uses <standard definition> in its parameters:

func(a: is_number, b: lambda(x): or(is_dictionary(x), is_void(x))):
{ .. do something with a and b ... }

With the current version of xPic%, such definition of func() is in fact accepted by the
interpreter, but upon invocation, say with func(1,2), the interpreter replies:

evaluator: cannot bind a value of type <standard definition>
evaluator: cannot bind a value of type <standard definition>

The intrinsic semantics of the language defines value binding for just a few value types, and
such semantics is not extensible. The future work is to design a mechanism to allow the
extension from the base-level of binding semantics, in which users can provide their own
assoc (target, value) functions (recall section 4.2.2) to perform binding. In the example
above, assoc() could be defined such that it would invoke is number (1) and lambda(2)
upon the invocation func(1,2) to verify that the arguments have correct types (and it
would fail since the second doesn’t). Up to author’s knowledge, a configurable value binding
semantics has never been explored.
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6.3.6 Pure functional language semantics

Like Scheme, it is possible to use xPic% (or Pic% as well) in a purely-functional way. This
dissertation didn’t explore the consequences of a symbiosis between prototype-based pro-
gramming and a pure functional paradigm.

6.3.7 Minor work

The following work is either easy to implement or does not involve very fundamental issues:

Absorption The nativedict value type from section 4.2.1 is a good point to start thinking
about the incorporation of absorption mechanisms into xPic%, as it is done for example
in Agora [4].

Extensible scanner Study the possibility of making the scanner extensible (as was sug-
gested in section 3.2.2).

Ability to shrink syntax Explore the possibility of not only adding but removing exten-
sions, for instance to allow option removal in disjunctions (recall section 3.4.4).

Arbitrary levels of precedence Having arbitrary levels of precedence in operators, an
idea of which a rough draft was given in section 3.6.1. If this is achieved, the basic
xPic% grammar would be as simple as figure 3.4 and the extension framework would
be more flexible.

Improving parsing performance In section 3.4.5 it was mentioned that intensively using
“raw” parser combinators makes syntax analysis inefficient, as was the case in the
first versions of xPic%. To solve the problem, a caching technique was developed,
which is described in appendix A (particularly important are parse caches, section
A.2). Although the technique significantly improves performance, it could be better;
this is one possible direction of future work.

6.4 Finally...

Before entering the EMOOSE, the author didn’t have a clue about the existence of prototype-
based programming. As the alternatives never were presented to him, he didn’t even think
about separating classes and OOP. Prototype-based programming has enriched a lot his view
of object-oriented programming, which is now regarded from a different perspective. The
overwhelming success of class-based languages like C++ or Java has turned their particular
flavor of object-oriented programming into the most widely accepted paradigm in use today.
Some fundamental ideas are lacking attention or are loosing it, as universities increasingly
accommodate their curricula to supply the demand for professionals who dominate the tech-
nologies currently in use. A “language lab” like xPic% looks towards putting alternative
paradigms on a sound footing.
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Appendix A

Improving performance

Techniques to improve the performance of both lexical and syntax analyzers are commented
in this section. As was mentioned in section 3.4.5, using parser combinators hampers per-
formance. In fact the xPic% interpreter was performing so poorly that it was useless after
some grammar extensions. The techniques presented here solved the problem making the
interpreter usable again.

A.1 Token stream caches

A stream can be marked and rolled back later. How can this be implemented in the case
of a token stream? One possibility is simply to rollback the underlying character input
stream that is passed to the scanner’s next () method (recall section 3.2.2). As the scanner
is immutable, rescanning this stream would yield the exact same sequence of tokens that was
found before, i.e. the same work would be done probably many times. In the implementation
of the token stream, a ‘cache’ of tokens is maintained to solve this problem; it is in fact very
simple and efficient thanks to the fact that Pic% is garbage-collected. As an image speaks
more than a thousand words, an excerpt of code will in this case transmit the idea better
than a general description:

make_token_istream(scanner, char_istream): {
>-- make_abstract_istream();
pointer: [ scanner.next(char_istream), void ];

mark() ::
pointer;

rollback(mark) ::
pointer:= mark;

peek() ::
pointer[1];
skip():: {
is_void(pointer[2]) =>
(pointer[2]:= [ scanner.next(char_istream), void ]1);

pointer:= pointer[2] };

next()::
{ item: peek(); skip(); item } }
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This is, a new token will be asked to the scanner (in skip()) only in case the cache is empty.
This cache is implemented as a simply linked list. Each newly retrieved token is appended to
the end of the list. If the user never uses rollback() to go back in the stream, the pointer
will be always at the end of the list. When mark() is used, the returned value is in fact a
pointer to the current element of the list. The garbage collector will not reclaim the elements
from that point on because all of them will be referenced (starting by the mark and following
the links of the list), so the cache will start to grow. If rollback() is called later to restore
a mark (i.e. a pointer to a certain point of the list), skip() will start using cached tokens
instead of asking the scanner for them. When marks are dropped, parts of the cache (from
the head of the list to the element before the first mark that is still being retained) become
candidates for garbage-collection.

This caching mechanism never uses more memory than necessary and avoids a lot of book-
keeping thanks to garbage collection; algorithms without it could be much more complicated.
The aim of this small discussion was, apart from presenting the technique, to give a good
example in favor of garbage-collected languages.

A.2 Parse caches

There is one combinator that was not introduced in section 3.4.1,
comblib.cache(parser)

It wraps a given parser so that all its methods are still available in the wrapped object. To
achieve this, the newly created cache object dynamically inherits from the given parser, hence
every method not found in the cache object is looked up automatically in the wrapped parser.
This design follows the Decorator pattern of [29]. The only behavior modification introduced
by the cache object is in the method parse() (recall section 3.3.1). Each time it is invoked
with a given token stream as argument, it will ask an object, called the cache manager, to
get a cached AST for the given stream, if available. If it is found, the cached version is
returned immediately, saving all the work of parsing the input at the current position. If
there is no cached ASTs, the overridden parse() is invoked to parse the input, and, if the
parsing succeeds, the returned AST is added to the cache. The cache manager is in fact not
complicated,

make_cache_manager(): {

add(stream, start_mark, ast)::
get(stream)::
clone() };

add(stream, start_mark, ast) Cached ASTs are maintained for every scan position of
the stream (e.g. the first token in the stream has position 1, the second token is at
position 2, etc.). Apart from saving the AST in the cache at the position specified by
start _mark, the region of the stream that yielded such an AST is stored (i.e. the start
and end positions, just before parsing and after parsing has been performed).

get(stream) It will lookup the cache to see if there is a stored AST for the current position
of the stream. If this is the case, the cached AST is returned and the position of the
stream is advanced as if the AST would have been parsed (this is the end position that
add () stored together with the AST).
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Thanks to dynamic inheritance, the cache is transparent and can be installed in any parser
object, including those like comblib.any (recall section 3.4.4) that define other methods
apart from parse().

Too much caching degrades performance. By means of tests it was found that it suffices to
install only one cache,

operation parser: comblib.cache(comparison parser)

This is the reification of the penultimate rule of figure 3.3. It is a critical point of the gram-
mar when syntactic constructs that use operation parser are installed, like the standard
definition, declaration and assignment operators : :: and := of Pico. Even though caching
this spot of the grammar significatively improved performance, the strategy to place caches
(i.e. which parsers to wrap) should be studied more thoroughly. This could be an area for
future work, as well as the development of better caching algorithms.

93



Bibliography

1]

2]

3]

[7]

[9]

[10]

[11]

J. Bentley, “Programming pearls: Little Languages,” Communications of the ACM,
vol. 29, no. 8, pp. 711-721, 1986.

D. Ungar and R. B. Smith, “Self: The Power of Simplicity,” in Proceedings of the
ACM Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA) (N. Meyrowitz, ed.), vol. 22, (New York, NY), pp. 227-242, ACM
Press, 1987.

A. Taivalsaari, A Critical View of Inheritance and Reusability in Object-Oriented Pro-
gramming. PhD thesis, University of Jyvaskyla, 1993.

W. D. Meuter, “Agora: The Scheme of Object-Orientation, or, The Simplest MOP in
the World,” in Prototype-Based Programming: Concepts, Languages and Applications
(J. Noble, A. Taivalsaari, and I. Moore, eds.), ch. 12, pp. 247-272, Springer-Verlag,
1999.

B. A. Myers, R. McDaniel, R. Miller, B. V. Zanden, D. Giuse, D. Kosbie, and A. Mickish,
“The Prototype-Instance Object Systems in Amulet and Garnet,” in Prototype-Based
Programming: Concepts, Languages and Applications (J. Noble, A. Taivalsaari, and
I. Moore, eds.), ch. 7, pp. 141-176, Springer-Verlag, 1999.

P. Mulet and P. Cointe, “Definition of a Reflective Kernel for a Prototype-Based Lan-
guage,” in Proceedings of the 1st JSSST International Symposium on Object Technolo-
gies for Advanced Software (S. Nishio and A. Yonezawa, eds.), vol. 742, pp. 128-144,
Springer-Velag, 1993.

G. Blaschek, “Omega: Statically Typed Prototypes,” in Prototype-Based Programming:
Concepts, Languages and Applications (J. Noble, A. Taivalsaari, and I. Moore, eds.),
ch. 8, pp. 177-196, Springer-Verlag, 1999.

L. Cardelli, “A Language with Distributed Scope,” Computing Systems, vol. 8, pp. 27-59,
January 1995.

W. Smith, “NewtonScript: Prototypes on the Palm,” in Prototype-Based Programming:
Concepts, Languages and Applications (J. Noble, A. Taivalsaari, and I. Moore, eds.),
ch. 6, pp. 109-139, Springer-Verlag, 1999.

P. Steyaert and W. D. Meuter, “A Marriage of Class- and Object-Based Inheritance
Without Unwanted Children,” Tech. Rep. vub-prog-tr-95-02, Programming Technology
Lab, Vrije Universiteit Brussel, 1995.

W. R. LalLonde, D. A. Thomas, and J. R. Pugh, “An exemplar based Smalltalk,” in Pro-
ceedings of the ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pp. 322-330, ACM Press, 1986.

94



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]
[26]

[27]

C. Dony, J. Malenfant, and D. Bardou, “Classifying Prototype-based Programming Lan-
guages,” in Prototype-based programming: Concepts, Languages and Applications (J. No-
ble, A. Taivalsaari, and I. Moore, eds.), ch. 2, pp. 17-45, Springer-Verlag, 1999.

Pico home site — Programming Technology Lab, Vrije Universiteit Brussel.
(online) <http://pico.vub.ac.be> [visited: august 2002].

T. D’Hondt and I. Michiels, “Combating the paucity of paradigms in current OOP
teaching.” Programming Technology Lab, Vrije Universiteit Brussel, 2000.

R. B. Smith and D. Ungar, “Programming as an Experience: The Inspiration for Self,”
in Prototype-Based Programming: Concepts, Languages and Applications (J. Noble,
A. Taivalsaari, and I. Moore, eds.), ch. 5, pp. 77-107, Springer-Verlag, 1999.

H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of Computer
Programs. FElectrical Engineering and Computer Science Series, Cambridge, MA: The
MIT Press, 2nd ed., 1996.

J. Malenfant, C. Dony, and P. Cointe, “Behavioral Reflection in a Prototype-Based
Language,” in Proceedings of International Workshop on Reflection and Meta-Level Ar-
chitectures (A. Yonezawa and B. Smith, eds.), pp. 143-153, 1992.

K. D. Volder, Type-Oriented Logic Meta Programming. PhD thesis, Vrije Universiteit
Brussel, Programming Technology Laboratory, June 1998.

P. Maes, “Concepts and Experiments in Computational Reflection,” in Proceedings of
the ACM Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), vol. 22, pp. 147-155, ACM Press, December 1987.

F.-N. Demers, J. Malenfant, and M. Jacques, “A Tutorial on Behavioral Reflection and
its Implementation,” in Proceedings of the 1st International Conference on Computa-
tional Reflection (G. Kiczales, ed.), pp. 1-20, April 1996.

B. C. Smith, “Reflection and Semantics in a Procedural Language,” Tech. Rep. 272,
Massachusetts Institute of Technology, Laboratory for Computer Science, 1982.

D. G. Bobrow, R. P. Gabriel, and J. L. White, “CLOS in Context — The Shape of the
Design Space,” in Object-Oriented Programming (A. Paepcke, ed.), ch. 2, MIT Press,
1993.

L. A. Stein, H. Lieberman, and D. Ungar, “A Shared View of Sharing: The Treaty
of Orlando,” in Object-Oriented Concepts, Databases and Applications (W. Kim and
F. Lochovsky, eds.), pp. 31-48, Reading (MA), USA: ACM Press/Addison-Wesley, 1989.

O.-J. Dahl and K. Nygaard, “SIMULA — an ALGOL-Based Simulation Language,”
Communications of the ACM, vol. 9, no. 9, pp. 671-678, 1966.

M. Abadi and L. Cardelli, A Theory of Objects. New York, NY: Springer-Verlag, 1996.

A. Taivalsaari, “Classes vs. Prototypes: Some Philosophical and Historical Observa-
tions,” in Prototype-Based Programming: Concepts, Languages and Applications (J. No-
ble, A. Taivalsaari, and I. Moore, eds.), ch. 1, pp. 3-16, Springer-Verlag, 1999.

D. Rayside and G. T. Campbell, “An Aristotelian Understanding of Object-Oriented
Programming,” in Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pp. 337-353, ACM Press, 2000.

95



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

H. Lieberman, “Using Prototypical Objects to Implement Shared Behavior in Object-
Oriented Systems,” in Proceedings of the ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA) (N. Meyrowitz, ed.), vol. 21,
(New York, NY), pp. 214-223, ACM Press, 1986.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series, Reading, MA:
Addison-Wesley, 1995.

D. Ungar, C. Chambers, B.-W. Chang, and U. Holzle, “Organizing Programs Without
Classes,” Lisp and Symbolic Computation, vol. 4, no. 3, pp. 223242, 1991.

“Prototype-based languages: from a new taxonomy to constructive proposals and their
validation.”

J. Noble, A. Taivalsaari, and I. Moore, eds., Prototype-Based Programming: Concepts,
Languages and Applications. Springer-Verlag, 1999.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools.
Computer Science series, Addison-Wesley, 1986.

G. Hutton and E. Meijer, “Monadic Parser Combinators,” Journal of Functional Pro-
gramming, vol. 8, pp. 437—444, July 1998.

Borg home site — Programming Technology Lab, Vrije Universiteit Brussel.
(online) <http://borg.rave.org> [visited: august 2002].

96



