IKnowledge-based Techniques to Support Reuse in
Vertical Markets

Ellen Van Paesschen ~
Ellen.Van.Paesschen@vub.ac.be
Programming Technology Lab
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

April 17, 2001

Abstract

Vertical markets supported by framework technology experience a range
of difficulties when performing domain analysis and reusing frameworks,
especially during the transition between these two phases. We believe that
these difficulties are caused by the implicit nature of the natural relation-
ship between domain models (and the corresponding delta-analyses) and
the framework instances. We aim to provide a mechanism for the con-
struction of a bidirectional, concrete, active link between domain mod-
els and framework code by representing the results of delta-analyses as
“knowledge”, and by supporting the coupling between the explicitated
deltas and the knowledge at implementation level, with A.l. reasoning
techniques. This approach implies the realization of a “one-to-one” cy-
cle between domain analysis and framework instances, resulting in an
optimization of the reuse of frameworks. Starting from the existing co-
evolution research for design and implementation at our laboratory, this
cycle will ensure that analysis, design and implementation evolve together
whenever changes occur to one or more of them.

1 Introduction

1.1 Co-evolution of Design and Implementation

In recent years, several members of our laboratory have conducted a great deal
of research on the subject of co-evolution ! of design and implementation ([5],

*Author financed with a doctoral grant from the Institute for Science and Technology
(IWT), Flanders
LCo-evolution is inspired by biology, where it describes the process whereby organisms
interact and mutually influence genetic characteristics. In the case of software, it describes
the way different phases in the life cycle of some system (initially design and implementation)
13

evolve and are causally connected in some way. Not to be confused with the concept “co-
evolution” in the context of genetic programming.



[11], [4], [6], [10]). This co-evolution consists of the realization of an active
link between design and implementation in such a way that they can evolve
together whenever changes occur to one of them. At this moment, design is being
considered as declarative knowledge about the implementation. This declarative
knowledge is coded into logic rules, as in prolog, and into knowledge bases. Well-
known reasoning algorithms (backward and forward chainers) are being used
to couple the knowledge (design) to the implementation in an active manner.
Whenever changes occur in design or implementation, the necessary inference
algorithms are activated in order to propagate the changes to the other model.

As a representative example of the ongoing co-evolution research at our lab-
oratory, we will focus on the the Smalltalk Open Unification Language (SOUL)
[11]. Wuyts [11] developed this logic meta-programming language for his PhD
thesis to express design as a logic meta-program over implementation and to
synchronize design and implementation. SOUL is a logic programming lan-
guage (analogous to prolog) that is implemented in, and lives in symbiosis with,
the object-oriented programming language Smalltalk. SOUL allows users to
perform logic queries over Smalltalk source code, without the need of repre-
senting this source code explicitly in the logic repository. This is done with
the smalltalk term, a special construct that allows to invoke Smalltalk code
during the logic interpretation process. Using the smalltalk term, concepts
from the base language can easily be reified in SOUL.

This logic meta-programming language makes it possible to express design
as a logic meta-program over implementation in a structured manner, resulting
in a declarative framework. An example of using this technique is to describe
design patterns as a collection of logic rules and facts. To illustrate this, we
include an example describing the design pattern structure rule for the Visitor
pattern:

Rule visitor(?visitor, 7element, 7accept, 7visitSelector) if
class(?visitor),

classImplements(?visitor, ?visitSelector),

class(7element),

classImplementsMethodNamed (?element, 7accept, 7acceptBody),
methodArguments(7?acceptBody, TacceptArgs),

methodStatements( PacceptBody, return(send(?v, 7visitSelector,
?visitArgs))),

member (variable([#self]), 7visitArgs),

member (?7v, TacceptArgs).

This rule describing the structure of the Visitor design pattern expresses that
the visitoris a class, implementing the visit methods (named visitSelector).
Analogously, element is a class that implements methods called accept with a
body acceptBody. The arguments passed to this method are given by acceptirgs.
The body is responsible for calling the passed Visitor v with the actual visit op-
eration visitSelector and for passing along the arguments visitArgs. One
of the arguments has to be the receiver (denoted by self in Smalltalk), and the
passed Visitor v actually has to be an argument of the accept method.



We can apply the Visitor predicate described above in a mind boggling way:
since SOUL 1s implemented in Smalltalk and uses a Visitor pattern itself, the
Visitor predicate that is written in SOUL, can be applied to SOUL’s own Visitor
pattern. SOUL uses this Visitor pattern to enumerate its parse tree, therefore,
the Visitor predicate can be used to find all the non-abstract parse tree elements
of the SOUL parse tree that do not comply to the Visitor pattern. All subclasses
of class SOULParseTreeElement that are not abstract are selected, from which
all classes that do not comply to the Visitor rule are found:

Rule soulParsetreeVisitor(?node) if
hierarchy([SOULParseTreeElement], ?node),
not(abstractClass(?node)),

not(visitor(?visitor, 7node, [#doNode:], 7callbackMsg))

The last line in this rule gives the name of the visit-method used by the Visitor
to visit the nodes. This Smalltalk Symbol is called doNode. The results of
this query contain the methods that do not comply to the SOUL Visitor design
pattern, and that might need to be changed. If the query fails, then all the
classes and methods comply to the Visitor design pattern. For more details on
SOUL, we refer to [11].

Naturally, SOUL supports other design notations besides design pattern
structure rules, in fact, since SOUL 1is analogous to prolog and prolog is a
Turing-computable formalism, everything that is computable can be expressed
in SOUL: “the computability is the limit”.

Currently, several members of our laboratory are improving different aspects
of the corresponding co-evolution technology. From our point of view, one of
the most interesting future work directions of SOUL consists of the develop-
ment of full co-evolution support, 1.e. to take into account other phases of the
development cycle besides design and implementation.

1.2 Adding Analysis to the Existing Co-evolution of De-
sign and Implementation

Inspired by the promising results of this co-evolution research, we propose to
integrate the analysis phase in the existing co-evolution of design and implemen-
tation. To implement this full co-evolution support we have chosen the domain
of vertical markets supported by framework technology.

For each customer, vertical market companies adapt the same framework,
until 1t meets the customer’s requirements, and then instantiate this framework.
In this way, companies in a vertical market tackle the duality of tailor-made and
off-the-shelf software [2]. In this context, the classical analysis phase is combined
with a domain analysis with the purpose of constructing a domain model. To
define which functionalities a new customer demands from his future system, a
delta analysis 1s performed on this domain model, resulting in what is known
as the deltas, describing the differences in functionality between an instance of
the current framework and the system that is desired by the customer.



Although there exists a “natural” relationship between the deltas of the delta
analysis and the future framework instance, this relationship is merely implicitly
present in the minds of analysts and framework engineers. The result of this
implicity is that frameworks are developed and reused in a very “handcrafted”
way, based on delta analyses ([2]).

The absence of a concrete technical link between deltas and framework im-
plies a range of problems that are experienced during framework development
and reuse. First, it becomes difficult to map functionalities onto the implemen-
tation of a framework and vice versa. This implies that analysts do not longer
know what the exact possibilities of the framework are. Second, it is hard to
map variations in functionality onto the variabilities of the framework and vice
versa. Third, the missing link between deltas and framework implementation
causes the classical transition problem from analysis to implementation to be
increased. Finally, it becomes difficult to determine the reusability and the cor-
responding reuse scenarios of a framework. This last difficulty is increased by
the frequent absence of suitable framework documentation.

Our position is that, in order to make the current framework devel-
opment and reuse methodologies more structured and thus to avoid
the above problems, the currently implicit relationship between deltas
and framework code should be explicitated into a technological, bidi-
rectional, concrete, active link. Our approach will apply existing tech-
niques from the domain of Artificial Intelligence to realize a coupling
between the (domain) analysis level and the framework implementa-
tion level.

Figure 1 illustrates this approach. The active link between domain model
and framework will be some kind of expert system that enables to:

1. Plan a reuse scenario for developers driven by the domain model and
corresponding delta-analysis

2. Distill knowledge from the iterative adaptations and extensions of the
framework core and to integrate this knowledge in the domain model to
use it during future delta analyses

In the first direction, the expert system should couple domain model knowl-
edge and the framework implementation. In the second direction from frame-
work to domain model, this expert system will translate framework implemen-
tation changes in terms of the corresponding domain model so that the analysts
- at all time - know about the possibilities of the framework.

Although in recent years there was conducted a lot of research on efficient
framework reuse - e.g. design patterns -, it appears that the topic of reuse
techniques manipulated delta analyses has mostly been neglected. Also the in-
fluence of these reuse techniques on the delta analysis has not been investigated
sufficiently. Nevertheless, it is exactly the coupling between deltas and frame-
work implementation that is crucial for the successfulness of vertical markets
companies that apply framework technology.



e

e
e
o —— e — — — — — —]

&
5
&
v
0
&
5

*

Figure 1: Coupling the analysis and the framework level

A more detailed description of our approach and the experiences at this early
stage of our research are described in the following sections.

2 Constructing the Link between Domain Mod-
els and Frameworks

We have divided the construction of an active link between domain models and
frameworks into three parts: the identification a suitable knowledge representa-
tion for domain models and the corresponding deltas, the identification of a logic
representation for framework design and, finally, the construction of an expert
system for linking these domain and framework knowledge. In the following
sections, all three tasks will be discussed.

NOLLVTHY TVINLVN LIDI'TdINI



2.1 A Knowledge Representation for Domain and Delta
Analyses

To represent domain knowledge and deltas we want to use existing knowledge
representations from A.I. like predicate logic and/or frame-based techniques [9].
The exact representation has not been decided yet. At the moment several
representations are being evaluated depending on the following aspects:

e The representation requirements of existing object-oriented analysis tech-
niques and existing domain analysis techniques [3]: the final representation
should enable us to formalize a selection of these techniques.

e The selected representation should enable us, besides the formalization
of domain knowledge, to explicitate the difference between the domain
knowledge and the knowledge resulting from a delta analysis. Since it is
not likely that any existing knowledge representation technique makes it
possible to notate differences in analysis results at the level of a domain
analysis, we will have to define this “reuse relation” on the analysis level
ourselves. This implies the construction of an “inheritance mechanism”
at the level of analysis.

e Where the above criteria handle the expressive power of the knowledge
representation to be selected, the third aspect will focus on the complexity
of the algorithms needed to construct the active link based on this knowl-
edge. Predicate logic, for example, demands less complex algorithms than
frame-based techniques, which are in their turn more expressive.

To realize the active link between domain models and frameworks, the se-
lected knowledge representation will thus enable us to explicitate domain knowl-
edge, deltas and the relation between them, in a way that they will become
suitable as a knowledge base for expert system technology.

2.2 A Logic Representation for Frameworks

When a suitable knowledge representation for domain knowledge and deltas is
available, a logic representation for specific framework knowledge (e.g. design,
class collaboration and reuse knowledge) needs to be selected.

Until now, this kind of framework knowledge was (insufficiently) supported
by patterns and cookbooks ([8], [7], [12]), the main shortcoming being the in-
formality of these techniques. Nevertheless, we will start from the existing
co-evolution of design and implementation (see section 1.1). In this context we
aim to extend the existing structural relations of the entities of a framework
and its instances with the structures resulting from the analysis phase, with
explicit references to the corresponding domain knowledge and deltas. For the
moment, we consider these references as representations of the “why-relation”:
decisions made at the framework level have the analysis abstractions as their



explicit reason. The explicitation of this relation will be a basis for the rea-
soning algorithms that will realize the active link between domain model and
framework implementation.

When this active link is constructed, a co-evolution of the analysis phase and
the existing co-evolution of design and implementation can be realized, implying
that these three phases of the development cycle will evolve together whenever
changes occur to one or more of them.

2.3 An Expert System for Domain and Framework Knowl-
edge

Once the knowledge representations for domain knowledge and deltas, and for
framework knowledge are selected, we plan to develop an expert system that
uses these two kinds of knowledge as a knowledge base.

This expert system should support the following main activities:

e First of all, performing delta analysis based on

— reusable domain knowledge that holds for the entire domain
— earlier performed delta analyses

— the logic representation of a framework and its reuse scenarios

A suitable candidate system is a rule-based expert system that keeps the
three points above variable while the following knowledge is contained in
its rules:

— general knowledge on framework reuse

— general knowledge on delta analyses and the corresponding knowl-
edge distillation

— general knowledge on how the structure and reuse modalities con-
strain delta analyses

A similar expert system will allow the analyst to perform a qualitative
delta analysis that is driven both by the domain knowledge and by the
structure and possibilities of the general framework. The selected expert
system algorithmic will probably be a combination of forward- and back-
ward chaining algorithms.

e The second main activity handles the planning of reuse scenarios based
on the delta analysis. Recent research at PROG ([6]) increases our ex-
pectations significantly. Currently, we are able to assist the reuse of a
framework to the level of adding classes and methods.

e Finally, the expert system technology should be iterative: instantiating
the framework does not only imply the planning of a reuse scenario but
also an interactive (while the framework developer is planning) update of
the logic knowledge of this extended framework. This demands a third



component that is able to (help to) extract and/or distill the structural
knowledge from the extended framework to ensure that this knowledge
is up-to-date to support the first main activity in the future. Machine
learning techniques will possibly assist this activity.

3 Current State

At this early stage the main concern is the identification of a suitable knowledge
representation for domain models and the results of the corresponding delta
analyses.

A first step was to identify domain and delta analysis and their results, and to
demarcate definitions for these concepts. It is our experience that most vertical
market companies follow their own conventions when performing domain and
delta analyses. Unfortunately, all these conventions seem to differ intensively,
which adds another difficulty to the identification of a knowledge representation
and which has slowed down the foreseen progress. However, we plan to construct
a definition that is specific enough to be transformed into an existing knowledge
representation, and in the same time general enough to cover the conventions
of most companies that perform domain and delta analysis.

Once definitions of domain models, delta analyses and their components
are decided, we plan to construct a logic program for domain models. This
program - a kind of database - will mainly consist of facts that describe the
roles of the different elements of a domain model and the relations between
them. Based on the logic facts mentioned above, different views of domain
models can be constructed. For example, one view might display all elements or
a specific group of elements of the domain model, while another view presents
all domain elements an element is related to and how these need to be adapted
when changes on the first element occur.

At the moment, we are also investigating how related research can contribute
to this first phase of our research. A previous attempt to explicitate domain
knowledge with the purpose of facilitating framework development resulted in
the concept of knowledge graphs [1], which showed to reduce the necessary
amount of iterations to develop a robust and stable framework significantly. The
main difficulty here turned out to be the need for specific inheritance semantics
for certain knowledge domains, since the classical inheritance mechanism of
the object-oriented paradigm is not always suited to model generalization and
specialization relations in these knowledge domains. To solve this and related
difficulties, the authors [1] propose to provide each software artifact with its own
“intelligence” by means of a set of rules, ensuring the artifacts to actively keep
the entire piece of software correct and up-to-date. Since this is exactly one of
the main goals of the co-evolution research ([5], [11], [4], [6], [10]) mentioned
above, a combination of co-evolution and knowledge graphs [1] may produce
fruitful results for the formalization of domain models in the context of co-
evolution of analysis, design and implementation.



4 Further Work

On a short-term basis, we plan to a finalize a suitable definition of domain
models, delta analyses and their components. Next, these concepts will be coded
into logic facts enabling us to develop different views on domain models. The
long-term goal consists of the selection of a logic representation of framework
- an extension of the existing co-evolution research (see section 1.1) - and the
development of an expert system as described in section 2.3.

5 Conclusion

With the purpose of making the current framework development and reuse
methodologies more structured and to avoid the problems caused by the implicit
nature of the relation between domain analysis and framework implementation,
we propose to construct a bidirectional, concrete, active link between domain
models and frameworks. Our approach will apply existing A.l. techniques to
realize a coupling between the (domain) analysis level and the framework imple-
mentation level. Starting from the existing co-evolution research of design and
implementation, we aim to realize a co-evolution of analysis, design and imple-
mentation, implying all three phases evolve together whenever changes occur to
one or more of them.

References

[1] Mehmet Aksit, Bedir Terkinerdogan, Francesco Marcelloni, Lodewijk
Bergmans, Derwing object-oriented frameworks from domain knowledge.

[2] Wim Codenie, Koen De Hondt, Patrick Steyaert, Arlette Vercammen, From
custom applications to domain-specific frameworks, Communications of the

ACM, 1997.

[3] Krzysztof Czarnecki, Ulrich W. Eisenecker, Generative programming,
Addison-Wesley, 2000.

[4] Kris De Volder, Type-oriented logic meta-programming, PhD thesis;, Pro-
gramming Technology Laboratory, Free University Brussels, 1998.

[6] Theo D’Hondt, Kris De Volder, Kim Mens, Roel Wuyts, Co-evolution
of object-oriented software design and implementation, TACT Symposium
Proceedings, Kluwer Academic Publishers, 2000.

[6] Sofie Goderis, A reflective forward-chained inference engine to reason about
object-oriented systems, Bachelors thesis, Programming Technology Labo-
ratory, Free University Brussels, 2000.

[7] Ralph E. Johnson, Components, frameworks, patterns.



[8] Ralph E. Johnson, Documenting frameworks using patterns, Qopsla’92,
1992.

[9] George F. Luger, William A. Stubblefield, Artificial intelligence, structures
and strategies for complex problem solving, Addison-Wesley, 1998.

[10] Kim Mens, Automating archiltectural conformance checking by means of
logic meta programming, PhD thesis, Programming Technology Laboratory,
Free University Brussels, 2000.

[11] Roel Wuyts, A logic meta-programming approach to support the co-
evolution of object-oriented design and tmplementation, PhD thesis, Pro-
gramming Technology Laboratory, Free University Brussels, 2000.

[12] Inc. ParcPlace Systems, Visual Works cookbook, 1994.

10



