Co-evolution of Object-Oriented Software Design and
| mplementation

Theo D’Hondt — Kris De Volder — Kim Mens — Roel Wuyts
Programming Technology Lab — Vrije Universiteit Brussel

Abstract: Modern-day software development shows a number of feedback loops between various phases in
its life cycle; object-oriented software is particularly prone to this. Whereas descending through the
different levels of abstraction is relatively straightforward and well supported by methods and tools,
the synthesis of design information from an evolving implementation is far from obvious. This is
why in many instances, analysis and design is used to initiate software development while
evolution is directly applied to the implementation. Keeping design information synchronised is
often reduced to a token activity, the first to be sacrificed in the face of time constraints. In this
light, architectural styles are particularly difficult to enforce, since they can, by their very nature, be
seen to crosscut an implementation. This contribution reports on a number of experiments that use
logic meta-programming (LMP) to augment an implementation with enforceable design concerns,
including architectural concerns. LMP is an instance of hybrid language symbiosis, merging a
declarative (logic) metalevel language with a standard object-oriented base language. This
approach can be used to codify design information as constraints or even as a process for code
generation. LMP is an emerging technique, not yet quite out of the lab. However, it has aready
been shown to be very expressive: it incorporates mechanisms such as pre/post conditions and
aspect-oriented programming. We found the promise held by LMP extremely attractive, hence this

paper.

1. INTRODUCTION

Recent times have seen a consolidation of methods and tools for software development in
production environments. A good number of de facto standard tools have emerged, not the
least of which is the Unified Moddling Language in some commercia incarnation. At last,
one could say, we have come to know the process by which the design and implementation of
acomplex piece of software is charted. Objects have been widely accepted, the programming
language babel seems more and more controlled by the emergence of Java and previously
untamed regions of information technology, such as distribution, co-ordination and
persistence, are starting to become daily fare in software applications.

So why is software development still arguably the least predictable of industria
processes? Why can comparable software projects, executed by development teams with
comparable skills, not be planned with comparable margins of error? Why is our appreciation
of the software development process still flawed, even after the introduction of all these new
techniques and tool s?

For some time now, grounding the development of software in a programming language
has proved not to be scalable. This led to the notion of software architectures as a collection
of techniques to buttress this development process, particularly in those places where

1

programming languages or tools fail to capture the macroscopic structure of the system that
needs to be built. Close to the programming language technology itself, we find the well-
understood framework approach; at a more abstract level we find techniques built on various
kinds of patterns and contracts.

The latest landslide in this fight for control over software complexity is the emergence of
component technology. At a time when commercial component toolkits such as Enterprise
Java Beans are proposed as the solution to our problems, we do well in reaising that the
advent of components amounts to an acknowledgement of defeat. In fact, by accepting this
technique of decomposition into static components, we have come full circle and reinvented
data abstraction. The task of making components co-operate is not any better understood than
any of the numerous software building strategies we have taken under consideration these
past 20 years.

An important step in understanding this partia failure is the insight that software is fluid.
It is in constant evolution under the influence of ever changing conditions; software
development is sandwiched between a technology that is evolving at breakneck speed, and
requirements that must follow the economic vagaries of modern society. In this, the
commercial product caled software is unique; the closest professional activity to that of
software developer is that of composer in 18" century Europe. At that time, relatively
widespread knowledge of harmony or counterpoint made up for the necessary skills to use
and reuse fragments of sophisticated musical artefacts. For instance, [LD96] offers insight on
how invention, a term borrowed from rhetoric, drives composition according to a process
which bears a striking resemblance to building complex computer applications.
Unfortunately, equivalent skills needed to master a software artefact are today in far more
limited supply than 250 years ago.

This contribution is a synthesis of recent work performed by various people within our lab
in addressing this need for more control over the evolution of software. Although in the past,
a significant amount of work focussed on the need to document evolution and build conflict
detection tools [SLMD96, CL97], to recover architectura information from implementations
[KDH98] and to formalise the evolution process [TM99], we will concentrate here on an
emerging approach for steering evolution. This is very recent work and as such has only
resulted in experiments and prototypes. We feel however that it is sufficiently mature and
promising to be presented here as awhole. In the bibliography we limit ourselves to a number
of key documents' describing these activities, these in turn contain a much more
comprehensive list of references.

We have chosen to use the term co-evolution, implying that managing evolution requires
the synchronisation between different layers (or views) in the software development process.
We will therefore dedicate the next section to an analysis of this statement. Next, we propose
aconcept caled Logic Meta Programming (or LMP for short) as a devel opment framework in
which to express and enforce this synchronisation process. Another section of this paper will
be used to introduce LMP and to situate it in the broader context of software development
support. Finaly, severa experiments with LMP will be presented in evidence of its
applicability. We will discuss using LMP as a medium for supporting aspect oriented
programming, for enforcing architectural concerns in an object oriented programming
environment and to express constraints on the protocol between a collection of interacting
software components. This is by no means a complete coverage of LMP, nor even of the
experiments conducted at our lab; we feel however, that it provides sufficient insight in the

! Available via http://prog.vub.ac.be

applicability of LMP to the co-evolution of software, while avoiding exposing the reader to
too much detail.

2. SYNCHRONIZING DESIGN AND IMPLEMENTATION

Currently accepted procedures in the development of software involve the consideration of
several views. In descending order of abstraction one encounters requirements capture,
analysis, design, implementation and documentation. Not quite by accident, this also happens
to constitute an ordering according to increasing level of detail, albeit not a continuous one.
There isin fact a kind of watershed between design and implementation, which commits the
developer to alevel of detail that is very hard to reverse.

Consider an example describing a simple management hierarchy. At best this is captured
at the class diagram level by an arity constraint, although the more subtle aspects such as the
required absence of cyclesin the class graph (a manager cannot be managed by himself) can
only be expressed by an informal annotation:

Manager 1
Operati on()
é’ Q@ycl ic I
Employee
) 1.n
Operation()

Figure 1: a manager/employee hierarchy

It can be seen that as we transit from the origina requirements to the design, we replace
abstract concepts by more concrete ones. The same holds for the implementation: in our
simple example the arity constraint might be replaced by a precondition in a mutator function
while the acyclicity constraint, if implemented at all, gives rise to some consistency
maintenance code. On the other hand, we see that this decrease of abstraction is compensated
by an increase in the level and amount of detail.

This observation holds in general and will be viewed as trivial by most software
developers. However, we do well in analysing this transition from abstraction to detail as we
descend through the various levels in the lifecycle of a software application. Typically, the
amount of energy that needs to be applied increases with the level of detail; so does the need
for technical skills. This generally makes an implementation artefact more valuable than a
design artefact. Also, any ultimate defect in respecting the original requirements is detected at
the lowest level, i.e. the implementation.

Initially, the development of a software application is achieved by this progression
through the various abgractions. requirements, analysis, design and implementation.

3

However, once the implementation has reached the production stage, the tangible aspects of
the prior stages are at best used as documentation in order to boost understanding of the actual
code; at worst they become obsolete. This is a well-known phenomenon: under the pressure
to bring software to market in the face of competition, or to correct flaws under the threat of
contractual penalties, the management of evolving software all too often degenerates into
updating implementations. Various directions have been explored to improve this situation: in
general they imply some re- engineering activity applied to evolving implementationsin order
to extract abstractions and update e.g. design documentation. Hardly anyone uses an approach
where design concerns drive the implementation process; programming environments that
explicitly constrain the developer to design decisions are hard to find. Popular languages like
Java evolve, but they evolve towards a more sophisticated type system: boosting genericity is
atechnical issue and hardly qualifies as support for e.g. architectural concerns.

It is our conjecture that during the development process, the concretisation of abstract
concerns should not consist of some kind of erosion. On the contrary, any relevant feature
should be kept available in any of the later phases. We will in particular concentrate on the
synchronisation between design and implementation. For the sake of this discussion we will
discard requirements that cannot be expressed as explicit design directives. Our ambition isto
augment an implementation such that it becomes a strict superset of its design; design can be
extracted from an implementation by ignoring details, design can be interpreted by the
programming environment and therefore enforced. We propose an approach called Logic
Meta Programming (or LMP for short), which will be described in the now following section.

Consider as an example a change in the manager/employee example where a decision
to introduce workforce pooling results in the arity constraint to be changed into:

Manager | 1.2
Operati on()
é, Q@ycl ic I
Employee
: 1.n
Operation()

Figure 2: a manager/employee hierarchy with workforce pooling

The program code will probably need to be significantly changed with hardly an explicit link
to the original arity constraint. We would prefer it to be explicitly present in the
implementation as some kind of enforceable declaration, formatted in the proposed LMP-
paradigm.

3. LOGIC META PROGRAMMING
Logic Meta Programming is the name we use for a particular flavour of multi-paradigm

programming. The starting point for LMP is an existing programming environment that is

4

particularly suited for engineering large software systems. In this contribution, we have
limited ourselves to a Java-based environment and to a Smalltalk-based environment. Next,
we augment this environment by a declarative meta layer of a very particular nature. In the
case of Java, i.e. a statically typed language, this meta layer might be implemented as a pre-
processor or even an extension of the Java compiler itself. In the case of Smalltalk, it requires
the addition of a number of classes to standard Smalltalk hierarchy. We are interested in a
declarative approach; it seems intuitively clear that design information, and in particular
architectural concerns, are best expressed as constraints or rules. Logic programming has long
been identified as very suited to meta programming and language processing in general; see
[DVD99] for related publications.

The acyclicity constraint from the manager-employee example on the previous page seems
to indicate? the need for unification as an enforcement strategy. Anyway, we would like as
much power on our side as possible, at least initially. We are not concerned with performance
issues at this stage; neither do we intend to explore al avenues of declarative programming.
For historical reasons, we concentrate on a Prolog-derivative for our logic meta language; its
power and its capacity to support multi-way queries seem particularly attractive at this point.
Finally, we make the symbiosis between the two paradigms explicit by allowing base-level
programs to be expressed as terms, facts or rules in the meta-level; we will refer to thisas a
representational mapping.

class Array { G ass(Array<?El >, {
private int[] contents; private ?EI[] contents;
Array(int sz) { Array<?El >(int sz) {
contents = new int[sz]; contents = new ?El[sz];
} }
int getAt(int i) { 2El getAt(int i) {
return contents[i]; return contents[i];
} }
void setAt(int i, int e) { void setAt(int i, 2E e) {
contents[i] = e; contents[i] = e;
} }
} L
Figure 3a: aJava Array Figure 3b: a generic Java Array

Consider the smple Java class in figure 3a: it implements an array of integers. Next to it
in 3b the origina class has been embedded in a meta-declaration using a representational
mapping. The notation is fairly crude and to clarify it somewhat elements from the meta-
program have been highlighted. Notice that the original element type was replaced by a logic
variable ?El .

Thisis an example of using LMP for code-generation; it was explored in [KDV 98] under
the exotic name TyRuBa. A proper query substituting i nt for 2El in 3b would produce 3a.
Actualy, 3bisasimple example of how LMP can be used to introduce parametric types.

2 |magine for instance atool to enumerate all cyclic calling graphs
5

A totaly different way to view LMP is introduced in [RW98] as the Smalltalk Open
Unification Language (SOUL). This approach actually applies congtraints specified at the
meta level to the base level program. The representational mapping is based on the presence
of predicates that give access to syntactic e ements belonging to the base level.

Rule transitive(?cl, ?c2,?tried) if
menber (uses(?cl, ?c2),?tried), !.
Rule transitive(?cl, ?c2,?tried) if
uses(?cl, ?c2), !.
Rule transitive(?cl,?c2,?tried) if
uses(?cl, ?c3),
transitive(?c3, ?2c2, <uses(?cl, ?c3)|?tried>).

Rul e cyclic(?c) if
transitive(?c, ?c, <>).

Rul e uses(?cl,?c2) if
class(?cl),
nmet hod(?c1, ?m,
calls(?mc3).

Figure 4: an acyclicity test

In the above example we assume the availability of predicatescl ass, met hod and cal | s
to access the structure of a base program. The uses rule establishes a transitive calling path
between two classes, which allows usto derivethe cycl i ¢ rule. Thisin turn could be used to
enforce the acyclicity constraint from the manager-employee example.

4. LMP AND ASPECT ORIENTED PROGRAMMING

In [KDV98] a LMP framework is proposed that supports sophisticated type systems for
statically-typed programming languages such as Java. This framework, called TyRuBa, turns
a type system into a computationally complete environment and allows a programmer to
specify the static structure of a program as a set of logical propositions. In one of the next
sections we will report on an experiment to use TyRuBa as a system to describe software
architectures with. In this section we will build on the relationship between LMP and Aspect
Oriented Programming (or AOP for short). We refer to [DVD99] for an extended
bibliography; suffice it to say that AOP is concerned with the production of software as a
result of a weaving process. The weaver is an AOP-related tool that is capable of merging
aspects of a software application, each of them described in a specific aspect language.

In [DVD99] it is proposed that LMP may well function as an aspect-oriented
programming environment. As evidence for this, a well-known case for AOP
(synchronisation of co-operating processes using an aspect language caled COQOL) is
expressed in TyRyBa. An important conclusion from this experiment is the fact that a general-

6

purpose framework, in casu LMP, can be used to host aspect programs; hitherto, aspect
languages were specific to the aspect under consideration.

In deference to the subject of this contribution, we will not concentrate on technical
applications of AOP; instead we will consider an interesting application of AOP involving
design as much as implementation. In [DD99] the idea is launched that domain knowledge
might well congtitute an aspect in the AOP sense. Separating some problem into its domain
aspect and its implementation aspect by describing them in a some aspect language and then
producing a piece of software by applying aweaver seems a very attractive approach.

Moreover, it seems to fit very well with the concept of software co-evolution introduced
earlier on.

Bonhei den 9 . Keer ber gen

Boor t neer beek

Figure 5: a shortest path problem

Figure 5 represents the test case proposed in [DD99] to explore this idea. The example is
taken from a GlS-application, involving a mix of a conventional agorithm to compute a
shortest path, and the specifics of the domain, which allow us to improve the basic algorithm.

branchAndBoundFrom start to: stop
| bound |
bound : = 999999999.
sel f traverseBl ock:
[node :sum |
node free ifTrue:
[sum < bound i f True:
[node = stop
i fTrue: [bound := sunj
i fFal se: [self branch: node sum sum]]].
sel f traverseBl ock value: start value: O.
“bound

Figure 6: the branch-and-bound program
In order to keep things as simple as possible, we consider an elementary branch-and-

bound strategy. In figure 6 this is implemented using an auxiliary br anch: method in order
to fix the sequence in which branches are selected.

7

branch: node sum sum
node free: false
node [edges| do:
[:edge | self traverseBl ock val ue: edge next
val ue: sum + edge di stance].
node free: true

Figure 7: fixing the selection order

Figure 7 contains a possible implementation for br anch: and it contains an enumeration
of al possible edges leaving a node. However, the message edges is no longer resolved by
the base program, but by a query in the logic meta program containing the knowledge about
this particular domain:

Fact city (Rijmenam
Fact city (Boortneerbeek)

Fact road (city (R jnmenan),city (Boortmneerbeek),[3])
Fact road (city (Keerbergen),city (Rijnmenanm,[4])

Fact prohi bitedManoeuvre (city (Rijmenam,city (Bonhei den))
Rul e roads (?current, ?newResult)if
findall (road (?current, ?next, ?di stance),
road (?current, ?next, ?di stance), ?result)
privat eRoads (?current, ?result, ?newResul t)
Rul e privateRoads (?current, ?result, ?newResul t)if
prohi bi t edManoeuvre (?current, ?next),
renoveRoad (?result,road (?current, ?next, ?di stance), ?newResul t)
Fact privateRoads (?current, ?result, ?result)

Figure 8: the domain knowledge

The particular flavour of LMP we use here is the Smalltalk Open Unification Language
mentioned earlier on. The rule needed to compute the edges of a node would look something
like this:

Rul e edges(?node, ?result) if
equal s(?nane, [?node nane]),
roads(city(?name), ?result).

In [DDW99] an explanation is given of how the base program and the meta program
communicate. The basic ideaisto effect akind of linguistic symbiosis (see e.g. [PS94]) based
on a two-way reification of language entities; in the case of SOUL this amounts to wrapping
Smalltalk objects inside Prolog facts and vice versa. For example, the code [?node nane]
in the edges rule is reified Smalltalk code sending a unary message nane to retrieve the
name from the node currently associated with the variable; it returns a string representing the
name. A number of technical issues need to be resolved still; in particular SOUL would seem

8

to lack in reflective power and needs to be extended with a number of reification operators.
Also, the proposed test case would seem to border on the trivial. On the other hand, it shows
that there is at least a lower bound to a category of problems that can be non-trivially
decomposed into a domain part and an implementation part using AOP. An interesting
research topic concerns the charting of this category and the development of tangible
procedures to perform the related of decomposition. The proposed LMP approach seems at
the very least attractive enough to function as a vehicle for this research.

5. LMP AND SOFTWARE ARCHITECTURES

Software architectures are concerned with the abstract structure of some software
application in terms of building blocks, and the interaction between them. Starting from this
fairly broad statement, a number of more specific —and sometimes competing—definitions
have been proposed. In [KDH98] it is suggested that software building blocks need not be
explicitly linked but may equally well béassified. Classification in its simplest form implies
that all software entities atagged; together with the possibility toest classifications, this
results in a very interesting view on architecture; its simplicity belies the power and
expressiveness that was demonstrated in [KDH98].

In [MWD99] LMP is explored as a framework in which to express software architectures
using this classification approach. In particular, virtual classification is proposed, i.e.
classification is not limited to simple tagging, but allows every software entity to be
associated with a computational classifier. This could e.g. be a logical predicate that is
evaluated every time a query is launched, its behaviour depending on values submitted by the

query.

SOUL is proposed as both the target as the medium for this study: it is used as a kind of
architectural description language and it is applied to the architecture of SOUL itself.

knowledge

Interpreter selection

Figure 9: the SOUL rule base architecture

The kernel of SOUL is a logic query interpreter with the above architecture. This
architecture is representative for rule bases in general; moreover it is sufficiently challenging
to be used as a case study.

This architecture is expressed as relationships between virtual classifications. SOUL being
implemented in Smalltalk, methods and classes are considered as building blocks, and
classification isinitialy limited to a uses and creates relationship between these entities. For
instance, the working memory is simple to define: it contains al classes that derive from a
root class that specifies the generic structure of variable—value bindings. A more challenging
example from [MWD99] is the rule that specifies how methods are classified as belonging to
the query interpreter:

Rul e net hodl sd assi fi edAs(?Met hod, querylnterpreter) if
cl assl npl ement s([SOULQuery], [#i nterprete:repository:],?M,
reaches(?M ?Met hod) .

Figure 10: a classifier rule

Bracketed terms are wrapped Smalltalk identifis@JLQuery is the class containing the
i nterprete:repository: method that launches interpretation. The predicatehes is
similar tot r ansi ti ve in figure 4; it verifies thaPMet hod belongs to the transitive closure
of ?M.

This classification crosscuts the static structure of the SOUL implementation and could
not have been obtained through a simple hierarchical approach. It illustrates the true power of
a computationally complete language in which to express an architecture in terms of
classification.

In [MWD99] LMP is also used to express the connectors in figure 9 between the
components defined by the various classifications. In factdseand creates relationships
are combined withuniversal andexistential cardinality constraints to define a limited family
of connectors; this results in a specification of the architecture of figure 9 as a ten—line SOUL
fact. A definition for theuses and creates relationships for each of the kinds of
implementation artefacts allows this fact to be used to peréoniormance checking of any
SOUL implementation.

This section described a second interesting experiment in using LMP to link the
implementation of a software artefact to its design. Although the test case is small-scale and
the sophistication of the connectors is limited, the results are promising. [MWD99] claim that
it is possible to use this approach to define or even exrabitectural patterns, which
certainly illustrates the power of the proposed formalism. On the downside, performance is an
issue requiring a lot of attention to make the LMP approach to software architectures a truly
scalable one.

6. LMPAND SOFTWARE COMPONENTS

Software components and software architectures are notions that are strongly linked.
However, this section is fundamentally different from the previous one. We are no longer
interested in the declaration and enforcement of architectural rules and conventions, but in a
composer environment. In this section we are much more tool-minded, and we want to
investigate how LMP can help us drive the process of assembling components. This is of

10

course a mgjor concern for everyone involved in software architectures, again we refer to
[MJP99, MWD99] for a more comprehensive bibliography.

In [MJPQ9] an experimental generic builder tool is described and applied to the popular
Java Beans component model. Its architectureis as follows:

Building
Tool
query produce

| Component || Container |
Descriptions Descriptions Applipaljon
Protocol | Configuration | Description
Descriptions Description

generate

Application
Code

Figure 11: component builder architecture

The builder tool is supposed to guide a user in establishing a description of the
application, and consequently generate the Java Beans application code. In order to do so, the
tool must have access to a repository of descriptions of the various elements that constitute
our component model.

The TyRuBa approach from [KDV 98] to LMP is used to establish a set of facts and rules
to define notions about parts and containers, and how to link them using connectors. Using
these, the description of the application becomes a meta-program similar to figure 3b.

The component builder architecture provides the mechanism for describing components. A
Java Bean for instance, is defined in terms of its properties, public methods and events. A set
of facts alow the specification for accessor/mutator methods (in the case of properties),
public methods and listener methods (in the case of events). To get afeeling for the way these
are formatted, we include an example from [MJP99] that specifies the registration of an event
listener:

Feat ur el(Qur Button,
net hod<voi d, add<Act i on<Li st ener >>,
[Acti on<Li stener>]>).

The expression bracketed by < > are compound terms and are used to support the
representational mapping of Javain TyRuBa.

Next, it is necessary to describe containers; a container is a composite application (e.g. an
applet) and it contains (generate) code to initialise the parts. A part is a description of how a
component is used inside a container and it contains the specifics of the initialisation code.
The configuration specifies how the writeable properties of parts belonging to a container are
set. The connection protocols specify how the parts inside a container interact. We refer to
[MJP99] for an extended example of the proposed component model architecture using
TyRuBa; it would take up too much space to do so here.

The major contribution of [MJP99] is the proof (by construction) that it is possible to
separate a builder tool from a component model. It is yet another illustration of the fact that

11

LMP can actively assist in expressing abstract and concrete aspect of a software application

within the same framework. Although the proposed builder hardly qualifies as more than a
prototype, it indicates an interesting avenue of research. In the spirit of Smaltakies

View Controller, sophisticated interactive tools can be seen to be separable in independent
sections. However, contrary to MVC, a relatively simple framework approach is hardly ever
sufficient and more sophisticated techniques are called for. It would seem that using LMP
gives at least a partial reply to this concern.

7. CONCLUSION

This contribution is a first synthesis of work that has been going on in our lab these past
couple of years related to declarative meta level programming. In particular, it covers several
endeavours to marry a logic meta-program to a base program developed in a standard object-
oriented programming language. In all cases the major concern was to effect a linguistic
symbiosis in order to have the base program query the meta level to resolve issues at an
abstract level, and to have the meta program access the structure of the base program.

This synthesis constitutes a push towards research in managing the co-evolution of design
and implementation of software applications. We advocate the need to express design as
closely integrated with the implementation and we propoge meta programming as a
possible way to effect a bi-directional link between the two. Our conjecture is that design
becomes verifiable and possibly enforceable if it is properly expressed as a logic meta
program. We explicitly address cases where software is subject to evolution, and where
synchronisation between design and implementation is an issue. We are not only interested in
the impact of a design change on the derived implementation; we are expressly concerned
with the (unfortunately realistic) situation where an implementation is updated and the design
needs to be brought in line with these changes.

Given the proper framework, a logic meta program expressing some design can assist a
programming environment in constraining a programmer to abstract design rules that are
visible at the level of the programming language only in terms of their constituent
implementation details. An inkling that this might be feasible is given by the protdtéype
Beans application builder.

Logic meta programming can also assist in separating the development of a software
application into domain concerns and implementation concerns. Given that evolution of
software at the implementation level is often inspired by implementation issues, this
uncoupling of concerns might significantly and positively impact the proposed process of co-
evolution. As was illustrated earlier on, the capacity of logic meta programming to express
different aspect programs in one unifying framework seems far too attractive to ignore.

Possibly the most interesting direction described in this contribution is the management of
co-evolution through virtual classifications. Logic meta programming seems extremely well
suited to the annotation of object-oriented software with queries that are automatically
triggered when some element is changed; depending on the content of the rule base, these
gueries can ensure the synchronisation between the various abstraction layers. Experiments
with a simple tagging strategy have shown significant promise; opening up this strategy to
guery-based classification should give us the key to controlling the level of detail that co-
evolution should respect.

12

There are of course a number of unresolved issues; thisis after all aresearch topic barely
out of the bud. A mgor concern is one of efficiency and performance. It would seem that
depending on the degree of support offered by the proposed approach, various flavours of
declarative meta programming with various performance ratings should be considered.
Obvioudly, the vast field of research in declarative languages can function as an inspiration.
Next, other levels in the lifecycle of software should be considered. In particular, expressing
requirements (particularly the non-functional ones) in an LMP framework could prove to be a
fascinating and rewarding research topic.

Finally, there is an enormous need to validate these ideas in a production setting. Although
this has been initiated on a limited scale, many more experiments are needed. On the other
hand, there is an even greater need for comprehensive software lifecycle management
methods and tools. Steering co-evolution between design and implementation using logic
meta programming seems to be an interesting step in this direction.

8. BIBLIOGRAPHY

[CL97] Documenting Reuse and Evolution with Reuse Contracts
Carine Lucas
PhD dissertation, Vrije Universiteit Brussel (1997)

[DD99] Isdomain knowledge an aspect?
Maja D’Hondt and Theo D’Hondt
Proceedings of the ECOOP99 Aspect Oriented Programming Waprk$999)

[DDW99] Using Reflective Programming to Describe Domain Knowledge as an Aspect
Maja D’Hondt, Wolfgang De Meuter and Roel Wuyts
Proceedings of GCSE ‘99 (1999)

[DVD99] Aspect-Oriented Logic Meta Programming
Kris De Volder and Theo D’'Hondt
Proceedings of Reflection ‘99 (1999)

[JB99] Syntactic Abstractions for Logic Meta Programs, or vice-versa
Johan Brichau
Draft publication (1999)

[KDH98] A Novel Approach to Architectural Recovery in Evolving Object-Oriented Systems
Koen De Hondt
PhD dissertation, Vrije Universiteit Brussel (1998)

[KDV98] Type-Oriented Logic Meta Programming
Kris De Volder
PhD dissertation, Vrije Universiteit Brussel (1998)

[LD96] Bach and the Patterns of Invention
Laurence Dreyfus
Harvard University Press (1996)

[MJP99] Generic Component Architecture Using Meta-Level Protocol Descriptions
Maria Jose Presso
Master's dissertation, Vrije Universiteit Brussel (1999)

[MWD99] Declaratively Codifying Software Architectures Using Virtual Software Classifications
Kim Mens, Roel Wuyts and Theo D’Hondt
Proceeding of TOOLS Europe ‘99 (1999)

13

[PS94] Open Design of Object-Oriented Languages, a Foundation for Specialisable Reflective Language
Frameworks
Patrick Steyaert
PhD dissertation, Vrije Universiteit Brussel (1994)

[RW98] Declarative reasoning about the structure of object-oriented systems
Roel Wuyts
Proceedings of TOOLS USA '98 (1998)

[TM99] A Formal Foundation for Object-Oriented Evolution
Tom Mens
PhD dissertation, Vrije Universiteit Brussel (1999)

[SLMD96] Reuse contracts: Managing the evolution of reusable assets

Patrick Steyaert, Carine Lucas, Kim Mens and Theo D’'Hondt
Proceedings of OOPSLA, ACM SIGPLAN Notices number 31(10), pp. 268-285 (1996)

14

