Vrije Universiteit Brussel
Programming Technology Lab

Faculty of Sciences
Department of Computer Science
Academic Year 2000 - 2001

RSIT,
$\\1E E/r@

N) A
slm |
wn N %]
Q <
< 9 loy

Dy, &

/ <
4 “
’///\/CERE \2

A Finite State Machine Approach to
Real-Time Scheduler Generation for
Embedded Systems

Jessie Dedecker
jessie.dedecker@vub.ac.be

Promotor: Prof. Dr. Theo D’Hondt

Thesis submitted in partial fulfill-
ment of the requirements for the degree
of Licenciaat in de Informatica

Abstract

Component-based development is a paradigm that explicitly emphasizes the
reusability problem. Components are software pieces that are plugged to-
gether to form a program. Each component can be seen as a reusable part
that can be plugged in other software compositions. Unfortunately em-
bedded software has special characteristics (such as robustness, timing be-
haviour, ...), which compromise the reusability of such software. Therefore,
components are not adapted to the characteristics common to embedded
software. A real-time system runs software in which the correctness of the
program depends not only on the logical results, but also on the time at
which the results are produced. Timing constraints are used to specify the
temporal corectness of the software. A real-time system is often concurrent
by nature. A scheduler determines which concurrent process has priority
over the others to keep up with the timing constraints. We use an adapted
component model in which all component communication is asynchronous.
This thesis proposes a way to extract semantic data from the component
source code. The extracted data can be converted to a deterministic finite
automata (DFA) which can be used by a finite state machine (FSM) to
track the progress of the software. The information of the tracker can be
used to make scheduling decisions on a single-processor embedded system.
The techniques presented in this dissertation are a first step towards the
reusability of software components in real-time embedded software.

Contents

I Describing Real-Time Behaviour 3
1 Embedded Systems 5
1.1 Definitions Lo)
1.2 Characteristics Lo o 6
1.3 Evolution in the Way of Developing 7
1.3.1 Current Practices in Embedded Software Development 7

1.3.2 Opportunities for Code Reuse 8

1.4 Problem Definition 0 000 8

1.5 Approach 9
1.6 Summary 11

2 Components and Reusability 13
2.1 Definitionso 13
2.2 Components vs. Objects 14
2.3 Plugging Components Together 15
24 Summaryo e e e e e e e 15

3 The Component System 17
3.1 Definition 17
3.2 Tasks of a Component System 17
3.3 Component Communication 19
3.3.1 Shared Memory vs. Message Passing 19

3.3.2 Synchronous vs. Asynchronous messages 20

3.4 Levels of Concurrency 23
3.4.1 Component Interaction Concurrency 24

3.4.2 Intracomponent Concurrency 24

3.4.3 Intercomponent Concurrency 24

3.5 Internal Structure of the Component System 24
3.6 Scheduling in the Component System 27
3.7 Summaryo 28

iii

CONTENTS

4 Describing the Abstract Behaviour of a Program

4.1 Message Sequence Charts
4.1.1 Introduction
4.1.2 Basic Message Sequence Chart
4.1.3 High-Level Message Sequence Chart

4.2 Describing the Behaviour of a Program using MSCs
4.2.1 Problems with MSCs
4.2.2 Abstract MSCs vs. Concrete MSCs

4.3 Describing the Abstract Behaviour of a Component
4.3.1 Dealing with Programming Language Constructs . . .
4.3.2 Describing Abstract Exceptions

4.3.3 Distinguishing the Different Messages within a Com-
ponent

4.3.4 Describing Return-Messages
4.3.5 Undetermined Interface Providers
4.4 Adding Message Parameters
4.5 Refining the MSCs using the Parameters
4.6 Summaryo e e e

Describing the Concrete Behaviour of a Program

5.1 Resolving unknowns L.
5.1.1 Determining the Required Interface Providers
5.1.2 Determining the Clients of a Component.

5.2 Making Exceptions Concrete

5.3 Matching the Parameters

5.4 Summaryo e e e e e

Describing Real-Time Behaviour
6.1 Message Triggerso

6.1.1 Evaluation of time-triggered software vs. event-triggered
software

6.2 Describing Message Triggers
6.2.1 Aperiodic Messages
6.2.2 Periodic Messages
6.2.3 Sporadic Messages,

6.3 Dependencies L o

6.4 Specifying Time Constraints
6.4.1 Existing Syntax
6.4.2 Review of the Different Methods

6.5 Summary e e

CONTENTS v

II Scheduling 61
7 Schedulability Analysis 63
7.1 Execution Time L. 63
7.1.1 Problems with Measuring Execution Time 64

7.1.2 Expressing the Execution Time 65

7.1.3 Test Sets 66

7.2 Problem: Loops. 67
7.2.1 Loops Embedded in Code 68

7.2.2 Loops Encountered in Inter-Component Communication 69

7.3 Schedulability Test 70
T4 Summary e e e 73

8 Tracking the Execution of a Program 75
8.1 Message-Based Tracking 75
8.2 Constraint-Based Tracking 76
8.3 Requirements for Real-Time Software 80
8.4 Summary 80

9 Real-Time Scheduling 83
9.1 Available Information 83
9.2 Priority-Driven Scheduling Algorithms 84
9.2.1 Static Scheduling Algorithms 85

9.2.2 Dynamic Scheduling Algorithms 85

9.2.3 Hybrid Scheduling Algorithms 87

9.3 Adjusting Thread Priorities using a DFA 87
9.3.1 Time-Constrained Components 88

9.3.2 Adjusting the priorities 88

9.3.3 Scheduling using the Real-Time Behaviour 90

9.3.4 The Role of Refined MSCs 92

9.4 Scheduling with Queues 93
9.5 Summary e 94

10 Example: A Real-Time Simulation 95
10.1 The Basic System 95
10.2 Component Properties 95
10.2.1 Pump Component 97

10.2.2 Pipe Component 97

10.2.3 Join Component 98

10.2.4 Graphical Components 98

10.3 Real-Time Parts 98
10.4 Handling the Dependencies 99

10.5 Summary 100

vi CONTENTS
11 Mapping m Components onto n Threads 101
11.1 Context Switching 101
11.2 Mapping Multiple Components onto 1 Thread 102
11.3 Maintaining Schedulability 102
114 Summary e 104
12 Conclusion 105
12,1 Summaryo 105
12.2 Overall Conclusion 107
12.3 Future Work 108
12.3.1 Experiments, 108

12.3.2 Future Research 108

A Conversion of Constructs to MSCs 111
B Abstract MSCs of Conduit Components 115
C Timing-Marked MSCs of ConduitSystem 121

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
9.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Outline of this dissertation 10
Shared Memory o 20
Synchronous (a) vs. Asynchronous (b) messages 23
Levels of Concurrency 25
Example message in Component Code 26
Logical Model of the Component Communication 26
Pluggable Scheduler 27
Example of two equivalent basic MSCs 30
Example of a basic MSC using inline operator expressions . . 31
Building Constructs of High-Level MSCs 32
Example of a High-Level MSC 32
Example of Exceptions in Component-Code 36
Abstract MSC describing exceptions 37
Example of a Return Message 38
Undetermined receivers 39
Denoting Parameters on an MSC, 40
Code from the Watcher Component 41
Abstract MSC for Watcher.NotifyAll() 41
Refined MSC for Watcher.NotifyAll() 42
Solution to Undetermined Receivers 44
Compact Solution to Undetermined Receivers 45
Solution to Undetermined Clients 46
Possible execution traces 46
Example: Aperiodic Message 52
Example: Periodic Message 52
Example: Describing Dependencies 53
Example of a basic MSC with timers 55
Example of Event-associated Timing Constraints 56
Example of Delivery Delays and Processor’s Speed Constraints 56
Example of Time Constraints on UML Sequence Diagrams . 57

vii

viii

6.8

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.2

Al
A2
A3
A4
A5

B.1
B.2
B.3
B4
B.5
B.6
B.7

C.1
C.2
C.3

LIST OF FIGURES

Example of an MSC with timing markers 58
Documented Loops oo 69
Intercomponent Loops - Internal Queues 70
Documented Intercomponent Loops 71
Necessary Schedulability Test 72
Example of a Concrete MSC 7
NFA corresponding to the Concrete MSC 78
Timing-marked MSC for the Logger 79
DFA of the Constraint 80
Relation between MBT and CBT 81
Example of a Timing-marked MSC 88
DFA with the dependencies 89
Example: Dependent UpdatePicture() message 91
Example: Controlsystem of Nuclear Power Plant 92
Internal Queue Structure oL 93
UML Component Diagram of the System 96
Configuration of the Conduit System 96
Periodic Step Message for Pumpl 97
Join: Dependencies 98
Timing-marked MSC for timing constraint 100
Dependent Path Computed for the Step() Message 100
Message Processor Concept 102
Example: Failing deadline on mapped components 103
Conversion of if-then constructs 111
Conversion of if-then-else constructs 112
Conversion of switch constructs 112
Conversion of while-do constructs 113
Conversion of do-while constructs 113
Join: Link-Take 116
Join: Propose-Step o Lo 116
JoinView: InstallJoin - GenerateHTML 117
Pump: Step 117
Pipe: Link-Propose L. 118
Pipe: Step 118
PipeView: InstallPipe - GenerateHTML 119

Timing-marked MSC: PipeE needs to be updated within 500ms122
Timing-marked MSC: PipeD needs to be updated within 500ms122
Timing-marked MSC: JoinA needs to be updated within 500ms123

LIST OF FIGURES ix

C.4 Timing-marked MSC: PipeA needs to be updated within 500ms123

LIST OF FIGURES

List of Tables

3.1
3.2

4.1

6.1

7.1
7.2

9.1

Comparison of Shared Memory vs. Message Passing 20
Parameters Passed with Asynchronous Messages 26

Mapping of Control Flow Structures to Inline Operator Ex-

PIESSIONS v v i e e e e e e e e e 35
Comparison of Event-triggered vs. Time-triggered Software . 51
Sample List of the Average Execution Times 72

Extra Information Needed for a Sufficient Schedulability Test 72

Dependent Components 89

x1

xii

LIST OF TABLES

Acknowledgements

This dissertation would not be what it is today, without the enormous
amount of support that was given to me. Therefore I wish to express my
gratitude towards:

Prof. Dr. Theo D’Hondt for promoting this dissertation

Werner Van Belle who came up with the subject and who helped me through
every stage of this work from preparation through implementation and writ-
ing to proofreading. His comments and professional advise were very sup-
portive and constructive.

Dr. Kim Mens, Dr. Tom Mens and Johan Brichau for proofreading my
work and giving me valuable advise on both the content and the linguistics

of this dissertation.

Holger Kenn for giving me advise about the time analysis of the component
system.

The researchers of the Programming Technology Lab for listening and giv-
ing comments during the weekly presentations.

My parents for giving me the opportunity to study in the best possible cir-
cumstances and for being my best supporters.

The Vrije Universiteit Brussel for the excellent education.

LIST OF TABLES

Part 1

Describing Real-Time
Behaviour

Chapter 1

Embedded Systems

Embedded systems exhibit certain characteristics such as timing behaviour
and high reliability demands, which have a great influence on the software
development cycle. This chapter discusses these characteristics and how
they have an impact on the development of embedded software. The chapter
concludes with the exact contribution of this dissertation and an outline of
the other chapters in this dissertation.

1.1 Definitions

The word “embedded” can be used in different contexts which are loosely
linked together, but each have a distinct meaning. As is common in the area
of computer science there are often different versions of definitions for each
term. The definitions we will use here are taken from [1, 2].

Definition 1 (Embedded Processor) Special features in respect to power-
consumption, i/o-ports, and / or price of a processor are often used to denote
a processor as being “embedded”.

E.g., most of the microprocessors that are based on an ARM core are
embedded processors.

Definition 2 (Embedded System) A computational device, which is strongly
subject to physical constraints in its functional behaviour. It can for exam-

ple be linked to a mechanical system or a chemical process, requiring timely
responses obeying natural laws. Not only time, but also other factors like for
example energy can be severe physical constraints.

E.g., an autonomous mobile robot.

Definition 3 (Embedded Software) Embedded software is software that
runs on one or more processors embedded in a product and that is inextri-
cably bound up with this product and its functionality. It cannot be bought
separately, and it constitutes a large added value for the product.

5

6 CHAPTER 1. EMBEDDED SYSTEMS

E.g., software used in a mobile phone.

1.2 Characteristics

Embedded systems can be recognized because they exhibit some character-
istics that distinguish them from most desktop applications.

Robustness and Reliability Embedded systems have high reliability
and robustness demands: Depending on the task performed by an embedded
system, a failure in this system can be the cause of serious damage. E.g.
the software that controls the airbags in your car, the software in a missile
guiding system. Also, embedded software is difficult if not impossible to
upgrade. Furthermore, the lifetime of embedded systems is often very long,
which adds to the demands of robustness.

Time Constraints An embedded system typically interacts continuously
with the surrounding environment and has to do this in a time-constrained
manner. Most embedded systems exhibit a real-time behaviour. The very
nature of real-time embedded applications makes certain characteristics of
their implementation (such as timing and implementation architecture) crit-
ical. Usually, the software in these applications is responsible for the control
of other equipment (e.g., mobile robots need real-time software to control
the motor-sensor interactions).

Most real-time embedded systems are, by nature, multitasking solutions
to real-world problems. The different parts of these systems usually run
at different priorities and with different run-time characteristics. The no-
tion of multiple tasks or threads being active in the system at the same
time is common. Some of these real-time systems are deployed on a set of
microprocessors in a distributed architecture.

Because real-time systems are the main topic of this dissertation we
provided some clear definitions of the terms that are going to be used in the
remainder of this dissertation:

Definition 4 (Real-Time System) a Real-time System runs software in
which the corectness of the program depends not only on the logical results,
but also on the time at which the results are produced.

E.g. a mobile robot.

Definition 5 (Hard Real-Time System) a Hard Real-Time System is a
real-time system in which the lack of adherence to timing constraints results
i a system that becomes useless and could result in a catastrophic system
failure.

1.3. EVOLUTION IN THE WAY OF DEVELOPING 7

E.g. propulsion system of a space shuttle.

Definition 6 (Soft Real-Time System) a Soft Real-Time System is a
real-time system in which the ability to meet deadlines is indeed required,
but failure to do so does not render the system useless, nor does it cause a
system failure.

E.g. a network router.

Resource Constraints Another important characteristic of embedded
systems is the wide variety of critical metrics that must be taken into account
in the software. These metrics include throughput, latency, program and
data memory requirements, energy consumption, and financial cost.

1.3 Evolution in the Way of Developing

A lot of progress has been made to the area of developing desktop application
over the last decades, while the evolution of software development for em-
bedded systems has made little evolution, because embedded software was
so small and not interesting from a research point of view. Embedded soft-
ware becomes complexer, because advanced processors and more memory
becomes available at cheaper prices.

1.3.1 Current Practices in Embedded Software Development

A lot of embedded software developers are still writing their software in low
level languages such as C and assembly code, which makes the produced code
error-prone, unreliable, difficult to read and therefore difficult to maintain.
In a lot of embedded software development there is little or no reuse of
existing code.

This is caused by several reasons of which some are mentioned here:

Abstraction comes with a cost Many developers believe that the use
of data abstraction comes with a cost in performance. In the early days
this assumption was true, but over the years the compilers have evolved and
have become more efficient with each new release. Processors also provide
more computational power at the same costs compared to a few years back.

Diversity of hardware used in embedded devices Code developed
for a particular embedded system sometimes cannot be reused because a
different chip architecture is used and the code does not compile for the new
platform.

8 CHAPTER 1. EMBEDDED SYSTEMS

1.3.2 Opportunities for Code Reuse

The opportunities for software reuse depend on the available resources in
the embedded system. We can distinguish three different kinds of embedded
systems based on the available resources.

e Severely constrained embedded systems have extremely limited resources
available and perform mostly obvious tasks. Because of the limited
memory it becomes impossible to use any high-level language and most
of the software is developed using assembly code and C code. The
functionality of such an embedded device is often also implemented in
hardware instead of software. Example: a simple digital watch.

o Moderately constrained embedded systems have typically more complex
software, which adds to the needs of having more resources available.
The need for more complex software is mostly caused by the need of
extra features on certain embedded devices. Examples: a television
set, a set-top box, a digital camera, ...

o Loosely constrained embedded systems have resources available that
can be compared or even exceed that of a regular Desktop PC. The
development cycle of software for such an embedded system cannot be
compared to that of a Desktop PC, because they are still inextrically
bound with the hardware of the device. Besides that, the characteris-
tics of robustness, high reliability demands and timing-behaviour still
exist. HExamples: control systems for nuclear power plants, control
systems for industrial manufactoring.

It is obvious that there is little opportunity for code reuse in severely
constrained embedded systems because these programs are so small due to
the severe limitations on memory usage and CPU power. On the other hand
moderately constrained and loosely constrained embedded systems could ben-
efit from using a software development methodology that has reuse foremost
in mind.

1.4 Problem Definition

In the early days embedded systems were so small, that reuse of existing
software was practically impossible. So with each new embedded system a
new version of the software was written. Advanced processors and memory
became cheap over the years, the embedded systems became more complex
as well as the software. This increased complexity required research on a
higher level for embedded systems.

Edward A. Lee [8] reduced most of this research to one question:

1.5. APPROACH 9

“How do we adapt the software abstractions designed merely to

transform data to meet requirements like real-time constraints,
concurrency and robustness?”

The SEESCOA (Software Engineering for Embedded Systems using a
Component-Oriented Approach) consortium tries to find an answer to the
question stated above using an adapted component-oriented approach. Mem-
bers of this consortium are research teams from different flemish universities.
There are two research groups of the VUB that participate in this consor-
tium, namely the Programming Technology Lab and the System and Soft-
ware Engineering Lab. Chapters 2 and 3 describe this adapted component-
oriented approach and contain information from the deliverables [3] of the
SEESCOA project.

1.5

In this dissertation we will focus on how we can do soft
real-time scheduling for this adapted component-oriented
approach, while trying not to harm the reusability princi-
ples of the independent components. Scheduling decisions
will be made using semantic data extracted from the source
code.

Approach

This section describes how this dissertation is organised. Figure 1.4 gives a
total view on the outline of this dissertation.

Chapter 2 gives a short introduction to components.

Chapter 3 describes the implementation of the component system that
is used throughout this dissertation and how it is adheres to the
adapted component definition [10] proposed by the SEESCOA con-
sortium. This chapter reflects the global view shown in figure 1.4.

Chapters 4 and 5 propose a formal documentation format to describe
the communication behaviour of the components. This is shown in
figure 1.4 as the component documentation that is given as input to
the tracker and the scheduler.

In chapter 6 we discuss how to extend the documentation with infor-
mation that is common to the characteristics of embedded software.

Chapter 7 discusses measuring the execution times of components. It
also describes how the documentation can be used together with the
execution times to analyze the temporal behaviour of the software.

EMBEDDED SYSTEMS

CHAPTER 1.

10

Component Documentation

[

Vo Vo

Thread 1 Thread 2 Thread m-1 Thread m

Cor
5 E B B B

Component Component Component Component
1 e 2 . e n-1 e n

Component
Communication

ComponentSystem

Tracker

I

U

Scheduler

Figure 1.1: Outline of this dissertation

1.6. SUMMARY 11

e In chapter 8 we give an algorithm to follow the execution of a running
system by matching the component interaction with the documen-
tation. The tracker is encorporated in the scheduler component in
figure 1.4.

e Chapter 9 describes how the tracker is used to enforce the temporal be-
haviour within the component system. In figure 1.4 this is represented
with the line between the scheduler and the different threads.

e In chapter 11 we discuss how to reduce the overhead by reducing the
number of threads in the component system, without affecting the
temporal constraints of the embedded system. Represented with the
brace between the threads and components in figure 1.4.

e Chapter 12 is a reiteration of the previous chapters. This chapter also
discusses future work.

1.6 Summary

Existing paradigms that support code reuse do not take the characteristics
that are specific to embedded systems into account. The opportunities for
code reuse depend on the available resources in the embedded system. This
dissertation focusses on how we can make soft real-time scheduling decisions
by using semantic data extracted from the source code.

12

CHAPTER 1.

EMBEDDED SYSTEMS

Chapter 2

Components and Reusability

The latest paradigm that is used for software reuse is called component
based development (CBD). Remember from chapter 1 that most research
about embedded systems is to find an adapted software abstraction so that
it meets the characteristics of the embedded systems. In this dissertation we
adapt the CBD paradigm to meet these characteristics. Component based
development is given preference to object-oriented development because a
component is explicitly designed for reuse, which is not always the case for
objects. Components are analogous to hardware components. For example,
when a new television set is put together and the manufacturer chooses to
replace the analogue tuner with a digital one, then the idea is to replace
the software component controlling the analogue tuner with another version
supporting a digital tuner. The adaptation of the software to the new hard-
ware design can then happen by replacing one component, while reusing the
other software components.

2.1 Definitions

Throughout the rest of this dissertation we use some terms related to com-
ponents. Because there exist many definitions and terms about components
we describe what is meant by them in this section.

Definition 7 (Component) A component is a reusable documented soft-
ware entity that is used as a building block for software systems. It is used to
perform a particular function in a specific application environment within a
specific component system. Components are composed (glued together) using
their interfaces. These interfaces consist of provided interfaces and required
interfaces.

As stated in the definition above a component has two kinds of interfaces:
provided interfaces and required interfaces:

13

14 CHAPTER 2. COMPONENTS AND REUSABILITY

Definition 8 (Provided Interface) A Provided Interface describes the code
signatures that must be used to access the services provided by the compo-
nent.

Some components cannot provide their services without accessing ser-
vices of other components.

Definition 9 (Required Interface) A required interface describes what
services a component needs to be able to provide its services.

E.g. a component providing webservices needs the services of a network
component to send the requested data over the network.

In the component definition a distinction has to be made between an
abstract component and a concrete component.

Definition 10 (Abstract Component) An abstract component is a de-
scription of a reusable software element; it does not have a state. It also
does not make sense to talk about the runtime properties of an abstract com-
ponent.

Definition 11 (Concrete Component) A concrete component is an in-
stantiation of an abstract component and has run-time properties.

The term component is more general; by using it we mean both aspects.

Definition 12 (Interface Provider) An interface provider is a compo-
nent that is capable of providing the services defined by an interface, also
sometimes called the implementor of an interface.

Definition 13 (Client) A component A that is using the services provided
by component B is called a client of component B.

2.2 Components vs. Objects

Concrete components are not objects. And in consequence, abstract com-
ponents are not classes. First of all, components cannot inherit from other
components. Objects do inherit from each other (they inherit the implemen-
tation). Abstract components are also extensively documented, which is not
always the case for classes. Note that in some cases classes are documented
with diagrams, semantics, call protocols, and so on, but this information is
not explicitly described in the object definition. This information is often
added in an informal way. When a component is implemented, it will prob-
ably use different objects to perform its functionality (of course in the case
an OO language is chosen). Therefore some books talk about components
as if they were big objects. This is true to some extent, but limiting the

2.3. PLUGGING COMPONENTS TOGETHER 15

component definition to this would be wrong. A concrete component should
be thought of as having its own code and data space and also its own thread
of control. This is necessary to have the ability to use different synchroniza-
tion principles and make components reusable. Thinking a component has
its own control flow will be more general than a component which enforces
certain calling strategies upon other components. Or, a component written
in the assumption its memory will be accessed by other components is more
specific than a component which does not share its data using these kinds
of techniques.

A component (the abstract as well as the concrete component) is always
used in a certain application environment and in addition it also offers an
application environment to its users.

2.3 Plugging Components Together

When creating a program we need to puzzle over the different interfaces
of the components. In a fully standardized world this could be done by
just matching the correct interfaces of the different components. The real
world, however, is not standardized at all, which implies that the component
manufacturers invent names for the interfaces as they are needed. Because
of this, different interfaces are provided for accessing the same services.
Another problem that we are faced with is that when two components are
communicating, data is passed along in the form of parameters. The format
or types of these parameters needs to match as well. To overcome the
problems stated above we need a bit of code to convert the parameters when
components interact with each other. To match the different interfaces we
can use the adapter pattern as described in [16]. The extra code that is
needed to have a flawless communication between the components is called
glue code.

2.4 Summary

Software components are reusable software entities. They have the explicit
guarantee that they are reusable in other software compositions. Compo-
nents are however not adapted to the characteristics common to embedded
software. In this chapter we have described how the components are adapted
to match these characteristics.

16

CHAPTER 2. COMPONENTS AND REUSABILITY

Chapter 3

The Component System

This chapter starts by giving a rough definition of a component system.
Afterwards we discuss what services should be provided by a component
system for use in embedded systems. We conclude this chapter by looking
more closely at how some of these services are satisfied in the component
system that is used throughout this dissertation. Because component com-
munication is one of the main services a component system provides we
discuss on the different communication methods that can be used in a com-
ponent system. As most embedded systems are concurrent, we talk about
how concurrency can be introduced into the component system. Finally we
discuss what services the component system provides in order to create a
real-time system.

3.1 Definition

The component system is the infrastructure (framework, architecture or
kind of operating system), which makes component instances work together,
which glues them and creates a homogenous environment for them. The
component system can be seen as the middleware that connects different
components and which makes them work together. To use a metaphor: the
component system provides the streets while the components are the cars
driving on it.

3.2 Tasks of a Component System

This section gives a brief overview of the services a component system could
provide to the components running on the system. These services are not
always a requirement, it depends on the nature of the embedded system
onto which the component system has to run. This is why we make the
distinction between the required base services and the optional services.

17

18 CHAPTER 3. THE COMPONENT SYSTEM

Base Services

The component system

e Makes components work together. The component system should cre-
ate and destroy component instances and be able to start and stop
component instances.

e Abstracts the hardware and the operating system such that all com-
ponents run in the same environment. For example, if we work in an
embedded system with segmented memory or in a system with five
flavors of memory access, the component system should solve this and
offer a more or less flat interface to it. This abstraction should be as
lightweight and as performant as possible in embedded systems. The
component system should be mapped upon the operating system and
programming language as closely as possible. It is not said that all
hardware dependent issues should or could be put into the component
system. All general hardware aspects that have impact on all of the
code (like the memory access example) should be put into the com-
ponent system. Modular hardware access, such as devices, can be put
into separate components.

e Handles message passing between components: If a component wants
to make another component do something, or whenever the state of
another component has to be changed, a message is send to the com-
ponent in question. Components must be able to send messages to
other components using a reference (which can be obtained by using
the unique name of the component). The component system takes
care of sending data (over a network for example), calling the right
function on components and eventually other ways of passing mes-
sages between components. This includes changing the data format if
necessary, as is done in CORBA. Nevertheless, the component system
is not necessarily a distributed environment.

e Provides some standard glue components to adapt interfaces between
different components. For example, a certain component can return a
callback with a specific name, whilst the receiver expects the message
with another name. This can be handled by certain glue components.

e Intercepts hardware and software interrupts and models them as send-

ing a message to the appropriate component handling the interrupt.

Optional Services

e Can have support for introspection. When working with components
we need the ability to find, name and rename components. These

3.3. COMPONENT COMMUNICATION 19

abilities could be provided by the component system. Furthermore,
sometimes it is necessary that a client can query a component about
its services. Mostly the client is bound to the components interface
at client construction time (e.g. when the client is compiled). When
introspection is possible, the client is not bound at client construction
time, but it can dynamically (at runtime) find the services of a com-
ponent. This can be compared to the reflection mechanism in Java
and Smalltalk.

e Handles the scheduling between components. Because components are
thought of as active entities it is necessary to map this view to a real
operating environment. This is done by the component system, which
ensures priorities of messages between components, which takes care
of (hard) real-time constraints and scheduling in general.

3.3 Component Communication

Components need to interact with each other for different reasons such as
requesting services, notification of an event, etc... This happens through
component communication, which is a base service of the component system.
In this section we give a brief overview of how the different components can
communicate with each other.

3.3.1 Shared Memory vs. Message Passing

There are basically two ways in which components can communicate with
each other: through shared memory and by sending messages.

Shared Memory

In a shared memory architecture the different components have a common
memory region in which data can be written and read (see figure 3.1). When
component A wants to communicate information to component B it writes
data to the shared memory and this data is then read by component B.
Component B does not know when component A will have some data for
him, so it will poll the memory at certain times. When memory is accessed
by different concurrent processes, different situations can occur that can
make the data in memory inconsistent. For example, when component A is
writing data to the shared memory and component B starts writing data in
the same memory region, the data could become inconsistent. Problems as
these are solved by placing a lock before accessing the shared resource and
removing the lock when the component is done accessing the shared resource.
Placing locks is a good way of avoiding such problems, but makes the code
prone to situations such as deadlocks and livelocks. Another disadvantage is

20 CHAPTER 3. THE COMPONENT SYSTEM

Shared
Memory
Component Component Component
1 2 e n

Figure 3.1: Shared Memory

‘ ‘ Shared Memory ‘ Message Passing

Efficiency + -
Distributed access - +
Reusability - +

Table 3.1: Comparison of Shared Memory vs. Message Passing

that shared memory is hard to use in a distributed environment as memory
is bound to a machine. There is some research done to use memory in a
distributed environment [4]. One could also argue that the usage of shared
memory conflicts with the idea of reusability. When we have a look at the
different paradigms that were invented we see that shared memory is tried
to be kept to a minimum. In procedural languages the use of local variables
was recommended as much as possible. In object-oriented languages a step
further is made by putting the data space with the operations onto that
data into one encapsulated entity.

Message Passing

When component A needs to communicate with component B it could also
send a message to component B. This message would then contain the in-
formation for component B. Message passing has the same overhead as a
regular procedure call. When a message is passed, the parameters are put
onto the stack and some call is made to component B.

3.3.2 Synchronous vs. Asynchronous messages

Considering the different advantages and disadvantages of shared memory
and message passing, the choice was made to do all component commu-

3.3. COMPONENT COMMUNICATION 21

nication through message passing. All component communication is done
through the communication layer of the component system. This layer is
necessary to lookup the components’ location on the system or on another
system in a distributed environment. The layer is also used to provide in-
formation to the scheduler. There are two ways in which components could
send messages among each other:

e Synchronous messages can be compared with regular method calls, so
when component A sends a message to component B at some point,
then component A is interrupted, component B processes the message
and afterwards component A resumes (Figure 3.2 (a) on page 23). This
kind of behaviour is the typical behaviour of most object-oriented and
procedural programming languages.

e Asynchronous messages happen if component A sends a message to
component B and component A does not wait until B has processed
this message before continuing. This implies that component A and B
can process their messages concurrently. Figure 3.2 (b) on page 23
shows an asynchronous method call on a single processor system.
Asynchronous messages are used in actor-based languages [5].

The component system used in this thesis uses an asynchronous message
model for all the intercomponent communication. Such a message model
introduces concurrency into the component system implicitly. This has a
number of advantages over an explicit thread based system:

Communication between concurrent parts happens through explicit mes-
sages and not through a shared data space. As noted earlier a shared re-
source can introduce subtle errors in a program.

Semantic information can easily be extracted from messages. We will
explain later (see chapter 4) why this is important and how this can be done.

Mapping Using messages allows a customised mapping of components
onto threads. Chapter 11 is dedicated to this subject.

Safeness Asynchronous messages are safer when used in distributed envi-
ronments. When a computer crashes in synchronous communication, then
the system is waiting for data that never comes resulting in a locked system.

But an asynchronous message model also has some drawbacks that need
to be considered:

22 CHAPTER 3. THE COMPONENT SYSTEM

Return values When an asynchronous message m is sent by component
A to component B, then component A does not wait until component B has
processed that message and cannot get a return value. One of the reasons
component A could have send a message to component B is to compute some
value and then return that value. Hence when component B has computed
that value it can send a message back to component A containing the return
value. The problem now is that, while component A was awaiting that return
value, it might have processed other messages that altered its state, making
it impossible to use the return value in further computations. Situations
like these are resolved by adding a special kind of parameter to the message
m, namely a hidden parameter [6]. The semantics of a hidden parameter
are as follows:

e When a component processes a message with a hidden parameter,
then this parameter is send along with all messages that are sent while
processing that message.

e Only the component that has put the hidden parameter in a message
can access that parameter. This means the parameter is hidden for all
other components.

Now when a component A sends message m to component B, it can put
the state of that computation in a hidden parameter. When component B
sends a return message with the computed value, the hidden parameter will
be sent along. Component A can now access the hidden parameter, restore
its state and continue with that computation.

Extra code Each time a component sends a message to a component that
sends a message back with a return value, that component needs to provide
code that:

1. Saves the state of the computation
2. Accepts the message containing the return value
3. Restores the state the computation

It is obvious that the extra amount of code causes the programming cycle
to be prolonged and creates computational overhead.

Order of the messages When different asynchronous messages are sent
to a component, then there is no guarantee in what sequence they will arrive
at that component. This can cause several problems such as race conditions.
Consider following example: A component provides access to a certain socket
on a network interface. The component provides an interface to do the
following three operations: OpenSocket, WriteToSocket and CloseSocket. A

3.4. LEVELS OF CONCURRENCY 23

a) Synchronous b) Asynchronous
A_f() call to B.g() A.f() call to B.g()
part 1 part 1

> | >
B.g() A0 | :
\
— part 2 B_g()
Af() | |
part 2 v‘ v‘

Figure 3.2: Synchronous (a) vs. Asynchronous (b) messages

component accessing this component will typically first send an OpenSocket
message followed by several WriteSocket messages and eventually request to
close the socket. This example shows that the order of the incoming messages
cannot be altered and should be preserved at all times. The component
system assures that the order of the incoming messages is preserved.

3.4 Levels of Concurrency

In embedded systems we often want to create a system that is able to react
to events that happen in its environment. Most of the time the embedded
system is performing other tasks when these events occur. When a system
has to react to these events within a time bound we cannot always wait
until the system has finished the other tasks. This is why many embedded
systems have concurrent software. The Octopus methodology [7] describes
three ways for introducing concurrency into an object-oriented system in a
single processor architecture. Figure 3.3 comes from [7], but is adapted to
components. These three distinctions can also be made in a component-
based system:

1. Component interaction concurrency
2. Intracomponent concurrency

3. Intercomponent concurrency

24 CHAPTER 3. THE COMPONENT SYSTEM

3.4.1 Component Interaction Concurrency

When a message for a component is processed, the component system chooses
the message that is going to be processed next. After processing that mes-
sage, another message is chosen for processing. Two messages cannot be
processed simultaneously, so this is actually a single-threaded system. It is
important to note that, when a message is being processed, it must com-
plete before another message can be processed. Such behaviour is called
non-preemptive (see figure 3.3). Component Interaction concurrency can-
not be used in Real-Time Systems because it lacks pre-emptive concurrency.
Pre-emptive concurrency is a requirement for a Real-Time System. It is ob-
vious that when the processing time of a message is relatively long and a
new time-constrained message occurs, the system is unable to process the
message within the time boundaries. (Also see figure 3.3).

3.4.2 Intracomponent Concurrency

In intracomponent concurrency a single component can process multiple
messages concurrently (see figure 3.3). this kind of flexibility is not rec-
ommended because it can introduce subtle errors into the system (such as
deadlocks, livelocks, etc...). This kind of concurrency also works by default
on shared resources, which is the source of many of these problems men-
tioned above. These problems make the extendibility of a system difficult
without introducing concurrency errors into the system.

3.4.3 Intercomponent Concurrency

When a component is processing a message and a different component re-
ceives a message, then the message that is currently being processed can
be interrupted or pre-empted to process the message received by the other
component first (see figure 3.3). The distinction between component inter-
action concurrency and intercomponent concurrency comes from the fact
that a message can be pre-empted for another message in intercomponent
concurrency. Intercomponent concurrency is the kind of concurrency that is
used in the component system to avoid the problems that were stated above.
In a system using intercomponent concurrency the use of shared resources is
avoided where possible. Because each component has its own resources it be-
comes easier to distribute the components onto different embedded systems
that can communicate with each other.

3.5 Internal Structure of the Component System

In section 3.3.2 we have advocated our choice for asynchronous communi-
cation between the different components. This section discusses how asyn-

3.5. INTERNAL STRUCTURE OF THE COMPONENT SYSTEM 25

R

e
: i o | mi Thread
C ! T 1 T
m2 1
u c m2 !
t | - ¢ | .
i B ! Waiting
c i thread

o] 3
n
. Executing
: c m3 thread
! L L
e 4

Component Intracomponent Inter-component

Interaction

Figure 3.3: Levels of Concurrency

chronous communication is achieved in the component system. Each com-
ponent has a queue in which its incoming messages are placed. When com-
ponent A sends a message m to component B, then the message m is placed
in the queue of component B.

There is a difference between the logical model and the implementation
model. The logical model represents how the user of the component system
should think about the component system, while the implementation model
refers to the actual implementation of the component system. In the logical
model each component has its own thread and consumes the messages that
are in its queue. The scenario described above is shown in figure 3.5. In
chapter 11 however, we see that it is possible to group several components
onto a single thread. This is referred to as the implementation model.

We have developed a precompiler that translates the asynchronous mes-
sage calls into calls to the underlying component system. An example of
component-code is shown in figure 3.4. The example shows a component
that acts as a logging device. The message Log() retrieves the object stored
in the hidden parameter called Qutput and calls the method write upon it.
The parameter Data is passed to the method write. Finally the message
Logged() is send to the caller of the message Log() to inform that the data
is logged. Note that an synchronous message is send with a “..” instead of
a “.” that is used for method calls. Besides the difference for asynchronous
messages that are marked with a “..” there is also special syntax for re-
trieving and passing parameters with asynchronous messages. This syntax
is summarised in table 3.2.

26 CHAPTER 3. THE COMPONENT SYSTEM

componentclass Logger

{
<<0ther code>>

message Log()

{
>BufferedWriter|Output<.write(<String|Data>) ;
<Return>. .Logged() ;

}
<<0ther code>>
}
Figure 3.4: Example message in Component Code
‘ Syntax ‘ Semantics
<x> retrieve the message parameter x
<yl|x> | retrieve the message parameter x and typecast it to y
<xy> put the message parameter x with value y
>x< retrieve hidden parameter x
>yl|x< | retrieve hidden parameter x and typecast it to y
>x:y< put hidden parameter x with value y
Table 3.2: Parameters Passed with Asynchronous Messages
Component Component Component
A B [] N
m

Figure 3.5: Logical Model of the Component Communication

3.6. SCHEDULING IN THE COMPONENT SYSTEM 27

Out-Queues In-Queue

|Thread1| |m1|m3|m9| | |

|Thread2| |m5|m7| | | |

| Thread 3 | |m4|m8| | | | Pluggable

Scheduler m10|m11|m12| | |

|Threadn| |m2|m6| | | |

Figure 3.6: Pluggable Scheduler

3.6 Scheduling in the Component System

As described in section 3.4 embedded systems need to handle events coming
from the environment. Because an embedded system cannot react to events
when it is busy doing other things, we needed concurrency. One thing that
was left out from that story is that some of these events need to be handled
within some timeframe. Consider the embedded software that needs to open
your airbag when you have a car crash. When the system only opens your
airbags a few seconds after the car crashes, then they are of no use.

To handle events within a certain time frame, the component system
needs to process more important messages before other less important mes-
sages. The process of choosing which processes have priority over others in
order to handle an event within a certain timeframe is done by a real-time
scheduler. Chapter 9 discusses some techniques on how to choose these pro-
cesses and introduces a novel technique which chooses these processes by
using semantic data extracted from the source. The component system al-
lows different schedulers to be used (see Figure 3.6), because each embedded
system has its own characteristics. When a message is sent by a component
it is placed in a queue to be handled at some point in time. The scheduler
has to decide which queue is chosen to enqueue the message. The scheduler
can also manipulate the different priorities of the threads according to the
deadlines that needs to be met. In chapter 11 we discuss how we can reduce
the number of threads in a program.

28 CHAPTER 3. THE COMPONENT SYSTEM

3.7 Summary

The component system provides services to the components. One of the
most important services the component system provides is the component
communication. The component communication is used to introduce inter-
component concurrency into the system in an implicit manner. Some events
in the component system must be handled within a certain time frame. A
scheduler tries to enforce these time constraints by changing the priorities
the different threads. We can also schedule the system by chosing one of
the queues when a message is send. In the remainder of this dissertation
we present a scheduler that can be plugged into the component system to
enforce the temporal behaviour of the software.

Chapter 4

Describing the Abstract
Behaviour of a Program

Description languages are used to describe a description a piece of code in
a formal way. These description languages can be used to analyze specific
properties of the code. Description languages are used in this thesis, because
they can help in making scheduling decisions (see chapter 8 and chapter 9).
Message sequence charts were initially [11] created to describe specific com-
munication scenarios for use in telecommunication hardware and software.
In this chapter we discuss how they can be used and adapted to describe
communication scenarios in a program using components. But first, a short
introduction to message sequence charts is given.

4.1 Message Sequence Charts

4.1.1 Introduction

A Message Sequence Chart (MSC) does not describe the complete behaviour
of a system, it merely expresses a specific execution trace of a program. If
we want to have a complete execution trace of a system we have to combine
different MSCs together to express the full behaviour of a system. MSCs are
in process of standardisation [11] and have many extensions that are out of
the scope of this thesis. We discuss basic MSCs and how these basic MSCs
can be combined to glue the different scenarios together using High-level
MSCs.

4.1.2 Basic Message Sequence Chart
Describing Communication Behaviour

A Basic Message Sequence Chart (bMSC) expresses a partial description
of the communication behaviour between different instances. An instance

29

30CHAPTER 4. DESCRIBING THE ABSTRACT BEHAVIOUR OF A PROGRAM

msc Example a msc Example b
C1 C2 C3 C4 C1 C2 C3 C4
I I I I
el el
e2 e2
e3 ed
ed e3
IS IS S EE—— IS IS S EE——

Figure 4.1: Example of two equivalent basic MSCs

is an abstract entity of which one can observe the interaction with other
instances. Instances can communicate with each other through message-
sends. The messages are send asynchronously. An instance is denoted on
figure 4.1 as a vertical axis and messages are denoted by an arrow between
two vertical axices. Figure 4.1 shows 4 instances interacting with each other.
C1 sends a message el to C2. Upon arrival of el, C2 sends a message e2
to C3. When e2 arrives at C3 it sends a message e3 to C4. The order of
the messages can be determined by assuming that each instance has its own
time starting from the top to the bottom. The time between the different
instances can then be determined by applying the transitive properties of
the time. E.g., el arrives before e2 and e3 is received after e2. We cannot
always determine a total order of time between the different instances. It is
for example uncertain when e4 is send. e4 could be send before e3 is send or
after e3 is send. Example a and b of figure 4.1 are equivalent to each other.

Describing Alternative Compositions

Another interesting feature, described in [11], is that you can describe al-
ternative compositions within the basic MSCs. This is done through inline
operator expressions. Graphically, the inline operator is described by a rect-
angle. The operator expression is placed in the upper-left corner of the
rectangle. There are 5 inline operator expressions available:

par Parallel execution of certain parts in the basic MSC. A dashed line is
used to mark what parts are executed in parallel.

loop Describes an iteration.

opt Optional execution means that this region could be executed once or
not at all.

4.1. MESSAGE SEQUENCE CHARTS 31

msc Inline Operator Expressions

S e
loop a
alt
J b
B EEEEEE EE
d

Figure 4.2: Example of a basic MSC using inline operator expressions

alt Alternative executions are marked with the alt. The possible execution
regions are seperated with dashed lines. When entering such a section
each region describes an alternative basic message sequence chart.

exc Exceptions.

As is shown in figure 4.2 we also can nest different inline operator expres-
sions to describe more complicated scenarios. The MSC describes that in
the loop instance k sends the message a to instance j. After instance k sent
that message instance j sends either message b or message ¢ to instance i.
When the loop terminates the message d is send from instance j to instance
.

4.1.3 High-Level Message Sequence Chart

A basic message sequence chart only describes one possible execution in a
part of the program. However, we want to describe all possible executions of
a certain program. To be able to describe a full program we must combine
several basic MSCs together. This is exactly what is possible with High-level
Message Sequence Charts (hMSCs). The available constructs are shown in
figure 4.3.

32CHAPTER 4. DESCRIBING THE ABSTRACT BEHAVIOUR OF A PROGRAM

Start-Symbol v
End-Symbol A
MSC-Reference :}
Condition @
Connection Point Q

Parallel Frame

Figure 4.3: Building Constructs of High-Level MSCs

Condition A

A

Figure 4.4: Example of a High-Level MSC

4.2. DESCRIBING THE BEHAVIOUR OF A PROGRAM USING MSCS33

The example shown in figure 4.4, describes that when Condition A is
satisfied that:

1. the scenario described by bMSC1 occurs and we proceed either with
step 2 or 3.

2. scenario bMSC2 occurs and the system terminates.

3. bMSC3 occurs and we go back to step 1.

4.2 Describing the Behaviour of a Program using
MSCs

A message is handled by executing some internal code and by requesting ser-
vices from other components by using the required interfaces as described
in chapter 2. To do scheduling we are particularly interested in the inter-
component communication, because that is where there is an introduction
of concurrency into the system as explained in chapter 3. In [15] MSCs are
also used to formally verify if different components can interact with each
other. Throughout the remainder of this dissertation we will use MSCs to
describe the communication behaviour of components. So, when we talk
about the behaviour of a component we actually refer to the communi-
cation between components. An instance can be viewed as a component
instance (denoted by a vertical axis in figure 4.2) and the communication
(denoted with an arrow between two component instances in figure 4.2) are
the messages that are sent among the components. Note that this is a valid
mapping because the component system described in chapter 3 sends its
messages asynchronously.

4.2.1 Problems with MSCs

As MSCs were not initially intended to describe the full communication
behaviour of a program we encountered several problems describing compo-
nents:

1. Parameters are not expressed in MSCs. In component communication
we can have two different parameters: regular parameters and hidden
parameters.

2. MSC documentation does not always reflect the actual code. MSCs
are mostly used to specify scenarios that need to be resolved by the
software. The actual implementation of the software does not always
reflect the MSCs that were specified.

3. Because glue code can be very dynamic it can become very hard to
describe some pieces of source code.

34CHAPTER 4. DESCRIBING THE ABSTRACT BEHAVIOUR OF A PROGRAM

4. A MSC merely describes one execution trace, while we want all possible
execution traces.

5. A full trace of the communication behaviour can only be given after
that the components are glued together and the abstract components
become concrete components, this is necessary for tracking the soft-
ware.

6. Instances that automatically send messages cannot be expressed. Such
information is interesting for the scheduler, because that is where we
have an introduction of computation into the system.

In the remainder of this chapter we will discuss how we have extended the
specification of MSCs to overcome the problems mentioned above.

To solve problem 2 we have made changes to the component precompiler
that was mentioned in section 3.5 to output adapted MSCs that reflect
the exact source code of the component. This has the advantage that the
adapted MSCs will always reflect the latest version of the component.

4.2.2 Abstract MSCs vs. Concrete MSCs

When we consider the source code of a component we are considering the
abstract behaviour of a program. We can only consider the full or concrete
behaviour when the components are composed together in a program. Also
note that the concrete behaviour describes the run-time aspects of the pro-
gram, which is the behaviour we want to capture. In the remainder of this
chapter we will discuss how we can describe the abstract behaviour from the
component’s source code. The discussion how we can extract the concrete
behaviour from the abstract behaviour is placed in chapter 5. It is impor-
tant to note that we make the distinction between MSCs that describe the
abstract behaviour, which will be called abstract MSCs and MSCs that de-
scribe the concrete behaviour, which are called concrete MSCs. The MSCs
shown in the remainder of this chapter are all abstract MSCs.

4.3 Describing the Abstract Behaviour of a Com-
ponent

To describe the abstract behaviour of one component we will discuss how
each message of a component is described.

4.3.1 Dealing with Programming Language Constructs

When describing the behaviour of source code we have to describe the reg-
ular constructs that are provided in the programming language. In a pro-
gramming language we have control flow constructs such as conditions (if-

4.3. DESCRIBING THE ABSTRACT BEHAVIOUR OF A COMPONENT35

Control Flow Structure ‘ Inline Operator Expression ‘

if-then opt
if-then-else alt
switch-case alt

for-loop loop(x,y)
while-do loop(0,Max)
do-while loop(1,Max)

Table 4.1: Mapping of Control Flow Structures to Inline Operator Expres-
sions

then-else statements, switch statements, ...) and loop structures (for-do,
do-while, while-do, ...). All these control flow structures determine if and
when messages are send and how many messages are send. All these pos-
sibilities should be described by the MSCs. To describe these control flow
structures we are going to use a subset of the inline operator expressions
(loop, opt, alt) that were introduced earlier in this chapter. Table 4.1 shows
how these constructs can be described using inline operator expressions.
Please note that we only describe the constructs in which component com-
munication occurs. If we have an if-then-else statement with component
communication in the else-brach, but not in the then-branch, then we must
use an opt construct instead of an alt construct. Examples can be found in
appendix A.

4.3.2 Describing Abstract Exceptions

In some programming languages another construct exists that can influ-
ence the control flow of a certain program, namely ezceptions. They were
left out of the discussion in the previous paragraph, because they are de-
scribed somewhat differently. A typical use of exceptions is demonstrated
in figure 4.5. There is no straight-forward approach to handle them using
previously discussed inline operator expressions. In the next chapter we see
that the exceptions are expanded to an alt construct. Figure 4.6 shows an
abstract MSC describing the code shown in figure 4.5.

4.3.3 Distinguishing the Different Messages within a Com-
ponent

Until now we have seen how we can extract a MSC from one single message
within a component. A component can provide different services that are
accessed by sending different messages. We need to make a distinction
between these different messages. When considering a single component
we do not know which other components will require the services of that

36CHAPTER 4. DESCRIBING THE ABSTRACT BEHAVIOUR OF A PROGRAM

Component Dummy

{

<other messages>

message NotifyAll()
{

<some code>

try
{

<Exception prone code>

}
catch (ExceptionTypel e)

{
<TypelExceptionHandlingCode>

}

catch (ExceptionTypeN e)

{
<TypeNExceptionHandlingCode>

}

<some code>

<other messages>

}

Figure 4.5: Example of Exceptions in Component-Code

4.3. DESCRIBING THE ABSTRACT BEHAVIOUR OF A COMPONENT37

msc Example

Dummy| | C1 | | C2 | | C3

NotifyAll

€exc

ExceptionProneMegssages

excTypel J

ExceptionMessages

excTypeN J

ExgeptionMessajges

Figure 4.6: Abstract MSC describing exceptions

38CHAPTER 4. DESCRIBING THE ABSTRACT BEHAVIOUR OF A PROGRAM

msc Example

5]

FunctionA

ReturnValug

Figure 4.7: Example of a Return Message

component until they are all plugged together. Hence we cannot simply
draw an arrow from all possible components that could send this message.
We will denote the receipt of a certain message by putting an arrow from
the evironment to the component that implements the message, thus mark-
ing the sender of the message as “unknown”. Figure 4.6 shows the descrip-
tion of the message NotifyAll provided by the component called Dummy.

4.3.4 Describing Return-Messages

In section 3.3.2 we explained that due to the usage of asynchronous commu-
nication we cannot just return the computed value of a function. Instead we
have to send a message containing the result to the component that initiated
the service. As we do not know the initiator of the message when consid-
ering the abstract behaviour we represent a return-message by an arrow to
the environment. An example is shown in figure 4.7.

4.3.5 Undetermined Interface Providers

As it is not possible to determine the clients of a component it is not always
possible to determine what components will be used to satisfy the required
interfaces. Consider the piece of code in figure 4.8 of a message within a
component. It is a classic example of a subscriber-dispatcher pattern [16]
that can also be applied within components. It is clear that the receiver is
undetermined here until the components are plugged together.

In [15] this is solved by putting different undetermined environments
in the MSCs as component instances at that point. These environments
are replaced by the actual component instances at composition-time. The
disadvantage of this method is that at composition-time only one possible
composition can be instantiated at a time. To capture the full behaviour of a

4.4. ADDING MESSAGE PARAMETERS 39

Component SC msc Example
{
<other code>
| SC | | Env |
message NotifyAll() Notify All
{
ior (int i=0; i<observers.size(); i++) loop(0,maxObs)
observers[i]..Update(); Update
}
}
<other code> I
}

Figure 4.8: Undetermined receivers

program we need to consider all possible instances that are used at run-time.
We will use this technique, but with the addition that at composition time
all candidates are considered. This will be explained in the next chapter
when we talk about the concrete communication behaviour.

4.4 Adding Message Parameters

Each message-send between components includes a set of parameters is in-
cluded. To enhance the description of the code we will extend the abstract
MSCs with the parameternames and their values. The parametername will
be denoted on the arrow and the values are denoted after a double point.
The value of the parameters is only known in some rare cases. If the value
is unknown then we denote this with an asterisk. An example is shown in
figure 4.9. Note that the component that is to receive the message Update
is dynamically expressed using the parameter Observer. Parameters are im-
portant because they can be used to refine the possible execution traces
in some situations. In chapter 9 we will also discuss why the inclusion of
parameters is important to the scheduler.

4.5 Refining the MSCs using the Parameters

The code shown in figure 4.10 has a condition in the form of an if-then-else
statement. The abstract MSC for this code is shown in figure 4.11. As
we will see in chapter 9 it is sometimes usefull for the scheduler to know
the difference between these alternatives. For this reason it is possible to
define a refined MSC. A refined MSC displays a specific part of the general

40CHAPTER 4. DESCRIBING THE ABSTRACT BEHAVIOUR OF A PROGRAM

msc Example

| SC | |Observer

Notify(Observer: *)

Update(Info:

~—

Figure 4.9: Denoting Parameters on an MSC

abstract MSC. A refined MSC that only describes what happens when the
temperature is larger than the treshold is shown in figure 4.12. A boolean
expression is placed in the condition to denote this specific case.

4.6 Summary

Message sequence charts can be used to describe a certain scenario between
multiple communicating instances. They were initially intended for describ-
ing scenarios in telecommunication hardware and software. MSCs are not
well suited for describing the behaviour of components. In this chapter we
have discussed how we can use MSCs to document source code of the com-
ponents. Further extensions to the MSCs are necessary to express the use
of variables/unknowns in source code and the use of parameters in the com-
munication. Finally we have also proposed a way to reduce the possible
scenarios by refining the MSCs. Abstract MSCs are a first step towards the
component documentation that is going to be used as input for the scheduler
of the component system. This is also shown on figure 1.4 on page 10.

4.6. SUMMARY 41

Component Watcher

{
<other code>
message NotifyAll()
{
int temperature = <Integer|Temperature>.intValue();
if (temperature > TRESHOLD)
{
Cooler. .Alert ("Temperature", new Integer(temperature));
}
else
{
Reporter..Log("Temperature", new Integer(temperature));
}
}
<other code>
}

Figure 4.10: Code from the Watcher Component

msc Example

W C R
|Watcher| |Coo]er| |Rep0rter

Notify All(Temperafure: *)

alt

Alert(Temperature: *)

Log(Tempgrature: *)

Figure 4.11: Abstract MSC for Watcher.NotifyAll()

42CHAPTER 4. DESCRIBING THE ABSTRACT BEHAVIOUR OF A PROGRAM

msc Example

W C
|Watcher| | Cooler |

Large{Temperature, TRES}OLD)

Notify All(Temperafure: *)

@
*
~—

Alert(Temperature:

Figure 4.12: Refined MSC for Watcher.Notify All()

Chapter 5

Describing the Concrete
Behaviour of a Program

The previous chapter discussed how we can describe the abstract behaviour
from an abstract component. We have seen that we cannot construct the
run-time communication behaviour with abstract MSCs. The run-time com-
munication behaviour can only be constructed when the components are
glued together. In the abstract MSCs we ended up with several variables.
Most of these variables can be worked away by taking the abstract behaviour
and making it concrete at component composition time. In chapter 2 we
defined that each component instance has a unique name. In concrete MSCs
these names are available and denoted above the box containing the type of
the component.

5.1 Resolving unknowns

In the previous section we ended up with two problems when extracting the
behaviour of a component from its source code:

1. We do not know what other components will be plugged in to provide
the required interfaces

2. We do not know the clients of the component

5.1.1 Determining the Required Interface Providers

When the components are plugged together in a program, we can determine
these variables. When we consider all the components used in that program,
we know all their interfaces of the messages that are supported. Consider the
example shown in figure 4.8. Imagine that when plugging the components
together we have three component instances (named observerl, observer2
and observer3d) that can respond to the Update message. Then we can

43

44CHAPTER 5. DESCRIBING THE CONCRETE BEHAVIOUR OF A PROGRAM

msc Example

observerglue observerl observer2 observer3
sc | | ¢ | | ¢ | | C3

NotifyAll

loop([0,maxObs)

alt J

Upndate(Notifier: Return)

Updatie(Notifier: Return)

AlINotified(

Figure 5.1: Solution to Undetermined Receivers

translate the MSC displayed in figure 4.8 to figure 5.1. We can repeat this
process for all abstract MSCs with such unknowns. Figure 5.2 shows a more
compact representation, by denoting the set of instances above the vertical
line. A more compact representation is useful, because there might be a lot
of possible components that support a certain interface.

5.1.2 Determining the Clients of a Component

After resolving the required interface providers we are left with a set of MSCs
with one class of variables left to resolve, namely the component’s clients.
Consider the example shown in figure 5.1. We can walk through the set of
MSCs and collect all the components that send the message NotifyAll to the
component SC. Suppose that component C4 sends the NotifyAll message to

5.2. MAKING EXCEPTIONS CONCRETE 45

msc Example

obsglue (obsl, obs2, obs3)
L s¢ | [¢ |

NotifyAll

loop((0,maxObs)

Updaftle(Notifier: Return

AllNotified(

Figure 5.2: Compact Solution to Undetermined Receivers

SC then we replace the MSC on figure 5.1 with figure 5.3. We can use
the same compact representation as used when determining the required
interfaces to reduce the number of concrete MSCs.

5.2 Making Exceptions Concrete

In section 4.3.2 we have discussed how we can express try-catch statements
in abstract MSCs. A typical use of exceptions is demonstrated in figure 4.5
on page 36. The semantic behaviour of this code is that when executing the
exception-prone code a jump can be made to any of the exception-handling
sections. Suppose that in exception-prone code, the messages m1 ... mX
are sent, and in the exception handling section the message mFE is sent.
The possible execution traces of this code are shown in figure 5.4. If X
messages are sent in the exception prone code and we have N exception-
handling or catch statements then we have (X + 1) * N possible execution
traces. In the concrete MSC all these possibilities are expressed using the
alt inline operator expression. The above example shows that the use of
exceptions together with component-communication should be used with
care. In some cases it is possible to reduce the size of the concrete MSCs
describing exception-handling code by limiting the code used in the try-block
to the statements that can throw exceptions. This is not always possible, but
a more compact representation for concrete MSCs without loss of important

46CHAPTER 5. DESCRIBING THE CONCRETE BEHAVIOUR OF A PROGRAM

msc Example

observable observerglue observerl observer2 observer3
1 | [sc | [a | [| [

NotifyAll

loop((0,maxObs)

Up(dajte(INotifier: ”obsprvable”)

Update(INotifier: ”obsprvable”)

AllNotified()

Figure 5.3: Solution to Undetermined Clients

0: mE
: ml, mE
:ml, m2, mE

N —

X: mi, m2, ..., mX, mE

Figure 5.4: Possible execution traces

5.3. MATCHING THE PARAMETERS 47

information is out of the scope if this dissertation.

5.3 Matching the Parameters

Sometimes we can derive the value of the parameters. This was the case
in the example shown by figure 5.1 and figure 5.3. The parameter Notifier
was first marked by the variable Return, but when the component instance
observable was identified as a possible client the parameter Notifier was
known. What we can do is propagate this variable to the concrete MSCs
describing the behaviour of the Update message from the component in-
stances observablel, observable2 and observable3. It is important that we
do this, because the parameters can be used to refine the possible execution
traces as described in section 4.5.

5.4 Summary

Concrete MSCs describe the run-time communication behaviour between
the different components. They can only be extracted after the components
have been plugged together into a system. It is possible to extract the
concrete behaviour from the abstract MSCs. The extraction occurs in three
different steps:

1. Resolving the unknowns from the abstract MSCs
2. Making the exceptions concrete
3. Matching the parameters used in the communication

When these three steps are completed we have a map of all run-time com-
munication behaviour of the different components that are plugged together.
The concrete MSCs are given as input to track the communication among
the components. The track gives valuable feedback to the scheduler that
is described in chapter 9. The concrete MSCs are part of the component
documentation that is shown in figure 1.4 on page 10.

48CHAPTER 5. DESCRIBING THE CONCRETE BEHAVIOUR OF A PROGRAM

Chapter 6

Describing Real-Time
Behaviour

In chapter 4 we have discussed how we can describe the abstract behaviour
starting from a piece of component source code. Chapter 5 then discussed
how we could extract the concrete behaviour of a program from the abstract
behaviour. There are however some aspects, typical for real-time embedded
software, that are not described in the abstract or concrete MSCs. These
aspects are important to a scheduler and need to be described. This chapter
discusses these aspects and how they can be described by means of MSCs.

6.1 Message Triggers

In chapter 1 we saw that one of the characteristics of embedded systems
is that they are inextricably bound with their environment. One of the
purposes of the software is to react to events that occur in that environment.
We have two different ways in which embedded software can detect the
events in its environment:

e When using pushing detection a hardware component will initiate an
interrupt when an event is detected in its environment. This interrupt
is then handled by the software.

e When using polling detection, the software polls the hardware for its
status when it needs to know the latest changes.

Based on the way how changes in the environment are detected we can
distinct two types of software:

1. Time-triggered software

2. Event-triggered software

49

50 CHAPTER 6. DESCRIBING REAL-TIME BEHAVIOUR

Definition 14 (Time-triggered software) Time-triggered software is soft-
ware in which all starting messages are initiated by a timer at certain well-
defined time intervals.

Definition 15 (Event-triggered software) FEvent-triggered software is soft-
ware in which a starting message is initiated by an interrupt caused by one
of the hardware components in the embedded system.

6.1.1 Evaluation of time-triggered software vs. event-triggered
software

Reliability

When we consider both approaches then the event-triggered software seems
the most intuitive of both. When something changes in the environment
then a message is sent and the software can react to that change. The
drawback is that we cannot predict the behaviour of the environment. It
is possible that within a certain time-frame a lot of events occur, which all
cause messages to be sent so that the software can react to them. An upper
bound on the maximum number of events that can occur in that timeframe
can only be given when we have some foreknowledge from the environment,
but sometimes it is simply impossible to give an upperbound. As the system
will have to process all messages introduced into the system this can cause
an overload. So event-triggered software greatly affects the predictability
of a system, which is not what we want in a real-time device. In a system
where all messages are time-triggered, the environment cannot influence the
computational resources that are needed. In time-triggered software it is the
software that controls the computational resources and not the environment.
This characteristic makes time-triggered software more reliable than event-
triggered software.

Resource Usage

A real-time device must be able to to detect certain events that occur in the
environment within a certain time-frame. We can satisfy this requirement
with time-triggered software by chosing a time-interval at which we check
if the environment has changed. When we keep that time-interval small
enough, guarantees can be made about the reaction time of the system to a
certain event. The length of the interval must be small enough to cover all
situations. This will cause the system to use computational resources even
when no events occured. This results in the need for more resources, since
other tasks still have to be processed in the meantime. An event-triggered
system on the other hand will only process its data when an event occurs,
so there is no computation needed to check the status of the hardware.

6.2. DESCRIBING MESSAGE TRIGGERS o1

‘ ‘ Event-triggered ‘ Time-triggered ‘

Reliability - i
Resource Usage + -
Flexibility + -

Table 6.1: Comparison of Event-triggered vs. Time-triggered Software

Polyvalency

As mentioned above, event-triggered software only uses resources when events
actually occur, while time-triggered software uses CPU power even when no
events occurred. Event-triggered software can process more tasks with the
same amount of resources making the system more polyvalent.

6.2 Describing Message Triggers

The component system described in chapter 3 supports both time-triggered
and event-triggered messages. Both types of messages are interesting to
describe, because they specify the introduction of requests to computation in
our system. They are both expressed in the abstract or concrete MSCs, but
can provide useful information to the scheduler as we will see in chapter 9.
We can distinguish three kinds of messages based on their frequency:

1. Aperiodic Messages
2. Periodic Messages
3. Sporadic Messages

We will now discuss their characteristics and how they can be described
using message sequence charts.

6.2.1 Aperiodic Messages

An aperiodic message is a message which occurs unexpectedly. They can be
compared to the event-triggered messages that were described above. Ape-
riodic messages will be denoted on abstract and concrete MSCs by putting
a general condition on them. We can put a description in the condition, for
example how the aperiodic message is initiated. This information will be of
no use to the scheduler, but can promote the readability of the MSCs when
they are being refined as described in section 4.5. The example shown in
figure 6.1 describes that the component SC will send a message Notify() to
the component RC if InterruptA occurs in the environment.

52 CHAPTER 6. DESCRIBING REAL-TIME BEHAVIOUR

msc Example

| sC | | RC |

< InterruptA >

Notify()

Figure 6.1: Example: Aperiodic Message

msc Example

| sC | | RC |

< Periodic: 45ms >

Notify()

Figure 6.2: Example: Periodic Message

6.2.2 Periodic Messages

A periodic message is a message which recurs at a regular time interval.
Periodic messages are denoted by a general condition similarly like aperi-
odic messages. The only difference is that periodic messages have a formal
description in their condition. This formal description is denoted by placing
the keyword Periodic followed by a colon and a number which denotes the
recurrence rate. The example shown in figure 6.2 describes that the compo-
nent SC sends the message Notify() every 45 milliseconds to the component
RC.

6.2.3 Sporadic Messages

A sporadic message is a message which is recurrent, but not regular. There
is however a minimum interarrival time between the messages that are send.

6.3. DEPENDENCIES 53

msc Dependency Example

sC | [RC

ml

m?2

m3

m4

Figure 6.3: Example: Describing Dependencies

[19] shows that sporadic messages can be considered as periodic messages.
Sporadic messages are denoted similarly as a periodic message, but the key-
word Periodic is replaced by Sporadic.

6.3 Dependencies

In the text above we have always assumed that when a message is processed
by a component, it requested services from another component or requested
no services anymore. This is not always the case, sometimes a component
is waiting for several different messages before it will send a message. De-
pendencies must be explicitly described. When a deadline must be met and
a component is waiting for other messages, the scheduler needs to know
what components the system is waiting for. The use of dependencies in a
scheduler is discussed in chapter 9. Figure 6.3 shows that component SC
is waiting for messages m1, m2 and m3 before it sends m4 to component
DC. Note that this is an abstract MSC as we do not know what components
will send m1, m2 and m3. We can extract a concrete MSC at component
composition-time in a similar way as described in section 5.1.2.

6.4 Specifying Time Constraints

Until now, two different kinds of MSCs have been introduced to describe the
behaviour of components and the behaviour of the components at run-time,
namely abstract and concrete MSCs. All this information can be used by
a scheduler to make some decisions. There is however a third kind of MSC
that needs to be introduced. We need to specify the timing behaviour that
is expected from the software when the components are plugged together.

54 CHAPTER 6. DESCRIBING REAL-TIME BEHAVIOUR

In this section we shortly discuss the syntax of these three specification
methods. Finally we explain what specification syntax we use for timing
constraints throughout the remainder of this dissertation.

6.4.1 Existing Syntax

To facilitate the specification of real-time systems with MSCs, a few exten-
sions have been proposed [11, 12, 13] to express timing constraints:

e timers
e delay intervals

e timing markers

Timers

Recommendation Z.120 [11] provides timers to express timing constraints
in a basic MSC. Within a single instance a timer can be placed on the
basic MSC. It is important to note that this timer cannot be shared among
different instances. We can perform three functions on a timer. A timer can
be:

1. set to a value
2. reset to zero
3. observed for timeout

Figure 6.4 shows an example of three components sending messages amongst
each other. Timer T3 expresses that it is set to some value, say 7 time units
and that it sends m2, receives m3 and sends m4 before T3 is observed for
timeout. Timer T1 expresses that it is set to some value, say 5 time units and
after it has received message m1 the timer is reset. The implicit assumption
is made that the timer is reset after it has expired. A timer can be used to
express two different timing constraints:

1. a mazimal delay is expressed by timer T3, it actually denotes that one
component must exchange some messages within a given time bound.

2. a minimal delay is expressed by timer T1. T1 expresses that receiving
message ml at least takes a certain time.

6.4. SPECIFYING TIME CONSTRAINTS 55

msc Example

|Cl||02||C3|

T1 ml
m? T3
3

m4

md

Figure 6.4: Example of a basic MSC with timers

Delay Intervals

Delay intervals is another method that has been proposed by [12, 13] to
express timing constraints on basic MSCs. Delay intervals can be used to
express three types of timing constraints:

1. Event-associated timing constraints are expressed as an interval next
to an event (message sent or received).

2. Message delivery delays are denoted as a delay over the message ar-
rows.

3. Processor’s speed constraints are expressed as an interval between two
consecutive events in a component.

Event-associated timing constraints are constraints that are expressed
on a basic MSC. They denote global timing constraints on events, namely a
message send or message receipt: the event must occur within the minimal
and maximal time delays with respect to any previous event, whenever it
occurs in a trace. An example is shown is figure 6.5.

Message delivery delays and processor’s speed constraints are in-
tervals that are put between two visually ordered message sends. Figure 6.6
shows an example of message delivery delays, mixed with processor’s speed
constraints. It specifies that m4 will be processed by C2 between at least
1 time unit and at most 3 time units after it has been send by C3. It also
expresses that C3 will process m3 between one and two time units after it
has sent m2.

56 CHAPTER 6. DESCRIBING REAL-TIME BEHAVIOUR

msc Example
C1 c2 C3
ml
[12] [t
m2
[2.3] |-
m3
i (12]
m4
[1.2] [t
m5 _
[3.4] Ll
[] I I

Figure 6.5: Example of Event-associated Timing Constraints

msc Example

C1 Cc2 C3

w2 ml
<
-

[2.4]

12 m2

A

w2
m3 23]

A

03 m4
-

1.2
m5 (1.3

A

Figure 6.6: Example of Delivery Delays and Processor’s Speed Constraints

6.4. SPECIFYING TIME CONSTRAINTS o7

I
I
I
|
I
3 I{ 600 ms }
t Event ID b
- I
| |
m ¢ -
i Message3() Tlmlng
e ! d Constraint
I

{c-a<=14s}

Messagel()

a

Message2()

{d-c<2s}

Y Y ____w____

Figure 6.7: Example of Time Constraints on UML Sequence Diagrams

Timing Markers

In the Real-Time Unified Modeling Language [17](RT-UML) the syntax
of the different UML notations has been extended to express real-time
constraints. Sequence diagrams are used within UML to describe object-
interaction scenarios and have been extended to express timing constraints.
Sequence diagrams are very similar to MSCs and their notation could be
used to express timing constraints on MSCs as well. A straight line to an
object means that the message is immediately processed by the other object
(i.e. a synchronous message). When an arrow is slated downwards, a delay
is expressed between the time of sending and processing of the message. An
identifier can be given to an event on sequence diagram. Using the event-
identifiers, it is possible to formulate timing constraints on the sequence
diagram. An example is shown in figure 6.7. In this example, the constraint

d - c < 2s

denotes that object2 must have processed message3() at most two seconds
after it has been sent by objectl. Another time-constraint

c - a <= 4s

expresses that the time between the occurence of messaged and messagel
must be less than or equal to 4 seconds.

6.4.2 Review of the Different Methods

When a program is composed using components we want to specify the
temporal behaviour of the software. Typically when a message m is sent

58 CHAPTER 6. DESCRIBING REAL-TIME BEHAVIOUR

Clname C2name C3name C4name
C1l Cc2 C3 Cc4
Notify()
> Update()
a >
UpdatePicture()

[
|

ChangeLayout()
» b

{b-a<1s}

Figure 6.8: Example of an MSC with timing markers

to component X, this results in the sending of different other messages re-
questing services from other components. What we want to express is a
timing constraint on a chain of messages, because the different services are
distributed over different components. Such timing constraints cannot be
expressed using timers as they are local to the instance. Delay intervals
could be used to specify the timing constraints distributed over the differ-
ent instances by specifying message delivery delays on each message that is
sent. One drawback of these message delivery delays is that they require
that each message has a deadline. Message delivery delays do not allow
you to specify one timing constraint over the whole chain. Timing markers
allow you to express time constraints over a chain of messages. To improve
the expressibility of timers and delay intervals they could be used together
[14]. In [14] an algorithm is also described to detect inconsistencies on an
MSC using timers and delay intervals. Timers and delay intervals are better
at describing timing constraints that are local to the instances. We use the
timing markers on MSCs instead of sequence diagrams (an example is shown
in figure 6.8). One difference however, is that a message will always have a
straight arrow, even when the message is not processed immediately.

6.5 Summary

In the first part of this chapter we have seen how two shortcomings of mes-
sage sequence charts have been resolved, namely the introduction of requests
for computation and dependencies. The introduction of requests for compu-

6.5. SUMMARY 59

tation can occur with event-triggered messages and time-triggered messages.
Event-triggered messages are introduced into the system by hardware inter-
rupts. Time-triggered messages are messages that recur in regular time
intervals. With time-triggered messages the software has full control over
the computational resources that are used, whereas event-triggered messages
are dependent on the environment. Systems with event-triggered messages
have a greater flexibility, because they use less resources than software us-
ing time-triggered messages. Dependent messages are messages which are
dependent on the receival of several other messages. They are interesting
to document, because they can provide the scheduler with information that
allows it to speed up the dependent parts when waiting for such a message.
A third class of documentation is necessary to specify the required temporal
behaviour of a certain program. This class of MSCs are called timing-marked
MSCs which allow the developer to define timing constraints over a chain of
communication messages between the different components. Timing-marked
MSCs are regular MSCs with a mark on certain events. The expression of
the timing constraint is denoted with a simple Boolean expression. This
third class of MSCs completes the component documentation shown in fig-
ure 1.4 on page 10. They are used as input by the tracker (chapter 8) and
the scheduler (chapter 9) to enforce the specified timing constraints. They
also play an important role in the reduction of the overhead by limiting the
number of threads, which is discussed in chapter 11.

60

CHAPTER 6. DESCRIBING REAL-TIME BEHAVIOUR

Part 11

Scheduling

61

Chapter 7

Schedulability Analysis

In part 1 we have seen how we could document software components by using
abstract MSCs. The run-time communication behaviour of the components
could then be extracted by converting the abstract MSCs to concrete MSCs,
when the components are glued together. In chapter 6 we discussed how you
can specify real-time constraints on the concrete behaviour. Hence it would
be interesting if we could check if the hardware that is to be used in the
embedded system will provide enough resources so that the specified time
constraints can be met. This is an important phase in the development
stage. Electrical engineers have to make ad-hoc decisions on the hardware
that is to be used. An overdimensioned system causes the production costs
of the embedded systems to be too high, which is economically not feasible.
A prototype with not enough resources causes the need to redesign a new
prototype with more resources available. This need for a redesign can cause
the production cycle to be delayed having economical implications as well.
In the remainder of this chapter we will explain how such an analysis can
be done, but first we will discuss how we can capture the execution times of
the different components.

7.1 Execution Time

In an asynchronous communication model we have three different notions of
time we need to consider.

Definition 16 (Transmission Time) The transmission time of message
m relative to message k (denoted by the function TT(k, m)) is the time
it takes to send the message m when message k is being processed by the
receiving component.

Definition 17 (Delivery Time) The delivery time of message m (denoted
by DT(m)) is the time interval between when the message m was sent and
when the component starts to process message m.

63

64 CHAPTER 7. SCHEDULABILITY ANALYSIS

Definition 18 (Execution Time) The ezxecution time of message m by
component C (denoted by ET(C,m)) is the time it takes for component C to
execute the code bound to the message m.

The three notions of time are related to the speed of the hardware from
the embedded system and to the state of the system.
We can distinguish at least three different execution times:

1. Best-case (minimal) execution time is the best possible execution time
for a piece of code.

2. Awverage execution time is the average execution time over a number
of different runs of the system.

3. Worst-case (mazximal) execution time is the longest possible execution
time a piece of code can have.

It is important to realize that the use of these different execution times
in a schedulability analysis leads to different systems. In a mission-critical
hard real-time system we will choose to use the worst-case execution times
for the schedulability analysis, because the system cannot miss any deadline.
A system with soft real-time deadlines on the other hand can make use of
the average execution times, so that the embedded system keeps most of its
deadlines.

7.1.1 Problems with Measuring Execution Time

Finding the execution time of software involves many problems and different
programming constructs must be taken into account. Below is a summary
of the problems we can encounter and their implications on the execution
times. You may already be familiar with many of the problems, but they
are mentioned here anyway to draw your attention on the level of difficulty
involved in measuring the execution time.

Branches (such as if-statements, switches, etc...) can influence the exe-
cution flow and therefore the execution time of a program. When measuring
execution times all branches should be considered.

Iteration and recursion are another aspect that influence the execution
time. In worst case the iteration does not stop (infinite loops) which results
in an infinite execution time. In best case the execution time is not prolonged
when the loop is not entered. Infinite loops are used a lot in embedded
software to continuously check for some change in the environment of the
embedded system. We come back to the topic of loops in section 7.2.

7.1. EXECUTION TIME 65

The length of the datastructures causes different algorithms to ex-
hibit different execution times. It should be taken into account that some
datastructures grow and shrink dynamically over time. The algorithms that
are used to handle these datastructures can influence the execution time
immensely (e.g. quicksort vs. bubblesort).

Late binding in object-oriented languages causes the execution time to
depend on the run-time properties instead of the static properties of on
the code. When a new object is introduced into the system, the timing
behaviour of the software can change completely.

Network connections provide another source for variation in the exe-
cution time. When an embedded system is hooked up to a network it is
important to realize that the time for sending and receiving data over a
network depends on the load of the network and/or the load of the other
device used in the communication.

Concurrency is something that is ubiquitous in most embedded systems.
When running different processes on a single CPU, the CPU time is mul-
tiplexed over these processes. It is obvious, but easily forgotten, that the
execution time of the software depends on how many processes the CPU is
currently serving.

Reusability When using component-based software in different embed-
ded systems we need to deal with some problems that are bound to the
reusability of the components. A nave solution could be that the component
developer adds the execution times of the component to the documentation.
The problem with this solution is that when the component is reused on
other hardware all execution times delivered in the documentation are use-
less, unless we have an hardware-independent representation for execution
times (below we will see such a representation).

7.1.2 Expressing the Execution Time

When we measure the execution times of the code we have to decide what
units we will use to denote the results. There are basically two ways to
express the execution time:

1. Time

2. Processor Ticks

66 CHAPTER 7. SCHEDULABILITY ANALYSIS

Regular Time is maybe the most natural way to express the execution
time. We can choose the granularity (e.g. milliseconds) according to the
needs of the application. The problem with expressing the duration of the
execution of a piece of code is that it is dependent on the hardware on which
the test were done.

Processor Ticks are another way to denote the duration of a piece of
code. Processor ticks are particularly useful in expressing interpreted ex-
ecution times. KE.g., we can alter the byte-code interpreter of a Virtual
Machine to count the number of interpreted instructions. Such processor
ticks are independent of the processor that is used. When given a processor
we can do tests on the execution time of the byte-code on that processor
and use these measurements to convert the processor ticks to regular time.
The advantage is that the time expressed in processor ticks can be converted
easily to be expressed in regular time given a certain processor type P:

Total ExecutionTime = ProcessorTicks x BytecodeInterpretTimeonP

A disadvantage is that the applicability is limited to interpreted code. An-
other disadvantage is that processor ticks converted to regular time will not
be as accurate as regular time that was measured. This is because in one
processor tick, some code is interpreted and evaluating the interpreted code
varies on what is interpreted. This variation needs to be resolved by using
statistics which introduces some variance in the measured results.

7.1.3 Test Sets

To solve some of the problems measuring the execution times (see sec-
tion 7.1.1) we suggest to create a test set. The test set can be used to
alter the state of the component (e.g. the worst-case execution state). This
can be achieved by changing the internal data-structures of the component.
To be able to do this the test set must have access to the internals of the
component. Once the component’s state is altered it is possible to measure
the execution times. E.g., suppose we have a phonebook component that
keeps the names and telephone numbers in a vector. With a test set we
fill the vector to its maximum capacity with unsorted sample data. After
having done that we can find the worst-case execution time of the lookup
message by searching for the last element in the vector.

Creating a test set is not an easy task and is still error-prone, but once it
is created it can be used and reused without breaking the black-box princi-
ples that are associated with components. Once a test set is created we can
use processor ticks or reqular time as our unit of measurement. The choice
between these two has some implications.

7.2. PROBLEM: LOOPS 67

Comparing both Strategies

When we use regular time as our time unit we will have to deliver the test
sets with the components as documentation. This is necessary, because the
results will need to be reproduced in different hardware environments. When
we choose for processor ticks as time unit then the results are less accurate,
but the test set is not necessary and the time can immediately be calculated
for a certain processor. An advantage of using processor ticks is that a time
estimate can be made before an actual prototype is built. We propose that
when both units of measurements can be applied (since processor ticks can
only be used in interpreted code) we deliver the components with both a test
set and the processor ticks. This way a possible customer of a certain client
can use the processor ticks as an indication before buying the component.
When the customer has bought a certain component, more accurate results
can be produced using the test sets.

Advantages and Difficulties of Creating a Test Set

Creating a test set is a complex task that should not be underestimated.
When creating a test set we have to take most of the difficulties into account
that were discussed in section 7.1.1. However, the creation of a test set also
has different advantages:

e Reusability of components is not compromised using this method
e It becomes easy to switch to other hardware environments

e Writing a test set is a good way of writing correct code, which adds
to the robustness of the system.

e When a test set is constructed, the developer will have to reason over
the internal structure and algorithms used in the components, which
can unveil flaws in the code.

7.2 Problem: Loops

Loops can create three kinds of troubling situations in our system:

1. When an infinite loop is used in a component, the component is not
able to process the other messages in its queue.

2. If intercomponent communication occurs in a loop then the queue
could become overloaded, which is a threat to the responsiveness of
the system.

3. In section 2.3 we saw that some components need services from other
components before they can deliver their services. A loop can occur
when some components request each other’s service.

68 CHAPTER 7. SCHEDULABILITY ANALYSIS

In the component system we encounter two kinds of loops: loops embedded in
code, which cover the first two situations and loops due to inter-component
communication which covers the last situation. Both will be discussed now.

7.2.1 Loops Embedded in Code

Loop structures are omnipresent in programming languages (e.g. for, while,
...), but can also be hidden in recursions and other constructs (e.g. method
‘a calls method ‘b, and method ‘b calls method ‘a; a more complicated
example: when a method ‘a in a subclass calls the super method ‘b, which
in turn calls method ‘a on self). We will make a distinction between infinite
loops and finite loops.

Infinite Loops

Infinite loops are not allowed within a component, because the component
system does not allow a component instance to handle more than one request
at a time. A component cannot respond to incoming requests when an
infinite loop is entered to process a message. As infinite loops are not allowed
in the component system one might wonder if they can be avoided at all
times. Consider a system that needs to poll a certain hardware device for a
change in the environment. A system like this is regularly implemented as
an infinite loop that polls the hardware device at each turn. In cases like
these a time-triggered event (see section 6.1) should be used instead of an
infinite loop.

Finite Loops

Whenever a loop embedded in code sends messages to other components,
these messages are added to the queue. Since we cannot change the or-
der of the incoming messages we have to process all these messages before
the component can process another message. This way a finite loop can
also influence the responsiveness of the system. Finite loops are sometimes
unavoidable in code (e.g. when they are used to send a notification to a
number of components in the observer-pattern). Instead of banning loops,
the component manufacturer must add a lower- and upperbound on loops
that contains intercomponent communication and influence components in-
volved in timing constraints. The upper- and lower bounds are expressed in
the inline operator expression on the abstract MSC. An example is shown in
figure 7.1. This extra documentation is needed so that the scheduler can take
appropriate actions or when a schedulability analysis (see also section 7.3)
is done. Note that loops that do not interact with components involved in
time constraints do not need to be documented.

7.2. PROBLEM: LOOPS 69

Component SC
{ msc Example

<other code>

SC | | Target |

message Approximate
{ ¢ fpproxi O Approximate

while (NewValue>delta)

{ loop(jmin,max) J

<some computation>

Target..Update (<NewValue>) ; Update

}
}

<other code>

Figure 7.1: Documented Loops

7.2.2 Loops Encountered in Inter-Component Communica-
tion

Besides loops that are embedded in the code, we can also encounter loops
in the intercomponent communication. Consider the following scenario:

1. Component A processes m(0 and sends a message ml to component B
2. Component B processes ml and sends a message m2 to component C
3. Component C processes m2 and sends a message m3 to component D
4. Component D processes m3 and sends a message m0 to component A

This is an example of a loop in the intercomponent communication. To see
the effect of such loops on the the reliability of the system we need to get
into the internal structure of the component system. When an intercom-
ponent message is sent, that message is placed in some queue for further
execution. At some point in time that message is then processed and sends
another message which ends up in a queue. The queue structure is pic-
tured in figure 7.2. This picture shows that other components can still send
messages to the components A, B, C and D, while that loop is occuring.
Although the response time to incoming messages will be prolonged, the
components will still be able to respond to them (incoming messages are
still enqueued). Loops in intercomponent communication do not block the
system in constrast to loops embedded in the code. Another problem we
have when dealing with intercomponent communication is that it is impos-
sible to know when the loop will be finished. There is a possibility that the
loop will occur several times and after that a single message is sent with

70 CHAPTER 7. SCHEDULABILITY ANALYSIS

Component A processing m0 Component B processing m1

I
78 | BEE

(LT
Djj
Djj
LRI
([]e

Component D processing m3

‘u/

Component C processing m2

IR
([T]e
Dj]
Dj]
([T
HHEE

Figure 7.2: Intercomponent Loops - Internal Queues

some result. In that case it would be nice to know the maximum number of
loops that are required before this message is sent. This information could
be used by the scheduler or to do a schedulability analysis. Loops in in-
tercomponent communication can be documented by placing an upper- and
lowerbound in the inline operator expression. The example described above
is shown in figure 7.3. Similar to loops embedded in code that send mes-
sages, there is no need to document these loops when they do not involve
components that deliver real-time services.

7.3 Schedulability Test

[19] distinguishes two levels of accuracy in schedulability analyses:

Definition 19 (Necessary Schedulability Test) If a necessary schedu-
lability test is positive, the system will definitely satisfy the specified timing
constraints.

Definition 20 (Sufficient Schedulability Test) If a sufficient schedula-
bility test is megative, the system cannot satisfy the specified timing con-
straints.

In the remainder we explain how a Sufficient Schedulability Analysis
can be implemented, given the execution times and a timing constraint.
Consider the MSC shown in figure 6.8 on page 58 and the average execution
times shown in table 7.1. It is not difficult to see now that

7.3. SCHEDULABILITY TEST 71

msc Example

a b c d
A | B | [¢ | LD

mO0

loop(minTimes,maxTimes) J

ml

m2

m3

mO0

Figure 7.3: Documented Intercomponent Loops

234ms + 500ms + 900ms > 1s

and therefore the timing constraint cannot be met. When a loop is used in a
timing-marked MSC we can calculate this by multiplying the execution time
of the messages that are send within the loop with the maximum number
of iterations of that loop. The reason why this is a Sufficient Schedulability
Analysis comes from the fact that we do not consider the delivery time.
Finding the delivery time is actually far more complicated. The delivery
time in the component system is relative to the length of the internal queue.
If we can find an upper-bound length of each queue in the system, then we
can do a Necessary Schedulability Analysis.

Let us assume that we have an upper-bound length for the queues of
each component (denoted by MQL(C)) shown in table 7.2. We also need to
know for each component what message has the highest worst-case execution
time (denoted by WCET(C)). These execution times are also denoted in
that table. The necessary schedulability test for our example is shown in
figure 7.4. In a hard real-time embedded system a necessary schedulability
test is indispensable, but because the emphasis of this dissertation is not
schedulability analysis we have not tried to find such an upper-bound. If
the component system is to be used in a hard real-time system a formal
proof should be given for an upperbound length of each queue.

72 CHAPTER 7. SCHEDULABILITY ANALYSIS

(MQL(C2) * WCET(C2) + ET(C2, Update)) +
(MQL(C3) * WCET(C3) + ET(C3, UpdatePicture)) +
(MQL(C4) * WCET(C4) + ET(C4, UpdateLayout))} < 1s

MQL
WCET

Maximum Queue Length
WorstCase Execution Time

Figure 7.4: Necessary Schedulability Test

‘ Component Name ‘ Message Name ‘ Execution Time

C2 Update() 234ms
C3 UpdatePicture() 500ms
C4 UpdateLayout() 900ms

Table 7.1: Sample List of the Average Execution Times

Component Max Worst Case

Name Queue Length | Execution Time
MQL(C) WCET(C)

C2 23 654ms

C3 43 543ms

C4 12 674ms

Table 7.2: Extra Information Needed for a Sufficient Schedulability Test

7.4. SUMMARY 73

7.4 Summary

A schedulability analysis can be useful to predict whether the hardware
used in the embedded system will provide enough computational resources
for its task. The execution times of the different tasks are important to
do such a schedulability analysis. Finding the execution time is not an
obvious task, which involves careful analysis of the source code. We need
a transparent way to provide the execution time as documentation with
the components. We propose to create a test set, which can revert the
component into a certain state. Once the component is reverted into a
certain state tests can be done to measure the execution time of the different
messages. Another choice that has to be made is the unit of time. We
considered regular time and the number of processor ticks. Processor ticks
can be converted to regular time. Processor ticks have the advantage that
they are independent of the hardware used, but they can only be used in
interpreted code. Another disadvantage is that the conversion of processor
ticks to regular time is not entirely accurate. An advantage of the processor
ticks is that they provide an estimate of the regular time before the embedded
device is actually build. This way the electrical engineers can make an
educated guess of the hardware that is needed in the device they are building.
With the timing-marked MSCs and the timing information of the different
components we can perform a sufficient schedulability test. A necessary
schedulability test is however necessary if we want to compose hard real-
time systems. To do a necessary schedulability test we need an upperbound
on the length of queues from the different components.

74

CHAPTER 7. SCHEDULABILITY ANALYSIS

Chapter 8

Tracking the Execution of a
Program

In the remainder of this dissertation a scheme will be presented that adjusts
the processing rate of the different components. The processing rate will be
changed according to the execution state of the different components and
the timing constraints that were specified using the techniques specified in
chapter 6. This means we need to extend the component system with a
mechanism that records the current execution state of the running program.
In this chapter we will present the techniques that were used to record
the execution trace of the program. The technique presented here tracks
the component communication to follow the current execution trace of the
program. Tracing the execution occurs on two levels:

1. Message-based tracking

2. Constraint-based tracking

8.1 Message-Based Tracking

A message-based tracker follows the execution trace of one specific message
within a component. So for each component in a program, there is another
tracker. In this section we discuss the internals of a message-based tracker
(MBT). When plugging the different components together the concrete be-
haviour can be constructed using the technique explained in chapter 5. The
concrete behaviour describes all intercomponent communication. A MBT
uses the concrete behaviour of its component to track the execution trace of
that component’s intercomponent communication at run-time. To simplify
tracking the execution trace a conversion of the concrete behaviour to a
non-deterministic finite automate (NFA) can be done. Figure 8.2 shows the
NFA corresponding to the concrete MSC shown in figure 8.1. A constructive
proof by induction is given in [20], which shows that from each NFA a DFA

75

76 CHAPTER 8. TRACKING THE EXECUTION OF A PROGRAM

can be constructed that has the same language of the NFA. The NFA is
therefore converted to a DFA using the algorithm defined in the construc-
tive proof. When NotifyAll is processed by component “Dispatcher” and
the component sends a message Update() to the Log component then the
following happens:

1. initially we are in the start-state

2. we match the message Log..Update() to all outgoing transitions (this
can also include matching the parameters that are passed along with
the message)

(a) if it matches the transition’s destination becomes the current
state

(b) if it does not match we try another transition

3. eventually we move to the new state corresponding to the transition
that was found

4. if we are not in an end-state we go back to 2.

This algorithm is good if we have exactly one DFA / message in a com-
ponent. In section 4.5 I have explained that we can refine the communica-
tion traces by adding a boolean value and creating a more specific abstract
MSC. This means we can have more than one abstract MSC describing the
behaviour of a message, which implies we can end up with different DFAs
to match. We can combine the different DFAs into a NFA. After doing this
we can convert the NFA back to one DFA. We can get rid of the run-time
overhead created by converting the NFAs to DFAs by converting the NFAs
at component composition time.

The overhead of matching the different transitions can be minimised
by using POOL-structures. In a pool structure each message has a unique
identifier. Matching the message over the transition can be done in O(1) if
a lookup table is constructed at compile-time. A similar POOL-structure
could be used for matching the parameters, but this can only be done if
the component manufacturer has foreseen this in the parameter objects.
The overhead of parameter matching can be reduced by using less refined
abstract MSCs, but the price is that the scheduler will be less accurate. We
come back to this topic in chapter 9 about Scheduling.

8.2 Constraint-Based Tracking

Besides the tracking on message level, the scheduler needs information about
the progress of the different timing constraints to take some decisions. Track-
ing the progress of the timing constraints is called constraint-based tracking

8.2. CONSTRAINT-BASED TRACKING

msc Example

Dispatcher Log HP500 Watchdog
Il)ispatchek | Logger | | Printer | |Watcher
NotifyAll

loop((0,maxObs)

alt)) J

Figure 8.1: Example of a Concrete MSC

7

78 CHAPTER 8. TRACKING THE EXECUTION OF A PROGRAM

Log.Update()
NotifyAll()
HP500.Update()

Watchdog.Update()

Figure 8.2: NFA corresponding to the Concrete MSC

(CBT). In this section we show how the time constraints can efficiently be
tracked in O(1). The CBT is separated in two different activities:

1. Detection of a starting constraint

2. Tracking the progress of a constraint

Detection of a starting constraint In the previous section we have
seen how the concrete MSCs can be converted into a DFA. The input of
the algorithm is a timing-marked MSC (see section 6.4.2) and the set of
DFAs that we constructed from the concrete behaviour. When we consider
the example shown in figure 6.8 on page 58 then we can see the timing con-
straint is initiated by sending a message Notify() to the component Clname.
The algorithm presented below adapts the DFAs so that they can help in
identifying the timing constraints:

1. for each DFA d

(a) for each transition t

i. if the transition t matches with the timing-marked DFA

ii. then add the timing-marked DFA to the transition informa-
tion

8.2. CONSTRAINT-BASED TRACKING 79

LightSensor Dispatcher Log
Sensor Dispatcher Logger
NotifyAll()
a »
Update() b
| | |
{b-a<2s}

Figure 8.3: Timing-marked MSC for the Logger

If we do this for each timing-marked DFA that we have specified then all the
DFAs carry all starting points of the timing-marked MSCs. Note that this
operation can be carried out at compile-time creating no run-time overhead.
When at run-time a transition is matched that contains a reference to a
timing-marked DFA then two things are done:

1. a unique identifier is placed as a hidden parameter in that message

2. the DFA of the timing-marked MSC is placed in a lookup table using
the unique identifier

As an example consider the timing-marked MSC shown in figure 8.3. The
timing-marked MSC specifies a timing constraint between the notification
time of the LightSensor component and the Log component. The corre-
sponding DFA is depicted in figure 8.4.

Tracking the progress of a constraint We have seen in chapter 3 that
when a message with a hidden parameter is processed, the hidden parameter
is retransmitted with every message that is send. We will now slightly modify
the matching method explained in MBT:

1. if the message that is matched carries a unique identifier then

(a) lookup the DFA of the timing-marked MSC.
(b) if there is a match between the message and the DFA

80 CHAPTER 8. TRACKING THE EXECUTION OF A PROGRAM

©

Logger.Update()

NotifyAll()
Dispatcher.Update()

Figure 8.4: DFA of the Constraint

i. then move the following pointer to the next state
ii. else remove the hidden parameter

Figure 8.5 shows the cooperation between the MBT and CBT. When the
MBT detects a hidden parameter carrying a unique identifier the CBT is
informed and can update the constraint DFA it is tracking. It is obvious
that we can use the same optimisation techniques to match the transitions
of the timing-marked MSC as explained in the previous section. Another
optimisation that we have made here is to remove the hidden parameter.
Since the message didn’t match with the timing constraint it will not match
in the future either, so when it is removed we have no extra overhead.

8.3 Requirements for Real-Time Software

With each message that is sent by a component some run-time overhead
is created. We want to minimize the overhead in each program that has
such an amount of overhead at run-time. The overhead can be minimized
by using POOL-structures and lookup tables as explained above. A more
important issue is that the overhead created from tracking should have a
fixed upperbound. This is an issue because the overhead should be taken
into account when doing a schedulability analysis of the program. The
overhead can be taken into account in the schedulability analysis by adding
the overhead of sending a message to the execution time of that message.

8.4 Summary

If we want to generate a scheduler that can make decisions based on the state
of the system we can build a tracker. The tracker used in this dissertation
will follow the execution state of the different components by monitoring

8.4. SUMMARY

Message Based Tracker
for the Sensor Component

Constraint Based Tracker
Active Constraints

-
/l \\
. // b
Notifyall() / Q,@ '
//
/
// //

Unique Id
1

]

Unique Id
2

&0 o0

Tracking NotifyAll()

Hidden
parameter

Log..Update()
NotifyAll(UID: 1

~
\»\/@..Updale()

Watchdog..Update()

Figure 8.5: Relation between MBT and CBT

the messages that are send between the components. The tracker system
works on two levels, namely message-based tracking and constraint based
tracking. The message-based tracker uses concrete MSCs that are converted
into a DFA. The tracker can then provide information about the state of the
system to the scheduler. The role of the tracker in the component system
is depicted in figure 1.4 on page 10. A transition in the DFA is done by
matching the message that was send. The matching of the messages can
be optimised to an O(1) operation by using lookup-tables. The constraint-
based tracker uses the states of the DFAs extracted from the concrete MSCs

to follow the constraints defined in the timing-marked MSCs.

82 CHAPTER 8. TRACKING THE EXECUTION OF A PROGRAM

Chapter 9

Real-Time Scheduling

In this chapter we will discuss scheduling on a single-processor system.
Scheduling is the process of choosing which concurrent process becomes ac-
tive. A scheduler is used in a software system for enforcing different timing
strategies. This can vary from enforcing a timing constraint to implement-
ing a fairness strategy among different concurrent parts. We discuss two
ways how we can do scheduling in the component system. One possibility
is to use priority-driven scheduling algorithms. Another possibility to do
scheduling is to let the component choose what message it will process next.
The decisions on how we can assign different thread priorities and what mes-
sage should be processed by a component are taken by using the information
provided by the tracker discussed in the previous chapter. First we discuss
the information that is available to make some scheduling decisions.

9.1 Available Information

Scheduling decisions are based upon some information that is available or
that can be predicted. The information should provide the scheduler with
knowledge about the future. A scheduler is called clearvoyant if it knows
everything about the future.

The tracker that is described in the previous chapter provides us with
some information that can be used to make the scheduler a bit more clear-
voyant. Below is a summary about what information is available. By using
the tracker we know:

e when a timing constraint started (e.g. when a component sent a mes-
sage that activated a timing constraint specified in a timing-marked
MSC)

e how much time is left before the deadline of a timing constraint expires
(e.g. when a timing constraint is detected, the starting time can be

83

84 CHAPTER 9. REAL-TIME SCHEDULING

saved. At each point in time we can calculate the time between the
deadline and the current time)

e the components on which the system relies in order to complete a task
(e.g. we know when a component is waiting for another component,
before it can continue with its execution)

e sometimes we can predict that a timing constraint will occur (e.g.
when a path unambiguously leads to the start of a timing constraint,
by interpreting the periods of the time-triggered messages)

e the periods of the time-triggered messages (e.g. the period that is
denoted in the abstract MSCs)

e the set of messages that could be sent in the future (e.g. the messages
that are denoted in the concrete MSCs of the message)
9.2 Priority-Driven Scheduling Algorithms
A priority-driven scheduling algorithm does scheduling by chosing priorities
for different concurrent tasks, also called threads. Whenever a thread gets
a higher priority than the one thread that is running, the running thread
is immediately interrupted (also called preempted) and the thread with the

higher priority can run now. There exist several strategies in which we can
update the priorities of the different tasks.

Definition 21 (Optimal Scheduler) An Optimal Scheduling Algorithm
finds a schedule if the best clearvoyant scheduler can find a schedule.

Definition 22 (Feasibility) A Scheduling Algorithm is called feasible if it
can find a schedule so that no deadline is missed.

We can make the distinction between three different scheduling algo-
rithms:

1. Static scheduling algorithms
2. Dynamic scheduling algorithms
3. Hybrid scheduling algorithms

We discuss these three classes of algorithms and some of the research
[21, 23, 24] that is available about them.

9.2. PRIORITY-DRIVEN SCHEDULING ALGORITHMS 85

9.2.1 Static Scheduling Algorithms

In a static scheduling algorithm, all threads are assigned a fixed priority
at compile-time. Such algorithms can only be used in software that has a
fixed temporal task structure. This causes the algorithm to be inflexible to
changing situations in the environment. An advantage however, is that a
static scheduling algorithm does not create any run-time overhead. A static
scheduling algorithm can also be seen as a sufficient schedulability test. The
static scheduling algorithm called Rate Monotonic Scheduling is discussed
in [21], the results are summarised below.

Rate Monotonic

In Rate Monotonic Scheduling (RM) the priorities are chosen at compile-
time using the periodicities of the tasks. The requests for all tasks must be
periodic!, with a constant interval between requests and the periodicities are
denoted with T1, T2, ..., Tm. The execution times of the different tasks are
fixed and are denoted with C1, C2, ..., Cm. (m is the number of concurrent
tasks). The task with the shortest period gets the highest priority. The rate
monotonic scheduling is optimal, which means that it will find a feasible
schedule if one exists. A sufficient condition for schedulability is given by:

= Ci 1
i=1
For large values of m:
" Ol
>~ <In2=0.693
=T

The last result shows that the least upper-bound for the processor utilisa-
tion is about 70 percent. This means that about 30 percent of the processor
power is not utilised, which is a disadvantage when we look from an eco-
nomical perspective. It is however possible in many situations to increase
the processor utilisation to 90 percent. This can be accomplished by using
a buffer mechanism [21] for a number of tasks with a lower priority and by
relaxing their deadlines.

9.2.2 Dynamic Scheduling Algorithms

In a dynamic scheduler all scheduling decisions are computed at run-time.
This implies that we have some overhead in choosing and altering the differ-
ent thread priorities at run-time. Below we discuss some dynamic scheduling
algorithms.

!'Sporadic tasks can also be used by considering them as a Periodic tasks [19]

86 CHAPTER 9. REAL-TIME SCHEDULING

Earliest Deadline First

In [21] a dynamic scheduling algorithm is also studied for use in hard real-
time systems. In this algorithm the priorities are assigned according to the
deadlines of the current request. A thread is assigned the highest priority if
the deadline of its request is the nearest or the thread will be assigned the
lowest priority if the deadline of the request is the furthest. This means that
at any time a thread with the nearest deadline, that is not completed yet,
will get the access to the CPU. The priorities of the thread can change over
time and the algorithm is thus called dynamic. The paper gives a proof that
this algorithm is optimal, just like the Rate Monotonic Scheduling algorithm.
In [21] a proof is also given of a necessary and sufficient condition for the
feasibility of the algorithm:

If C1, C2, ..., Cm are the worst case execution times of the m concurrent
tasks and T1, T2, ..., Tm are the periods of these tasks then the Earliest
Deadline First algorithm is feasible if and only if:

mo o
> <
i=1
The result also shows that the least upper bound of the processor utilisa-
tion is 100 percent. A serious disadvantage of the Earliest Deadline First
algorithm is that it becomes unpredictable when the system is overloaded
and deadlines are missed.

Least Laxity First

Least Laxity First is another dynamic scheduling algorithm. It is based on
the laxity of the different deadlines.

Definition 23 (Laxity of a Deadline) The Lazity of a Deadline for a
task T is defined by:

Lazity(T) = Deadline(T) — CurrentTime — ExecutionTime(T).

Intuitively the lazity of a task is the time that we can waste without failing
to meet the deadline.

The task with the least laxity gets the highest priority. The accuracy of
the algorithm depends on the prediction of the execution time. When the
prediction of the execution time is estimated higher than the real execution
time a task can get wrongfully a higher priority. The Least Laxity First
algorithm becomes unstable in an overloaded system, just like the Earliest
Deadline First algorithm.

9.3. ADJUSTING THREAD PRIORITIES USING A DFA 87

9.2.3 Hybrid Scheduling Algorithms

In a hybrid scheduling algorithm the process of chosing priorities for different
threads is done by mixing a static scheduling algorithm with a dynamic
scheduling algorithm.

Maximum Urgency First

The scheduling algorithms discussed above have the disadvantage that they
become unstable in overloaded situations. A hybrid scheduling algorithm
that uses a combination of Rate Monotonic scheduling and Least Laxity
First scheduling is proposed in [23]. The urgency of a task is defined as a
combination of two fixed priorities and a dynamic priority. The two fixed
priorities are called the criticality and the user priority. The process that
becomes active is chosen with the following rules:

1. Select the task with highest criticality (fixed priority)

2. If two or more tasks share the highest criticality then the task with the
highest dynamic priority (i.e. with the least laxity) is chosen. Tasks
with no deadlines have a dynamic priority of zero.

3. If two or more tasks share the highest dynamic priority then the task
with highest user priority is chosen.

4. If there is still no unique task, then the task is chosen on a first-come
first-served basis.

We can choose the set of hard real-time constraints by assigning them the
highest critical priority. The advantage of this system is that you can define a
set of hard real-time constraints and a set of soft real-time constraints. This
algorithm is considered stable, because a deadline miss will always occur
in the set of soft real-time deadlines and will not affect the hard real-time
deadlines.

9.3 Adjusting Thread Priorities using a DFA

The algorithms that are explained above cannot be applied “as is” to the
component system we have defined. This is mainly because these algorithms
are all based on the idea that one thread computes one specific (real-time)
task. If we take a look at the architecture of our component system then
you can see that when a component has to compute a specific task this in-
volves delegation of subtasks to other components. As the communication
is asynchronous between the different components, the task is actually com-
puted by different threads, so modifying the priority of a single thread is
not sufficient. When we assume that each component has one thread then

88 CHAPTER 9. REAL-TIME SCHEDULING

Clname C2name C3name
C1 Cc2 C3
Notify()
Update()
a
UpdatePicture()
b ChangeCgmpleted()
|] |
{b-a<2s}

Figure 9.1: Example of a Timing-marked MSC

the task is actually computed by the different threads. It is clear that we
need to identify all the threads that are involved in the computation of that
single task.

9.3.1 Time-Constrained Components

When we consider the timing-marked MSC shown in figure 9.1 then we can
determine the set of components the system relies on in order to satisfy the
timing constraint. The set of components is Clname, C2name and C3name.
Each time a message is sent, this set of components could change. This
is illustrated in table 9.1. The dependent component for a timing-marked
MSC can be computed at compile-time. The idea is to store them in the
DFA that is extracted from the timing-marked MSC shown in figure 9.2. At
each point in time we know for each timing constraint what components will
have to process requests. With that kind of information we can change the
priorities of the threads that serve those components. With each change in
the running software we can update the different priorities easily.

9.3.2 Adjusting the priorities

By using a DFA as described above we know at each point in time the
components that are used to satisfy a certain time constraint. The different
scheduling algorithms that were discussed above could be used on the set of
dependent components. When a certain time-constrained task is requested
or initiated by a triggered message then the tracker can detect this and

9.3. ADJUSTING THREAD PRIORITIES USING A DFA 89

‘ ‘ Message Send ‘ Dependent Components ‘
1 | Notify() Clname, C2name, C3name
2 | Update() Clname, C2name, C3name
3 | UpdatePicture() Clname, C3name
4 | ChangeCompleted() | Clname

Table 9.1: Dependent Components

{C1Name,

C2name,
C3name}

{C1Name}

C2name.Update() C3name.UpdatePicture()

Clname.Notify()

Clname.

{C1Name, ChangeCompleted()

C3name}

{1

Figure 9.2: DFA with the dependencies

90 CHAPTER 9. REAL-TIME SCHEDULING

apply one of the scheduling algorithms on the set of dependent components.
As the computation of the task evolves we have to change the priorities
of the different threads. To satisfy the timing-constraint depicted in the
timing-marked MSC shown in figure 9.1 we have to alter the priorities of
the component’s thread in the following order:

‘ ‘ Message Send ‘ Components Thread ‘
1 | Notify() Clname
2 | Update() C2name
3 | UpdatePicture() C3name
4 | ChangeCompleted() | Clname

9.3.3 Scheduling using the Real-Time Behaviour

Besides the time constraints we introduced the description of different other
constructs that influence the timing behaviour of a system in chapter 6. We
discuss the problems they cause and how we solve them:

e Dependencies
e Time-Triggered Messages

o Event-Triggered Messages

Dependencies

Dependencies cause a component to wait for a message from another com-
ponent before it can continue with its execution. They can cause a pri-
ority inversion, which means that a task with a higher priority is waiting
for a task with a lower priority. Reconsider the timing-marked MSC from
figure 9.1 and the concrete MSC shown in figure 9.3. Figure 9.3 shows
that component C2 will wait for the C2name..Update() message and the
C2name..UpdateLayout() message before it will send the UpdatePicture()
message. When the timing constraint shown in figure 9.1 occurs then it will
wait for the component C4name to send an UpdateLayout() message. Now
assume that C4name runs at a lower priority than the timing constrained
task.

We can prevent a priority inversion from happening by doing the follow-
ing:

1. Identify the set of timingmarked MSCs that have dependent message.

2. For each dependent message compute all execution traces that cause
the dependent message to be send

3. Track the set of computed execution traces

9.3. ADJUSTING THREAD PRIORITIES USING A DFA 91

msc Example

Clname C4name C2name C3name
cr | | ¢4 | | Cc2 | | 3
Updhte()
UpdateLayout|)
UpdatePicture|)

Figure 9.3: Example: Dependent UpdatePicture() message

4. Speed-up the computed execution traces when they are detected (by
applying priority-inheritence)

Steps (1) and (2) can be computed at compile-time. The resulting set of
computed execution traces can be tracked using the CBT algorithm de-
scribed in the previous chapter. When a component is waiting for a certain
dependent message the tracker can detect this and “speed up” the execution
traces that cause the message to be send. The speeding up of the execution
traces can be done by using priority inheritance [24] principles. Priority
inheritance is the process of assigning the priority of the waiting component
to the execution trace it is waiting for.

Triggered Messages and Loops

In section 6.1 we have seen two different message triggers:
1. Time-Triggered Messages
2. Event-Triggered Messages

When a message is sent it is either processed immediately by the component
or it is put into a queue. If a certain message is recurrent and the compo-
nent cannot process the message before the message recurs then the queue
will not be bounded anymore. This implies that the responsiveness of that
component cannot be guaranteed anymore, which is unacceptable when the
component is used in a timing constraint. The same thing happens when
a loop is entered where different messages are send to a component. We

92 CHAPTER 9. REAL-TIME SCHEDULING

msc Example

TC TR
|TCheck| | TReg |
< Periodic: 45ms >

Report(Temperature: *)

Figure 9.4: Example: Controlsystem of Nuclear Power Plant

must prevent that the queues from Time-Constrained components build up
over time. This can be done by putting a monitor on these queues. When
a queue exceeds its treshold the priority can be increased. The treshold is
proportional to the laxity of the constraints that are to be served by the
component, that is the lower the laxity of the constraint the lower the tresh-
old of that queue. If no deadline misses are allowed the treshold must be
set to the least laxity of all the constraints served on that component.

9.3.4 The Role of Refined MSCs

In section 4.5 we have seen how we can refine MSCs by taking the parameters
into account. We will now discuss the benefits of refined MSCs used in the
timing-marked MSCs. Sometimes a certain time constraint applies only
when some certain preconditions are met. Consider a control system of a
nuclear power plant. When the temperature rises above a certain treshold
a series of actions need to be taken to cool down the system fast. When the
temperature is below that treshold the temperature is written to a log file
by the same component. It is obvious that the former case is urgent while
the latter case does not have priority over the other processes. The concrete
MSC of this case is depicted in figure 9.4.

With a refined timing-marked MSC we can specify that the timing con-
straint is only valid when the temperature is above the treshold. The refined
MSC has the advantage that the system will only modify the different pri-
orities in the case it is needed. Without this refinement, the system will not
miss any deadlines but it will work harder than it should. This could cause
other deadlines to be missed while they could have been met.

9.4. SCHEDULING WITH QUEUES 93

Component
C1
ml m3 m5 m6
m3 mb5 m4 m7
m5 m9 m4
m3
C2 C3 C4 C5

Figure 9.5: Internal Queue Structure

9.4 Scheduling with Queues

In chapter 3 we have seen that the order in which the messages are processed
by a component needs to be the order in which they are sent by the different
components. This constraint was necessary to preserve a certain logic in the
temporal order of the messages that are sent. To maintain this restriction
we can multiplex the queue of the component in different queues. After
multiplexing the component queue there is one queue per client component
(see figure 9.5). Suppose the component C1 has components C2, C3, C4 and
C5 as clients. The messages sent to C1 by C2 are placed in the queue labelled
(C2, the messages sent by C3 are placed in the queue labelled C3 and so forth
for each client component. Each time the component C1 has to choose the
message it will process it has to select the queue from which it will pop
the next message. It is clear that this choice affects the timing behaviour
of the different time constraints. I propose to add priority numbers to the
different queues, similar to the way threads have a priority number. When
a component needs to select a message it will process the message from the
queue with the highest priority.

The priorities of the different queues can be assigned in a similar way
priorities are assigned to the different threads. For the assignment of the
priorities one of the scheduling algorithms could be used in combination
with the tracker.

94 CHAPTER 9. REAL-TIME SCHEDULING

9.5 Summary

Thread-based software can be scheduled by using a priority-driven schedul-
ing algorithm. A priority-driven scheduling algorithm changes the priorities
of the threads. The CPU is divided over the threads with the highest prior-
ity. There are three classes of priority-driven scheduling algorithms: static,
dynamic and hybrid algorithms. These algorithms cannot be applied “as is”
to the component system, because of its asynchronous communication. By
using information provided by the tracker and the component documenta-
tion (the concrete MSCs and the timing-marked MSCs) we can decide which
thread has to be changed. This is shown in figure 1.4 on page 10. The
changes to the priorities can be applied according to one of the scheduling
algorithms. The tracker can also detect cases of priority inversion. A prior-
ity inversion occurs when a component with a higher priority is waiting for
a component with a lower priority. When a priority inversion is detected by
the tracker it can be resolved by giving the dependent components a higher
priority. A second possibility to schedule within the component system is
by multiplexing the queue of a component into seperate queues according
to the sender of the message. Each multiplexed queue gets a priority and
the component choses the queue with the highest priority. The queues can
be assigned a priority using one of the priority-driven scheduling algorithms
and the tracker.

Chapter 10

Example: A Real-Time
Simulation

To test the applicability of the methods described above we have imple-
mented a testcase in the form of a Real-Time simulation. Simulations is
an area that has many important applications (e.g. automotive industry,
space travelling, astronomy, engineering, ...). A simulation can for example
be used to test some properties of new building constructs before they are
actually build. This way they can detect flaws in the design without actu-
ally building them. The simulation we have implemented is based on the
conduit system used in [18]. We have added some real-time properties to
this simulation. In this chapter we will work out the different aspects of the
simulation.

10.1 The Basic System

In the conduit system you have a number of limited building blocks, namely
a pipe, a join and a pump. These are the three components used for building
a conduit system. Each component can be configured to have some specific
properties. A pipe has for example a length, a capacity, ... The simulation
is hooked up to a graphical component in the form of a HTTP daemon. So
it is possible to follow the progress of the simulation by browsing to some
webpage. The HTTP daemon is also a component, in which different add-on
CGI-components can be plugged. An UML component diagram is shown in
figure 10.1. The configuration of the conduit system used in the example is
shown in figure 10.2.

10.2 Component Properties

I will now explain how the different conduit components interact with each
other. Each conduit component accepts three messages related to the sim-

95

96

CHAPTER 10. EXAMPLE: A REAL-TIME SIMULATION

Conduit System
% Join

Pump O
g Observable

DrainableCon
duit

% Pipe

CaGl
Components
% JoinView

Observer

% PipeView

Access
Counter

HtmlProvider

% FileSender

Daemon
Component

HTTPD
o5

HtmlAcceptor

Figure 10.1: UML Component Diagram of the System

< 100ms

< 500ms

Pipe A

< 300ms

Figure 10.2: Configuration of the Conduit System

10.2. COMPONENT PROPERTIES 97

msc Example

|PumpA| | PipeA |

< Periodic: 600ms >

Step()

Figure 10.3: Periodic Step Message for Pumpl

ulation:

1. Step: is sent with each tick of the clock and informs the component
that it can update itself.

2. Propose: is sent to a conduit to propose a certain amount of liquid

3. Take: this message is a reply to a propose message to inform how much
liquid the conduit will/can actually take.

The abstract communication behaviour of the components used in the ex-
periment is shown in appendix B. We will now have a closer look at the more
specific properties of the different components involved in the experiment.

10.2.1 Pump Component

A pump component has no input conduit and introduces liquid into the con-
duit system. The liquid is introduced into the system at well-defined time-
intervals. The component also has a throughput property that indicates the
maximum amount of liquid that can be passed at each time interval. In the
simulation two pump components are used and they are both set at a time
interval of 600ms. The time intervals are expressed with a time-triggered
message as shown in figure 10.3

10.2.2 Pipe Component

The properties of a pipe are its length and the throughput capacity. Each
pipe is divided in compartments. When some liquid is dropped in the pipe
it goes from one compartment into the other until the end of the pipe is
reached. When the liquid is at the bottom of the pipe it is proposed to

98 CHAPTER 10. EXAMPLE: A REAL-TIME SIMULATION

msc Join
| Join | | Down
Step(...)
Step(...)
Step(...)
Propose(...)

Figure 10.4: Join: Dependencies

the next conduit in the simulation. The abstract MSCs can be found in
appendix B.

10.2.3 Join Component

A join component takes two input conduits and joins both inputs to one
output. Such components are interesting to consider, because they can only
output the liquid after they are served by both input pipes. This behaviour
is comparable to the dependencies we have described in section 6.3. The
dependency behaviour for the step function is expressed in figure 10.4.

10.2.4 Graphical Components

A graphical component can also be plugged into the system for some of the
conduit components. These components provide a graphical representation
of that specific component. The conduit component and the graphical com-
ponents interact according to the observer-pattern described in [16]. In the
testcase the graphical components actually produce an image encoded with
JPEG-compression and adheres to the HTML-Provider interface as shown
in figure 10.1.

10.3 Real-Time Parts

Typically in real-time software only a few tasks should run within some
time-constraints while the other parts of the system can run without time

10.4. HANDLING THE DEPENDENCIES 99

boundaries. In the experiment we will try to run the simulation in real-time,
while the graphical user interface does not have to keep up with the time
boundaries of the simulation. The graphical components will display correct
information, but it could be that the information is delayed compared to the
conduit components. The Httpd component and other CGI-components do
not necessarily have to be considered by the scheduler, because they do not
interact with the conduit components.

To make the simulation real-time we will try to enforce the three different
timing constraints:

1. The program has to update the conduit components PipeA, JoinA,
PipeD and PipeE at most 500ms after liquid is introduced into the
conduits by PumpA.

2. The program has to update the conduit component PipeA at most
100ms after liquid is introduced into the conduits by PumpA.

3. The program has to update the conduit components PipeD and PipeE
at most 300ms after liquid is introduced in PipeD by the JoinA.

The constraints are graphically expressed in figure 10.2. The next step is
to define the time constraints using the MSCs. We know that the transfer
between two conduits is realised by sending a Propose message that is replied
to with a Take message. This process of negotiating how much liquid a
conduit will take is initiated with the Step message. Consider the timing-
marked MSC shown in figure 10.5. It reads as:

The time between the event that PumpA sends a Step() message
to PipeA and PipeE sends a take message to PipeD must be lower
than 500ms.

This constraint expresses that the PipeE component must be updated at
most 500ms after PumpA produced the liquid, so it only covers part of the
constraint that we defined. The additional timing-marked MSCs that are
needed to express the first timing constraint can be found in appendix C.
The other timing constraints can be expressed similarly.

10.4 Handling the Dependencies

The first timing constraint from the previous section is dependent on the
components PumpB, PipeB and PipeC. This is caused by the JoinA com-
ponent that will wait for liquid from PipeC before it can propose liquid to
the PipeD component. The Step() message of the JoinA is thus dependent
on the Step() messages from the components PipeA and PipeC. This depen-
dency is documented in the abstract MSC shown in figure 10.4. When the
dependent message Join..Step() is detected in a timing-marked MSCs, the

100 CHAPTER 10. EXAMPLE: A REAL-TIME SIMULATION
PumpA PipeA JoinA PipeD PipeE
Pump c2 Join ’ Pipe ’ Pipe

Step()
Step() |
| sepo

Step) |

Propose() :

_ Take() "

| | | | |
{b - a < 500ms}

Figure 10.5: Timing-marked MSC for timing constraint

msc Example

JoinA

| Join

PipeB
| Pipe |

PipeC
| Pipe |

PumpB

Pump |

Step

Step

Step

Figure 10.6: Dependent Path Computed for the Step() Message

path to activate the other Step() message is computed. This path is shown
in figure 10.6. The path will be tracked by the CBT and when it is detected
it will inherit the priority from the constraint that depends on it. When
multiple constraints depend on that path it will inherit the highest priority
of these constraints.

10.5 Summary

We have discussed the implementation of a real-time conduit simulation
using the techniques that were discussed in the previous chapters. We also
discussed how the priority-inheritance mechanism works on this example.
The experiments on the simulation were not finished at the time of writing.
The experiments that still need to be done are described in section 12.3.

Chapter 11

Mapping m Components
onto n Threads

In the previous chapters we have always assumed that each component has
its own thread that allows the component to “consume” its incoming mes-
sages. When a software system is composed and we have a large number
of components then we have a large number of threads in the system. To
run different threads in a monoprocessor system the underlying operating
system or virtual machine will emulate this concurrency. This emulation
creates extra overhead on the system leaving less processor power for the
software. In this chapter we will discuss how this thread emulation is done in
most operating systems and virtual machines to show the amount of over-
head that is introduced by the different threads. Finally we will show a
technique to reduce the number of threads in the component system.

11.1 Context Switching

The technique used to emulate the different threads in a monoprocessor sys-
tem is called context switching. To show the overhead that is introduced by
switching between the different active threads we will explain what happens
on low-level when we switch between two threads.

1. Determine when to switch threads:
In a priority-driven scheduler threads are switched when a thread is
assigned a priority that is higher than the thread currently executing.
Threads that have the same highest priority are interleaved in a small
time interval

2. Save the state of the current thread:
We need to stop executing the current thread and save the state of that
thread. The state of the thread is sometimes also called the context of
the thread. The context of a thread is defined by:

101

102 CHAPTER 11. MAPPING M COMPONENTS ONTO N THREADS

Component
Processor
C1l Cx
ml | m3 m5 | m6 ml | m3 m2 | m9
m3 [m5 m4 | m7 m7 | m5 m6 [m5
m5 | ., [m9 | m4 . m2 e m2
m3

C2 C3 Ck1 Ck Cl C2 Cu: Cu

Figure 11.1: Message Processor Concept

e Program Counter
e Stack Pointer
e Other Registers

3. Choose the thread that needs to become active:
In a priority-driven threading system, this is the thread with the high-
est priority

4. Restore the context of that thread
5. Resume executing the thread

These 5 steps are executed each time another thread becomes active. The
overhead of switching between threads increases with the number of threads,
because the number of switches increases with the number of threads.

11.2 Mapping Multiple Components onto 1 Thread

We can reduce the overhead of switching between the threads by mapping
multiple components onto a single thread. We can extend the component
system to support this by introducing the concept of a message processor.
Each thread is a message processor that has to choose between the mes-
sages that were send to the different components that are mapped onto that
thread. This concept is shown in figure 11.1.

11.3 Maintaining Schedulability

When different components are mapped onto a single thread we have to
reconsider the scheduling algorithms. Suppose component X and component

11.3. MAINTAINING SCHEDULABILITY 103

X.m0
l:l processing

l:l Y.m1
processing

deadline of
Y.m1l send Y.ml

X.mO0 send

Figure 11.2: Example: Failing deadline on mapped components

Y are mapped onto the same thread. Message m0 of component X has a has
a processing time of 300ms. Message m1 of component Y has a deadline of
300ms and a processing time of 200ms. Message m0 occurs a few milliseconds
before m1. The message processor starts processing m0 and will fail to
meet the deadline of message ml. This failure is mainly caused because
the message processor cannot interrupt/preempt the processing of m0 when
ml arrives. This scenario is shown in figure 11.2. This example shows that
the mapping of components that are involved in meeting deadlines is not
an obvious task. To link the concept of mapping of components with the
scheduling performance of the software we want to introduce the concept of
an equivalent mapping.

Definition 24 (Equivalent Mapping) A mapping of m components onto
n threads with m >= n is called an equivalent mapping if a scheduling al-
gorithm performs equally good or better as in a one-to-one mapping of the
component onto threads.

We have seen that one of the causes why we failed to meet this deadline
was the fact that we had mapped a component that has to meet deadlines
with another component.

Definition 25 (Real-Time Components) Real-time components are in-
volved in meeting deadlines. They are the components that are used in
timing-marked MSCs and the components used in the dependent execution
traces of these timing-marked MSCs.

The set of real-time components can be computed from the different
MSCs. We propose to give each component in this set its own thread. All
the components that do not belong to this set can be mapped onto a single
thread. We have no real proof that this is an equivalent mapping, but it

104 CHAPTER 11. MAPPING M COMPONENTS ONTO N THREADS

is easy to see that because each component that is involved in meeting a
deadline has a seperate thread, it can therefore be preempted at any point
in time.

When the number of threads still causes too many overhead in the system
we have to find other mappings, but this is a beyond the scope of this thesis
and is open for further research.

11.4 Summary

Having a one-to-one mapping of components onto threads can create too
much overhead in a system that has many components. The number of
context switches can be reduced by limiting the number of threads in that
system. To limit the number of threads we have introduced the concept
of a Message Processor. Each thread has a message processor. A message
processor has to choose between the queues of the different components that
are mapped onto his thread. The mapping of multiple components onto a
thread is shown by the brace in figure 1.4 on page 10. The mapping of the
components onto a thread is not an easy task. A wrong mapping can cause
the system to miss its deadlines. An equivalent mapping should miss no more
deadlines than a one-to-one mapping. By giving each component involved
in the execution of real-time constraints a single thread and placing the
other components onto one thread we might obtain an equivalent mapping.
Finding equivalent mappings is open for further research.

Chapter 12

Conclusion

12.1 Summary

Embedded Systems A few years ago embedded software was not inter-
esting from a research perspective, because they were simply too small. The
last few years more research has been done in this area as they became
larger and more difficult to develop, maintain and evolve. Existing soft-
ware engineering methodologies for desktop applications cannot be applied
to embedded software, because embedded software has special characteris-
tics (such as robostness, temporal behaviour, ...). In this dissertation we
considered the problems associated with reusability in soft real-time em-
bedded systems that run on a single-processor system. In such systems the
correctness of the software not only depends on the logical correctness of the
program, but also on the time at which the results are produced. Real-time
software is often concurrent by nature.

Adapted Components The latest paradigm that has reusability fore-
most in mind is called component-based development. Components are
reusable entities that can be glued together to form a program. The prob-
lem is that components are not specifically designed for the creating embed-
ded software. To match these characteristics an adapted component model
has been proposed [10]. In this componentmodel every component should
be thought of having its own thread of execution. All messages between
the components are send asynchronously. By sending the messages asyn-
chronous we can introduce concurrency implicitly into the system.

Component Documentation We propose to add the intercomponent
communication as formal documentation to the components to solve the
scheduling problems that are associated with embedded real-time software.
Abstract components can be documented with abstract message sequence
charts (MSCs). We had to extend the MSCs with new semantics, because

105

106 CHAPTER 12. CONCLUSION

MSCs were intended for describing scenarios rather than the full communica-
tion behaviour. A concrete MSC describes the communication behaviour of
concrete components. We can extract the concrete MSCs from the abstract
MSCs when the components are glued together to form a system. When
extracting the concrete MSCs from the abstract MSCs we try to resolve the
variables that are present in the abstract MSC. A third class of MSCs are
needed to specify the temporal behaviour of the components. The temporal
behaviour can be specified with timing-marked MSCs. The MSCs are useful
for doing temporal analysis and for making scheduling decisions.

Temporal Analysis Given the execution time of the component messages
we can perform a schedulability analysis. With a schedulability analysis it
is possible to test if the software composition can meet the deadlines that
are specified in the timing-marked MSCs. Finding the execution times is
a difficult task with many subtleties. Delivering the component with the
execution time of its messages as documentation is not an option, because
the components are likely to be reused on different hardware rendering the
execution times useless. We propose to create a test set associated with
each component. This way execution times can be measured without break-
ing the black-box principle of the components. When the components are
running on a virtual machine we can also deliver the components with the
number of processor ticks. The regular time can be computed given the
number of processor ticks and the processor type. There are two classes of
schedulability tests. A necessary and a sufficient schedulability test: when
the former succeeds then the software composition will definitely meet its
deadlines, while the latter will only fail when the software composition will
definitely not meet its deadlines. Note that nothing can be said about the
schedulability when the necessary test fails or the sufficient test succeeds.
We have shown how we can perform a sufficient schedulability test given
a timing-marked MSC and the execution times, which allows us to detect
when deadlines will not be met by the current hardware configuration. This
can be done by matching the execution times with the component commu-
nication that is necessary to complete the time-constrained task.

Tracking the Execution We can track the partial state of the software
by monitoring the messages send between the components. The tracking of
the system occurs on two levels: Message Based Tracking and Constraint
Based Tracking. The former uses the concrete MSCs that were extracted
from the abstract MSCs and the latter uses the timing-marked MSCs. The
tracking of the software creates overhead which we can reduce by using
lookup-tables and storing data at compile-time in the DFAs.

12.2. OVERALL CONCLUSION 107

Scheduling We can schedule the component system by altering the pri-
orities of the threads. With the tracker we can group the real-time tasks
together and apply one of the existing scheduling algorithms. We can also
detect dependencies, which can cause a priority inversion and resolve them
by using priority inheritance. We can also schedule in the component system
by multiplexing the queue of a component. The component will then choose
to process its next message from the queue with the highest priority.

Mapping Multiple Component Onto a Single Thread When soft-
ware is composed of many concrete components we have many threads.
Overhead is created with each switch between the active threads. The
amount of overhead can be limited by reducing the number of threads in
the system. It is possible to reduce the number of threads in the component
system by mapping multiple components onto a single thread. This can
be implemented by using a message processor. A message processor has to
choose between the queues of the components. The choice of which compo-
nents are mapped onto a single thread can influence the temporal behaviour
of the program and should be carefully considered.

12.2 Overall Conclusion

Asynchronous programming implicitly introduces concurrency into the sys-
tem. By making concurrency implicit it becomes easier to reason about
such systems. Omne drawback of asynchronous messages is that schedul-
ing becomes harder, because computing a task is multiplexed over different
threads in the system. When you look at the development of a thread-based
system the software developers have to choose which parts will run in par-
allel. By putting a tracker in the system and documenting the components
with semantic documentation we can make scheduling easier than in thread-
based systems, without having the burden to make the system concurrent.

The writing of this dissertation has led to the following implementations:

e The first prototype of the component system. Later versions were
developed by Werner Van Belle for the SEESCOA consortium

A tool to extract abstract MSCs from component source code has been
implemented by Werner Van Belle

A parser for parsing abstract and concrete MSCs

A tool for extracting the concrete MSCs from the abstract MSCs

e A Message Based Tracker and a Constraint Based Tracker have been
implemented using the techniques laid out in chapter 8

108 CHAPTER 12. CONCLUSION

e The component model has been extended to support measuring regular
time with test sets

e A tool has been developed to perform a sufficient schedulability anal-
ysis as explained in chapter 7

e The Real-Time simulation from chapter 10 was implemented using
most of the tools described above

The results of this dissertation exceeded our initial expectations. We
have resolved many of the problems that are common to embedded software
development and have presented a technique that allows components to be
reused in real-time embedded software. This technique does not conflict with
the black-box principles that are common to component-based development.
Due to the limited amount of time however, some experiments have not been
done. These experiments are described in the next section.

12.3 Future Work

This dissertation is a first step towards the reusability of software com-
ponents in real-time embedded systems. The usage of a tracker has been
explored in synchronous real-time systems and real-time distributed systems
in [25, 26, 27], but no research was found about tracking asynchronous real-
time systems. It is clear that the use of an asynchronous model has some
interesting benefits. Nevertheless, a lot of research needs to be done, also
experiments with a scheduler placed on top of the tracker (as explained in
chapter 9).

12.3.1 Experiments

The experiment described in chapter 10 was not completed at the time of
writing. More specifically the following experiments still need to be con-
ducted:

e Test the performance of existing scheduling algorithms on top of the
tracking system

e Test the influence on the performance of the component-to-thread
mapping on the scheduling algorithms

The setup of the simulation described in chapter 10 could be used to conduct
these experiments.
12.3.2 Future Research

In this dissertation we have touched the surface of several items that need
further research:

12.3. FUTURE WORK 109

e Finding an upperbound on the length of the queues
e The mapping of multiple components onto threads
e Scalability

e Software evolution

Finding an Upperbound on the Length of the Queues

When we want to use the component system in hard real-time systems we
need to know the upperbound length for each of the queues. Finding an
upperbound on the queue is necessary to guarantee a maximum response
time for each message.

Mapping Multiple Components onto Threads

In chapter 11 we discussed that we can reduce the number of threads by
introducing message processors into the component system. An equivalent
mapping is a mapping of multiple components onto a smaller number of
threads so that the temporal correctness of the system is not affected. We
explained that a possible equivalent mapping could be constructed by map-
ping the components, involved in meeting deadlines, a separate thread. All
the other components could then be mapped onto a single thread. This
is one possible mapping, but when multiple deadlines are spread over the
different components the number of threads are still too high.

Scalability

After expanding abstract MSCs to concrete MSCs, we could end up with
large concrete MSCs. Large MSCs become difficult to read. Besides that
the concrete MSCs are also stored as DFAs in the embedded software, so
they could consume a lot of memory. It might be possible to reduce the
amount of memory by simply not expanding all the concrete MSCs (e.g.,
we don’t need the concrete MSC of a message that is not involved in the
meeting the specified time constraints).

Software Evolution

The timing-marked MSCs need to be redefined each time a component,
that is used in a timing constraint, is replaced in the software. The re-
placed component could use other asynchronous components to complete
its tasks, so that the timing-marked MSC needs to be redefined by adding
these components. This could be solved by adding another form of formal
documentation that defines the tasks a component can perform and when
these tasks are considered completed. The time constraints would then be

110 CHAPTER 12. CONCLUSION

defined using the task-documentation rather than the timing-marked MSCs.
The timing-marked MSCs could then be expanded from the tasks.

Appendix A

Conversion of Constructs to
MSCs

The figures in this appendix show how the basic programming language
constructs can be mapped in a abstract MSCs.

msc if-then
component SourceComponent
{
message EventA() | SC | | DC |
{
if (<statement>) Fvent
{ opt
DestinationComponent. .EventB() ; EventB
}
}
} I

Figure A.1: Conversion of if-then constructs

111

112 APPENDIX A. CONVERSION OF CONSTRUCTS TO MSCS

component SourceComponent msec if-then-else
{
message EventA() rsc] [a][]
{
if (<statement>) EventA
{
Component1..EventB() ; alt
} EventB
else e A - -4
{ EventC
Component?2. .EventC() ;
}
} } I RN

Figure A.2: Conversion of if-then-else constructs

component SourceComponent

{

message EventA()

{

switch (<variable>)
{ [SC | [¢ J[¢ |[CN |

case A:
Componentl. .EventB() ;

msc switch

EventA

break;
alt
case B: EventB
Component?2. .EventC() ;
break;

case Z:

ComponentN. .EventX() ;
break; [T e e

Figure A.3: Conversion of switch constructs

component SourceComponent
{
message EventA()
{
while(<statement>)
{
Componentl. .EventB() ;
}
}
}

113

msc while-do

sc | [¢

EventA

loop(|0,maxLoops) J

EventB

Figure A.4: Conversion of while-do constructs

component SourceComponent
{

message EventA()

{
do
{
Componentl. .EventB() ;
} while(<statement>);
}
}

msc do-while

sc | [¢

EventA

loop(|1,maxLoops) J

EventB

Figure A.5: Conversion of do-while constructs

114 APPENDIX A. CONVERSION OF CONSTRUCTS TO MSCS

Appendix B

Abstract MSCs of Conduit
Components

This appendix contains the abstract MSCs that were extracted from the
components used in the real-time simulation described in chapter 10.

115

116 APPENDIX B. ABSTRACT MSCS OF CONDUIT COMPONENTS

msc Join msc Join
| Join | |JoinView| | Join | PoinView
Link(...) Take(...)
InstallJoin(... Update(...)
I I

Figure B.1: Join: Link-Take

msc Join msc Join
| Join | |J0inView| | Join | | Down
Propose(...) Step(...)
Take(...) Step(...)
Update(...) Propose(...)
| | | |

Figure B.2: Join: Propose-Step

o]

117

msc JoinView msc JoinView
|J oinView| | Httpd JoinView|
hstallJoin(..|) GeperateHtml(...)

ubscribe(... Image(...)

Subscribe(...) GeperateHtml(...)

Figure B.3: JoinView: InstallJoin - GenerateHTML

msc Pump

| Pump | | Down

Step(...)

Step(...)

Propose(...)

Figure B.4: Pump: Step

118 APPENDIX B. ABSTRACT MSCS OF CONDUIT COMPONENTS

msc Pipe msc Pipe
| Pipe | lPipeViewI IE
Link(...) Propose(...)
InstallPipe(... Take(...)
| | |

Figure B.5: Pipe: Link-Propose

msc Pipe

| Pipe | lPipeViewI | Down

Step(...)
loop(0,300)]
Update(...)
Update(...)
Sten(...)
Propdse(...)

Figure B.6: Pipe: Step

—

1

msc PipeView

PipeView| | Httpd

istallPipe(..

~—

bl a)

ubscribe(...

Subscribe(...)

Figure B.7: PipeView: InstallPipe - GenerateHTML

msc PipeView

EipeVieﬂ

herateHtml(...)
Image(...)
herateHtml(...)

119

120 APPENDIX B. ABSTRACT MSCS OF CONDUIT COMPONENTS

Appendix C

Timing-Marked MSCs of
ConduitSystem

The figures show the additional timing-marked MSCs that we needed to

define the first time constraint that was used in the real-time simulation
(chapter 10).

121

122 APPENDIX C. TIMING-MARKED MSCS OF CONDUITSYSTEM

PumpA PipeA JoinA PipeD PipeE
Pump C2 | Join | Pipe Pipe
Step()
a >
Step()
" Step()
Step()
Propose() :
Take()
| | | | |
{b - a < 500ms}

Figure C.1: Timing-marked MSC: PipeE needs to be updated within 500ms

PumpA PipeA JoinA PipeD
Pump Pipe Join Pipe
a Step() ‘
Step()
Step()
Propose()
Take()
b |-
]] I]
{b - a < 500ms}

Figure C.2: Timing-marked MSC: PipeD needs to be updated within 500ms

PumpA PipeA JoinA
Pump Pipe Join
a Step() .
Step()
-
Propose()
Take()
b
] |]
{b - a < 500ms}

123

Figure C.3: Timing-marked MSC: JoinA needs to be updated within 500ms

{b - a < 500ms}

PumpA PipeA
Pump Pipe
Step()

a >
Propose()
L
b Take()
| |

Figure C.4: Timing-marked MSC: PipeA needs to be updated within 500ms

124 APPENDIX C. TIMING-MARKED MSCS OF CONDUITSYSTEM

Bibliography

[1]
2]

3]

[6]

[7]

[9]

[10]

[11]

A. Birk, Autonomous Systems, Unpublished Draft, 2000

SEESCOA: Software Engineering for Embedded Systems using a
Component-Oriented Approach

Deliverable D1.4 Working Definition of Components, SEESCOA - Soft-
ware Engineering for Embedded Systems using a Component Oriented
Approach.

B. Nitzberg and V. Lo, “Distributed shared memory: A survey of issues
and algorithms,” IEEE Computer, vol. 24, pp. 52-60, Aug. 1991.

Agha, G. and Hewitt, C., Actors: Conceptual Foundation for Con-
current Object-Oriented Programming, in Wegner, P. and Shriver, B.
eds. Research Directions in Object-Oriented Programming, MIT Press,
Cambridge, MA, pp. 49-74, 1987

Demaecker P., Combining Components using Control Flow Compo-
nents, Programming Technology Lab, Vrije Universiteit Brussel, July
2000

Maher Awad, Juuha Kuusela, Jurgen Ziegler, Object-Oriented Tech-
nology for Real-Time Systems, Prentice Hall, 1996

Edward A. Lee, What’s Ahead for Embedded Systems?, IEEE Com-
puter Society

Deliverable D2.1, Real-Time UML, SEESCOA - Software Engineering
for Embedded Systems using a Component Oriented Approach.

Deliverable D1.4, Working Definition of Components, SEESCOA - Soft-
ware Engineering for Embedded Systems using a Component Oriented
Approach.

ITU-T. Recommendation Z.120, ITU - Telecommunication Standard-
ization Sector, Geneva, Switzerland, May 1996.

125

126

[12]

[22]

23]

[24]

[25]

BIBLIOGRAPHY

R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message se-
quence charts. In T. Margaria and B. Steffen, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, Vol. 1055, pages 35-48. Springer Verlag, 1996.

N. Meng-Siew. Reasoning with timing constraints in Message Sequence
Charts. Master’s thesis, University of Stirling, Scotland, U.K., August
1993.

H. Ben-Abdallah, S. Leue. Expressing and Analyzing Timing Con-
straints in Message Sequence Chart Specifications. Technical Report
97-04, Department of electrical and Computer engineering, University
of Waterloo, April 1997.

Wydaeghe, B., Michiels, B. and Verschaeve, K. Documenting Compo-
nents for Composition, November 1999

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, De-
sign Patterns, Addison-Wesley, 1994

Bruce Powel Douglass, Real-Time UML: Developing Efficient Objects
for Embedded Systems, Addison-Wesley, 1999

Principles of Object-Oriented Languages Course by Prof. Theo D’Hondt
Real-Time Systems Course by Jacques Tyberghiens

Dean Kelley, Automata and Formal Languages: An Introduction,
Prentice-Hall, 1998

C. L. Liu and James W. Layland, “Scheduling Algorithms for Multi-
programming in a HardReal -Time Environment,” Journal of the ACM,
Vol. 20, No. 1, pp. 46-61, Jan. 1973.

Hermann Streich: TaskPair-Scheduling: An Approach for Dynamic
Real-Time Systems, Int. Journal of Mini & Microcomputers, Vol. 17,
No. 2, pp 77-83, 1995.

Stewart, D.B.; and Khosla, P.K. (May 1991). Real-Time Scheduling of
Sensor-Based Control Systems. Proceedings of the IFAC/IFIP Work-
shop, May 15-17, pp. 139-144.

Rajkumar, R. 1991. Synchronization In Real-Time Systems — A Priority
Inheritance Approach. Kluwer Academic Publishers, Boston.

Raju, S.C.V., R. Rajkumar, and F. Jahanian. Timing Constraints Mon-
itoring in Distributed Real-Time Systems. in IEEE Real-Time Systems
Symposium. 1992.

BIBLIOGRAPHY 127

[26] Haban, D. and K.a.G. Shin, Application of Real-Time Monitoring to
Scheduling Tasks with Random Execution Times. IEEE Transactions
of Software Engineering, 1990. 16(12): p. 1374-1389.

[27] M. Gergeleit, M. Mock, E. Nett, J. Reumann: “Integrating Time-Aware
CORBA Objects into Object-Oriented Real-Time Computations, Proc.
of WORDS97, Newport Beach, USA, Feb.

