
V
R

IJ
E

UNIVERSITEIT BRUSS
E

L

S
C

IE
N

TIA
VINCERE TENEB

R
A

S

Vrije Universiteit Brussel
Programming Technology Laboratory

Faculteit Wetenschappen - Departement Informatica

A Logic Meta-Programming Approach
to Support the Co-Evolution of

Object-Oriented Design and Implementation

Roel Wuyts

Advisor: Prof. Dr. Theo D’Hondt

January 2001

Proefschrift ingediend met het oog op het behalen van de graad van
Doctor in de Wetenschappen

Body and mind are two phenomena , observed under different condi-
tions, but of one and the same ultimate reality. Body and mind are
aspects of the living being. They operate within a peculiar principle of
synchronicity wherein things happen together and behave as if they are
the same . . . yet can be conceived of as separate.

–Staff Medical Manual, Ginaz School.
Brian Herbert & Kevin J. Anderson - Prelude to Dune: House Harkonnen

Contents

1 Introduction 3
1.1 Design as abstraction of implementation . 3
1.2 The gap between design and implementation . 4
1.3 Thesis . 5
1.4 Approach and contributions . 6
1.5 Research context . 7
1.6 Dissertation overview . 8

2 Co-evolution 9
2.1 Introduction . 9
2.2 Co-evolution in biology . 10
2.3 Definitions . 11

2.3.1 Logic meta-programming . 11
2.3.2 Introspection and reflection . 13

2.4 Co-evolution and synchronization . 15
2.5 Synchronizing design and implementation . 15

2.5.1 Characterizing synchronisation . 15
2.5.2 Related work . 16

2.6 A framework to synchronize design and implementation 22
2.7 Validation and roadmap . 25
2.8 Summary . 26

3 SOUL and the incremental solver 27
3.1 Introduction . 27
3.2 SOUL as a logic meta-programming language . 28

3.2.1 Syntax of SOUL . 28
3.2.2 Symbiosis with Smalltalk . 28
3.2.3 The generate predicate . 33
3.2.4 The quoted string . 34
3.2.5 Introspection and reflection in SOUL . 34
3.2.6 The development tools . 35

3.3 The incremental solver . 38
3.3.1 Local propagation in numeric constraint solvers 39
3.3.2 Local propagation in SOUL . 39
3.3.3 The incremental solving process . 40
3.3.4 Limitations of the current implementation 42

3.4 Conclusion . 43

iii

4 The declarative framework 45
4.1 Introduction . 45
4.2 The logic layer . 47
4.3 The representational layer . 48

4.3.1 Representing base programs . 48
4.3.2 The class predicate . 48
4.3.3 The method predicate . 50
4.3.4 Optimising the representational predicates 51

4.4 The basic layer . 53
4.4.1 The code generation predicates . 54
4.4.2 Examples using the basic layer predicates 55

4.5 The design layer . 57
4.5.1 Programming conventions . 57
4.5.2 Design pattern structures . 62
4.5.3 UML class diagrams . 63

4.6 Instantiating and reusing the framework . 65
4.7 Lessons learned . 65

4.7.1 Guidelines for writing logic meta programs 65
4.7.2 Causal connection . 66

4.8 Conclusion . 67

5 The synchronization framework 69
5.1 The synchronization tool framework . 69
5.2 The synchronization framework . 71

5.2.1 Style checker . 71
5.2.2 UML tool . 73
5.2.3 Conceptual validation . 74

5.3 Conclusion . 75

6 Supporting co-evolution 77
6.1 Introduction . 77
6.2 General setup of the experiments . 78
6.3 Supporting delayed synchronization . 78

6.3.1 Extraction of design information . 79
6.3.2 Complementing the extracted design with specific information 82
6.3.3 Generating missing implementation parts from the design 91
6.3.4 Checking implementation and design . 91

6.4 Supporting direct synchronization . 93
6.4.1 Guiding development . 95

6.5 Experimental validation . 98
6.6 Discussion . 99

6.6.1 Performance and scalability . 99
6.6.2 Combining direct and delayed synchronization 100
6.6.3 Symbiosis versus integration versus stand-alone 101
6.6.4 SOUL and other object-oriented programming languages 101

6.7 Conclusion . 102

7 Supporting real-world development 105
7.1 Introduction . 105
7.2 Setup of the experiments . 106
7.3 Synchronizing UML diagrams . 106

7.3.1 Expressing MediaGeniX programming conventions 107
7.3.2 Conformance checking the UML diagrams and the implementation 108
7.3.3 Checking evolution in the implementation 110

7.4 Supporting the MediaGeniX Application Framework 111
7.4.1 Expressing the aspect and domain class rules 111
7.4.2 Checking the aspect and domain class rules 111
7.4.3 Expressing the enablingPolicy rules . 117
7.4.4 Checking the enablingPolicy rules . 118

7.5 Lessons learned . 118
7.6 Conclusion . 119

8 Conclusion and future work 121
8.1 Conclusion . 121
8.2 Contributions . 122
8.3 Future Work . 123

8.3.1 Refining the synchronization framework . 123
8.3.2 SOUL-2 . 123
8.3.3 Combining solvers . 124
8.3.4 Full co-evolution support . 124

1

Acknowledgments
I would like to take this opportunity to thank my adviser, my fellow researchers and everybody

who helped make this possible.
First of all I would like to thank my adviser, prof. dr Theo D’Hondt, for his never-ending patience

and support. I would like to thank him for acting on gis gut-feeling. He is, after all, the spiritual
father of the logic meta-programming approach adopted by several members of the Programming
Technology Lab (PROG).

Besides Theo, I received lots of help from all the other fellow researchers at PROG during my five
years stay at the lab. More specifically I would like to thank Kim Mens, Tom Mens, Kris De Volder
and Wolfgang De Meuter for helping me through the difficult first stages when I started writing this
dissertation. They were also the first people to proofread the initial drafts of the texts. Thank also to
my proofreaders for their critical comments. In arbitrary order: Bart Wouters, Dirk Deridder, Maja
D’Hondt, Johan Brichau, Tom Tourwé, Isabelle Michiels and Johan Fabry. Special thanks goes to
Bart Wouters for his help with some of LaTeX ‘features’. In general, all my thanks to everybody at
PROG (members old and new) for creating a great atmosphere for doing research, for helping out on
several occasions, for giving fruitful discussions and for permitting heroic battles in favour or against
some particular research aspect.

My explicit thanks to some of the former members of PROG that guided me in the beginning of
my research: Patrick Steyaert, Serge Demeyer, Carine Lucas and Koen De Hondt.

I also want to thank the courageous developers from MediaGeniX (and more specifically Patrick
Steyaert, Koen De Hondt and Gerrit Cornelis) for providing me with the opportunity to perform
experiments on their software, and to proofread the resulting chapter. Special thanks also go to the
OOPSLA’99 Doctoral Symposium Team (Satoshi Matsuoka, Oscar Nierstrasz, Gregor Kiczales and
Craig Chambers). I recommend anyone to submit a paper there before starting writing the dissertation,
and hope they get as much feedback and help as I got. Finally I would like to thank Stéphane Ducasse
for his continuing support and feedback from the day I got to know him.

Although it has become a cliché, thank goes out to a number of people for the little things, things
that inadvertently pushed me further and shaped me: most of all to my parents for raising me to have
an open view and a general interest in everything happening in the world; to Reinhilde for her belief
in me, her devotion to mathematics and her commitments; to Luc and Nicole for their (mainly) moral
support; and finally to Inge, my friend and wife-to-be, for putting up with me through the ups and
downs of the last year writing my thesis. I’ll do anything in my power to pay back this huge debt.

2

Chapter 1

Introduction

This dissertation provides a framework to synchronise design and implementation by expressing de-
sign as a logic meta program over implementation. In this first chapter we introduce the basic termi-
nology, problems and solutions offered by this dissertation.

1.1 Design as abstraction of implementation

We first introduce the definition of design that is used in this dissertation. Our definition of design is
rather broad. To illustrate this, let us take a look at the software development life cycle. In its most
common form, it is divided into three distinct phases [RWL96, Som96, Pfl98, RJB99]:

1. the analysis phase identifies and models the problem that needs to be solved;

2. the design phase describes how the system should be structured in order to solve the problem
described in the analysis phase. This phase is commonly divided into two smaller steps, the
architectural design and the detailed design;

3. the implementation phase translates the design into a working solution in a particular program-
ming language.

The primary concern in the first phase is the problem, while the design and implementation phases
are concerned with the solution. So the input for the design phase is the problem and its output are
blueprints that can be used in the implementation phase. In this view, we can see design as an abstract
solution to the problem that is afterwards codified in the implementation phase. This results in the
following definition of (software) design1:

Definition
Software design is an abstraction of implementation.

This definition is consistent with descriptions of design that can be found in common software
engineering literature [Bud94, GR95, Som96, Pfl98]. However, it is more general because it also char-
acterises other things as being design, such as programming conventions (for example idioms [Cop98]
or best practice patterns [Bec97]). The important aspect of this definition of design is that we require
it to be explicitly related to implementation. We consider any notation that can be regarded as an
explicit abstraction of implementation to be design.

1Whenever in this dissertation we use the term design, we mean software design.

4 CHAPTER 1. INTRODUCTION

Our definition thus yields the view that design is not a stand-alone entity, but that it defines a
complete range of different abstractions over implementation. This spectrum of abstractions ranges
from more local and detailed design (such as programming styles [Jon87, LH89, Bec97]) to high-
level abstractions that provide global views of the implementation (as in high-level design or software
architectures [PW92, GS93, BJ94, BMR+96, SG96]).

1.2 The gap between design and implementation

Having clarified what we mean by design, we can now look at the relation between design and im-
plementation. In traditional software engineering literature, implementation is typically viewed as a
concretization of design [Bud94, GR95, Som96]. This implies a very general, unspecified and uni-
directional relation from design to implementation. In fact, general forward engineering techniques
do not bother with making this relation between design and implementation explicit. This implicit-
ness leads to serious problems when developing object-oriented systems, as shown by the following
well-known problems that are the result of the link between design and implementation being implicit:

drift and erosion Drift is the problem where implementation and design evolve in different direc-
tions because they are not explicitly related. Erosion is the process where the initial design is
breached more and more in the implementation, because the design ages quickly as the imple-
mentation changes to accommodate new requirements [PW92];

documentation problems Severe problems occur when one documents a system and has to keep this
documentation up-to-date. This problem is clearly visible in object-oriented frameworks. An
object-oriented framework is defined as a set of classes which embody an abstract design for
solutions to a family of related problems [JF88]. It can be seen as a skeleton that implements
an abstract application for some specific domain. In order to get a working application, this
skeleton then has to be fitted with the specific outward appearance. This is called instantiating
the framework.

Instantiating a framework is a very conscientious and difficult process, since the correct methods
and classes need to be implemented in order for the framework to be fully instantiated and
usable. Depending on the application that is needed, it can be sufficient to just fill in basic
information by overriding the abstract methods from the framework. However, it might also
be necessary to override more methods in order to change the behaviour implemented by the
framework in some points to accommodate for a rare feature of the application that was not
yet foreseen by the framework developer. Because frameworks define a whole spectrum of
applications that have to be realised through adapting the source code, there is a large need of
support for documenting frameworks and the decisions made when implementing them. This
documentation is an obvious weak point of frameworks: it should be sufficiently elaborate to
allow simple instantiations of the framework, and should also provide sufficient information
to allow customisations of (parts of) the framework that change the general behaviour. The
problem is that the relations between all the implementation parts that make up a framework
have to be documented.

The problem of supporting framework documentation in order to allow any user to customise
it to a certain level is also present in other development activities, such as maintenance, reverse
engineering, porting or simply extending any piece of software. For reuse to succeed, one needs
to understand the system completely, and grasp its overall structure, before making changes to it.

1.3. THESIS 5

This not only leads to problems when maintaining the software, but also when new requirements
need to be included, or when novice developers join the team and need to be productive as
quickly as possible;

supporting iterative development is also very hard. To make this clear, let’s first go back in time to
have a look at the software engineering process induced by the waterfall model. The waterfall
model is a forward engineering, top-down approach: from analysis to design to implementation
to maintenance. When an error is encountered in some phase, a complete rollback to a previous
phase is necessary. When developing an application in a fairly new application domain, the
design is typically not perfect from the first time on, and most errors will only become clear
in the implementation. When following the waterfall mode, a lot of backtracking would occur
here. Iterative development is targeted more towards the development of a system built for
new domains and with changing user requirements. The strong point of iterative development
is that it integrates top-down development (typically done in the design phase) with bottom-
up development (typically encountered when implementing the design in some programming
language). In each pass, the implementation learns from the design, and the design learns from
information gathered in the implementation phase. This integration of top-down and bottom-up
development makes iterative development much more reactive towards changing requirements
and reuse. However, this flexibility comes at a cost: synchronisation. Properly supporting
iterative development is impossible if the design phase and the implementation phase (through
which is continuously cycled) have to be synchronised manually. This is not a shortcoming of
incremental development alone; it just shows how crucial it is to be able to synchronise design
and implementation.

The fundamental problem underlying the problems sketched above is that there is no explicit re-
lation between the design and the implementation. Because design and implementation are unrelated,
they can be modified independently of each other, and a modification of either one does not leave
any trace in the other. As a result, synchronising such two loosely coupled entities is at best difficult
and ad-hoc, and most of the time impossible. This discrepancy results in a practical development
process where analysis and design are used for the initial implementation, but evolution is applied to
the implementation alone [DDVMW00].

1.3 Thesis

The general context of this dissertation is the support of a co-evolution software development ap-
proach: both design and implementation are subject to evolution, and they influence each other con-
tinuously2. In the long run this should result in a development environment where all development
artefacts are related to each other, such that the evolution of one artefact influences the evolution of
other artefacts. This dissertation is a first step towards such a development environment, and hands
over a conceptual and technological framework that forms the foundation of such an environment.
Since the focus of co-evolution is on changes of artefacts, and how these changes impact other arte-
facts, the core technological component that is needed to support co-evolution is a means of synchro-
nizing changes of artefacts. In this dissertation we study the characteristics of such synchronization
mechanisms, and implement a synchronization framework to build tools that need synchronization
between design and implementation. The cornerstone of this framework is a logic meta-programming

2The term co-evolution actually comes from a field in biology that studies interacting species, and their influence on
each other.

6 CHAPTER 1. INTRODUCTION

language that is integrated in the object-oriented development environment. This allows to make the
relation between design and implementation explicit by expressing design as a logic meta program
over implementation. Moreover, since the design is a logic program, it can be used to generate, rea-
son about and constrain the implementation, and vice versa. We have formulated our solution in the
thesis we defend throughout the remainder of this dissertation:

Thesis
A framework for co-evolution of design and implementation, where design and implemen-
tation are related in such a way that the one can check, generate or constrain the other, can
be achieved in a logic meta-programming language integrated with a software development
environment.

Note that we limit the research to existing object-oriented programming languages and designs,
without adapting them to fit into our approach. Instead, we want our approach to be general such that
it can be adapted to different design and programming languages.

1.4 Approach and contributions

To prove our claim, we feel that it is necessary to first study the synchronization of design and imple-
mentation, and then to actually implement an artefact and perform experiments with it. The artefact
consists of a synchronization framework, that is based on a logic meta-programming language inte-
grated with the development environment. The reason we feel that the building of an artefact is so
important is because it is not trivial to integrate a logic meta-programming language and an object-
oriented programming language. So, to get hands-on and complete experience with the necessary
technology, it is necessary to build a working prototype. This proof by construction approach is
not new, and was also employed in a number of other cases. For example, to experiment with an
object-oriented environment for building simulations using constraints, the ThingLab system was im-
plemented [Bor79]. Another example is the Refactoring Browser tool, that was implemented in the
context of the PhD research of Don Roberts [Rob99].

The proof of our claim thus consists of three parts:

1. a study of synchronization of design and implementation. It consists of a study of related work
and a number of characterizations of synchronization mechanisms;

2. a logic meta-programming language and synchronization framework: the cornerstone of the
artefact is a logic meta-programming language called SOUL, the Smalltalk Open Unification
Language, in the object-oriented programming language Smalltalk. SOUL’s technical contribu-
tion is its symbiosis with Smalltalk, meaning that Smalltalk objects and expressions can be used
from within SOUL. SOUL is used as the implementation language for the declarative frame-
work, a layered library of logic rules that allows us to reason about Smalltalk code. The design
layer expresses several design notations (programming conventions, design pattern structures
and basic UML class diagrams). We then conceive the synchronization tool framework, a fra-
mework to integrate the declarative framework in the Smalltalk development environment, so
that it can react on notifications of changes to design and implementation. The synchroniza-
tion framework is the combination of the declarative framework and the synchronization tool
framework;

1.5. RESEARCH CONTEXT 7

3. experiments to show that the synchronization framework lives up to our claim. The first case
study uses the HotDraw framework to show how we support different kinds of synchronisation.
The second case study is performed in industry on a real-world application, and shows the
practical application and scalability of our approach.

To summarise, we now list the contributions made by this dissertation:

1. the first contribution is the study and characterization of synchronization mechanisms. These
characterizations are used as the key variation points of our synchronization framework;

2. the second contribution is the design of the logic meta-programming language, and more specif-
ically its symbiosis with the underlying implementation language. This symbiosis allows the
logic meta-programming language to wrap or evaluate expressions in the implementation lan-
guage during the logic interpretation process;

3. the third contribution is the synchronization framework that is used to build tools that need
synchronization of design and implementation.

1.5 Research context

This dissertation should be seen as a step in a more general effort conducted at the Programming
Technology Lab that focuses on how the emerging technique of declarative meta programming (DMP)
can be used to build state-of-the-art software development support tools. DMP is an instance of hybrid
language symbiosis, merging a declarative meta-level language with a standard object-oriented base
language. As described in [DDVMW00], DMP emerged as a unifying approach that combined the
research of several members of the lab. Before, several members were using their specific declarative
languages in order to reason about or manipulate an underlying object-oriented programming lan-
guage:

� Tom Mens used graph rewriting techniques to formalise the reuse contract model previously
introduced in [SLMD96, Luc97]. A prototype tool was implemented in a logic programming
language [Men99];

� Koen De Hondt’s PhD research focussed on supporting reverse engineering. It introduces
software classifications as general medium of storing and relating all kinds of software arte-
facts [DH98];

� Kris De Volder described Tyruba, a precompiler that generates Java-code from logic meta pro-
grams [DV98];

� Kim Mens described software architectures as logic meta programs to check them against the
implementation [MWD99, Men00];

� Tom Tourwé uses a functional language with logic extensions to write declarative code trans-
formations that can replace framework and design pattern structures by optimised implementa-
tions [TDM99, Tou00];

� Maja D’Hondt expresses domain knowledge as a separate aspect that can be factored out from
the base program in a logic meta-programming language [DDMW99, DD99];

8 CHAPTER 1. INTRODUCTION

� [Wuy96, Wuy98] reasoned about the structure of object-oriented systems using SOUL (the
Smalltalk Open Unification Language), resulting in this dissertation;

Recently we ported and extended SOUL (the logic meta-programming language that we introduce
and use throughout this dissertation) to the Squeak Smalltalk environment. This new language, QSoul,
is used as the common platform to develop more declarative meta programming applications. The first
experiments that use QSoul are described in a number of workshop position papers [MMW00, Bri00a,
Bri00b, DW00, WDVP00, DVFW00].

1.6 Dissertation overview

Chapter 2 gives a general overview of co-evolution, and discusses the characterization of synchroni-
sation of design and implementation and related work. Then it introduces in more detail the approach
we propose in this dissertation.

Chapter 3 introduces the implementation and usage of the logic meta-programming language
SOUL we built to perform the experiments needed in the dissertation. We introduce the language,
the development tools and the incremental solver.

Chapter 4 is devoted entirely to the declarative framework, a layered set of rules that allow to
reason on a high level of abstraction about the implementation. The top level of the framework
expresses three design notations (programming conventions, design pattern structures and UML class
diagrams) as logic meta programs of implementation.

Chapter 5 describes the synchronization framework, a combination of the declarative framework
and the synchronization tool framework.

Chapter 6 uses the well-known HotDraw framework for drawing editors to validate that our ap-
proach supports different kinds of synchronisation. We show different ways of synchronising design
and implementation.

Chapter 7 describes the experiments we performed on a real-world Smalltalk application to de-
monstrate that our approach works in practice and is indeed scalable.

Finally, chapter 8 concludes the dissertation. It shows that the thesis has been proved, enumerates
the contributions of this dissertation, and discusses future work.

Chapter 2

Co-evolution

In this chapter we give more information about co-evolution, and about synchronization. We start
by defining the major concepts we need. We then propose characterizations of synchronization, and
use them to discuss related work. Finally we introduce our synchronization framework from a high-
level perspective. The rest of the dissertation is concerned with discussing the building blocks of the
synchronization framework in more detail, and validate it.

2.1 Introduction

When a company starts developing a new product, it typically uses a clean forward engineering
scheme and goes (iteratively or not) through requirements analysis, high-level design, design and
implementation phases. This development process changes when a first implementation is finished.
From then on, the implementation receives more and more attention at the cost of the maintaining
the higher-level artefacts (such as design, analysis and documentation). This has been observed for
different phases, and was coined ‘architectural drift and erosion’ in [PW92] for the high-level design
phase. We feel this term describes the problem very well: over time the artefacts from the original
phases erode more and more under the constant pressure of the ever changing implementation.

One of the reasons of this erosion is (tool) support. First of all, artefacts from the higher-level
development phases merely serve as documentation and roadmap in the implementation phase. Sec-
ondly, these artefacts need to be kept in sync manually when changes are made to the implementation.
These problems complement and reinforce each other, and typically result in a downward spiral where
only implementation evolves, and the artefacts from other development phases stand still. Of course,
this results in only the implementation being up-to-date, and an ever more difficult job to update the
rest.

The development process we envision is one of co-evolution, where all possible artefacts evolve,
separately or together, toward a solution. Evolution is then performed on all possible artefacts, with
support to synchronise changes between all artefacts. To support co-evolution in practice, we need
a mechanism to synchronise changes between design and implementation. It is clear that the scope
of co-evolution is a very large one that encompasses the complete development life cycle. In this
dissertation we therefore focus only on the design and implementation phases, and we build a frame-
work that allows us to synchronise design (documentation) with implementation. However, before
discussing our solution we first describe the biological foundations of co-evolution, classify different
kinds of synchronisation and discuss some related work.

10 CHAPTER 2. CO-EVOLUTION

class subclass species1 species2
co-operation commensalism + 0

mutualism + +
antagonism allelopathy - 0

exploiter-victim + -
competition - -

Table 2.1: Main classes of interactions between species, and their subclasses. + means
positive feedback, - means negative feedback, 0 means no feedback.

2.2 Co-evolution in biology

The term co-evolution comes from biology, where it is the name of a research field that studies in-
teracting species which influence each other’s evolution. Enumerating all the biological definitions
of co-evolution is beyond the scope of this dissertation (see [Def99] for several definitions). We only
give the definition by J. Thompson [Tho94] since it is compatible with most other definitions:

Definition
Co-evolution is reciprocal change in interacting species.

The two major concepts in this definition are species and interaction. In biological terms, species
is mostly defined in terms of reproductively isolated, which means that two individuals belong to
the same species when they can produce fertile offspring. Interaction between species is much more
complicated, since there are different forms of interactions with different names throughout the litera-
ture. A common taxonomy is based on the reward a species expects from an interaction with another
species, and is given in table 2.1. This allows us to define two classes of interaction, each with some
subclasses:

1. co-operative interactions are interactions where none of the species participating in the inter-
action is harmed. Depending on whether just one, or both species benefit from the interaction,
this class is split in commensalism and mutualism cases.

2. antagonistic interactions are interactions where at least one of the participating species is
harmed. When one species benefits from this interaction, we call this an exploiter-victim in-
teraction. When both species get negative feedback from the interaction, we have a competitive
interaction. In the case where one species gets negative feedback while the other has no feed-
back, we talk about allelopathy.

The goal of co-evolution in biology is to study the evolution of a species with respect to other
species and its environment. This can then lead to information why some species get extinct, or if
and how complex symbiosis between two species occurs. Hence the goal is actually to find a model
to simulate continuous interaction between species in order to study the long term effects. While this
would be very interesting to apply to software engineering, it falls outside the scope of this dissertation
and is discussed in the future work in section 8.3.4. Speaking in biological terms, this dissertation is
interested in the short term effects only, such as detecting differences between species at a certain point
of time (conformance checking) or seeing the impact of a single evolution step in one species on the
other (impact analysis). We are also interested in the generation of a species by another species and
by the constraints imposed by one species on another species. Especially for these last two situations

2.3. DEFINITIONS 11

executor

program

data

manipulates

executes

system

Figure 2.1: A computational system

it is hard to find matching biological situations. Hence we only use the general ideas and terminology
of biological co-evolution in this dissertation.

2.3 Definitions

Before we take a closer look at the synchronization of design and implementation, and propose the
synchronization framework, we first want to define some of the key concepts that are used throughout
this dissertation: logic meta-programming and reflection.

2.3.1 Logic meta-programming

One of the cornerstones of our approach is that design is expressed as a logic meta program over
implementation. However, we have not yet defined what logic meta-programming is. Before doing so
we first introduce the necessary terminology, starting from the definition of a computational system.

A computational system is a system that reasons about and acts upon some part of the world,
called the domain of that system. The main idea is that a computational system consists of data,
a program and an executor. This is depicted in figure 2.1. The data represents the domain of the
system. The executor runs the program. The program manipulates the data and, by doing so, conveys
new information about the domain or acts upon the domain [Mae87]. We are interested in the program,
since it specifies (or describes) the computational system [Ste94].

Definition
A program is a formal, executable specification of a computational system [DV98].

The program is expressed in a formalism that can be interpreted automatically by the executor
in order to obtain the computational system it specifies. We call this formalism a ‘programming
language’.

Definition
A programming language is a formalism that can be interpreted in an automatic
manner in order to obtain the computational system specified by the program written
in it [DV98].

12 CHAPTER 2. CO-EVOLUTION

executor

program

data

manipulates

executes

base
system

executor

program

data

manipulates

executes

meta
system

represents

Figure 2.2: A meta system

The data of a computational system is used to represent the domain of the computational system,
so that it can be acted upon by the program. It is important to stress that this is actually a mapping:
some properties and relations of the domain are described explicitly in the data. Some other rela-
tions are implicit in the internal relations between the data elements, the process that interprets the
representation and the domain in which the system is embedded.

Definition
Every aspect of the internal workings of a computational system that has an explicit
representation in the data of that system is said to be reified.

Definition
Every aspect of the internal workings of a computational system that has no, or an
implicit, representation in the data of that system is said to be absorbed.

Computational systems can be constructed for almost any domain. One only needs to represent
the domain in data, and write a program to specify the system. Hence, computational systems can
have other computational systems as their domain, as showed in figure 2.2.

2.3. DEFINITIONS 13

Definition
A meta system is a system that has as its domain another computational system,
called its base-system [Mae87].

Definition
A meta program is the program specifying the meta system of a computational system.

We emphasise that the concepts of meta system and meta program are relative concepts. This
means that one and the same system (program) can be meta system (or meta program) and base
system (base program) at the same time, depending on the context. We would also like to stress that
the meta system does not directly manipulate its base-system; the meta system manipulates programs
of the base-system [Ste94].

Since the only thing ‘special’ about a meta program is the data it manipulates (representations of
base programs), meta programs can be written in general-purpose programming languages. However,
to facilitate the writing of meta programs, there are domain-specific programming languages that
have specific data structures and routines to represent and reason about base programs. We call such
languages meta-programming languages (or meta languages in short). The language the base program
is implemented in is called the base language.

Definition
A meta language is a programming language specifically tuned for specifying meta
programs [DV98].

Definition
The base language for a given meta language is the programming language for which
the meta language is specifically tuned [DV98].

We already mentioned that we express design as logic meta program over implementation. Now
we have enough terminology to give a precise definition of a logic meta-programming language.

Definition
A logic meta-programming language is a logic programming language that is used
as meta language.

2.3.2 Introspection and reflection

In this dissertation we extensively use meta programming, but we also skirt the borders of reflection.
More specifically, the logic meta-programming language we have implemented is introspective, and
has some reflective capabilities. Therefore we give the basic definitions here. More detailed informa-
tion and examples of reflection can be found in the dissertations of Maes [Mae87] and Steyaert [Ste94],
and in [DM98].

14 CHAPTER 2. CO-EVOLUTION

reflective
system

program

executor

program

data

manipulates

executes

meta
system

data

self
representation

causally
connected

executes
manipulates

Figure 2.3: A reflective interpreter

We start by defining causally connected, that actually means that two artefacts are related in such
a way that if one of the two changes, this leads to an effect on the other.

Definition
A computational system is causally connected to its domain if the computational

system is linked with its domain in such way that, if one of the two changes, this leads
to an effect on the other.

A classic example is a robot arm, where the domain is a set of numbers indicating the position of
the robot arm. Updating these coordinates results in the robot arm to move. Vice versa, moving the
robot arm updates the coordinates to reflect the new position of the arm. Now that we have defined
causally connected, we can define reflection.

Definition
A reflective system is a causally connected meta system that has as base system

itself [Mae87].

As is shown in figure 2.3 of a reflective interpreter, the data of a reflective system thus contains a
causally connected representation of itself, called the self representation. Not only can the reflective
system see this representation, it can also alter it. Because the representation is causally connected
to the meta system, this means that the meta system is altered. Besides this ‘full reflection’, we can
define a weaker form that allows a system to only inspect its own representation, but not alter it:

2.4. CO-EVOLUTION AND SYNCHRONIZATION 15

introspection.

Definition
An introspective system is a meta system that has as base-system itself.

There are philosophical discussions about what is exactly meant with self-representation, or oth-
erwise said: what exactly an introspective or a reflective system can reason about. One could assume
that the ‘self representation’ is a representation of its own program. However, this is an arbitrary line,
since it is not clear where this ends. For example, are the libraries used by the program part of the
self-representation or not ? If so, are libraries used by these libraries also taken into account ? In this
dissertation we assume a broad view on ‘self-representation’. We take this view because most prac-
tical reflective or introspective systems support this view: not only do they reason about themselves,
they also reason about the rest of the system executing them.

2.4 Co-evolution and synchronization

In chapter 1 we have already explained that the general context of this dissertation is to support co-
evolution. In the long run this should result in a development environment where all development
artefacts are related to each other, such that the evolution of one artefact induces evolution on other
artefacts. This dissertation is a first step towards such a development environment, and hands over
conceptual and technological frameworks that form the foundation of such an environment. Since the
focus of co-evolution is on changes of artefacts, and how these changes impact other artefacts, the core
component that is needed to support co-evolution is a means of synchronizing changes of artefacts.
Therefore, this dissertation focuses on a synchronization framework such that design and implementa-
tion can be checked, enforced or generated from the other, at a user-definable time. The next sections
take a closer look at the synchronization of design and implementation, and at the synchronization
framework we propose.

2.5 Synchronizing design and implementation

In order to give support for co-evolution, we first of all need a framework to synchronize design and
implementation. In this section we first take a closer look at the characteristics of synchronization,
and we then discuss some related work.

2.5.1 Characterizing synchronisation

In this section we classify different kinds of synchronisation. Strictly speaking, synchronisation means
to occur at the same time, to move or operate in unison [Web96]. So, when we synchronise two
participants this means that when one of the two changes, we see the effect on the other. After the
synchronisation, both participants are in sync, meaning that there are no inconsistencies between
them. This ‘general’ definition implies a direct connection between the two participants: as soon as
one of the two changes, we see this effect on the other. In practice, the meaning of synchronisation is
broader since the timing constraint can be more relaxed. The effect on the other does not necessarily
take place immediately. However, the result of the synchronisation is still that both participants are
in sync. This more relaxed definition opens up a spectrum of synchronisation. At the one end there
is the use of synchronisation according to the ‘traditional’ definition that implies that directly after a
change both participants are synchronized. At the other end of the spectrum we find the case where

16 CHAPTER 2. CO-EVOLUTION

the synchronisation process is initiated manually, possibly some time after a number of changes to
one or both participants have occurred. When closely investigating the synchronization of design and
implementation, we found the combinations of the following characterizations helpful to distinguish
several kinds:

direction of synchronisation Although there are two partners to be synchronized (design and imple-
mentation), the process does not necessarily works in both directions. When only one partner
can be derived from the other, we have a unidirectional synchronization. With a bidirectional
approach, design can be derived from implementation and vice versa. This classification has
a strong impact on the results that can be expected from the synchronisation: a unidirectional
system can only be used to generate one of the two participants from the other, or to do a limited
conformance check. A bidirectional system can be used both for conformance checking and for
generating one participant from the other and vice versa;

action to be taken Different actions can be taken when the synchronization detects contradicting or
missing items. This can result in a report so the user can choose what to do, or in an attempt to
resolve the situation automatically;

notification time When missing or contradictory items are found, the user has to be notified that
this change resulted in a loss of synchronisation. An important question is when this user
notification should occur: before, during or after the change has been applied to the participant.
We call these respectively proactive, reactive or retroactive notifications;

trigger time The synchronisation can be triggered directly after every single change, or delayed, after
several changes were made;

scope A synchronization process is governed by rules that determine whether two items are conflict-
ing or not. These rules can have different scopes: global or local. Global means that they are
applicable to all items. Local scope means that they are only usable for the particular part of
implementation or design where they are defined.

implementation granularity Reasoning over the implementation in order to synchronize it with de-
sign can be done on different levels of granularity. For example, only specific information of the
implementation (such as call-graph information) might be used. On the other, complete parse
trees or objects might be used. This characterization takes this granularity into account;

static/dynamic Up until now we did not specify whether the synchronization process used static
information, dynamic information or both. Static information means that the source code is
used, while dynamic information is gathered at runtime. Both could be combined in order to
get a better view of the implementation.

We use these characterizations to discuss the most important related work that tries to synchronise
design and implementation in some way or another, and as the design space for the synchronization
framework.

2.5.2 Related work

In this dissertation we make the relation between design and implementation explicit in order to syn-
chronise design and implementation. The goal is to build one framework that can be used to support
different kinds of synchronisation. In this section we discuss the most important related techniques

2.5. SYNCHRONIZING DESIGN AND IMPLEMENTATION 17

Eiffel CCEL CS AstLog LGA Lint SRM FM SF
direction one one one one one one one both both
action report report report report action report report action both
not. time reac retro retro retro pro retro retro retro all
triggering del. del. del. del. del. del. del. del. both
scope local local local global global global global global global
granularity comp. partial comp. comp. partial comp. partial partial comp.
static-dyn. dyn. static static static dyn. static static static static

Table 2.2: The related work that is of interests to us, classified using the characterizations
from section 2.5.1. CS stands for CoffeeStrainer, LGA for Law Governed Architectures,
SRM for Software Reflexion Models and FM for the Fragment Model. The last entry (SF)
is an abbreviation for the synchronization framework that will be introduced in section 2.6.

make(ce: POINT; ra: REAL) is
–Set circle to have center ce and radius ra.

require
point exists:ce j= void;
positive radius: ra >0.0

. . . Rest of routine declaration omitted . . .

Figure 2.4: Example of an Eiffel precondition that states that for a call of make to be correct
the first argument must be non-void and the second argument must be positive.

that support forms of synchronisation that were of interest to our work. Because of the large diversity
we divided them into groups, where we list the key techniques. Table 2.2 compares the most important
techniques using the characterization from previous section. Note that the last entry in this table (SF)
is the entry for the synchronization framework, the software artefact constructed for this dissertation
that we introduce further on in this chapter. While we do not discuss our entry in this section, we
added it here for completeness.

Constraining the implementation

Some related work is concerned with letting the user put constraints on design or implementation.
These constraints make some design explicit in the implementation, such as a certain assumption
about the state of an object or a programming convention.

Eiffel The example that springs to mind is the explicit assertions (pre- and postconditions) construc-
tion in the object-oriented programming language Eiffel [Mey88, Mey00]. With assertions, developers
can describe specifications of software components by specifying invariants. An assertion takes the
form of a boolean Eiffel expression, and can be used as pre- and postconditions of routines, as invari-
ants of a class and in loops. Hence the scope is local, and is determined by the position in the source
code. The assertions can be checked at runtime, to help with debugging. For example, figure 2.4
gives an example of an assertion that expresses that, when creating a circle, the centerpoint that is

18 CHAPTER 2. CO-EVOLUTION

PointersAndAssignment f
// If a class contains a pointer member, it must declare an assignment operator:
AssignmentMustBeDeclaredCond1 (

Class C;
DataMember C::cmv j cmv.is pointer();
Assert(MemberFunction C::cmf; j cmf.name() == ”operator=”);

);
// If a class inherits from a class containing a pointer member, the
// derived class must declare an assignment operator:
AssignmentMustBeDeclaredCond2 (

Class B;
Class D j D.is descendant(B);
DataMember B::bmv j bmv.is pointer();
Assert(MemberFunction D::dmf; j dmf.name() == ”operator=”);

);
g;

Figure 2.5: Example of a CCEL constraint class, with two constraints that express that
whenever a C++ class contains a pointer member, or inherits from a class containing a
pointer member, it must declare an assignment operator.

sametree(node)
<- op(nodeop),

with(node, op(nodeop)),
not(and(with(node, kid(n, nkid)),

kid(n, not(sametree(nkid)))));

Figure 2.6: An Astlog predicate sametree used to compare two parse trees (the current node
that is implicit, and the passed argument, node). The predicate holds if root nodes have the
same opcode and all corresponding children have the same structure.

2.5. SYNCHRONIZING DESIGN AND IMPLEMENTATION 19

public abstract class MediaStream f
public void initialize() f
/*-

private AMethod initializeMethod() f
return Naming.getInstanceMethod(thisClass,

“initialize”, new AType[0]);
g
private boolean overrides(AMethod m1, AMethod m2) f

if (m1 == null) return false;
if (m1.getOverriddenMethod() == m2) return true;
else return overrides(m1.getOverriddenMethod(), m2);

g
private AStatement getFirstStatement(ConcreteMethod m) f

AStatementList s1 = m.getBody().getStatements();
return s1.size() >0 ? s1.get(0) : null;

g
private boolean callsInitialize(AStatement s) f

if(!(s instanceOf ExpressionStatement)) return false;
AExpression e=((ExpressionStatement) s).getExpression();
if(!(e instanceOf InstanceMethodCall)) return false;
AMethod called=(InstanceMethodCall e).getCalledMethod();
return called == initializeMethod()

jj overrides(called, initializeMethod);
g
public boolean checkConcreteMethod(ConcreteMethod m) f

rationale = “when overriding initialize, “ +
“super.initialize() must be the first statement”;

return implies(overrides(m, initializeMethod()),
callsInitialize(getFirstStatement(m)));

g
-*/

Figure 2.7: Example of a CoffeeStrainer constraint that specifies that subclasses that over-
ride a method initialize should first call super.initialize() before doing anything else.

20 CHAPTER 2. CO-EVOLUTION

passed has to exist, and the radius has to be positive. Of course, this means that the information that
is used is dynamic. Note that assertions can only be used to check specifications, and for example
not to query the software system (for example, using the example from above, to find all parts of the
implementation that check whether the radius is positive), or to generate code.

CCEL CCEL [MDR93] allows us to express and enforce constraints on C++ code, such as The
member function M in class C must be redefined in all classes derived from C, If a class declares
a pointer member, it must also declare an assignment operator and a copy constructor, or All class
names must begin with an upper case letter. The constraints are included in the source files in specially
formatted comments. Syntactically, CCEL constraints resemble expressions in first-order predicate
calculus, allowing programmers to make assertions involving existentially or universally quantified
CCEL variables. Constraints can be grouped in constraint classes, but there are no provisions for
composing such classes, or calling constraints from one class in another class. An example of a class
grouping two constraints is given in figure 2.5. Note that CCEL constraints only have access to the
top-level declarations (class declarations, signatures of methods and field declarations), and not to the
complete parse tree.

Astlog Another constraint system that works on C++ code is Astlog [Cre97]. Astlog is a logic
programming language with two specific additions that facilitate the reasoning over parse trees. First
it avoids the overhead of translating the source code into the form of a Prolog database by allowing
predicates to work directly on C++ code. Second, terms are matched against an implicit current object,
rather than simply proven against a database of facts, leading to a distinct “inside-out functional”
programming style. Using Astlog we can perform logic queries on C++ code, for example, as shown
in figure 2.6 to compare the structure of two parse trees. Hence we can use it to check whether the
C++ implementation conforms to the structure we describe in the query (but not to generate code, for
example). The result of the query is the report that indicates whether, and where, the implementation
conforms to the design.

CoffeeStrainer CoffeeStrainer [Bok99] is a system that allows us to statically check structural con-
straints on Java programs. The constraints are written in stylised Java, and have access to the complete
Java parse tree. An example of a constraint is given in figure 2.7. The scope of the constraint is deter-
mined by its position in the source code. For example, a constraint that appears in a class or interface
applies to that class or interface and its subtypes. Subclasses can strengthen constraints, but never
weaken them.

LGA Last but not least we mention the work on Law Governed Architecture (LGA) [Min96, MP97],
which expresses global constraints (called laws) over the interactions between the modules of a sys-
tem. The laws allow to regulate interactions between objects. An object is a triple containing an
exterior, an interior and an agent. The exterior and interior of an object are bags of Prolog terms de-
scribing attributes. The semantics of these attributes are given by the law that uses them. The agents
are treated as black boxes that generate messages. The laws are Prolog programs that prescribe the
result of an object sending a message. While the laws thus regulate run-time interactions, static inter-
actions can be regulated when a configuration of objects is created1. Also noteworthy is that not only
the object-oriented programming language Eiffel is supported, but also Prolog, even though Prolog

1However, it is still information about interactions that is regulated. Hence, in table 2.2 the entry that says that only
dynamic information is used.

2.5. SYNCHRONIZING DESIGN AND IMPLEMENTATION 21

has no notion of objects or messages. The trick is to partition the clauses in subspaces that can be
viewed as objects by the laws2.

Generation and weaving of code

Recently a number of techniques were introduced that allow the separation of a base program from
other, specific concerns [KLM+97, HO93, CE00]. The core idea is to write a base program in some
programming language, and to write (non-functional) aspects in dedicated aspect languages. These
aspects are typically cross-cutting concerns that have to be merged with the complete base program.
Typical examples are security or persistence. The code in the aspects and the code of the base lan-
guages are then merged by a so-called weaver. An approach we find particularly interesting is aspect-
oriented logic meta programming [DV98, DVD99]. Here the aspects are all expressed as logic pro-
grams, and the weaving is done by a logic meta-programming that generates source code. While
originally developed for Java, this work is now also continued in Smalltalk [Bri00a, BDMDV00,
Bri00b, DW00, WDVP00].

Conformance checkers

Several tools allow us to check whether an implementation conforms to some given design. The
basic example is that of Lint [Joh77], originally a tool to check C code for common programming
mistakes. Lint is built around a regular expression search engine that allows us to express fairly
sophisticated string patterns. An interesting port of the original Lint is SmalltalkLint [RBJO96], that
allows regular expressions searches on Smalltalk parse trees. Lint and its derivatives are a great
example of lightweight approaches to express simple, string-based programming conventions. Note
that sacrifices were made in the expressivity of patterns to gain better performance, most notably
regarding abstraction facilities and recursion.

Software reflexion models [MNS95, MN95, Mur96] show where an engineer’s high-level model
of the software does and does not agree with a source model, based on a declarative mapping between
the two models. The idea is that an engineer defines a high-level model of the software, then extracts
a source model (such as a call-graph or an inheritance hierarchy) from the source code, and then
defines a declarative mapping between the two models. The mapping uses regular expressions to
relate entries from the high-level model with the source model. Then a software reflexion model is
computed that shows where the high model agrees with and where it differs from the source model.
This information is then used to update the high-level model, the mapping or the source code, and
to compute a new reflexion model. This can of course be repeated iteratively. Applications include
re-engineering, design conformance checking and system understanding, which was confirmed on
several case studies. Generation of code using the models and the mapping is however not supported.
Note that the mapping is expressed using a medium (regular expressions) that is not very expressive or
powerful, but can be checked very fast. An approach that might be seen as starting from the opposite
direction is proposed by Kim Mens [MWD99, MMW00, Men00]. The idea is to use a very expressive
but much slower logic programming language. It allows us to do a conformance check between a
software architecture and an implementation. The software architecture is expressed as a logic meta
program, and the actual conformance check is done by a logic programming language.

2Note that, although Prolog is supported, the laws only regulate interaction between objects, as noted in table 2.2.

22 CHAPTER 2. CO-EVOLUTION

Fragment Model

Last but not least we want to discuss the Fragment Model, and the tool support for object-oriented
patterns implemented in Smalltalk using this model [Mei96, FMvW97]. The goal of the tools is
to make the use of patterns easier in software development, more specifically to provide support to
bind program elements to roles in a pattern, to check whether patterns still meet the invariants and
to generate program elements. The idea is to capture every component that is relevant to a design
pattern in a pattern fragment. Fragments are defined as a combination of structural elements (class-
roles, method-roles that must be fulfilled, inheritance relationships, etc.) and constraints that restrict
the reorganizations that can take place on the design level. The constraints are pieces of Smalltalk
code that implement boolean checks and that can use a number of predefined inquiry operators to
get to the properties of the fragment they are working on. The constraints are validated whenever an
editing operation (as provided by the fragment) has modified the fragment, or whenever validation is
triggered by another fragment. When inconsistencies are detected, exceptions are raised. The system
includes several possible exception handlers (of which only one can be active at any given moment).
The exception handler is responsible to implement the action that needs to be taken. Several types
are implemented that allow the developer to ignore, discard, warn, repair or choose between different
options when differences between the fragment and the implementation are encountered.

Once a fragment is defined, it can be bound manually to source code (mapping the design elements
represented by the fragment to the implementation). When the fragment is bound, the constraint
can check whether the implementation conforms to it. The fragment can also be used to generate
template code. However, when generating code, only the structural information of the fragment is
used. The semantics of the fragment, that are implemented by the constraint, are not taken into
account. In practice this means that only class hierarchies and methods without an implementation
can be generated. However, the interesting aspect is that this approach is clearly bi-directional: the
fragments can be used for extracting design information from the code and to generate source code.
This is quite different from all the other approaches, that are unidirectional.

2.6 A framework to synchronize design and implementation

As said before, the goal of this dissertation is to provide a framework to synchronise design and
implementation so that the one can check, generate or constrain the other. The cornerstone of our
solution is that design is expressed as a logic meta program over implementation. Now that we have
seen the necessary terminology, we can describe our approach to the synchronization framework from
a high-level perspective.

To synchronise design and implementation we propose a setup as depicted in figure 2.8. As
can be seen, there are three participants: a design repository containing the design information, an
implementation repository with the implementation, and the actual synchronization framework, that
consists of the declarative framework and a mechanism to trigger design and implementation changes
and binding actions to these changes. The declarative framework is actually a mapping between
design and implementation, and consists of logic meta programs that express design as an abstraction
of implementation. The fact that design is expressed as a logic meta program has several advantages:

1. the relation between design and implementation is made explicit, since the design is expressed
in terms of the implementation;

2. we use the open character of a logic programming language, which allows us to build a system
where rules can easily be added to implement specific behaviour, and where logic repositories

2.6. A FRAMEWORK TO SYNCHRONIZE DESIGN AND IMPLEMENTATION 23

design

design
data

synchronization framework

declarative
framework

Figure

CompositeFigure

component
s

implementation

Figure subclass: #CompositeFigure
 instanceVariableNames:'components'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'HotDrawApp'

implementation
repository

Figure 2.8: General setup of our framework to synchronize design and implementation

are used to group and nest rules;

3. the inherent declarative nature of logic programming is very well suited to express design nota-
tions, since these are typically also declarative in nature;

4. since all design notations we support are expressed in the same medium (as logic meta pro-
grams), they can be expressed in terms of each other. For example, the structure of design
patterns [GHJV94] can be described using UML class diagrams [RJB99], taking best practice
patterns [Bec97] or other programming conventions into account;

5. logic programs express relations between their variables, in a mathematical sense. This prop-
erty is also referred to as the multi-way property of logic programming languages. Concretely
this means that the same logic program can be used in many different ways depending on the
information that is passed to it.

For example, consider the following composite pattern relationship between two classes [GHJV94].
It relates two logic variables ?component and ?composite using the relation described by the compos-
itePattern rule3.

compositePattern(?component, ?composite)

3This example uses the logic meta-programming language we have implemented (see chapter 3), where variables are
denoted by question marks. The compositePattern rule is one of the rules expressing design patterns (discussed in chapter 4)

24 CHAPTER 2. CO-EVOLUTION

We can use this relation in 4 different ways (all possible combinations of the two arguments):

� when we pass two actual classes, the relationship returns wether it holds for these two classes.
For example,

compositePattern([VisualPart], [CompositePart])

can be used to check whether VisualPart and CompositePart are in a composite pattern relation-
ship;

� when we pass only the component class, then we can infer the classes that play the role of
composite class:

compositePattern([VisualPart], ?composite)

� We can also pass the composite class, and infer all the component classes for that composite
class:

compositePattern(?component, [CompositePart])

� when we pass no information (but only variables), all possible combinations of components and
composite classes as described by the relation are found:

compositePattern(?component, ?composite)

The actual synchronisation is done by a logic meta-programming language that uses the logic
meta programs to compare information about design and implementation. The results of the syn-
chronisation (that indicate possible discrepancies between design and implementation) can then be
reported, or used by other tools to take appropriate action. One possibility is to use the results in other
logic programs, for example to generate parts of the implementation. Of course the synchronization
engine needs to be integrated in the development environment, so that it can receive notifications of
changes in implementation or design. As the logic meta-programming language is integrated in the
development environment, results from the synchronisation can also be used directly in the develop-
ment process, for example to constrain the development or to generate code.

Last but not least we want to apply the characterizations discussed in section 2.5.1 to our ap-
proach. An overview can be found in table 2.2, where our approach is shown as the last entry, labelled
SF (short for synchronization framework). First of all the direction characterization is both, since
the logic meta-programming language allows us to see the impact of changes to design on the im-
plementation, and vice versa. Because of the integration of the logic meta-programming language
with the development environment, we cannot only report, but also act when discrepancies between
design and implementation are detected. For example, we show how the design documentation can
be updated automatically as the implementation changes. A second result of the integration is that the
notification of discrepancies can occur at any time: before the change is applied, immediately after
it is applied or even later on. A third result of the integration is that the trigger time can be direct or

2.7. VALIDATION AND ROADMAP 25

delayed. The scope of the rules governing the synchronization process is global in our approach. The
reason is that the rules mapping design to implementation reside in a logic repository that has nothing
to do with either design or implementation. This is analogous to the other approaches that use a logic
programming language as synchronization engine. Another approach is to integrate these rules with
implementation or design, as is done in the constraint languages we saw in section 2.5.2. The granu-
larity of our approach is completely user-defined, but ultimately supports objects or parse trees. As we
will see later on, the reason is the symbiosis of our logic meta-programming language with Smalltalk
that allows us to wrap and use any Smalltalk object in our logic meta-programming language. In this
dissertation we only use static reasoning over the implementation. While we did experiments with
reasoning over dynamic information collected at runtime [RDW98], we currently have no support for
good runtime integration of our logic meta-programming language. This is discussed in the future
work in section 8.3.2.

2.7 Validation and roadmap

The previous paragraph describes the foundations of the framework we propose to synchronise design
and implementation so that the one can check, generate or constrain the other. The validation of this
claim is proved by construction, in different steps:

1. first we introduce a logic meta-programming language called SOUL (an acronym for Smalltalk
Open Unification Language) in the object-oriented programming language Smalltalk [GM90,
Lew95]. This language is integrated in the Smalltalk development environment and allows us
to express logic meta programs, and perform logic queries that use these programs to reason
about the Smalltalk source code;

2. then we describe the declarative framework, a layered structure of rules to reason about the
base language. Closest to the implementation we find the representational layer that contains
the rules that reify the core concepts of the base language. In the case of SOUL reasoning over
Smalltalk code, these are classes, methods, instance variables and inheritance. Other layers
then build on this one, raising the level of abstraction of the predicates reasoning about the
implementation.

3. in the top layer in the declarative framework we express design notations as logic meta pro-
grams over implementation. As examples we use programming conventions, design patterns
and UML class diagrams;

4. next we introduce the synchronization tool framework, a Smalltalk framework to integrate our
synchronization engine in the development environment. We combine this with the declarative
framework to get the actual synchronization framework;

5. then we use the synchronization framework on two case studies to prove that it can indeed be
used to synchronise design and implementation. First we use the HotDraw framework (a frame-
work for structured drawing editors [Bra92, Joh92, BJ94, Cha94]) to show how the checking,
generation and enforcement of design on implementation, and vice versa, is done. Then we
experiment on a real world Smalltalk application to demonstrate that the approach is scalable.

26 CHAPTER 2. CO-EVOLUTION

2.8 Summary

In this section we introduced the necessary background regarding co-evolution and synchronisation.
We started by discussing the biological view of co-evolution as a mutual interaction between species.
Then we introduced the necessary definitions, most notably the notions of meta-programming, intro-
spection and reflection. Then we introduced our view on co-evolution as a development approach
where both design and implementation are subject to evolution, and where they influence each other.
To allow tools that support co-evolution we therefore need to synchronize changes between design
and implementation. Therefore we first of all studied the characteristics of the synchronization of
design and implementation. The resulting characterizations are a conceptual contribution of this dis-
sertation. They are then used to discuss the related work. While several approaches look promising,
none currently exists that encompasses the complete spectrum of synchronization we described by
the characterizations. Hence, in order to prove our claim that we can build such a framework, the
following section describes from a high-level perspective our overview of such a framework . In the
remainder of this dissertation we will build the synchronization framework, and validate its support
for co-evolution, hence proving our claim.

Chapter 3

SOUL and the incremental solver

In this chapter we introduce the logic meta-programming language we use to synchronise design and
implementation. We describe the basic syntax and usage, the development tools and the incremental
solver. In the next chapter we use this language to implement the declarative framework, a layered set
of rules to facilitate reasoning over the implementation.

3.1 Introduction

For the validation of our claim, we need a logic meta-programming language to express design as a
logic meta program over implementation and to synchronise design and implementation. The research
language we conceived is called the Smalltalk Open Unification Language (SOUL). SOUL is a logic
programming language (analogous to Prolog [CM81, SS88]) that is implemented in, and lives in
symbiosis with, the object-oriented programming language Smalltalk. SOUL allows users to perform
logic queries over Smalltalk source code, without the need of representing this source code explicitly
in the logic repository. This is done with the smalltalk term, a special construct that allows
us to invoke Smalltalk code during the logic interpretation process. Using the smalltalk term,
concepts from the base language can easily be reified in SOUL.

Once we have a logic meta-programming language we can express design as a logic meta pro-
gram over implementation. This is done in a structured manner, resulting in a declarative framework.
The idea is to layer the rules expressing design in function of the implementation, where rules in
one layer are expressed in terms of the lower level layers. The layer that reifies the base-language’s
concepts (and that all other layers depend on) is the representational layer. Other layers then add
lots of predicates that are expressed in terms of the predicates from previous layers and that facilitate
reasoning about implementation. This structure makes it easy to swap one layer for another should
this be required.

Note that this chapter does not go into the details of SOUL’s implementation (the manual [Wuy00]
includes an overview of the implementation). Instead we focus our attention on the specific language
features and rules that allow SOUL to reason over Smalltalk. These rules are used in subsequent
chapters, when we express design as a logic meta program over implementation and when we perform
experiments.

28 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

3.2 SOUL as a logic meta-programming language

In chapter 2 we defined a meta language as a programming language with specific data structures
and routines to represent and reason about base programs. For SOUL we chose to make a symbiosis
with Smalltalk such that we could directly reason on Smalltalk base programs. Therefore the first
part of this section discusses this symbiosis in detail, and more specifically the language constructs
that allow the symbiosis: the smalltalk term, the generate predicate. Afterwards we discuss
the additions to the Smalltalk term that make SOUL a reflective logic meta-programming language.
Then we describe the incremental solver that uses local propagation techniques to solve networks of
logic relations expressed in SOUL. We end this overview with the development tools that are available
to SOUL developers to interact with SOUL, and the tools for the Smalltalk developers that we built
using SOUL. However, we start this section by giving SOUL’s syntax.

3.2.1 Syntax of SOUL

Before we give the first SOUL code examples, figure 3.1 gives the syntax of SOUL: the starting
production is underlined, square brackets ([]) delimit optional constructs; braces (f g) indicate zero
or more repetitions of the enclosed construct; parentheses (()) indicate simple grouping of constructs;
a vertical bar (j) indicates choice of one from many; literal text in definitions is denoted using bold
typewriter font.

3.2.2 Symbiosis with Smalltalk

In this section we first of all motivate why we need symbiosis between the logic meta-programming
language and the base language for the purpose of synchronization. Then we discuss the up-down
mechanism uses to obtain the symbiosis. Finally we discuss some of the implementation details of the
implementation of the symbiosis mechanism in SOUL.

Symbiosis for synchronization

For a logic meta-programming language to reason about a certain base program, one possibility could
be to build a large logic repository containing the complete source code of that base program in logic
format. This indeed allows to write logic programs that reason about the source code in the logic
repository. However, this also means that every program is represented two times: once as regular
source code used in Smalltalk, and once in a logic format to reason about in SOUL. This poses two
problems. The first is where to draw the boundary when making a logic representation of a program.
Is it enough to represent only the classes of the program, or do we also need the code of the libraries
that are used by the program ? And the libraries these libraries use ? Making this decision is very
difficult to make in general. The second problem has to do with the synchronization. Since we use
the logic meta-programming language to synchronize changes between design and implementation,
the fact that there are two representations for one and the same base program means that we need an
extra synchronization step. This is necessary to make sure that the logic representation used in the
logic meta-programming language is kept in sync with the source code.

To solve these problems, we chose to make a symbiosis between Smalltalk and SOUL. This sym-
biosis makes any Smalltalk object directly usable as a logic term in SOUL, and even allows to write
Smalltalk expressions (that can be parametrized by logic variables). Both features are enabled by the
smalltalk term, a logic construct containing Smalltalk code that can be executed during logic
interpretation. This way Smalltalk expressions can be wrapped and used as logic constructs. Before

3.2. SOUL AS A LOGIC META-PROGRAMMING LANGUAGE 29

clauseSequence := clause f . clause g
clause := fact j rule j query
fact := Fact term
rule := Rule compoundTerm if terms
query := Query terms

term := simpleTerm j compoundTerm j specialTerm

simpleTerm := constantTerm j variableTerm j booleanTerm
constantTerm := word
variableTerm := normalVariableTerm j specialVariableTerm j underscoreTerm
normalVariableTerm := ?word
specialVariableTerm := @word
underscoreTerm :=
booleanTerm := true j false j fail

compoundTerm := regularCompoundTerm j listTerm
regularCompoundTerm := simpleTerm (possiblyEmptyTerms)

specialTerm := smalltalkTerm j quotedString j cutTerm
smalltalkTerm := [extended smalltalk code]
quotedString := f string g
cutTerm := !

possiblyEmptyTerms := terms j empty
terms := term f , term g
empty :=

listTerm := emptyList j nonEmptyListTerm
emptyList :=<>
nonEmptyList :=<terms j (terms j (variableTerm j nonEmptyList))>

Figure 3.1: SOUL Syntax

30 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

we continue, we have a note on behalf of Prolog users: despite its name, a smalltalk term can
be used both as term and as clause.

The first, and simplest usage of a smalltalk term is to wrap Smalltalk objects and use them
in SOUL as constants. For example, the smalltalk term [Array] is a SOUL constant that wraps
the Smalltalk class Array in order to use it in SOUL. For example, if we want to ask SOUL to test
whether Array is a class, we could evaluate the following query 1:

Query class([Array])

Since Array is indeed a class in the Smalltalk system, this query succeeds. We like to stress that
the smalltalk term really passes the Smalltalk class Array, and not just the name or another
representation of the class. For example, would we like to pass the name of a class, we have to use
a smalltalk term with a string containing the name of the class. For example, [‘Array’] is a
smalltalk term representing the Smalltalk string ‘Array’.

The smalltalk term is not only used to wrap objects and use them in SOUL. It can also
contain Smalltalk expressions that are evaluated during the interpretation. Moreover, these Smalltalk
expressions can be parametrized with logic variables. When the smalltalk term is evaluated,
these logic variables are substituted by their current binding. If they are unbound, the interpretation of
the smalltalk term fails. As an example, we define a rule that gives all selectors (the names of
methods) of a class. In Smalltalk you can get the selectors of a class by sending that class the message
selectors. The result is a Smalltalk collection with all the selectors of that class. Since the Smalltalk
system can tell us what the selectors are for a class, we use a smalltalk term to ask the selectors
of a class. This is expressed in the following rule:

Rule simpleSelectors(?c, ?selectors) if
class(?c),
equals(?selectors, [?c selectors]).

This rule uses a smalltalk term to ask the logic variable ?c for its selectors. Intuitively, the
meaning is clear: the class that is bound to the variable ?c when the smalltalk term is evaluated,
is asked for its selectors by sending it the selectors message. If ?c is not bound when the smalltalk
term is evaluated, the smalltalk term fails. So, using the simpleSelectors rule we can get the
selectors of the class Array in SOUL by evaluating the following query:

Query simpleSelectors([Array], ?sels)

When this query is evaluated, it uses the simpleSelectors rule, binding the variable ?c to the
smalltalk term [Array]. Then, when the smalltalk term is evaluated the class Array is
asked for its selectors, and the result is bound to the variable ?selectors. The result of the query is a
solution for the variable ?sels, binding it to a smalltalk term that wraps the Smalltalk collection
with the selectors of Array:

1Of course, a predicate class should be defined. We implement this predicate in section 4.3. For now, just suppose it is
implemented and succeeds if the argument passed is a Smalltalk class, and fails if it is not.

3.2. SOUL AS A LOGIC META-PROGRAMMING LANGUAGE 31

[Array]

ArraySmalltalk

SOUL

up down

Figure 3.2: The up-down mechanism to let Smalltalk objects travel between Smalltalk and
SOUL.

?sels -> [IdentitySet(#identityIndexOf:replaceWith:startingAt:stoppingAt:
#decodeAsLiteralArray #refersToLiteral: #storeOn: #printOn: #multiBecome:
#startingAt:replaceElementsIn:from:to: #literalArrayEncoding #isLiteral
#equalsLiteral: #multiAllInstances #identityIndexOf:from:to:ifAbsent:
#replaceFrom:to:with:startingAt: #multiAllLiveInstances #emWriteLiteralOn:)]

The up/down mechanism

In the previous section we saw that a smalltalk term contains a Smalltalk expression. This
Smalltalk expression can be very simple, and consist of nothing but a class, but it can also be
parametrized by logic variables. In this section we want to explain how a Smalltalk term is inter-
preted in SOUL, and hence how the symbiosis works. The up/down mechanism we use was intro-
duced in the PhD dissertation of Steyaert as the core implementation mechanism for a framework for
open designed object-oriented programming language [Ste94]. The implementations of the object-
based object-oriented programming language Agora uses the up/down mechanism to get reflection
with their object-oriented implementation language (Smalltalk, C++ and Java) [DM98]. Here we use
it as the cornerstone to get reflection between two languages from different paradigms. To explain
how this works, we first of all have to consider two levels in the semantics of SOUL:

1. the up level is the level of SOUL’s implementation language, Smalltalk;

2. the down level is the SOUL level being evaluated by the up (Smalltalk) level.

The basis for the symbiosis is that Smalltalk objects can cross this boundary. Hence, any Smalltalk
object can be used in Smalltalk, but it can also be used as a logic term in SOUL. It is this transition
(shown in figure 3.2) between these two levels that allows for the symbiosis between Smalltalk and
SOUL. Hence we can down a Smalltalk object Array (which is the class Array) to get the logic term
[Array]. We can also up the logic term [Array] and get the Smalltalk object Array. The conversion
is done implicitly during the evaluation of the smalltalk term. We will explain this in two
steps, first for a smalltalk term that is not parametrized with logic variables, and then for a
smalltalk term containing references.

Interpreting a smalltalk term with an expression that contains no logic variables is straight-
forward, as is illustrated with the interpretation of the following query:

Query [Array selectors isEmpty]

To interprete the smalltalk term in SOUL, we evaluate the Smalltalk expression it contains.
The result of this evaluation in Smalltalk is a Smalltalk instance of class Boolean instance (false, since

32 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

the class Array contains methods). This Smalltalk object is then downed, and is then used in the rest
of the interpretation of the query (which will fail).

Interpreting a smalltalk term that is parametrized by logic variables, is analogous. However,
it is more complex because the bindings of the logic variables have to be passed to the Smalltalk
expression. The problem is that these bindings are used in SOUL (and thus consist of logic terms),
but that they are here used in a Smalltalk expression to be evaluated in Smalltalk. Therefore they have
to be upped to get their Smalltalk representation. The interpretation of the following query illustrates
this:

Query equals(?c, [Array]),
[?c selectors isEmpty]

The interpretation of the equals predicate unifies the logic variable ?c with the smalltalk
term [Array]. This adds a binding in the logic environment, indicating that the logic variable ?c
is bound to the logic term [Array]. Then the smalltalk term [?c selectors isEmpty] has to be
interpreted. As before, this means we have to evaluate the Smalltalk expression it contains, and down
the resulting object. However, to evaluate the Smalltalk code in the smalltalk term we have to
lookup the binding for the logic variable ?c in the logic environment. This gives us the logic term
[Array], a logic construct. Therefore we up it, and get its Smalltalk representation, the class Array.
Then we can evaluate the Smalltalk expression Array selectors isEmpty, which yields the Smalltalk
result false. Since the result of the SOUL evaluation of a Smalltalk term has to be a SOUL term, the
Smalltalk result false is downed to get [false].

So, in general this means that to interprete a smalltalk term t in a logic environment, we
need to fetch the logic term for any logic variable used in the smalltalk term, and then up this
logic term to get its Smalltalk representation. Then we have a complete Smalltalk expression, that we
evaluate in Smalltalk. The result is a Smalltalk object, that is then downed to get a logic term. This
logic term is the result of the evaluation of t.

Implementation details

The previous section explains in general how a smalltalk term is interpreted. In this section
we want to say something more about the implementation of this mechanism in SOUL. Basically, a
smalltalk term is converted internally into a Smalltalk blockclosure, that can be evaluated to
get a result. Of course, since a smalltalk term has access to logic variables, an environment
has to be passed to this block that contains the values to use. Therefore, when a smalltalk term
is parsed, a block and an environment are constructed. The environment is simply an array that will
be used to hold the values for the variables referenced in the smalltalk term. The block contains the
Smalltalk code, but replaces every occurrence of a logic variable to a lookup in the environment. This
value is upped to Smalltalk level. For example, for the smalltalk term that was used in the
simpleSelectors rule, the following block is created:

[:env j ((env at: 1) soulUp) selectors]

Of course, when a variable is used multiple times within the block, it uses the same index in the
environment. When the smalltalk term is interpreted, the environment containing the values
for the referenced variables is passed. When a variable remains unbound, an error is shown and the

3.2. SOUL AS A LOGIC META-PROGRAMMING LANGUAGE 33

interpretation stops. For example, the following query will give a SOUL runtime error because the
referenced variable ?c is not bound when the smalltalk term is evaluated:

Query [?c selectors]

Note that because the smalltalk term contains regular Smalltalk code (extended with access
to logic variables), this also means that Smalltalk runtime errors can occur while interpreting the
smalltalk term. We just let these errors end the logic interpretation process, and a standard
Smalltalk exception is thrown and results in a dialog box. Alternatively we also did experiments
where the Smalltalk exception handler is used to catch the Smalltalk runtime errors, and just fails the
predicate. However, in practice the latter poses problems for the SOUL developer because it makes it
very hard to debug Smalltalk errors in smalltalk terms.

3.2.3 The generate predicate

The smalltalk term wraps Smalltalk expressions, and allows us to evaluate Smalltalk expres-
sions during logic interpretation, wrapping the resulting object. This wrapping was illustrated in the
previous section, where we get one result when we ask the selectors of the class Array. This one
result is a wrapped Smalltalk collection containing the selectors of class Array. However, sometimes
we want to get separate logic results for each selector. Such functionality is offered by the generate
predicate, which generates a set of solutions (described by a smalltalk term) for a variable. The
first argument of the generate predicate specifies a logic variable to bind the results to. The second
argument is a smalltalk term that describes a stream of solutions. Each of these solutions is bound, one
by one, to the first argument. As an example, we revise the simpleSelectors predicate to use the gene-
rate predicate, and turn it into a simpleSelector predicate. Therefore we replace the call to the equals
predicate by a call to the generate predicate. We also change the smalltalk term to produce a
stream with the selectors of the class:

Rule simpleSelector(?c, ?selector) if
class(?c),
generate(?selector, [?c selectors asStream]).

When the generate predicate is evaluated, it results in X solutions for the variable ?selectors,
where X is the number of elements in the stream. For example, the query to ask the selectors of class
Array now yields 15 results. Each result is a binding for the variable selector, containing the name of
a selector of Array. We only show the first four of these results:

?selector -> [#identityIndexOf:replaceWith:startingAt:stoppingAt:]
?selector -> [#decodeAsLiteralArray]
?selector -> [#refersToLiteral:]
?selector -> [#storeOn:]
. . .

34 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

3.2.4 The quoted string

The smalltalk term is used to wrap and use Smalltalk code (that can reference logic variables)
in SOUL. When a smalltalk term is interpreted, its smalltalk source code is invoked (after all
its logic variables where substituted). We would also like to be able to represent Smalltalk code as is,
without it being evaluated. To support this functionality SOUL provides the quoted string language
construct. A quoted string is used to denote strings that can contain logic variables. Note that these
strings do not necessarily have to represent syntactically correct Smalltalk expressions.

For example, the following rule describes a simple HTML description of a class. Two quoted
strings are used. The first one is in the head of the rule, and states that the html file for a certain class
?class (the first argument) is a html file with some heading and followed by a list. The second quoted
string is used to construct the list items containing the names of the methods of the class. The findall
predicate accumulates these items as in Prolog. It takes three arguments (a term, a goal and a list) and
finds the list of all the instances of the term for which the given goal is true. Note that the list2String
predicate is responsible for collapsing the list with strings describing the items into one single string:

Rule classHtml(?class, f <html><body>
<h1>Methods of ?className</h1>

?selectorNameStrings

</body></html>
g) if

className(?class, ?className),
findall(f?selg,

classImplements(?class, ?sel),
?ms),

list2String(?ms, ?selectorNameStrings).

When extended, rules like classHtml could form the foundation for a documentation extracting
system. The idea is to query the implementation for information, and export the results in html. When
combined with the rules defined in the declarative framework in chapter 4, a powerful documentation
system could be constructed. By using the synchronization framework the extracted documentation
could even be kept in sync with the implementation.

3.2.5 Introspection and reflection in SOUL

Up until now we viewed SOUL as nothing more than a logic meta-programming language that has
some extensions that allow it to reason about Smalltalk. However, since SOUL is implemented in
Smalltalk, and since thesmalltalk term can be used to reason about any Smalltalk base program,
it can reason about the SOUL implementation itself. Hence, SOUL is introspective as defined in
section 2.3.2. For example, the following query gets the names of the methods implemented by the
class SOULRule, the SOUL class representing rules:

Query simpleSelector([SOULRule], ?selector)

However, beside introspection, SOUL also uses lightweight forms of reflection. The goal of this
reflection was to be able to write second-order logic predicates from within SOUL. Therefore we

3.2. SOUL AS A LOGIC META-PROGRAMMING LANGUAGE 35

reify two concepts that are important during the evaluation of a logic term: the logic repository and
the logic environment that holds on to the bindings. We chose to make these two concepts available in
the smalltalk term, under the form of two hardcoded variables: ?repository and ?bindings. The
?repository variable references the logic repository used when interpreting the smalltalk term.
The ?bindings variable holds the current set of bindings. This simple addition makes it possible
for a smalltalk term to inspect and influence its interpretation. As an example we give the
implementation of three widely used logic predicates: assert, one and call. The assert predicate adds
a new logic clause to the current repository. The one predicate finds only the first solution of the term
passed as argument. If this first solution is found, the bindings are updated and the predicate succeeds,
otherwise the predicate fails. The call predicate is analogous to the one predicate, but does not keep
the results. Hence it just needs to succeed when the argument term has at least one solution:

Rule assert(?clause) if
[?repository addClause: ?clause].

Rule one(?term) if
[j solution j

solution := (?term resultStream: ?repository) next.
solution isNil

ifTrue: [false]
ifFalse: [?bindings addAll: solution. true]

].

Rule call(?term) if
[(?term resultStream: ?repository) next isNil not]

Speaking in reflection terminology, the two hardcoded variables ?repository and bindings are a
causally connected self-representation. Therefore the smalltalk term (and hence SOUL) can
reason about and even alter a part of its implementation. Note however that the introspective and
reflective capabilities of SOUL add nothing to the meta-programming abilities. As explained in sec-
tion 3.2.2 a construction such as the smalltalk term is enough to get a logic meta-programming
language. The additions explained in this section only allow us to implement some higher-order func-
tionality from within SOUL itself. While this adds to the usability and expressive power of SOUL
(particularly while experimenting), it is no conceptual addition to help reasoning about the base lan-
guage.

3.2.6 The development tools

To complete the description of SOUL we want to show the tools that make up the SOUL development
environment. They mainly allow launching queries, edit and compose logic repositories and view
results. The basic tool for a SOUL developer is the Repository Inspector tool, shown in figure 3.3.
This tool has different panes that allow us to launch queries (the Queries pane, which is not shown
in the screenshot), to compose repositories (the Configuration pane) and to view and edit clauses
(the Clauses pane). The ClauseCopier shown in figure 3.4 allows to move and copy clauses between
different repositories. Last but not least, figure 3.5 shows an inspector on the result of a query. This
inspector displays the number of results in its title bar, and can show different aspects of the results
by selecting the appropriate entry in the list on the left (such as the query that was launched, the time

36 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

Figure 3.3: The repository inspectors

Figure 3.4: The clause copier

3.2. SOUL AS A LOGIC META-PROGRAMMING LANGUAGE 37

Figure 3.5: An inspector on the results of a query

Figure 3.6: Structural Find Application

Figure 3.7: The XRay Browser showing the template and hook methods of class Figure

38 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

Figure 3.8: The XRay Browser showing the extracted categories of class Figure

it took to solve the query, the results itself, and the results substituted in the original query. By double
clicking the entries, more detailed information can be obtained about each of these items.

We also show the tools for Smalltalk developers that use SOUL as a reasoning engine. These
tools are actually very simple to build, since they are basically GUI shells that only have to display
the information from queries. The first example is the Structural Find tool, shown in screenshot 3.6.
It allows developers to find classes, methods or instance variables according to certain criteria that can
be selected from drop-down boxes. Another example is the X-Ray Browser, that allows us to display
the methods of a Smalltalk class according to three different categorizations: classic, templates and
hooks and extracted categories. The classic classification is standard Smalltalk, where methods are
grouped by hand in named groups (called protocols). The templates and hooks classification uses
the messages to self (the receiver itself) to differentiate template methods (methods calling other
methods through self-sends) from hook methods (methods that are being called in other methods of
the class). Screenshot 3.7 shows the X-Ray browser opened on the HotDraw class Figure, showing the
template and hook methods. The extracted categories classification goes a bit further. Each method
that only has one sender in the class is assigned to a classification around that one method that calls
it. Screenshot 3.8 shows the XRay-browser on the extracted categories of class Figure.

3.3 The incremental solver

During our experiments we show how SOUL is used to support different kinds of synchronisation.
As seen in section 2.5.1, one possible classification of synchronisation differentiates between the time
the synchronisation is triggered: delayed or direct. When the synchronisation occurs delayed, we use
SOUL to launch a query to find the differences between design and implementation. However, this
process is too costly to support direct synchronisation, since it starts from scratch for each change to
design and implementation. Therefore SOUL includes an incremental solver that retains the results of
previous queries and can directly propagate small changes to these results. In this section we describe
this incremental solver. We start by discussing the local propagation techniques used in numeric
constraint solvers, and then we see how we used this idea in our symbolic context.

3.3. THE INCREMENTAL SOLVER 39

3.3.1 Local propagation in numeric constraint solvers

The SOUL incremental solver uses techniques that are borrowed from constraint programming [JL87,
Coh90], and more specifically from the incremental constraint solving area, where constraints are
used in interactive graphical user interface building and where responsiveness and efficiency are pri-
mary concerns [FB89, FBMB90, BAFB96, San94, SMFBB93, BFB95, BB98]. Therefore, we first
introduce some common constraint programming terminology that helps explain our approach. The
classic meaning of a constraint is a relation between variables (the constraint variables) that should
be maintained at all times [FBMB90, BAFB96, SMFBB93, BFB95, BB98]. Constraints are grouped
in constraint networks, where every constraint variable has a domain associated with it. The domain
contains the possible values for the constraint variable in the constraint network. A value is possible if
it makes the constraint hold in the given constraint network. When a constraint network is constructed,
it can be solved.

Solving a constraint network means finding the domain for each of the constraint variables, or
failing if this is not possible. The core idea in incremental constraint solving is first to build a network
(finding the domains for each constraint variable) and then keep on updating this network whenever
a value in the domain of a variable changes. Updating of the network starts with the variable whose
domain was affected, and proceeds recursively by updating the domains of variables that have a direct
relation with the initial variable. As a result, a change in one domain is propagated to all other domains
that need to be updated (and not more).

3.3.2 Local propagation in SOUL

Incremental constraint solvers seemed very good candidates to use as a foundation to support di-
rect synchronization of design and implementation. However, using existing incremental constraint
solvers proved impossible because the domains of these algorithms were almost always numerical.
In our case we want the values in the domains to be symbolic, since we want to express relations
between Smalltalk objects. Therefore we chose to build a simple incremental symbolic solver, using
local propagation techniques analogous to those found in the incremental, numeric constraint solving
community. In our approach, constraints are expressed as logic terms using SOUL. Hence we use
SOUL as the language for describing the relations between variables. The domains of constraints are
calculated using SOUL, meaning that the approach is in essence multi-way (whenever a multi-way
predicate is used). However, because of limitations of our current implementation we only allow
at most two variables at this moment. Supporting more than two variables was not necessary for
this proof of concept, so we omitted it. However, we think it should not prove to be too difficult to
implement when the need arises.

For example, suppose we want to find all subclasses of a class Figure that implement a method
initialize. We can express this in the following query, that returns all the initialize methods in variable
?m:

Query hierarchy([Figure], ?c)
classImplementsMethodNamed(?c, [#initialize], ?m)

40 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

[Figure]
hierarchy

classImplementsMethodNamed

superSends

?c

?m

<[#initialize]>

1

2

1

2

1

2

Figure 3.9: Incremental solving example

If we then want to find all of the above initialize methods that do a super send (to make sure that
all the initialisation behaviour implemented in the superclasses is not forgotten), we have to run the
following query:

Query hierarchy([Figure], ?c)
classImplementsMethodNamed(?c, [#initialize], ?m)
superSends(?m,<[#initialize]>)

This second query, however, first has to find all the initialize methods again, and then selects the
ones doing the initialize supersend. In the incremental solver three stages will be used, where the
results from the previous stage are used in subsequent stage. The network (after the three constraints
have been added and solved) is depicted in figure 3.9. Ellipses represent constants and variables, and
are linked by lines representing the relations between these variables. The lines are labelled with the
predicate describing the relation, and the numbers that are used as roles near the end points give the
index of the argument in that relation. The network is built by creating a new incremental solver, and
adding the relations to it one by one. The solving process is explained in the following section.

SOULIncrementalSolver new
name: ‘Thesis Example’;
add: ‘hierarchy([Figure], ?c)’;
add: ‘classImplementsMethodNamed(?c, [#initialize], ?m)’;
add: ‘superSends(?m, <[#initialize]>)’

3.3.3 The incremental solving process

In this section we explain the basic workings of our local propagation incremental solver. We use
the (simple) network from the previous section as running example. This network consists of three
separate relations that are added one after the other. Note that the order in which the relations are
added makes no difference regarding the results of the network, although it may have an impact on
the efficiency. For example, if we start this constraint network the other way round (starting with
the superSends relation), the initial domain of the variable ?m contains all the methods in Smalltalk
that do a super send of initialize. The subsequent constraints then limit this domain to only initialize
methods below class Figure. In the order we use here, we first limit the scope and then start finding
the methods in this scope, which is more efficient.

3.3. THE INCREMENTAL SOLVER 41

[Figure]
hierarchy

?c
1

2

{?c -> [Figure]},
{?c -> [EllipseFigure]},
{?c -> [PolyLineFigure]},
{?c -> [TextFigure]},
{?c -> [RectangleFigure]},

....... (8 more)

Figure 3.10: Solving the network, state 1

[Figure]
hierarchy

classImplementsMethodNamed

?c

?m

1

2

1

2

{?c -> [Figure]},
{?c -> [EllipseFigure]},
{?c -> [PolyLineFigure]},
{?c -> [TextFigure]},
{?c -> [RectangleFigure]},

....... (8 more)

{ ?c -> [Figure],
 ?m -> method([Figure], [#initialize], arguments(<>),

temporaries(<>), statements(
<send(variable([#super]), [#initialize], <>),
assign(variable([#model]), literal([nil])),
assign(variable([#state]), variable([#Connectable]))>))},

{?c -> [LineFigure],
 ?m -> method([LineFigure], [#initialize],

.................. (8 more)

Figure 3.11: Solving the network, state 2

In the example we start with an empty network where we add the first relation that binds the
variable ?c to be a subclass of a class Figure using the hierarchy predicate. Since this is the first
relation, there is no existing domain for the variable ?c. Hence the incremental solver just uses SOUL
to answer the query described by the constraint:

Query hierarchy([Figure], ?c)

The solver holds the results of the query together with the hierarchy relation. The state of the
network is depicted in figure 3.10. Note that the variable itself does not hold on to its domain, but
that the results are kept in the relation instead. When we ask for the domain of the variable, it is
constructed by filtering the results from one of its relations.

We are then ready to add the second relation to our network. This is actually a relation between
two variables: ?c and ?m. When we add this second relation, we already have the domain for ?c, but
?m is a new variable. So we have to evaluate the query constructed from the relation in the scope of
the network, taking the domain of ?c into account. Therefore we enumerate the values in the domain
of ?c, constructing a query where ?c is replaced by one of its values and ?m is calculated. The result
of this process is a collection of bindings giving couples of values for ?c and ?m that are solutions to
the second relation. In our example, we get 10 results: all the subclasses of Figure that implement
an initialize method. This also means that we now have to update the domain of ?c in all the other
relations except the one we just added, since there is a chance that the domain of ?c changed (as is the
case in this example). Since we only have one other constraint that uses variable ?c (our first relation),
we then update its solutions to only have the 10 classes we found as result in the second constraint. If
there would be other relations that use ?c, or if the removal of some solutions of ?c in another relation

42 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

[Figure]
hierarchy

classImplementsMethodNamed

superSends

?c

?m

<[#initialize]>

1

2

1

2

1

2

{?c -> [Figure]},
{?c -> [EllipseFigure]},
{?c -> [PolyLineFigure]},
{?c -> [TextFigure]},
{?c -> [RectangleFigure]},

....... (8 more)

{ ?c -> [Figure],
 ?m -> method([Figure], [#initialize], arguments(<>),

temporaries(<>), statements(
<send(variable([#super]), [#initialize], <>),
assign(variable([#model]), literal([nil])),
assign(variable([#state]), variable([#Connectable]))>))},

{?c -> [LineFigure],
 ?m -> method([LineFigure], [#initialize],

.................. (8 more)

{?m -> method([Figure], [#initialize], arguments(<>),
temporaries(<>), statements(
<send(variable([#super]), [#initialize], <>),
assign(variable([#model]), literal([nil])),
assign(variable([#state]),

variable([#Connectable]))>))},
{?m -> method([LineFigure], [#initialize],

.................. (8 more)

Figure 3.12: Solving the network, state 3

would change the domain of yet another constraint, then these changes would also propagate. This
process stops when there are no more relations that have domains that change. Figure 3.11 depicts the
state of the network after the two first relations were added.

Then we add the third relation that states that the initialize method has to use a super send. This
relation introduces no new variables, and thus serves only as an extra constraint that the methods in
the domain of ?m have to satisfy. We thus evaluate the query constructed from the relation for each
solution of ?m. Since this succeeds for every method (they all do super sends), there is no change of
the domain, and there is no need to propagate any changes. The state of the network after the third
relation has been added is depicted in picture 3.12.

The algorithm we implemented handles cycles in the network. When traversing the graph defined
by the constraint network, a stack is kept so that we can determine whether we have already visited
some node or not. If we reach a node that was already updated, we check to see if it is consistent with
the removals we need to do. If it is, then we proceed with the rest of the network (if this is necessary)
or we stop successfully. If there is a conflict, then the constraint network is inconsistent due to the
addition of the latest constraint. We then stop with an error, and perform a rollback that brings the
network in the state it was in before we added the last constraint.

3.3.4 Limitations of the current implementation

The current implementation of the incremental solver has some limitations. First of all, the relations
can only have at most two logic variables. While the solver itself is multi-way, the limitation lies in the
way we have implemented the detection of relation violations. Second, we have not yet added support
to remove relations from a network. Since individual solutions can be removed from constraints (and
are then propagated), there is no problem to add such a functionality. Thirdly, there is no rollback of
the side-effects done by constraints. For example, if a constraint is triggered, and as a result removes
a method, then this method is not restored when the change is rolled back in the constraint network.
The net effect of this is that care has to be taken with automatic changes to the base implementation

3.4. CONCLUSION 43

by the constraints themselves. These side-effects should be done after change propagation, as part of
an action phase where the user takes some action indicated by the constraints. The action could be
automatic (such as the generation or removal of code) or manual (the user using the development tools
to make changes to the implementation).

3.4 Conclusion

In this section we introduced the logic meta-programming language SOUL, which allows us to reason
about Smalltalk code. We discussed the main features that make SOUL a logic meta-programming
language: the smalltalk term, the generate predicate and the quoted string. Then we introduced
the introspective and reflective capabilities of SOUL, obtained by adding two special hardcoded vari-
ables to the smalltalk term (?repository and ?bindings). Then we showed the development tools
that are available to SOUL developers to interact with SOUL, and the tools for the Smalltalk develop-
ers that we built using SOUL. Last but not least we discussed the incremental solver that was built on
top of SOUL.

The symbiosis between SOUL and Smalltalk is one of the technical contributions of this disserta-
tion. SOUL introduces the up-down mechanism between two languages of a different paradigm. This
allows Smalltalk objects to be used as logic terms, and eases the implementation of the reflection.
From the user’s point of view, this makes it very easy to use SOUL to reason about the base language
and to implement extensions of SOUL.

Using local propagation techniques to implement a symbolic incremental solver is another techni-
cal contribution of this dissertation. The SOUL incremental solver allows to build a network of logic
relations that share logic variables. The solver is then capable of keeping the results to these relations
consistent when solutions to these relations change (because relations are changed or under external
influences).

In the next chapter we use SOUL to implement the declarative framework, a layered library of
predicates to reason about Smalltalk.

44 CHAPTER 3. SOUL AND THE INCREMENTAL SOLVER

Chapter 4

The declarative framework

This chapter introduces the declarative framework, a layered set of rules to facilitate reasoning over an
implementation. We introduce the four layers that currently make up this framework: the logic layer,
the representational layer, the basic layer and the design layer. In particular the latter is of interest for
this dissertation. We express three design notations in this layer, namely programming conventions,
design pattern structures and UML class diagrams. These three design notations are thus expressed
in terms of the implementation, and are used in subsequent chapters where we validate of our claim.

4.1 Introduction

The previous chapter introduced the basic language features and tools of our logic meta-programming
language. In this chapter we use these language features to implement predicates that reason about
the implementation of a base system. These predicates are structured in what we call the declarative
framework, depicted in figure 4.1. The declarative framework is a layered rulebase, where predicates
in one layer have access to all the predicates from lower layers. Each layer contains groups of rules
with similar or related functionality:

� the logic layer: this layer contains the predicates that add core logic-programming functionality,
such as list handling, arithmetic, program control, repository handling, It is at the top since
it used by all other layers;

� the representational layer: this layer reifies the base-language’s concepts, such as classes, meth-
ods, instance variables and inheritance;

� the basic layer: this layer adds a lot of auxiliary predicates that facilitate reasoning about im-
plementation. Since the representational layer only provides the most primitive information,
this layer is absolutely necessary to interact on a reasonable level of abstraction with the logic
meta-programming language;

� the design layer: this layer groups all predicates that express particular design notations. In
the next chapter we describe some design notations that we have expressed to experiment with,
namely the programming conventions, design patterns and UML class diagram.

Since every layer contains many predicates, we have logically divided them into groups. Table 4.1
lists these groups within the layers, and gives the most important predicates for each group. We will
now study each of the layers in more detail, as this gives more information about the structure and
contents of the declarative framework.

46 CHAPTER 4. THE DECLARATIVE FRAMEWORK

logic layer

representational layer

basic layer

design layer

(arithmetic, list handling, type checking, repository handling, pattern matching)

(base predicates)

(parse tree traversal, typing, flattening, code generation, accessing, auxiliary)

(programming conventions, design patters, UML class diagrams)

d
e
c
l
a
r
a
t
i
v
e

f
r
a
m
e
w
o
r
k

Figure 4.1: The declarative framework

layer group major predicates
logic layer arithmetic add, sub, greaterThan, smallerThan

list handling append, length, member, flatten, head, tail
type checking var, atom, ground
repository handling assert, retract
pattern matching patternMatch, stringSplit

representational
layer

base predicates class, method, instVar, superclass

basic layer parse tree traversal isSendTo, assignmentStatements, classesUsed, glob-
alsUsed, returnStatements

typing instVarTypes, collectionElementType
flattening classChain, implementationChain, flattenedMethod
code generation generateClass, removeClass, generateMethod, re-

moveMethod
accessing methodName, methodClass, methodStatements
auxiliary rootClass, hierarchy, understands, abstractClass

design layer programming con-
ventions

accessor, mutator, badSupersend

design patters compositePattern, visitor, abstractFactory, facto-
ryMethod, singleton, bridge

UML class dia-
grams

umlDiagram, umlClassifier, umlGeneralization,
umlAssociation

Table 4.1: Overview of the different groups of predicates in each layer, and the most impor-
tant predicates for each group

4.2. THE LOGIC LAYER 47

4.2 The logic layer

The first layer we encounter is the logic layer. As can be expected from the name, this layer contains
predicates that implement basic logic functionality. Table 4.1 lists the most important predicates in
this layer. Note that the layer is subdivided into several groups of predicates with related functionality.
In section 3.2.5 we already saw some examples of some of these logic predicates that use the reflective
capabilities of SOUL. In this section we therefore give some other examples, starting with two well-
known list handling predicates (head is used to unify the first argument with the head of the list,
while intersection defines the intersection of two lists) and a type check predicate (ground, that only
succeeds if the argument does not contain variables):

Fact head(?first,<?first j ?rest>).

Rule intersection(?list1, ?list2, ?intersection) if
findall(?common,

and(member(?common, ?list1),
member(?common, ?list2)),

?intersection).

Rule ground(?X) if
[?X isGround]

Before proceeding with the other layers, we want to show the implementation of the length pred-
icate, that is used to relate the length of a logic list and a logic list. So, when the list is known, it is
sufficient to count the elements. This is implemented by using a generate predicate to determine the
length of a given (bound) list. However, if the length is known but the list is unbound, then we have to
construct a list containing logic variables of the specified length. This is again done using a generate
predicate, but this time it constructs a SOUL list of the known length, containing logic variables called
var followed by their index. These two rules make sure the length predicate can be used multi-way:
regardless the input (known values or variables for the ?list or ?length arguments), a useful result or
check will be given:

Rule length(?list, ?length) if
nonvar(?list),
generate(?length,

[?list soulSize asStream]).

Rule length(?list, ?length) if
var(?list),
atom(?length),
generate(?list,

[((1 to: ?length) collect: [:idx j
SOULVariableTerm name: (’var’, idx printString)]) asSoulList asStream])

48 CHAPTER 4. THE DECLARATIVE FRAMEWORK

predicate reifier
class(?class) classes
superclass(?super,?sub) inheritance relationship
instVar(?class,?iv) instance variables in a class
method (?class,?m) methods of a class

Table 4.2: SOUL Representational Predicates

statement syntax example translation
literal l literal([l])
variable t variable([#t])
assignment x := y assign(x,y)
return "x return(x)
message send x msgpart1: arg1 msgpart2: arg2 send(x,

msgpart1:msgpart2:,
<arg1,arg2>)

cascaded message x msg1: arg1; msg2: arg2 send(x,msg1:,<arg1>),
send(x,msg2:,<arg2>)

block [:arg1 :arg2 j jt1 t2j . . .] block(arguments(<arg1,arg2>),
temporaries(<t1,t2>),
statements(<. . .>))

Table 4.3: SOUL Logic Representation of Smalltalk Statements

4.3 The representational layer

The representational layer reifies concepts of the base language in order to reason about them. Since
SOUL is a logic programming language, we represent the reified Smalltalk concepts in a logic format.
This section describes the mapping that we use to map Smalltalk parse trees to a logic format, and
then discuss the predicates implementing this mapping (table 4.2 shows these predicates). We will
not discuss the instVar and superclass predicates because their implementation are analogous to the
implementation of the class predicate.

4.3.1 Representing base programs

The mapping we use to represent Smalltalk programs in the declarative framework is fairly straight-
forward, and follows the Smalltalk parse tree structure. Actually, there is no parse tree for classes
(classes just contain methods). We represent a Smalltalk method as a functor with five arguments: the
class, its name, the names of the arguments, the names of the temporary variables and the statements.
The mapping of Smalltalk statements is given in table 4.3. As a concrete example figure 4.2 shows
the code of the printOn: method on class SOULList and its SOUL. We use this method as an example
since its parse tree is not trivial, yet neither is it overly complicated.

4.3.2 The class predicate

We start with the general implementation of the class predicate. This predicate allows us to check if
the passed argument is a class, or to generate all classes. Note that the smalltalk predicate uses the

4.3. THE REPRESENTATIONAL LAYER 49

SOULList>>#printOn: aStream
“add a textual representation of the receiver to the stream”

self isEmptyList
ifTrue: [aStream nextPutAll: ‘<>’]
ifFalse: [aStream

nextPut: $<;
print: self term;
nextPut: $>]

method([SOULList],
[#printOn:],
arguments(<[#aStream] >),
temporaries(<>),
statements(< send(send(variable([#self]),

[#isEmptyList],
<>),

[#ifTrue:ifFalse:],
< block(arguments(<>),

temporaries(<>),
statements(< send(variable([#aStream]),

[#nextPutAll:],
<literal(‘<>’)>)>)),

block(arguments(<>),
temporaries(<>),
statements(< send(variable([#aStream]),

[#nextPut:],
<literal([$<])>),

send(variable([#aStream]),
[#print:],
<send(variable([#self]),

[#term],
<>)>),

send(variable([#aStream]),
[#nextPut:],
<literal([$>])>)>))>)>))

Figure 4.2: The Smalltalk implementation of printOn: for class SOULList, and its logic
representation in SOUL

50 CHAPTER 4. THE DECLARATIVE FRAMEWORK

class SOULExplicitMLI as a facade to facilitate and centralise the calls to Smalltalk1.

Rule class(?c) if
generate(?c, [SOULExplicitMLI current allClasses]),

This predicate uses the generate predicate to generate all classes in the system. One by one it
binds these values as result for the ?c variable. This definition ensures that the predicate can be used
regardless whether a constant or a variable is passed. For example we can then perform a query asking
for all the classes in the system:

Query class(?c)

However, using the multi-way directionality of logic programming, we can also solve the follow-
ing query asking whether the argument class Array is indeed a class:

Query class([Array])

Note that we actually pass an Array class here, using the Smalltalk term and the fact that classes
are first-class objects in Smalltalk.

4.3.3 The method predicate

Analogous to the class predicate, we define a general method predicate that relates classes and meth-
ods in the base program. The class SOULExplicitMLI is again used as a facade to allow easy access
to the Smalltalk meta system, and is now asked to return all the methods:

Rule method(?c, ?m) if
class(?c),
generate(?method, [SOULExplicitMLI current allMethods]),
equals(?m, ?method).

Once this predicate is added (together with the class predicate defined above), we can reason about
classes and methods in the object-oriented system. This allows us to perform different queries, such
as asking whether a specific method is indeed a method of some class, finding all the methods of a
class, and so on.

1The implementation of the facade SOULExplicitMLI actually uses a singleton design pattern [GHJV94], which explains
the current message that is sent to the SOULExplicitMLI class to retrieve the actual facade instance used. This instance is
then asked for all the classes in Smalltalk using the allClasses message.

4.3. THE REPRESENTATIONAL LAYER 51

4.3.4 Optimising the representational predicates

The current implementation of the class and method predicates are very declarative and simple. While
this is clean, it also penalises the performance when used in some circumstances. Suppose for example
that the logic representation of a method is given, and that we want to know the class this method
belongs to. Since the method predicate relates classes and methods, we can use it to find this out. The
following query is used to retrieve the class of a particular method (the logic representation of method
isConstant of class SOULAbstractTerm):

Query method(?c,
method([SOULAbstractTerm],

[#isConstant],
arguments(<>),
temporaries(<>),
statements(<return(literal([false]))>))

However, to solve this query we run into performance problems because of the purely declarative
and simplistic implementation of the method predicate introduced before. This implementation first
generates a list of all classes. For each of these classes, every method is generated. All these methods
are then traversed and matched one by one to the method we gave as an argument. It is clear that
this is overkill, especially since our method representation includes the class the method belongs to
as first argument! Because of these performance reasons, the representational predicates are therefore
written less declaratively but more efficiently. Note that we take care not to compromise the multi-way
aspect of these predicates, so that from the outside it is transparent whether they are written in purely
declarative or in optimised form.

Optimizing the class predicate

As a first example, let us revisit the implementation of the class predicate. We write the predicate
using two rules instead of one. The first rule is used when the argument passed is a variable. The
second rule is used when the argument given is a constant. The real performance gain, compared to
the previous implementation, lies in this second predicate. If a constant is given, we do not need to get
all classes and then find one that matches. Instead we use a smalltalk term to find out whether
this constant is a class. This results in the following two rules for the class predicate, one for each
case (the predicates var and atom are used to check whether the passed argument is a variable or a
constant, respectively). This definition of the class predicate is the actual working implementation
that is used in the SOUL system:

Rule class(?class) if
var(?class),
generate(?class, [SOULExplicitMLI current allClasses]).

Rule class(?class) if
atom(?class),
[SOULExplicitMLI current isClass: ?class].

52 CHAPTER 4. THE DECLARATIVE FRAMEWORK

Optimizing the method predicate

The optimisation of the method predicate is a different story. Where the representation of a class is
an atom (a smalltalk term representing the class), the representation of a method is a composite
structure (a logic functor with 5 arguments, as seen in section 4.3.1). As we saw in the query in
the beginning of this section, the user can choose for each of the elements in the structure to use a
variable or a constant. The variables need to be bound to possible values, while the constants need
to be checked to see if they are valid. For performance issues we want to take the given information
into account when finding out correct values for the variables. Another example of a very inefficient
usage of the method predicate is the following query that finds all methods named isConstant, without
arguments or temporaries. Note that no information about the statements is specified (a variable is
passed):

Query method(?c,
method(?c,

[#isConstant],
arguments(<>),
temporaries(<>),
statements(?statements))

When run, the query yields the following result:

?c -> [SOULAbstractTerm]
?statements -> <return(literal([false]))>

This query shows that the obvious approach to optimising the method predicate (which is to check
whether the passed method is a variable or not, as we did in the class predicate), would not work.
Since the method passed can be a compound structure, possibly containing variables, such a check
is not enough. The trick is to use the multi-way property of logic programming to extract as much
information as possible from the functor containing the method description. This information is then
used to parse and compare the required methods only. The result is a more refined implementation
than the crude method predicate given above, but one that is still declarative:

Rule method(?class, ?method) if
01 methodClass(?method, ?class),
02 class(?class),
03 methodName(?method, ?name),
04 classImplements(?class, ?name),
05 calculateParseTree(?class, ?name, ?generatedMethod),
06 equals(?generatedMethod, ?method).

4.4. THE BASIC LAYER 53

As can be seen, line 01 first calls the methodClass predicate to relate the ?method variable with
its ?class. Depending on what was passed as ?method this can have different consequences:

� if ?method is a variable, then it is bound to an empty method template:

method(?class,?sel,arguments(?args),temporaries(?ts),statements(?statements)).

Note that the first argument in this template (the ?class variable) is the same as the ?class
variable in the template;

� if ?method is a complete method template, then ?class is bound to the constant giving its class;

� if ?method is a partially filled in method template, then the variable ?class is bound to the
variable or constant in the first position of that template;

� if ?method is anything else, the methodClass, and hence the method predicate, fails.

The important thing to notice is that after the call to the predicate methodClass, the ?method
variable is certainly bound to a method template, and the ?class variable points to the first element
in that template. Line 02 then states that ?class should be a class. This means that if ?class was
bound to a constant, it is checked to make sure that it is a class. However, if ?class was still a
variable, it is bound to all possible classes in the system, and also the method templates are filled in
accordingly. Lines 03 and 04 do the same trick, further filling in or checking the method template
with the names of the method (the selector). Note that the classImplements predicate used in line 04
relates classes and names of methods. When line 05 is reached, we have information regarding the
classes and the methods, and we have sufficient information to calculate the parse tree. This is stored
in the variable ?generatedMethod. The equals predicate is then used in line 06 to unify the variable
?method (containing a possible partially filled in method template or variable) with the parse tree in
the ?generatedMethod variable. This last step fills in the remaining variables from ?method.

This optimised implementation of the method predicate always uses as much information as pos-
sible to minimise the parsing of methods. For example, to find the class of a given method (the first
example at the beginning of this method), only one method in one class is parsed, whereas the previous
implementation parsed every method of every class in the system.

4.4 The basic layer

The logic layer and the representational layer provide all the basic mechanisms to use SOUL to reason
about Smalltalk code. However, the level of abstraction is not very high, and for almost every query
to reason about the implementation we should have to write lots of logic code. Therefore we factored
out a lot of functionality and created the basic layer. This layer adds a lot of auxiliary predicates that
facilitate reasoning about implementation, and raises the level of abstraction significantly. Describing
the implementation of all these predicates falls outside the scope of the dissertation (there are currently
over 140 predicates in this layer). Therefore we describe the predicates in groups, and then give some
examples on how to use them:

� parse tree traversal: a lot of predicates have to traverse the parse tree of a method in search
for certain variables or message sends. Therefore we have implemented the traverseMethod-
ParseTree predicate to travel over the logic parse tree of a method. Using this predicate we have
implemented some traversals that are commonly used (such as isSendTo, assignmentStatements,
classesUsed, globalsUsed and returnStatements);

54 CHAPTER 4. THE DECLARATIVE FRAMEWORK

element predicate
class generateClass(?className, ?superclass)

removeClass(?class)
method generateMethodInProtocol(?parseTree, ?protocol)

generateMethodInProtocol(?quotedTerm, ?class, ?protocol)
generateMethod(?parseTree)
generateMethod(?quotedTerm, ?class)
cpgMethodInProtocol(?parseTree, ?protocol)
cpgMethodInProtocol(?quotedTerm, ?class, ?protocol)
cpgMethod(?parseTree)
cpgMethod(?quotedTerm, ?class)
removeMethod(?class, ?selector)
removeMethod(?parseTree)

instance variable generateInstVar(?instVarName, ?class)
removeInstVar(?instVarName, ?class)

Table 4.4: The code generation predicates

� typing: Smalltalk is a dynamically typed object-oriented programming language. Therefore we
added some predicates that analyse the source code in order to find possible types for variables.
We use a lightweight type inferencing scheme that basically tries to detect all messages that
are sent to a certain variable (the interface), and then looks for all the classes that understand
the complete interface. This gives an indication of the type of the variable. Of course specific
programming conventions or refined type inferencing rules can complement these rules. This
is accomplished by adding rules to the framework as we describe in the next chapter when we
discuss programming conventions;

� flattening: the basic rules representing classes and methods are incremental, meaning that the
information about a class is only what that class implements. Information from the hierarchy is
not taken into account. For example, when we use the method predicate to get the methods of
a class we only get the methods that are really implemented by that class (and not all methods
it understands). The predicates in this group allow us to reason about classes in their flattened
versions, taking inheritance into account;

� code generation: since smalltalk predicates can contain any Smalltalk code, this code can use
the standard Smalltalk meta facilities to generate or remove code. The rules in this group use
this to offer predicates that generate code from logic descriptions of methods or from quoted
strings;

� auxiliary: there is also a number of auxiliary methods (such as rootClass, hierarchy, under-
stands, abstractClass) that implement various useful predicates that are frequently used.

4.4.1 The code generation predicates

An important category of predicates are the generation predicates, listed in table 4.4. In this section
we discuss the predicates for generating methods. The implementation of these predicates relies on the
combination of the smalltalk predicate on one hand, and on the other hand on the fact that Smalltalk
itself is reflective [FJ89]. Note that we chose not to discuss the implementation of the predicates

4.4. THE BASIC LAYER 55

to generate classes and instance variables, as these implementations are similar to those of the class
generating predicates.

The basic predicate is generateMethodInProtocol. It allows us to generate a method in a certain
protocol2. The implementation of the method to generate can come in two forms: a logic description
or a quoted string. Note that in the case of a quoted string, a class needs to be supplied as well (the
logic representation contains the class of the method as first argument in its representation). When a
logic description is supplied, the predicate checks to see if it does not contain any logic variables. If
it does not contain any variables, the methodSource predicate is used to convert the logic description
into a source string. If it contains unbound variables, the predicate fails and nothing is generated.
When a quoted string is supplied, it is directly compiled and stored. Note that, when the source string
contains invalid Smalltalk code, the Smalltalk compiler produces no code, and nil is returned. This
causes the predicate to fail, as expected:

Rule generateMethodInProtocol(?methodParseTree, ?protocol) if
atom(?protocol),
methodClass(?methodParseTree, ?class),
existingClass(?class),
methodSource(?methodParseTree, ?source),
generateMethodInProtocol(?source, ?class, ?protocol).

Rule generateMethodInProtocol(?quotedTerm, ?class, ?protocol) if
atom(?protocol),
existingClass(?class),
sound(?quotedTerm),
[(?class compile: ?quotedTerm sourceString classified: ?protocol) = nil].

In most cases when we want to generate a method, we do not explicitly want to specify the protocol
to be used. Therefore we implemented a generateMethod predicate, that is implemented in terms of
generateMethodInProtocol. It simply uses an auxiliary predicate protocolForSelector that looks to
see if the class where the method is generated has a superclass that already implements it. If so, the
method is generated in the same protocol. If the method is new, then a default protocol is used.

The generateMethod and generateMethodInProtocol predicates always generates a method, re-
gardless whether it already exists or not. This is not always convenient. For example, we might only
want to generate a method if it does not yet exist. If it already exists, we do not want to change it3.
Since this is frequently used in practice, we offer a set of predicates that are prefixed with cpg (which
is short for checkPossiblyGenerate). The cpg-versions of predicate only generate source code if there
is no source code artefact present yet.

4.4.2 Examples using the basic layer predicates

Having enumerated the main groups of predicates of the basic layer, this section gives two examples
that use some of the basic layer predicates. The first example expresses the programming convention
that an initialize method should always do a super send first, and then finds violations against this

2In Smalltalk every method belongs to exactly one protocol. Therefore, when generating, the protocol that is used for
a method has to be supplied. We see a little further that we provide predicates where this protocol is extracted from the
implementation.

3Note that other schemes are possible, in different gradations. For example, when a method already exist, we could
make sure that its implementation is the same as the one we want to generate.

56 CHAPTER 4. THE DECLARATIVE FRAMEWORK

convention. The second example expresses what an interface of a class is, and then uses this to find
classes that conform to a certain interface. Then we show how this can be used to generate template
methods that are missing, given a class and an interface.

Initialize method should do a super send

First of all we express the programming convention that was also expressed in CoffeeStrainer (in the
related work in section 2.5.2). This convention expresses that whenever a class overrides a method
initialize it should first call super initialize before doing anything else. As an example we write a query
that checks this convention for every subclass of a class Figure. We can get all the subclasses from
Figure using the hierarchy predicate. Then we use the overrides predicate to check which of those
classes override a method called initialize. For each of these classes we then get the implementation
of the overridden initialize method using the classImplementsMethodNamed predicate. We then have
the parse tree of the method for which we have to check that its first statement is super initialize. We
check this using the methodStatements predicate, immediately indicating that the first statement has
to be send(variable[#super]), [#initialize], <>). The tail of the list (after the vertical bar) can be
anything, so we use an underscore variable:

Query hierarchy([Figure], ?c),
overrides(?c, [#initialize]),
classImplementsMethodNamed(?c, [#initialize], ?m),
methodStatements(?m, <send(variable([#super]), [#initialize],<>) j >)

The following example writes a predicate that expresses the interface (messages send to) an in-
stance variable of a class. It uses a findall predicate to collect all sends to the variable in a list. The
sends to the variable are found by the isSendTo predicate, one of the parse tree traversal predicates.
The interface is this set of methods, but without any duplicates:

Rule varInterface(?class, ?var, ?interface) if
instvar(?class, ?var),
findall(?varSend,

isSendTo(?class, , ?var, ?varSend),
?varSendsList),

noDups(?varSendsList, ?interface).

Using the varInterface rule we can then write a rule to find all sends to an instance variable that are
not understood by some other class. This allows us to check whether some class we see as a possible
type for the instance variable could indeed be used as such.

4.5. THE DESIGN LAYER 57

The implementation simply gets the interface of the instance variable, and extracts all selectors
from it that are not understood by the type (that has to be a class):

Rule interfaceDifferences(?class, ?var, ?varType, ?missingSelectors) if
class(?varType),
varInterface(?class, ?var, ?interface),
findall(?missingSelector,

and(member(?newSelector, ?interface),
not(understands(?varType, ?missingSelector))),

?missingSelectors).

For example, using this predicate we can check whether Number is a possible type for the instance
variable x of class Point:

Query interfaceDifferences([Point], [#x], [Number], ?missing)

As could be expected, the query succeeds and returns as only possible value for the ?missing
variable the empty list. This means that Number is a possible type for the instance variable x, at least
by looking at the messages sent to x. If Number would not have been correct, then ?missing would
contain a list of selectors that Number should understood in order to be usable as type. While it is
practical to know which selectors sent to our instance variable are not understood by the class we
passed as possible type, we can use this information for more. For example, we can use the code
generation predicates to generate template methods on the class we pass as type. Therefore we simply
enumerate all the selectors from the list we get from the interfaceDifferences predicate using the forall
predicate. For each selector we generate a method with template code (the notYetImplementedSource
gives a quoted string with Smalltalk source code for a given selector):

Rule adjustClass(?class, ?var, ?type) if
interfaceDifferences(?class, ?var, ?type, ?missingSelectors),
forall(member(?sel, ?missingSelectors),

and(notYetImplementedSource(?sel, ?code),
generateMethod(?type, ?code))).

4.5 The design layer

The last layer we discuss is the design layer. In this layer we have grouped the support for three design
notations we support: programming conventions, design pattern structures and UML class diagrams.
Because the predicates expressing these design notations only use the other layers (and each other),
design is expressed as a logic meta program over implementation. Indeed, all the predicates are,
sooner or later, expressed in function of the representation layer.

4.5.1 Programming conventions

First of all we are interested in expressing programming conventions. We use the term programming
convention as a common term to represent all kinds of conventions and styles, such as idioms [Cop98],

58 CHAPTER 4. THE DECLARATIVE FRAMEWORK

var
“direct accessor for an instance variable var”

"var

var
“most common lazy initialized accessor for an instance variable var”

"var isNil
ifTrue: [var := 0]
ifFalse: [var]

var
“other lazy initialized accessor form for an instance variable var”

var isNil ifTrue: [var := 0].
"var

Figure 4.3: Common implementations for accessor methods for an instance variable var

best practice patterns [Bec97], naming conventions, . . . In this section we express the structure of
accessing methods, give some examples, and extend the typing predicates to use this information.

Accessing methods

One of the ways to make data and operations more transparent is by hiding every access to data by a
message send. This is the motivation behind the concept and usage of accessing methods. An access-
ing method is a method that is responsible for getting or setting the value of an instance variable. By
consequently using accessing methods (and never accessing instance variables directly), tThe caller
side never knows whether it is calling an accessing method (and thus manipulating data) or just per-
forming a message send that calculates something. This system therefore makes it easy for subclasses
to override these accessing methods to modify all kinds of data definitions. Note that, for this system
to work, all accessing of instance variables should be done using the accessing methods. Even one
violation can result in a bug when an internal representation is changed.

There are two kinds of accessing methods:

� accessor methods are unary methods that are used to get the value of an instance variable;

� mutator methods are methods that take one argument, and set the value of an instance variable
to the value of that argument.

In these examples we only discuss the support we have implemented for accessor methods, since
the support for mutator methods is analogous.

Accessor methods can be implemented in numerous ways. Three common implementations are
given in figure 4.3. The first one is the straightforward implementation that just returns the instance
variable. The two other ones use lazy initialization. The rationale behind this is that an instance
variable does not need a value unless it is actually used. Therefore lazy initialization is built into

4.5. THE DESIGN LAYER 59

Rule accessorForm(?method, ?varName, [#simple]) if
methodStatements(?method,<return(variable(?varName))>).

Rule accessorForm(?method, ?var, [#lazyClassic]) if
methodStatements(?method,

<return(send(?nilCheck,
[#ifTrue:ifFalse:],
<?trueBlock,?falseBlock>))>),

nilCheckStatement(?nilCheck,?var),
blockStatements(?trueBlock,<assign(?var,?varinit)>),
blockStatements(?falseBlock,<?var>).

Rule accessorForm(?method, ?var, [#lazyAlternative]) if
methodStatements(?method,

<send(?nilCheck,
[#ifTrue:],
<?trueBlock>),

return(?var)>),
nilCheckStatement(?nilCheck,?var),
blockStatements(?trueBlock,<assign(?var,?varinit)>).

Rule accessorForm(?method, ?var) if
accessorForm(?method, ?var,).

Rule accessorForm(?method) if
accessorForm(?method,).

Figure 4.4: The accessorform rules, making the implementations of the accessor methods
shown in figure 4.3 explicit.

the accessing method. This form of accessing first checks to see whether the variable was already
initialized or not (by checking whether the value of the instance variable is nil). If the variable was
not yet initialized (its value is nil), then it is initialized and returned. If it was already initialized (its
value is not nil), then the value is returned. Two possible implementations are given for this scheme
in the implementation.

The three forms we show in figure 4.3 are made explicit in three rules shown in figure 4.4 (comple-
mented by two rules that can be used when not all the arguments are known or needed). The first rule
expresses the simplest form of an accessor, describing it as a method with just one return statement
that returns an instance variable. The two following rules make the other implementations explicit.
Now we can easily write a predicate to relate a class, an instance variable and an accessor method to
each other:

Rule accessor(?class,?method,?varName) if
instVar(?class,?varName),
classImplementsMethodNamed(?class,?varName,?method),
accessorForm(?method).

60 CHAPTER 4. THE DECLARATIVE FRAMEWORK

This accessor predicate states that class has an instance variable with name varName, and a
method with the same name as varName and implementation conforming to accessorForm. This
means that we have codified a Smalltalk naming convention that states that accessing methods typi-
cally have the name of the instance variable they are accessing. Of course other naming conventions
could be used, for example the more C++ or Java-like one to prefix the name of the method with get.

Now that we have described what an accessing method looks like in a logic meta program, we
can write queries that check the source code for violations of this rule. Methods that violate the
encapsulation imposed by the accessor methods programming convention are methods that directly
send messages to instance variables (of course accessor methods themselves are excluded, because
they are the only ones allowed to do this). We can write a rule for such violations, that checks for
every method implemented in a class whether that method sends messages that have as receiver an
instance variable:

Rule accessingViolator(?c, ?m, ?iv) if
class(?c),
instvar(?c, ?iv),
method(?c, ?m),
not(accessor(?c, ?m, ?iv)),
isSendTo(variable(?iv),

?violatingMessage,
?args)

We can then invoke a query to find violations:

Query accessingViolator(?class, ?method,?instvar)

Another violation is to assign values directly to instance variables (which should be done by call-
ing the mutator methods). To find such methods, we ask every non-mutator method for its assignment
statements, and then we check whether it includes an assignment statement with an instance variable
as left-hand side. This means that there are direct assignments to this instance variable.

Rule accessingViolator(?c, ?m, ?iv) if
class(?c),
instvar(?c, ?iv),
method(?c, ?m),
not(mutator(?c, ?m, ?iv)),
assignmentStatements(?m, ?assignmentsList),
member(assign(?iv, ?violatingAssignment), ?assignmentsList)

Complementing the typing rules

In the typing predicates we saw in section 4.4, typing instance variable was done by looking at the
sends to the instance variable, and using this information to determine the possible types.

4.5. THE DESIGN LAYER 61

Using the instVarTypes predicate we can then directly get the possible types for an instance vari-
able, for example the variable x on class Point:

Query instVarTypes([Point], [#x], ?possibleTypeList)

Of course, when all accesses to instance variables are done through accessing methods, then this
mechanism does not work anymore. The solution is rather simple: we have to take the sends to
accessor methods into account when determining the messages sent to an instance variable. So, in
order to complement the typing rules, we add a rule instVarTypes that expresses this information.
When the design layer is then used, there are two rules that can give solutions when we have a query
asking for types of instance variables: one using direct sends to instance variables, the other one using
the sends to accessors.

Generating accessor methods

Previously we looked for accessor methods in the implementation, and for violations against the al-
ways use accessor methods programming convention. However, sometimes we also want to generate
accessor methods for an instance variable in a class. Combining the accessorForm predicate describ-
ing the simple accessor form in combination with the generate predicates from the basic layer makes
this easy to do:

Rule generateAccessor(?class, ?instvar, ?accessorMethod) if
instvar(?class, ?instvar),
accessorForm(?accessorMethod, ?instvar, [#simple]),
methodClass(?accessorMethod, ?class),
cpgMethod(?accessorMethod).

We want to notice that with the current form of the accessorForm predicates, it is not possible to
generate any other form then the simple accessor method. The problem is that the source code of the
methods as given by the accessorForm predicates is not complete. It is actually only a partial des-
cription that is matched against the source code, where some parts remain unspecified. For example,
when we look at the lazyClassic accessor form given in figure 4.4, the code that gets assigned to the
instance variable is left unspecified. Hence we cannot use it to generate fully functional code, but
have to limit ourselves to generate template code where pieces have to be filled in manually by the
developer later on. We could also make the accessorForm predicates more specific (for example by
passing the initialization code as an optional argument):

Rule accessorForm(?method, ?var, [#lazyAlternative], ?varinit) if
methodStatements(?method,

<send(?nilCheck,
[#ifTrue:],
<?trueBlock>),

return(?var)>),
nilCheckStatement(?nilCheck,?var),
blockStatements(?trueBlock,<assign(?var,?varinit)>).

That way they can be used both for searching and for generating.

62 CHAPTER 4. THE DECLARATIVE FRAMEWORK

name predicate
composite compositePattern(?component, ?composite, ?method)
visitor visitor(?visitor, ?element, ?accept, ?visitSelector)
abstract factory abstractFactory(?class, ?element)
factory method factoryMethod(?class, ?method, ?element)
singleton singleton(?class)
bridge bridge(?left, ?right)

Table 4.5: The design pattern predicates in the design layer

Figure 4.5: Visitor Design Pattern Structure

4.5.2 Design pattern structures

The second design notation we support is structures as described by design patterns [GHJV94]. We
want to stress at this point that the intent of these rules is not to capture the complete design patterns,
but only the part expressing their structure. A design pattern contains far more information than
only structure that is not captured by these predicates (such as a motivation, intent, applicability, and
relationships with other design patterns). Therefore we always refer to these rules as being design
pattern structure rules.

In general, a design pattern is detectable if its template solution is both distinctive and unambigu-
ous [Bro96]. We express the structural information in the template solutions by writing logic meta
programs. This is possible since these logic meta programs have access to the full parse trees of
the object-oriented system they are reasoning about. Table 4.5 lists the design pattern structures we
expressed. In this section we give the implementation of the visitor design pattern.

The general idea of the Visitor design pattern is to separate the structure of elements from the
operations that can be applied on these elements. This separation makes it easier and cost-effective
to add new operations, because the classes of the object structure do not have to be changed. As
depicted in figure 4.5 there is a hierarchy describing the elements, and there is a separate hierarchy
implementing the operations. Call Element the root class of a hierarchy on which the class Visitor and
its subclasses define operations. Every Element class defines a method accept, that takes a Visitor as
argument and calls this visitor using an operation that indicates its type. For example, the implementa-
tion of accept on class ConcreteElement1 will send the message visitConcreteElement1 to the visitor.
The Visitor hierarchy consist of the classes that define operations on the Element classes. They just
need to implement the calls made by the element classes. The typical example of the visitor design
pattern is to separate parse trees from the operations that are typically performed on these parse trees
(such as generating code, pretty printing or optimizations).

4.5. THE DESIGN LAYER 63

The rule describing the structure of the visitor design pattern is fairly straightforward. It expresses
first of all that the visitor is a class, and that it implements the visit methods (that have a name visitS-
elector). In the same way, element is a class too, and implements methods called accept with a body
acceptBody. The arguments passed to this method are given by acceptArgs. The body is responsible
for calling the passed visitor v with the actual visit operation visitSelector and passing along the argu-
ments visitArgs. One of the arguments has to be the receiver (denoted by self in Smalltalk), and the
passed visitor v actually has to be an argument of the accept method:

Rule visitor(?visitor, ?element, ?accept, ?visitSelector) if
class(?visitor),
classImplements(?visitor, ?visitSelector),
class(?element),
classImplementsMethodNamed(?element, ?accept, ?acceptBody),
methodArguments(?acceptBody, ?acceptArgs),
methodStatements(?acceptBody,

<return(send(?v, ?visitSelector, ?visitArgs))>),
member(variable([#self]), ?visitArgs),
member(?v, ?acceptArgs).

For example, since SOUL is implemented in Smalltalk (and uses a visitor pattern to enumerate
its parse tree) we can use the visitor predicate to find all the non-abstract parse tree elements of the
SOUL parse tree that do not comply to the visitor pattern. To do so, we select all subclasses of
class SOULParseTreeElement that are not abstract, and for each of those we find the ones that do not
comply to the visitor rule:

Rule soulParsetreeVisitor(?node) if
hierarchy([SOULParseTreeElement], ?node),
not(abstractClass(?node)),
not(visitor(?visitor, ?node, [#doNode:], ?callbackMsg))

The last line in this rule gives the name of the visit-method used by the visitor to visit the nodes.
It is a Smalltalk Symbol with the name of the method, doNode:4. The results of this query contain the
methods that do not comply to the SOUL visitor design pattern, and that might need to be changed. If
the query fails, then all the classes and methods comply to the visitor design pattern.

4.5.3 UML class diagrams

The UML class diagram predicates express the basic concepts of UML class diagrams [BRJ97,
RJB99]: classifiers (with operations and attributes) and the generalization and association relation-
ships. Table 4.6 lists the logic representations we use for the different UML concepts we support. We
then have to write predicates to express these concepts in terms of the implementation. Table 4.7 lists
those predicates. As with the other layers we again describe one of the predicates in detail.

In this case we take the most complicated one, namely mapUMLAssociation. This predicate is
used to map UML associations against the source code. Because Smalltalk is dynamically typed,

4When we do not know this, we could have supplied a variable. The system would then have deduced the name used
in this specific visitor pattern instance. However, in this example we wanted to express the current situation and see if the
implementation conformed to this structure.

64 CHAPTER 4. THE DECLARATIVE FRAMEWORK

UML concept logic representation
classifier classifier([#class], ?name, ?attributeNames, ?operationNames)
generalization relation([#generalization], ?classifierName1, ?classifierName2)
association relation([#association], ?classifierName1, ?roles1,

?classifierName2, ?roles2)
role role(?name, multiplicity(?mul), type(?type))

Table 4.6: The logic representation of UML concepts. Note that the attributeNames, opera-
tionNames and roles variables are lists.

UML concept predicate
classifier mapUMLClass(?classifier, ?class)
generalization mapUMLGeneralization(?generalizationRelation, ?superClass, ?sub-

Class)
association mapUMLAssociation(?associationRelation, ?leftClass, ?rightClass)

Table 4.7: The predicates mapping the logic representations of UML concepts shown in
table 4.6 to the implementation.

extracting and checking collaborations between classes is hard. However, we can use the typing
predicates to extract possible associations. The core of mapping the UML association relation to
the implementation is the associationRelation predicate, that types the instance variables of the left
class (using the instvarTypes and stripHierarchyClasses predicates) and uses that information to see
if there is an association with the right class. This is done by taking the instance variables of the
left class and, for each of them, determining their type. If the type is not a Smalltalk collection,
then the multiplicity is set to 1. If the type is found to be some Smalltalk collection class, then the
multiplicity is set to many, and the type of the elements contained in the collection is determined (with
the collectionElementType predicate). For each possible type we then construct a role functor with the
extracted information (type and multiplicity). Since the ?allRoles then contains possible nested lists,
we flatten the results before returning them:

Rule associationRelation(?leftClass, ?instvar, ?leftRoles) if
instVarTypes(?leftClass, ?instvar, ?typeList),
stripHierarchyClasses(?typeList, ?possibleTypes),
findall(?roles,

and(member(?possibleType, ?possibleTypes),
or(and(containerType(?possibleType),

collectionElementType(?leftClass, ?instvar, ?types),
stripHierarchyClasses(?types, ?strippedTypes),
findall(role(?instvar, multiplicity([#many]), type(?possibleType, ?type)),

member(?type, ?strippedTypes),
?roles)),

and(not(containerType(?possibleType)),
equals(?roles, <role(?instvar, multiplicity([1]), type(?possibleType))>)))),

?allRoles),
flatten(?allRoles, ?leftRoles).

4.6. INSTANTIATING AND REUSING THE FRAMEWORK 65

4.6 Instantiating and reusing the framework

Now that we have discussed the declarative framework a natural question that arises is how it can be
instantiated and reused. Before we answer this question, we want to note that the lookup of predicates
in a logic programming language is flat (where it is hierarchical in object-oriented systems, taking
inheritance into account). This means that, despite the layering in the storage of the predicates, they
are seen as one flat pool of predicates at runtime (during the logic interpretation). In order to discuss
the reuse of the framework, let’s see how we can extend, refine and remove predicates.

Extension of the framework is easy: any layer can add predicates to be used at runtime. We gave an
example of this with the instVarTypes predicate: it is defined in the basic layer, but we complemented
it in the design layer in section 4.5.1. Hence, when both layers are used at runtime, all the rules
defined in the predicates are taken into account. This can even be done at runtime using the assert
predicate.

Refinement of rules (in a object-oriented sense) is currently very hard. What we would actually like
is a mechanism to implement a rule in one layer, and refine it in another (which is done by overriding
methods in a object-oriented system). The important aspect is that the original implementation does
not need to be changed, and that the new implementation can still reference the old one (doing a
super send in object-oriented programming languages). In SOUL, refining a rule can be done in two
ways. The first way to do this is by changing the original implementation, or by removing it from
one layer and reimplementing it in the other. The second way is by swapping repositories. Since
in SOUL the logic repositories can be nested, we can swap the repository containing the original
implementation of the predicate with a repository containing the refined implementation. While this
is clean and supported by the tools (see the Configuration pane in the Repository Inspector in the
SOUL development tools from section 3.2.6), this means that not one, but a number of predicates are
swapped. Hence this is more appropriate to accommodate large changes in functionality. None of
these ways allow us to invoke the previous implementation (other then copying its implementation).
To recapitulate, refinement is currently not very well supported in SOUL5.

Removal of rules is not very hard. Individual rules can easily be removed (even at runtime using
the retract predicate). Also, complete logic repositories can be removed using the SOUL development
tools.

So, in short, the declarative framework allows us to easily extend and remove individual predi-
cates, and lets you refine predicates (but in a harder way).

4.7 Lessons learned

Constructing the declarative framework gave us insight in how to write and structure logic meta pro-
grams expressing information about the implementation. While this complete chapter tries to convey
the feeling for the framework, and especially its expressivity, we now want to explicitly enumerate
some of the key lessons we learned in general before concluding this chapter.

4.7.1 Guidelines for writing logic meta programs

First of all we collected a number of general guidelines that are useful when expressing design as a
logic meta programs:

5In the future work in section 8.3.2 we discuss a mechanism that we are implementing that allows delegation in reposi-
tories, making refinement of rules easy.

66 CHAPTER 4. THE DECLARATIVE FRAMEWORK

1. the logic meta programs are first of all source code. This means that they have to be written in
a disciplined and clean fashion, avoiding code duplication, just like any other implementation;

2. take care that every predicate is multi-way usable. When writing purely declarative, this is
normally the case (see for example the first example of the class predicate in section 4.3.2).
However, the common way of optimizing a logic meta program is typically by only writing it
for an argument of a certain type (a constant, a variable, or even a specific class or a method).
This means that it is not multi-way anymore, since the the caller has to know and anticipate this.
The lesson to learn is clear: when optimizing a predicate, also implement the other cases as was
done with the optimized class predicate in section 4.3.4;

3. group related predicates in individual repositories. Since repositories can easily be manipulated
(added, swapped and removed), this makes it easy to change the structure of the framework;

4. SOUL only allows us to express predicates reasoning about the structure (parse tree) of a pro-
gram. This means that behavioural information is hard or impossible to express directly. How-
ever, typically this can be extracted from the programming conventions used. For example, it
is very hard to write a rule to find all methods that have to do with printing textual representa-
tions. However, in Smalltalk such methods typically belong to a protocol with as name printing.
Another example was given when we expressed accessor methods that typically have the name
of the instance variable they are accessing. Using such programming conventions allows us
to -indirectly- support some behavioural information. While this chapter did not give much
information about this, the experiments and validation will give more explicit examples;

4.7.2 Causal connection

Second we want to comment on the fact that classes in SOUL are causally connected to classes in
Smalltalk, while this is not the case for methods. The representational layer introduces a class and a
method predicates. While at first hand they do not seem very different, there is a difference regarding
the causal connection. The results of the class predicate are smalltalk terms wrapping the
actual Smalltalk classes (that are thus causally connected, since it are the classes themselves). The
results of the method predicate are logic representations that are decoupled from the actual smalltalk
compiled methods. For example, the following query gets the source code of the method size of class
Set (in logic form), then removes the method in Smalltalk, and then asks the name of the method:

Query classImplementsMethodNamed([Set], [#size], ?m),
removeMethod([Set], [#size]),
methodName(?m, ?name).

This is only possible because the logic representation that is kept in variable ?m is decoupled
from the Smalltalk method. Note that this poses no problems for our experiments, as a logic pro-
gramming language is used functionally, in a read/apply fashion. First a method body is asked, then
it is manipulated and then - if necessary - it is written to the implementation again using the code
generation predicates. In the middle of the manipulation, the logic representation of the method can
be syntactically incorrect for Smalltalk. However, this is no problem because we only want it to be
syntactically correct when it is generated.

However, the different treatment of classes and methods regarding their causal connection with
the source code could be worth investigating. It could be one of the results of the further reflection
between SOUL and Smalltalk that we discuss in the future work in section 8.3.2.

4.8. CONCLUSION 67

4.8 Conclusion

This chapter discusses the declarative framework, a layered set of rules to express design as a logic
meta program over implementation. Closest to the implementation we find the representational layer
that reifies the basic concepts of the base language we want to make explicit in the logic meta-pro-
gramming language. The other layers build on this layer to implement ever higher abstractions of
the implementation. We discussed the basic layer that -amongst other- has predicates for generating
source code, and the design layer. The latter implements programming conventions, design pattern
structures and UML class diagrams. Because the declarative framework is a framework, we also
discussed how it can be instantiated to be used in specific circumstances.

Throughout the chapter we have included the implementations of predicates to give a concrete
feeling of the expressivity of using a logic meta-programming language to express design. We also
gave several examples of how the predicates can be used to reason about the implementation on a
high-level of abstraction. For example, we extracted all classes in the system, looked for methods
called initialize that forgot to do a super send, checked whether two classes are substitutable for each
other, generated accessor methods, and looked for participants of a visitor design pattern.

In the next chapters we discuss how the declarative framework is integrated in the development
environment using the synchronization tool framework. The combination of both frameworks is our
synchronization framework that we use for validation.

68 CHAPTER 4. THE DECLARATIVE FRAMEWORK

Chapter 5

The synchronization framework

In this dissertation we want a framework to synchronize changes between design and implementation.
Conceptually, our solution rests on three cornerstones:

1. express design as a logic meta program of implementation, and hence provide a mapping from
design to implementation;

2. use the logic meta-programming language as the synchronization engine to detect differences
between design and implementation;

3. integrate in the development environment so that changes to design or implementation can be
intercepted, and acted upon;

We have already discussed two of these cornerstones: the logic meta-programming language and
the declarative framework. Now we want to discuss the synchronization tool framework, the frame-
work that is responsible for integrating synchronization tools in a development environment. We then
call the synchronization framework the combination of the declarative framework and the synchro-
nization tool framework, and show how it can be instantiated for every characterization of synchro-
nization as discussed in section 2.5.1. The following chapters then perform more practical experiments
to show the usability and scalability.

5.1 The synchronization tool framework

The synchronization tool framework is an application framework to build tools that need synchroniza-
tion of design and implementation. It consists of the following parts, that are depicted in figure 5.1

1. design repository: this is a logic repository that sends changed messages whenever a clause
is added, removed or changed. These changed messages are intercepted by the design change
monitor;

2. application model: in the Smalltalk environment we use (VisualWorks Smalltalk), the class Ap-
plicationModel is the general root class that is subclassed to build applications. We have created
a subclass (SOULToolApplicationModel) that provides the core implementation for applications
that need synchronization. All the SOUL applications are subclasses from this class. For users
of the framework, this is the class they will certainly use to build their applications. It can be
configured for several kinds of synchronization;

70 CHAPTER 5. THE SYNCHRONIZATION FRAMEWORK

Application

implementation
monitor

design
monitordesign

repository

implementation
repository

changes implementation

notifies
monitor

notifies
application

notifies
application

notifies monitor

changes
design

Figure 5.1: The major elements of the synchronization tool framework, and their depen-
dencies. Dashed arrows indicate indirect dependencies using a registration mechanism and
event system. Plain arrows indicate direct references.

3. implementation monitor: other classes can register to this monitor to receive notifications of
changes to the implementation (after the changes were performed). It is very important to note
that the monitor is implemented at the Smalltalk meta level, which means that any change,
regardless of the tool, is captured. Hence all possible tools are supported, existing ones as well
as new ones, and they do not need to be modified. Note also that, in the current version, we do
not support proactive notifications. The implementation is analogous to the implementation of
the retroactive notifications, so we foresee no trouble implementing this;

4. design monitor: other classes can register to this monitor to receive notifications of changes
to the design (before or after the changes have been performed). The monitors receive their
notifications from the design repositories.

Note that the application has a direct reference to the design repository is uses, but that all other
dependencies are indirect, and work using the Smalltalk dependency mechanism. This allows any
objects to register themselves to receive notifications from models (objects that send change messages
to their dependants). Important of this kind of reference is that it is a dynamic, runtime model that
uses a well-defined API.

For the user of the framework, the instantiation of the framework almost always includes creat-
ing a subclass of SOULToolApplicationModel. By default this class instantiates a new empty design
repository and registers itself with both monitors. It thus receives notifications for both design and
implementation changes. Every change results in a method being called, that is by default implemen-
ted to do nothing. Table 5.1 lists what messages are called as a result from what change in design
or implementation. By overriding these methods, actions on changes can immediately be taken, as
is explained in the next section. SOULToolsApplicationModel also implements methods to begin and
stop receiving notifications from design or implementation.

5.2. THE SYNCHRONIZATION FRAMEWORK 71

kind change message
design adding a clause clauseAdded:

removing a clause clauseRemoved:
changing a clause clauseChanged:

implementation adding a class classAdded:
removing a class classRemoved:
changing a class classChanged:
adding a method selectorAdded:class:
removing a method selectorRemoved:class:
changing a method selectorChanged:class:

Table 5.1: The notifications that can be sent by the design and the implementation monitor,
and the corresponding method called in SOULToolApplicationModel.

Note that the synchronization tool framework does not necessarily has to be used with the de-
clarative framework. It merely allows tools to be notified of implementation or design changes. For
example, it could also be used with Smalltalk Lint [RBJO96] (which we discussed in related work in
section 2.5.2) or other tools. However, we chose to combine it with the declarative framework since
we were interested in a very expressive and powerful reasoning mechanism.

5.2 The synchronization framework

The synchronization framework, shown in figure 5.2, is the combination of the declarative framework
and the synchronization tool framework. It allows to build tools that support co-evolution, and that
can be customized towards particular forms of synchronization as described by the characterizations
of implementation. The general setup is depicted in figure. This shows an application that needs syn-
chronization of design and implementation. Using the declarative framework to pose logic queries,
the application can extract design information from the implementation, generate parts of the imple-
mentation or do conformance checks between design and implementation. Whenever this triggers a
change in design or implementation, any application can receive notifications of these changes. If it
chooses to do so, the application can then act on these changes (again by using queries).

In the following sections we discuss two concrete tools that are built using the synchronization
framework: a style checker tool that constantly reports violations against programming conventions,
and a UML editor that is kept synchronized with the implementation. Then we discuss how users of
the synchronization framework can instantiate the framework to obtain specific forms of synchroniza-
tion. This also forms the conceptual proof that the framework indeed supports all characterizations of
synchronization discussed in section 2.5.1.

5.2.1 Style checker

One tool that we have implemented (shown in figure 5.3) monitors the quality of methods in the
system. Therefore it fires user-definable queries whenever a method is changed in the system. These
queries express criteria methods should comply to. Failures to adhere to these criteria results in a
warning being written to the log application. The entries in the log application can then be double-
clicked to open a browser on the method causing the warning. Entries in the to-do log are overridden
when the same method is changed (and thus contain the results of the latest version of the method),

72 CHAPTER 5. THE SYNCHRONIZATION FRAMEWORK

design

classifier([#class], [#Figure], <>, <>).
classifier([#class], [#CompositeFigure], <>,
<>).
relation([#generalization],
 [#Figure],
 [#CompositeFigure]).
relation([#association],
 [#CompositeFigure],
 <role([#components],
 multiplicity([#many)>,
 ...

design
data

implementation

Figure subclass: #CompositeFigure
 instanceVariableNames:'components'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'HotDraw'

Smalltalk
repository

Application

logic layer

representational layer

basic layer

design layer

d
e
c
l
a
r
a
t
i
v
e

f
r
a
m
e
w
o
r
k

SOUL

design
monitor

implementation
monitor

 File Edit Help
Application

Figure 5.2: The general setup of the synchronization framework, showing the two main
constituents: the declarative framework and the synchronization tool framework.

Figure 5.3: The Style checker application in action. The screenshot shows the to-do log
containing some warnings the developer needs to look at, and the application where checks
can be enabled, disabled, added, removed and saved.

5.2. THE SYNCHRONIZATION FRAMEWORK 73

or can be removed manually. The developer is thus not hindered: violations only result in logs to be
reviewed.

To use the synchronization framework to build this tool, we have to instantiate it. This comes down
to instantiating both frameworks: the declarative framework and the synchronization tool framework.
To instantiate the declarative framework, we merely have to select which parts of the declarative
framework we use, and add extra predicates that might be needed. This depends of course on the
criteria we want to check. For example, in figure 5.3 we have highlighted a check that looks for
bad super sends in methods. Therefore it uses a predicate badSuperSend, and logs a violation with a
descriptive string if this predicate succeeds. The second step is the instantiation of the synchronization
tool framework. For this we subclass SOULApplicationModel, and provide two user interfaces: one
for the log where the violations are shown, and one to view and edit the queries that are checked
on every method. Then we override the methods methodAdded: and methodChanged: to invoke
the method checkMethodCriteria: whenever they are executed. The method checkMethodCriteria
invokes the queries wanted by the user, and updates the log showing the violations (if there are any).
Since this application is not interested in receiving notifications of changes in the design, we also
override the initialize method to indicate this.

When the application is active, it receives notifications of any change in methods in the applica-
tion, and performs checks on these methods. The basic form of this application as described above
can be extended in several different ways. For example, by using dialog boxes instead of a logging
strategy we can make it harder for users to violate the criteria. When we have an appropriate monitor
(that sends changes before the changes were actually applied to the implementation1) we could even
forbid to make changes that do not follow the conventions. Another application might offer rewrite
abilities for certain violations. For example, when we want to enforce that people use accessor meth-
ods (see also section 4.5.1), and a direct send to an instance variable is detected, this can automatically
be rewritten to use the accessor.

5.2.2 UML tool

UML is a general-purpose visual modelling language that is used to specify, visualize, construct, and
document the artefacts of a software system [RJB99]. One of the diagrams offered is the class dia-
gram, a static view that is used to model concepts in the application domain as well as concepts local
to the implementation of an application. It mainly consists of classes (with attributes and operations)
and their relationships. Several tools exist to draw UML class diagrams. Most of these tools allow us
to generate template code from a UML diagram (generally by using a customizable scripting system).
Some of them also allow us to extract UML diagrams from the source code (although typically not
customizable).

When instantiating the synchronization framework to build a UML class diagram tool, most work
is done on the user interface side. The subclass of SOULToolApplicationModel first of all has to
implement the drawing editor to view and edit UML class diagrams. Extracting or generating a UML
class diagram from the implementation is done by evaluating a query as is shown in section 6.3.1 in
the experiments. Both of these processes are fully customizable, since the ‘scripting language’ used
is our full-fledged logic meta-programming language.

While this functionality is nice, we can go a step further and use our notification system. For
example, we can make a UML tool that enforces that every change in a design diagram should comply
to the implementation. For example, when an operation is added to a classifier, the implementation

1Our current implementation monitor ensures that the changes have been applied to the code before wend the change
message. This could easily be changed to send notifications before the change is actually applied.

74 CHAPTER 5. THE SYNCHRONIZATION FRAMEWORK

can be checked to make sure that the class corresponding to the classifier indeed implements such
method. If not, this can be logged or template code might be generated. Implementing this scheme
merely comes down to overriding the clauseAdded: and clauseChanged: methods.

5.2.3 Conceptual validation

In this section we evaluate the synchronization framework regarding the characteristics of synchro-
nization as discussed in section 2.5.1. For every characterization we show how the synchronization
framework can be instantiated to accommodate it:

direction of synchronization : we express design as a logic meta program of implementation. As
explained in section 2.6, the logic meta program can then be used for checking (when both
design and implementation exist) and to generate the one from the other (if only one of them
is specified). In order to do this, no specific instantiation is necessary, since it is a direct result
from using a logic meta-programming language to make the design explicit;

action to be taken : when elements are found that are out of sync, there are two possibilities: the
differences can be reported (allowing the user to take action later), or they can be fixed auto-
matically. SOUL supports both the reporting and the action. The reporting is a direct result
of using a logic meta-programming language, since the report is actually formed as the results
of the query one formulates to do the synchronization. Actions have to be implemented by
instantiating the declarative framework, and adding rules that describe the actions. Then the
synchronization tool framework has to be instantiated to invoke the actions at certain moments.
Note that a number of rules exist with built-in actions, namely the checkPossiblyGenerate rules
we saw in sections 4.4.1;

notification time : what notification time is possible depends entirely on the instantiation of the
synchronization tool framework. More specifically, tools can subscribe themselves to receive
notifications of changes to design and implementation. The synchronization tool framework
has to send all these events, so the tools can choose whatever they need. Note however that,
in the current implementation of the synchronization tool framework, we support no proactive
notifications. However, as we explained in section 5.1, this would not be very hard to add;

trigger time : whether direct or delayed triggering is used, depends on the instantiation of the syn-
chronization tool framework. By default, direct synchronization is supported because the tools
using the synchronization tool framework receive notifications for any change to design and
implementation. However, the actions that need to be taken when a change is detected have to
be implemented. Note that typically, for performance reasons, the SOUL incremental solver
will be used in combination with direct synchronization. The tools can also be set to receive
no notifications, and then the queries have to be launched manually to initiate synchronization.
Because the event mechanism is a very general and fine grained one (every change is received),
even combinations are possible;

scope : the scope of rules is global, since they are contained in a global repository and not bound to
certain pieces of the implementation. Local scope therefore needs to be specified in the rules.
For example, queries will typically restrict their search to certain hierarchies of classes;

implementation granularity : by default, the representational predicates use complete parse trees
since we wanted to use fine-grained information. However, the declarative framework can be
instantiated to use other representations that are partial;

5.3. CONCLUSION 75

static/dynamic : the synchronization framework currently uses only static information. We have two
important remarks to make here. First of all, we have experimented with static reasoning on
top of information that was collected dynamically [RDW98]. Of course, this runtime informa-
tion can be combined with the static information, since they complement each other. Second,
because of SOUL’s symbiosis with Smalltalk, Smalltalk objects can be used directly in SOUL.
When both are integrated even further, reasoning about dynamic information will be very easy.
We discuss this in some more detail in section 8.3.2.

By discussing how the synchronization framework can be instantiated to support the different
characterizations, we have also shown that, in general, it supports all the possibilities of synchroniza-
tion. There is one exception: the reasoning is essentially static. Of course, this general discussion still
has to be backed with a concrete validation. This is done in the next two chapters, were we described
our experiments.

5.3 Conclusion

In this chapter we combine the declarative framework introduced in the previous chapter with the
synchronization tool framework. The synchronization tool framework is a Smalltalk application fra-
mework that is used to build applications that need synchronization of design and implementation.
Therefore it implements a mechanism that tools can use to receive notifications of changes to design
and implementation. The combination of the declarative framework and the synchronization tool fra-
mework results in the synchronization framework. We discuss two applications that use the synchro-
nization framework to support co-evolution: one application that logs violations against programming
conventions, and a UML tool that is synchronized with the implementation. Then we evaluate the
synchronization framework and show that it conceptually indeed supports all the characterizations
of synchronization (except the support for dynamic information). In the two following chapters we
perform practical experiments with the synchronization framework. A first series of experiments is
performed on the HotDraw framework and experimentally shows the complete spectrum of synchro-
nization supported by the synchronization framework. It also assesses the practical usability of our
approach. The second series of experiments shows the usability and scalability of the synchronization
by performing several experiments on a large industrial framework.

76 CHAPTER 5. THE SYNCHRONIZATION FRAMEWORK

Chapter 6

Supporting co-evolution

The previous chapter discussed the synchronization framework, and showed conceptually that it in-
deed supports the complete spectrum of synchronization described by the characterizations. However,
we are also interested to assess the practical usability and scalability of the synchronization frame-
work. Therefore we performed two series of experiments, that are described in this chapter and in
the following one. In this chapter we perform a small-scale case study on the well-known HotDraw
framework, a framework for drawing editors. The goal is to show experimentally that the synchro-
nization framework supports the different characterizations, and to assess the practical usability of
our approach. The second series of experiments, that are described in the next chapter, test the us-
ability and scalability of our approach on a large-scale industrial framework used in the television
broadcasting industry.

6.1 Introduction

The claim of this dissertation is that when design is expressed as a logic meta program over imple-
mentation, a framework can be constructed that allows the design to check, generate or constrain the
implementation, and vice versa. The proof of this claim is done by construction, meaning that we
built the synchronization framework, a framework to synchronize design and implementation. As
discussed in section 5.2.3, this framework conceptually supports the complete range of synchroniza-
tion described by the characterizations of synchronization. However, we also want an experimental
proof that the complete spectrum is supported, which also assesses the usability in the real world.
Therefore this chapter performs experiments on HotDraw [Bra92, Joh92, BJ94, Cha94], a framework
for structured drawing editors written in Smalltalk. HotDraw is used to build editors for specialized
two-dimensional drawings such as schematic diagrams, blueprints, music, or program designs. The
elements of these drawings can have constraints between them, they can react to commands from the
user, and they can be animated. The editors can be a complete application, or they can be a small part
of a larger system. We take this case because it is implemented in Smalltalk, fairly well-understood
and documented, and not too large. In the next chapter we perform experiments on a larger, real-world
case.

The red thread in the experiments is the building of a graphical editor for the constraint networks
of the incremental solver. More specifically, we look at how to create an editor application and the
appropriate figures representing constraint variables and relations. We have divided the experiments
into two cases. In the first set of experiments, we show how delayed synchronization (where several
changes are made to design and/or synchronization before being synchronized) is supported in our

78 CHAPTER 6. SUPPORTING CO-EVOLUTION

approach. In the second series of experiments we show how direct synchronization (where changes to
the implementation are directly propagated to the design and vice versa) is supported. We separated
both cases from the beginning since the delayed synchronization can be done using an ordinary logic
meta-programming language while we need the incremental solver to support direct synchronization.
In both experiments, we use the same logic meta programs expressing the design notations used in
previous section, but we store the actual design information differently. As is explained in section 6.6,
both can be unified in one repository.

6.2 General setup of the experiments

Our experiments were performed in VisualWorks/Envy R4.01, on a Macintosh Powerbook G3 running
at 250 Mhz, and with 64 megabytes physical memory. The version of HotDraw was the latest release
for Envy (HotDraw R1.00). We used the latest version of SOUL/Envy (SOUL R1.55), including the
synchronization framework. Since there was no design information available at the beginning of the
experiments, the design repository was initially empty.

It is important to notice that we were not familiar with the HotDraw framework when we started
experimenting with it. Hence, there was not only the issue of expressing part of the documentation
of HotDraw and showing how it could be used by framework users, but there was also the problem
of learning the framework. During the experiments we therefore wore two different hats, and fre-
quently changed them: on the one hand we took the role of the framework developer, documenting
the framework using logic meta programs in an effort to keep the framework documentation and the
framework tied close together. On the other hand we played the role of framework user who tries to
use the framework and the documentation to build an application.

6.3 Supporting delayed synchronization

In the first series of experiments we show how to support a development process where the synchro-
nization of design and implementation is done from time to time. We follow a development scenario
where we familiarize ourselves with the HotDraw framework and then instantiate it to build an editor
for networks for our incremental solver. This shows how design can be extracted from implementa-
tion, how implementation can be generated from design and how design and implementation can be
checked for conformance at any given point in time:

� the first experiment is to use logic meta-programming to better understand the implementation
of HotDraw. This is actually a kind of reverse engineering step, where the existing documen-
tation of HotDraw is used as blueprints of queries that are checked against the source code. It
is thus concerned with generating (extracting) design from implementation. In this experiment
we start out with no design documentation, and completely extract this information from the
implementation using SOUL and the design expressed in the declarative framework;

� then we express design information that is specific to HotDraw. We focus on a particular hier-
archy of composite figures, and on the relationships between the editor (the actual application),
the tools (that create and manipulate figures) and the figures themselves. This step shows how
design information that was extracted in the first experiment is made explicit, so that it can be
used later on. Note that no synchronization is done in these experiments. We just show how we
can instantiate and complement the general rules in the declarative framework with rules that

6.3. SUPPORTING DELAYED SYNCHRONIZATION 79

design implementation

implementation?

Figure 6.1: Extraction of design information from implementation.

express more specific design information. The next two experiments then show how we can
synchronize this updated design information with the implementation again;

� this experiment shows how to synchronize the implementation with the updated design infor-
mation from previous step. It shows a combination of using a query to find inconsistencies
between design and implementation, and an action that automatically generate methods and
classes if they are not implemented;

� then we see how to do conformance checking between design and implementation after changes
have been made to design and implementation. In this experiment we do a conformance check
between the updated design information from the second step and the modified implementation.
In contrast with the previous experiment where a default action is provided that generates parts
of the implementation, this consistency check results in a report that shows where the design
and the implementation deviate.

6.3.1 Extraction of design information

Being a novice regarding the implementation of HotDraw, we started by reading the HotDraw docu-
mentation and papers mentioned on the website. The initial situation is depicted in figure 6.1: we had
the HotDraw implementation, but no explicit design documentation. At the end of the synchroniza-
tion we thus wanted to have a repository containing design documentation. We came quickly to the
conclusion that most documents described a version of HotDraw older than the one we were using.
However, it gave us enough overview of the implementation to get started. One of the first queries we
ran extracted the root classes of HotDraw1. Based on the names of these classes, and on the HotDraw
implementation, we came to the conclusion that three of these were of general interest: DrawingEdi-
tor, Tool and Figure. The Figure hierarchy proved very extensive, so in order to familiarize ourselves
with it we used the UML class diagram rules from section 4.5.3 to extract a simple UML class dia-
gram. These results are stored in the HotDraw design repository (indicated by the second argument to
the predicate, HotDrawDesign):

1We found 18 root classes: Figure, LineAnnotation, DrawingController, TransitionTable, PositionConstraint, ButtonDe-
scription, BoundaryConstraint, TransitionType, ToolStateCommandEditor, TransitionEditor, DrawingEditor, ToolbarCon-
troller, ToolStateModel, EndToolState, ToolStateTransitionModel, FigureAttributes, ToolbarView, Tool

80 CHAPTER 6. SUPPORTING CO-EVOLUTION

F
igure

attributes
bounds
dependents
m

odel
state
displayF

igureO
n:

E
llipseF

igure
H

andle

ow
ner

toolS
tate

P
olylineF

igure

points

T
extF

igure

paragraph
selection

C
achedF

igure

cache
fillC

ache

C
anvasF

igure

pixm
ap

w
idth

C
om

positeF
igure

com
ponents

R
ectangleF

igure
V

iew
A

dapterF
igure

com
ponent

A
rcF

igure

startA
ngle

stopA
ngle

T
oolS

tateF
igure

T
rackH

andle

m
oveB

lock

IndexedT
rackH

andle

index

T
entativeP

ositionH
andle

index

B
ezierF

igure

bezier

LineF
igure

annotations

S
plineF

igure

spline

S
tateT

ransitionF
igure

Im
ageF

igure
N

etw
orkN

ode

nam
e

O
bjectF

igure

inE
dges

object
outE

dges

D
raw

ing

controller
handles
selections

T
oolS

tateM
achineD

raw
ing

A
nim

atedD
raw

ing

anim
ationP

rocess

M
ovingD

raw
ing

N
etw

orkD
raw

ing

edgeW
eights

forces
nodes

O
bjectW

orldD
raw

ing

R
oundedR

ectangleF
igure

inset

M
ovingF

igure

velocity

P
E

R
T

E
ventF

igure

outgoing

V
isualP

art

container

A
rithm

eticV
alue

points
#m

any

V
isualC

om
ponent

displayO
n:

preferredB
ounds

annotations
#m

any

selections
#m

any

E
ndT

oolS
tate

com
m

and
nam

e
toolS

tate1

C
om

posedT
ext

com
positionH

eight
com

positionW
idth

fitW
idth

fontP
olicy

lineT
able

text
w

ordW
rap

paragraph1

T
extLines

textS
tyle

height
lineA

t:
num

berO
fLines

textA
t:

w
idth

cache1

U
nm

appableS
urface

displayO
n:at:

pixm
ap1

com
ponents

#m
any

com
ponent1

G
eom

etric

com
puteB

ounds
displayF

illedO
n:

displayS
trokedO

n:
scaledB

y:
translatedB

y:

bezier1
spline1

O
bjectnam

e
#m

any

inE
dges

#m
any

C
ontext

receiver
sender
stack
stackp
findT

em
p:do:elseD

o:
hom

e
hom

eR
eceiver

selector
sourceC

ode

anim
ationP

rocess1

nodes
#m

any

P
oint

xy

inset1

velocity1

outgoing
#m

any

Figure 6.2: The extracted UML class diagram for class Figure.

6.3. SUPPORTING DELAYED SYNCHRONIZATION 81

predicate description
composite compositePattern([Figure],[LineFigure])

compositePattern([Figure], [Drawing])
compositePattern([Figure], [CompositeFigure])

visitor none
singleton none
bridge none
factory method base level: 41

meta level: 3
accessor methods base level: 56

meta level: 1

Table 6.1: Extracting design from HotDraw

Figure 6.3: The standard HotDraw editor opened

Query initializeDrawing(),
assertUMLDiagram([Figure], [HotDrawDesign])

The extracted classifiers and generalization and association relationships are shown in figure 6.2.
Besides the extraction of this UML information, we also ran queries to check what accessor methods
were used where, and if we could detect design patterns. The results are shown in table 6.1. In this
extraction phase we used all the SOUL development tools that were introduced in section 3.2.6.

This step shows how a lot of design documentation can be extracted from the implementation,
helping a developer unfamiliar with a certain implementation to gain a better insight. This does not
eliminate the need to read documentation, or to browse the source code manually to look at certain
parts of the implementation. It merely complements it by providing advanced development tools
that allow to browse the system on different levels of abstraction. Next we see how this extracted
information can then be refined towards more specific documentation.

82 CHAPTER 6. SUPPORTING CO-EVOLUTION

6.3.2 Complementing the extracted design with specific information

In the first experiment in section 6.3.1 we showed how to extract design from implementation. In
this section we show how to complement this design with more specific HotDraw design information
regarding editors and composite figures. Hence, in this experiment we start with the synchronized
design and implementation from the first experiment, and complement the design information with
more specific information. It is important to note that in this step we do not yet synchronize design
and implementation. This will be done in the next two sections, 6.3.3 and 6.3.4.

Screenshot 6.3 shows a standard HotDraw editor where we have drawn some standard figures.
Note the label of the window (that says Drawing Editor), and the toolbar. The toolbar displays a
number of buttons that can be used to draw figures in the drawing area, to select figures (which
displays their handles so they can be manipulated), and to delete figures. Not shown on the picture is
a context sensitive menu that is associated with each figure, and allows us to set some properties (such
as fill colours and line widths). Of course, specific figures can have specific menus by overriding the
menuAt: method.

The implementation of the editor uses three main components: the DrawingEditor, the Figure
and the Tool. From browsing the code (using a combination from the standard Smalltalk development
tools and the SOUL development tools), we found some very important, yet undocumented properties
and relationships between these components:

1. The interaction of the user with the editor is completely described using state diagrams. Class
Tool uses these state diagrams to decide what action is performed when a user clicks in a draw-
ing editor. Therefore, each tool needs to be added to this state diagram. This is done by adding
a class method to class Tool that describes the state changes for this tool, and what figures it
creates. The name of that state has to be used in the toolNames method in the editor;

2. the label displayed by the window is determined by the windowName method on DrawingEdi-
tor. Subclasses can override this to display other names;

3. the tools that are shown by the editor are enumerated in a method called toolNames. This
method lists a number of tool states. Hence, every one of the tool states mentioned should be
available in the state diagram offered by the class Tool;

4. every tool offered by the editor has a button on the toolbar. Therefore the editor has to offer
icons to use as buttons for every tool name mentioned in the toolNames method. These icons
are returned by methods that reside on the class side of the editor class. However, there has to
be some mapping between the name of the tool, and the name of the method used to provide
the icon. This mapping is actually a naming convention implemented in a method called icon-
NameFor:. Hence the toolbar is constructed by enumerating all the tool names provided by the
toolNames method, and retrieving the icon for this tool using the naming convention.

Note that these dependencies are between three classes that are hierarchically unrelated, and are
implemented using naming conventions, hardcoded references and Smalltalk meta-programming tech-
niques. We only found these dependencies by using the SOUL tools and regular Smalltalk develop-
ment browsers, as they were undocumented and scattered in different locations in the source code.
Therefore we decided to make these conventions explicit as logic meta programs. The predicates we
implemented are shown in table 6.2, and are described in detail in the rest of this section. We then
used these predicates to generate code, for conformance checking and in a constraint network to guide
development.

6.3. SUPPORTING DELAYED SYNCHRONIZATION 83

predicate description
hdEditorClass an editor belongs to the DrawingEditor hierarchy
hdToolNamesMethod has a toolNames method
hdIconMethod has icons for each tool
hdToolMethod extends the state diagrams on class Tool
hdEditor relates the editor and its tools and figures

Table 6.2: The predicates dealing with editors, tools and figures

hdEditorClass

The first predicate we would like is one to help us with constructing editors. As outlined in the above
explanation about editors and tools, there are several classes and methods we have to generate in
order to accomplish this. We have spread this code over several rules. First of all we implement the
hdEditorClass predicate that describes what an editor class looks like. Actually, this is a very simple
predicate, since it only needs to check that the class belongs to the DrawingEditor hierarchy:

Rule hdEditorClass(?name, ?editor) if
hierarchy([DrawingEditor], ?editor),
className(?editor, ?name),

This predicate can now be used to detect inconsistencies between design and implementation, and
to extract information from the implementation. For example, when we have information that some
class is an editor class, we can use the hdEditorClass to confirm or reject this. The name of the class
is bound to ?name when the existence of the editor in the implementation is confirmed:

Query hdEditorClass(?name, [FooEditor])

By replacing FooEditor with another variable, we can use the same hdEditorClass predicate to
extract information about editors from the code. However, note that this predicate does not try to
correct inconsistencies. For example, if there is no FooEditor in the implementation, the query just
fails. Then it is again up to the user to determine the action to take to solve the inconsistency. In
terms of the classification of synchronization as given in section 2.5.1, this comes down to the report
action. Using some of the other predefined predicates in SOUL, we can also implement a version
of the hdEditorClass rule that tries to automatically solve inconsistencies. We call this predicate
cpgEditorClass, where the acronym cpg stands for checkPossiblyGenerate (which is used throughout
our predicates):

Rule cpgEditorClass(?name, ?editor) if
cpgClass(?name, [DrawingEditor]),
className(?editor, ?name),

The cpgEditorClass predicate makes sure that there is an editor class with a certain ?name (using
the cpgClass predicate). If no such class exists, it is generated as a direct subclass of DrawingEditor.
If it already exists in the hierarchy of DrawingEditor, nothing is generated and the rule succeeds. If it
exists, but is not a subclass of DrawingEditor, the generation fails.

84 CHAPTER 6. SUPPORTING CO-EVOLUTION

DrawingEditor>>toolNames
”Return the list of names for the tools.
’nil’ represents a space between tools in the icon bar.”

ˆ#(’Selection Tool’
’Hand Tool’
nil
’Delete Tool’
’Bring To Front Tool’
’Send To Back Tool’
nil
’Polyline Tool’
’Bezier Tool’
’Spline Tool’
’Rectangle Tool’
’Rounded Rectangle Tool’
’Ellipse Tool’
’Arc Tool’
’Image Tool’
’Text Figure Creation Tool’)

HotPaintEditor>>toolNames
”Return the list of names for the tools.”

ˆsuper toolNames
, #(nil

’Hot Paint Canvas Tool’
’Hot Paint Paintbrush Tool’
’Hot Paint Mask Tool’
’Hot Paint Image Tool’
’Hot Paint Erase Tool’)

Figure 6.4: The toolNames method for two classes: DrawingEditor and HotPaintEditor

hdToolNamesMethod

The second predicate we describe is concerned with the tools offered by the editor. As said before,
the editor should override a method called toolNames to describe the tools it uses. There exist two
typical implementations of this method. The first just returns an array with the names of the tools
this editor offers. For example, the toolNames method of DrawingEditor shown in figure 6.4 lists
the default tools that are used by all HotDraw editors. The second implementation strategy that is
typically offered by specific editors is to get the tools used by their superclass, and append some
specific tools to it. The second method of figure 6.4 shows the implementation of the toolNames
method for class HotPaintEditor, one of the HotDraw examples. The following hdToolNamesMethod
predicate describes the general structure of a toolNames method for a certain editor. Note that we have
added a ?kind variable, that can be used to differentiate different forms of toolNames when needed.
The hdToolNamesMethod predicate first of all states that ?editor should be an editor class. Therefore

6.3. SUPPORTING DELAYED SYNCHRONIZATION 85

we use the predicate introduced above, without supplying a particular name for the editor. Then we
say that the method ?m should be a method of class ?editor, with the name toolNames. The statements
of the method are described by an auxiliary predicate, hdToolNamesStatements. We provide two facts
that implement this predicate, corresponding to the two ways of implementing the toolNames method
described above. This could of course be extended to include other forms as well.

Rule hdToolNamesMethod(?editor, ?m, ?toolNamesList, ?kind) if
editorClass(, ?editor),
classImplementsMethodNames(?editor, [#toolNames], ?m),
methodArguments(?m, <>),
methodTemporaries(?m, <>),
hdToolNamesStatements(?statements, ?toolNamesArray, ?kind),
array2List(?toolNamesArray, ?toolNamesList).

Rule hdToolNamesMethod(?editor, ?m, ?toolNamesList) if
hdToolNamesMethod(?editor, ?m, ?toolNamesList,).

Fact hdToolNamesStatements(<return(literal(?toolsArray))>, ?toolsArray, [#enumeration]).

Fact hdToolNamesStatements(<return(send(send(variable([#super]), [#toolNames], <>),
[#,],
literal(?toolsArray)))>,

?toolsArray,
[#superAppendEnumeration])

The hdToolNamesMethod predicate describes the form of the toolNames method of a certain edi-
tor, if the method exists. This again allows to extract the tools from a certain editor, to find all editors
using a particular tool or to check whether a particular editor uses a particular tool. However, the
results are just reported as results from a query, and when an inconsistency is found, no attempt is
made to solve it. Therefore we implement another predicate that generates an appropriate toolNames
method in the case it does not exist, or that rewrites an existing toolNames method when one does
exist but lacks certain tools we would like to offer in the editor (note that we could also have split the
second rule in two):

Rule cpgToolNamesMethod(?editor, ?toolNamesList) if
hdToolNamesMethod(?editor, ?m, ?toolNamesList,).

Rule cpgToolNamesMethod(?editor, ?toolNamesList) if
not(hdToolNamesMethod(?editor, ?m, , ?k)),
xor(hdToolNamesStatements(, ?existingToolNames, ?kind),

and(equals(?existingToolNames,<>),
equals(?kind, [#superAppendEnumeration]))),

difference(?existingToolNames, ?toolNamesList, ?newToolNames),
append(?existingToolNames, ?newToolNames, ?newNamesList),
hdToolNamesStatements(?newStats, ?newNamesList, ?kind),
generateMethod(?editor, [#toolNames], <>, <>, ?newStats)

Using the hdToolNamesMethod, we also implemented a hdToolNameMethod predicate that relates
an editor and each of its tools separately instead of the editors and the list of all its tools.

86 CHAPTER 6. SUPPORTING CO-EVOLUTION

iconNameFor: aString

j iconName j
aString isNil ifTrue: [ˆnil].
iconName := aString select: [:each j each isAlphaNumeric].
iconName := iconName copyFrom: 1 to: (iconName size - 4 max: 1).
iconName at: 1 put: iconName first asLowercase.
ˆ(iconName , ’Icon’) asSymbol

Figure 6.5: The iconNameFor: method on DrawingEditor, implementing the naming con-
vention to get the icon for a tool

hdIconMethods

For every tool enumerated in the toolNames method, there should be a corresponding icon that is used
to build the toolbar. The DrawingEditor implements a default naming convention, that determines
the selector to use for a given toolName. This naming convention is implemented in the method
iconNameFor:, for which the code is given in figure 6.5. When this method is called, aString is bound
to a string containing the name of the tool. When this string is not nil, its alphanumeric characters
are used, the last four characters are chopped of, and the first character is ensured to be a lowercase
character. At last, the string ‘Icon’ is appended. For example, for the tool called ‘Selection Tool’,
this yields the string selectionIcon, while ‘Rounded Rectangle Tool’ yields ‘roundedRectangleIcon’.
The resulting strings are used to retrieve the icons for these tools. The implementation of this method
is interesting, because it reveals another naming convention: the last four characters are chopped of
because every toolname ends on ‘Tool’. This naming can also be made explicit by providing a separate
predicate for it, or adding some lines to the hdToolNamesMethod predicate explained in previous the
section.

In short, every toolname should have a corresponding class method that returns its icon. The
hdIconMethod predicate makes this relation explicit. For a given editor, it describes that a toolName
should have a corresponding method on the class side. It uses an auxiliary predicate, toolIconName,
that uses a smalltalk term to invoke the iconNameFor: method of the supplied editor to get the
correct naming convention. Note that we could also have implemented this directly in SOUL, using
the string handling predicates.

Rule hdIconMethod(?editor, ?toolName) if
metaClass(?editor, ?editorClass),
toolIconName(?editor, ?toolName, ?toolIconSelector),
classImplements(?editorClass, ?toolIconSelector).

Rule toolIconName(?editor, ?toolName, ?toolIconName) if
generate(?toolIconName,

[(?editor new iconNameFor: ?toolName) asStream])

As in the previous sections, we also added a predicate cpgHotDrawIconMethod, that generates
the necessary method to provide an icon in the case where it is absent. This is again an example of

6.3. SUPPORTING DELAYED SYNCHRONIZATION 87

a predefined action we built into the predicate, and that decides to generate the implementation in
the case where it is missing. The method that has to return this icon uses two auxiliary methods, that
provide the image and the mask to use. In the predicate the code is provided by the auxiliary predicates
toolIconImageCode and toolIconMaskCode. Since these predicates essentially contain Smalltalk code
that just return textual descriptions of the default icons, we do not show their implementation. The
cpgIconMethod just uses these predicates to get the code, and generates the appropriate methods when
needed:

Rule cpgHotDrawIconMethod(?editor, ?toolName) if
hotDrawIconMethod(?editor, ?toolName).

Rule cpgIconMethod(?editor, ?toolName) if
metaClass(?editor, ?editorClass),
not(hotDrawIconMethod(?editor, ?toolName)),
toolIconName(?editor, ?toolName, ?toolIconSelector),
toolIconImageCode(?toolIconSelector, ?imageSelector, ?imageCode),
cpgMethodInProtocol(?imageCode, ?editorClass, [#resources]),
toolIconMaskCode(?toolIconSelector, ?maskSelector, ?maskCode),
cpgMethodInProtocol(?maskCode, ?editorClass, [#resources]),
toolIconSelectorCode(?toolIconSelector, ?imageSelector, ?maskSelector, ?iconSelectorCode),
cpgMethodInProtocol(?iconSelectorCode, ?editorClass, [#resources])

While the hdIconMethod and cpgIconMethod predicates define the relationships between one tool-
Name and its icons, we also added two predicates that do this for a list of toolNames (hdIconMethods
and cpgIconMethods). The implementation simply enumerates all elements in the list and uses the
single version predicates.

hdToolMethod

Previous sections describe predicates that all dealt with just the class or methods on the editor itself.
Now we describe the methods on the Tool class that adds the necessary states to the general state
diagram governing the behaviour of the editors. Like we said before, the Tool class uses a state
diagram to implement the interaction between the user and the editor. Therefore, each tool offered by
the editor has to be added to this state diagram. That way, when the user selects a tool in the buttonbar,
and then clicks on the drawing area, the figure defined by the tool can be created.

When building the state diagram defined by class Tool, all methods from the protocol tool states
of Tool’s metaclass are enumerated. Every method in this protocol adds certain states and transitions,
that are used by Tool whenever the mouse is moved or clicked within the HotDraw editor. Therefore,
every toolname listed in the toolNames method should occur in at least one method in the tool states.
Also important is that these methods can be used to associate toolNames and figures, since the tran-
sitions are responsible for creating figures. We have expressed this information in the hdToolMethod
predicate. This predicate associates a certain toolName with its figure and its initialization method
on the Tool class. Therefore it enumerates the methods in the tool states protocol. For each of these
methods, it checks which figures are referenced by looking at the referenced classes and only keeping
the ones that actually belong to the Figure hierarchy. Then it enumerates the tool states, and keeps
the ones that end on ‘Tool’. Like we said before, this naming convention of postfixing tools is used
throughout HotDraw, and can here be put to good use. As with the previous predicates, we again

88 CHAPTER 6. SUPPORTING CO-EVOLUTION

provide a cpgToolMethod predicate that generates a default initialization method adding states to cre-
ate and select the figure. The name of this method is constructed by prefixing the name of the tool
(without spaces) with the string ‘initialize’. The rest of the code is then given by an auxiliary predicate
toolInitializationCode that we is not shown here because it contains just a Smalltalk description of the
states and transitions that are added for the figure created by the tool.

Rule hdToolMethod(?toolName, ?figure, ?initMethod) if
methodInProtocol([Tool class],[#‘tool states’],?initMethod),
classesUsed(?initMethod, ?classList),
member(?figure, ?classList),
hierarchy([Figure], ?figure),
isSendTo(?initMethod,

send(variable([#Tool]),[#states],<>),
[#at:put:],
<literal(?toolName), >),

patternMatch(?toolName, postfix([‘Tool’]))

Rule cpgToolMethod(?toolName, ?figure, ?initMethod) if
cpgFigure(?figure),
toolInitializationCode(?toolName, ?figure, ?code),
generateMethodInProtocol(?code, [Tool class], [#‘tool states’])

The hdToolMethod relates three variables: the tool used, the figure and the tool where the states
are added. We have a very important remark to make here, that may not be visible because it is
very natural: this rule actually configures several classes from completely different hierarchies to
work together. This is a major difference with some of the other rules we have seen and that only
express local properties of methods or classes. While this rule does not much different, it describes
the interplay between some components in the HotDraw framework.

Note that we also added hdToolMethods and cpgToolMethods that handle lists of toolNames and
figures.

When we used the hdToolMethod predicate to see which figures are initialized by which methods,
we noticed that some figures were missing. This means that there exist HotDraw figures that are not
created by tools in editors. We can divide these figures in some groups.

� first of all we have the class Figure itself. This is a template class that is not meant to be created
by tools, so this is no problem;

� next we found CachedFigure, ViewAdapterFigure, ToolStateFigure and StateTransitionFigure.
These classes were used in examples or to edit the state diagrams, but have no associated tools
that allow them to be drawn in an editor;

� more interesting was that there is no tool to create a LineFigure. The reason is that instances of
LineFigure are created directly when a user connects two figures. Instead, one would expect a
state transition that defines that when a user clicks the connection point of a figure, and moves
the mouse to another figure, a new LineFigure is created connecting the two figures;

� the same holds for the three figures that represent handles on figures (TrackHandle, Indexed-
TrackHandle and TentativePositionHandle). These handles are created and returned by the
figures when they are selected in a drawing.

6.3. SUPPORTING DELAYED SYNCHRONIZATION 89

predicate description
hdcClass a composite figure is in the hierarchy below CompositeFigure
hdcConstraintsVar has an instance variable to hold the constraints
hdcInstanceCreation has a createAt: constructor
hdcInitialization has a initializeAt: method
hdcCopying has a postCopy method
hdcSetBoundsTo has a setBoundsTo: method
hdcFigure combination of all the previous predicates

Table 6.3: The predicates dealing with CompositeFigures

� grouping of figures is accomplished through the menu, and not through a tool, so Composite-
Figure is also one of those classes for which there is no tool.

This is actually an example to show that, by making the design information explicit and using
it to check the source code, we can make quality assessments. For example, in this case it shows
places where refactoring of code is probably needed, or more explanations so that we can understand
why these classes form exceptions and are not created by tools. We will see more examples when
we express a specific set of programming conventions in the case study in the next chapter, and do a
conformance check with the implementation.

hdEditor

We have now all predicates to define what a HotDraw editor class looks like, and to help us check and
generate editors. Therefore we group the predicates from previous sections to define the hdEditor and
the cpgEditor predicates:

Rule hdEditor(?name, ?editor, ?toolNamesList, ?figureList) if
hdEditorClass(?name, ?editor),
hdToolNamesMethod(?editor, ?m, ?toolNamesList, ?kind),
hdIconMethods(?editor, ?toolNamesList),
hdToolMethods(?toolNamesList, ?figureList, ?initMethod),

Rule cpgEditor(?name, ?editor, ?toolNamesList, ?figureList) if
cpgEditorClass(?name, ?editor),
cpgToolNamesMethod(?editor, ?m, ?toolNamesList, ?kind),
cpgIconMethods(?editor, ?toolNamesList),
cpgToolMethods(?toolNamesList, ?figureList, ?initMethod),

The predicates dealing with composite figures

Besides the information that deals with the interplay between the Tool class, the editor and the figure,
we also expressed information regarding composite figures. The implementation of these predicates
is not discussed, but they are listed in table 6.3.

90 CHAPTER 6. SUPPORTING CO-EVOLUTION

updated
design

implementation

implementationdesign

Figure 6.6: Generating missing parts of the implementation from the design.

Figure 6.7: Screenshot of a freshly generated editor, where we created a freshly generated
ConstraintVariableFigure

6.3. SUPPORTING DELAYED SYNCHRONIZATION 91

6.3.3 Generating missing implementation parts from the design

In the previous section we made HotDraw specific design information explicit. This means that we
have a declarative framework that is extended to express some specific design information. This
situation is depicted in figure 6.6. More specifically, the HotDraw specific design documentation
describes that for each composite figure and editor the implementation has to implement classes with
certain methods. In this experiment we show how this information is used to check the conformance
between design and implementation. Moreover we do not only report the inconsistencies, but also
implement an action that automatically generates missing implementation parts: whenever the design
information specifies that a class or a method should exist, but it is not found in the implementation, it
is generated. If it already exists, nothing happens. This actually means that this action leaves existing
implementations as is, and does not override them.

For example, the following query expresses the design information that there is a composite fig-
ure called ConstraintVariableFigure, that has two component figures, varName and ellipse. It also
specifies that there is an editor, called ConstraintEditor, with a tool that can draw ConstraintVariable-
Figures. In this experiment we are only interested in synchronizing this piece of design information
with the implementation, hence we invoke the following query, that uses the design information ex-
pressed in section 6.3.2:

Query cpgCompositeFigure([#ConstraintVariableFigure],
<[#varName], [#ellipse]>),

cpgEditor([#ConstraintEditor],
?editor,
<[‘ConstraintVariableFigure Tool’]>,
<[‘ConstraintVariableFigure’]>)

In this experiment, neither the composite figure class, nor the editor class existed yet. Hence,
they were completely generated, including their methods and the appropriate methods on the class
Tool. Since no types were specified for the component figures, TextFigures containing their name are
generated. Hence, the result of this synchronization example is that the implementation was made
consistent with the design as specified in the query by generating it using the information contained in
the declarative framework. The generated editor is showed in screenshot 6.7, where we have opened
our new ConstraintEditor and created a constraint variable figure. Note again that, since we did not
specify more specific information about the figures that need to be created, the names of the variables
were used. Hence we see two TextFigures that use constraints to be positioned above one another.

We also want to stress that in the case the classes or methods specified in the design would have
existed, they would not have been overridden. Hence, when changes are made to the implementation
(for example to actually draw an ellipse figure around the name of the variable), and we re-synchronize
design and implementation, these manual changes will not be lost. Of course, other actions can
be implemented with other default behaviour, such as always regenerating the implementation, or
prompting the user what to do.

6.3.4 Checking implementation and design

In section 6.3.1 we have shown how to use the synchronization framework to extract design from
implementation. In section 6.3.3 we showed how to provide an action that automatically generates
classes and methods when they are specified in the design but do not exist in the implementation.

92 CHAPTER 6. SUPPORTING CO-EVOLUTION

updated
design

updated
implementation

implementationdesign

Figure 6.8: Two-way conformance check between design and implementation to synchronize
them after both have been changed.

In this section we do a full conformance check between design and implementation that reports on
any piece of design information that is not implemented, and any piece of implementation for which
design information should be present, but is not. Hence, the situation of this synchronization is shown
in figure 6.8: design and implementation were changed, and we are interested to see where they differ.

We have already discussed the updated design repository and mapping in detail in previous sec-
tions. In this section we manually make additions to the implementation, and then we synchronize
this with the design information. The changes to the implementation were concerned with changing
the implementation of ConstraintVariableFigure to draw an ellipsis around the variable name. More
specifically, we changed the generated initialize method to initialize the second figure to be an el-
lipse. Then we changed the setupConstraints method (which was also generated as a result from the
synchronization done in section 6.3.3), and changed the constraint that put the two text figures below
each other to a constraint that ensures that the ellipse is centred around the text with the name of the
constraint variable.

We now want to check whether the implementation and the design are still consistent after these
changes to the implementation. Such conformance check actually consists of two parts, that can
be combined. The first check is to see whether the current design information still holds for the
implementation. The second check is to see whether the new implementation yields a new or changed
design.

Checking whether the design information is still valid for the new implementation is relatively
simple. Since all the design information is contained in the form of facts in a logic repository, we
just have to fire each of these facts as a query, which checks that fact against the implementation. We
are interested in all queries that return false, since this produces the pieces of design information that
became invalid. This is shown in the following query, that first retrieves all the clauses of our design
repository (using the repositoryClause predicate) and then checks all of them against the current
implementation (by calling them as queries using the call predicate). The failed ones are enumerated
in a list, which is the result of this query.

Query findall(?failedInfo,
and(repositoryClause(?failedInfo, [HotDrawDesign]),

not(call(?failedInfo))),
?failedList)

6.4. SUPPORTING DIRECT SYNCHRONIZATION 93

The result of this query is a list with the failed clauses. This list can then be processed manually
(checking why a piece of design information does not hold anymore, using all facilities offered by the
development environment and our tools), could be used in a browser that displays it more appropri-
ately, or could form the foundation for a sophisticated tool that suggests solutions. Note that in the
query we gave the complete design repository is rechecked. By slightly changing this query, we can
recheck only certain parts of the repository (for example, to determine whether some specific design
patterns still holds) to speed up the check.

The second check looks whether the new implementation also adds new design information. The
general approach to do this is to regenerate (parts of) the design, and check whether they are contained
in the repository. For example, we can extract the information regarding composite design patterns,
and find all possible new instances:

Query findall(newCompositePattern(?comp, ?composite, ?sel),
and(compositePattern(?comp, ?composite, ?sel),

not(repositoryClause(compositePattern(?comp, ?composite, ?sel),
[HotDrawDesign]))),

?newComposites)

This query again returns a list containing all possible new composite design patterns. These can
then be checked by the user and asserted in the design repository, or fed into a browser or a tool.
Note that regenerating the complete design information can take rather long, and is therefore best
performed in batch overnight. However, normally we would only extract new design information
for the classes or methods we just implemented. Here we wanted to show how to do a complete
synchronization check between the design and implementation. Hence this experiment shows that the
design information cannot only be used as explicit documentation and to generate specific parts of the
implementation, but also to check whether the implementation is still consistent with the design (and
vice versa), and to show which parts differ.

6.4 Supporting direct synchronization

In this second series of experiments, we investigate direct synchronization, where changes of imple-
mentation or design are directly propagated to each other. Conceptually, supporting direct synchro-
nization does not differ much from supporting delayed synchronization. The checks we described in
previous sections just have to be done whenever something changes. For example, when we change
the implementation of a method, a full consistency check between the design and the new implemen-
tation should be performed. It is clear that this approach has too much overhead to work in practice.
What we need is a way of determining the impact of a small change (in this case the change of one
method) in such a way that only the necessary information is rechecked or generated. This, in turn,
could then be propagated further if necessary. So, while conceptually there might be no real difference
in supporting direct synchronization, we need a practical system of determining the impact of small
changes.

Therefore we use the incremental solver introduced in section 3.3. First of all, we use the synchro-
nization tool framework to add special constraints that are dependent on changes in the system. Hence
they receive notifications on system changes, and can propagate these changes, firing queries on the
way to determine the impact. Hence the setup of these experiments is different from the setup for the

94 CHAPTER 6. SUPPORTING CO-EVOLUTION

[Figure]
hierarchy

classImplementsMethodNamed

superSends

?c

?m

<[#initialize]>

1

2

1

2

1

2

Figure 6.9: Incremental solving example

first series of experiments. In these experiments, the logic repository containing the design is replaced
with a constraint network, so that changes can be propagated locally. We will first describe the ad-
dition to the incremental solver that allows constraints to be dependent on implementation changes.
Then we describe the experiments in supporting the development process directly, giving feedback
when a developer changes design or implementation.

Making the incremental solver dependent on system changes

When we introduced the incremental solver in section 3.3, we used a small example constraint net-
work that expresses three relations between two variables. We have depicted the constraint network
again in figure 6.9. When explaining the basic workings of the incremental solver, we already showed
that the domains of the variables can be changed by the addition of relations. Since in this experiment
the incremental solver has to react on changes to the implementation. Therefore we use the synchro-
nization tool framework to register some constraints to receive implementation changes. Once they
are registered for such changes, they receive notifications on additions, removals and changes in the
implementation.

To show this on a concrete example, we create the same constraint network that we used before,
but now we let the classImplementsMethodNamed constraint receive notifications of method changes.
Therefore, every time a method changes in the implementation, this constraint is triggered and can
take appropriate action. Because of the definition of the constraint, this consist of checking that,
whenever the method is in the Figure hierarchy, and it is an initialize method, it has to use a super
send. All other methods, or initialize methods in other classes, should not trigger violations. To create
this network, we evaluate the following Smalltalk statement:

SOULIncrementalSolver new
name: ‘Dependent Network Example’;
add: ‘hierarchy([Figure], ?c)’;
add: ‘classImplementsMethodNamed(?c, [#initialize], ?m)’ method: #m;
add: ‘superSends(?m, <[#initialize]>)’

These statements create a new incremental solver and, one by one, add the relations. The only
difference is that the classImplementsMethodNamed constraint receives all changes in methods. We
also indicate that the variable ?m holds the methods.

6.4. SUPPORTING DIRECT SYNCHRONIZATION 95

At this moment, in our example of HotDraw, 10 subclasses of Figure implement a method initial-
ize, and all of these methods do a super send. Suppose we now implement a method initialize on class
ConstraintVariableFigure (the newly implemented class from the first series of examples):

initialize

super initialize.
self initInstVars.

When we accept this method, a changed message is triggered that indicates that a new method
initialize was added to a class named ConstraintVariableFigure. This notification is intercepted by the
classImplementsMethodNamed constraint. Because the change message indicates that it is a method
addition, and because it knows which method was added in which class, and because we indicated the
variable ?m to be the method variable, this constraint tries to add this new result to the domain for ?m.
Therefore, it finds the other relations that use variable ?m. In our example, there is only the superSends
constraint. This constraint checks whether the newly accepted method indeed does a super send. Since
this is the case, it then checks whether it is also a valid solution for classImplementsMethodNamed
constraint, and if so, whether this changes the domain for variable ?c. Therefore it constructs and
solves a query, filling in the method body of the newly added method:

Query classImplementsMethodNamed([ConstraintVariableFigure],
method([ConstraintVariableFigure],

[#initialize],
arguments(<>),
temporaries(<>),
statements(<send(variable([#super]),[#initialize],<>),

send(variable([#self]),[#initInstVars],<>)>))

The result of this query gives us possible new values for the domain of ?c, in this case the class
ConstraintVariableFigure. This new value is checked against the current domain of class ?c. Because
it does not yet exist in this domain, it is added. Since there is another constraint that also uses variable
?c, this constraint is checked too. Because class ConstraintVariableFigure is indeed a subclass of
class Figure, it is also consistent with that constraint. Since there are no more relations or variables to
check, the process stops. At the end of this change, all relations have one extra solution in their result.
Changes or removals of methods (or classes) are handled analogously, growing or shrinking solutions
of relations, and propagating the changes to dependent relations (that can in their turn grow or shrink
their solutions, and propagate the changes further along).

6.4.1 Guiding development

Now that we have discussed the principle of using the incremental solver, it is time to put it to good
use. Like we said before, we now want to support the development process directly, giving feedback
when a developer changes design or implementation.

96 CHAPTER 6. SUPPORTING CO-EVOLUTION

[Figure]

?figure

?compositeFigure

?leafFigure

?toolInitMethod

[Tool class]

?editor

[DrawingEditor]

equals

composite-
Pattern

cpgInstanceCreation

cpgConstraintsVar

className

?compositeName

cpgCopying

cpgSetBoundsTo

figureUsed

hierarchy

hierarchy

methodInProtocol

cpgToolNameMethod

?toolName

cpgToolMethod

cpgToolMethod

1

2

1

2

2

1

1

2

1 2

1

2

2

1

2

1

2

1

2

1

1

2
cpgIconMethod

Figure 6.10: Constraint network to support the direct synchronization experiments

The constraint network we use for these experiments expresses the information obtained in the
first series of experiments. It is depicted in figure 6.10, and is created by the following Smalltalk
expression that, one by one, adds the relations to the network:

SOULIncrementalSolver new
name: ’HotDraw Support Network’;
add: ‘equals(?figure, [Figure])’;
add: ‘compositePattern(?figure, ?compositeFigure)’ class: #compositeFigure;
add: ‘className(?compositeFigure, ?compositeName)’;

add: ‘cpgInstanceCreation(?compositeFigure)’;
add: ‘cpgConstraintsVar(?compositeFigure)’;
add: ‘cpgCopying(?compositeFigure)’;
add: ‘cpgSetBoundsTo(?compositeFigure)’;
add: ‘figureUsed(?compositeFigure, ?leafFigure)’;
add: ‘hierarchy(?figure, ?leafFigure)’;

add: ‘hierarchy([DrawingEditor], ?editor)’ class: #editor;
add: ‘methodInProtocol([Tool class], [#”tool states”], ?toolInitMethod)’ method: #toolInitMethod;
add: ‘cpgToolNameMethod(?editor, ?toolName)’;
add: ‘cpgToolMethod(?toolName, , ?toolInitMethod)’;
add: ‘cpgToolMethod(, ?compositeFigure, ?toolInitMethod)’

By creating the constraint network, three important things happen:

1. while building the network, we find values for the variables in the relations. All this information
is not stored in one repository under the form of facts (as was the case in the first series of

6.4. SUPPORTING DIRECT SYNCHRONIZATION 97

experiments), but is instead stored in a distributed fashion (since the solver keeps the results
locally for each constraint);

2. changes of the implementation trigger the network, which then determine the impact of these
changes, and propagates them if needed. This propagation results in updating the design infor-
mation wherever necessary, possibly checking or deriving additional information;

3. we can change design information by adding or removing results of relations. These changes
are again propagated, and checked against the implementation and other design relations.

In the first series of experiments we created a composite figure to show constraint variables. In
this experiment we create the ConstraintFigure figure to display the relations between those constraint
variables. We start by making a change to the design: adding a new solution to the className con-
straint. Of course, there exists no class with that name in the implementation yet. Because of the
definition of this constraint, it notifies us that the class does not exist, and fails2. As a result, we know
that the class does not yet exist, and that we have to add it manually.

So next we open a standard development tool, and create a new subclass of the class Composite-
Figure, called ConstraintFigure. Because this is a change to the implementation, the relations that are
dependent of implementation changes are notified. Each of these relations checks whether this change
is of interest by invoking a query. If this query fails, the change is not of interest. If the query does
not fail, the change is propagated. In our example, only one constraint is interested in the change:
the compositePattern constraint. The change is propagated, and so the relations on the ?composite-
Figure variable are checked one by one, to see if this new class conforms to them. Several of these
relations automatically generate code (more specifically, the ones starting with cpg, as explained in
section 4.4.1). The figureUsed constraint extracts the figures that are used in this composite which,
at the moment, is none. Then the toolInitializeFigure constraint checks whether this figure has a tool
that can create it. Of course, at the moment there is none, so this is reported. So, adding a subclass
from CompositeFigure in a standard development tool results in an updated design documentation,
the automatic generation of some parts of the implementation, and the notification that there is no tool
that can create this kind of figure.

The next obvious step is to create a tool that allows our editor to create ConstraintFigure figures.
Since we have documented this step before, we choose to evaluate a query that helps in doing this,
and that generates a default method on class Tool:

Query toolInitializationCode([‘ConstraintFigure’], ?code),
generateMethodInProtocol(?code, [Tool class], [#’tool states’])))

Because the generation of the method by the query is a change in the implementation, this change
is again intercepted by the constraint network. Now we get a notice by the hdToolNameMethod that
there is no editor that uses the ConstraintFigure tool.

2We could also have made this constraint more specific, and automatically let it generate a subclass of CompositeFigure
with the name we have given.

98 CHAPTER 6. SUPPORTING CO-EVOLUTION

We then add the new tool to our editor using the following query that uses the cpgToolNames-
Method predicate defined in section 6.3.2:

Query cpgToolNamesMethod([ConstraintEditor],<[‘ConstraintFigure’]>)

This generates the necessary methods to add the tool to our editor. Again the constraint network
is notified and updated, and as a result the cpgIconMethods constraint generates default icons for this
new tool. The design documentation then indeed reflects the implementation. Of course, we now
have to manually reimplement some methods in the ConstraintFigure, but whenever we change a
method, we can be sure that the constraint network checks it to see whether it violates the design
documentation we expressed in it, and updates this information when necessary. This concludes our
experiment of using the incremental solver to support direct synchronization.

6.5 Experimental validation

We performed the experiments with a clear goal in mind: to show that the synchronization framework
allows design to check, generate or enforce implementation, and vice versa. During the experiments,
we encountered several problems that needed solving. First of all we came to the conclusion that there
is a substantial practical difference between supporting delayed versus direct synchronization. While
they are conceptually not that different, the performance penalty for doing a complete conformance
check for every small change in design or implementation proves to be not very practical. Therefore
we first performed a series of experiments using nothing but delayed synchronization, and then turned
our attention to direct synchronization.

Supporting delayed synchronization was feasible and practical with our approach. We showed
this using a fairly regular development process that synchronized design and implementation while
not constraining either phase too much.

Supporting direct synchronization in such a way that it is usable and scalable in practice proved
much harder. We built an incremental solver that allows us to filter and propagate the changes, thereby
removing the need to synchronize all of the design information whenever something changed. The
constraint network we showed allowed us to monitor changes in the implementation, and gave feed-
back about these changes. Also, when we changed the design information contained in the network,
this was also checked against the implementation.

We now want to review the classifications of synchronization introduced in section 2.5.1, and
show that each of the possibilities can be handled by our approach. This enumeration is complemen-
tary to the enumeration in section 5.2.3, where we discussed the instantiation of the synchronization
framework from a general point of view.

direction of synchronization : since we expressed design as a relation in terms of the implementa-
tion, this relation can be used for checking (when both design and implementation exist), as
shown in 6.3.4. It can also be used to generate one of the two (if the other exists), such as
in 6.3.1 and in 6.3.3. Hence the different possibilities for this classification are accounted for;

action to be taken : when elements are found that are out of sync, there are two possibilities: the
differences can be reported (allowing the user to take action later), or they can be fixed auto-
matically. In most examples where we ran queries, the results showed us differences between
the design information and the implementation. For example, in section 6.3.4 we run a query

6.6. DISCUSSION 99

that reported the design information which could not be found in the implementation, and an-
other one that reported design information that was extracted from the implementation, but did
not exist in the design data repository. We also implemented rules to automatically generate
pieces of implementation when they deem this is necessary (for example, the relations starting
with ‘cpg’ in the direct synchronization experiments in section 6.4.1.

notification time : Making some changes and then doing a conformance check is an example of
retroactive notification in delayed synchronization. When doing direct synchronization we used
both retroactive notification and reactive notification (depending on the constraint used). We did
not show proactive notification, because our system that notified us of changes did so after the
changes were applied. However, this is fairly easy to modify such that the system notifies us
before the change is actually committed. In that case, we could check relations and, depending
on the result, choose to allow the action or refuse it;

trigger time : because the synchronization system is explicit, it can be triggered at any time by
anyone. In the first series of experiments we showed delayed synchronization (where synchro-
nization was done after several changes were made to design and/or implementation), and in the
second series we supported direct synchronization (where it was the environment that invoked
the synchronization system after each small change);

scope : since rules are not bound to certain pieces of the implementation, the rules are global in
general. Of course, queries will typically restrict their search to certain hierarchies of classes.
For example, in section 6.3.2 we show the hdEditorClass rule that uses the hierarchy predicate
to restrict its work to the DrawingEditor hierarchy. In a system with a local scope, this would
somehow have been bound explicitly to the class DrawingEditor. Another example that is very
hard to express in a locally scoped system is discussed in section 6.3.2. The hdToolMethod
predicate shown there acts on several hierarchies and methods at once. In a locally scoped
system, we can only put it in one of those classes, which is not very natural.

implementation granularity : in these experiments we extensively used the fact that the declara-
tive framework uses full parse trees. Lots of examples of this can be found throughout the
declarative framework and the predicates expressed in this chapter. For example, the hdTool-
NamesMethod predicate in section 6.3.2 expresses the structure of the toolNames method of a
HotDraw editor. This would be very hard to express when only partial representation is avail-
able;

static/dynamic : In these experiments we only used static information. Dynamic information could
have been used mainly for typing, but like we already mentioned, it is not available in the current
synchronization framework.

6.6 Discussion

6.6.1 Performance and scalability

From the beginning, SOUL was meant to be our experimental logic meta-programming language.
As such, its primary concern was to allow us to experiment with a logic programming language
integrated with an object-oriented programming language. Therefore, not so much the performance,
but the extensibility was stressed. For example, on our 250 mhz Macintosh G3, deducing the type
of an instance variable typically takes about one minute and a half, and extracting the UML class

100 CHAPTER 6. SUPPORTING CO-EVOLUTION

diagram for the complete Figure hierarchy takes three hours3. While these figures are only meant to
give an indication of the performance, we also compared timings for some of our queries with those
of Kim Mens. In his dissertation research, that also deals with logic meta-programming, Mens uses
a commercial Prolog system to reason about implementation. Whereas in SOUL the base predicates
are mapped to Smalltalk objects, in Mens’ approach they fetch results from a relational database
using ODBC queries. This results in about the same performance penalty. For analogous queries, the
commercial Prolog system was about forty times faster than SOUL. We can draw two conclusions
from these benchmarks:

� even using the current, non optimized implementation of SOUL, querying the source code using
a logic meta-programming language is feasible. While larger queries (with complicated map-
pings to the source code, such as in our paper expressing software architectures [MWD99]),
queries might take longer than an hour, most queries take on the order of minutes. This is too
slow to be truly interactive, but the speed of commercial Prolog implementations makes these
kinds of queries possible;

� now that we have a clear view of the functionality that a logic meta-programming language
should have, we can re-implement it and focus more on performance. The commercial Prolog
indicates that the performance gains of such new implementation should be significant.

Last but not least we want to mention the system dependent cache that we use to cache the con-
struction of logic representation of methods. As explained in this chapter, the logic programs reason
about the source code in a logic form. This means that every time we ask for a particular parse tree of
a method, the source code of this method needs to be fetched and parsed, and then the resulting parse
tree needs to be enumerated to construct a logic representation of it. To make this more efficient we
have implemented a method cache that holds a certain number of these method bodies. Noteworthy
about the cache is its invalidation mechanism, that depends on system changes. Every time a method
is changed or deleted, it is removed from the cache. This invalidation mechanism allows the cache to
be very efficient. While we did not implement it, an analogous system could be used for the typing
of instance variables, implementing an instance variable type cache that gets notified when methods
and classes change. This has the potential to dramatically increase the performance for predicates that
depend on typing of instance variables (such as the ones expressing UML class diagrams).

6.6.2 Combining direct and delayed synchronization

In the experiments we explicitly divided direct synchronization from delayed synchronization. For
delayed synchronization, we could directly use the logic meta-programming language to synchronize
design and implementation. In that setup, the design was stored as clauses in a design repository. For
direct synchronization, we used the incremental solver to make the approach scalable and usable in
practice. The setup there was to store the design data in a distributed fashion (divided over the rela-
tions) instead of putting it in one flat repository. It is important to note that both series of experiments
used the same repository of clauses expressing the design notations. Combining them in one system
is not very hard: we merely have to allow a network to be used as a repository. This is not very hard,
since the network contains the relations, and for each of these relations the results. Therefore, the
information in the constraint network can indeed be considered as one repository.

3Note that, since Smalltalk is dynamically typed, most of this time is spent trying to type the instance variables of the
figures. Therefore, these results cannot be compared with commercial UML case tools that extract class diagrams from
typed languages.

6.6. DISCUSSION 101

6.6.3 Symbiosis versus integration versus stand-alone

In our approach, we express design as a logic meta program of implementation, and then use a logic
meta-programming language to synchronize design and implementation. In this section we want to
make clear why we want this logic meta-programming language to be integrated with the develop-
ment environment (and what kinds of synchronization are possible when it is not). We difference
between the following modes of integrating a logic meta-programming language and the development
environment:

1. stand-alone: the development environment and the logic meta-programming language are com-
pletely separate entities. They can only interact indirectly, for example through files, and are
not aware of each other. Hence the logic meta-programming language has no language fea-
tures or extra constructs to interact with a development environment. In this setup, we have
all the benefits of a logic meta-programming language, but of course the integration is severely
limited. As example, take any programming environment and a stand-alone Prolog interpreter.
Since there is no relation between the two, the Prolog interpreter needs a logic repository with
(aspects of) the source code in logic format. Keeping the source code synchronized with its
logic representation has to be done delayed, since the development environment has no guar-
anteed mechanism to tell the logic interpreter that the implementation has changed. Using the
characterizations of synchronization introduced in section 2.5.1, this means that only delayed
triggering is supported, and that only retroactive notification is possible;

2. integrated: the development environment and the logic meta-programming language are aware
of each other, and use facilities offered by the operating system to communicate. Typically this
means that hooks to some interoperability mechanism provided by the operating system can be
used by both the development environment and the logic meta-programming language (such as
AppleScript under MacOS, or DDE and derived technologies on Windows systems). In com-
parison with the stand-alone situation this means that both delayed and direct synchronization
can be supported, and that it is easier to keep the source code consistent with the repository
containing its logic representation. However, it is still necessary to have a logic representation
of the implementation language concepts;

3. symbiosis: the development environment and the logic meta-programming language are not
only aware of each other, but entities from the development environment can be used directly in
the logic meta-programming language and vice versa. To the integrated approach this removes
the need for separate logic representations of the concepts reified by the logic meta-program-
ming language.

6.6.4 SOUL and other object-oriented programming languages

SOUL is a logic meta-programming language implemented in Smalltalk, that reasons about Smalltalk
source code. In this context, two different questions can be asked regarding other object-oriented pro-
gramming languages:

1. can SOUL be used to reason about another base language then Smalltalk ?

2. can SOUL be implemented in another language than Smalltalk ?

102 CHAPTER 6. SUPPORTING CO-EVOLUTION

SOUL reasoning about another base language

The answer to the first question is yes. SOUL can indeed be used to reason about another language
then Smalltalk. However, note that this means that some of the benefits of the symbiosis are not useful
then, and that the rules in the declarative framework need to be changed. Certain is that the rules in the
representational layer need to be changed. However, two options are possible. The choice between
the two depends on the differences between Smalltalk and the new base language, and on the intended
usage:

1. the first option is to keep the same predicates that are currently used, but implement them to
work with the base language. This means that the rest of the rules can be kept the same. Possibly
these layers can be complemented by predicates that are specific to the new base language, or
some groups of predicates might be replaced. For example, when reasoning about a statically
typed programming language, the group of predicates implementing the type checking can be
re-implemented to take advantage of the explicit types in the base language;

2. the second option is more drastic: change the representational layer. This implies typically
that the complete (or at least most) of the predicates in the declarative framework should be
rewritten.

Implementing SOUL in another language

Of curse SOUL can be implemented in another language. The core interpretation engine is a stream-
based logic interpreter that can be implemented in any general-purpose programming language. The
hardest part is probably the implementation of the up-down mechanism that enables symbiosis and
reflection. However, there we see some precedents. At the lab, the up-down mechanism was used to
implement Agora, a reflective, object-based language [Ste94]. The first language was implemented
in Smalltalk, but the system was also implemented in C++ and Java [DM98]. Each of these systems
required different implementation techniques to implement the reflection, but all were possible. Hence
we see no reason why this should pose problems for the SOUL implementation.

Note however that, while SOUL can be implemented in another language, this is much harder for
the synchronization framework. This framework extensively uses the facts that Smalltalk is reflective
and that the environment is open source. Hence, integrating tools with the environment (a requirement
for the synchronization tool framework that needs to capture changes to design and implementation)
will be far more difficult.

6.7 Conclusion

This chapter is the first chapter with experiments to validate our claim. It shows experimentally that
the synchronization framework indeed supports all the possibilities of synchronization of design and
implementation as described in section 2.5.1 (except the static/dynamic characterization). Through
an extensive case study of the HotDraw framework, we show how design can be extracted from the
implementation (and vice versa), how to do a conformance check between design and implementa-
tion, and how design can be used to guide implementation (and vice versa). The experiments were
performed for both direct and the delayed synchronization. Besides this experimental validation, this
chapter also shows the usability of the synchronization framework to make some undocumented and
hard to find relations between the DrawingEditor, Figure and Tool classes explicit. These relations
are hardcoded in a number of methods on these three classes, and use several naming conventions

6.7. CONCLUSION 103

and low-level dependencies. Using SOUL we made these conventions explicit and use them to guide
development. This shows the practical usability of synchronization, even for a mature and refined
framework that formed the basis for several design patterns. In the following chapter we apply the
synchronization framework on a large-scale industrial application to assess the usability and scalabil-
ity in that context.

104 CHAPTER 6. SUPPORTING CO-EVOLUTION

Chapter 7

Supporting real-world development

In the previous chapter we performed a number of experiments on the HotDraw framework. This
allowed us to show the overall approach, demonstrating the uses of the synchronization framework in
supporting delayed and direct synchronization, and different actions that can be taken. However, these
experiments were done on a fairly small scale, and under laboratory conditions. We also wanted to
test our system on a large, real-world application to validate its usability and scalability. This chapter
discusses the experiments we performed on MediaGeniX’s Whats’On application, and the lessons
learned from these experiments.

7.1 Introduction

The claim made in this dissertation is that expressing design as a logic meta program of implemen-
tation constitutes a framework to synchronize design and implementation. Up until now we have
developed and tested our approach under laboratory conditions, applying them to small case studies.
This showed us that we can support different forms of synchronization as described by the charac-
terizations of synchronization. However, we were unsure whether our approach would be usable in
practice. This chapter answers this important applicability question by describing the experiments we
did on a large commercial Smalltalk system.

MediaGeniX develops tailor-made broadcast management systems for television stations. Their
flagship product is Whats’On, that manages television channels, integrating programme scheduling
and asset management needs. It centralizes all information related to the planning and management of
television broadcasts, such as the schedules, storage media, contracts, license windows, author rights,
programme information, press information, viewing figures, . . . It is built as a core framework [VV96]
of about 2000 classes that is then customized and instantiated for different clients that are located
throughout Europe.

For our system we worked on the Media Management module of Whats’On, that handles every-
thing that has to do with the actual management of the media used for broadcasting, such as tapes.
Originally this functionality was offered for one customer only, and was heavily intertwined with the
application logic. This dispersion made it very difficult to customize it for other clients that needed
similar functionality. Therefore it was completely rewritten as an optional module, that could easily
be configured for each client needing this functionality. The resulting Media Management module
took about 1 man-year to implement, which was done by up to three developers. It consists of 441
classes.

Since the Media Management module is one of the newer parts of Whats’On, it is one of the first

106 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

to use the MediaGeniX Application Framework (MAF). The MAF is MediaGeniX’ framework for
building applications. The rationale to develop the MAF was to allow software developers to build
applications easily and rapidly according to MediaGeniX’ application design guidelines. The MAF is
an elaboration of the application building classes provided by VisualWorks Smalltalk, and consists of
five major parts:

1. a framework for building applications that MediaGeniX wants to build;

2. adapted and extended VisualWorks user interface components;

3. new user interface components that are typical for broadcasting software;

4. integration with other frameworks, such as the domain/persistency framework and the permis-
sion framework;

5. design and implementation rules for developers.

Besides the definition of the ‘look and feel’ of the applications MediaGeniX wants to build, the
MAF lays down how those applications have to be implemented. In that view, the MAF is a crucial
part of the software products of MediaGeniX that are realised in Smalltalk.

We performed two sets of experiments. The first was to synchronize the UML diagrams from
the Media Management module with the implementation. The second was to make explicit the rules
that MAF applications should comply with, and to check existing applications for conformance with
these rules. The experiments were performed during 7 days that we stayed at MediaGeniX. Note that
we have given timings for each of the queries we performed. The motivation for this is to give an
indication of how long a certain query took. The queries were done on two machines: a Macintosh
Powerbook, with a G3 processor running at 250 megahertz and 64 megabytes of memory, and a
PC, with a Pentium running at 266 megahertz, and also featuring 64 megabytes of memory. The
environment used was VisualWorks Smalltalk/Envy R4.01.

7.2 Setup of the experiments

To perform the experiments, we used the complete synchronization framework. First of all we in-
stantiated the declarative framework, and extended it with two layers containing the rules specific
to these experiments: the rules expressing MediaGeniX specific programming conventions, and the
rules expressing the MAF programming conventions. These two layers were added as two separate
repositories to the composite repository holding the declarative framework.

7.3 Synchronizing UML diagrams

The first set of experiments was to synchronize the UML diagrams documenting the MediaManage-
ment module with the actual MediaManagement implementation. Hence the input for this experiment
was the UML diagrams of the MediaMangement module, and the actual Smalltalk implementation of
this module. The goal of the experiment was to assess whether the UML predicates as introduced in
section 4.5.3 could be used on real-world UML class diagrams to detect inconsistencies between the
diagrams and the implementation. Hence it thus assesses the quality of the UML rules and the usabil-
ity of the synchronization framework in practice. In this context, we actually performed two kinds of
experiments, since we had different implementation versions of the module: version 1.8 was the first

7.3. SYNCHRONIZING UML DIAGRAMS 107

implementation to be released to customers. The latest release we used was 2.28, which contained
some enhancements in functionality and bugfixes with respect to the first release. The UML diagrams
were used in the design phase, before the first implementation phase. Between version 1.8 and 2.28,
they were manually brought inline with the implementation. Hence the UML diagrams were fairly up
to date. The goal of the experiments described in this section is to:

1. synchronize the existing UML diagrams against version 1.8 of the MediaManagement module;

2. synchronize the existing UML diagrams against version 2.28 of the MediaManagement module,
and determine whether we can detect design changes between version 1.8 and version 2.28.

7.3.1 Expressing MediaGeniX programming conventions

In section 4.5.3 we saw how the rules expressing UML class diagrams build on the typing rules in
order to describe associations. More specifically, associations between UML classifiers are mapped
to instance variables of the appropriate type in the implementation. Hence, to use the default UML
rules in the declarative framework, the classes should have an instance variable for each association
at the UML level.

Throughout the implementation of Whats’On however, domain classes need to be persistent,
meaning their state can be stored and retrieved from databases. Therefore a persistency framework
is used, which imposes some constraints on the domain classes. First of all, every domain class has
an associated storage class that is responsible for mapping values to an underlying database. Second,
the domain classes delegate the retrieval and updating of their state to the storage classes through
their accessing methods. As a result, domain classes do not use instance variables, but only provide
the accessors which are responsible for getting and setting the values through the associated storage
class1. This second constraint also implies that throughout Whats’On, accessing instance variables
should always be done using the accessing methods.

Since there are no explicit instance variables in Whats’On domain classes, our rules expressing
UML associations are not valid. Hence we need to complement them with rules expressing the specific
MediaGeniX programming convention used in the persistency framework. We did this in such a way
that the general framework was complemented with some rules, and that we did not have to change
any rules from the UML layer. First of all we added another accessorForm rule, that expresses the
specific form of an accessor method used to retrieve the value of an instance variable2. Throughout
Whats’On this is done by sending the message getValueOf: to self, passing the name of the instance
variable.

1The only exceptions to this general rule is the usage of instance variables to cache results in order to improve the
efficiency.

2This complements the accessorForm predicates introduced in section 4.5.1 that describe direct and lazy implemented
accessor methods. Hence the other predicates using accessors also automatically use this new form.

108 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

This method is implemented at the root domain class, and is responsible for fetching the value of
the persistent instance variable.

Rule accessorForm(?method, ?iv, [#mgxPersistent]) if
equals(?method,

method(?class,
?iv,
arguments(<>),
temporaries(<>),
statements(<return(send(variable([#self]),

[#getValueOf:],
<literal(?iv)>))>))),

classImplementsMethodNamed(?class, , ?method).

The second predicate we complemented with MediaGeniX specific information is the instVar
predicate. By default this predicate asks the class for information regarding instance variables. How-
ever, for domain classes the accessor method should also be checked since they define persistent
instance variables. Therefore we introduced the persistentInstvar predicate that expresses that we can
get the persistent instance variables for a MediaGeniX class by looking at the accessor methods in
the mgxPersistent form described previously. Then we add another instVar rule that expresses that an
instance variable can also be a persistent instance variable:

Rule persistentInstvar(?class, ?persistentInstvar) if
mediagenixClass(?class),
method(?class, ?m),
accessorForm(?m, ?persistentInstvar, [#mgxPersistent]).

Rule instVar(?class,?var) if
persistentInstvar(?class, ?var)

As we mentioned, the three rules described above were put in a separate layer, that was then added
to the repository containing the rest of the declarative framework. This enhanced repository was then
ready to reason about the Media Management module.

7.3.2 Conformance checking the UML diagrams and the implementation

The Media Management module’s design comprises 7 UML class diagrams that depict the main clas-
sifiers and relations. To give an impression of these diagrams, figure 7.1 shows the one that describes
the basic administration of media. We started by doing a conformance check of these diagrams against
version 1.8 of the Media Management module implementation. We followed the process for confor-
mance checking described in section 6.3.4 of the HotDraw experiments, building a design repository
describing the elements in the UML diagram. Once the design repository was built, we checked for
each of the elements whether we could find them in the source code. As a result we found minor dis-
crepancies (such as typos in names of classes, instance variables and operations), missing information
(such as attributes or operations that could not be found in the implementation). We also found a few
larger problems, such as 4 missing classes, some associations between classes that could not be found
in the code, and incorrect cardinalities of associations. In general, however, the design diagrams were
fairly consistent with the implementation.

7.3. SYNCHRONIZING UML DIAGRAMS 109

MMPhotoSet

MMCueSheetSet

MMSubtitlingSet

MMTape

manufacturer : company
lotnumber : String
nrTimesErased : Integer
country : country
recordingNr : String
projectNr : String
facility : facility

MMModifiableState MMReadOnlyState MMInvisibleState

MMVideoPartVideoDurationPolicy

MMVideoPartAudioDurationPolicy

MMVideoPartMaxDurationPolicy

MMVideoPartMinMaxDurationPolicy

MMVideoSet

toBeUsedInPlanning : Boolean
actionstatus : MMActionStatus

duration()
canRemove()
areVideoPartsReady()

MMVideoPartDurationPolicy

<<abstract class>> durationFor:()
<<abstract class >> usesOverriddenDuration()

MMVideoPart

startvisual : timeCode
endvisual : timeCode
startaudio : timeCode
endaudio : timeCode
overriddenDuration : Timeframes
part

duration()
expectedAudioDuration()
expectedVideoDuration()

1..*

+VMPart

1..*

{VideoPart can only belong to a videoSet}

+Class::durationPolicy

PSIProduct

MMVideoSetActionStatus

MMMediaSet

intention : String
remarks
kind : type
dateCreated : Date
dateModified : Date
userCreated : User
userModified : User

addRegistration:()
removeRegistration: ()
moveRegistration: aRegistration to: aPosition()
retrieveWhere:()

0..*

1..1

+sets

0..*

+product

1..1

0..*1..1 0..*

+actionState

1..1

MMCarrier

medium label : String
dateCreated : Date
dateModified : Date
userCreated : Date
userModified : Date
owner : department
remarks : freeText
format
status : String

addRegistration:()
removeRegistration:()
isAvailable()

MMPermissionState

<<abstract>> addRegistration:()

1..1

0..*

+historyState

1..1

0..*
0..*

1..1

0..*

+historyState

1..1

MMRegistration

segmentNr : Integer
dateCreated : Date
dateModified : Date
userCreated : User
userModified : User
position : Integer

isHistoric()

1..*

+registrations

1..*

1..1

1..1

1..1

1..1

1..1

MMPrototypeState

Figure 7.1: Part of the MediaManagement UML diagrams

110 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

classifier attribute change
MMCarrierLocationDescriptor removed
MMCarrierLibraryPositionPolicyAssoc basicPositionType added
MMCarrier locationDescriptor removed

parcelItems added
isBorrowed added
nrTimesErased added

MMVideoSet plannersAttention added
description added

MMCarrierLibrary defaultPositionType added

Table 7.1: Classifier changes between versions 1.8 and 2.28 of the Media Management
module

classifier association change
MMRegistration owner-1-MMRegistration added
MMCarrierLibraryPositionPolicyAssoc positionPolicy-1-Object added
MMMediaSet remarks removed
MMVisioningComment videoPart removed
MMCarrier parcelItems-many-Object added

isBorrowed-1-Boolean added
nrTimesErased-1-ArithmeticValue added

Table 7.2: Association changes between versions 1.8 and 2.28 of the Media Management
module

The other way around we also looked for information we could extract from the implementation
and which was missing in the source code. Therefore we extracted association relationships from
the code, and compared them against the information in the design repository. While we extracted
associations that were not on the design documentation, these proved to be left out intentionally from
the design documentation. However, the original documents omitted a lot of role names, which we
were able to extract. The result of this phase were some extended UML diagrams,

The overall results of these experiments were an updated set of UML diagrams, where the names
of classes and roles now correspond to their implementation counterparts, and where the associations
in the UML diagram we could check are consistent with the implementation.

7.3.3 Checking evolution in the implementation

The previous experiments were done with version 1.18 of the Media Management module, the first one
to be released to the customers. Since then, the implementation has undergone some changes, mainly
for maintenance and bugfixing, and for smaller, client specific updates. Since Media Management
is fairly new, no large updates have been done. Still, in this experiments we want to see if we can
find changes in the implementation that are not reflected in the design. Therefore we extracted the
same design information as for the first experiment, but using version 2.28 of the Media Management
implementation. We then compared the extracted information, noting the changes between both. First
of all we compared the classifiers and their attributes. The results of this comparison are shown in
table 7.1. Afterwards we also compared the extracted associations for both versions, for which the
results can be found in table 7.2.

7.4. SUPPORTING THE MEDIAGENIX APPLICATION FRAMEWORK 111

Overall we can say that the extraction process on the new version 2.28 generally gave better
results. The reason is that, because functionality was added, more messages were send and thus that
there was more information available for our type checking rules. Regarding the differences between
the two versions, we found no big differences. This was expected since the implementation did not
undergo major changes. We noted however one class that was removed. When checking with the
architect of the Media Management module this was indeed a refactoring that was done. The removed
class actually implemented application behaviour, and was thus not a domain class. Therefore it was
removed, and its functionality was moved to a new application.

7.4 Supporting the MediaGeniX Application Framework

Together with the main architect of the MAF, we made a list of constraints that are imposed on to
Media Management applications in order for the MAF to function properly. The goal of these experi-
ments is to

1. make these programming conventions explicit;

2. check the source code to find violations against the MAF programming conventions.

7.4.1 Expressing the aspect and domain class rules

The MAF imposes certain constraints on the classes that use it. Currently these constraints are im-
plicit, passed orally between developers. The first part of this experiment therefore was to get the
rules (or at least the most important ones) from the architect of the MAF. The resulting list is dis-
played in figure 7.2. Note that a lot of the rules regulate the usage of aspects, a mechanism used in
VisualWorks’s model-view-controller implementation [KP88] to link models to applications. More
specifically, an aspect is a model object for a widget provided by an application model. In other
words, it provides a customizable channel the views use to get the information they have to display
from the model.

Once we had the list, we expressed it as a number of predicates shown in figures 7.3, 7.4 and 7.5.
Predicate initializeAspectsMethod expresses that the method initializeAspects, when implemented on
MAF applications (classes in the hierarchy of the class MAFApplicationModel), should have a specific
form. The first statement in a initializeAspects method should be the super send. Then it should be
followed only by statements described by the auxiliary predicate topInitAspectStatement. The topIni-
tAspectStatement predicate describes that an aspect can directly be assigned a value (the first rule), or
that it can be assigned a value through a mutator message. In both cases, the statements describing
the value that should be assigned are expressed by the auxiliary predicate initAspectStatement. This
expresses the different values that can be assigned to aspects, both direct and indirect. For example, it
takes factory methods and transitive closures of message sends into account.

Note that this heavy use of recursion (necessary to express the transitive closures) that is necessary
to express these programming conventions means that less powerful approaches can not fully express
these programming conventions. When these transitive closures cannot be expressed, a lot of false
information will be detected when we start looking for violations using these rules.

7.4.2 Checking the aspect and domain class rules

Once made explicit, we did several conformance checks of the implementation, to find out where
the MAF assumptions where possibly breached in the Media Management module code. The first

112 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

1. for each aspect there has to be an aspect method. An aspect method is an accessor method that
returns an aspect. The MAF assumes that these aspect methods do not use lazy initialization
(which is the default for aspect methods that are used outside the MAF), and that they are
hence pure functional methods that do not store anything in instance variables but just return
the aspect;

2. accessing an aspect should only happen through its aspect method. MAF applications should
always use the aspect methods, and never access the instance variables directly;

3. all aspects should be bound to instances of ValueModel, MAFSelectionInList, MAFNoteBook
or MAFApplicationModel.

4. domainobjects should send change messages whenever they are changed. Because the MAF ap-
plications need to know whenever a domain object changes, the domain objects are responsible
for sending change messages. Because the persistency framework implements this behaviour,
there is no problem for the majority of the domain classes. However, problems might arise when
domain classes use instance variables to keep their own intermediary results, without using the
persistency framework. This is mostly done by domain classes that provide different views on
values of certain instance variables. For example, collections of values can be returned sorted
by some key, or filtered. In that case, they should still use the setValueOf:to method;

5. aspectadaptors on domainobjects should have ’subjectSendsUpdates: true’: In general, a MAF
application should not create AspectAdaptors on domain models explicitly. However, in the
rare cases they do, they have to indicate to the AspectAdaptor that the domain objects sends
updates. This is generally done by sending subjectSendsUpdates: true to the aspect adaptor;

6. aspects should be initialized in the initializeAspects method and not, for example, in an initialize
method. The initializeAspects method should do a super send;

7. all enabling and disabling of widgets should be done using MAFEnablingPolicy. The messages
isEnabled:, isVisible: and readOnly: should never be used;

8. initialization of an enabling policy is done in the setupEnablingPolicy method. This method
should do a super send.

Figure 7.2: MAF constraints imposed on the implementation.

7.4. SUPPORTING THE MEDIAGENIX APPLICATION FRAMEWORK 113

Rule initializeAspectsMethod(?class, ?m) if
classImplementsMethodNamed(?class, [#initializeAspects], ?m),
hierarchy([MAFApplicationModel], ?class),
methodStatements(?m, ?stats),
head(send(variable([#super]), [#initializeAspects],<>), ?stats),
tail(?initAspects, ?stats),
forall(member(?initAspectStatement, ?initAspects),

topInitAspectStatement(?class, ?initAspectStatement))

Rule topInitAspectStatement(?class, assign(?leftHand, ?initStat)) if
initAspectStatement(?class, ?initStat).

Rule topInitAspectStatement(?class, send(variable([#self]), ?mutatorSelector, <?initAspectStatement>)) if
initAspectStatement(?class, ?initAspectStatement).

Rule topInitAspectStatement(?class, send(variable([#self]), ?delegatedInitSelector, <>)) if
classImplementsMethodNamed(?class, ?delegatedInitSelector, ?m),
methodStatements(?m, ?stats),
forall(member(?stat, ?stats),

topInitAspectStatement(?class, ?stat))

Figure 7.3: The initializeAspectsMethod and topInitAspectStatement predicates

thing we wanted to know was which MediaManagement applications violated one of the MAF rules
regarding aspect and domain class usage. Therefore we launched a query to enumerate all classes in
the MediaManagement module that implement an initializeAspects method with at least one aspect
methods violating the MAF rules:

Query findall(?c,
and(mmClass(?c),

classImplements(?c,#initializeAspects),
not(initializeAspectsMethod(?c,?m))),

?L)

Running this query over the implementation gave 22 results, each indicating a possible violation
of a MAF rule 3. Together with the MAF architect we looked through the results, and categorized
them according to severity. The results are shown in table 7.3. We found 8 genuine errors, and 2
classes with a dubious implementation of the initializeAspects method (ending with the super send
instead of starting with it). We also found two implementations that triggered violations, but were
actually legacy implementations that were allowed to do this. The last 8 classes did specific aspect
initializations which were not captured by our rules and hence resulted in errors. Given some more
time, most of these cases could be eliminated by further extending the initAspectStatement.

3This took 11 minutes and 36 seconds on our testing machine. Note that 51 classes were checked, and that 29 classes
passed the tests.

114 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

“domain object wrapped asValue”
Fact initAspectStatement(?class,send(, [#asValue], <>)).

“explicit class”
Rule initAspectStatement(, variable(?className)) if

className(?aspectClass, ?className),
validAspectClass(?aspectClass).

“instance creation of explicit class”
Rule initAspectStatement(, send(variable(?className), ,)) if

className(?aspectClass, ?className),
validAspectClass(?aspectClass).

“recursive”
Rule initAspectStatement(?class, send(?rec, ,)) if

initAspectStatement(?class, ?rec).

“factory method”
Rule initAspectStatement(?class, send(variable([#self]), ?facSel, <>)) if

mafAspectFactoryMethod(?class, ?facSel).

“factory method on class side”
Rule initAspectStatement(?class, send(send(variable([#self]), ?factoryMethodSelector, ’<>),

?instanceCreationSelector,
)) if

mafAspectFactoryMethod(?class, ?factoryMethodSelector).

“instance creation of class returned by factory method on class side”
Rule initAspectStatement(?class, send(send(send(variable([#self]), [#class],<>),

?factoryMethodSelector,
<>),

?instanceCreationSelector,
)) if

metaClass(?class, ?mClass),
mafAspectFactoryMethod(?mClass, ?factoryMethodSelector).

Figure 7.4: The initAspectStatement predicate

7.4. SUPPORTING THE MEDIAGENIX APPLICATION FRAMEWORK 115

Rule mafAspectFactoryMethod(?startClass, ?factorySelector) if
rootMinusOne(?startClass, ?minusOne),
flattenedClassImplementsMethodNamed(?startClass, ?minusOne, ?factorySelector, ?m),
returnStatements(?m, ?returnStatements),
forall(member(?stat, ?returnStatements),

initAspectStatement(?startClass, ?stat)).

Rule validAspectClass(?class) if
hierarchy([ValueModel], ?class).

Rule validAspectClass(?class) if
hierarchy([ApplicationModel], ?class).

Rule validAspectClass(?class) if
hierarchy([MAFNoteBook], ?class).

Rule validAspectClass(?class) if
hierarchy([MAFSelectionInList], ?class)

Figure 7.5: The mafAspectFactoryMethod and validAspectClass predicates

severity class
Error MMAbstractPrototypeListSelector

MMActivitySetUpSelector
MMCarrierSelector
MMPlanningInfoList
MMProductAndMediaSetRegistrationSelector
MMRegistrationVisioningListSelector
MMCarrierLocationDescriptorEditor
MMViewProgramHistoryEditor

Dubious MMParcelEditor
MMParcelEditorTask

Legacy MMCarrierLocationQuerySelector
MMSearchParcelEditor

Ghosts MMCarrierEditor
MMAbstractHierarchicalList
MMListDataBag
MMMediaSetRegistrationCarrierEditor
MMProductMediaSetSelector
MMSearchParcelTask
MMTaskBasedEditor
MMVideoSetVisioningEditor

Table 7.3: Media Management classes violating initializeAspectsMethod

116 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

class selector
MMAbstractList basicListDataBagAspect:
MMParcelSelector preferredSelectionChannel
MMCarrierSelector initializeAspects
MMRegistrationOnExistingCarrierSelector initializeCarrierList
MMLocationSelector firmSelector
MMParcelEditor parcelItemSelectionInListStatusChannel
MMSearchParcelEditor release
MMViewCarrierHistoryEditor initialize
MMViewProgramHistoryEditor editeeChanged

historyListFromProduct
MMCarrierTapeSpecificNoteBookPage firmSelector
MMSearchParcelTask initializeAspects
MMBarcodeReader errorMessage

Table 7.4: MAF applications directly referencing instance variables

We also checked direct sends to instance variables holding aspect methods. Therefore we launched
a query enumerating all 1495 methods of the 108 MediaManagement applications:

Query hierarchy([MAFApplicationModel], ?c),
mmClass(?c),
instVar(?c, ?iv),
and(classImplementsMethodNamed(?c, ?sel, ?m),

newIsSendTo(?m, variable(?iv), ?msg, ?args),
instVar(?c, ?iv),
not(accessorForm(?m, ?iv,)))

The results of this query are shown in table 7.44. As can be seen, 13 methods directly reference
instance variable instead of using their accessors, and are a possible source of bugs. They should be
refactored to use the accessor methods for the instance variables they now reference directly.

Last but not least we were interested in finding aspects that used lazy initialization, which should
not be done according to the MAF rules. To check this, we use a Visualworks Smalltalk programming
convention that aspect methods are in a protocol called aspects, and the accessor rules as introduced
in section 4.5.1. The resulting query checks all methods in the aspects protocol to see if they are in
lazy initialized accessor format:

Query hierarchy([MAFApplicationModel], ?c),
mmClass(?c),
and(methodInProtocol(?c, aspects, ?m),

lazyInitialisedAccessorForm(?m, ?iv, ?kind))

From the 145 aspect methods in the applications in the Media Management module, we found 18
that use lazy initialization5. They are in clear contradiction with the MAF rules, and should be fixed.
They are listed in table 7.5

4This query took 1 hour and 48 minutes.
5The query took just over one minute to run on the testing machine.

7.4. SUPPORTING THE MEDIAGENIX APPLICATION FRAMEWORK 117

class selector
MMCarrierAndProductSelector productsStatusBarHolder

selectionInProducts
MMActivitySetUpSelector projectChannel
MMParcelSearchResultViewer selectedDescriptiveParcelItemHolder
MMBrowser resultList

resultListDefinitionChannel
MMMediaSetAndRegistrationListView mediaSetListDefinitionHolder

mediaSetListHolder
mediaSetListSelectionInList
mediaSetListStatusBarHolder
registrationListDefinitionHolder
registrationListHolder
registrationListSelectionInList
registrationListStatusBarHolder

MMCarrierBrowser queryEditorBook
MMNewCommandDialog command
MMNewMediaSetDialog mediaSetPrototype
MMNewMediaSetDialog mediaSetType

Table 7.5: MAF lazy initialized aspect methods

7.4.3 Expressing the enablingPolicy rules

Normally, enabling and disabling widgets in an application is done explicitly by sending isEnabled:,
isVisible: and readOnly:, passing a boolean to indicate the desired state. Since this can get very com-
plicated for large user interfaces with lots of interface elements that depend on each other’s state, the
MAF introduces an MAFEnablingPolicy class. The purpose of this class is to centralize all informa-
tion regarding the enablement state of widgets, and making sure that this is handled appropriately.
However, this means that the applications using the MAFEnablingPolicy class should never use isEn-
abled:, isVisible: or readOnly: messages themselves, nor the derived methods that send one of these
messages internally. Therefore we made this information explicit in some predicates.

The first predicate, widgetStateChangers constructs a list of selectors that result in state changes of
widgets. One possible implementation could be to explicitly enumerate this list. However, we chose
to calculate it, so that possible extensions of widgets would also be included. Therefore we get all the
local senders of the message isEnabled: and isVisible: on the class WidgetWrapper and its subclasses.
These lists are concatenated, and contain all messages that send isEnabled: or isVisible. Then we
complement this list with the three main messages to change the state (isEnabled:, isVisible: and
readOnly:). This list, without duplicates, gives all selectors that change the state of widgets. It is used
in the enablingPolicyViolators predicate to find all MAF applications that use the MAFEnablingPolicy
and still send one of these ‘forbidden’ messages:

Rule widgetStateChangers(?messages) if
stLocalSenders([WidgetWrapper], [#’isEnabled:’], ?isEnabledSenders),
stLocalSenders([WidgetWrapper], [#’isVisible:’], ?isVisibleSenders),
append(?isEnabledSenders, ?isVisibleSenders, ?indirectMessages),
append(?indirectMessages, <[#isEnabled:], [#isVisible:], [#readOnly:]>, ?allMessages),
noDups(?allMessages, ?messages).

118 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

Rule enablingPolicyViolators(?violations) if
widgetStateChangers(?forbiddenSends),
findall(violation(?sel, ?class, ?selector),

and(member(?sel, ?forbiddenSends),
stLocalSendersComplete([MAFApplicationModel], ?sel, ?whoWhere),
member(<?class, ?selector>, ?whoWhere),
classImplements(?class,[#setupEnablingPolicy])),

?violations)

7.4.4 Checking the enablingPolicy rules

Using the enablingPolicyViolators predicate, we find that the application MMTaskBasedEditor sends
disable to items in its menu. This should be incorporated in the MAFEnablingPolicy used in the rest
of this class. The other 46 classes that use MAFEnablingPolicy do not violate these rules.

7.5 Lessons learned

These experiments of our approach outside laboratory conditions proved worthwhile. It was inter-
esting to use and see the applicability in a real-world context. In this section we want to enumerate
general points of interest we learned during these experiments.

� In the HotDraw experiments described in chapter 6, we only had some vague information about
the implementation to start with. Using SOUL to explore the system we were able to express
important design information. In the MediaGeniX experiments the process was much simpler
because we had access to clear design documents and to the architects and developers. Almost
immediately after we started we could therefore extract UML information, and we expressed the
MAF programming conventions. So, in order for this approach to work well from the start, the
developers or architects should bootstrap the process by supplying as much design information
as possible;

� the key point in making the approach efficient in a real world context is reduction of scope. This
can be done by making use of the programming conventions, and by pre-filtering irrelevant in-
formation using a coarse grained (but efficient and inexpensive) approach, and then finecombing
these results with the more expensive full logic programming approach;

� the reasoning power of SOUL was necessary in order to make the MAF programming con-
ventions that deal with aspects explicit. The reason was that in practice transitive closures of
methods sends need to be taken into account to express certain programming conventions. This
is hard to express in approaches that do not support recursion (such as SmallLint, a tool that
one might think could be used to support these programming conventions). However, to ex-
press some of the other programming conventions, no recursion is necessary and hence less
powerful but faster reasoning engines could be used (such as SmallLint). We discuss this issue
further in the future work in section 8.3.3, because we would like to combine solvers of different
expressive power and performance.

� during the experiments with the UML schemas we lacked integration with the UML tool used
regularly in the development process. As a result, we had to manually ‘translate’ the UML

7.6. CONCLUSION 119

schemes from their graphic description to our logic description. Vice versa, we had to manually
update the UML diagrams with the results from our extraction process. So, in order to be
fully usable in a practical setting, we have to integrate SOUL not only with the development
environment, but also with external tools. This is possible by writing scripts in tools that support
this, or using the interoperability mechanisms offered by operating systems (such as AppleScript
under MacOS, or DDE and derived technologies on Windows systems).

� the declarative framework is the key mechanism in being able to adapt quickly to different
implementations. As we saw in section 7.3.1, being able to complement the general rules with
MediaGeniX specific rules meant we could reuse the declarative framework. Actually, two
features are necessary: a composition mechanism of repositories, and a mechanism that clauses
can easily use and override other clauses. While SOUL allows the first, the latter is currently
very primitive. We discuss this together with other extensions of SOUL in section 8.3.2 of the
future work.

7.6 Conclusion

This chapter describes the experiments we performed in a real-world context. It shows that the syn-
chronization framework can be used in a practical setting to synchronize design and implementation.
In a limited period of time we successfully applied the synchronization framework to express and syn-
chronize design information with an implementation. More specifically, we did a conformance check
of existing UML diagrams with the released implementation. We found some discrepancies between
the two, most notable some classes and relations in the UML diagram that did not exist in the im-
plementation. Also, we were able to complement the UML diagrams with information we extracted,
most notably role names for associations. We also checked the evolution of the implementation with
respect to this UML diagram. Besides these experiments with UML diagrams, we also made a set of
programming conventions explicit, and used this to find violations against these programming con-
ventions in the implementation. The results of these checks where a number of clear errors in some
parts of the implementation that do not follow the programming conventions.

Overall, the experiments on HotDraw and Whats’On showed that the rules in the declarative fra-
mework, although lightweight, can be used to successfully express the design used in a particular
context and that the synchronization framework successfully synchronizes design and implementa-
tion. In the next chapter we conclude this dissertation, list the major contributions and discuss future
work.

120 CHAPTER 7. SUPPORTING REAL-WORLD DEVELOPMENT

Chapter 8

Conclusion and future work

8.1 Conclusion

The goal of this dissertation is to pave the road towards support for co-evolution. The thesis statement
we defended was the following:

Thesis
A framework for co-evolution of design and implementation, where design and implemen-
tation are related in such a way that the one can check, generate or constrain the other, can
be achieved in a logic meta-programming language integrated with a software development
environment.

When we looked at supporting co-evolution, we came to the constatation that in order to support
co-evolution, we had to synchronize the changes between design and implementation. Therefore, we
first of all investigated the characteristics of synchronization between design and implementation, and
we found that there is actually a broad spectrum. To describe this spectrum, we used the following
characterization, which we applied on related work: direction, action, notification time, trigger time,
scope, implementation granularity and static/dynamic. To construct a framework that supports all of
these characteristics, we proposed and defended the following conceptual solution:

1. make the relation between design and implementation explicit by expressing design as a logic
meta-program of implementation;

2. integrate the logic-meta programming language in the environment to capture changes of design
and implementation;

3. use the logic meta-programming language to find differences between design and implementa-
tion, and define actions (SOUL).

We showed that this conceptual solution indeed supports all the characterizations. However, we
also implemented a software artefact to show that this solution is not only conceptual, but can also
be used in practice. The software artefact is called the synchronization framework. It is composed
of two individual frameworks: the declarative framework that expresses design as a logic meta pro-
gramof implementation, and the synchronization tool framework, that integrates synchronization tools

122 CHAPTER 8. CONCLUSION AND FUTURE WORK

in the development environment. Last but not least, we also implemented a reflective logic meta-pro-
gramming language that exploits its symbiosis with the base language to reason directly over the
implementation of the base programs.

The synchronization framework was then applied to two different case studies to show its usability
and scalability in practice. First it was experimentally shown on a smaller case study (the HotDraw
drawing editor framework) that the synchronization framework indeed supports all different character-
izations of synchronization. On the same case study, we also found that, even for the well-known and
well-documented framework HotDraw is, there is need for synchronization of design and implemen-
tation and the synchronization framework can do so. Besides the experiments on HotDraw we also
did experiments on a large industrial framework. Here we did conformance checks of UML diagrams
against the implementation (complementing the diagrams with extracted information and detecting
differences between the UML diagrams and the implementation). We also expressed programming
conventions and found several violations in the implementation that needed to be fixed. These exper-
iments strengthened our claim that the synchronization framework is usable in practice, and showed
that it is scalable.

Overall, the conceptual and experimental validation proved our thesis statement, and the experi-
ments showed the usability and scalability of our software artefact that implements our solution.

8.2 Contributions

While proving our claim, the following contributions were made:

� the first contribution is the study and characterization of synchronization mechanisms. These
characterizations are used as the key variation points of our synchronization framework;

� the second contribution is the design of the logic meta-programming language, and more specif-
ically its symbiosis with the underlying implementation language. This symbiosis allows the
logic meta-programming language to wrap or evaluate expressions in the implementation lan-
guage during the logic interpretation process;

� the third contribution is the incremental solver we built using techniques from the incremental
symbolic constraint solving community. The main idea is to use the logic meta-programming
language to express and solve the relations, and to use local propagation techniques to incre-
mentally solve the network;

� the fourth contribution is the synchronization framework itself, that is used to build tools that
need synchronization of design and implementation. It consists of the declarative framework
and the synchronization tool framework. The declarative framework is a logic meta-program-
ming framework that is used to map design to implementation in an explicit, customizable and
expressive way. The synchronization tool framework is a Smalltalk framework that allows to
monitor and act upon any change to design and implementation.

8.3. FUTURE WORK 123

8.3 Future Work

8.3.1 Refining the synchronization framework

First of all we want to apply the synchronization framework to more cases. The goal is to ameliorate
the synchronization framework, as this can only be done by applying it more. For the declarative
framework, this should result in an extended set of logic meta programs expressing design. Possibly
we can add some popular design notations, and extend the current ones. For the synchronization tool
framework we want to fully implement the pro-active notification mechanism, and experiment with it.

8.3.2 SOUL-2

Because a suitable logic programming language integrated in a development environment did not
exist, we implemented SOUL. SOUL has several very important and non-trivial features we want
to keep (especially the symbiosis with Smalltalk). However, now that we have a better view on the
requirements for a logic meta-programming language integrated in a development environment, we
want to implement a new and improved version of SOUL, called SOUL-2. More specifically, we want
to tackle the following areas:

� performance: the inference mechanism in the current version of SOUL is completely stream-
based. While this had certain advantages when we started our experiments, this implementation
is rather slow. As we already indicated in section 6.6.1, we have a performance loss of a factor
of 40 when compared with commercial Prolog interpreters. So, we want to implement a new
stack-based interpreter in order to boost the performance;

� incremental solver: we want to reimplement the incremental solver, using the experience gained
by the first implementation and by the experiments. The resulting incremental solver can then
be truly multi-way, and far more configurable with respect to constraint violations then the
current one;

� SOUL as base language: Clauses written in SOUL are built using certain programming conven-
tions and are also subject to evolution. Therefore we would like SOUL to also support SOUL
as base language, next to object-oriented programming languages that are currently supported;

� further symbiosis with Smalltalk: in its current version, SOUL has a symbiosis with Smalltalk
that allows full introspection and even reflection. We would like to extend this further. For
example, we already performed experiments to write SOUL code in any Smalltalk method.
When such Smalltalk methods are executed, and the SOUL clauses are encountered, they are
evaluated by the SOUL interpreter, passing the context of the method. When this integration
is completed, we will have a language with full reflection between an object-oriented program-
ming language and a logic programming language. Compared with SOUL in its current state,
this would mean for example that there would be a causal connection between Smalltalk meth-
ods and their logic form. This would make rewriting code much easier. It would also mean that
dynamic information is supported;

� repository composition mechanism: In SOUL we can compose repositories using a nesting
mechanism. This proved very important in practice. However, we would like to go much
further in this context, and have a real composition mechanism on repositories. The idea is to
have an object-oriented programming language like late-binding mechanism, where repositories

124 CHAPTER 8. CONCLUSION AND FUTURE WORK

can be parametrized with other repositories. A crude, experimental version of such system was
implemented that allows terms to be prefixed by a connector variable that has to be bound
with a repository at interpretation-time. For example, this system allows us to write a rule in a
repository that has a basicLayer connector that asks the repository bound to this connector for
the classImplements predicate:

Rule sameSelectors(?c, ?d, ?sel) if
@basicLayer.classImplements(?c, ?sel),
@basicLayer.classImplements(?d, ?sel)

The connector variables have to be bound to a repository when it is interpreted.

8.3.3 Combining solvers

In the related work described in section 2.5.2, it is clear that there is a trade-off between expressivity
and computation power versus performance. For example, an approach based on regular expressions
allows to express fairly complicated patterns, and is performant. On the other, using SOUL we express
much more complicated patterns (using abstraction mechanisms and recursion), but the interpretation
is slower. Therefore, one way to increase performance is to integrate several solvers in one interpre-
tation engine. The idea is to use the fastest approach possible depending on the expressivity that is
needed. We implemented a number of ad-hoc rules that already do this, for example the rules imple-
menting pattern matching operations (see the logic layer described in section 4.2). This combination
should be refined and extended, and promises a high expressivity while remaining performant.

8.3.4 Full co-evolution support

In this dissertation we limited ourselves to the synchronization design and implementation, where the
mapping between both has to be made explicit in logic meta programs. However, in order to fully
support co-evolution, we have to take other phases in the development cycle into account and help the
definition of the mapping between such phases.

First of all, we would like to generalize the approach as proposed in this dissertation to other cycles
in the development process. More specifically, we think of supporting use-cases as well. Therefore,
uses-cases need to be made explicit as well, and changes to use-cases have to be propagated to the
design and vice versa.

Second, there should be support for building and maintaining the mapping between design and
implementation. The synchronization framework assumes that the mapping is available, and uses it to
determine the impact of changes to the design level on the implementation and vice versa. However,
there is no real support for implementing and maintaining this mapping. The developer has to be an
expert when describing the mappings, and a lot of experiments are needed in order to validate it. We
would like to investigate whether this process can be simplified and supported. One research direction
that is worth investigating is to use knowledge representation and machine learning techniques to help
implementing and maintaining the mapping. For example, we want to have a mechanism where we
provide the design and an implementation that conforms to this design, and where the mapping is
extracted semi-automatically.

Bibliography

[BAFB96] A. Borning, R. Anderson, and B. Freeman-Benson. Indigo: a local propagation al-
gorithm for inequality constraints. In Proceedings of the ACM symposium on User
interface software and technology, pp. 129–136, 1996.

[BB98] G. J. Badros and A. Borning. The cassowary linear arithmetic constraint solving al-
gorithm: Interface and implementation. Technical Report UW Tech Report 98-06-04,
University of Washington, 1998.

[BDMDV00] J. Brichau, W. De Meuter, and K. De Volder. Jumping aspects. In Proceedings of the
ECOOP’2000 Workshop on Aspects and Dimensions of Concerns, 2000.

[Bec97] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[BFB95] A. Borning and B. N. Freeman-Benson. The oti constraint solver: A constraint library
for constructing interactive graphical user interfaces. In Proceedings of the First In-
ternational Conference on Principles and Practice of Constraint Programming, pp.
624–628. Springer LNCS 976, September 1995.

[BJ94] K. Beck and R. Johnson. Patterns generate architectures. In Proceedings ECOOP’94,
volume 821 of LNCS, pp. 139–149. Springer-Verlag, July 1994.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture — A System of Patterns. John Wiley & Sons, 1996.

[Bok99] B. Bokowski. Coffeestrainer: Statically-checked constraints on the definition and use
of types in java. In Proceedings of ESEC/FSE’99. Springer-Verlag, September 1999.

[Bor79] A. H. Borning. Thinglab—A Constraint-Oriented Simulation Laboratory. PhD thesis,
Stanford University, July 1979. Also available as Stanford Computer Science De-
partment report STAN-CS-79-746 and as XEROX Palo Alto Research Center report
SSL-79-3.

[Bra92] J. Brant. Hotdraw. Master’s thesis, University of Illinois, 1992.

[Bri00a] J. Brichau. Declarative composable aspects. In Proceedings of the ECOOP’2000
Workshop on Advanced Separation of Concerns, 2000.

[Bri00b] J. Brichau. Declarative meta programming for a language extensibility mechanism. In
Proceedings of the ECOOP’2000 Workshop on Reflection and Meta Level Architec-
tures, 2000.

125

126 BIBLIOGRAPHY

[BRJ97] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Method Language User Guide.
Addison-Wesley, 1997.

[Bro96] K. Brown. Design reverse-engineering and automated design pattern detection in
smalltalk. Master’s thesis, North Carolina State University, 1996. TR-96-07.

[Bud94] D. Budgen. Software Design. Addison-Wesley, 1994.

[CE00] K. Czarnecki and U. Eisenecker. Generative Programming. Methods, Tools, and Ap-
plications. Addison-Wesley, 2000.

[Cha94] I. Chai. How to create a new figure with constraints. Technical report, University of
Illinois, 1994.

[CM81] W. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag, Berlin, 1981.

[Coh90] J. Cohen. Constraint logic programming languages. Communications of the ACM,
33:52–68, 1990.

[Cop98] J. O. Coplien. C++ idioms. In J. Coldewey and P. Dyson, editors, Proceedings of
the Third European Conference on Pattern Languages of Programming, 1998. To be
published.

[Cre97] R. F. Crew. Astlog: A language for examining abstract syntax trees. In Proceedings
of the USENIX Conference on Domain-Specific Languages, 1997.

[DD99] M. D’Hondt and T. D’Hondt. Is domain knowledge an aspect? In Proceedings of the
ECOOP99 Aspect Oriented Programming Workshop, 1999.

[DDMW99] M. D’Hondt, W. De Meuter, and R. Wuyts. Using reflective programming to describe
domain knowledge as an aspect. In Proceedings of GCSE’99, 1999.

[DDVMW00] T. D’Hondt, K. De Volder, K. Mens, and R. Wuyts. Co-evolution of object-oriented
software design and implementation. In To appear in the proceedings of the interna-
tional symposium on Software Architectures and Component Technology 2000., 2000.

[Def99] A. Defaweux. Modelling co-evolutionary algorythms through coupled fitness land-
scapes. Master’s thesis, Vrije Universiteit Brussel, 1999.

[DH98] K. De Hondt. A Novel Approach to Architectural Recovery in Evolving Object-
Oriented Systems. PhD thesis, Dept. of Computer Science, Vrije Universiteit Brussel,
Belgium, 1998.

[DM98] W. De Meuter. Agora: The story of the simplest mop in the world - or - the scheme of
object-orientation. In Prototype-based Programming. Springer Verlag, 1998.

[DV98] K. De Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije Universiteit
Brussel, 1998.

[DVD99] K. De Volder and T. D’Hondt. Aspect-oriented logic meta programming. In Proceed-
ings of Meta-Level Architectures and Reflection, Second International Conference, Re-
flection’99, LNCS 1616, pp. 250–272. Springer-Verlag, 1999.

BIBLIOGRAPHY 127

[DVFW00] K. De Volder, J. Fabry, and R. Wuyts. Logic meta components as a generic compo-
nent model. In Proceedings of the ECOOP’2000: Fifth International Workshop on
Component-Oriented Programming, 2000.

[DW00] D. Deridder and B. Wouters. The use of an ontology to support a coupling between
software models and implementation. In Proceedings of the ECOOP’2000 Workshop
on International Workshop on Model Engineering, 2000.

[FB89] B. N. Freeman-Benson. A module mechanism for constraints in smalltalk. In OOPSLA
89 Proceedings, pp. 389–396, 1989.

[FBMB90] B. N. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint solver.
Communications of the ACM, 33, Issue 1:54–63, 1990.

[FJ89] B. Foote and R. E. Johnson. Reflective facilities in smalltalk-80. In OOPSLA 89
Proceedings, pp. 327–335, 1989.

[FMvW97] G. Florijn, M. Meijers, and P. van Winsen. Tool support for object-oriented patterns.
In M. Aksit and S. Matsuoka, editors, ECOOP’97—Object-Oriented Programming,
11th European Conference, volume 1241 of Lecture Notes in Computer Science, pp.
472–495, Jyväskylä, Finland, 9–13 June 1997. Springer.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addisson-Wesley,
1994.

[GM90] P. Gray and Mohamed. Smalltalk-80 : A Practical Introduction. Pitman, 1990.

[GR95] A. Goldberg and K. Rubin. Succeeding with Objects: Decision Frameworks for
Project Management. Addisson-Wesley, 1995.

[GS93] D. Garlan and M. Shaw. An introduction to software architecture. In Advances in
Software Engineering and Knowledge Engineering, V. Ambriola and G. Tortora (eds.),
volume I. World Scientific Publishing, 1993.

[HO93] W. Harrison and H. Ossher. Subject-oriented programming (A critique of pure ob-
jects). In A. Paepcke, editor, OOPSLA 1993 Conference Proceedings, volume 28 of
ACM SIGPLAN Notices, pp. 411–428. ACM Press, Oct. 1993.

[JF88] R. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22–35, June 1988.

[JL87] J. Jaffar and J. Lassez. Constraint logic programming. In Proceedings of the fourteenth
ACM Symposium of the Principles of Programming Languages, pp. 111–119, 1987.

[Joh77] S. C. Johnson. Lint, a C program checker. Computing Science TR, 65, Dec. 1977.

[Joh92] R. E. Johnson. Documenting frameworks using patterns. In Proceedings OOPSLA
’92, ACM SIGPLAN Notices, volume 27-10, pp. 63–76, 1992.

[Jon87] W. C. Jones. Modula2: Problem Solving and Programming with Style. Harper & Row,
1987.

128 BIBLIOGRAPHY

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of ECOOP’97, pp. 220–242. Springer
Verlag, 1997. LNCS 1241.

[KP88] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-controller user
interface paradigm in smalltalk-80. Technical report, Palo Alto, 1988. IB-D913170.

[Lew95] S. Lewis. The art and science of Smalltalk. Hewlett-Packard professional books, 1995.

[LH89] K. Lieberherr and I. Holland. Assuring good style for object-oriented programs. IEEE
Software, pp. 38–48, September 1989.

[Luc97] C. Lucas. Documenting Reuse and Evolution with Reuse Contracts. PhD thesis, Dept.
of Computer Science, Vrije Universiteit Brussel, Belgium, 1997.

[Mae87] P. Maes. Computational Reflection. PhD thesis, Dept. of Computer Science, AI-Lab,
Vrije Universiteit Brussel, Belgium, 1987.

[MDR93] S. Meyers, C. K. Duby, and S. P. Reiss. Constraining the structure and style of object-
oriented programs. Technical Report CS-93-12, Department of Computer Science,
Brown University, Box 1910, Providence, RI 02912, Apr. 1993.

[Mei96] M. Meijers. Tool support for object-oriented design patterns. Master’s thesis, Utrecht
University, August 1996.

[Men99] T. Mens. A Formal Foundation for Object-Oriented Evolution. PhD thesis, Vrije
Universiteit Brussel, 1999.

[Men00] K. Mens. Automating Architectural Conformance Checking by means of Logic Meta
Programming. PhD thesis, Vrije Universiteit Brussel, 2000.

[Mey88] B. Meyer. Object-Oriented Software Construction. International Series in Computer
Science, C.A.R. Hoare, Series Editor. Prentice Hall, 1988.

[Mey00] B. Meyer. Eiffel : The Language. Prentice Hal, 2000.

[Min96] N. H. Minsky. Law-governed regularities in object systems, part 1: An abstract model.
Theory and Practice of Object Systems, 2(4):283–301, 1996.

[MMW00] T. Mens, K. Mens, and R. Wuyts. On the use of declarative meta programming for
managing architectural software evolution. In Proceedings of the ECOOP’2000 Work-
shop on Object-Oriented Architectural Evolution, June 2000.

[MN95] G. Murphy and D. Notkin. Lightweight source model extraction. In Proceedings
of SIGSOFT’95, Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 116–127. ACM Press, 1995.

[MNS95] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the gap
between source and high-level models. In Proceedings of SIGSOFT’95, Third ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pp. 18–28. ACM
Press, 1995.

BIBLIOGRAPHY 129

[MP97] N. H. Minsky and P. P. Pal. Law-governed regularities in object systems, part 2: A
concrete implementation. Theory and Practice of Object Systems, 3(2):87–101, 1997.

[Mur96] G. C. Murphy. Lightweight Structural Summarization as an Aid to Software Evolution.
PhD thesis, University of Washington, 1996.

[MWD99] K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codifying software architectures
using virtual software classifications. In Proceedings of TOOLS-Europe 99, pp. 33–45,
June 1999.

[Pfl98] S. L. Pfleeger. Software Engineering : theory and practice. Prentice-Hall, 1998.

[PW92] D. Perry and A. Wolf. Foundations for the study of software architectures. SIGSOFT
Software Engineering Notes, 17:40–52, October 1992.

[RBJO96] D. Roberts, J. Brant, R. Johnson, and B. Opdyke. An automated refactoring tool. In
Proceedings of ICAST ’96, Chicago, IL, April 1996.

[RDW98] T. Richner, S. Ducasse, and R. Wuyts. Understanding object-oriented programs with
declarative event analysis. In Proceedings of ECOOP’98 Reverse Engineering Work-
shop, June 1998.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

[Rob99] D. Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois at
Urbana Champaign, 1999.

[RWL96] T. Reenskaug, P. Wold, and O. Lehne. Working with objects: the Ooram software
engineering method. Manning Publications, Greenwich, CT, 1996.

[San94] M. Sannella. The skyblue constraint solver and its applications. In Proceedings of the
1993 Workshop on Principles and Practice of Constraint Programming. MIT Press,
1994.

[SG96] M. Shaw and D. Garlan. Software Architecture — Perspectives on an Emerging Disci-
pline. Prentice Hall, 1996.

[SLMD96] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts: Managing the
evolution of reusable assets. In Proceedings OOPSLA ’96, ACM SIGPLAN Notices,
pp. 268–285. ACM Press, 1996.

[SMFBB93] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Borning. Multi-way versus one-
way constraints in user interfaces: Experience with the deltablue algorithm. Software–
Practice and Experience, 23 No. 5:529–566, May 1993.

[Som96] I. Sommerville. Software Engineering. Addison-Wesley, 1996.

[SS88] L. Sterling and E. Shapiro. The art of Prolog. The MIT Press, Cambridge, 1988.

[Ste94] P. Steyaert. Open Design of Object-Oriented Languages, A Foundation for Specialis-
able Reflective Language Frameworks. PhD thesis, Vrije Universiteit Brussel, 1994.

130 BIBLIOGRAPHY

[TDM99] T. Tourwé and W. De Meuter. Optimizing object-oriented languages through architec-
tural transformations. In 8th International Conference on Compiler Construction, pp.
244–258, 1999.

[Tho94] J. Thompson. The Coevolutionary Process. University of Chicago Press, 1994.

[Tou00] T. Tourwé. Framework optimization through declarative program specialization. Tech-
nical report, Vrije Universiteit Brussel, 2000.

[VV96] A. Vercammen and W. Verachtert. Psi: From custom developed application to domain
specific framework. In Addendum to the proceedings of OOPSLA ’96, 1996.

[WDVP00] B. Wouters, D. Deridder, and E. Van Paesschen. The use of ontologies as a backbone
for use case management. In Proceedings of the ECOOP’2000 Workshop on Objects
and Classifications, a natural convergence, 2000.

[Web96] The New International Webster’s Comprehensive Dictionary of the English Language.
J.G. Ferguson Publising Company, 1996.

[Wuy96] R. Wuyts. Class-management using logical queries, application of a reflective user
interface builder. In I. Polak, editor, Proceedings of GRONICS ’96, pp. 61–67, 1996.

[Wuy98] R. Wuyts. Declarative reasoning about the structure of object-oriented systems. In
Proceedings TOOLS USA’98, IEEE Computer Society Press, pp. 112–124, 1998.

[Wuy00] R. Wuyts. The Implementation and Usage of SOUL. Vrije Universiteit Brussel, Brus-
sels, Belgium, 2000.

