Vrije Universiteit Brussel - Belgium

Faculty of Sciences
In Collaboration with Ecole des Mines de Nantes - France

2001

RSIT,
E Eirg

2
<
& B
s ey |0
Uc')) .,,) QS{—J
% & &
4, << &
INCERE

= |

ECOLE DES MINES DE NANTES

Using Aspect-Oriented Programming for
Connecting and Configuring Decoupled Business
Rules in Object-Oriented Applications

A Thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
(Thesis research conducted in the EMOOSE exchange)

By: Maria Agustina Cibran

Promotor: Prof. Viviane Jonckers (Vrije Universiteit Brussel)
Advisor: Maja D’Hondt (Vrije Universiteit Brussel)

Contents

1 Introduction 2
1.1 Motivation Lo 2
1.2 Problem contexto L. 3
1.3 Focus and hypothesis 4
1.4 Approach and contributions 5
1.5 Organization of the dissertation 6

2 Business Rules 7
2.1 Definition and examples 7
2.2 Why business rules are important? 8
2.3 Typical problems with business rules 9
2.4 Why to decouple business rules? 10
2.5 State of the art in business rules 10

2.5.1 Business Rule Beans 11
2.5.2 CommonRules 12
2.5.3 Rule Object Pattern 13
2.5.4 Grammar oriented object design by Arsanjani 14
2.5.5 Adaptive Object Model 14
2.5.6 Business rules for the personalization of e-commerce
applications oL Lo oo 15
2.5.7 Event-centric Business Rules 16
2.5.8 Coordination Contracts 16
2.5.9 Constraint Enforcement 17
2.5.10 Aspect-oriented approach for Crosscutting Constraints 17

2.5.11 Business Logic Extraction

3 Aspect Oriented Software Development

3.1 Overview

3.2 Approaches

3.3 Aspect-Oriented Programming as a post-object programming
mechanism

3.4

AspectJ as an example of AOP

3.4.1

3.4.2

3.4.3

3.4.4
3.4.5

Join Point Models in Aspectd
3.4.1.1 Dynamic crosscutting
3.4.1.2 Static crosscuttingo
AspectJ’s building blocks
3421 JoinPointso
3.4.22 Pointcutso oL
3423 Advice
3424 Aspect
Aspect Extension
Aspect instantiation

Aspect Domination

4 Case Study

4.1 The e-store: core entities

4.2

5 Analysis of Business Rules

5.1 Different dimensions for the classification of Business Rules

5.2

5.1.1

5.1.2
5.1.3

Regarding the specification of the Business Rule

5.1.1.1 Conditions
5.1.1.2 Actions
Regarding scope
Regarding life time

Requirements and Features needed for Business Rules

5.2.1

Business Rules as first class entities

ii

19
19
20

21
22
22
23
23
24
24
25
28
29
30
30
31

32
32
32

35
35
35
36
36
38
38
39

5.2.2

5.2.3

5.2.4

Dynamic join point model 40

5.2.2.1 Identification of the application time 40
5.2.2.2 Context sensitive application 40
Information needed for the application 41

5.2.3.1 Environmental information vs. specific busi-
nessobjects. 41

5.2.3.2 Non-invasive extension of unanticipated in-
formation 41

Dealing with interferences between rules 42

5.2.4.1 Composition issues decoupled from business
rules. o 43

5.2.4.2 Dynamic selection of combination strategies 43

5.3 Relationships between business rules 44
AQOP for Business Rules 45
6.1 Design decisions Lo 46
6.2 Identification of the application time 47
6.2.1 Basic application time 47
6.2.2 Contextual application time 49
6.2.2.1 Direct contextual application time 49
6.2.2.2 Indirect contextual application time 51
6.3 Information needed for the application 51
6.3.1 Environmental information 53
6.3.2 Business objects available at the application time . . . 54
6.3.3 Business objects not available at application time . . . 55
6.3.4 Unanticipated information 58
6.4 Application of businessrules. L. 60
6.4.1 Application of only one business rule 60
6.4.2 Application of a set of rules: Combination of rules . . 65
6.4.3 Several ways to combine the rules 67
6.4.4 Combination of business rules based on dynamic con-

ditions 70

6.5 Special cases of businessrules 75

iii

6.5.1 Conditions as type checks
6.5.2 Business rules that select other business rules
6.5.2.1 Decision time before the application time . .

6.5.2.2 Decision and application at the same time

7 General conclusion
7.1 Conclusion e

7.2 Future Work

iv

Abstract

This thesis addresses the problem of decoupling business rules from the core
software application. By business rules we identify constraints or statements
of the kind “if then” that specify part of business knowledge.

The problem with business rules is that they are usually represented implic-
itly, scattered across many places in the code and even tangled with code
that addresses other concerns. Moreover, they tend to change faster than
the rest of the application to accommodate changes in business considera-
tions. As a consequence, because of the way business rules are represented,
it is hard to localize and change them, resulting in invasive changes to the
code. Thus, the whole software becomes difficult to understand, maintain,
evolve and reuse.

To deal with these problems separation of concerns is fundamental. The goal
of this dissertation is to decouple business rules in order to achieve a high
degree of flexibility by allowing easy plugging and unplugging of rules into
the software applications depending on the business needs. We especially
focus on connecting decoupled business rules with the rest of the application.
It is out of the scope of this dissertation to focus on the representation of
the business rules.

The first contribution of this thesis is the categorization of business rules
followed by a detailed analysis of the requirements for a mechanism for
decoupling business rules and their subsequent connection with the rest of
the application. As many of these requirements coincide with the ideas
behind Aspect-Oriented Programming, an aspect-oriented approach is used,
using AspectJ as the concrete aspect-oriented programming language to
perform the weaving of the rules into the applications.

As a second contribution we present a detailed description of the necessary
ingredients for the decoupling, configuration and application of business
rules. Generic solutions are provided and illustrated with examples from a
case study.

Keywords: business rules, Aspect-Oriented Software Development (AOSD),
Aspect-Oriented Programming (AOP), Separation of Concerns (SoC), As-
pectd, decoupling, weaving.

Acknowledgements

I would like to thank to all the people that helped me in the development
of this thesis.

Thanks to Prof. Viviane Jonckers for supervising this work and for her
helpful advice.

Thanks to Maja D’Hondt for her constant help and guidance, for sharing
her ideas with me and also for her support when I needed it.

Thanks to Gustavo Rossi for having given me the opportunity to do this
master.

Thanks to Isabel, for having organized everything for us during our staying
in Brussels.

Thanks in general to all the members of SSEL and PROG lab for having
received us and for their patience and support during these months.

Being away from Argentina was not always easy for me. I would like to
thank to all the people that accompanied me during this year.

Thanks to all the friends and relatives that supported me from Argentina.
Specially thanks to mama and papé because they were always near support-
ing me besides the physical distance. Thanks also to Fede for his advice
when I needed it.

Thanks to Emmanuel, not only for his unconditional help and for having
worked with me in many projects but also for his friendship and support.

Thanks to Kim Mens for his friendship, sense of humor, help and kindness.

Thank to all the other EMOOSErs, for having spent so nice moments to-
gether in Nantes.

Thanks to the new friends I made during my staying in Brussels, specially
to Sebas, Boris, Miro, Maja, Isabel, Tielke and Raul for having shared so
nice moments with me.

Finally, thanks to all the people I met during this year because they will
make me remember this period with very nice memories.

Chapter 1

Introduction

1.1 Motivation

Software applications developed for a certain domain contain and use a lot
of knowledge about that domain. The complexity to manage that domain
knowledge is becoming more important as the complexity of software appli-
cations is increasing. By Domain Knowledge we understand a conceptual
model containing concepts and relations between them. This model also
defines constraints on the concepts and relations and rules that state how
to infer new concepts and relations [SAAT99]. In the context of this thesis
we refer to the concepts and relations as the business objects in the core
application and to the constraints and rules as business rules.

Nowadays, due to current software engineering methodologies, business rules
are expressed implicitly, strongly coupled and even tangled in the application
code. Thus, changes in the business considerations imply invasively changing
the code, making it hard to understand, maintain, evolve and reuse.

One problem that arises in real-world domains is the fact that business
needs tend to change rapidly and thus business rules should reflect that
change. However, it is desirable to easily change the business rules in a
controlled and localized way, avoiding propagation of the adaptations to the
core application. Moreover, it is also desirable to be able to adapt the core
application without having to invasively change the business rules.

Another problem nowadays is that generally the software engineer plays two
roles in the software development, the domain expert and the technology
expert, dealing with different aspects of the software at the same time. This
fact violates the principle of separation of concerns [Dij76] [Par72] [HL95].
Separation of concerns is a key principle of software engineering. It refers to
the ability to identify, encapsulate, and manipulate only those parts of the
software that are relevant to a particular concept, goal or purpose [OT01].

To conclude, it is clear that these aspects of a software application, i.e., the

business rules on the one hand and the business objects on the other hand,
should be expressed as decoupled as possible to allow software understand-
ing, maintenance, evolution, adaptation and reuse.

1.2 Problem context

Even if there is no precise definition of what a business rule is, we follow the
idea of considering it as a statement that defines or constraints some aspect
of the business. It is intended to assert business structure or to control the
behavior of the business [bus00].

Complexity in dealing with business rules is mainly based on the following
considerations:

e redundancy: business rules inherently are global assertions about the
model that involve multiple entities of it. Sometimes the same business
rule is specified using different elements spread over many places in
the model. However, we would like to express the rule as a single
unit in only one place, not having to repeat it in many points of the
system. For example the business rule stating that “if the customer
is a gold member of the shop then the price of all the products that
are new releases is reduced in 5%” specifies something that involves
the products and the customers at the same time. Thus, it leads to
the question of where to place this rule to avoid redundancy? in the
Customer class? or in the Product class?

e change management: it is difficult to maintain and update business
rules if they are spread over all the model. As it was identified in
[CRFSO01] [Arsal, business rules, as part of the domain knowledge in-
formation, evolve rapidly to cope with the volatile business consider-
ations. Existent rules might change, new rules related with different
concerns might be added, others removed, etc. Thus, it is desirable
to keep them as much isolated as possible to facilitate their maintain-
ability and to simplify their organization and management. Therefore,
it is better to design rules as different artifacts in order to keep them
independently from the rest of the application.

To deal with these characteristics, separation of concerns is fundamental.
However, the separation of the concerns needed by business rules is not
always easily and straightforwardly achieved. This is mainly caused by
the well-known problem of the “tyranny of the dominant decomposition”
[TOHS99]: modern languages and methodologies permit the separation and
encapsulation of only one kind of concern at a time.

We think that the complexity in modelling business rules is mainly motivated
by the fact that they represent concerns that cut across the basic function-
ality of the system. Business rules generally involve many and heterogenous

elements defined in the system. Moreover, business rules represent concerns
that can involve aspects of all these entities even at the same time. The
nature of these problems reminds us to the idea of “separation of concerns”.

Due to the lack of support for separation of concerns in traditional software
engineering techniques, when decomposing software into modules based on
one dominant dimension of concerns, the software that addresses the con-
cerns involved in business rules is not localized: it is scattered across many
modules and within most of these, it is tangled with software addressing
other concerns. This makes business rules difficult to reason about and
hard to manipulate in a clean way.

Moreover, current software engineering techniques might not be the most
suitable for expressing volatile business decisions. For instance when mod-
elling a business using traditional Object-Oriented techniques, object behav-
ior alone is not the most expressive way to describe business rules. Business
policies may change independently of the business objects in the problem
domain, or the functionality of end-user applications may evolve, while busi-
ness rules remain valid.

Even though many approaches have been trying to express business rules at
the analysis and design level, like for instance using OCL (Object Constraint
Language) [OMGO1] for expressing the rules, not much attention has been
given to the mapping between the rules at a conceptual level and their
concrete implementation in a software application. This is one of the reasons
why in this dissertation we will focus on the implementation of business rules
rather than in their representation.

Aspect-Oriented Software Development technologies have been successfully
used to identify and capture concerns that cut across the basic functional-
ity of the system and express them in a separate way. Many approaches
have been developed, Aspect-Oriented Programming being one of the most
accepted and used.

We will investigate the suitability of Aspect-Oriented Software Development
techniques for the decoupling of business rules from a software application.

1.3 Focus and hypothesis

In this dissertation we will focus on the management of business rules as
part of Domain Knowledge in object oriented applications. One of the main
goals of this research is to define business rules independently of the behavior
of business objects and decoupled from the way these business objects are
used in the applications.

The issues we want to address are:

What are the most often encountered types of rules? How do we handle the
proliferation of business rules? How can the addition or modification of busi-

ness rules be simplified? How do we avoid tangling the business rules with
the core application functionality? How do we address scalability (number
and complexity of rules), performance, maintainability and extensibility?
How do we guarantee software stability in this context?

Our research hypothesis is: Business Rules, as part of business knowledge,
tend to change much faster than the core business application and thus they
should be as decoupled as possible. We believe Aspect-Oriented Software
Development technologies are suitable for achieving the decoupling of the
business rules and to afterwards weave them into the application code to
obtain the desired working software application.

Thus, the main goals of this thesis are:

e study and analyze how well Aspect-Oriented Software Development
technologies can deal with the decoupling of business rules from the
core application.

e provide generic solutions for the different issues involved in the man-
agement of business rules that can be used as methodological guidelines
for the decoupling of business rules and their weaving into software ap-
plications.

1.4 Approach and contributions

In order to achieve the goals mentioned above, the following tasks had to be
carried out:

e Study of the state of the art in Business Rules.

e Study of the state of the art in AOSD techniques, focusing on HyperJ
and AspectJ.

e Classification of the different types of business rules.

e Identification of the set of features needed for modelling, designing and
implementing business rules decoupled from the rest of the application.

e Focus on separation of concerns, not only decoupling concerns from
the core application and the business rules but also stressing the de-
coupling even further, among the different issues involved in the man-
agement and configuration of the rules.

e Experimentation on a case of study using AspectJ (being the most
suitable of the two techniques mostly studied and analyzed).

e Identification of generic solutions that involve object oriented abstrac-
tions and aspects to be considered as methodological guidelines for the
decoupling of business rules from the core application.

e Analysis of the issues that can be easily achieved using AspectJ as the
weaving language and the limitations that were encountered.

1.5 Organization of the dissertation

The dissertation is organized as follows: in chapter 2 we will present the
state of the art in business rules by describing some of the typical issues in-
volving business rules and some of the approaches addressing related work.
In chapter 3 Aspect-Oriented Software Development is introduced and a de-
scription of AspectJ as an Aspect-Oriented Programming language is pre-
sented. Chapter 4 introduces the case of study used for the experiments in
this dissertation. In chapter 5 a detailed analysis of the requirements needed
for the management of business rules as well as a classification of business
rules are presented. In chapter 6 we present generic solutions to the iden-
tified ingredients for the decoupling of business rules and their subsequent
configuration, composition and application. These solutions are solved using
Aspectd. Finally chapter 7 presents the conclusions of this dissertation and
future work.

Chapter 2

Business Rules

Usually a software application implements actions that are regulated by the
business considerations and uses business knowledge to guide the execution
of these actions [Vae01].

In this chapter we concentrate on business rules as part of business knowl-
edge. We present some examples of business rules, describe their typical
problems and list some of the advantages achieved when rules are expressed
decoupled from the rest of the application.

2.1 Definition and examples

Today, there is no exact and precise definition of what a business rule is.
However in the literature many authors have agreed that a business rule
can be defined as a statement that defines or constraints some aspect of
the business. It is intended to assert business structure or to control the
behavior of the business [bus00].

Typically a software application is driven by business knowledge. By busi-
ness knowledge we understand concepts of the business, relations between
those concepts, business processes, workflows and business rules. Business
rules represent a dynamic part of the business knowledge because they spec-
ify which actions to take under certain conditions generally by specifying
statements of the form “if then”. Moreover, they tend to change faster than
the rest of the business knowledge to accommodate to business requirements.

We can find many different kinds of business rules. Some business rules
assert certain properties about certain business objects in the application.
For instance, in the context of an application that models an electronic store
we can find different examples of this type of rules:

“customers must be older than 18”7

“every purchase must involve a minimum of 5 euros”

“customers must be registered in the shop to be able to perform purchases”

Other business rules might specify business decisions that involve behavioral
considerations. These business rules, instead of stating some property that
hold, state some active actions or behaviors that should be performed under
certain conditions. Examples of this kind of rules are:

“if the customer buys more than 10 products, then apply 10% discount”
“f it is the day of the anniversary of the shop, then apply 20% discount”

“if the CD that is being bought is a classical music one, then apply 15%
discount”

“if the customer buys the same product more than 10 times, then apply
discount of 10%”

Moreover, as it is also identified in [IBMa], there are business rules that
classify certain business objects or entities for a particular business situation.
For instance, a customer may be classified into Gold, Silver and Bronze
categories based on their spending history or the amount of money they
have in their account. Some example rules are the following:

“if the customer has spent less than 50 euros in purchases in the shop, then
constder the customer as a bronze member”

“if the customer has spent between 50 and 100 euros in purchases in the
shop, then consider the customer as a silver member”

“if the customer has spent more than 100 euros in purchases in the shop,
then consider the customer as a gold member”

Many other heterogeneous examples of business rules can be encountered
and categorized according different dimensions. In chapter 5 we further
analyze the different dimensions into which to classify the business rules
and the features needed for their decoupling, configuration and connectivity
with the core application.

2.2 Why business rules are important?

Business rules are important because they specify requirements for software
applications that support the business [Cen01]. Business rules regulate how
a business is run. They determine how the business is structured and orga-
nized.

Focusing on business rules to drive software development provides the po-
tential for building better systems that are more responsive to the needs of
the businesses they support, easier to modify, and less costly to maintain.

Depending on how the business chooses to implement its business rules, they
affect business efficiency, productivity, and profitability.

2.3 Typical problems with business rules

o Business rules are implicitly represented, scattered and tangled in the
application code:

As we motivated in the introduction, the main problem that occurs
when dealing with business rules is their implicit representation. Rules
are usually implemented within the body of various methods that an
object implements [Arsa], tangled with code that addresses other con-
cerns.

Moreover, rules can be scattered through different modules, being dif-
ficult to localize and maintain. Updates to frequently changing rules
are difficult and error-prone making the overall lifecycle of introduc-
ing new business requirements, finding where to change the code and
where to add new code to reflect the new requirements unacceptably
time-consuming and extremely difficult.

e Business rules tend to evolve quickly:

Changes to business requirements entails changes to the design and
implementation of rules. Business rules are expected to change more
frequently than the rest of the business objects as they need to reflect
changes in the business requirements.

Moreover, rules may be time-sensitive. This occurs when the rules in
a domain are time-constrained; for example, they may pertain to some
promotions only valid for a limited period of time. Such domains have
a rapidly expanding and changing set of rules that may frequently
change, sometimes on a day-to-day basis (see case study in chapter 4).

Making intrusive changes to production code is unsafe and costly. If
business rules are tangled in the code, changes in the business would
imply intrusively changing the code, which can lead to unwanted side-
effects.

e Business rules are driven by business considerations:

Business rules reflect business requirements and thus they need to be
created by and visible to management. The software engineer is the
one that should map the rules and their changes to the implementation.
Thus, encapsulating and localizing rules will help in the division of
these roles.

To conclude with, business rules are expected to change more frequently
than the rest of the business objects and thus the impact of these changes
will be minimized if the rules are encapsulated and decoupled from the rest
of the application. In this way, rules are ready to be plugged in and reused.

Some approaches have been proposed with the intention to decouple business
rules from the application code. Section 2.5 describes some of the main
approaches.

2.4 'Why to decouple business rules?

We can mention the following list of advantages of decoupling business rules
from the core application:

o FExplicit representation of business decisions: By means of decoupling
business rules, business decisions would be explicitly represented. Ex-
ternalizing rules and representing them decoupled from the rest of the
application makes it possible to view and understand them indepen-
dently from the other concerns involved in the software applications.

o Reuse of business rules across business processes: Separating rules
from the core application makes easier the reuse of a business practice
decision in several applications in a consistent way.

o Reuse of software applications considering different sets of business
rules: Separating rules from the core application makes it possible to
reuse the same application with different business rules.

o Clearer understanding of application behavior: If the rules are decou-
pled, the application code is not tangled with the business logic and
thus it becomes cleaner and easier to understand.

e Decreased maintenance and testing costs: Decoupled rules have a
clearly defined scope since they are not tightly coupled to the ap-
plication code. This makes them easier to modify and quick to test,
decreasing costs and improving cycle time.

o Improved manageability of business practice decisions: Decoupling al-
lows the control and managements over the definition of who can
change rules and under what circumstances.

o Simplify the identification of conflicting business rules in different parts
of the business: Having the business rules decoupled from the rest of
the application helps to check conflicts or interferences between rules,
i.e., whether rules being used in two different parts of an application,
or even two different applications dealing with different parts of the
business, are consistent.

2.5 State of the art in business rules

In this section some approaches in the literature that deal with the prob-
lem of decoupling business rules from the applications are addressed and

described.

10

2.5.1 Business Rule Beans

The Business Rule Beans (BRBeans) [RDR™] [[BMa] [Lou| approach focuses
on the idea of identifying the points of variability in an application where
business requirements expressed as business rules need to be applied. It
mainly explores the idea of how to insert business rules into a software
application rather than how to better express the rules.

The kinds of business rules in this approach can have the form of constraint
rules (the ones that state some property that must be satisfied) or derivations
(the ones that calculate some single value, generally a non-boolean value).

The points where the externalized rules are fired are called trigger points. A
trigger point is a piece of code in an object method that interfaces with the
BRBeans runtime to attach and execute business rules dynamically during
application execution. This mechanism facilitates the dynamic attachment
of externalized rules.

The trigger point selects which rules will be fired based on some criteria
called trigger point context. The trigger point context can represent a static
business situation (not depending on run-time data, for instance, the context
defined by the scope of a class), a dynamic business situation (for instance,
depending on the type of customer, information known at run-time) or a
structural context (for instance, the context can specify the placement of a
pre or post condition of a specific method).

The dynamic situation for the trigger point context is similar to the idea of
defining rules that select other rules (approach presented in this dissertation
in 5.1.1.2). The difference in our approach is that the selection of rules
depending on dynamic information is modelled as another business rule,
simplifying the number of concepts we need to manage.

The framework supports the insertion of trigger points into code by hand-
coding, through the use of inheritance, or through code generation. The
difference between this approach and the one presented in this dissertation
is that in our approach, even if the aspects we define for connecting and
configuring the business rules need to be hand coded, they are weaved in a
non-invasive way into the core application. We avoid to invasively change
the code to include the trigger points.

The BRBeans deal with some issues regarding the combination of rules. It
is in the trigger point where the results of having applied the business rules
are analyzed and the action to take is determined. This implies that the
framework is flexible enough to apply several business rules in a given place
and that some kind of post-decision is taken after the application of the
business rule. However the solutions provided to solve the combination of
rules are limited to some specific cases. The ways provided for combination
of business rules are basically limited to the return of all results from all
rules fired in an array, the return of only the first result or the last one and

11

the return of the logical and/or of the results from all the rules fired. But
it is also possible to add user-defined strategies for the combination of the
results of a set of rules.

However, only little support for the combination of behavioral rules is pro-
vided. It is not possible to combine behaviors that personalize certain con-
cerns in different ways. Thus, this approach does not deal with the conflicts
that can arise between behavioral derivation rules. It is not expected to
find in a derivation trigger point more than one applicable rule, otherwise
it leads to an exception.

One important feature of the BRBeans framework is that it provides some
common patterns that describe often encountered situations when produc-
ing rule-enabled applications [RDR™]: fixed business context, situational
business context, jurisdictional business, structural business context.

2.5.2 CommonRules

This approach emphasizes the clear and clean separation of data (repre-
sented by business objects) and logic (represented by rules) and the flexible
and seamless connectivity between them [IBMb]. CommonRules has a clas-
sic inference engine. The rules are provided respecting the form of “if then”.

CommonRules puts considerable emphasis to the representation of business
rules by means of supporting declarative logic programs as a rule-based
knowledge representation. As a knowledge representation language Com-
monRules uses Courteous Logic Programs, an extended form of declarative
logic programs that allows the conflicts to be dealt with by the rule system
itself.

Courteous logic programs allow the specification of partially-ordered prior-
ities between rules. These priorities can be used to solve conflicts between
rules. The prioritized conflict handling enables modularity and locality
in updating, merging, specifying and maintaining rule sets. In this way,
changes in rule sets can be simply specified by the addition of new rules,
without having to modify previous rules.

In CommonRules it is also possible to ensure mutual exclusion between rules.
It is possible to specify for instance, that discounting price by X percent is
mutually exclusive with discounting price by Y percent (whenever X and Y
are not equal).

Thus, CommonRules provides support for conflict resolution by means of
two mechanisms: conditional overriding of prioritized rules and conditional
mutual exclusions of conclusions from the main rules.

Moreover, CommonRules allows procedural attachments to business objects
to associate predicates with methods in general business objects. More
precisely, the procedural attachments provided in situated logic programs

12

include:

e cffectors that perform actions upon drawing conclusions in rule con-
sequents.

e sensors that perform queries during testing of conditions in rule an-
tecedents.

These effectors and sensors are specified by statements that ”link” (i.e.,
associate) them to predicates. These effector and sensor link statements are
treated as part of the knowledge representation.

Although with CommonRules it is possible to model rules that describe
different business policies and add, remove and change them dynamically
without recompiling, there are also some limitations in this approach. For
instance regarding the kind of business rules that can be modelled, it is not
always possible to add business rules that describe business considerations
that were not anticipated from the beginning. For instance, it is not always
possible to state rules about pricing if the concept of price was not already
present in the original application.

To conclude with, this approach clearly emphasizes in the representation of
the business rules. To link the rules with the rest of the application, the
programmer has to specify files that map the declarative terms (expressing
the rules) with the concrete attributes and objects in the code. Even if the
linking of the rules is considered in this approach, the technology used is
not as powerful as the capabilities of AspectJ, where we can easily capture
dynamic points in the execution of a program to specify where the rules
need to be plugged in.

2.5.3 Rule Object Pattern

The Rule Object Pattern Language [Arsa] contains patterns as solutions to
common problems encountered during modelling, design and implementa-
tion of business rules. The aim of the Rule Object pattern, one of the most
important patterns in the Rule Object Pattern Language, is to make the
design of business processes extensible and adaptable, without endangering
them with intrusive changes, by reifying the business rules and making them
pluggable.

The idea of this pattern is to encapsulate the changing part of the business
as Rule Objects with methods for their conditions and actions. As these
conditions and actions tend to increase in number and variability, the pat-
tern suggests to separate these out into their own classes. In this way, we
can easily plug conditions and actions when the business imposes new re-
quirements. The Rule Object Pattern uses the Composite design pattern
[GHJV95] to design compound rule objects. The basic structure of the Rule
Object Pattern is shown in Figure 2.1.

13

RuleObject

Assessor Action

Figure 2.1: Rule Object Pattern

2.5.4 Grammar oriented object design by Arsanjani

The Rule Object Pattern suggests that the business objects should know
their own business rules expressed as rule objects and manage them dynam-
ically [Arsa]. This approach does not focus on the connectivity between the
rules and the rest of the application. Thus, by only using the rule object
pattern we would still have problems like the ownership of rules that involve
different business objects, different scopes of rules, and other issues dealt in
the approach presented in this dissertation. The rule object pattern focuses
on the decoupling of business rules and their representation as first class
entities but does not give special attention to the linking of the rules into
the applications, main difference with our approach.

The rule object pattern has been used by some other approaches. For in-
stance, it has been used to seamlessly map business models to component-
based software architectures [Arsb]. This approach suggests the use of use-
case grammars to express the business considerations for a given domain.
Business rules are modelled as “pluggable” rules objects that can be adap-
tively plugged into a component business model without violating the open-
closed principle.

Other uses of this pattern can be encountered in following approaches like
the Adaptive Object models (see 2.5.5) and approaches where rule objects
are used for the personalization of e-commerce applications (see 2.5.6).

2.5.5 Adaptive Object Model

Adaptive Object-Model (AOM) [YBJ] [YJ] architecture provides a dynamic
implementation of business rules. In this approach business rules can change
dynamically, emphasizing flexibility and run-time configurability.

Adaptive Object-Models provide an alternative to traditional object-oriented
design. Contrary to traditional object-oriented design where business re-
quirements are embedded in the system itself typically defined in term of
classes, attributes, behaviors, and relationships, an AOM does not model
business entities as first class objects. Instead, AOMs provide an archi-
tecture style for defining those objects, classes, attributes, behaviors, and
relationships. AOM achieves this through the use of patterns: TypeObjects
for defining classes, Properties for attributes, Strategies and RuleObjects for

14

behaviors, and Accountability for defining relationships at runtime. Thus,
for expressing business rules the AOMs follows the idea of the Rule Object
pattern [Arsa] because it reflects the philosophy of the architecture suggested
by this kind of systems.

The main characteristic of these systems is that they can easily evolve to
reflect business considerations thanks to this flexible architectural style they
are based on. In AOM’s business information, in particular business rules,
instead of being stored in code, it is usually kept in a shared database that
the running systems have access to. Thus, new changes in the business
considerations can be reflected by the system immediately without having
to release a new version of the system.

Other approach based on the same idea as the Adaptive Object-Model is
the Table-Driven approach [Per|, in which business rules are defined and
implemented as meta-data.

2.5.6 Business rules for the personalization of e-commerce
applications

Some research has been done on the personalization of complex Web appli-
cations [CRFS01] [GRFT01] [RFC] [KRS00]. These approaches focus on the
identification of design constructs that can simplify the process of adding
personalization features to a Web application. Some of these approaches try
to decouple business rules from the Web applications, as this kind of appli-
cations is driven by business decisions that are usually expressed as business
rules.

The approach presented in [CRFS01] focuses on the analysis of which design
structures may help to cope with the increasing complexity of this kind of
applications. In this approach different personalization patterns and design
structures to obtain seamless extensions of existing software are presented.
It emphasizes on behavioral personalization. This approach is based on the
decoupling of business rules using design patterns [GHJV95] and the Rule
Object pattern [Arsal.

Other research on the field is presented in [GRFT01]. In this approach, the
SOUL meta-programming framework [Wuy01] is used to express personal-
ization business rules. SOUL integrates Smalltalk and Prolog by letting
designers write Prolog rules in the meta-level governing the behavior of the
base level. In this way, inheriting the well-known Prolog features, business
rules can be expressed in SOUL in a modular and easy way. Like this, the
addition and modification of business rules are simplified.

15

2.5.7 Event-centric Business Rules

In this approach an event-based decomposition of business rules is proposed.
It focuses on e-commerce applications providing guidance on how rules may
be decomposed into events and how their execution can be simplified by
means of an event-based architecture. Some concrete implementation of the
event-based architecture is the ILOG Rules framework [ILO] [AB]. These
solutions are based on the use of a rule engine and include a rule language.
ILOG Rules uniquely separates rules and the engine at the object level. This
separation allows a rule engine to be connected to multiple rule sets, or a
rule set to be used by any number of rule engines. Rules can be dynamically
added, modified, or removed from the engine, without shutting down or
recompiling the application.

This approach provides some support to deal with conflicts of business rules
based on priorities. If several rules meet their conditions at the same time,
the rule with the highest priority has precedence to be applied, temporar-
ily forbidding the application of other conflicting or non-conflicting rules.
Support for static or dynamic priorities is provided.

2.5.8 Coordination Contracts

This approach provides a clear separation between the computations per-
formed by components and the mechanisms that coordinate their interac-
tions [AFW]. These interactions between components are usually driven by
business decisions expressed as business rules.

Generally the regulations that control the interaction between components
are defined within the components themselves. This makes them fixed not
being able to change them depending on the context. On the contrary, this
approach tends to model the rules that determine the way the components
need to interact in order to fulfil business requirements externalized from
the way these components are implemented. Those regulations are expressed
separately as a new abstraction called Coordination Contracts.

The aim of this approach is to extract the business rules that govern the
interactions between components without intrusively modify the code that
implements the components, i.e., preserving the black box property of the
components. The definition of the coordination contracts only needs the
information specified as part of the interfaces of the components. When
the information provided as part of the interfaces is not enough and extra
data is needed for the regulation and also when mismatches between the
interfaces occur, adaptors are generated automatically for the adaptation of
the components interfaces.

Coordination contracts act at the level of instances. This represents an
advantage comparing with an approach based on aspects.

16

2.5.9 Constraint Enforcement

This research focuses on the automatic checking and enforcement of con-
straints in object-oriented applications. Generally constraints are expressed
in the modelling level by means of a declarative language like the Object
Constraint Language (OCL) [OMGO1]. But it is still the responsibility of
the programmer to ensure the checking of the constraints at the implemen-
tation level. This approach [Str00] facilitates the task of the programmer
by means of automatically generating code that checks the validation of the
constraints. This generated code is weaved into the core application using
AspectJ as the weaving language. Analysis of the constraints is performed
to detect places in the code where the constraints must be checked.

2.5.10 Aspect-oriented approach for Crosscutting Constraints

This approach is based on the idea that separation of concerns is fundamen-
tal not only at the implementation level but also at the design level. The
same problems that result from tangled code at the programming level, also
occur in the tangled constraints of the models [GBNTO01]. This approach
focuses on the modelling problem that arises when constraints that specify
global system properties (such as latency, precision, timing) cross-cut the
boundaries of the model hierarchy [GBN]. The same constraint is repeatedly
applied in many different places of the model with slight variations.

Thus, the idea and motivation of this approach is to describe a common
constraint in a modular manner and designate the places and conditions
where it is to be applied. This approach uses an aspect-oriented approach
by means of the definition of the specification of the constraints and their
propagation in a separate module.

2.5.11 Business Logic Extraction

This research focuses on the analysis of the advantages of the extraction of
business knowledge from business software applications. This approach is
based on the use of flow logic specifications and atomic services to extract
the business logic from the software applications [VaeO1].

The atomic services are rule sets that represent the building blocks of encap-
sulated business knowledge. They are collections of rules that are related
and are applicable in similar contexts. They represent atomic chunks of
business knowledge potentially applicable in many business contexts.

However, as the logic needed for a certain context is spread out over many
atomic services, it is needed to define the ways in which multiple atomic
services should be combined and applied in a certain context and domain.
This is achieved with the definition of flow logic specifications.

17

Thus, this approach suggests a software architecture that supports and facili-
tates extracted business logic as atomic services and flow logic specifications.

18

Chapter 3

Aspect Oriented Software
Development

3.1 Overview

A software application involves many and heterogeneous concerns. By con-
cerns we refer to properties or areas of interest in the system. Typically con-
cerns can range from high-level notions like security and quality of service
and low-level notions such as caching and buffering. They can be functional,
like business rules or non-functional such as synchronization and transaction
management [EFB01].

Separation of concerns (SoC) is fundamental to deal with all these hetero-
geneous concerns in a software application. Separation of concerns is a key
principle of software engineering. It refers to the ability to identify, encap-
sulate, and manipulate only those parts of the software that are relevant to
a particular concept, goal or purpose [OTO01].

In many situations separation of concerns is not easy to achieve. Once
software systems reach a certain complexity, the modularization constructs
provided by current languages and environments fall short. Current soft-
ware engineering techniques generally provide a dominant decomposition
mechanism that is not suitable to capture and represent all kinds of con-
cerns that can be found in a software application. This problem is identi-
fied in [TOHS99] as the “tyranny of the dominant decomposition”: modern
languages and methodologies permit the separation and encapsulation of
only one kind of concern at a time. Examples of tyrant decompositions are
classes in object-oriented paradigm, functions in functional paradigm, and
rules in rule-based systems. Therefore, it is impossible to encapsulate and
manipulate all the diverse and heterogeneous concerns in only one of the
decomposition mechanisms.

Unfortunately, as it has been recognized by the Aspect-Oriented Program-

19

ming (AOP) community [KLM197], the “system-wide” concerns found in
the implementation of any complex system, often do not fit nicely into
the modularization mechanism of the technique used. These concerns are
said to cut across the natural modularity of the rest of the implementation
[KHH*01a]. Common examples of crosscutting concerns are design or ar-
chitectural constraints, systemic properties or behaviors (e.g., logging and
error recovery), and features.

As a consequence, when software is decomposed into modules based on only
one dominant dimension of concern, the code that addresses other concerns
is not localized. On the contrary, that code is scattered across many places
in the entire application and usually they are even tangled with software
addressing other concerns as they cannot be mapped into the dominant
decomposition abstractions.

The problem presented so far motivates the need for extra support to achieve
separation of cross-cutting concerns. Separation of concerns suggests the
possibility to work with the design and implementation of a system in natural
units of concerns rather than in units imposed by the tools or languages
that are being used. In other words, the idea is to adapt the modularity of
a system to reflect the way the software engineer thinks about a problem
rather than to adapt the way to think to the way languages and tools do it
[KHH*01a).

Aspect-Oriented Software Development (AOSD) appears as a new technol-
ogy that focuses on the separation of cross-cutting concerns. AOSD allows us
to better program software applications by separately specifying the various
concerns of a system and some description of their relationships, and then
providing mechanisms to weave or compose them together into a coherent
program [EFBO01].

Firstly, separation of concerns was more oriented towards the implementa-
tion, dealing with concerns that can appear tangled in the code. Nowadays
the AOSD community recognizes the need of separation of concerns through
the whole software development cycle. Cross-cutting concerns may arise at
any stage of the software lifecycle, including requirements specification, de-
sign, implementation, etc.

To conclude, AOSD helps to avoid tangling of concerns by explicitly cap-
turing, representing and manipulating them as first entities. In this way,
the target application code is easier to develop, understand, reason about,
maintain and reuse.

3.2 Approaches

Many approaches and techniques that enable Aspect-Oriented Software De-
velopment are being subject of recent research. Basically we can identify
two different philosophies represented by these approaches. Some of the ap-

20

proaches are more dynamic in the sense that they allow to capture specific
points in the execution of a program where the crosscutting concerns must
be weaved whereas others are more static or structural, providing support
for structural mappings between units of a program. This main difference
between the approaches influences our choice of which approach would be
suitable for the kind of problems we need to solve when decoupling business
rules and composing them with the rest of the application.

Among the most accepted AOSD approaches to deal with cross-cutting con-
cerns at the implementation level we can mention Aspect-Oriented Program-
ming, approaches for multi-dimensional separation of concerns, Composition
Filters and Aspectual Components. For some of these approaches concrete
systems (languages or tools) have been developed whereas for others only
research prototypes exist.

Examples of the most developed and used tools are AspectJ, the representa-
tive example language for the ideas supported by Aspect-Oriented Program-
ming, and HyperJ, a system that supports “multi-dimensional” separation
and integration of concerns. Both enable the modular implementation of
crosscutting concerns in standard Java software. AspectJ is a good repre-
sentative example for the languages that support dynamic join point models
whereas HyperJ is a good example of the other (more structural) approach.

As we will see along this dissertation, we will have to manage dynamic
information when dealing with business rules. For instance, we will need to
capture dynamic points in the execution of the program to specify the places
where we need to plug the rules. This motivates the need for a sophisticated
mechanism to capture these dynamic points. Approaches like Composition
Filters and AspectJ would be suitable in this sense.

In this thesis we choose AspectJ as a concrete weaving language that sup-
ports a dynamic join point model. HyperJ is also studied and analyzed as we
think it would be suitable for expressing business rules that imply mappings
between concepts. However, it is important to notice that the mechanism
to identify weaving points provided by HyperJ is not as powerful as the one
provided by AspectJ.

3.3 Aspect-Oriented Programming as a post-object
programming mechanism

Currently, one of the dominant programming paradigms is the Object-
Oriented programming (OOP). The idea behind this paradigm is to build
a software system by decomposing a problem into objects and then writing
the code of those objects. Such objects abstract together behavior and data
into a single conceptual entity.

Although Object-Orientation has been used with success in many complex

21

applications keeping them maintainable and comprehensive, it presents some
limitations. The hierarchical modularity mechanisms of Object-Oriented
languages are very useful but they are inherently unable to modularize all
kinds of concerns of interest that exist in a complex software application.

Many mechanisms that look to increase the expressiveness of the OO pa-
radigm have been considered. They are called post-object programming
(POP). Aspect-Oriented programming (AOP) is one of those. AOP fo-
cuses on mechanisms for simplifying the separation of cross-cutting concerns
in software applications. AOP provides a mechanism to explicitly capture
crosscutting structure, expressing crosscutting concerns in a modular way.

AOP addresses the problem of the dominant decomposition by implementing
the “base” program (addressing the dominant concern) and several aspect
programs (each addressing a different cross-cutting concern) separately and
then “weaving” them all together automatically into a single executable
program.

In this section we will describe the characteristics of AspectJ, one of the
most representative examples of AOP languages.

3.4 Aspectd as an example of AOP

AspectJ is a simple general-purpose extension to Java that provides, through
the definition of new constructors, support for modular implementation of
crosscutting concerns. It enables plug-and-play implementations of cross-
cutting concerns [KHHT01b].

AspectJ has been successfully used for cleanly modularize implementations
of crosscutting concerns such as tracing, contract enforcement, display up-
dating, synchronization, consistency checking, protocol management and
others.

In the following sections we will present a description of the features and
capabilities provided by AspectJ. This description is mostly based on [Asp]
[KHH"01b] [KHH"01a].

3.4.1 Join Point Models in AspectJ

The join point model in an AOP language provides the common frame of
reference for the structure of crosscutting concerns.

AspectJ provides support for two types of crosscutting implementations
defining two join point models: static and dynamic.

22

3.4.1.1 Dynamic crosscutting

Dynamic crosscutting makes it possible to define additional implementation
to run at certain well defined points in the execution of a program. Dynamic
crosscutting is based on a small but powerful set of constructs:

e Join Points are well defined points in the execution flow of a program
where aspects crosscut the normal execution with the crosscutting
concerns.

e Pointcuts are a means to make reference to a set of join points and to
manipulate certain values captured in those join points.

e Advices are modules, like methods, that encapsulate the crosscutting
implementation upon pointcuts.

o Aspects are units of modular crosscutting implementation. It is com-
posed of pointcuts, advices, and ordinary Java member declarations.

3.4.1.2 Static crosscutting

AspectJ also allows us to implement static crosscutting. Static crosscutting
allows the definition of new operations on existent types. It affects the static
structure of the program. This is achieved using forms called Introduction.

An Introduction is a member of an aspect, but it defines or modifies a
member of another type (class). The main actions we can achieve with
Introduction are the following ones:

e add fields to an existing class. For example:

public int Point.x = 0;

e add methods to an existing class

public int Point.getX() { return x; }

e extend an existing class with another

declare parents: Point extends GeometricObject;

e implement an interface in an existing class

declare parents: Point implements Comparable;

Introduction is a powerful mechanism for capturing crosscutting concerns
because it not only changes the behavior of components in an application,
but also changes their relationships.

23

3.4.2 AspectJ’s building blocks

Aspect-Oriented programming languages have three main elements for ex-
pressing crosscutting concerns: a join point model, a means of identifying
join points, and a means of affecting implementation at join points. These
elements are based on a set of constructs that constitutes the building blocks
for the specification of crosscutting implementation. These constructs are
called: aspects, join points, pointcuts and advice.

A brief introduction to the main features of AspectJ for supporting cross-
cutting implementation is presented in the following sections.

3.4.2.1 Join Points

AspectJ’s internal mechanism is based upon the join point model. Join
points can be considered as nodes in a simple run time object call graph.
These nodes include points at which an object receives a method call and
points at which a field of an object is referenced. The edges are control flow
relations between the nodes. In the dynamic join point model, control passes
twice through each join point, once on the way in to the sub-computation
rooted at the join point and once on the way back out.

Let’s illustrate this concept using a simple figure editor as an example. In the
Figure 3.1, large circles represent objects, square boxes represent methods
defined upon the class of those objects and small numbered circles represent
join points.

17 ptl = new Point();
ptl.getX();

Figure 3.1: Dynamic join point model when the method getX is called

The following types of join points exist in AspectJ. Some of them are illus-
trated on the example:

e Method calls: Points in the execution of a program where a method

is called. E.g. (1): A method call join point corresponding to the
method getX() called on the object ptl.

24

e Constructor calls: Points in the execution of a program where a con-
structor of a class is called.

e Method call receptions: Points in the execution of a program where an
object receives a method call. E.g.(2): A method call reception join
point at which ptl receives the call to the method getX().

o (Constructor call receptions: Points in the execution of a program
where a class receives a constructor call.

e Method executions: Points in the execution of a program where an
individual method is invoked. E.g.(3): A method execution join point
at which the particular method getX() defined in the class Point begins
executing.

e Constructor executions: Points in the execution of a program where
an individual constructor is invoked.

o [ield gets: Points in the execution of a program where a field of a
class, object or interface is read. E.g.(4): A field get join point where
the field x of the object ptl is read.

e Field sets: Points in the execution of a program where a field of a
class, object or interface is set.

o FException handler executions: Points in the execution of a program
where the exception handler of a method is invoked.

e Class initialization: Points in the execution of a program where the
static initializers of a class are run.

o Object initialization: Points in the execution of a program where the
dynamic initializers for a class are run during object creation.

3.4.2.2 Pointcuts

In AspectJ, a pointcut is a program element that identifies a particular subset
of join points in the program flow and optionally some of the values in the
execution context of those join points.

AspectJ includes several primitive pointcut designators. Programmers can
combine these primitive pointcut designators using the boolean operators
&&, || and ! to specify anonymous or user-defined pointcut designators.

Two kinds of pointcut designators exists in AspectJ:

e Primitive pointcut designators

Some primitive pointcuts only identify join points of one kind. For
instance, receptions only matches method call reception join points.

Examples of this kind of primitive pointcuts are:

25

— call(Signature)
Picks out a method or constructor call join point based on the
static signature.

— execution(Signature)
Picks out a method or constructor execution join point based on
the static signature.

— get(Signature)
Picks out a field get join point based on the static signature.

— set(Signature)

Picks out a field set join point based on the static signature.

Other kind of primitive pointcuts are the ones that match any kind
of join points at which a certain property holds. For example in-
stanceof(Point) matches all join points at which the currently execut-
ing object (the value of this) is an instance of Point or a subclass of
it.

— within(TypePattern)
The within pointcut picks out all join points where the code ex-
ecuting is defined in the declaration of one of the types in Type-
Pattern.

— withincode(Signature)
The withincode pointcut picks out all join points where the code
executing is defined in the declaration of a particular method or
constructor.

— cflow(Pointcut)
Picks out all join points based on whether they occur in the dy-
namic context of Pointcut, including pointcut’s join points them-
selves.
For example, cflow(move()) identifies all join points that occur
between receiving calls for the methods specified in the point-
cut move() and returning from those calls (either normally or

by throwing an exception.) (see definition of pointcut move() in
3.4.2.2)

— cflowbelow(Pointcut)
Picks out all join points in the control flow below the join points
picked out by the pointcut.

— this(TypePattern or Id)

Picks out all join points where the currently executing object
(the object bound to this) is an instance of a type that respects
TypePattern, or of the type of the identifier Id. It will not match
any join points from static methods.

26

— target (TypePattern or Id)
Picks out all join points where the target object (the object on
which a call or field operation is applied to) is an instance of a
type that respects the TypePattern, or of the type of the identifier
Id. It will not match any calls, gets, or sets to static members.

— args(TypePattern or Id, ...)

Picks out all join points where the arguments are instances of a
type of the appropriate TypePattern or identifier Id.

— if (BooleanExpression)
The if pointcut picks out join points based on a dynamic prop-
erty. It picks out all join points where the boolean expression
received as an argument evaluates to true.

These two kinds of primitive pointcuts can be combined to identify
join points in useful ways. For example:

linstanceof (FigureElement) &&
calls (void FigureElement.incXY(int, int))

matches all calls to method incXY that do not originate from an object
that is an instance of FigureElement or any of its subclasses.

Notice that the examples presented so far correspond to pointcuts that
are defined based on explicit enumeration of a set of method signatures.
AspectJ also provides mechanisms that enable specifying a pointcut
in terms of properties of methods other than their exact name. These
two different ways of designate the pointcuts are called name-based
crosscutting and property-based crosscutting respectively.

The simplest way to define property-based crosscutting is by means
of the use of wildcards in certain fields of the method signature. For
example:

call(void FigureElement.get*(..))

identifies calls to any method defined on FigureElement, for which the
name begins with “get”, specifically the factory methods getX and
getY; and

call(public * FigureElement.* (..))

identifies calls to any public method defined in FigureElement.

27

e User-defined pointcut designators

Programmers can define their own pointcuts by means of the pointcut
designator. The pointcut designators can identify join points from
different classes and thus crosscut classes.

The declaration:

pointcut move(): call(void FigureElement.setXY(int,int)) ||
call(void Point.setX(int)) |
call(void Point.setY(int)) Il
call(void Line.setP1(Point)) |
call(void Line.setP2(Point));

declares a new pointcut designator called move that identifies any call
to methods that move figure elements. User-defined pointcut desig-
nators can be used whenever a pointcut designator can appear. For
instance:

- PointcutId(TypePattern or Id, ...)
Picks out all join points that are picked out by the user-defined point-
cut designator named by Pointcutld.

- ! Pointcut

Picks out all join points that are not picked out by the pointcut.

- PointcutO && Pointcutil

Picks out all join points that are picked out by both of the pointcuts.

- PointcutO || Pointcuti

Picks out all join points that are picked out by either of the pointcuts.

3.4.2.3 Advice

Advice is a method-like mechanism used to declare that certain code should
execute at each of the join points in a pointcut. AspectJ supports three
kinds of advice: before, after, and around advice. Additionally there are
two special cases for the after advice, after returning and after throwing,
corresponding to the two ways a sub-computation can return from the exe-
cution of a join point.

Before and after advices are additive with respect to the normal computation
at the join point. Before advice runs when a join point is reached and before
the computation proceeds, i.e. it runs when computation reaches the method
call and before the actual method starts running. After advice runs after
the computation under the join point finishes, i.e. after the method body
has run, and just before control is returned to the caller. Around advice
runs when the join point is reached. It preempts the normal computation

28

at the join point and it has explicit control over whether it is allowed to
continue running.

Advice declarations define advice (before, after or around) by associating a
code body with a pointcut.

For example:

after(): move(D{
System.out.println("A figure element has moved");

}

defines that the string “A figure element has moved” is written in the stan-
dard output whenever a figure element finishes handling a call to the move()
method.

Each time a join point is reached, all advices are examined to see whether
any apply at that join point. The ones that apply are selected and ordered
according to their specificity and executed in the following order:

1 around advices first, in order of specificity. Proceed calls the next most
specific piece of around advice.

2 all before advice, most-specific first.

3 the computation identified by the join point proceeds.

4 after returning and after throwing advices.

5 after advice, least-specific first.

6 the return value from step 3 is returned to proceed with step 1 and
the innermost piece of around advice continues running.

3.4.2.4 Aspect

An aspect encapsulates the implementation of a concern that cuts across
the functionality of the system. The structure of a crosscutting concern
written as an aspect is explicit and easy to reason about. Aspects are defined
by aspect declarations, being able to include pointcut declarations, advice
declarations as well as any kind of declaration allowed in class declarations.

aspect FigureCallsTrace{

pointcut figurecalls():
linstanceof (FigureElement) && calls(void FigureElement.*(*));

29

before(): figurecalls() {
System.out.println("Before the method is executed");

}

after(): figurecalls() {

System.out.println("After the method was executed");
X
+

The code shown before illustrates an aspect, which traces all the calls to
the methods defined in the class FigureElement that take one argument as
input and have no return value. It prints a message before and after those
methods are called.

3.4.3 Aspect Extension

An aspect, abstract or concrete, may extend a class and may implement a set
of interfaces. Extending a class does not provide the ability to instantiate
the aspect with a new expression; the aspect may still only define a null
constructor.

Aspects may extend other abstract aspects, in which case not only the fields
and methods are inherited but so are pointcuts and advices.

It is important to notice that an aspect can define concrete or abstract
pointcuts with or without concrete or abstract advice. The abstract ones can
be specialized in the specializations of the aspect (subclasses). Extending
aspects can define concrete pointcuts, add advice to inherited pointcuts and
override normal inherited methods advice.

3.4.4 Aspect instantiation

Aspect instances are automatically created to cut across programs.

Because advice only runs in the context of an aspect instance, aspect in-
stantiation indirectly controls when advice runs.

e Singleton aspects

By default, or by explicitly using the modifier issingleton, an aspect
has exactly one instance that cuts across the entire program. That
instance is available at any time during program execution with the
static method aspectOf() defined on the aspect.

aspect Id { ... }
aspect Id issingleton { ... }

30

e Per-object aspects
aspect Id perthis(Pointcut) { ... }
aspect Id pertarget(Pointcut) { ... }

If an aspect named A is defined perthis(Pointcut), then one instance
of the aspect type A is created for every object that is the executing
object (i.e., “this”) at any of the join points picked out by Pointcut.
The advice defined in A may then run at any join point where the
currently executing object has been associated with an instance of A.

Similarly, if an aspect A is defined pertarget(Pointcut), then one in-
stance of the aspect type A is created for every object that is the target
object of the join points picked out by Pointcut. The advice defined
in A may then run at any join point where the target object has been
associated with an instance of A.

In both cases, the static method call A.aspectOf(Object) can be used
to get the aspect instance (of type A) registered with the object.

e Per-control-flow aspects
aspect Id percflow(Pointcut) { ... }
aspect Id percflowbelow(Pointcut) { ... }

If an aspect A is defined percflow(Pointcut) or percflowbelow(Pointcut),
then one instance of the aspect type A is created for each flow of control
of the join points picked out by Pointcut, either as the flow of control is
entered, or below the flow of control, respectively. The advice defined
in A may run at any join point in or under that control flow. During
each such flow of control, the static method A.aspectOf() will return
an instance of type A.

3.4.5 Aspect Domination

To control precedence between aspects that do not exist in an extends re-
lationship, AspectJ provides the feature dominates. An aspect can declare
that the advices defined in it should dominate the advices defined in some
other aspect. The declaration:

aspect Id dominates TypePattern { ... }

states that the advice declared in the aspect where this declaration is defined
has more precedence and will run before the advice in the aspects from
TypePattern.

31

Chapter 4

Case Study

The case study we will use in this dissertation is an example of an electronic
store application that provides support for personalization issues.

In the following sections we describe the characteristics of this kind of ap-
plications. We also justify the choice of this kind of application as a rep-
resentative case to illustrate the problems and needs in the externalization,
configuration and application of business rules.

4.1 The e-store: core entities

The example application models an electronic store that basically sells prod-
ucts to customers. The customer can chose the products he/she wants to
buy and add them to the shopping cart, indicating the number of units for
each product. When the customer wants to confirm the purchase an or-
der is generated and the check-out process starts. Normally, the check-out
process consists of steps through which the order generated with the items
selected by the customer must be processed. These steps include informa-
tion about the paying mechanism, shipping address, delivery options and
wrapping details. Each customer of the e-store has an account containing
the buying history of that customer. In Figure 4.1 we present an object
model representing the key features of the e-store example.

In this example application we will consider that product prices can be per-
sonalized. Thus, different business rules that specify how the prices should
be personalized have to be provided.

4.2 Why is this case representative?

Nowadays, as it is recognized in current issues of ACM communications
[Cra] more and more emphasis is put on web-based applications. The main

32

shoppingCarts " | shoppingCart
Store >
Product
checkOut(Customer c) I
T
|
I products n | setPrice(Float price) n_products shoppingCart
: »| setName(String name)
|
| T
|
| I I
: E
|
|
I
|
: customers n | Customer
! dni
: name
| address
|
|
| 1| Account
| -
) creates| Checkout account | productsBought: int

checkOut(Customerc) | - - - - - - ~
|
I creates
|
n | checkOutSteps | orger
CheckOutStep
JAN
Paying Wrapping Shipping

Figure 4.1: Conceptual model for an e-store application

33

problem today regarding web systems is the impossibility to satisfy all the
heterogeneous needs of the many different users. Examples of this problem
are web courses that present the same static learning material to students
with different backgrounds about the subject, web e-stores that offer the
same featured items to customers that have different preferences and needs,
web museums that provides the same information to different visitors with
very different goals and interests. What is missing in most of current systems
is the ability to adapt themselves to the particular needs, interests, goals,
preferences, wishes of specific users or groups of users.

Generally, business rules capture the personalization issues representing the
information about how the adaptation should take place. It is important
to remark that due to the evolvable nature of e-commerce applications and
business needs, these rules evolve rapidly to reflect personalization require-
ments. This motivates the need to have them decoupled from the rest of the
application.

Thus, we believe that this case is a good example of an application that
needs to rapidly evolve to reflect changes in the business requirements.

Moreover, several approaches in the state of the art on business rules [IBMb]
[RDR*] [CRFS01] also consider e-commerce applications as representative
cases to illustrate the problems and needs when dealing with business rules.

Thus, we consider this example as a representative situation to illustrate
the problems concerning business rules. In this dissertation we will use this
application as the case study to base the examples on.

34

Chapter 5

Analysis of Business Rules

5.1 Different dimensions for the classification of
Business Rules

Business Rules can be classified according different criteria.

In the following sections different issues to take into account in the classifi-
cation of rules are presented.

5.1.1 Regarding the specification of the Business Rule

Conceptually speaking we can mainly classify the business rules in two dif-
ferent groups: constraints and “if then” business rules. The first ones state
certain conditions about some properties or relationships among business
objects that should be satisfied whereas the second ones specify certain ac-
tions to be performed when certain conditions are satisfied.

An example of a constraint can be “the age of a customer must be greater
than 18”. A constraint is an assertion that must always be satisfied in the
system. They can generally be expressed using some variant of logic like
first order or predicate logic.

The “if then” business rules specify statements of the form “IF condition
THEN action”. The antecedent generally resembles a constraint business
rule that represents the condition of the rule, i.e., the circumstances under
which the action specified as the consequent of the rule must be performed.
An example of “if then” business rule is: “if the customer buys the same
product more than 10 times, then apply 10% discount”.

Basically we can identify different kinds of conditions. Also the actions to
perform when the rule is applicable, i.e., when the condition is satisfied, can
be classified in different cases. We propose the following classification for
actions and conditions of business rules:

35

5.1.1.1 Conditions

We can mention two types of conditions:

e conditions that refer to structural situations:

These conditions are defined in the context of some business objects,
referring to a property that should be satisfied. For instance, a condi-
tion can check if “the age of the customers is greater than 18”. This
condition refers to a structural situation because it checks that the at-
tribute age, part of the structure of a customer object, contains some
value.

A special case for this kind of conditions occurs when they consider
checks on the types of objects, for instance, a condition that checks if
“the customer is a gold member”, where a gold member is an instance
of a class GoldMember.

e conditions that refer to contextual situations:

These conditions refer to situations that involve checks on dynamic
information. Generally this dynamic information defines contextual
paths of execution. As an example we can think of a condition that
checks if “the customer has performed some actions” before certain
other operations can be allowed. For instance, the shop can require the
customer to log in the system before he/she can perform a purchase.
Suppose the information that the customer has logged in the shop is
not kept as part of the structure of the customer, as an attribute.
Thus, to check this condition we have to explore the dynamic path of
execution of the customer.

5.1.1.2 Actions

We can classify the actions for the “if then” business rules as follows:

e additional functionality:

This additional functionality can either replace some existing behavior
or can be added as extra functionality after or before its occurrence.
For instance, when dealing with price personalization, we can imagine
a business rule that specifies as the action a new way to calculate the
price that “overrides” the original calculation.

But in other cases we just need to specify some extra behavior to be
performed before or after certain core application processes occur. For
instance, the rule “if a customer has bought more than 10 products,
then classify him/her as a frequent customer”. The classification of the
customer must be done after the customer buys the products. Thus,
this business rule specifies as its action some behavior that must be
executed after the confirmation of the purchase take place.

36

o structural additions:

Business rules can specify as their actions changes in the original struc-
ture of the system, through the definition of new attributes and meth-
ods that extend certain types defined in the original application.

For instance, the shop can consider a business rule that specifies: “if
the shop has sold more than 1000 products, then the customers can
start accumulating points in the shop”. This means that the customers
can start gaining points for each purchase they perform to get, using
the accumulated points, some extra benefits in the shop. To achieve
this new functionality, the class Customer should define a new behavior
to accumulate points. Thus, the method accumulatePoints(int points)
should be added in the Customer class.

e invocation of existing behavior:

The action of a business rule can consist of the invocation of a behavior
already defined in the core application. In this case, the rules need to
interact with the business objects that define the needed behavior.

For example, suppose the products define a behavior to increase their
price in some percentage. Thus, consider the business rule: “f a
product has been bought more than 100 times, then increase the price
of the product in 10%”. In this business rule, the action implies the
invocation of the existing method increasePrice(int percentage) defined
in the Product class.

e activation and deactivation of business rules:

Business rules can also take decisions about other business rules. For
instance, a business rule can select or deselect other business rules as
part of its action, i.e, it can activate or deactivate other business rules
to be considered or not when their application time arrives.

An example of this kind of rules is: “if the customer spent more than
100 euros in a purchase, then he/she gets a discount of 10% in the
next purchase”. When the condition of this rule is satisfied, a new
business rule stating “if the same customer buys a product, then ap-
ply 10% discount”, is activated to be considered when the prices are
personalized.

The presented classification of business rules into constraints and “if then”
rules corresponds to the natural way to think about business rules.

It is important to notice that even if both categories are conceptually dif-
ferent, they motivate the same issues to be taken into account for their
application and management (see 5.2). It is not the focus of this disserta-
tion to specially focus on constraints. Some research has been done [Str00]
[Ver01] on how constraints can be mapped to the implementation and how
their automatic validation can be ensured. In the rest of the dissertation we
will concentrate on “if then” business rules.

37

5.1.2 Regarding scope

Some rules are specified in terms of features that make reference to specific
objects: “the CD called Let’s talk about love by Celine Dion has a special
discount” is stating something about a specific product. These rules affect
specific business objects.

Rules can also be specified in terms of one or many common properties
of a group of business objects. For instance, “all the clients that pay with
visa card have a 10% discount” specifies a property that involves a set of
customers, the ones that have visa card.

Finally, there are rules that are “environmental”, i.e., they do not depend on
characteristics of specific business objects like products or clients but they
depend on general situations or conditions that are global to the system.
For instance “the anniversary day of the shop, all the products have a special
discount of 5% specifies a rule that needs to check for the current date that
is part of the environmental information.

Notice that some rules can mix different scopes of information needed. For
instance, “if today is San Valentine’s day, then all the CDs of love have a
10% discount” is a rule that uses the environmental information about the
date and also defines a property that affects a set of objects,i.e., the CDs
with theme love.

Notice that, if we are using traditional object-oriented approaches for the
management of business rules, the previous classification of the rules accord-
ing to their scope motivates the need for defining the ownership of the rules.
As it was motivated in the introduction of this dissertation, when dealing
with rules at different levels of scope we need to decide where to place the
rules to avoid redundancy. A rule that specifies some business decision in-
volving products and customers at the same time, should be placed in the
Product class, in the Customer class? Which are the links between the rules
and the core business objects involved in their specification? As it is pre-
sented in the following chapter, the approach we present in this dissertation
completely factors out the business rules from the rest of the application,
which makes it unnecessary to define who owns the business rules. In our
approach rules do not need to be placed in specific business objects because
they are defined separately from the core application. They are connected
with the rest of the application code in the places where they have to be
applied.

5.1.3 Regarding life time

The following situation motivates the idea of having business rules that have
other business rules as actions. Suppose this example business rule:

“if a customer buys a CD in the category of classical music, then he/she

38

gets a discount of 15% on the next classical music CD”.

In this rule, the condition defines that “the customer buys a classical music
cd”, and the consequent can be seen as another business rule that says
that “if the same customer buys another classical music CD, he/she gets
the discount of 15%”. We call the business rule that is specified as the
consequent dependent business rule, because it is applied only if the outer
rule was applied and its condition satisfied. Thus, its application depends
on the result of the application of its enclosing rule.

Therefore, we can consider that business rules have life time. Some rules
are always active whereas other rules become active through the execution
of other business rules. Moreover, the dependent business rule can remain
active after its occurrence or it can become inactive under certain conditions
as well. All these situations themselves are controlled by the specification
of other business rules.

We can think of many situations to determine the life time of the business
rules that are activated by other business rules. For instance, if the de-
pendent business rule is activated, we could consider the business rule that
activated it inactive until the dependent business rule is applied once, or
both can remain active at the same time, or any other situation as well.

The fact that rules can define other rules as their actions or consequents
implies different cases for the application time of the final action specified
in the business rules. On one hand, there are rules whose actions must take
place at exactly the same time the rule is applied. For instance, the rule:

“if a client buys more than 10 books at the same time, he/she gets a 20%
discount”

must be applied when the price is calculated and the action, i.e., the dis-
count, should be applied at that moment as well. On the other hand, there
are other rules whose effect or action must take place later, when another
situation occurs. In the example rule presented before where a discount is
specified for the second time a CD of classical music is bought by the same
customer, the discount should be applied later on, when a new situation
occurs, that is, when the customer buys another CD of classical music.

5.2 Requirements and Features needed for Busi-
ness Rules

5.2.1 Business Rules as first class entities

Rules need to be explicitly represented in the software to facilitate their
management. Moreover, it is desirable to have business rules decoupled
from the rest of the application. Decoupling and treating them as first class
citizens would allow us to keep the application software more adaptable.

39

Ideally it should be possible to plug, remove, change and refine the rules
without affecting the core application, both statically and dynamically.

5.2.2 Dynamic join point model

As it was mentioned in the introduction, we want to model business rules
as decoupled as possible from the core business objects. Nevertheless, after
having decomposed the core application on one side and the business rule
logic on the other side, we want to compose or weave the two parts together
in order to obtain an operational software application that behaves in the
desired way. We need a dynamic join point model where we can capture
very well-defined points in the execution of a program to specify the exact
moment a business rule should be applied. In this way, we would be able to
insert the business rules in specific dynamic places in the core application.

The power of a dynamic join point model is needed for the specification of
the following features:

5.2.2.1 Identification of the application time

The business rules must be applied when certain situations occur. Generally,
these situations correspond to well-defined points in the core business logic.

For instance, we would like to capture the point in the execution of the
program when the price of a product is being calculated to apply at that
time certain business rules that define different policies to personalize the
price. Or we might need to identify the moment when a customer navigates
the recommended items of the shop to trigger the application of a rule that
personalizes the recommended products offered to that specific customer.

5.2.2.2 Context sensitive application

The business rules might be applied within a certain context. This means
that when the moment for the application of a business rule arrives, we will
take it into account and apply it only if we are in the situation described by
the context.

As an example let’s consider the following business rule:

“If the customer is buying more than 10 products, then apply 10% of dis-
count”.

Suppose it is desired to apply the discount only for the products that are
being considered in the checkout process and not for any arbitrary price
calculation. Thus, the context for the application of this business rule is
defined by the check out process. If the price of the same products is cal-
culated outside the context of the checkout process, for instance when the

40

customer is browsing the products of the store, looking the catalog of the
shop to decide what to buy, the discount should not be performed and thus,
the rules not applied.

5.2.3 Information needed for the application
5.2.3.1 Environmental information vs. specific business objects

When applying a business rule we might need to use different kinds of in-
formation. A business rule might need to use environmental information,
always available in the system but it might also need to interact with differ-
ent business objects either to check the condition or to perform the action.
Thus, it is important to have the necessary mechanisms to identify the ob-
jects that contain the information needed and make them available for the
rule at the moment it has to be applied.

For instance, in the rule that states “if today is the birthday of the customer,
then apply 5% of discount”, both the customer and product business objects
and also the environmental information about the current date are needed
for its application.

5.2.3.2 Non-invasive extension of unanticipated information

When dealing with business rules, two kinds of information can be identified:
the one that defines the core basis and that is intended to be kept by business
objects defined in the main application and the information that is only
needed by the business rule logic.

As it is recognized in [CRFS01], business rules might need for their appli-
cation extra information that was not previously identified when the core
application was developed. Thus, it is important to keep track of that infor-
mation, explicitly represent it and make it accessible for the business rules
when they are applied. This information should be clearly separated from
business objects and should grow in a transparent way. It is important to no-
tice that most of this information is generated by core business operations,
e.g., buying a product, adding a product to the shopping cart. Thus, a
mechanism to intercept these business processes and capture, maintain and
evolve the required information is needed, possibly through the addition of
new code, extending existing business objects or identifying and introducing
new abstractions. Dynamic crosscutting would be very useful in this sense
to express more accurately these points of interception. Static crosscutting
is needed as well to extend existent types with the new structure required
to keep the unanticipated information.

Suppose the shop would like to offer its customers some price reductions de-
pending on their buying history. In this case, business rules would need to
specify some decisions based on the amount of products previously bought

41

by the customer. Suppose the amount of products bought by a customer
corresponds to information not anticipated from the beginning and needed
only for the business rules. Thus, it should be kept apart from the core appli-
cation. This historical information represents the information needed by the
business rule logic and should be added non-invasively into the application.

5.2.4 Dealing with interferences between rules

First of all we need to identify and decide which kind of conflicts are im-
portant to be considered in the context of this dissertation. Basically we
will focus on the conflicts that appear at the business level, when different
business decisions to be applied at a certain moment can conflict or interfere
with each other.

For instance, suppose that during certain periods of time, it might be the
case that the company decides to consider specific sales for certain products
and to apply as well certain global policies in the calculus of the price.

At this point, when combining several rules, conflict problems can occur.
As soon as there is more than one applicable rule that describes what to
do under certain circumstances, some decision to solve the conflicts must be
taken to decide effectively which action to take.

Let’s consider the following rules:

AmountBR: “if a client buys more than 10 books, then he/she
gets a 20% discount.”

ChristmasBR: “if today is Christmas, all the products in the shop
have a 10% discount”

What will happen if a client buys more than 10 books on the Christmas
day? Should he have a 10% and then 20% discount? Or will only one of
them be applied? This example represents a conflicting situation where a
decision should be taken to solve the interference. Thus an appropriate de-
sign structure for handling conflicts must be part of the global design of
business rules. Moreover, it should be possible to change the policy that
decides how to solve the conflict in a non-invasive way. Maybe today busi-
ness considerations imply that it is better to consider the application of the
AmountBR in case both rules are applicable, but maybe tomorrow business
decisions change and the application of the other rule or even of both is
more appropriate.

There are different desired issues to take into account regarding the inter-
ference or conflicts between rules:

42

5.2.4.1 Composition issues decoupled from business rules

We want to be able to decouple the details of how to combine the business
rules from the specification of the business rule itself.

As we saw in section 5.1.1, a business rule can specify only a constraint to be
satisfied or a certain action to perform when a certain condition is satisfied.
All the other considerations about how to compose business rules should be
considered separately to facilitate their management.

For instance, suppose that we have several business rules each customizing
the price in a certain way. Depending on the needs we would like to combine
them by means of concatenating the discounts, or just choosing the biggest
discount or applying other criteria. The way to combine them should be
specified independently from the business rules that are being combined.
However, the combination of rules should also be specified as part of the
business logic.

5.2.4.2 Dynamic selection of combination strategies

Ideally it should be possible to combine the rules adopting different strategies
and selecting between them depending on dynamic situations.

As an example suppose that different ways to combine rules that person-
alize the price of a product are provided and that the selection is made at
run time according to some dynamic information. For instance, if the cus-
tomer that is currently buying a product is a frequent customer of the shop,
then a strategy that chooses the biggest discount among the applicable ones
specified by different rules is preferable; otherwise, if the customer is not a
frequent one, a strategy where only the lowest discount would be applied is
chosen.

Or for instance the shop can decide to apply a certain combination of policies
depending on how much money the customer has spent in the shop.

To conclude with, notice that regarding the combination of business rules,
two different levels can be defined. On one hand the basic mechanism con-
sists of specifying which actions to take when two business rules are applied
and both conditions are satisfied. On the other hand, and more sophis-
ticated approach is the one where the mechanism is chosen depending on
dynamic conditions. Notice as well that these conditions used for the deci-
sion of which combination strategy to select, do not necessarily have relation
with the conditions of the business rules themselves.

43

5.3 Relationships between business rules

It could be the case that the application of one business rule can have im-
pact on the validity of other business rules. For instance, “if the customer
made purchases for more than X money, then the customer is classified as
a privileged one”, meaning that he/she gets more benefits. The fact that
now the customer is considered a privileged one might be used later, in the
application of other business rules.

Other situations where the relations between the rules should be analyzed is
the triggering of rules. Suppose that the application of one business rule can
trigger the application of other business rules. For instance, suppose the rule
that states “if the price is smaller or equal to 90, then apply a 20% discount”
and another one saying that “if it is Christmas, then apply a 10% discount”.
Suppose that only the condition of the second rule is satisfied for a given
product and that the price of the product is 100. Then the second rule is
applied obtaining a new price of 90; but immediately after this application,
the condition of the first rule is satisfied as well. The question is, what to do
in this context? The conflict resolution mechanism must specify the logic of
mixing the business rules considering the impact of the application of some
rules on the applicability of other rules. The same way the application of a
business rule can make valid another business rules, the opposite can occur:
after applying one rule, others can become not applicable anymore. All
these issues have to be analyzed when dealing with rules that can influence
each other.

After having analyzed and described all the necessary ingredients required
for the management of business rules as well as the different forms of condi-
tions and actions that can be considered, we now focus on studying which
mechanisms are the most appropriate to deal with the identified issues.

In the following chapter we present generic solutions to deal with most of the
identified problems and requirements identified and analyzed in this chapter.

44

Chapter 6

AQOP for Business Rules

Aspect-Oriented Programming provides a mechanism to explicitly capture
crosscutting structure, thus being able to express crosscutting concerns in
a modular way. For this reason we decided to explore its suitability for
the decoupling and management of business rules. For practical considera-
tions we have chosen AspectJ as a concrete example of an aspect-oriented
programming language to base the experiments on.

As a first attempt it seems natural to model the core application with objects
and the business logic with aspects. However, we found that it is only
the connectivity between the core application and the business logic that
requires the weaving power of AspectJ whereas the conditions and most
actions of the business rules can be expressed using objects.

Moreover it is desirable to keep the business logic as reusable as possible.
For instance, we would like to develop a set of business rules that personalize
the price of products in an e-store and use them in many different e-store
applications. Because of that and due to the complexity of business logic
we think it is better to use all the power of object-oriented paradigm to
model business logic. Thus, in our approach both the core application and
the business rules are expressed as objects and we use aspects developed in
AspectJ for connecting the rules with the core application.

In the following sections we will describe some design decisions to consider
for each of the issues involved in the management of business rules (see 5)
and a detailed description of the necessary ingredients for the decoupling,
configuration and application of business rules. A generic solution is pro-
vided for each of the considerations and illustrated with examples from the
case study application.

These generic solutions represent an important contribution of this thesis.
They can be used as methodological guidelines for the decoupling of business
rules and their weaving in a software application.

45

6.1 Design decisions

In this section we will explain the general design decisions taken for the
solutions presented in this chapter.

As we mentioned before, both the core application and the business rules
will be expressed in objects. We will follow the idea of the rule object pattern
[Arsa] to model the business rules. Aspects defined in AspectJ will be used
for the connectivity and configuration layer. Several aspects must be defined
for the different considerations involved as part of the connectivity layer:

First of all, we need to define aspects to make explicit the moment when a
rule or set of rules has to be applied. We named this moment business rules
application time (see 6.2). Three cases can be distinguished: in the simple
case, the application time identifies a point in the execution of the core
application where the application of the rules needs to be triggered; other
more sophisticated cases occur when we need to restrict the application of
a rule or set of rules to specific contexts. These contexts can be defined
directly (situation where the application time occurs within the scope of
certain method) or indirectly (when the application time occurs within a
specific control flow).

Secondly, we also need to determine the kind of information needed by the
rules for their application and define the needed aspects to make it accessible
for the rules to be applied (see 6.3). Four cases can be encountered: the
rules can need information that is available and reachable at the moment
when the rules are applied; or it can occur that the rules need specific
business objects that are not reachable at the moment of their application;
the rules can also use environmental information always available in the
system; finally, non-anticipated information, i.e., information that was not
foreseen nor represented in the core application can be needed as well.

After defining the two previous issues, we need to put all the pieces together
in another aspect that triggers the application of a rule or set of related rules
when the corresponding application time arrives (see 6.4). Different ways to
define and instantiate this aspect are presented depending on whether we
need to apply only one rule or a set of rules at the same time, whether we
need to provide support to combine rules and to solve the conflicts that can
arise between them and also whether the way to solve the combination of
rules must depend on conditions based on dynamic information.

Thus, any rule that needs to be applied will imply the definition of several
aspects for the three main issues just described before, i.e., identification
of application time, provision of information needed for the application and
triggering of the rules at a certain point in time. All these aspects combined
together form the connectivity layer in between the core application and the
business rules themselves.

In Figure 6.1 we present an illustrative diagram of the different layers iden-

46

tified in the decoupling of business rules and their connectivity with the core
application.

Core application +— | <+— Connectivity layer — — Business rules
e _,-_7_-—-—7--*'| ApplicationTime P BusinessRuleA
= N BusinessRuleB
| ApplicationOfBusinessRules
BusinessObjectAJ* - CombinationStrategy | BusinessRuleN

|
I
|
|
|
I
I
I
|
|
|
|
I
I
|
|
|
|
I
|
|
N ~ o -
Nt ~ —~
‘ .
\
I
|
|
I
I
|
|
|
|
I
|
|

\
\

. | CaptureBusinessObjectForBusinessRuleN

\

\

\
\
\
\
\
\
\
\

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
~ -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*{ ExtendedBusinessObjectA

Figure 6.1: Different layers for the decoupling of rules and their connectivity

In the rest of the chapter we will present generic solutions for each of these
issues considering the different cases that can be encountered for each of
them. At the end of this chapter we also describe some special cases of
business rules. In particular we analyze rules that perform checks on types
of objects 6.5.1 and rules that take decisions about other rules 6.5.2.

6.2 Identification of the application time

Considering the moment when a business rule should be applied we can
distinguish two cases:

6.2.1 Basic application time

Each business rule must be applied when some situations occur. Generally,
these situations correspond to well-defined points in the core application.
Typically business rules need to be applied when some behavior is invoked
in the core application or when some operations involving the structure of
some business objects are performed, by accessing or setting structural fields.

We need to be able to precisely identify and explicit these points in the
execution of the program to trigger the application of the rules.

Solution

We can precisely identify the points in the core business application when

47

the business rules have to be applied by means of the definition of a pointcut
in an aspect. As we saw in 3.4.2.2, a pointcut picks out join points, as well as
data from the execution context of those join points. Thus, we can apply the
business rules when any of the situations that can be captured in pointcuts
occurs, i.e., at any of the nodes in the runtime object call graph described
in 3.4.2.2.

The aspect that contains the definition of the pointcut that identifies the
application time corresponding to a method invocation is shown in Figure
6.2. Notice that the grey boxes correspond to aspects whereas the white
ones correspond to classes.

Core application 4—: <4 Connectivity layer — =——p- :—) Business rules
|

BusinessObjectTypeA BusinessRulel

|

|

BusinessRulesApplicationTime :

/ | BusinessRule2
|
|

| .
| .

|
| .

|

|

|

TriggeringMethod

[

“calls tb the method that triggers
the application of the business rules”
I

BusinessRuleN

|
I
I
aspect BusinessRulesApplicationTime{

pointcut triggeringMethod(BusinessObjectTypeA, Typel argl,..., TypeN argN):
target(o) &&

call(ReturnedType BusinessObjectTypeA.triggeringMethod(Typel...., TypeN)) &&
args(argl,..., argN);

Figure 6.2: Application time of business rules

The business objects that form part of the execution context of the captured
join points in the core application might be exposed in the pointcut, as its
formal parameters. For instance, suppose the core business process that
identifies the application time corresponds to a method invocation. In this
case, the pointcut can expose the business objects that correspond to the
target object and arguments of the method (as shown in Figure 6.2). What
should be actually exposed depends on which of those business objects are
needed for the application of the business rules.

Example

48

For instance, consider that the shop specifies business rules for the personal-
ization of product prices. Thus, these business rules should be applied when
the price of the product is being calculated.

We need to define an aspect that declares a pointcut for picking up the
moment when the method for the calculation of the price is being called.

aspect WhenToPersonalizePrice{

pointcut priceCalculation(Product p):
target (p) && call(Float Product.getPrice());
}

6.2.2 Contextual application time

In the previous section we have identified the dynamic points in the core
business application when the rules have to be applied. However, sometimes
only the identification of those points might be not enough to accurately
express the desired moment for the application.

For some business rules it might be needed to restrict their application to
certain contexts, i.e., certain situations that depend on dynamic information.
Two cases can be identified for the situations described by the context:

6.2.2.1 Direct contextual application time

This case identifies the situation where the join points picked up by the
pointcut that describes the application time, occur within the scope of cer-
tain method (the contextual method). This means that the invocation of
the method involved in the application time is performed within the code of
the contextual method.

Solution

We can specify the situations that describe the context for the application by
means of extending the aspect for the application time with another point-
cut. This new pointcut restricts the join points captured by the application
time pointcut to those occurrences within the desired context. Thus, this
pointcut should perform the logical and operation between the application
time pointcut and the joint point that describes the contextual situation.

Using the feature withincode provided by AspectJ we can restrict the oc-
currence of the pointcut for the application time controlling that it occurs
within the code of another method, the contextual one. Figure 6.3 shows a
scheme of this solution.

Example

49

Core application <4+ ! —p Business rules

: 4 Connectivity layer =
I

BusinessObjectTypeB

“calls {o the method that triggers BusinessRulel

ContextualMethod the application of the business rules”
|

| BusinessRule2

|

|

|

|

|

|

|

BusinessRulesApplicationTime | |
| |
|

|

|

|

|

|

ol |
|
T "in the:context of the contextual method"

objA.triggeringMethod(...)

BusinessRuleN

aspect BusinessRulesApplicationTime{

pointcut triggeringMethod(BusinessObjectTypeA, Typel argl,..., TypeN argN):
target(o) &&
call(ReturnedType BusinessObjectTypeA.triggeringMethod(Typef1,..., TypeN)) &&
args(argl,..., argN);

pointcut triggeringMethodInContextOfContextualMethod
(BusinessObjectTypeA,ArgTypel argi,..., ArgTypeN argN):
triggeringMethod(objA, argl,..., argN) &&
withincode(BusinessObjectTypeB.contextualMethod(...));

Figure 6.3: Contextual application time: context expressed using withincode

For instance, consider that we want to restrict the application of the price
personalization rules and apply them only when the customers are perform-
ing the checkout process, confirming the purchase of the products already
added to the shopping cart. Thus, the application time is identified by the
invocation of the price calculation from within the body of the checkout
method:

aspect WhenToPersonalizePrice{

pointcut priceCalculation(Product p):
target (p) && call(Float Product.getPrice());

pointcut priceCalculationInCheckOut (Product p):
withincode(public Float CheckOut.checkOut(Customer))
&& priceCalculation(p);

This aspect, by means of the pointcut priceCalculationinCheckOut, defines
“when” and “in which context” the business rules that personalize the price
must be applied.

50

6.2.2.2 Indirect contextual application time

This case identifies the situation where the join points for the application
time, occur after the invocation of a certain method (the contextual method)
and within its control flow. It identifies the situation where the join points
are originated indirectly from the contextual method.

This case is a general case for the first one, because if one method is invoked
within the body of another method, it is invoked within its control flow
as well. Nevertheless, to be complete a solution for this case will also be
provided.

Solution

For this case we also need to define an extra pointcut that restricts the join
points captured by the application time pointcut to those occurrences within
the desired context. But in this case we need to control that the pointcut
for the application time occurs within the control flow of the execution of
the contextual method. AspectJ provides the primitive cflow that can be
used to exactly achieve this (Figure 6.4):

Example

Consider the previous example as in 6.2.2.1. We can also restrict the ap-
plication of the price personalization rules to the context of the checkout
process using the cflow primitive:

aspect WhenToPersonalizePrice{

pointcut priceCalculation(Product p):
target (p) && call(Float Product.getPrice());

pointcut priceCalculationInCheckOut(Product p):
cflow(execution(Float CheckOut.checkOut(Customer)))
&& priceCalculation(p);

Notice that this construct using the primitive cflow will also capture the
desired situation when the checkout method calls the priceCalculation indi-
rectly. Thus, it is more powerful than the construct using withincode.

6.3 Information needed for the application

To determine whether a rule must be applied or not as well as to execute
its action, collaborations with certain specific business objects or with any
other information available in the system might be needed. In the following

ol

Core application 4= 4— Connectivity layer =% | == Business rules

BusinessRulel
ContextualMethod

|
|
|
BusinessObjectTypeB |
|
|
|
|

i BusinessRule2
AnotherMethod1

BusinessRulesApplicationTime

|
|
|
AnotherMethod1 |
|
|

BusinessRuleN
AnotherMethod2 “calls to the method that triggers

the application of the business rules”
AnotherMethod?2

objA.triggeringMethod(...)

|
:
|
]
|
|
|

aspect BusinessRulesApplicationTime{

pointcut triggeringMethod(BusinessObjectTypeA, Typel argl,..., TypeN argN):
target(o) &&
call(ReturnedType BusinessObjectTypeA.triggeringMethod(Type1,..., TypeN)) &&
args(argl,..., argN);

pointcut triggeringMethodInContextOfContextualMethod
(BusinessObijectTypeA, Typel argl,..., TypeN argN):

triggeringMethod(objA, argl,..., argN) &&
cflow(execution(... BusinessObjectTypeB.contextualMethod(...))

Figure 6.4: Contextual application time: context expressed using cflow

92

section we identify and classify the possible cases that can occur regarding
the information needed for the application of the business rules.

This difference in the information required by the business rules will have
to be taken into account at the moment the business rules are applied.

6.3.1 Environmental information

As it was identified in 5, there are business rules that are defined at an
environmental scope. These business rules need for their application some
system information, i.e., information that is always available in the system.

Solution

As the information needed for these business rules is always reachable in the
system, no extra mechanisms are needed to obtain it. The rules can directly
access and use this information for their application.

Example
Suppose we consider the rule that states:
“if it is Christmas, a 5% discount is applied over the price of any product.

The rule needs to obtain the current date to check its condition. Thus, as
the current date is part of the system information always available, the rule
can use that information in its specification.

public class ChristmasBR{
private boolean isChristmas(){

//returns true if the current date
//corresponds to Christmas date

}

boolean conditionForCustomizingThePrice(){
return isChristmas();

}

Float personalizePrice(Float price){
return (new Float(price.doubleValue() -
price.doubleValue() * 0.05));

Float apply(Float price){
if (conditionForCustomizingThePrice())
return personalizePrice(price);
else return price;

93

Notice that these business rules do not keep any state because they do
not need to keep any specific information needed for their application. As
only one instance of them is needed they can be implemented as singletons
[GHJV95].

6.3.2 Business objects available at the application time

Some business rules might need for their application specific business ob-
jects. We need to capture those objects to be provided to the rules for their
application.

Suppose the business rules need for their application some business objects
that are reachable at the moment the rules are applied.

Solution

As we described in 6.2, the pointcut that identifies the application time for
the business rules can expose the objects that are part of that execution
context. These exposed objects might be needed for the business rules to be
applied. Thus, we need to supply them to the rules for their application.

Notice that if we are dealing with a business rule that replaces the original
execution of some existing behavior with a new functionality, the original
return value (the value that would have been returned without considering
the current rule) might be needed for its application. In this case, this
value can be captured during the application of the business rule (using the
AspectJ primitive proceed) and passed to the rule at the moment of the
application.

To conclude, during the application of a business rule, either the business
objects exposed by the application time pointcut as well as the original
returned value (for the case of business rules that replace core behavior) can
be passed to the business rules to be used in their application.

Example
Consider the following business rule:

“f the product has been offered in the shop for sale for more than one year
then a discount of 10% is applied to its price”.

This rule must be applied when the price of a product is being calculated,
i.e., when the method getPrice() is invoked. As the target of this method is
the product that is being bought, the product is available at that application
time and thus exposed by the corresponding pointcut to be passed to the
rule during its application.

o4

public class ProductReleaseDateBR{

boolean conditionForCustomizingThePrice(Product product){
//returns true if the date of the product release
//is more than one year ago;

}

Float personalizePrice(Float price){
return (new Float(price.doubleValue()
- price.doubleValue() * 0.1));

Float apply(Product product, Float price){
if (conditionForCustomizingThePrice(product))
return personalizePrice(price);
else return price;

}

X

6.3.3 Business objects not available at application time

Some business rules might need for their application specific business ob-
jects. Suppose the business rules need business objects that are not avail-
able at their application time, i.e., they need business objects not possible
to be captured and exposed during the application time. We need somehow
to capture those objects when they are still reachable and pass them to the
rules to be used during the application.

Solution

We need to define aspects to capture those needed business objects at the
moment they are still available. This “moment” corresponds to a well-
defined point in the execution of the program and thus it can be captured
with a pointcut. As part of a piece of after advice on that pointcut, a new
instance of the business rule that needs that information is created, the
captured business objects are passed to this new instance and the linking
with the correspondent instance of the application aspect is performed.

Notice that, contrary to the rules that only use environmental information
or objects reachable during the application time, these rules have a state
because they have to keep the needed objects as instance variables. Thus
they cannot be implemented as singletons; several instances of this kind of
rules are needed. Figure 6.5 shows an schematic diagram of the solution.

Example

Suppose we consider the AmountBR business rule:

95

Core application 4= ' 4= Connectivity layer =% | = Business rules

BusinessObjectTypeA |—=- ConcreteBusinessRule

~ -
~ | -
~ e
-
.-
~ -

|
|
|
|
X | | >
|
|
!
|

I 7

: I
| CaptureBOForConcreteBusinessRule :
| |
| |
| |

aspect CaptureBOForConcreteBusinessRule{

pointcut captureBO(BusinessObjectTypeA bo):
/lthe business object needed can correspond to one argument of some method:
call(someMethod(BusinessObjectTypeA)) && args(bo);

/lor can also correspond to the target of some method:
call(BusinessObjectTypeA.someMethod(...)) && target(bo);

before(BusinessObjectTypeA bo): captureBO(bo){
ConcreteBusinessRule concreteBusinessRule = new ConcreteBusinessRule();
concreteBusinessRule.setBusinessObject(bo);
ApplicationOfConcreteBR.aspectOf().setBusinessRule(concreteBusinessRule);
}
}

Figure 6.5: Capture Business Objects needed for the application of the
business rules

o6

“if a customer has bought more than 10 items, he gets a 20% discount on
the current purchase”.

This rule is stating a condition about the buying history of the customer
that is currently performing the purchase. Thus, the customer is needed to
be able to apply the rule. But the customer cannot be captured and exposed
at the application time because it is not reachable at that pointcut (i.e., at
the moment the method getPrice() is invoked). For this reason, we need to
define a new pointcut that picks up a join point in the execution when the
customer is still available in that context and provide it to the business rule.
The business rule needs to keep this business object as part of its state.

A new aspect definition is needed to define this new pointcut:

aspect CaptureBOForAmountBR{

pointcut checkOut(Customer c):
call(public Float CheckOut.checkOut(Customer)) && args(c);

before(Customer c): checkOut(c){
AmountBR amountBR = new AmountBR();
amountBR.setCustomer(c) ;
ApplicationOfBRForPrice.aspect0f () .setBusinessRule (amountBR) ;
+
}

public class AmountBR{
Customer customer;

public void setCustomer(Customer customer){
this.customer = customer;

}

boolean conditionForCustomizingThePrice(){
return (customer.getAccount().getBuyedProducts() > 10);
}

Float personalizePrice(Float price){
return (new Float(price.doubleValue()
- price.doubleValue() * 0.2));

Float apply(Float price){
if (conditionForCustomizingThePrice())
return personalizePrice(price);
else return price;

o7

In this code, ApplicationOfBRForPrice refers to the aspect that defines the
application of the rule (see below 6.4). For this kind of business rules the
aspect for their application cannot be implemented as a singleton, as it is the
case for the rules without state (see 6.4.1). A one to one relationship between
the instances of the business rule and the instances of the application aspect
is needed. Observe that in the advice defined in CaptureBOForAmountBR
aspect, ApplicationOfBRForPrice.aspectOf() picks the right aspect instance
to be associated with the right business rule instance.

6.3.4 Unanticipated information

There are business rules that need to consider for their specification infor-
mation that is not represented in the core application. Usually this extra
information is not explicitly modelled in the original application due to the
fact that it is considered to reflect changes in the business decisions that were
not anticipated from the beginning, when the original application was devel-
oped. It is not possible to predict all the potential changes in the business
considerations that might occur and thus, some support to express these
extra considerations is needed. Moreover, a non-invasive way to achieve this
extension is desirable.

Solution

The solution consists of the definition of aspects that extend the correspond-
ing business object types with the extra information needed by the business
rules. This can be achieved using Introduction, AspectJ’s static crosscutting
mechanism. The extra information can be added as instance variables or
methods. To deal with this new information, extra business rules might be
defined to determine when and how to manage and update it (see Figure
6.6).

Example

Suppose the shop wants to classify the customers depending on the buying
history of the customers. Thus, a new business rule is considered stating
that:

“if a customer bought more than 10 items in the shop, then consider him/her
as a frequent customer of the shop”

This business rule somehow is classifying the customers in roles (frequent or
not frequent role) depending on dynamic conditions, i.e., depending on the
amount of products bought by the customer.

To achieve this classification it is necessary to extend the Customer type
with the addition of a flag that specifies the frequent customer role. This is

o8

Core application =~ 4= 4 Connectivity layer - —P Business rules

BusinessRulel

BusinessObjectTypeA [— — — — ExtendedBusinessObjectTypeA

|

|

|

|

|

|)
| BusinessRule2
|

|

|

|

|

|

aspect ExtendedBusinessObjectTypeA{
BusinessRuleN

/[definition of fields to extend the type BusinessObjectTypeA
BusinessObjectTypeA .field1;
BusinessObjectTypeA . fieldN;

/[definition of methods to extend the type BusinessObjectTypeA
BusinessObjectTypeA.method1(...){...};

BusinessObjectTypeA.methodN(...){...};
}

Figure 6.6: Unanticipated Information
achievable by means of Introduction in AspectJ.

aspect ExtendedAccount{
private boolean Account.frequent = false;
public boolean Account.isFrequent(){

return frequent;

}

public void Account.becomeFrequent (){
this.frequent = true;

}

}

In this example, the update of this added field is regulated by the previously
mentioned business rule whose implementation is shown as follows:

public class FrequentCustomerBR{

boolean condition(Customer customer){
return (customer.getAccount().getBoughtProducts() > 10);

}

void action(Customer customer){

99

customer.getAccount () .becomeFrequent () ;

}

void apply(Customer customer) {
if (condition(customer))
action(customer);

}
}

Each time a customer performs a checkout to confirm a purchase, the appli-
cation of this business rule is triggered. Thus, the application time for this
rule is defined as follows:

aspect FrequentCustomerBRApplicationTime {

pointcut checkOut(Customer c):
args(c) && call(Float CheckOut.checkOut(Customer));
}

Notice that the customer, object needed for the application of the rule, is
available and exposed by the pointcut checkOut to be used by the rule. Refer
to 6.4.1 to see the definition of the application of this type of rules.

6.4 Application of business rules

The application of a business rule depends on the kind of consequent the
business rule defines (see 5.1.1.2). Depending on whether the business rule
defines an additional functionality that replaces an existing one, or that is
added after or before an existing behavior, or defines an structural change,
the application aspect will be different.

Moreover, the kind of business rule according to the scope (environmental
information, specific business objects...) also influences the way the appli-
cation of the rule needs to be defined: the fact that the rule needs to keep
additional business objects as part of its state will influence the way the
application aspect will be instantiated.

6.4.1 Application of only one business rule

As a first case, suppose we need to apply only one business rule at a given
application time.

Solution

60

The suggested solution consists of the definition of an aspect for the speci-
fication of the business rule application. This aspect declares an advice on
the pointcut that specifies the application time. In that piece of advice the
application of the business rule is performed. The type of advice, i.e., if
it is a before, after or around advice, depends on the kind of business rule
is being applied (additional behavior, replacing one, etc.). Moreover, the
instantiation of the application aspect will differ depending on the scope of
the business rule.

Let’s consider all these variations.

Regarding the kind of action specified in the business rule:

e the business rule replaces an existing behavior with the new function-
ality defined as the action of the rule:

For this kind of business rule, as we need to preempt the normal ex-
ecution and replace it with the new functionality, the advice defined
in the application aspect must be an around advice. The value that
the replaced method originally returns is obtained using the primitive
proceed and passed to the rule to be eventually used in its application
(Figure 6.7).
Core application ¢

<4— Connectivity layer =¥ =% Business rules

BusinessRule

ApplicationOfBusinessRule

v

BusinessRuleApplicationTime

aspect ApplicationOfBusinessRule {
static BusinessRule businessRule;

static public void setBusinessRule(BusinessRule br){
businessRule = br;

}

ReturnedType around (Type1 argi, ..., TypeN argN):
BusinessRuleApplicationTime.triggeringMethod(arg1, ..., argN) {
ReturnedType originalValue = proceed(argl, ..., argN);
return (ReturnedType) businessRule.apply(originalValue);

}
}

Figure 6.7: Application of one business rule that replaces an existing behav-
ior

61

Example

Generally, a rule that personalizes the price of products defines, as its
action, a new behavior that should replace the normal way the price is
calculated. For instance, the ChristmasBR business rule is applied as
part of an around advice (see 6.4.1) where first the original product
price is obtained and then the rule is applied using that value.

e the business rule defines as its action a new functionality to be added
before or after some existing behavior.

For this kind of business rules the application of the rules needs to be
specified as before or after advices (Figure 6.8).
Core application 4=

+~— Connectivity layer ~ =% | ==§ Business rules

1
BusinessRule

ApplicationOfBusinessRule

v

BusinessRuleApplicationTime

aspect ApplicationOfBusinessRule {
static BusinessRule businessRule;

static public void setBusinessRule(BusinessRule br){
businessRule = br;

}

ReturnedType before/after(Type1 argl, ..., TypeN argN):
BusinessRuleApplicationTime.triggeringMethod(arg1, ..., argN) {
return (ReturnedType) businessRule.apply(originalValue);

}
}

Figure 6.8: Application of one business rule that adds new behavior

Example

Consider the rule presented before for the classification of the cus-
tomers into frequent and not frequent roles:

“if a customer bought more than 10 items in the shop then consider
him/her as a frequent customer of the shop”

This business rule is defining some functionality to be performed after
certain business operations take place. In this case, after the customer
buys some products, we need to check if he/she satisfies the condition
to be considered as a frequent one. We need to apply the rule after the
customer confirms the purchase. Thus, the application of the business
rule is defined as part of an after advice.

62

aspect ApplicationOfFrequentBR{
static FrequentCustomerBR frequentCustomerBR;

static public void setBusinessRule(FrequentCustomerBR br){
frequentCustomerBR = br;

}

after (Customer c):
FrequentCustomerBRApplicationTime.checkOut (c){
frequentCustomerBR.apply(c);
+
}

Regarding the information needed by the rule for its application:

Two cases can be distinguished: the application of a rule that only needs
information available at the moment of the application and the application
of business rules that have a state (composed by certain business objects
captured previously to the application).

As the aspect that defines the application of a business rule needs to know
the rule that it has to apply, we might need different instances of that aspect
if different instances of the rule can exist:

e A business rule that only uses environmental information or business
objects reachable at the moment of its application does not need to
keep any state. It just defines the corresponding behavior for its con-
dition and action. Thus, as only one instance of this rule is needed,
only one instance of the aspect that defines its application is needed
as well.

This implies that the application aspect can be defined as a singleton
(AspectJ by default considers the definition of an aspect as a singleton.
Figures 6.7 and 6.8 illustrate the default definition of the application
aspects as singletons).

Example

The aspect that defines the application of the ChristmasBR business
rule would look like:

aspect Application0fChristmasBRForPrice{
static ChristmasBR businessRule;

static public void setBusinessRule(ChristmasBR br){
businessRule = br;

}

63

Float around(Product p): WhenToPersonalizePrice.
priceCalculationInCheckOut (p){

Float price = proceed(p);

return businessRule.apply(price);
3
b

e A business rule that uses extra business objects not reachable at the
moment of the application needs to keep those business objects as
part of its state (see 6.3.3). We cannot implement this kind of rules as
singletons and thus, a different instance of the aspect that defines its
application is needed for each instance of the business rule we need to
apply.

As we explained before, a pointcut is needed to be able to capture the
business objects that define the state of the rules. Thus, each time a
new control flow of that pointcut occurs, a new instance of the rule is
created and a new instance of the application aspect is needed as well.

The feature percflow(pointcut designator) of AspectJ is used for the
creation of one application aspect instance per control flow of the cor-
responding pointcut.

Core application 4= | 4= Connectivity layer ~ ==$ | = Business rules

1
BusinessRule

|

|

|
| |
: ApplicationOfBusinessRules :
[T [
| |
| : |
| |
| |
| |
| |

v

BusinessRulesApplicationTime

aspect ApplicationOfBusinessRules
percflow(CaptureBOForConcreteBusinessRule.captureBO(BusinessObjectTypeA)){

Figure 6.9: Application of one business rule with state

Example

As we mentioned before, the AmountBR business rule (see 6.3.3) needs
to keep track of the customer that is currently buying. The aspect
for the application of this business rule is defined as follows: As it is
shown in the example, we need a different instance of the application

64

aspect ApplicationOfAmountBRForPrice
percflow(CaptureBOForAmountBR.checkOut (Customer)){

AmountBR businessRule;

public void setBusinessRule(AmountBR br){
businessRule = br;

}

Float around(Product p):
WhenToPersonalizePrice.priceCalculationInCheckOut (p){

Float price = proceed(p);

return businessRule.apply(price);
}
}

for each new control flow of the pointcut checkOut(Customer) defined
in CaptureBOForAmountBR (see 6.3.3), aspect for the capturing of the
state of the rule being applied. This is achieved with the feature
percflow() of AspectJ. The link between the instance of the application
and the correspondent instance of the rule is defined by the aspect
CaptureBOForAmountBR.

6.4.2 Application of a set of rules: Combination of rules

Suppose we have to apply at a certain point a set of rules that specify
decisions for some common concern. As it was described in 5.2.4, when
several rules are applied at the same time interference between them can
occur. Thus, at this point we need to take into account some considerations
about how to combine the actions declared by the rules.

Suppose we need to apply at a given moment a set of related rules that
define some business considerations regarding the same concern. As many
of those rules can be applicable under certain conditions, and their actions
can conflict between each other, we need to explicitly provide a way to solve
the conflicts that can arise during the combination.

To begin with the simplest case, let’s consider that only one way to combine
the rules is provided.

Solution

We can use the composite pattern [GHJV95] to model compound business
rules. The compound business rule would know a set of business rules it is
composed of. The way to combine the rules would be defined in the method
apply of the compound business rule (see Figure 6.10).

65

Core application 4= ' 4— Connectivity layer = : =P Business rules

1
| ApplicationOfBRForSomeConcern l—;—>| BusinessRuleForSomeConcern

n
R

! : | |

| BRForSomeConcernApplicationTime

ConcreteBRForSomeConcern

CompositeBRForSomeConcern

| : i 5

public class CompositeBRForSomeConcern extends BusinessRuleForSomeConcern

{

List businessRules; // list of BusinessRulesForSomeConcern

CompositeBRForPrice(List listOfBusinessRules) {
setBusinessRules(listOfBusinessRules);

public void setBusinessRules(List listOfBusinessRules) {
this.businessRules = listOfBusinessRules;

}

public void apply(Type1 arg1, ..., TypeN argN) {
Iterator iterator = businessRules.iterator();
while(iterator.hasNext())

((BusinessRuleForSomeConcern) iterator.next()).apply(argl, ..., argN);

}
}
}

Figure 6.10: Application of set of business rules: Compound business rule

As we showed previously, either the way the application aspect and the rules
themselves are instantiated differs depending on the kind of information the
rules manipulate (see 6.4.1).

If we combine rules of only environmental scope, then the application aspect
would be defined as a singleton aspect. However, if we combine environmen-
tal rules with rules that have state, for which several instances are needed,
the application aspect should follow the form of the application for rules
with state (several instances for each control flow).

Example

Consider we have to apply both the ChristmasBR and AmountBR rules to
personalize the price of products. Thus, both rules need to be applied at the
moment when the price is calculated in the context of the checkout process.

We are combining one environmental business rule with one rule that needs
specific information. Thus, the way to instantiate the application aspect
is driven by the rule with state. The code for the compound business rule
would look like:

public class CompositeBRForPrice extends BRForPrice{

List businessRules;

66

CompositeBRForPrice(List listOfBusinessRules){
setBusinessRules (1listOfBusinessRules) ;

}

public void setBusinessRules(List listOfBusinessRules){
this.businessRules = listOfBusinessRules;

3

public Float apply(Float price){
Iterator iterator = businessRules.iterator();
while(iterator.hasNext()){
price = ((BRForPrice) iterator.next()).apply(price);
}
return price;

}

}

As it is shown in the previous code fragment, the combination of the rules
is solved in the method apply. In this example each rule is applied one after
the other, concatenating the discounts defined as the actions of both rules.

Notice that there might be a problem if we need to combine several business
rules that have state. The problematic situation occurs when the business
objects that form the state of the rules are picked up at different pointcuts
(execution points) for each rule. In this case, as one instance of the appli-
cation aspect is considered per each control flow of one pointcut, which of
the pointcuts to chose to instantiate it?

6.4.3 Several ways to combine the rules

As in the previous case, suppose we need to apply at a certain moment a set
of related business rules that define some business considerations regarding
a certain concern. Suppose now that we need to consider several ways to
solve the combination of those rules actions. As it was mentioned in 5.2, we
want to decouple as much as possible the issues related with the combination
of rules from the specification of the rules itself.

Solution

The solution consists of abstracting out the way to combine business rules
from the compound business rule into a new class hierarchy of combina-
tion strategies. In the previous approach, conflicts were solved in the apply
method of the compound rule, coupling the definition of the rule itself with
the combination concern. Applying the strategy design pattern [GHJIV95]
we can decouple the way the combination is done in a different hierarchy
that models combination strategies. Each combination strategy defines a
different way to combine business rules (Figure 6.11).

67

Core 4— 4+ Connectivity b g —p Business
application layer rules

| ApplicationOfBRForSomeConcern |—1)| BusinessRuleForSomeConcem |
T n
| T
! | |

| BRForSomeConcernApplicationTime

ConcreteBRForSomeConcern | | CompositeBRForSomeConcern

1
CombinationStrategy /

AnotherConcreteCombinationStrategy |

ConcreteCombinationStrategy |

public class ConcreteCombinationStrategy extends CombinationStrategy{
public Object applyBusinessRules(List businessRules, Typel argl,..., TypeN argNj){

{ /lapply business rules using certain combination strategy }

public class CompositeBRForSomeConcern
extends BusinessRuleForSomeConcern {

List businessRules;
CombinationStrategy combinationStrategy;

CompositeBRForPrice(List listOfBusinessRules, CombinationStrategy cs) {
setBusinessRules(listOfBusinessRules);
setCombinationStrategy(combinationStrategy);

}

public Object apply(Type1 argf,..., TypeN argNj) {
return combinationStrategy.applyBusinessRules(businessRules, argl,...,argN);

}
}

Figure 6.11: Application of a set of business rules: Decoupling the combi-
nation strategy

68

Example

Let’s consider the combination of the same rules as before, the ChristmasBR
and AmountBR rules. Using the composite pattern [GHIJV95] we can define
a compound business rule to group a set of related business rules.

public class CompositeBRForPrice extends BRForPrice{

List businessRules;
CombinationStrategy combinationStrategy;

CompositeBRForPrice(List listOfBusinessRules,
CombinationStrategy combinationStrategy){
setBusinessRules(1istOfBusinessRules);
setCombinationStrategy(combinationStrategy) ;

}

public void setCombinationStrategy(CombinationStrategy cs){
this.combinationStrategy = cs;

}

public void setBusinessRules(List listOfBusinessRules){
this.businessRules = listOfBusinessRules;

¥

public Float apply(Float price){
return combinationStrategy.
applyBusinessRules(businessRules, price);

Notice that the method apply of the compound business rule changed from
the previous solution. Instead of implementing the combination directly
in the same method, it collaborates with a combination strategy object
delegating the application of the rules to it.

The different ways to solve the combination of rules is defined as a new
hierarchy of combination strategies using the strategy pattern [GHJV95].
Each different strategy for the combination is modelled as a subclass of the
abstract class CombinationStrategy.

abstract class CombinationStrategy{

abstract public Float applyBusinessRules
(List businessRules, Float price);

For instance, the class ConcatenatingStrategy represents a combination strat-
egy that solves the combination of rules applying each rule after the other,

69

concatenating the discounts.

public class ConcatenatingStrategy extends CombinationStrategy{
public Float applyBusinessRules(List brs, Float price){

Iterator iterator = brs.iterator();
while(iterator.hasNext()){
price = ((BRForPrice) iterator.next()).apply(price);
}
return price;
}
}

Another way to combine the rules is shown in the class ExclusionStrategy,
where only the first rule that is satisfied is applied, ensuring mutual exclusion
between the rules.

public class ExclusionStrategy extends CombinationStrategyf{
public Float applyBusinessRules(List brs, Float price){

Iterator iterator = brs.iterator();
BRForPrice rule = new AmountBR();
boolean noRuleHold = true;
while(iterator.hasNext() && noRuleHold){
rule = (BRForPrice) iterator.next();
noRuleHold = !(rule.condition());
}
if (!noRuleHold)
price = rule.action(price);
return price;
}
}

In the same way these two strategies were contemplated in the example,
other ways to solve the combination of a set of rules can be added as sub-
classes of the CombinationStrategy class.

6.4.4 Combination of business rules based on dynamic con-
ditions

Suppose we need to apply a set of business rules that specify actions regard-

ing some common concern and that several ways to solve the combination of
the rules are defined. Moreover, consider that the choice of which strategy

70

to use to solve the combination is made based on conditions that depend
on dynamic information. This means that to solve the combination of the
business rules we deal with other rules of the kind:

“if some dynamic condition is satisfied then consider a particular way to
combine the business rules for this application”.

Solution

We need to define new aspects that encapsulate the definition of the condi-
tions used to dynamically decide which combination strategy to use. These
conditions are defined in a new aspect as pointcuts of the kind if(condition).

These conditions need to be defined as pointcuts because they are used for
the instantiation of the application aspects. The application aspects will be
instantiated, using the feature percflow(pointcut designator), based on the
occurrence of those conditions represented as pointcuts.

In this solution we do not use the composite pattern for modelling compound
business rules because the list of business rules is needed to be controlled
in the aspect side, as the combination is solved now in that side also. The
aspect that specifies the application of the business rules at the specific
application time directly knows the set of business rules to apply and its
concrete subaspects, in collaboration with the combination strategy hierar-
chy, apply the rules using the desired strategy. Figure 6.12 shows a scheme
of the solution.

Example

Suppose we want to apply both rules the ChristmasBR and the AmountBR
when the price is calculated in the checkout process. As both rules specify
a different discount to be applied on the price of the products, we need to
define how to combine them.

Suppose that the combination used to solve the interference between those
two rules depends on some condition that is checked at run-time. For in-
stance, suppose that depending on whether the customer that is currently
buying is frequent or not, we choose one combination strategy or the other
to decide how to apply and combine the rules. If the customer is frequent we
want to apply the rules one after the other concatenating the discounts of
each (i.e., using the combination strategy defined in the ConcatenatingStrat-
egy; see the previous example 6.4.3). And if the customer is not a frequent
one, we want to apply only the first applicable business rule using the strat-
egy ExclusionStrategy (see previous example 6.4.3).

Thus, we need to define a hierarchy of aspects for the specification of the
application. The aspect ApplicationOfBRForPrice defines an around advice
on the pointcut that defines the application time for rules that personalize
the price. In that advice the application of the rules is triggered. The way
the business rules are applied, i.e., the way to combine them is defined in the
subaspects of ApplicationOfBRForPrice. Each of the concrete subaspects in-

71

abstract aspect ApplicationOfBRForSomeConcern{
static List businessRules;
static public void setBusinessRules(List br){businessRules = br;}
abstract public ReturnedType applyBusinessRules(List businessRules, ReturnedType obj);
ReturnedType around(Type1 argt, ..., TypeN argN): BRForSomeConcernApplicationTime.triggeringMethod(arg1, ..., argN) {
ReturnedType originalValue = proceed(argl, ..., argN);
return applyBusinessRules(businessRules, originalValue);

}
}

Core application €=— 4— Connectivity layer == —p Business rules

BRForSomeConcernApplicationTime

+

|

|

n
ApplicationOfBRForSomeConcern —»| BusinessRuleForSomeConcern
‘ ApplicationOfBRCombinationA ‘ ‘ ApplicationOfBRCombinationB ‘

T T T T
I | | 1
1 | | 1
1 1
i L] L |

| | ConditionsForDynamicCombination

CombinationStrategy \
| \
JAN \

! [
I \

’ ConcreteCombinationStrategyA ‘ ’ ConcreteCombinationStrategyB

aspect ApplicationOfBRCombinationA
extends ApplicationOfBRForSomeConcern
percflowbelow(ConditionsForDynamicCombination.certainCondition(...)){

public ReturnedType applyBusinessRules(List businessRules, ReturnedType obj){
return ConcreteCombinationStrategyA.applyBusinessRules(businessRules, obj);

}
}

aspect ConditionsForDynamicCombination dominates ApplicationOfBR*{
pointcut certainCondition(...):

}

Figure 6.12: Application of set of business rules: combination strategy choice
based on dynamic conditions

72

abstract aspect ApplicationOfBRForPrice{
static List businessRules;

static public void setBusinessRules(List br){
businessRules = br;

¥

abstract public Float applyBusinessRules

(List businessRules, Float price);

Float around(Product p): WhenToPersonalizePrice.
priceCalculusInCheckOut (p){

Float price = proceed(p);

return applyBusinessRules(businessRules, price);
b
X

teracts with the proper combination strategy to define the way the rules are
applied and combined. The subaspect ExclusionApplicationOfBR interacts
with the ExclusionStrategy combination strategy to apply the rules ensur-
ing mutual exclusion whereas the subaspect ConcatenatingApplicationOfBR
collaborates with the combination strategy ConcatenatingStrategy to apply
all the discounts specified in the rules that are being applied, one after the
other.

aspect ExclusionApplicationOfBR
extends ApplicationOfBRForPrice
percflowbelow(ConditionsForDynamicCombination.
frequentCustomer (Customer)){

public Float applyBusinessRules(List rules, Float price){
return ExclusionStrategy.
applyBusinessRules(rules, price);

aspect ConcatenatingApplicationOfBR
extends ApplicationOfBRForPrice
percflowbelow(ConditionsForDynamicCombination.
noFrequentCustomer (Customer)) {

public Float applyBusinessRules(List rules, Float price){

return ConcatenatingStrategy.
applyBusinessRules(rules, price);

73

Notice that both aspects ExclusionApplicationOfBR and ConcatenatingAppli-
cationOfBR are instantiated using Aspect.J’s feature percflowbelow(Pointcut)
creating a new instance of the aspect for each entrance to the control flow
below the join points defined by Pointcut. In this example, we want to ap-
ply the rules using mutual exclusion when the customer is a frequent one.
Thus, a new instance of the ExclusionApplicationOfBR aspect is needed if
the customer is a frequent one. That is specified defining the instantia-
tion of the aspect with the expression percflowbelow(ConditionsForDynamic-
Combination.frequentCustomer(Customer)).

The pointcut frequentCustomer defined in the aspect ConditionsForDynamic-
Combination specifies the condition that tests if the customer that is checking
out is frequent.

Analogously, we want to apply the rules concatenating all the discounts spec-
ified in the rules when the customer is not a frequent one. Thus, a new in-
stance of the ConcatenatingApplicationOfBR aspect is needed if the customer
is not frequent. That is specified defining the instantiation of the aspect with
the expression percflowbelow(ConditionsForDynamicCombination.noFrequent-
Customer(Customer)).

The pointcut noFrequentCustomer defined in the aspect ConditionsForDy-
namicCombination specifies the condition that tests if the customer that is
checking out is not frequent.

aspect ConditionsForDynamicCombination
dominates *ApplicationOfBR{

pointcut frequentCustomer (Customer c):
call(Float CheckOut.checkOut(Customer)) && args(c)
&% if (c.getAccount().isFrequent());

pointcut noFrequentCustomer (Customer c):
call(Float CheckOut.checkOut(Customer)) && args(c)
&& if (!'c.getAccount().isFrequent());

Notice that for a given customer, either one of the two pointcuts occurs
because either a customer is frequent or not frequent. This implies that for a
given customer during the checkout process either one of the concrete aspects
ExclusionApplicationOfBR or ConcatenatingApplicationOfBR is instantiated.
As a consequence, the way to apply the rules for price personalization is
customized depending on the characteristics of the customer.

This mechanism allows us to decide dynamically for each customer which

74

combination strategy to choose to combine the rules for the personalization
of the price.

It is important to mark that it is at this point, i.e., when dealing with
combination of business rules, where the approach that considers rules as
aspects is limited. Even if we could make use of some features provided
by AspectJ, like the dominates feature to establish priorities between as-
pects and thus between rules, the combination can be achieved only until a
certain extent. As an example, we could say that “ChristmasBR dominates
AmountBR”, meaning that the application of the rule ChristmasBR should
have precedence over the one of AmountBR. But the support for combi-
nations we could achieve considering rules as aspects was limited to the
definition of the rule aspects (compile time), not being possible to decouple
the combination from the rule itself, and of course, not being possible to
change the way the combinations are solved at run time.

Moreover, if we consider rules as aspects, we can think in writing specific
aspects to control the combination of rules. For instance, we can express
an aspect that ensures the mutual exclusion between two rule aspects. But
some problems appear when trying to relate aspect instances. Little sup-
port for relating aspect instances is provided by AspectJ. Moreover with this
approach it is not possible to dynamically change policies for the combina-
tion of rules depending on dynamic conditions. For instance, if we want
to consider different orderings, priorities or combinations according to some
dynamic information (e.g., depending on the customer being a frequent one),
or we want to apply certain policies when some dynamic conditions are sat-
isfied (for instance, when the customer spent more than certain amount of
money), the approach of having rules as aspects is not flexible enough to
achieve it.

6.5 Special cases of business rules

6.5.1 Conditions as type checks

Up until now we have considered that basically an “if then” business rule
can be suitably represented using the rule object pattern [Arsal, by means
of the definition of a condition and an action. However, this solution is not
always the most suitable for any situation.

For instance, there are business rules that define conditions that deal with
the possible types of an object. This conditions usually involve checking the
type of certain objects.

Some design options can be considered when dealing with rules that check
the type of an object:

e Definition of an interface to query the type of an object:

75

One possible solution consists of the definition of an interface that
defines methods to query the type of an object and make the classes
of the queried objects implement it.

In this solution we can still model the rules using the rule object pat-
tern. The condition of the rules would use the query methods defined
in the interface to query the type of the objects.

This solution has the advantage that either the condition and action
will still remain encapsulated in the rule itself, completely decoupled
from the rest of the application.

Definition of a “hook” in the types checked:

Another alternative is to define a new method in the types that are
being checked as a hook to which all the actions of business rules that
check those types can be mapped to.

This solution, though it implies only a small invasive change, it affects
the idea of separation of concerns, as actions of independent business
rules would be coupled together.

Delegating business rules:

As it is also identified in [RFC], the rule object pattern is not always
suitable for expressing all kinds of business rules, in particular when
dealing with rules whose conditions imply checking the type of objects,
and that specify actions to perform according the result of the type
check. These rules are of the form:

“if certain object is of type A then perform actionl”
“if certain object is of type B then perform action2”

For this kind of rules, the rule object pattern might not the best option
because we will end up writing conditions that directly ask the type
of objects, and this is not appropriate from the point of view of the
object-oriented paradigm.

We think that a solution that uses the power of the polymorphism
instead of explicitly asking the types would be better from an object-
oriented design point of view.

The suggested solution uses the power of the static crosscutting pro-
vided by AspectJ. The idea consists in the non-invasive insertion of a
polymorphic method in each of the classes that form the hierarchy of
types checked. This method works as the trigger point for the appli-
cation of the rules. Each of the types involved needs to redefine that
polymorphic method with the triggering of the corresponding action
to be performed for that type. This is done in collaboration with the
rule itself, which is the one that defines all the possible actions to be
performed for all the cases.

For instance, in the type A the inserted trigger point would invoke
on the business rule the execution of the actionl; in the type B the

76

inserted trigger point would invoke the execution of the action2, and
SO on.

In this way, the rules would only need to delegate the decision of which
action the trigger to the polymorphic objects. The condition, i.e., the
query on the type of the objects, is checked implicitly by means of
polymorphism (see Figure 6.13).

Core application

PolymorphicObjectType

abstract returnType polymorphicMethod(Type1 arg1, ..., TypeN argN)
-

PolymorphicObjectTypeA PolymorphicObjectTypeB

returnType polymorphicMethod(Typet argf, ..., TypeN argN)|| returnType polymorphicMethod(Type1 arg1, ..., TypeN argN)

aspect AdditionOfPolymorphicBehavior{

abstract public returnType PolymorphicObjectType.polymorphicMethod();

public returnType PolymorphicObjectTypeA.

polymorphicMethod(DelegatingBusinessRule br, Typel argl, ...TypeN argN){

br.action1(argi, ..., argN)

}
public returnType PolymorphicObjectTypeB.

polymorphicMethod(DelegatingBusinessRule br, Typel argl, ...TypeN argN){

DelegatingBusinessRule

void apply(PolymorphicObjectType po, Typel argl, ..., TypeN argN) {
action(polymorphicObject, argl, ..., argN);

public class DelegatingBusinessRule{

br.action2(arg1, ..., argN)

}
void action(PolymorphicObjectType po, Typel argl, ..., TypeN argN){
po.polymorphicMethod(this, argd, ..., argN);

void action1(Typel argf, ..., TypeN argN) {...}
void action2(Type1 arg1, ..., TypeN argN) {...}

Figure 6.13: Business rules that check the type of objects

Two cases can be identified for this context:
Anticipated types

There are business rules that basically check the type of an object
where the types correspond to classes or interfaces anticipated from
the beginning in the core application.

Solution

The suggested solution implies the definition of an aspect that extends,
using Introduction, the business objects types with the polymorphic
method for the triggering of the action of the rules. In this case the
business rules would only need to delegate on the objects the decision
of which effective action to perform. The rules do not need to define the
condition as an explicit method. The condition is implicitly checked
through polymorphism.

Example

Suppose we have the following rule:

77

“if the customer is a manager member then show the welcome message
“Welcome Manager member”, and if he/she is a sales one, show the
message “Welcome Sales member””.

Clearly, this business rule is checking the type of the objects of the
type Customer and performing a different behavior depending on the
kind of customer that logs in to the shop.

The solution consists in extending the Customer hierarchy with the ad-
dition of the polymorphic method triggerWelcomeMethod. This method
is redefined in each of the subclasses in the Customer hierarchy to trig-
ger the invocation of the corresponding action on the rule to obtain
the welcome message for that specific type of customer.

aspect AdditionOfWelcomeMessageBehavior{

abstract public String Customer.
welcomeMessage (CustomerBR br) ;

public String Manager.welcomeMessage (CustomerBR br){
return br.welcomeManager();

}

public String Sales.welcomeMessage(CustomerBR br){
return br.welcomeSales();

}
}

The aspect AdditionOfWelcomeMessageBehavior uses Introduction to
add the polymorphic method in each of the types of the customer hi-
erarchy. A different implementation for the method welcomeMessage()
is provided for both subclasses Manager and Sales to trigger the print-
ing of the correct welcome message for each case. In this way, the
class Manager triggers the execution of the action welcomeManager de-
fined in the CustomerBR and analogously Sales invokes on the rule the
method welcomeSales.

public class CustomerBR{

void action(Customer customer) {
customer .welcomeMessage (this) ;

}

public void welcomeSales() {
System.out.println("Welcome Sales member");

}

public void welcomeManager() {

78

System.out.println("Welcome Manager member");

}

void apply(Customer customer) {
action(customer) ;

}
}

The business rule CustomerBR delegates on the customer object (re-
ceived as parameter in the apply method) the decision of which message
to show by means of invoking the polymorphic method welcomeMes-

sage().
aspect ApplicationOfCustomerBR{
static CustomerBR businessRule;

static public void setBusinessRule(CustomerBR br){
businessRule = br;

}

after(Customer c):
WhenToPersonalizeWelcomeMessage.customerLoggedIn(c){
businessRule.apply(c);

b

X

The aspect ApplicationOfCustomerBR defines the application of the
CustomerBR as an after advice. This advice is defined on the pointcut
customerLoggedIn that captures the moment when the customer logs in
the shop (see definition of aspect WhenToPersonalizeWelcomeMessage
below) and the welcome message should be shown.

aspect WhenToPersonalizeWelcomeMessage {

pointcut customerLoggedIn(Customer c):
target(c) && call(boolean Customer.login(String, String));
}

Unanticipated types

This case refers to the business rules that as the condition for their
applicability check the type of an object and where the types were not
anticipated from the beginning. This means that the types that are
checked are needed only from the point of view of the business rules
logic. They can be seen as roles imposed by the business considera-
tions.

79

Solution

The solution consists in the definition of delegating business rules (as
in the previous case) and also in the non-invasive addition of the unan-
ticipated types. This is achieved by means of the static crosscutting
provided by Introduction.

Example

Suppose that in the previous example, the types Manager and Sales
were not anticipated from the beginning. Thus, they need to be added
to the core application using Introduction as subclasses of the Customer
class.

aspect AdditionOfWelcomeMessageBehavior{
declare parents: Manager extends Customer;

declare parents: Sales extends Customer;
...//same code as previous solution

}

6.5.2 Business rules that select other business rules

There are business rules that take decisions about other business rules. They
can for instance chose which rules to consider to be applied at a certain
application time.

6.5.2.1 Decision time before the application time

Suppose the decision of which rules to chose to be applied at a certain point
is taken before the application time arrives.

Solution

We need to define an aspect that specifies, through the definition of a point-
cut, the moment when the selection must take place. The business rule that
performs the selection is applied at that time. The selection of the desired
set of rules is defined as the action of the rule.

Example
Suppose the following business rule:

“f the customer is a frequent one, then consider the ChristmasBR rule to
be applied in the personalization of the price. Otherwise, consider the An-
niversaryShopBR rule”.

public class SelectionBR{

80

Core application 4= 4 Connectivity layer —_— —$ Business rules

| ApplicationOfSelectingBusinessRuleForSomeConcern 1
X)
|
| .

v .7

| ApplicationTimeForSelectingBusinessRuleForSomeConcern

SelectingBusinessRuleForSomeConcern

| ApplicationOfBRForSomeConcern >| BusinessRuleForSomeConcern

v

| ApplicationTimeForBusinessRuleForSomeConcern

public class SelectingBusinessRuleForSomeConcern{

void apply(Object obj) {
if (condition(obyj))
ApplicationOfBR.setBusinessRule(<concreteBusinessRules>);
else
ApplicationOfBR.setBusinessRule(<otherConcreteBusinessRules>);

Figure 6.14: Business rules that select other business rules: selection time
before the application time.

public boolean condition(Customer customer){
return customer.getAccount().isFrequent();

}

public void selectRuleForFrequent(){

ApplicationOfBRForPrice.setBusinessRule(new ChristmasBR());
}

public void selectRuleForNotFrequent(){

Application0fBRForPrice.setBusinessRule(new AnniversaryShopBR());
}

public void apply(Customer customer) {
if (condition(customer))
selectRuleForFrequent () ;
else selectRuleForNotFrequent();
}
}

Notice that we need to define two methods for the action, because the rule
has the form if then else.

81

aspect WhenToSelectPriceRule {

pointcut customerLoggedIn(Customer c):
target (c) && call(boolean Customer.login(String, String));
3

The aspect WhenToSelectPriceRule defines, trough the definition of the point-
cut customerLoggedIn, the moment when the customer logs in the shop. This
is the moment when the selection of the rules for the price personalization
has to take place.

aspect ApplicationOfSelectionBR{
static SelectionBR businessRule;

static public void setBusinessRule(SelectionBR br){
businessRule = br;

}

after (Customer c): WhenToSelectPriceRule.customerLoggedIn(c){

businessRule.apply(c);
}
}

The aspect ApplicationOfSelectionBR triggers the application of the rule Se-
lectionBR when the customer logs in. The aspect ApplicationOfBRForPrice
defines the triggering of the application of the rules for price personalization.

aspect ApplicationOfBRForPrice{
static BRForPrice businessRule;

static public void setBusinessRule(BRForPrice br){
businessRule = br;

by

Float around(Product p):
WhenToPersonalizePrice.priceCalculationInCheckOut (p){
Float price = proceed(p);
return businessRule.apply(price);
}
}

Notice that the business rule SelectionBR that performs the selection of the
rules to consider for the price personalization needs to interact with the
aspect ApplicationOfBRForPrice to provide the selected business rules.

82

6.5.2.2 Decision and application at the same time

Suppose the decision of which rules to chose to be applied at a certain point
is taken at the same moment when the application must take place.

Solution

This business rule defines the selection of the desired rules to be applied as
its action. It has to be applied at the same time of the application of the
chosen rules. Thus, the application aspect for the selection of rules must
be defined in terms of the same application time pointcut that captures the
moment of the application for the chosen rules. Thus, it must define a before
advice on the same pointcut that captures the moment for the application
of the selected rules (Figure 6.15).

Core application {— <+ Connectivity layer —_— =% Business rules

SelectingBusinessRuleForSomeConcern

| icati i i oncern | >

T
|
|
|
v ’
’
| licationTimeF i ul oncern

’
’ / 1
A 7 Y| BusinessRuleForSomeConcern
’

I

I

|

|

aspect ApplicationOfSelectingBusinessRuleForSomeConcern
dominates ApplicationOfBRForSomeConcern{{

| ApplicationOfBRForSomeConcern

static SelectingBusinessRuleForSomeConcern businessRule;

before(Product p):

ApplicationTimeForBusinessRuleForSomeConcern. . - -
triggeringMethod(...){ public class SelectingBusinessRuleForSomeConcern{

businessRule.apply(...);
} void apply(Typet argi,..., TypeN argN) {
} if (condition(arg1,..., argN))
ApplicationOfBRForSomeConcern.setBusinessRule(<concreteBusinessRule>);
else
ApplicationOfBRForSomeConcern.setBusinessRule(<otherConcreteBusinessRule>);

}

aspect ApplicationOfBRForSomeConcern{
static BusinessRuleForSomeConcern businessRule;

setBusinessRule(BusinessRuleForSomeConcern br){
businessRule = br;

before/aroun/after(Product p): ApplicationTimeForBusinessRuleForSomeConcern.triggeringMethod(...){
businessRule.apply(...);

Figure 6.15: Business rules that select other business rules: selection and
application at the same time.

Example
Consider the following business rule:

“if a product was already bought more than 100 times, then consider the
ChristmasBR rule for the price personalization. Otherwise, consider the
AnniversaryShopBR rule”.

The only difference with the previous solution is the definition of the aspect
ApplicationOfSelectionBR for the application of the rule that performs the
selection.

83

aspect ApplicationOfSelectionBR{
static SelectionBR businessRule;

static public void setBusinessRule(SelectionBR br){
businessRule = br;

}

before(Product p):
WhenToPersonalizePrice.priceCalculusInCheckOut (p){
businessRule.apply(p);
}
}

In this case, as either the rule for the selection and the personalization of
the price are applied at the same moment, only one aspect for the definition
of the application moment is needed (the aspect WhenToPersonalizePrice).

As both rules, the selecting rule and the price personalization rule, are ap-
plied at the same time, when the price is calculated, both aspects Applica-
tionOfSelectionBR and ApplicationOfBRForPrice trigger the application of the
respective rules as an advice on the same pointcut priceCalculusinCheckOut.

Even if the pointcut for the application of both rules, the selection rule and
the price personalization one, is the same, the selection is applied making
use of a before advice to occur before the personalization itself. In case the
selected business rules were applied within a before advice, we would need to
make use of the feature dominates to ensure that the selection of the rules
has priority and thus occurs before the application of the rules itself.

84

Chapter 7

(General conclusion

7.1 Conclusion

Business rules tend to change and evolve rapidly to cope with changes in the
volatile business world. Thus, it is desirable to keep them as decoupled as
possible from the rest of the application that implements the core business
processes. To achieve this, separation of concerns is fundamental. Never-
theless, it is usually hard and not straightforward to separate the concerns
involved in the management of business rules. Usually these concerns are
not localized but scattered through different parts of the system and even
tangled with software that addresses other concerns. Thus, business rules
concerns are generally hard to modularize fitting the dominant decompo-
sition mechanism that current software engineering techniques provide and
we believe that this is the reason for their complexity.

As part of this dissertation we have been extensively studying and analyz-
ing the different approaches in the literature that address the problem of
decoupling business rules. A lot of research has focused and agreed on the
need of keeping business rules as separate as possible from the core appli-
cation [IBMb] [CRFS01] [RDR] [Vae01]. However, not much support has
been found for the detailed linking of the rules; not many approaches have
given special consideration to the issues involved when we need to connect
or weave the rules into the rest of the application to obtain the desired
software system. Many requirements have to be taken into account for a
mechanism that allows having the business rules decoupled and their sub-
sequent connection with the rest of the application. Our approach focuses
on this connection part, i.e., the linking of the rules with the core applica-
tion. We have analyzed the necessary ingredients for connecting, configuring
and applying decoupled business rules and come up with a detailed list of
the requirements needed. This list constitutes a first contribution of this
dissertation.

To deal with these requirements, extra support for separation of concerns is

85

needed. That was the motivation to look at current Aspect-Oriented Soft-
ware Development techniques, because they have been successfully applied
to encapsulate and explicitly represent concerns that inherently crosscut the
natural modularity of the rest of the implementation.

Contrary to many of the approaches in the literature (which are usually
based on rule engines) our approach focuses on the use of an advanced
Aspect-Oriented Programming technology called AspectJ for achieving the
weaving of the rules into the application and deal with different configuration
issues taken into account also as part of the connectivity layer. Based on
the capabilities of AspectJ we came up with a set of generic solutions for
the identified requirements. These generic solutions constitute a second
contribution of this thesis.

On one hand the features provided by AspectJ are useful and perfectly suit
the kind of problems we need to solve. For instance, the dynamic join point
model provided by AspectJ allows us to capture well-defined points in the
execution of a program that can be used to specify the time when business
rules need to be applied. Another interesting feature is the support for
static crosscutting provided by means of Introduction. Introduction enables
the non-invasive extension of the application code with information that was
not anticipated from the beginning and that is needed by the business rules
logic.

On the other hand, AspectJ suffers from some limitations as well. One
of the main AspectJ’s limitations found during the experiments was the
lack of support for the communication and relation of aspect instances. As
mentioned before, our approach focuses on separation of concerns, not only
decoupling concerns from the core application and the business rules but also
stressing the decoupling even further, among the different issues involved in
the management and configuration of the rules. This implied the definition
of several different aspects as part of the connectivity layer, each of them in
charge of specific behavior. Several instances of these aspects were needed
in some cases. All these aspect instances need to interact and communicate
and at that point is where the power of AspectJ falls short. When aspect
instances need to share state it is always possible to merge them in only one
aspect; but in some situations the aspect instances need to interact in a more
intelligent way, and they need to be kept separate because their behaviors
are inherently different. These are the situations where relations between
instances are usually solved ad-hoc in AspectJ. These limitations motivate
the need of improvements to the AspectJ language.

To summarize, Aspect-Oriented Programming techniques are suitable for ex-
pressing the kind of concerns we need to address when dealing with business
rules. We have experimented with AspectJ as an Aspect-Oriented Program-
ming language that supports dynamic and static crosscutting. Generally
speaking, the results achieved are very positive. We conclude that AspectJ
is suitable for addressing most of the identified requirements for the decou-

86

pling, configuration and application of business rules.

7.2 Future Work

The work done in this dissertation can be continued in several directions:

e Exploration of other Aspect-Oriented Programming approaches to de-
termine until which extent the problems solved in this thesis can be
addressed with other AOP techniques as well.

In the process of deciding which AOP techniques could be useful to
solve the kind of problems we needed to address, we have looked and
analyzed other AOP techniques as well. Based on this analysis we
have concluded that AspectJ has a lot of useful features that can be
used for the configuration and connection of the business rules with
the core application and thus we have adopted it to base the generic
solutions on.

The approach of Composition Filters is similar to AspectJ in the way
the join point model is defined. Although we believe many of the
results achieved with AspectJ could be obtained using Composition
Filters, a deep analysis of the suitability of Composition Filters could
be performed.

It is important to note that the solutions presented so far depend on
which business objects and relations between them are considered in
the core application. If we would need to express business rules inde-
pendently of the concrete business objects and relations contemplated
in the core application we would need to make abstraction of the con-
crete class graph. Adaptive Programming [LOOO01] would be suitable
to achieve the independency from the concrete class hierarchy, allowing
the business rules to be expressed in a more independent way avoiding
referring to concrete business object hierarchy.

Another technique to further explore is HyperJ [TOHS99]. Due to the
way HyperJ enables crosscutting implementation, it could be suitably
used to express business rules that imply mappings of concepts.

Thus, further research can be done to analyze and determine with more
detail the suitability of the other AOP approaches for the typical issues
of business rules.

e Address the requirements for business rules in earlier stages in the
software lifecycle.

Some research could be done to incorporate the externalization of busi-
ness rules within the analysis and design process. To achieve that,
some notational support should be provided at the design level for
expressing the places in the model where the rules must be applied,
which information is required and how the rules are combined.

87

e Automatic support for the generation of the aspects that form the con-
nectivity layer in between the business rules and the core application
can be provided.

Depending on the representation of the rules it could be possible to
perform analysis to automatically derive the join points where we need
to apply the business rules and determine which information the rules
need for their application.

However, it would be difficult and not straightforward to automati-
cally determine which generic solutions to apply for a given business
rule. First of all, to achieve the automatization, some way of describ-
ing the points where the rules are applied should be provided at design
time to be able to map these design elements to code. Some research
has been done to automatically derive the points in the code where
constraints should be checked and automatically generate and insert
the code needed to trigger the checking [Str00] [Ver01]. But complex-
ity increases when dealing with more complex business rules; several
kinds of information can be used, conflicts can occur between rules,
the application can depend on dynamic conditions, different strategies
for the application can be considered, etc. However, some automatic
support can be provided to help the software engineer in identifying
the needed ingredients for business rules.

88

Bibliography

[AB]

[AFW]

[Arsa]

[Arsb]

[Dij76]

[EFBO1]

[GBN]

Alan Abrahams and Jean M. Bacon. Event-centric policy spec-
ification for e-commerce applications.

L.F. Andrade, J.L. Fiadeiro, and M. Wermelinger. Enforcing
business policies through automated reconfiguration.

Ali Arsanjani. Rule object 2001: A pattern language for adap-
tive and scalable business rule construction.

Ali Arsanjani. Using grammar-oriented object design to seam-
lessly map business models to component-based software archi-
tectures.

AspectJ. http://www.aspectj.org.

Defining business rules ~ what are they really? the Business
Rules Group, July 2000.

Information Technology Support Center. Ui tax and benefits
system modernization: Business rules, 2001.

Diane Crawford. Communications of the ACM, 44(10).

Juan Manuel Cappi, Gustavo H. Rossi, Andrés Fortier, and
Daniel Schwabe. Seamless personalization of e-commerce appli-
cations. In Springer-Verlag, editor, 2nd International Workshop
on Conceptual Modeling Approaches for e-Business, December
2001.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-
oriented programming: Introduction. Communications of the
ACM, 44(10):29-32, 2001.

Jeff Gray, Ted Bapty, and Sandeep Neema. Aspectifying con-
straints in model-integrated computing.

89

[GBNTO1]

[GHJV95]

[GMBS2]

[GRF+01]

[HL95]

[IBMa]
[IBMb]
[ILO]

[KHH'01a]

[KHH*01b]

[KLM*97]

Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck.
Handling crosscutting constraints in domain-specific modeling.
Communications of the ACM, 44(10):87-93, 2001.

FErich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, 1995.

S. J. Greenspan, J. Mylopoulos, and A. Borgida. Capturing
more world knowledge in the requirements specification. In
Proceedings of the 6th International Conference on Software
Engineering, pages 225-235. IEEE Computer Society Press,
September 1982. This paper was cited as the best/most in-
fluential paper by the program committee for ICSE 16 in 1992.

Sofie Goderis, Gustavo H. Rossi, Andrés Fortier, Juan M.
Cappi, and Daniel Schwabe. Combining meta-level and logic-
based constructs in web personalization. In Active Media Tech-
nology, volume 2252 of Lecture Notes in Computer Science,

pages 47-64, 12 2001.

Walter Hiirsch and Cristina Videira Lopes. Separation of
concerns. Technical Report NU-CCS-95-03, College of Com-
puter Science, Northeastern University, Boston, Massachusetts,
February24 1995.

IBM. http://www.research.ibm.com/aem/brb.html.
IBM. http://www.research.ibm.com/rules.
ILOG. Ilog rules, white paper.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersen, Jef-
frey Palm, and William G. Griswold. An overview of AspectJ.
In Proceedings Furopean Conference on Object-Oriented Pro-
gramming, volume 2072 of Lecture Notes in Computer Sci-
ence, pages 327-353, Berlin, Heidelberg, and New York, 2001.
Springer-Verlag.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William Griswold. Getting started with aspect;j.
Communications of the ACM, 44(10):59-65, 2001.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Mehmet Aksit and Satoshi
Matsuoka, editors, Proceedings Furopean Conference on Object-
Oriented Programming, volume 1241, pages 220-242. Springer-
Verlag, Berlin, Heidelberg, and New York, 1997.

90

[KRS00]

[LOO01]

[Lou]

[OMGO1]

[OTO1]

[Par72]

[Per]

[RDR*]

[RFC]

[SAA*99]

[Str00]

[Sys]

[TOHS9Y]

Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger.
Modeling customizable web applications. In Kyoto Interna-
tional Conference on Digital Libraries, page 387, 2000.

Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect-
oriented programming with adaptive methods. Communica-
tions of the ACM, 44(10):39-41, 2001.

Isabelle Rouvellou Lou. Combining different business rules tech-
nologies: A rationalization.

OMG. Object constraint language specification, omg-unified
modeling language, v1.4 6-1, 2001.

Harold Ossher and Peri Tarr. Using multidimensional separa-
tion of concerns to (re)shape evolving software. Commaunica-
tions of the ACM, 44(10):43-50, October 2001.

David Lorge Parnas. On the criteria to be used in decom-
posing systems into modules. Communications of the ACM,
15(12):1053-1058, December 1972.

Alan Perkins. Business rules = meta-data. Proceedings of
the Technology of Object-Oriented Languages and Systems
(TOOLS 34°00).

Isabelle Rouvellou, Lou Degenaro, Kevin Rasmus, Dave Ehneb-
uske, and Barbara McKee. Extending business objects with
business rules.

Gustavo H. Rossi, Andrés Fortier, and Juan M. Cappi. Map-
ping personalization policies into software structures. In 2nd
International Conference on Adaptive Hypermedia and Adap-
tive Web Based Systems 2002, Workshop on Recommendation
and Personalization in eCommerce.

Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert
de Hoog, Nigel Shadbolt, Walter Van de Velde, and Bob
Wielinga. Knowledge Engineering and Management: The Com-
mon KADS Methodology. MIT Press, 1999.

Raignhild Van Der Straeten. Using and enforcing constraints
in object-oriented application development, 2000.

Michel Tilman System. Position paper for the tools and envi-
ronments for business rules workshop of the ecoop ’98 confer-
ence.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M.
Sutton, Jr. NV degrees of separation: Multi-dimensional separa-
tion of concerns. In Proceedings of the 1999 International Con-

91

[Vae01]
[Ver01]

[Wuy01]

[YBJ]

ference on Software Engineering, pages 107-119. IEEE Com-
puter Society Press / ACM Press, 1999.

R.G.H Vaessen. Business logic extraction, June 2001.

Bart Verheecke. From declarative constraints in conceptual
models to explicit constraint classes in implementation mod-
els, 2001.

Roel Wuyts. A Logic Meta-Programming Approach to Support
the Co-FEvolution of Object-Oriented Design and Implementa-
tion. PhD thesis, 2001.

Joseph Yoder, Federico Balaguer, and Ralph Johnson. Adaptive
object-models for implementing business rules. Position Paper
for Third Workshop on Best-practices for Business Rules Design
and Implementation, OOPSLA 2001.

Joseph Yoder and Ralph Johnson. The adaptive object-model
architectural style. Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA) 2002.

92

