Transformational Software Evolution by Assertions

Dr. Tom Mens*
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussel - Belgium

Tom.Mens@vub.ac.be

ABSTRACT transformations. In [16], pre- and postconditions were used to

This paper explores the use of software transformations as &£XPress refactoring transformations. In [11], pre- and
formal foundation for software evolution. More precisely, we postcondltlon_s were at_tached to software transformations to detect
express software transformations in terms of assertionsMerge conflicts. This paper performs a more thorough
(preconditions, postconditions and invariants) on top of the Investigation, and shows how assertions allow us to express
formalism of graph rewriting. This allows us to tackle scalability software transformations in a uniform and scalable way.

issues in a straightforward way. Useful applications include:

detecting syntactic merge conflicts, removing redundancy in a2. CONDITIONAL GRAPH REWRITING

transformation sequence, factoring out common subsequences\We represent software artifacts (whether it be analysis,

etc. architecture, design or implementation artifacts) in a uniform way
as graphs [10]. This enables us to use the powerful formalism of
1. INTRODUCTION conditional graph rewriting [4, 5, 6, 11] for representing

N . . evolution transformations.
Software evolution is one of the most important problems in

software engineering, because of its inherent complexity and2 1 Graphs and Graph Rewriting

because of the lack of a solid formabfdation. In an attempt to Graphs provide a simple yet expressive formalism for
provide such a_foundation, this paper glaborate_s on the Paradign?epresenting softwar@&lodesin a graph can represent any kind of
of ”"’!”Sforma“o”a.' software evolutionin this _paradlgm, software entity (classes, modules, objects, methods, variables,
evolution s achieved by means Of. exp||c|t_ S‘_’“W”:e statements, etc...), whiledgesexpress dependencies between
transformations that can be manipulated directly. This gives risey,ose entities (data-flow, control-flow, containment relationships,

to a wide range of interesting ways to improve support for etc...). Each node and edge hdatel and aypeattached to it.
evolution.

One area of interest lies in support for merging parallel evolutions Definition. LetNodelDbe the set of node identifieSdgelDthe

of the same software [3, 9]. Software merging is needed whenS€t of edge identifiers,abelthe set of node and edge labels, and
separate lines of software development are carried out in parallelYPethe set of node and edge typegraph G is a tuplg(V, E,

and have to be merged at regular intervals. Because this is &0Urce, target, label, typepnsisting of a node setlJ NodelD
complex time-consuming process, automated support tools areand an edge sé& [J EdgelDwith VnE = [J; functions

essential. Unfortunately, most existing merge tools either lack source: B2V andtarget: E2V; and functiondabel: VIJE 3L abel
flexibility or expressive power. To counter this problem, we need andtype: VLJE >Type

to establish the formal foundations of software merging first. For gq, example, in graplR depicted in Figure 1y={a,c}, E={f},

t_hls purpose, g_raph rewriting appears to be a promising label(a)=area, type(a)=operation label(f)=uses type(f)=uses
lightweight formalism [11]. source(f)=aandtarget(f)=c. We distinguish types from labels by
Software transformations are also useful to provide support forwriting types in boldface.

refactoring application frameworks in a behaviour-preserving gjnce graphs represent software artifacts, evolution of these
way. Refactorings improve the design or structure of object- grifacts can be expressed fsaph rewriting Because we will
oriented frameworks, making them more robust towards evolution manipulate graph rewritings explicitly, they should be decoupled
[13, 14, 16]. from the actual graphs to which they are being applied. This is
For merging as well as refactoring, there is a need to expressachieved by introducing the notion of graph production
evolution transformations in a scalable way. Indeed, in practice,P: LR that transforms a source graplinto a target grapR. In

the software that is being developed as well as the softwareorder to apply this production to an initial gra@h a match
transformations that are applied to it can be quite large. m: LG is needed to specify which part of the initial grapls

A promising formal approach which has not yet been thoroughly
explored is the use ofassertions for expressing software

3 Primitive production®RelabelandRetypecan be used for nodes as well
. as edges. We often use the notatRaelabelN and RetypeN (resp.
Postdoctoral Fellow of the Fund for Scientific Research — Flanders RelabelEandRetypelfto stress that we are changing the label or type
(Belgium) (F.W.O.-Vlaanderen) of a node (resp. edge).

being transformed. Togethd?, and m uniquely define agraph

rewriting G [J p H. This graph rewriting also induces a co-match

m*: R2>H that specifies the embedding®fn the result grapHi.

As an example, consider the graph rewriting of Figure 1. The

matchm: LG maps node of L on node2 of G. The co-match
m*: R->H additionally maps node of R on node3 of H, and

edgef of Ron edgd of H.

N 7]

surface
attribute P

N
N

5

area \'% radius
operation /yses\ attribute
a U
N

A
T <
\ AN
\ N
”' ! N
1
\
\
v

H
_ surface
. as-adgttribute .

N

; radius
_agperation /yses\pttribute

Figure 1: An example of a graph rewriting

2.2 Assertions

Assertions are well established in the software community as &
formal way to specify the behaviour of programs [7, 12]. Three

kinds of assertions are distinguiseBreconditions must be
satisfied for a certain operation to be applicaBlestconditions

are guaranteed to be true after the operation has been applied.
Invariantsare assumptions that remain unaltered by the operation.

Another distinction is made betweegositive assertions, that

indicate the presence of a certain property,reeghtiveassertions

that indicate its absence. Table 1 presents the positive assertiorjs *@rget(E,N)
that can be expressed in our graph formalism, together with the
notation used throughout this paper. Negative assertions ar
precisely the opposite: they express the absence of some entity in

a graph, and are denoted by a minus sign. Egpurce(E,N)
expresses that edgedoes not have nodeas its source.

Table 1: Positive assertions

Positive assertion

Notation

A node or edge with ideffier Id should be
present

+Id

EdgeE should have nodH as its source

+source(E,N)

EdgeE should have nodd as its target

+target(E,N)

A node or edgéd should have label

+label(ld,L)

A node or edgéd should have typ&

We also want to express more general constraints like: "Node

+type(ld;T)

doesnot haveany outgoing edges" or "nodd is the target ot

least one edge". The former constraint is expressed -as

source(*,N) and the latter astarget(*,N). All positive wildcard
assertions used in this paper are enumerated in Table 2. Negative pre(P) = {-c, -f, +label(a,surface), +type(attribute)}

wildcard assertions are merely the negation of their positive
For example;source(*,N) is the negation of

equivalents.

[JE [JEdgelD: source(E) = Ni.e.,[J E [JEdgelD: source(E¥ N

Table 2: Positive wildcard assertions

Positive assertion Notation
[JE [JEdgelD: source(E) =N
[JE [JEdgelD: target(E) = N
0N [JNodelD: source(E) = N
0N [JNodelD: target(E) = N
0L [JLabel: label(ld) = L

OT O Type: type(ld) =T

+source(*,N)

+target(*,N)

+source(E,*)

+target(E,*)
+label(ld,*)
+type(ld*)

Some assertions automatically imply other assertions. For
example, the absence of a node implies the absence of any label or
type for this node, as well as the absence of any incoming or
outgoing edges for this node. These implicit assertions are called
derived assertiongind are mentioned in Table 3. Whenever we
specify a set of assertio®swe assume thail derived assertions

are also included in this set, even if they are not specified
explicitly.

Table 3: Derived assertions

Assertion Derived Assertions
-N -label(N,*), -type(N;), -source(*,N), -
target(*,N)
-E -label(E,*), -type(E;),

-source(E,*), -target(E,*)

+source(E,N) +E, +N
+E, +N
+label(ld,L) +Id
+type(ld,T) +Id

2.3 Conditional Graph Productions

The main distinction between our approach and the “common”

use of assertions [7, 12, 15] is that we do not use assertions to
attach behavioural constraints to programs. Instead, we use
assertions to represent evolution transformations (as in [11, 16]).
In other words, we attach assertions to graph productions rather
than to graphs themselves.

Each assertion can be used either as precondition, postcondition
or invariant of a graph productioR. The sets of all these
assertions are denoted Bye(P), Post(P)andInv(P) respectively.

We also use the shorthand notati@efore(P)= Pre(P) [J Inv(P)
andAfter(P) = Post(P)J Inv(P).

Given a graph rewritingG pnH, one can easily write an
algorithm that calculates the minimal set of assertions that
determines the productioR. For example, in Figure 1 we can
identify the following minimal assertions:

Inv(P) = {+a, -source(*,c)}

Post(P) = {+label(a,area), +type(aperatior), +c,
+label(c,radius), +type(a@ttribute), +f, +source(f,a),
+target(f,c), +label(f,uses), +type(fseg}
If necessary, extra assertions can be added to these sets in order to

restrict the applicability of productioR to a smaller set of initial
graphs. For example, if we would impose the extra invarant

target(*,a), P would not be applicable anymore to the gr&pbf
Figure 1.

contradicts

-a [] Before(R).
AddNode(ajlty); RelabelN(a4,l,); RelabelN(adls)

The

sequence Py Py P3=

Following the notation of Perry [15], the assertions for production formed because the contradiction betwetabel(a,l,) L] After(P)

P are depicted as ellipses in Figure 2, wiilles represented as a

and +label(a,l,) [J Before(R) is absorbed by+label(a,l,) [J

grey rectangle. Preconditions appear on the upper horizontal side\fter(P2).

of the rectangle, postconditions on the lower horizontal side, and

Table 6: Contradicting assertions

invariants on the vertical sides. For positive assertions, the + sign
is omitted in the figures. When they are needed, derived assertion

Assertion

Contradicts

where

are depicted by dashed ellipses. Finally, we abbreviated the las
five postconditions oP to (f,a,c,usesisey.

t

+A

-A

+A is some arbitrary
positive assertion

+source(E,N) | +source(E,N) N; # N,
+target(E,N) +target(E,N) N; # Ny
+label(ld,Ly) +label(ld,Ly) L, #ZL,
+type(ld,Ty) +type(ld,Tp) T,.zT,

Figure 2: Graphical notation of a conditional production
[11] expressed every possible graph transformation in terms of a3.2 Detecting Syntactic Merge Conflicts

number of primitive productions that are sufficient to express any
kind of change to a graph. For exam@lddEdge(f,a,c,usasesd
adds an edgkfrom a to ¢ with labelusesand typeuses Table 5

is well-

Ill-formed production sequences can be used to detect syntactic
merge conflicts. These typically occur when different software
developers are making changes to the same software in parallel,

shows all primitive productions and their corresponding and these changes need to be merged.
assertions. Using the formalism of conditional graph rewriting, software
Table 5: Primitive graph productions merging can be formalised [11] by the notion pérallel
Graph Pre Inv Post independencd5]. Intuitively, two graph rewritings are parallel
Production independent if they can be sequentialised in any order without
AddNode TN “Source(.N) | +N changlng the end result. Unfortunately,'t_hls definition does not
(N,.L,T) -target(*N) +label(N,L) specify what to d_o when tv_vo_graph rewritingsnnotbe merge_d _
+type(NT) (read: sequentialised). If this is the case, we say that they give rise
AddEd E N E to a syntactic conflict For example, suppose that gragh
% |- N contains a node, and producti® removes this node while,
(E,Ns,N, L, T) +N¢ +label(E,L)) S . .
+type(ET) mdependently a_dds an edg_e originating from this node. This
+source(E,N) yields a syntactic conflict since trying to merge both parallel
+arget(E,N) evolutions would lead to an edge without a source.
DropNode | +N -source(*,N) | -N Definition. Two graph rewriting$s 7 py miH; andG [pp maHa
N) “target(*,N) lead to asyntactic conflictif the production sequenég; P, (or
DropEdge | +E +Ns -E P,; P,) is ill-formed.
(ENND :f;;rgt?éE,’\Bj) N By comparing the different kinds of assertions that holdPfaand
' P,, we can easily determine when a syntactic conflict occurs. It
Fée'abe' +abel(ld,L1) +d +abel(ld,L2) suffices to find a contradicting assertion betwedter(P,) and
(Id,Ly,L2) Before(R), using Table 6. For example, for the primitive
Retype +type(ld,T1) +ld +type(ld,T) productions of Table 5 we identify the following syntactic
(1d,T4,T2) conflicts:

3. PRODUCTION SEQUENCES

3.1 Well-formedness

A production sequencis a sequence of graph productions that
can be applied successively. It is well-formed if the assertions
imposed by a production in the sequence do not contradict
assertions imposed by earlier productions.

Definition. A production sequendey; P,; ..; P, iswell-formed if
0 A [0 Before(R) with k [7{2..n}. if (OA O After(R) with i<k
such tha#y contradictshy) then A [After(R) with i<j<k such
thatA; = A,). Otherwise, the production sequenciiliormed .

Table 6 mentions all possibleontradicting assertions.For
example, the sequende;; P, = AddNode(a,surfacattribute);
AddNode(a,areattribute) is ill-formed becausera [JAfter(P,)

» Prohibited node removalif -v [J After(P,) and+v [J
Before(R). This is for example the caself = DropNode(v)
andP, = AddEdge(e,v,w,|,tOne cannot add an edge with a
certain source node if this node has been removed before.
Prohibited edge removalis defined similarly.

» Dangling sourceif +source(e,v)7 After(P,) and-
source(e,v)] Before(R). This is for example the caseFif =
AddEdge(e,v,w,l,andP, = DropNode(v) One cannot
remove a node that still has outgoing ed@esgling target
is defined similarly.

Prohibited node introduction if -v [J Before(RB) and+v [J
After(P,). Prohibited edge introductionis defined similarly.

©
ddN(b,perimeter, attribute)

{abel(b,perimeterp

» Prohibited relabeling if +label(id,l,) [J After(P,) and
+label(id,l,) [7Before(R). Prohibited retyping is defined
similarly.

TargetlB;
Csource(BP

For approaches that can detegimantic conflictsrather than
syntactic conflicts, we refer to [1, 2, 8].

|
|
|
|
|
3.3 Dependencies | >(b) RetypeN(b,attribute ,operation)
. } type(b,operation >
|
|
|
|
|
|

Between the productions in a sequence we can determine
dependenciebased on which assertions are satisfied by assertions
of productions earlier in the sequence. These dependencies will be
used to address scalability issues in section 4.

Definition. Let Py; Py; ..; P, be a well-formed production . oo -) : .)
sequence anij . An assertiordy [J Before(P) is satisfied byan Figure 4: An illustration of satisfaction dependencies
assertior, [J After(R) if A = A,. Figure 4 shows all satisfaction dependencies in a sequence of

three primitive productions. There is a strong dependency from

the invariant-b of the second production to the postcondititn

* A JPost(R) and A; JPre(R): P; modifies (or removes) an of the first production, and from the preconditiype(b,attribute)
entity that was already modified (or iattuced) byP;. For of the second production to the postconditigpe(b,attribute)of

We can distinguish four satisfaction dependencies:

example, P;= DropEdge(e,b,c) depends on P = the first. Finally, there is a weak dependency from the invariant
AddEdge(e,b,c,usemed becauseP; removes the edgethat +b of the third production to the same invariant of the second
was introduced by P,. This is detected by+eO production.

Post(R) n Pre(R) Figure 4 also shows another kind of dependency from the
* A OJPost(R) and A JInv(R): P; relies on an entity that is postcondition+source(e,b)of the last production to the invariant

modified by P.. For exampleP; = AddEdge(e,b,c,usesey -source(*,b) of the first. In general, some assertions of earlier
depends orP; = AddNode(c,radiugttribute) becauserc [J productions can become captured by a postcondition of a later
Post(R) n Inv(P) production, meaning that the earlier assertion can be ignored.

* A UInv(R) and A JPre(R): P, modifies an entity that was Definition. Let Py; P, ..;P, be a well-formed production
relied on byP,. For examplep; = DropNode(b)depends on sequence andi<j. An assertion A [JPost(F) captures an
P, = DropEdge(e,b,c) assertion?; [J After(R) if A contradictsA;.

* A UInv(R) andA [7Inv(R): P; relies on the same entity as A capture is also atrong dependencyin the sense that it
P;. For exampleP; = RetypeN(attribute,operatior) depends preventsP; and P, from being commuted. Graphically, such a
onP; = RelabelN(a,surface,area) dependency is represented by a dashed line from postcondjition

The first three satisfaction dependenciessareng dependencies {0 postcondition (or invariant. This is illustrated in Figure 4
because changing the order Bf and P, yields an il-formed ~ betweenrsource(e,bjand-source(*,b)

production sequence. For example, we cannot add an edgerhe following complex production sequence illustrates all the
between two nodes if one of these nodes is not yet presentdependencies introduced before:

Graphically, strong dependencies are represented by a solid “neReIabeIN(a,surface,areaa\;ddNode(b,perimeterttribute);

from A to A. RetypeN(attribute,operation); RetypeN(lattribute,operation;

The fourth dependency isweeak dependencybecausé; andP AddNode(c,radiusttribute); AddEdge(e,b,c,useses;

can still be commuted without affecting the end result. For AddEdge(f,a,c,useses; DropEdge(e,b,c)PropNode(b)

example, it is irrelevant whether we first relabel a node and then_.
Figure 7 displays the assertions of eaclodpction in the

retype it or vice versa. Weak dependencies are represented by a ; :
dotted line froms to A, Sequence, together with all dependencies between them. Each

assertion is the source of at most one dependency, that always
points to the closest preceding assertion on which it depends.

(-o (- y—Tabel(a,surface>—Type(a.attribute > Pre(P) = (InvPre \ InvPost)J (Pre \ Post)
Post(P) = (InvPost\ InvPre)J (Post \ Pre
Re/abe/N(surface,area) In Figure 7, all the assertions in the sktg, InvPre Postand
%W’ InvPostof steps (1) and (2) are represented as shaded ellipses.

i)
%

The actual preconditions, postconditions and invariants of the
composite productio® are shown as ellipses on the surrounding
rectangle of Figure For examplePre(P) = {-target(*,c)} [J {-c,

-f, label(a,surface), type(@itribute)}, but the assertion-
target(*,c)is omitted since it can be derived frem

Tt o
CA:

0 HOE7D
RetypeN(a,attribute 4.2 Simplifying pairs of productions
i Another way to address the scalability is by reducing a production
sequencePy; Py; ...; P, by simplifying or eliminating pairs of

|) " successiveproductions®;; Pi,,. This is particularly relevant if we
) = Retypel‘kl(b,atmbute ,operation)

rely on a predefined set of productions (as in Table 5). Two kinds

|
| —<Qpe(b.operation > of simplifications can be distinguished. A pair of successive
} G ‘ @B productio_ns_ can babsorbedinto a singlg predefined p_roduction,
| B ,l/;;ﬁ’;;”’?’},/{;w ddN (c,radius,attribute) or the pair isredundantwhen the constituent productions cancel
Sourcey | | T ',’,.;zgm Bl ey each other's effect. In the latter case, the pair can be removed
WA N — e : without changing the overall behaviour of the graph rewriting. For

both situations, a definition and concrete example is presented
below.

AddE{e,b, ,uses,uses) (cfe——

Definition. A sequence of two graph productids P is

absorbing if there is a predefined graph product®such that
Pre(P) = Pre(R; P,), Post(P) = Post(k, P,), and

Inv(P) = Inv(Py; Py)

Figure 8 illustrates an absorbing production pair. Node addition
AddNode(b,perimetattribute) followed by node retyping
RetypeN(tattribute,operatior) is absorbed into a single node
additionAddNode(b,perimeteyperation).

‘ ‘
E(f,p,c,used,uses) }
|

_-source

— b
N /(/’//f/f;/ﬂ’

e i

R T

: : Q)
|

\

I'DropN(b)!
R PSR L2y
label(b, Txtype(b, %) G

I
Figure 7: Dependencies in a production sequence -target(*,b

4. COMBINING GRAPH PRODUCTIONS

This section illustrates some important ways in which 4% i

dependencies between assertions can address scalability issues @) bl perimetEny
when using large evolution sequences. . e (b.operation >—clabel(b perimeter
Figure 8: An absorbing production pair

O T I e
s,

4.1 Composite Graph Production — ———
A first way to address scalability is by treating complex sequencesDef'n't'On' ,A sequence of wo graph productio; P, is

in exactly the same way as primitive productions. For example,fédundant if Pre(P,; Py) = [J andPost(R; Py) = [J.

the production sequence of Figure 7 can be considered as anVith redundant pairs of productions, only the invariant set can be
atomic productiorP, as long as we are able to determine all of its nonempty. Figure 9 illustrates a redundant productionFaaip,.
assertions from the assertions of its constituent productions andA nodeb is added and removed again. The resulting composite
the dependencies between them. The assertions of the so-calleproduction has an empty set of pre- and postconditions, while
composite productionP are calculated as follows:

(1) Identify all precondition®re and invariantsnvPrethat have
no outgoingdependencies. Omit all derived assertions. 5 In section 4.4 we discuss the more complex case where redundant or
absorbing productions do not directly follow one another in the

(2) Identify all postconditionPostand invariant$nvPostthat
sequence.

have nancomingdependencies. Omit all derived assertions.

(3) Calculate the assertions of the composite produBtion
Inv(P) = (InvPren InvPost)[] (Pre n Post)

Inv(P;, P,) = {-b}.° Also note the capture dependencies
originating from-type(b,*)and-label(b,*). Relabel

G R

BB o,
B 5 eEp

=
B
< B
12
<
=
=
QD
o
»
)
=
D
QD
~

> CSource ()

CTargelr oD
T e by
|

T T

i 1‘ DropN(b) \L

e q:l!lia!a, R SR [R
Chype(b,) —(Cb)—Tabei(b, 7—

Figure 9: A redundant production pair

A
e ey

T T o

T RETEn
o

oS
%’}QM D<A

2

T s

t
33

4.3 Reordering

If two successive productions in a sequence do not have a strong TR P 72 2% -
dependency between them, their order can be changed. When] } 4 //M
doing this, we need to modify all involved dependencies Figure 12: Final result after redundancy removal

accordingly. This is illustrated in Figure 11 where we changed the This result is achieved by applying the following steps, starting
order of the last two productions in the sequence of Figure 4. Thisfrom the production sequence of Figure 7:

was possible because there is only a weak dependency betwee . . I .
the two productions that are being commuted. The reorderedf' Reorder oRetypeN(attribute,operation) and its immediate

production sequence has the same overall effect as the origin uccessoRety_peN(kattrlbu_te,opergtlor), r_nakmg
one because the assertions of the corresponding composit etypeN(kattrlbgte,opergtlor) the immediate successor of
production are identical in both cases. ddNode(b,perimetattribute).
B 2. Transform the absorbing subsequence

. AddNode(b,perimetattribute); RetypeN(tattribute,operation
into a single productioAddNode(b,perimetaperation).

3. Reorder oAddEdge(f,a,c,usases and its immediate
successobropEdge(e,b,¢)makingDropEdge(e,b,c}he
immediate successor 80dEdge(e,b,c,useses.

4. Transform the redundant subsequence
AddEdge(e,b,c,usese3; DropEdge(e,b,c)nto a single trivial
production that only consists of invarianfs,+b,+c}.

5. Remove this trivial production, and redirect the dependencies
accordingly.

6. Move the productioBropNode(b)}to directly behind
AddNode(b,perimeterperatior). This does not require
redirection of any dependencies, simrepNode(b)only depends

4.4 Removing Redu ndancy on AddNode(b,perimeteyperation).

Reordering can be used to remove redundant and absorbing. Transform the redundant subsequence
production pairs in a given sequence, even if the involved AddNode(b,perimeterperatior); DropNode(b)into a single
productions do not directly follow one another. In this way we can trivial production that only consists of invariangs}.

make the production sequence shorter, thus reducing the amourg Remove this trivial production. This concludes the redundancy

of memory required to store a production sequence remoyal, since no absorbing or redundant production pairs
(compression); improving the efficiency of algorithms that ,emain.

manipulate production sequences; making the production

sequence easier to understand; etc... 4.5 Refactoring Common Subsequences

Instead of giving the details of the redundancy removal algorithm, In the context of team development, tool support is essential,

we illustrate how it works by means of a nontrivial examp|e. especially when making parallel evolutions or customisations of

Removing redundancy in the production sequence of Figure 7the same software artifact. We can identify similarities between

yields the production sequence of Figure 12, containing only 4 these changes by factoring out all commonalities between the

instead of the original 9 primitive productions: parallel transformations. This is not only useful for reducing code
duplication, but also during software merging to reduce the
number of merge conflicts.

(b) RetypeN(b,attribute ,operation)

type(b,operation >

Figure 11: Reordering primitive productions in the sequence
of Figure 4

5 The assertionssource(*,b),-target(*,b), -type(b,*) and-label(b,*) can
be ignored as they are derived assertionb.of

The research in this paper is a logical consequence of the work on
Q 2 A pap 9 q

reuse contract§17]. Mens [10, 11] provides a formalism for
© | G | ¢ | H | L reuse contracts that uses pre- and postconditions to express graph
e H, transformations and relies on formal properties of conditional

graph rewriting [4, 5, 6].

The research of Roberts [16] is also closely related. Pre- and
postconditions are used to express refactoring transformations
which are usually behaviour-preserving), and some scalability
issues are addressed as well.

Figure 17: Factoring out commonalities in parallel evolutions

Schematically, the idea is represented in Figure 17. If we have two
parallel production$ andQ that are applied to the same initial
graph G, we can compare their assertions, and construct a ne
productionC that contains only the common assertions, while the
variable ones are specified in two other productinandV,.

6. CONCLUSION

4.6 Undo Mechanism Typed graphs, combined with graph transformations that are
In an industrial-strength software development environment, it based solely on assertions (i.e., preconditions, postconditions and
should be possible to make changes undone selectively, even iinvariants) provide a general formalism for software evolution.
these changes are part of a complex sequence. Suppose we walssertions make it easy to detect syntactic merge conflicts
to undo only one production in a sequence. We cannot simplybetween parallel evolution transformations, and allow us to define
remove the production and reapply the resulting shorter sequencegcomposite graph transformations in an intuitive and
because later pductions in the sequence mail stepend on the straightforward way. Dependencies between the assertions allow
removed one. Therefore, we additionally need to remove all laterus to address several scalability issues, such as changing the order
productions that strongly depend on the removed productionin a transformation sequence, removing redundant transformations
(either directly or indirectly). in a sequence, and extracting a common subsequence from two

For example, in order to unddddNode(b,perimetettribute) in (or more) given transformation sequences.

the sequence of Figure 7, we also need to undo all its stronglyThe approach seems very promising, but still needs to be

dependent productions RetypeN(lattribute,operation), validated in a large-scale case study. Also, the underlying

AddEdge(e,b,c,usese9, DropEdge(e,b,candDropNode(b) formalism can be extended in many ways: a notion of subtypes
L could be introduced; more complex assertions could be defined,;

4.7 Parallelising Independent Subsequences the productions could be made more generic; etc...

A final use of dependencies has already been discussed by

Roberts [16]. In order to apply large production sequences in a7, REFERENCES

more efficient way, they can be split up in parallel subsequences

that can be applied independently from one another. This allows 8

us to parallelise the process of applying complex transformations ~ Canges to Program#CM Trans. Programming Languages

to a graph. It also makes large evolution transformations more and Systems, Vol. 16, No.6, 1994, pp. 1875-1903.

manageable by splitting them up in smaller independent chunks2 D. Binkley, S. Horwitz, and T. RepBrogram Integration for

that are more understandable. Languages with Procedure Call&CM Trans. Softw. Eng.

For example, the production sequence of Figure 12 can be and Methodology, Vol. 4, No. 1, 1995, pp. 3-35.

parallelised into the following independent subsequences: 3 M. S. FeatheiDetecting Interference when Merging
Specification Evolutiongroc. Int. Workshop Softw.

specification and design, pp. 169-176, ACM Press, 1989.

1 V. BerzinsSoftware Merge: Semantics of Combining

RelabelN(a,surface,areaRetypeN(attribute,operatior) and

AddNode(c,radiusttribute); AddEdge(f,a,c,usasse 4 A Habel, R. Heckel, G. Taentz&raph Grammars with
Negative Application Condition§undamenta Informatae,
5. RELATED WORK Special Issue on Graph Transformations, 26(3,4): 287-313,

Perry was one of the first to use assertions for dealing with certain 10S Press, June 1996.

_aspects of §oftware evolution. In [151 he describesemantic 5 R. HeckelAlgebraic Graph Transformations with
interconnection modethat uses assertions to annotate software Appjication ConditionsDissertation, Technische Universitat
artifacts. This model is used to detect the effects of changes by gerjin, 1995,

recursively determining the assertions that are affected by the
change. In our approach, we do not use assertions for expressin8
the behaviour of software artifacts themselves, but to express
semantic dependencies between the evolution transformations
instead.

R. Heckel, A. WagneEnsuring Consistency of Conditional
Graph Grammars: A Constructive Approadtecture Notes

in Theoretical Computer Science 1 (1995), Elsevier Science,
1995.

. . 7 C.A.R. HoareAn axiomatic approach to computer
If we focus on formal support for merging parallel evolutions, our

work is closely related to [9]. Lippe and van Oosterom propose an programming Comm. ACM 12(10): 576-580, 583. ACM
. . Press, October 1969.

operation-based merge techniquethat uses software o

transformations (called operations) to represent evolution, and8 D. Jackson, D.A. Lad&emantic Diff: A Tool for

detects and resolves merge conflicts using the information ~ Summarizing the Effects of Modificatiomst. Conf. Softw.

contained in these transformations. Dependency information Maintenance, IEEE Press, 1994.

between transformations is used to address the issue of scalabilityg E. Lippe, N. van Oosteror@peration-based MergindProc.

but assertions are not used to identify the dependencies. Fifth ACM SIGSOFT Symp. Softw. Development

10

11

12

13

Environments. ACM SIGSOFT Softw. Eng. Notes, 17(5): 78-
87, ACM Press, 1992.

T. MensA formal foundation for object-oriented software
evolution.PhD Dissertation, Vrije Universiteit Brussel,
September 1999.

T. MensConditional graph rewriting as a domain-
independent formalism for software evolutiémoc. Int.
Agtive '99 Conference, LNCS 1779: 127-143, Springer-
Verlag, 2000.

B. Meyer Object-Oriented Software Constructid®® ed.,
Prentice Hall, 1997.

W.F. OpdykeRefactoring object-oriented framewoylh.D.
Dissertation, University of lllinois at Urbana-Champaign,
Technical Report UIUC-DCS-R-92-1759, 1992.

14

15

16

17

W.F. Opdyke, R.E. Johnsddreating abstract superclasses
by refactoring Proc. ACM Computer Science Conference,
pp. 66-73, ACM Press, 1993.

D.E. PerrySoftware Interconnection ModeRroc. Int. Conf.
Softw. Eng., IEEE Press, 1987.

D. RobertsPractical Analysis for Refactoring®hD
Dissertation, University of lllinois at Urbana-Champaign,
1999.

P. Steyaert, C. Lucas, K. Mens, T. D’'HorRRéuse Contracts:
Managing the Evolution of Reusable AssBt®c. OOPSLA
'96, SIGPLAN Notices 31(10): 268-286, ACM Press, 1996.

