
SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Vrije Universiteit Brussel

Programming Technology Laboratory
Faculteit Wetenschappen - Departement Informatica

(1998)

Type-Oriented Logic Meta Programming

Kris De Volder

Proefschrift ingediend met het oog op het behalen van de graad van Doktor in
de Wetenschappen

Promotor: Prof. Dr. Theo D'Hondt

2

Acknowledgments

I thank my thesis advisor Prof. Dr. Theo D'Hondt. I could not have wished for a better
advisor. He provided me with a stable low-pressure working environment. He was always
stimulating and encouraging, providing hints, gently pushing me in one direction or another,
but always in such a way that my personal freedom to choose the research direction that
interested me most was left open. I am very grateful to have received and been trusted with
this kind of freedom. After some time of wandering around from one research topic to the
next it allowed me to �nd a topic I am really passionate about, and to �nally produce this
dissertation.

Another person that I am greatly indebted to is Wolfgang De Meuter. He was there
exactly at the right time to give me the proverbial \kick in the butt" or \pep talk" when I
needed it.

Thanks goes also to all of my other colleagues, Carine Lucas, Mark Willems, Koen De
Hondt, Kim Mens, Tom Mens, Tom Lenaerts, Tom Tourw�e, Werner Van Belle and Patrick
Steyaert. They helped me indirectly by collectively taking some of my teaching and organi-
zational responsibilities onto themselves, during the last year of my Ph.D. This allowed me
to spend more time on my dissertation.

Thanks also to all the people who helped in improving the quality and clarity of my writing
by proofreading and commenting on preliminary versions of this dissertation. Tom Tourw�e,
Kim Mens, Carine Lucas, Wolfgang De Meuter, Tom Mens, Roel Wuyts, Johan Fabry and
Kim Bruce have made a considerable e�ort in proofreading.

I also thank my friends, Yves Samyn, Bruno Van Bogaert, Koen Vermeulen and Schon-
brodt Yong Lak, for providing valuable moral support at times I really needed it.

I thank my parents. They have helped and supported me in so many ways that I can
hardly start mentioning it here.

I also thank my sister and Stefano Corvaglia. They always made me feel welcome, so that
I always had a place to go during weekends to take some time o� and relax.

Finally, there are so many people that have either directly or indirectly supported me at
one time or another, and contributed to the realization of this Ph.D. that inevitably there
will be some that I have still forgotten about. My gratitude goes out to all of them, and I
apologize for not thanking them more explicitly.

3

4

Contents

1 Introduction 11

1.1 Thesis . 11

1.2 A Type Language . 11

1.3 Passive Versus Active Usage of Types . 13

1.3.1 Passive Usage . 13

1.3.2 Active Usage . 13

1.4 Usefulness of Undecidable and Ambiguous Type Systems 14

1.4.1 Undecidability . 14

1.4.2 Unambiguity . 14

1.5 Problems with Object-Oriented Type Systems 15

1.6 Motivating Examples . 16

1.6.1 Conditional Implementation . 16

1.6.2 Positioning Abstract Code . 18

1.7 Motivation of Choices . 20

1.7.1 How we will Prove our Thesis . 20

1.7.2 Java as Base Language . 21

1.7.3 Logic Meta Language . 21

1.8 Overview of this Dissertation . 21

2 Gofer: Constructor Classes and Higher-Order Types 25

2.1 Introduction . 25

2.2 A Purely Functional Language . 26

2.3 Function Declarations and Invocations . 26

2.4 Types and Type Declarations . 27

2.5 Simply Typed Gofer . 28

2.6 Parametric Polymorphism . 32

2.6.1 Type Variables . 32

2.6.2 Parametric Data Structures . 33

2.6.3 Type Synonyms . 34

2.7 Overloading: Type and Constructor Classes 35

2.7.1 Type Classes . 35

2.7.2 Constructor Classes . 38

2.8 The Kind System . 42

2.9 The Expressiveness of Gofer's Type Language 42

2.9.1 Decision Making Benchmarks . 43

2.9.2 Iteration Benchmarks . 47

5

6 CONTENTS

2.10 Summary . 50

3 Java and Parametric Types 53

3.1 Introduction . 53

3.2 Parametric and Bounded Parametric Polymorphism 53

3.2.1 Parametric Classes and Interfaces . 54

3.2.2 Bounded Parametric Polymorphism 55

3.3 Concrete Parametric-Type Proposals . 56

3.3.1 Pizza and the Agesen-Freund-Mitchell proposal 56

3.3.2 Bruce's proposal: LOOMJava . 60

3.3.3 Myers, Bank and Liskov's proposal . 62

3.3.4 Summary . 63

3.4 Virtual Types and Related . 64

3.4.1 Thorup's Virtual Types Proposal . 64

3.4.2 Bruce's Alternative to Virtual Types 65

3.5 Expressiveness of Parametric Java Proposals 65

3.5.1 Conditional Interface Implementation 66

3.5.2 Positioning Abstract Code . 66

3.5.3 Type-Dependent Internal Representation 69

3.5.4 Iteration or Recursion . 70

3.6 Conclusion . 72

4 Type-Oriented Meta Programming 73

4.1 Introduction . 73

4.2 Meta-programming terminology . 73

4.3 Reection . 74

4.4 Type-Oriented Meta Programming . 75

4.5 Summary . 75

5 Logic Meta Programming 77

5.1 Introduction . 77

5.2 Base Programs as Sets of Propositions . 78

5.3 Choosing the Representational Mapping . 79

5.4 Architecture of a Logic Meta-Programming System 79

5.4.1 The Code Generator . 81

5.5 Summary . 82

6 TyRuBa 83

6.1 Introduction . 83

6.2 History of TyRuBa . 85

6.3 The TyRuBa Language . 85

6.3.1 Programs . 85

6.3.2 Rules, Facts and Queries . 86

6.3.3 Directives . 87

6.3.4 Terms . 87

6.3.5 Variables and Constants . 87

6.3.6 Compound Terms . 87

CONTENTS 7

6.3.7 Lists . 88

6.3.8 Quoted Java Code . 88

6.3.9 Expressions . 89

6.3.10 Predicates . 90

6.4 Code Generation . 92

6.4.1 The Hardcoded Representational Mapping 92

6.4.2 Directives for the code generator . 93

6.4.3 The Meaning of Terms in Java Code 94

6.5 Re�ning the Code-Generator . 95

6.5.1 Representational mapping . 96

6.5.2 Code Generator . 96

6.6 Summary . 96

7 Type-Oriented Meta Programming in TyRuBa 99

7.1 Introduction . 99

7.2 Reifying Type Information . 99

7.2.1 Representational Mapping . 100

7.2.2 Code Generator . 100

7.3 Parametric and Bounded Parametric Types 103

7.4 Fully Exploiting Turing Equivalence . 106

7.5 Summary . 107

8 Benchmarking TyRuBa's Expressiveness 111

8.1 Introduction . 111

8.2 Conditional Implementation Re-examined . 112

8.3 More Fine-Grained Rei�cation of Classes . 113

8.3.1 Representational Mapping . 113

8.3.2 Code Generator . 114

8.4 Solving the Benchmark Problems . 114

8.4.1 Conditional Interface Implementation 116

8.4.2 Positioning Abstract Code . 116

8.4.3 Type-Dependent Internal Representation 117

8.4.4 Iteration or Recursion . 119

8.5 Summary . 125

9 Case Study 127

9.1 Introduction . 127

9.2 Representational Mapping . 127

9.3 Derived Information . 129

9.4 An Evaluator for Arithmetic Expressions . 130

9.5 Adding Booleans . 137

9.6 Adding Subtyping . 137

9.6.1 Instantiation of the Framework . 137

9.6.2 The Framework Code . 138

9.7 Conclusion . 142

8 CONTENTS

10 Aspect-Oriented Programming 145

10.1 Introduction . 145

10.2 The Synchronization Problem . 146

10.3 The Weaver: a Special Purpose TyRuBa Code Generator 148

10.3.1 Layers of Code-to-code Transformations 150

10.3.2 Synchronization Aspect Code . 151

10.4 Aspect-Oriented Meta Programming . 154

10.5 Conclusion . 157

11 History and Future of TyRuBa 159

11.1 Introduction . 159

11.2 History of TyRuBa . 159

11.2.1 TyRuBa0.9 . 160

11.2.2 TyRuBa1.0 . 160

11.2.3 TyRuBa1.9 and TyRuBa2.0 . 163

11.3 A Surface Syntax for TyRuBa . 163

11.3.1 A Hypothetical System: FutuRuBa . 164

11.4 Type Checking of FutuRuBa Programs . 167

11.4.1 Determine a Type-Checkable Subset of FutuRuBa 167

11.4.2 Type Checking Rules . 167

11.5 Better Integration with Java . 169

11.6 Extensions of the Logic Meta Language . 169

11.6.1 Module System . 170

11.6.2 Object-Oriented Extensions . 170

11.6.3 Reection and Meta Circularity . 170

11.7 Using and Deducing Very-High Level Information 170

11.8 Adaptive Object-Oriented Software . 171

11.9 Improving the Logic Engine . 172

11.9.1 More E�cient Implementation . 172

11.9.2 Better Support for Recursion . 172

11.10Away From Java . 174

11.10.1Arbitrary Rules as Types . 174

11.10.2Virtual Types, Families of Types . 178

11.11Summary . 178

12 Conclusion 181

12.1 Thesis . 181

12.2 Evidence for the Thesis . 181

12.2.1 Existing Type Systems and Their Restrictions 181

12.2.2 Building an Experimental System . 182

12.2.3 The Expressiveness of Type-Oriented Logic Meta Programming 182

12.3 Aspect-Oriented Logic Meta Programming . 183

12.4 Summary of the Contributions Made by this Dissertation 183

CONTENTS 9

A Benchmark Examples Code 185
A.1 Initialization Files . 185
A.2 Benchmark Solutions . 189

A.2.1 Benchmark 1 and 2 . 189
A.2.2 Benchmark 3 . 192
A.2.3 Benchmark 4 . 196

B Calculator Expressions Code 201
B.1 Initialization Files . 201
B.2 Framework Code . 204
B.3 Instiantiation Code . 208

C Aspect-Oriented Example Code 211
C.1 Initialization Files . 211
C.2 Bounded Stack Example . 217

10 CONTENTS

Chapter 1

Introduction

1.1 Thesis

This dissertation will show that undecidable and ambiguous type systems have useful appli-
cations and should therefore be considered viable options for future statically typed object-
oriented languages.

There is an overwhelming number of static type systems oating around, for all kinds
of programming languages: purely functional languages, imperative procedural languages,
object-oriented languages, logic languages etc. Object-oriented languages themselves rep-
resent a vastly diversi�ed group of sub paradigms: multi methods, class-based languages,
prototype-based languages, etc.

The number of di�erent static type systems is therefore so immense that it is virtually
impossible to oversee. All of them however seem to subscribe to the solid convictions that:

1. A static type system should be decidable.

2. A static type system should ensure that ambiguously typed programs are either impos-
sible to express or rejected by the type checker.

These restrictions seem to have been with type systems forever, almost without questioning
them. Undecidable or ambiguous type systems are considered, almost by de�nition, to be
completely useless.

This dissertation questions that these seemingly sound principles should be accepted out of
hand. We will show that undecidability and ambiguity of type systems is not \by de�nition"
a bad thing. Ensuring unambiguity and decidability of typing imposes strong restrictions on
the expressiveness of the type system. When abandoning the restrictions, the expressiveness
of the type system can be increased to the level of a real programming language, thus lifting
its capability for active manipulation of static types to an entirely new level. We will show
by means of examples that this extra expressiveness does have very useful and interesting
applications.

1.2 A Type Language

What is a static type system and what does it do? Basically, a static type system is a
mechanism with which static types are attached to variables and expressions in a programming

11

12 CHAPTER 1. INTRODUCTION

language. The static type of an expression or a variable corresponds to a set which is an upper
bound estimate of the possible values the expression or variable may actually return or hold
at runtime. These sets are denoted, by type expression, in a formalism for denoting sets of
runtime values. We call this formalism a type language. As an example, the type language
for Pascal [JW85] comprises type expressions such as:

INTEGER

REAL

ARRAY [1..3] OF INTEGER

There are type systems which require the programmer to \estimate runtime values" him-
self and declare these estimates explicitly in so called type declarations. All the system will
do is verify whether the labeling the programmer provides is a valid labeling, without any
type conicts. Such systems are called type checkers. Other systems allow partial type decla-
rations or even omitting type declarations altogether. These systems do the estimating work
themselves, they infer the missing static types from the source code by means of some algo-
rithm. These systems are therefore called type inferencers. One hundred percent pure type
checkers don't really exist since it is too impractical to manually annotate every expression
with a type. Usually only key points such as variables are annotated explicitly and the rest is
inferred, even in systems typically called type checkers. In both checkers and inferencers the
end result is the same: static upper bound estimates are placed on expressions and variables.
The exibility and expressive power of the type system is mostly derived from the expressive
power of the type language which is used for denoting the estimated sets. The more accurately
these sets can be denoted, the more exible the type system is. Therefore type languages are
becoming more and more sophisticated in order to be able to give better static upper bound
approximations of the sets of runtime values.

As type languages become more sophisticated they start to look more and more like
programming languages for manipulating and constructing types. The type manipulating
programs written in the type language treat static types as data structures and are \run by
the compiler", at compile time, as part of the type checking or inferencing process. Consider
for example what is happening to object-oriented languages. Object-oriented languages are
particularly di�cult to statically type and the typing problem for them is far from being
solved [FM96]. Type systems and type languages for object orientation are very diverse and
still in constant evolution. We pick one particular language, Java [GJS97], because we think it
is representative for a large class of mainstream and widely used OO programming languages.
The type system for Java is a nice, simple, pretty conventional and easy to understand static
type system for a class-based language. The type language is too simple in fact to express
adequate estimates. The programmer often has no choice but to override the static type
system with an explicit dynamically checked type cast to be able to say or do what he wants
to. Already several proposals for increasing the expressive power of Java's type language are
emerging to alleviate this problem [Tho97, OW97, AFM97, MBL97, BOW98]. Most of these
proposals o�er the notion of parametric types as part of the solution [OW97, AFM97, MBL97,
BOW98]. A parametric type is a type which is only partially given. It has one or more type
parameters which are �lled in when the type is \instantiated". A parametric type is very
much like a function which constructs a new type from a number of existing types given to it
as arguments. So in a way, a parametric type system o�ers a limited functional programming
language for manipulating static types at compile time. Declaring a parametric type is like

1.3. PASSIVE VERSUS ACTIVE USAGE OF TYPES 13

a function declaration. Instantiating it is like a function invocation. This example clearly
shows that the type languages are starting to look more and more like programming languages.
Other examples can be found. Functional programming languages like Haskell [PH+97] and
Gofer [Jon95] have very sophisticated type systems that combine parametric and quali�ed
types [Kae88, WB89, Jon94a, Jon94b]. Quali�ed types are particularly interesting, since
they allow writing type declarations which look very much like logic inference rules, with
conditions and a conclusion inferring implementations for types. In a way Gofer and Haskell
have a logic programming language embedded in their type system. This is not a full-edged
logic programming language however because of restrictions imposed by the type system to
avoid ambiguity and ensure termination.

1.3 Passive Versus Active Usage of Types

The main argumentation to support the thesis presented in this dissertation depends on
illustrating the importance and usefulness of actively using static types at compile time.
Therefore, let us begin by explaining what is meant by \active usage" of static types, in
contrast to the traditional \passive usage".

1.3.1 Passive Usage

Originally static type systems were meant to increase the robustness of programs. They can
detect a whole class of errors, i.e. type errors, before the program is running. Programs
written in statically typed languages are more robust because when running, they are already
guaranteed to be free of type errors. A nice bonus that comes with static types is that they
also constitute valuable documentation. The static types of variables, procedures, functions,
methods, etc. reveal a lot about how they are intended to be used. The greatest virtue
of static types as documentation is that they are veri�ed and enforced by the type system.
This makes static types as documentation far superior to informal comments which tend to
get \out of sync" as programs evolve. This use of static types for increasing robustness and
as documentation is passive in nature in the sense that types do not play an active role in
programs but only \describe" them.

1.3.2 Active Usage

There is an evolution towards a complementary, more active role of static types. More expres-
sive type languages, which are starting to look more and more like programming languages,
allow active manipulation of types as data at compile time. This is a new aspect of using
static types, complementary to their traditional descriptive usage. That this is indeed an
important aspect can be concluded for example from the successful construction of modular
interpreters [LHJ95] which was made possible by the expressiveness of parametric and quali-
�ed types. Note that construction of modular interpreters is a very hard problem which has
been eluding denotational semanticists for years [Mos90]. Together with the use of monads
[Wad92, JD93, Ste94a, LHJ95] as an elegant abstraction for \computations", active usage of
static types was the key to the solution. Implementations for interpreters are generated al-
most magically, puzzled together from pieces of abstract code which are neatly �tted together
by the type inference system on the basis of static type information.

14 CHAPTER 1. INTRODUCTION

1.4 Usefulness of Undecidable and Ambiguous Type Systems

In this section we will present some tentative and informal arguments why we think that the
issues of decidability and unambiguity of typing should not be taken as prerequisites, and
why undecidable and ambiguous type systems can be potentially useful and should also be
considered.

1.4.1 Undecidability

The principle that a static type system should be decidable is very sound when static types
play only a descriptive role. However, as the importance of actively manipulating types
increases, this restriction must be questioned again. Clinging to decidability implies that the
type language can never evolve into a real (Turing-complete) programming language. Would
the type language become Turing complete, it becomes possible to write non-terminating type
programs and therefore termination of the type checker or inferencer cannot be guaranteed
and the type system is no longer decidable. Is this necessarily a bad thing? We do not think
so. We are assuming that active type manipulation by type programs is what we want to do.
We do want to write \real" type programs which are executed as part of the type checking or
inferencing process. If this is what we want to do, then evidently we need a real programming
language to write our programs with. Not surprisingly we also get greater responsibility. As
\type programmers" we must make sure that our type programs do not contain \bugs" which
make them go into in�nite loops.

1.4.2 Unambiguity

It is harder to argue that ambiguously typed programs may have their use, especially in the
presence of a feature such as overloading. In a system with overloading, ambiguous typing
has implications on the semantic level. Overloading means that static argument types and/or
return types1 a�ect which method will be invoked at runtime. Therefore an ambiguous static
type means that the semantics of the program may also be ambiguous. Therefore one usually
argues that ambiguously typed programs must be rejected simply because they have unclear
semantics.

We think this line of reasoning is a bit too simple. Especially in object-oriented languages
where great value is placed upon polymorphism. We think that this \unclear semantics" may
actually be regarded as a form of polymorphism which can be put to good use.

Also, the restrictions built into a type system in order to avoid ambiguity of typing can
be quite severe and incur a heavy loss of exibility and expressiveness of the type language.
We will see excellent examples that illustrate this point in chapter 2 which discusses the
programming language Gofer and its type system. Gofer's type language has features which
make it look a lot like a declarative logic programming language. Prolog derives most of
its expressive power from its ability to deal with \ambiguous code". The Prolog interpreter
deals with this ambiguity by backtracking over the alternatives. This implicit backtracking
mechanism is where Prolog gets its expressive power. Compared to a Prolog interpreter,
Gofer's type language is considerably less expressive and never has to resort to backtracking
because of the non-ambiguity related restrictions built into it.

1The functional languages Haskell and Gofer for example allow overloading on the return type of a function.

1.5. PROBLEMS WITH OBJECT-ORIENTED TYPE SYSTEMS 15

1.5 Problems with Object-Oriented Type Systems

From here on we are going to focus mainly on object-oriented type systems, as we are mostly
interested in object-oriented languages. However, when we think it is relevant we will some-
times refer to other type systems for functional or procedural languages as well. In this
dissertation many arguments and examples will be given in the context of the object-oriented
language Java. An argumentation why we have chosen Java can be found in section 1.7.2.

The �rst object-oriented language, Simula [DN67, BDMN73], was statically typed. So
from the very birth of object orientation, research e�ort has been put into the design and
implementation of static type systems. Surprisingly, after more than 30 years the type system
for object-oriented languages has not been discovered yet. Type systems for object orientation
are abundant and still in constant evolution. How is this possible?

Type systems for object orientation are very di�cult to design because object-oriented
languages are a very complex mix of features such as inheritance, dynamic method dispatch,
encapsulation and subtype polymorphism. Fisher and Mitchell [FM96] give an excellent
overview of the issues involved in designing object-oriented type systems.

From the start there have been problems with object-oriented typing. Major type insecu-
rities were discovered in historically signi�cant type systems such as the Simula [BDMN73]
type system and the type system which was developed for Smalltalk[GK76, GR81] by Borning
and Ingalls [BI82]. This means that these type systems infer or allow declaration of \incorrect
estimates" of possible runtime values in some cases. Consequently a program which is judged
to be type correct by the type system may still occasionally send messages to objects that
have no method for handling them. We consider these type insecurities no more than initial
technical problems found in early systems.

A more elusive problem also mentioned in [FM96] is the feeling that existing type systems
are too restrictive to allow true object-oriented programming. Polymorphism is a key concept
of the object-oriented paradigm. Polymorphism in dynamically typed languages is naturally
obtained through dynamic method dispatch. However, statically typing polymorphic code is
very hard. The problem is to �nd a type language with su�cient expressive power to give
estimates of possible runtime values which are accurate enough not to be too restrictive. Too
primitive a type language will force the estimates to be overly conservative (i.e. the sets will
contain many more elements than can actually occur at runtime). Since the static type system
will only allow invocation of messages supported by all of the elements in the estimated sets
this means the type system will be too restrictive. As an illustration of the problem, consider
the type system for Java. This is essentially a �rst order type system in the sense that it
does not allow type parameterization. The Java type system has problems with generic data
structures such as lists, stacks and queues. The elements in these data structures have to
be declared of type Object (the class from which all other classes inherit) to allow any class
as element type. The problem with Java is its �rst order type language. A �rst order type
language is too simple to discriminate between lists of elements of type A and lists of elements
of type B. This forces them to be treated equally, as lists of elements of the most general type
Object. The \solution" provided by Java is to allow an explicit downcast from Object to a
more speci�c type. In order to ensure type safety these downcasts will be checked at runtime.
Java extensions such as Pizza provide a better solution to this particular problem. Pizza
[OW97] introduces second order (i.e. parametric) types into the type language. This allows
declaring parametric types such as List<E> which have a type parameter, E in the example.
Such a parametric type is like a \type function" that creates a new type when instantiated.

16 CHAPTER 1. INTRODUCTION

Thus it is possible to instantiate speci�c list types for di�erent element types, for example
List<A> or List.

In the \quest" for good static typing of polymorphic code, a plethora of di�erent \kinds"
of polymorphism have been identi�ed and invented. The following are all di�erent mech-
anisms for supporting polymorphism in static type systems which are briey discussed in
[FM96]: parametric polymorphism, subtype polymorphism, bounded universal quanti�ca-
tion, F-bounded universal quanti�cation, higher-order bounded universal quanti�cation, exis-
tential quanti�cation, F-bounded existential quanti�cation, higher-order bounded existential
quanti�cation. There are more mechanisms to support polymorphism, which we have not
mentioned yet: match-bounded polymorphism [BPF97], type substitution [PS90], signature-
bounded polymorphism [LC98], virtual types [Tho97, MMP89]. This list is far from complete
and still growing constantly. We can safely state that research on OO type systems is still far
from being completed.

1.6 Motivating Examples

The main point put forward in this dissertation is that it is useful to consider using a \real"
programming language as a type language. Already, the evolution of type languages is such
that they tend to become more and more like programming languages as higher-order features
(such as parametric types) are introduced. This section presents a few simple examples
illustrating a lack of expressiveness in existing proposals for adding parametric types to Java.
This lack of expressiveness can be regarded to be due to a de�ciency of the type language as a
programming language. This in turn can be brought back to the fact that type languages are
usually not considered as programming languages due to the decidability and unambiguity
constraints. As a result, the type language is missing features which are considered essential
for programming languages.

The examples presented here are expressed by means of Pizza [OW97], one of the currently
existing proposals. The examples in this chapter are only introductory and it is merely the
intent to give a tentative idea of the motivations behind the writing of this dissertation. A
more elaborate treatment, covering more examples and the other existing Java parametric-
types proposals will be given in chapter 3.

1.6.1 Conditional Implementation

It sometimes happens that the implementation of a certain method of a parametric class
invokes methods in one of its type parameters. For example, a dictionary has a type parameter
for indicating the kind of keys that will be stored in the dictionary. Unlike simple containers
such as stacks or queues, dictionaries need to rely to some degree on functionality provided
by the keys. For example, the implementation of a dictionary needs to invoke equal on
keys when keys are being looked up in the dictionary. In most parametric type proposals
it is possible to express this by constraining the type parameter. This is called bounded
parametric polymorphism [DGLM95, OW97, AFM97, MBL97]. Exactly what kind of type
constraint can be expressed di�ers between proposals. In Pizza a type constraint can express
that a type parameter should be a subtype of a type that provides the needed functionality,
for example the Equality interface. In Pizza this implies an all or nothing situation: Either
the type parameter meats the required type bound in which case the parametric class can
be instantiated, or it does not and the class cannot be instantiated. Often however not all

1.6. MOTIVATING EXAMPLES 17

method implementations in a class depend on the type bound and it would be meaningful to
be able to instantiate the parametric class albeit with a smaller interface, omitting methods
which cannot be implemented because the needed constraints are not ful�lled. An example
of this is a parametric array implementation in Pizza as given in �gure 1.1. Note that type
parameters are given between \<>".

interface Equality<This> {

boolean equal(This e);

}

interface Searchable<El> {

boolean contains(El e);

}

class Array<El implements Equality<El> >

implements Searchable<El>

{

El[] contents;

/** Construction */

public Array(El[] init) { contents = init; }

/** Basic Array functionality */

public El at(int i) { return contents[i]; }

public void atPut(int i, El e) { contents[i]=e; }

public int length() { return contents.length; }

/** Searchable Interface */

public boolean contains(El e) {

boolean found = false;

int i = 0;

while (!found && i<length())

found = e.equal(at(i++));

return found;

}

}

Figure 1.1: A Parametric Array Class in Pizza

The example in �gure 1.1 still deserves some explanation. First note the Equality inter-
face. This interface has a type parameter This which is supposed to be �lled in with the type
of the class on which it is implemented. Using a type parameter in this way is a programming
technique to deal with binary methods and simulate F-Bounded polymorphism [CCH+89].

Now let us come back to what we really wanted to illustrate with this example. The
Array implementation as presented has a type parameter for its elements that is restricted
to classes implementing Equality in order to be able to implement Searchable. Suppose
however we wish to use an array simply as storage structure somewhere and we do not use
the Searchable interface. In this case we want to be able to instantiate it with any class as
element type even a class not implementing Equality.

It could be argued that the example given above can be expressed by splitting up the

18 CHAPTER 1. INTRODUCTION

functionality into several classes linked through inheritance. This solution is not satisfactory
because it tangles up the class tree and becomes unmanageable with multiple dependencies in
a single class. In that case it would require some kind of multiple inheritance or a proliferation
of subclasses for all possible extensions and variations of the base class.

We consider the problem illustrated in this examples as due to the type language lacking
some kind of if-then-else construct for making decisions. Any real programming language
has an if-then-else in some form or other2. Type languages are not regarded as program-
ming languages and usually do not provide features for making real decisions. For example,
the type language of bounded parametric polymorphism in a way has some kind of if, but
it is only an if-then, not an if-then-else. We can check that El implements Equality
but we can only specify what to do when the check succeeds and have no control over what
happens when the check fails.

Another example of the same problem (i.e. \missing if-then-else") is a class whose
implementation varies depending on a type parameter. Consider a Dictionary<Key,Value>

class. Typically this imposes the type constraint that Key should be Hashable. However it
makes perfect sense to allow dictionaries whose keys are not hashable but merely provide an
equal method (i.e. implement Equality). In this case we just provide a di�erent implemen-
tation which uses a linked list as internal storage rather than a hash-table. Again, to be able
to express this we need an if-then-else construct of some kind.

1.6.2 Positioning Abstract Code

Abstract code often only depends on interfaces and purposefully ignores the implementation
details of a speci�c class. Hence it should be possible to write abstract code independent
of the class hierarchy. In most class-based languages this is impossible because method
implementations are associated with a speci�c class. Therefore, abstract code usually ends
up in an abstract class which depends on subclasses to �ll in the implementation details.
Consider the abstract class in �gure 1.2 implementing the Searchable interface for collections
that provide a way of enumerating their elements. The problem with this abstract class is
that it is unclear where to insert it into the class tree. The problem becomes exponentially
worse when there are several abstract interface implementations.

A better, more \Type-Oriented Programming" avored solution can be accomplished in
some parametric type systems by simulating a mixin as a parametric class inheriting from
one of its parameters. Not all parametric type systems allow inheriting from type parameters
because of implementation-related restrictions. Pizza for one does not allow using a type
parameter in this way. For the sake of the argument we nevertheless present a hypothetical
mixin solution in Pizza syntax in �gure 1.3.

A \mixin class" is like a function which can create a subclass implementing the Searchable
interface for any class meeting the required type constraint. The solution with a mixin is
not ideal either. Sometimes we want to a�ect the appropriate classes directly rather than
through subclassing. In this case mixin classes will not work. Another problem with mixin
classes is that the mixin's implementation should sometimes be dependent on the base class
to provide a more e�cient implementation in particular cases. As an example consider a
collection which stores its elements in a hash-table. It would be more e�cient to implement
the SearchableMixin by hashing rather than by enumeration. We could try to accomplish

2Imperative languages have an if-then-else statement. Functional language provide an if as function.
Logic languages can make decisions by \pattern matching". Etc.

1.6. MOTIVATING EXAMPLES 19

interface Enumerable<El> {

Enumeration<El> elements();

}

interface Enumeration<El> {

boolean hasMoreElements();

El next();

}

abstract class Searchable< El implements Equality<El> >

implements Enumerable<El>

{ boolean contains(El e) {

boolean found = false;

Enumeration<El> elems = elements();

while (!found && (elems.hasMoreElements()))

found = e.equal(elems.next());

return found;

}

}

Figure 1.2: Abstract Class Implementation of Searchable

class SearchableMixin<Super implements

Enumerable<El implements Equality<El> >

>

extends Super

implements Searchable<El>

{ boolean contains(El e) { ... } }

Figure 1.3: Mixin implementation of Searchable

20 CHAPTER 1. INTRODUCTION

this by implementing another mixin, HashtableSearchableMixin, speci�cally for hash-tables
but this would be annoying since the user of our collection library must then be told he
should use this other mixin for the speci�c case of a hash-table. Ideally we would like the
mixin SearchableMixin to be smart enough to decide for itself which version it should use.
Regrettably the functional \programming" language implicitly present in current parametric
type systems lacks an if-then-else to make the decision.

1.7 Motivation of Choices

In order to arrive at a concrete system and delimit the area of research somewhat we have
made a number of choices and imposed a number of restrictions. The following subsections
describe and motivate these.

1.7.1 How we will Prove our Thesis

This dissertation will show that undecidable and ambiguous type systems have useful appli-
cations and should therefore be considered to be viable options for future statically typed OO
languages.

Traditionally, type systems have been included into programming languages for the fol-
lowing reasons [MMMP90, Mit96a]:

documentation Static types improve the readability of programs.

robustness Early detection of \type errors".

e�ciency Optimizations based on static type knowledge.

The aforementioned uses are passive in the sense that types have mostly a descriptive nature.
This makes them great as documentation. The type checker veri�es whether the description
is a consistent one and this increases robustness by eliminating type errors. Optimizers also
make use of the descriptive nature of types to perform optimizations.

In this dissertation we want to draw attention to the potential of \actively" using static
types, writing real programs that manipulate types: consult them, construct them, or make
decisions regarding interfaces or internal representations of classes. In short, we want to draw
attention to the potential of active manipulation of types by real \type programs". It is
in this active type manipulation that lies the currently unharvested potential which makes
undecidable and ambiguous type systems potentially useful.

Because of limited resources we have been forced to take a less than perfect approach. We
did not implement a type system which has a Turing-complete type language as one might
expect us to. Type systems for OO languages being very complicated artifacts, both theoret-
ically and implementation wise, this was not a feasible option to us. Instead we implemented
a preprocessor which generates code for an existing statically typed OO language: Java. We
do not do any type checking of our own. What our system does o�er as part of the \prepro-
cessor" is a Turing-complete logic programming language with which it is possible to actively
manipulate types and pieces of source code. The checking aspect of the system is completely
ignored by the system. Potential \type errors" are only detected as far as the generated out-
put code violates the Java typing rules and are detected by the Java compiler. Clearly this is
not what one wants for a production-level environment. However, since the added potential

1.8. OVERVIEW OF THIS DISSERTATION 21

of having a Turing-complete type language is in active type manipulation rather than in the
type checking aspect of the system, this will be su�cient to prove our point.

1.7.2 Java as Base Language

In order to arrive at a concrete system we had to pick a particular base language for our
experiments. We have chosen the Java language. There are several reasons for choosing Java.
One of them is of course that Java is very popular at the moment. However, this is not the
only reason. We wanted our experiments to be conducted in the context of a widely accepted
programming language platform and Java certainly meets this requirement. At the same time
Java is also fairly simple and fairly well designed. Further, it has a static type system, which
is a must since we want to manipulate static type information. Also, the notion of interfaces
in Java seems a natural candidate for describing object types. TyRuBa, the concrete system
we will propose, allows writing meta programs that talk about classes and interfaces, and
about how the former implement the latter.

1.7.3 Logic Meta Language

The meta language chosen for manipulating types at compile time is a Prolog-like [CM81,
SS94] logic language. The reason for choosing a logic language is that we believe it o�ers the
right mode of expression for type manipulation. We can give some initial indications that
this is true. One such indication is the Gofer type system [Jon95]. The way type classes
can be used in Gofer has a very strong resemblance to writing logic Horn clauses. Gofer's
type system is a good guideline as it is one of the most mature, sophisticated, exible and
expressive type systems around. Another indication can be found in the way type theorists
formulate the semantics of a type system: as a set of inference rules with conditions and
conclusions [Sch94, Mit96b].

The Prolog-like meta language has no static type system, but is dynamically typed. This
is the right choice for the experimental system we have in mind. We mainly aim at making the
meta-language as expressive as possible to allow as great a freedom as possible in manipulating
the static type information of the base language programs. A static type system for the meta
language is a limitation of its expressiveness. Also the design of a type system for the meta
language is a complicated issue in itself. The meta language is an unconventional mix of logic
language with quoted Java code in it. A suitable static type system should not only type the
logic code but should also keep track of the type properties of the quoted pieces of Java code.
Clearly such a \mixed" type system is not a trivial matter and we consider it future work
and outside the scope of this dissertation. Some speculations about type checking issues can
be found in section 11.4, near the end of this dissertation.

1.8 Overview of this Dissertation

We will give a summary of the goals and boundaries of this dissertation in the form of two
central research hypotheses.

In this chapter, we have shown a few examples that illustrate the apparent lack of ex-
pressiveness in existing type systems o�ering limited capabilities for manipulating types at
compile time through the use of parametric types. These seem to o�er a limited compile
time functional programming language with which to manipulate types. However, mainly

22 CHAPTER 1. INTRODUCTION

due to the restrictions of decidability and unambiguity of typing, type languages have never
been regarded as programming languages. Consequently they lack even the most basic fea-
tures one expects from a programming language. The examples given illustrated the loss of
expressiveness due to a missing if construct.

Research hypothesis 1 There is still a large unused and mostly unexplored potential in the
active use of static type information by means of a fully Turing-complete type language.

In order to investigate and validate the above research hypothesis we will design and
implement a concrete system. This implies picking a speci�c base and meta language. We
have opportunistically chosen Java as the base language. The choice for the meta language
is a logic language similar to Prolog. The reason for choosing a logic meta language is stated
in the following research hypothesis:

Research hypothesis 2 A logic language o�ers the right kind of paradigm for describing
and manipulating type-related information.

These hypotheses clearly establish the direction which the rest of the dissertation will
follow.

We start by providing arguments for hypothesis 2. We already gave some preliminary
arguments to support this hypothesis. One argument is the way type theorists usually specify
type systems: by means of a kind of logic inference rules. Another argument is the Gofer
type system. The latter will be discussed in detail in chapter 2 which presents an informal
introduction to Gofer and its type system. Gofer [Jon95] is a small experimental functional
language o�ering a type system with type and constructor classes very similar to Haskell's
type system but somewhat more experimental and more exible. The similarity with logic
inference rules is pointed out. It will become clear from the discussion in this chapter that
the kind of logic rules o�ered by Gofer's type system have great expressive power.

Argumentation for hypothesis 1 covers most of this dissertation. Chapters 2 and 3 discuss
existing \state of the art" type systems, and illustrate by means of some benchmark program-
ming assignments how these type systems su�er a considerable loss of expressiveness due to
restrictions in their type language. The benchmark programming assignments are chosen
explicitly to probe the expressive power of the type language as a programming language to
actively manipulate static types and make decisions about them. Due to the fact their type
language is not a true programming language, existing type systems perform poorly on the
benchmark programming assignments.

Chapters 4 through 7 work towards an experimental system with which we will illustrate
the potential of active type manipulation in subsequent chapters. We start in chapter 4 by
presenting some terminology used in the remainder of the dissertation. The most important
concept de�ned in this chapter is the notion of type oriented meta programming, which is the
technique we will use to achieve active manipulation of static types and type information.
Meta programming is achieved by means of some meta language. According to hypothesis 2
we have chosen a to use a logic meta language. Chapter 5 therefore presents the concep-
tual framework of logic meta programming we have adopted. This is presented �rst in a
base-language independent manner. Subsequently in chapter 6 the idea is applied to the
base language Java and a concrete system, TyRuBa, with its design and implementation is
presented. Chapter 7 shows that this system can e�ectively be used to achieve type-oriented
logic meta programming for Java.

1.8. OVERVIEW OF THIS DISSERTATION 23

The remainder of the dissertation illustrates the potential of active manipulation of static
types and type related information by means of the TyRuBa system. In chapter 8 we assess the
expressiveness of the TyRuBa system by using it to implement the benchmark problems. In
contrast with Gofer and existing parametric-type extensions of Java, the benchmark problems
can all be solved adequately in TyRuBa. Chapter 9 presents an example on a somewhat larger
scale.

The benchmark solutions from chapter 8 and the case study example from chapter 9 only
barely scratch the surface of potential applications. In order to give a taste of the immense
potential which still lies unharvested underneath the surface, chapter 10 shows how we used
the TyRuBa system to support aspect-oriented programming [MLTK97, KLM+97]. We show
how an aspect weaver can be implemented as a special-purpose TyRuBa code generator,
and how aspect declarations can be represented by TyRuBa logic facts. This approach allows
embedding the special-purpose aspect language into TyRuBa's general purpose logic language,
and thus to achieve aspect-oriented logic meta programming. This example illustrates that
the ideas presented in this dissertation can be applied in a much broader context.

In chapter 11 we present a historic overview of the development of TyRuBa up to its
current version employed throughout this dissertation. Subsequently we present some ideas
about possible future research directions, and about how the system could be upgraded from
an experimental system to a usable product. We also speculate about what the \type system of
the future" might look like. This would be a statically typed system. Presumably, the system
will o�er a full-edged declarative logic language as part of its type language. This will allow
manipulating types by means of logic programs, and will provide ways to characterize types
by means of arbitrary Turing-computable logic predicates.

Finally, chapter 12 summarizes and concludes the dissertation.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Gofer: Constructor Classes and

Higher-Order Types

2.1 Introduction

In this chapter we are going to have a close look at the functional language Gofer [Jon95].
Gofer has a \state of the art" type system that o�ers a sophisticated combination of uni-
versally quanti�ed parametric polymorphism and quali�ed types. The result is a powerful
type system with which a large variety of polymorphic coding idioms can be successfully
expressed and statically typed. Quali�ed types [Kae88, WB89, Jon94b] are particularly in-
teresting in the context of this dissertation. Declarations of quali�ed types have a very strong
resemblance to logic inference rules. In a way, quali�ed type declarations introduce a kind
of logic programming language into the static type system. However, this language remains
limited and is not truly a programming language because of the strong restrictions it imposes.
These restrictions are mostly related with unambiguity and decidability of typing, and with
implementation-related concerns. Despite the limitations, the expressiveness of the system
goes a very long way in supporting genericity. This was one of the major motivating forces
behind our choosing a logic meta language for our system.

The languages Gofer and Haskell and their type system are highly similar. Of the two,
Haskell takes the more conservative approach and imposes more limitations on the declara-
tions of quali�ed types than does Gofer. From the point of view of our thesis and dissertation
Gofer is therefore preferable over Haskell. An overview of the decisions involved in designing
a quali�ed-type system and a comparison between the particular choices made by Gofer and
Haskell can be found in [JJM97].

In the following sections we will informally introduce the functional language Gofer and
its type system. We will show some examples that illustrate its potential for writing generic
code by making use of quali�ed types and universally quanti�ed type variables. We will also
illustrate where the restrictions built into the type language cause complications, making
things hard or impossible to express.

An interesting side note which supports our thesis is that some versions of the Gofer type
system are not truly decidable [JJM97]. This however does not seem to create problems for
practical Gofer programs.

The reader who is familiar with Gofer (or Haskell) and its type system may consider
skipping the introductory sections and move directly to section 2.9.

25

26 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

2.2 A Purely Functional Language

Gofer is a statically typed lazy purely functional language. This essentially means that it is
modeled after simply typed lambda calculus [Mit96c]. Some syntactic sugar is added to make
it more easily usable and, more importantly, the type system is extended. Universally quan-
ti�ed type variables are added by adopting the Hindley-Milner type system [Hin69, DM82].
This is further extended to support overloading by means of type classes and quali�ed types
[Kae88, WB89, Jon94a, Jon94b].

The statement that Gofer is a purely functional language entails that it has no assignment
feature nor any other feature for performing side e�ects directly1. Usually purely functional
languages have what is called lazy evaluation. This means that evaluation of expressions in
the language are delayed until the latest possible moment.

We are now going to make an informal tour of Gofer. We will not try to give a complete
picture of the entire language and all of its syntax and semantics. We only want to give a
general idea of what the language looks like and how it is used in practice. For a more complete
description we refer to [Jon95, Jon91a, Jon93b, JJM97]. Issues such as operator syntax will not
be treated in detail. These and other mostly syntactic features are interesting and de�nitely
worthwhile to make the language more usable in practice, but in the context of this dissertation
we are more interested in the type system which will therefore be more thoroughly explored.
Nevertheless, it is not our intent to repeat the Gofer manuals [Jon91a, Jon91b, Jon93b] and
uncover every little detail about the type system. Instead, after informally introducing it by
means of examples, we will look at it from the point of view of this dissertation and discuss
how closely the type language resembles a programming language and explore the limitations
that hamper its expressiveness when considered as a programming language.

2.3 Function Declarations and Invocations

The most important features of a functional language are function declarations and invoca-
tions. This corresponds to abstraction and application in lambda calculus. The syntax of
these is nearly identical to that of lambda calculus. The following is a very simple function
declaration illustrating the Gofer syntax of abstraction and application. It de�nes a function
compose which accepts two functions, f and g, as arguments and returns their composition
f � g.

compose f g = \x -> f (g x)

A \\" in Gofer has the same meaning as \�" in the lambda calculus. Function application
is denoted by simple juxtaposition and associates to the left. The parenthesis around g x

in the example are therefore necessary because otherwise the body of the lambda expression
would be considered equivalent to (f g) x.

Just as in lambda calculus, it is standard practice in Gofer to \simulate" functions with
multiple arguments by means of higher order single argument functions. This technique is
called currying. Even though the syntax of the compose declaration in the example above
seemingly declares a two argument function, it in fact does not. In reality this de�nition is
considered equivalent to the following:

1Side e�ects are simulated by passing an explicit \state" in and out of functions.

2.4. TYPES AND TYPE DECLARATIONS 27

compose = \f -> \g -> \x -> f (g x)

Readers su�ciently familiar with lambda calculus or functional programming will understand
this at once. However, for those not so fortunate we provide a more intuitive example to
help illustrate and explain currying a little better. Consider the following rather trivial
function declaration which de�nes a function add that adds its \�rst argument" to its \second
argument".

add x y = x + y

As we just explained, this is not really a two argument function but is equivalent to:

add = \x -> \y -> x + y

It is convenient that application associates to the left since we may simply invoke add on
numbers 3 and 4 by writing an expression \add 3 4". This expression will be implicitly
parenthesized as \(add 3) 4" which has the desired e�ect. The function add gets an argu-
ment 3 for its formal parameter x. The returned function is equivalent to \y -> 3 + y. This
function receives a parameter 4 and �nally returns the result 7.

Function declarations may refer to themselves or to each other to de�ne recursive or
mutually recursive functions2. The prototypical example is of course the declaration of a
function fac which computes n! when given an argument n.

fac n = if n==0

then 1

else n * fac (n-1)

This example also illustrates the use of the if then else special form and in�x operator
syntax. Gofer o�ers a number of prede�ned in�x operators such as +, -, *, etc. to do
arithmetic on numbers. There are also a number of comparison operators such as ==, <, <=,
etc. which return a boolean. The in�x notation for operators is merely syntactic sugar. The
non-in�x form for the expression 3 + 4 for example is (+) 3 4. Thus, the function (+) is
not a real two argument function but a curried function. We can for example declare an
increment function as follows:

increment = (+) 1

2.4 Types and Type Declarations

In this section we introduce Gofer's type system and type language. The simple examples
presented above are all valid statically typed pieces of Gofer code even though we have not
used a single type declaration up until now. There is no need for type declarations because
the type system has an inferencer which can derive static types from the source code of the
Gofer program. For providing (veri�ed!) documentation or for enforcing types which are
more restrictive than the ones the system would infer itself3, it is possible to declare types

2Actually not only function declarations but also declarations of data structures such as lists may use
recursion. This is possible (and useful) due to lazy evaluation.

3The inferencer will derive the \most general" type.

28 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

explicitly. The following example declares the function add to be of type \Int -> Int ->

Int". What this type expression means we will come back to later. For now we merely want
to illustrate the syntax of a type declaration.

add :: Int -> Int -> Int

add x y = x + y

2.5 Simply Typed Gofer

We will now make a tour of Gofer's type language, illustrating and explaining the di�erent
type expressions it o�ers to specify function and data types. We will introduce these in a
gradual manner. This section will treat only types which conform more or less to the simply
typed lambda calculus [Mit96c]. This means there are no polymorphic types. Section 2.6
illustrates what happens when universally quanti�ed type variables are introduced to support
polymorphism (Hindley-Milner type system [Hin69, DM82]). Finally, in section 2.7, we turn
our attention to the more experimental extension of the type system which o�ers type classes
and quali�ed types to support yet another kind of polymorphism through \overloading"
[Kae88, WB89, Jon94a, Jon94b].

Restricting ourselves to non-polymorphic types and always providing explicit type dec-
larations for everything, Gofer becomes practically identical to the simply typed lambda
calculus. Type expressions in the type language of \simply typed" Gofer can be divided into
two groups. One group of primitive types and one group of derived types. Primitive types are
like constants in the type language whereas derived types are more like the result of applying
a \type function", in Gofer jargon called a type constructor, to a number of argument types.
Every type constructor has a certain arity4 indicating how many parameters the \type func-
tion" needs. Type and constructor names are distinguished from names for normal functions
and values because they start with a capital letter.

Primitive Types

There are a number of primitive types in Gofer. These are summarized in the table in
�gure 2.1. There is one rather strange primitive type denoted () in the table. This is called
the unit type and corresponds exactly to the type unit in simply typed lambda calculus.
There is exactly one value of this type, also denoted () and called unit.

Type Some values of the type

Int 0, -1, 1, -2, 2, -3, . . .
Float 3.14, -1.1, 5.2e-2, . . .
Char 'a', '1, 'X', '*', . . .
Bool True, False
() ()

Figure 2.1: Primitive types in Gofer

If we have only primitive types the only thing we can declare types for are constants5.
For example we can declare a constant of type Float.

4Primitive types can be regarded as type constructors of zero arity.
5Strictly speaking, every globally declared name in Gofer is a constant since Gofer is purely functional.

2.5. SIMPLY TYPED GOFER 29

pi :: Float

pi = 3.14159

Function Types

Things only start getting interesting when we have function types. The constructor for
function types is ->. It has arity 2 and is used as an in�x operator. To accommodate
expressing types of curried functions it associates to the right. Some examples:

fac :: Int -> Int

fac n = if n==0

then 1

else n * fac (n-1)

add :: Float -> Float -> Float

add x y = x+y

compose :: (Int -> Int) -> (Int -> Int) -> (Int -> Int)

compose f g = \x -> f (g x)

Note that the type of add could just as well have been Int -> Int -> Int. It would seem
strange that this function could be typed correctly in two distinctive ways. We will discuss
later in section 2.7 how this kind of polymorphism can be assigned a single (polymorphic)
quali�ed type. The type of compose could also be more general. There is no reason really
to restrict its argument to functions on integers. The compose method too can be assigned a
polymorphic type, but this time using universally quanti�ed type variables as will be explained
in section 2.6. Many of the examples that still follow in this section would also be best
described by a polymorphic type. However, we will defer giving polymorphic types until
section 2.6 and section 2.7.

Tuples

Tuples in Gofer correspond to product types in simply typed lambda calculus. The simplest
tuple is a pair6. The value (1,'i') for example is a pair of type (Int,Char). In general
there is an n-ary tuple type constructor for every n 2 f2; 3; 4; : : :g. Some more example
tuple types and values can be found in �gure 2.2. Note that the examples (Int,Int,Int)
and (Int,(Int,Int)) denote distinct types: one is a triplet and the other a pair containing
another pair.

Gofer provides prede�ned polymorphic accessor functions for pairs which correspond to
the projection functions in simply typed lambda calculus. These are rarely used because Gofer
allows a kind of pattern matching syntax on arguments in functions to extract component
values from tuple values. An excellent example of this is the de�nition7 of the accessor
functions themselves.

However, the word \constant" is usually used to only signify something which is not a function constant.
Otherwise it is simply called a \function" instead of a \function constant"

6The type () could be considered a tuple of arity zero. This would then of course be an even simpler type
of tuple. Note that tuples of arity 1 do not exist. The expression (1) for example is not a tuple but is simply
a parenthesized expression and semantically equivalent to 1

7Found in the \standard.prelude", an initialization �le that contains de�nitions for prede�ned functions.

30 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

Type Some values of the type

(Int,Char) (0,'a'), (-1,'<'), (55,'F'), . . .
(Int,Int,Int) (0,0,0) ,(0,1,0), (3,4,5), . . .
(Int,(Int,Int)) (0,(0,0)) ,(0,(1,0)), (3,(4,5)), . . .

Figure 2.2: Some example tuple types and values

fst (x,y) = x

snd (x,y) = y

The formal parameter (x,y) is \matched" to the actual argument when the function is
called, binding variable x to the �rst component of the pair and y to the second.

The above functions can be used on all pairs and therefore have a polymorphic type. We
will come back to the (polymorphic) types of these examples later.

Lists

Complementary to tuples, which are �xed arity data structures, lists are variable arity data
structures. A list may hold any number of elements of a given type. Figure 2.3 gives some
example list types and values. Note that strings are considered to be lists of characters in
Gofer. The type String is actually just a synonym for [Char].

Type Some values of the type

[Int] [], [4], [4,5,-1], . . .
[Char] [], ['a','b'], "BarFoo", . . .
[[Int]] [], [[],[]], [[1,2],[3],[4,5]], . . .

Figure 2.3: Some example list types and values

Lists in Gofer can be conveniently created in a number of di�erent ways. We will not
go into detail about this. We only briey discuss the most basic of them and leave special
\syntactic sugar" notations aside. The example values in �gure 2.3 can be used exactly in that
form in Gofer programs as literals denoting list constants. The literal [] denotes an empty
list. This is a polymorphic constant since it can be any type of list. Non-empty lists can be
constructed with the prede�ned \:" operator. This is an in�x operator which associates to
the right to make constructing lists syntactically simpler. The list [1,2,3] for example may
be constructed as follows:

oneTwoThree = 1:2:3:[]

Gofer provides some prede�ned accessor functions to access elements in a list. The most
basic of these are head and tail. The function head returns the �rst element of a non-empty
list whereas the function tail returns a list of all elements but the �rst. There is also a
convenient pattern-matching syntax for lists illustrated below by the standard de�nitions for
the functions head and tail.

head (x:xs) = x

tail (x:xs) = xs

2.5. SIMPLY TYPED GOFER 31

Another, more complicated example, also using pattern matching syntax on lists is a
function which computes the sum of a list of integers.

sumInt :: [Int] -> Int

sumInt [] = 0

sumInt (x:xs) = x+sumInt xs

Note that there are seemingly two declarations for this function. However this is merely
syntactic sugar. When the function is called, the di�erent declarations are tried in the order
in which they are declared. The �rst one that matches the actual argument is chosen. The
pattern [] only matches an empty list whereas the pattern (x:xs) matches a non empty list
and binds x and xs to the head and the tail of the list respectively. The same append function
could thus be expressed more verbosely without pattern matching and a single declaration as
follows:

sumInt :: [Int] -> Int

sumInt xs = if null xs

then 0

else head xs + sumInt (tail xs)

\Data" types

The most general of type declarations are data declarations. They o�er a combination of
sum types (i.e. \disjoint unions" of types) and product types. In fact, all of the types listed
up until now could in fact be interpreted as syntactic sugar for types declared by a data

declaration.
The following is an example data declaration for a type of binary trees of integers, called

TreeInt.

data TreeInt = Leaf Int

| Node Int TreeInt TreeInt

| Empty

The \|" should be read as a union of \tagged types". The symbols Leaf, Empty and Node

are tags which will be part of the runtime value of TreeInt to identify whether it is a leaf
node containing an Int, an internal node containing an Int with two subtrees, or simply an
Empty tree.

The above not only declares a new type, TreeInt, but at the same time it also implicitly
declares constructors for building trees. These constructors have the following types.

Leaf :: Int -> TreeInt

Node :: Int -> TreeInt -> TreeInt -> TreeInt

Empty :: TreeInt

The constructor function Leaf takes an integer and turns it into a TreeInt by adding to it a
Leaf tag. Similarly Node constructs an internal node when given the appropriate arguments.
The Empty \constructor" does not need any arguments so it is a constant instead of a function.

Pattern matching syntax may be used on data types as well. The following example is a
function that computes the product of all integers in a TreeInt using pattern matching.

32 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

prod :: TreeInt -> Int

prod Empty = 1

prod (Node i n1 n2) = i*prod n1*prod n2

prod (Leaf i) = i

2.6 Parametric Polymorphism

With what was discussed above, already a great deal of useful programs may be written in
Gofer. However it is not possible to give a type for the function compose that does not restrict
it too much. Nor will it allow us to declare types for generic functions on lists or other data
structures such as pairs. Nor will it allow us to declare generic data structures of our own. In
the following sections we will discuss what provisions Gofer's type system has for supporting
genericity.

Gofer provides several mechanisms for supporting polymorphic types. Mostly we divide
these into two categories. On the one hand there are provisions for parametric types: para-
metric data declarations, type synonyms and universally quanti�ed type variables. These
will be treated in this section. On the other hand we have type or constructor classes and
quali�ed types that support overloading, which we we will discuss in section 2.7.

We will introduce both of these informally and gradually. Each time we introduce another
feature of the type language this will be accompanied by a motivating example that illustrates
what the feature is needed for. This gradual manner in which the type system is presented re-
ects nicely how an increasingly more complex type language allows better static \estimates"
of runtime values to be expressed and thus results in more exibility for the programmer. It
is also noticeable that as the type language grows more complex it starts to look more and
more like a programming language.

2.6.1 Type Variables

Up until now we have considered type expressions in Gofer's type language to consist of type
constants and of type constructors applied to a number of argument type expressions. Type
constants we have seen were either primitive types, such as Int and Float, or declared by
data such as the TreeInt example. We have seen prede�ned built-in constructors for creating
function types, tuple types and list types. A constructor for sum types which can also be
found in simply typed lambda calculus is not explicitly present as a type constructor in Gofer,
but it is implicitly present under the form of the \|" in data declarations.

We now introduce type variables, yet another kind of type expression in Gofer. A type
variable is any identi�er starting with a lower case letter, occurring in a type expression. The
lower case letter distinguishes it from constructors8 and type constants that start with upper
case letters.

Type variables are universally quanti�ed which means essentially that they function as
\wild cards" which may be substituted by any type. The �rst example usually presented in
many a textbook to illustrate the use of universally quanti�ed type variables is the identity
function.

8Not counting type constants which are in fact type constructor of arity 0, we have not seen any type
constructors that start with upper case letters yet. We will soon see how these may be de�ned by means of
data declarations.

2.6. PARAMETRIC POLYMORPHISM 33

id :: a -> a

id x = x

The type variable a functions as a wild card. It may be replaced by any type. However,
if one replaces one occurrence of the variable then the other one must also be replaced by the
same type. The function id may thus be regarded as being of type Int -> Int or Bool ->

Bool, but not of type Int -> Char for example.

Another good example is the compose function which composes two functions by applying
the �rst one to the result returned by the second. The type of this function could be declared:

compose :: (a -> b) -> (c -> a) -> (c -> b)

These and some other examples from section 2.5 whose type can be expressed with uni-
versally quanti�ed type variables are listed in �gure 2.4.

Value Type

[] [a]

fst (a,b) -> a

snd (a,b) -> b

head [a] -> a

tail [a] -> [a]

id a -> a

compose (a -> b) -> (c -> a) -> (c -> b)

Figure 2.4: Some example polymorphic types with type variables

Universally quanti�ed polymorphism is typically needed for polymorphic functions on
generic data structures, such as tuples and lists, which store elements without performing
any operations on the stored elements themselves. Since the elements are not operated on
in any way they can be of any type, and a universally quanti�ed type variable is the perfect
�t for them. We present one more example of this, the function length which computes the
length of a list.

length :: [a] -> Int

length [] = 0

length (x:xs) = 1+length xs

This function is polymorphic and works on lists containing any type of elements. It can for
example be used both on a list of integers as well as a list of characters.

2.6.2 Parametric Data Structures

With type variables it is possible to conveniently express the types of polymorphic functions
on generic lists and tuples. But what about user-de�ned data structures such as the TreeInt
example? It is very natural that we would want to de�ne generic functions on trees also. For
example a function fringe which traverses the tree and returns a list of the elements in its
leafs. Let us �rst express it with the non-polymorphic type TreeInt.

34 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

fringe :: TreeInt -> [Int]

fringe Empty = []

fringe (Leaf i) = [i]

fringe (Node i l r) = fringe l++fringe r

Note, the operator ++ computes the concatenation of two lists, and has polymorphic type:

(++) :: [a] -> [a] -> [a]

Except for the type declaration, we could just as well use the exact same code on a tree
of characters or any other type of elements. What we need is a way to declare a generic tree
data structure as a type constructor, Tree, of one argument so that we may write Tree Int

for the type of a tree of integers or Tree Char for the type of a tree of characters. This can be
done easily in Gofer. A data declaration in fact allows not only declaring new type constants,
but also new type constructors of any arity. For the Tree example we can write:

data Tree a = Leaf a

| Node a (Tree a) (Tree a)

| Empty

This declares Tree as a type constructor of arity 1. Thus, Tree is like a function on types. It
takes a type a as argument and constructs the type Tree a much in the same way the type
constructor [] constructs a type [a] from a type a. We can thus conveniently declare the
polymorphic type of fringe:

fringe :: Tree a -> [a]

This will allow fringe to be used on a tree with any type of elements.

2.6.3 Type Synonyms

Parametric data declarations provide a kind of \type abstraction". They can declare a kind
of functions on types. Type synonyms are another way of creating type abstractions. A type
synonym is basically a kind of \type macro". It may have parameters which are types and
expands to a type. As an example of its use consider the following implementation of a Stack
ADT, represented by a list of elements.

type Stack a = [a] in emptyStack, isEmptyStack, push, pop, top

emptyStack :: Stack a

emptyStack = []

isEmptyStack :: Stack a -> Bool

isEmptyStack [] = True

isEmptyStack s = False

push :: Stack a -> a -> Stack a

push s a = a:s

2.7. OVERLOADING: TYPE AND CONSTRUCTOR CLASSES 35

top :: Stack a -> a

top s = head s

pop :: Stack a -> Stack a

pop s = tail s

The type declaration above declares the type Stack a to be a synonym which \expands" to
[a]. To hide the abstract data type's implementation details from its users, one may list
names of functions or constants in which the expansion is valid. For all other declarations
the type synonym will be treated as a \black box" so that the implementation details are
hidden. In the example above this means that the declarations of emptyStack, isEmptyStack,
push, top and pop can treat the stack as a list of elements. Outside of these declarations,
list operations such as head and tail etc. will cause a static type error when invoked on
something of type Stack a.

2.7 Overloading: Type and Constructor Classes

The most interesting part of Gofer's type system is its mechanism for overloaded functions.
We have already encountered a simple example of a polymorphic function which cannot be
expressed with universally quanti�ed variables. The example was a simple add function:

add x y = x + y

The examples found in �gure 2.4 are mostly the polymorphic examples from the preceding
sections for which we either did not declare a static type or for which we declared a type which
was more restrictive than needed. Noticeably missing from this list is the type of the function
add which was also declared with too restrictive a type Int -> Int -> Int (and also Float

-> Float -> Float at another point). We might think the type of this function should be
a -> a -> a to allow it to be applied to both integers and oats. This type however is too
general since we would then be allowing it to be applied to any type, whereas we should
only allow it to be applied to a type that has a + operation de�ned on it. The type of
add needs to be expressed with something more restrictive than universally quanti�ed type
variables. This is the motivation behind the introduction of type classes and quali�ed types
which are the topics of this section. Historically, in the beginning Gofer only had type classes
[Jon91a]. Later it was found that the expressiveness of type classes was too restrictive for
some very useful examples such as monads [JD93] and modular interpreters [LHJ95, Ste94a].
This gave an impulse to extend the type system with constructor classes [Jon93a, Jon93b], a
\higher-order" generalization of type classes. Again we will introduce these features gradually,
starting with type classes and presenting more complicated examples that illustrate the need
for constructor classes.

2.7.1 Type Classes

The function add from above is polymorphic because it can work with more than one type
of arguments. The following are both correct static types for the add function and they will
both be accepted by the Gofer type checker.

36 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

add :: Int -> Int -> Int

add :: Float -> Float -> Float

The question now is, how can we assign a polymorphic type to add that comprises both of
the above. We might try it with a universally quanti�ed type variable as follows:

add :: a -> a -> a

add x y = x + y

However, this type is too general as previously pointed out. By assigning this type we are
actually declaring the function to be applicable to any type. What we need is a way to
\constrain" the type variable a to range not over all types, but only over types that can be
added with an operator \+". In Gofer the range over which a type variable varies may be
constrained by means of one or more type predicates. For example, the type that is inferred
by the Gofer system for add is:

add :: Num a => a -> a -> a

This type is called a quali�ed type. In a quali�ed type, type variables may be constrained by
one or more predicates. In this example there is one such predicate: Num a. This predicate
states that the type a should be an instance of the type class Num. The instances of a type
class are types which all share some common functionality. In this case, the types in the class
Num are Int and Float and they share, amongst other things, that they have an operator +
de�ned on them9.

Note that the Gofer terminology \type class" and \instance" should not be confused with
object-oriented terminology \class" and \instance". If we want to name something in object-
oriented languages which corresponds to a type class in Gofer, the thing which probably
resembles it most is an interface (as in Java) or an abstract class. An instance of a type class
then corresponds to a concrete Java class that implements the interface or concretizes the
abstract class.

We now present an example which is typically found in texts that argue the need for
bounded parametric polymorphism in object-oriented languages such as Pizza. The example
we present is an implementation of a priority queue and it corresponds roughly with the
priority queue example from [AFM97]. A priority queue is the prototypical example of a data
structure which stores elements, but unlike lists or tuples, requires some functionality from
these elements. The implementation of a priority queue for example, is dependent of the fact
that there is a way of computing priorities for its elements. We therefore declare a type class
Priority. Every instance of this class must have a function to compute a priority.

class Priority a where

priority :: a -> Int

Of course this type class does not have instances yet, we still have to declare these. The
following trivial instance declaration declares the identity function as the function to compute
a priority for integers.

9The declaration of the type class Num, and instance.declarations for Int and Float are part of the
standard.prelude.

2.7. OVERLOADING: TYPE AND CONSTRUCTOR CLASSES 37

instance Priority Int where

priority = id

Now let us consider the code for the priority queue itself which is given below.

type PQueue a = [a] in

emptyPQ, isEmptyPQ, enqueuePQ, nextElem, dequeuePQ

emptyPQ :: Priority a => PQueue a

emptyPQ = []

isEmptyPQ :: Priority a => PQueue a -> Bool

isEmptyPQ [] = True

isEmptyPQ any = False

enqueuePQ :: Priority a => PQueue a -> a -> PQueue a

enqueuePQ [] e = [e]

enqueuePQ (x:xs) e = if (priority x<priority e)

then x:enqueuePQ xs e

else e:x:xs

nextElem :: Priority a => PQueue a -> a

nextElem (x:xs) = x

dequeuePQ :: Priority a => PQueue a -> PQueue a

dequeuePQ (x:xs) = xs

This implementation of a priority queue as a list of elements sorted according to priority
is pretty straightforward and does not need a lot of explanation. Note that all of the type
declarations are quali�ed types that restrict the type of the elements in the queue. Strictly
speaking we did not have to use a quali�ed type in every type declaration. Only for enqueuePQ
is this really necessary because it is the only one that invokes the priority function. However,
a priority queue in which no elements can be inserted would not be of much use anyway.
Therefore we thought it best to also impose the constraint on all of the other declarations
as well. Instead of putting the quali�cation Priority a => with each type declaration we
would have preferred to declare a type synonym:

type PQueue a = Priority a => [a]

But, regrettably, quali�ed types are not allowed in type synonyms.

We give one more example that illustrates the similarity between quali�ed type declara-
tions and rules in a logic program. The example we have chosen is the class Eq from the
standard prelude. The Eq class is declared as follows:

class Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

38 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

This declaration says that any type which is declared an instance of the class Eq must have
the binary operators \==" and \/=" de�ned on it. These represent a test for equality and
inequality respectively. The class declaration also provides a default implementation for \/=".
This means that an instance declaration is only obliged to give an implementation for \=="
while the implementation \/=" may be omitted. The prelude also provides a number of
standard instance declarations. For example, the primitive types Char, Bool, Float and Int

are instances of Eq. This is the instance declaration for Eq Int for example:

instance Eq Int where (==) = primEqInt

This declaration links the \==" operator for integers to a primitive equality function
primEqInt. Declarations for Eq Float etc. are similar.

There are also some declarations for Eq instances of compound types such as lists and
tuples. These are more interesting because they resemble rules from a logic programming
language. Below is the instance declaration for pairs.

instance (Eq a, Eq b) => Eq (a,b) where

(x,y) == (u,v) = x==u && y==v

The above can be read as: \If a type a is an instance of Eq and type b is an instance of Eq
then the tuple type (a,b) is also an instance of Eq". Note that the parentheses around the
predicates Eq a and Eq b have nothing to do with the fact that we are talking about pairs.
This is merely part of the syntax to express more than one predicate in the condition of a
quali�ed type. As can be seen, there is indeed a striking similarity between rules in a logic
language such as Prolog and instance declarations in Gofer. There is a syntactic di�erence
of course: In Gofer the condition precedes the conclusion whereas in Prolog the conclusion
precedes the condition. There is also an important restriction on the form of \rules" in
instance and class declarations that prohibits rules which have one or more variables to the
left of => that do not also occur to the right of it. This makes the expressiveness of rules in
Gofer's type system considerably weaker than those of a logic programming language such as
Prolog.

2.7.2 Constructor Classes

Originally Haskell was very restrictive in the way type classes could be used. It allowed only
single-parameter type classes for example. Gofer from the start was much more liberal in this
respect and imposed far less restrictions on the form of type and instance declarations.

Gofer for example does allow multi-parameter type classes. An example of their use is
the declaration of a type class Collects c e which signi�es that the type c can be used to
collect elements of type e. As a �rst attempt we declare the following:

class Collects c e where

emptyCollection :: c

addToCollection :: c -> e -> c

toList :: c -> [e]

This declaration captures the most essential features of a collection. First, there must at
least be an emptyCollection with no elements in it. Further, since collection store elements

2.7. OVERLOADING: TYPE AND CONSTRUCTOR CLASSES 39

we must be able to add elements to it by means of a function, addToCollection. Finally, a
collection data structure is not of much use if there is not some way of accessing the elements
that are stored in it. This is what the function toList is for, it returns a list of the stored
elements. There is a slight problem with this class declaration however. Gofer's type system
does not allow it, and reports an \ambiguous type" error for emptyCollection. The types
of declarations inside a type class implicitly get a quali�cation which states that they are
members of the type class. The full type of emptyCollection therefore is:

emptyCollection :: Collects c e => c

Gofer does not \like" this type because the type e is \ambiguous". What this means exactly
is that because the type variable e does not occur to the right of =>, the type inferencer
cannot infer the type of e when it encounters an emptyCollection in a program. Since type
classes supposedly can have multiple instances there could be several possibilities for e. This
problem can be avoided (for now) by splitting up the class Collects as follows:

class EmptyCollection c where

emptyCollection :: c

class EmptyCollection c => Collects c e where

addToCollection :: c -> e -> c

toList :: c -> [e]

Notice the quali�cation \EmptyCollection c =>" in this class declaration. The meaning of
this quali�cation is that EmptyCollection c is a \super class" of Collects c e in the sense
that every declared instance of Collects c e should also be a declared instance of the super
class. The ambiguity problem disappears because the type of emptyCollection now becomes

emptyCollection :: EmptyCollection c => c

We can even declare instances of the class. For example, lists can obviously be regarded as
collections. Here are the necessary instance declarations:

instance EmptyCollection [a] where

emptyCollection = []

instance Collects [a] a where

addToCollection c e = e:c

toList = id

The problem seems to be solved. However, it resurfaces with the following simple function
declaration that is meant to count the number of elements in a collection:

sizeof c = length (toList c)

The inferred type for sizeof is the following:

sizeof :: Collects a b => a -> Int

40 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

For some reason the Gofer10 type system does not complain about this inferred type even
though it is clearly ambiguous since the variable b does not occur in the type a -> Int. The
ambiguity is however quickly detected when we try to invoke the function, for example on a
list of integers.

? sizeof [1,2,3]

ERROR: Unresolved overloading

*** type : Collects [Int] a => Int

*** translation : sizeof [1,2,3]

The problem is that the type inferencer cannot determine that [Int] is actually a collection
of Int and not of some other type of value. That is exactly what the error message tells us
by putting a type variable a in place of the element type. It might seem strange that the type
system does not determine the type a to be Int here. But in fact this not so astonishing if we
consider that it is possible to declare multiple instance of the class Collects. With a little
bit of creativity we can consider an [Int] to represent a collection of characters represented
by their ASCII code for example.

instance Collects [Int] Char where

addToCollection c e = ord e:c

toList c = map chr c

With the above instance declaration there are now two possible instances for Collects [Int]

a. The �rst one is the most straightforward one we already had: Collects [Int] Int. The
other one is Collects [Int] Char. This example clari�es why sizeof [1,2,3] results in
an error. Basically the error means that the type system has no way of knowing whether
[Int] should be interpreted as a collection of characters or as a collection of integers. As a
consequence it cannot resolve the overloading of the toList function which is invoked in the
implementation of sizeof. In other words, the type system cannot determine whether to use
toList::[Int] -> [Int] or toList::[Int] -> [Char]. Note that even when there is no
\real" ambiguity, i.e. when in reality only one instance declaration \�ts the shoe", the type
system still reports an error because it does not take e�ective instances into account to decide
whether something is ambiguous or not. Simply the fact that the variable a is constrained
by a type predicate implies potential ambiguity when new instance declarations are added
in the future, for example by including other modules. This is su�cient reason for Gofer to
report an error. We feel this is a rather strong restriction and it often leads to unexpected
ambiguous-type related errors as illustrated by the example. The restriction is nevertheless
adopted in Gofer because the possibility for separate compilation was an important concern
in its design [JJM97].

Despite the example that declares that an [Int] can be regarded as a representation for
a collection of characters, it is not entirely unreasonable to assume that a representation for
a collection should only be regarded as a collection of a particular type of elements. Indeed,
considering a list of integers to represent a collection of characters is a bit contrived. We
merely presented this example to explain why exactly the Gofer system reports an ambiguous
type error and that there is indeed a potential for ambiguity by adding further instance

10We used Gofer 2.30a to try these examples.

2.7. OVERLOADING: TYPE AND CONSTRUCTOR CLASSES 41

declarations. When programming in Gofer we have often felt frustrated at getting unexpected
ambiguous-type related errors while knowing with absolute certainty that in reality there was
no ambiguity because there was only one applicable instance. Often this was not coincidental
but was caused by an intuition of the kind illustrated in the example that a collection holds
a certain type of value. Real programs therefore probably would not declare instances that
cause \real" ambiguity in the type of sizeof. It would therefore seem useful to relax the
strong \ambiguous-type" restriction such that they are only considered as errors when the
ambiguity is real and there are actually several applicable declared instances. Gofer however
provides a di�erent solution to the problem which allows it to retain its meticulous ambiguity
checking. Gofer's solution is the notion of constructor classes. Constructor classes are a
generalization of type classes. The instances of a type class are types, whereas the instances
of a constructor class are type constructors. Types are considered to be constructors with
zero arguments and therefore type classes are just a special case of constructor classes. Let us
see how constructor classes solve the problem. Below is a declaration of a constructor class,
Collection.

class Collection c where

emptyCollection :: c a

addToCollection :: c a -> a -> c a

toList :: c a -> [a]

The following is an instance declaration which declares the list constructor [] which
constructs the list type [a] from a type a.

instance Collection [] where

emptyCollection :: [a]

emptyCollection = []

addToCollection :: [a] -> a -> [a]

addToCollection c e = e:c

toList :: [a] -> [a]

toList = id

The declaration of the sizeof function remains the same except for the type quali�cation.

sizeof :: Collection c => c a -> Int

sizeof c = length (toList c)

In this, the variable c does not refer to a type, but to a constructor which accepts a type
as argument and constructs a new type from it. So if c is a \collection constructor" and a is
a type then c a, the application of c on a, is a \collection of elements of type a". Because the
relationship between a collection type and the type of its elements is now expressed by means
of a constructor, a function from types to types, the ambiguity problem disappears. The
reason for the problems with the Collects type class is that it is expresses a many-to-many
relationship between a collection type and an element type. The constructor class on the
other hand expresses a many-to-one relationship between collection types, c a, and element
types, a. The problems with Collect were caused by the fact that there were potentially
many element types for a single collection type. These problems therefore disappear when
the many-to-many relationship is replaced by a many-to-one relationship.

42 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

2.8 The Kind System

It should be realized that the introduction of constructor classes as a generalization of type
classes makes the type system considerably more complex. Without constructor classes, there
was only a need for one kind of type variables that can be bound to a type. Now, there are
also type variables which will be bound to constructors rather than types. Therefore a need
arises for some sort of \type checking" for type variables and constructor expressions. To
avoid confusion between types of functions and \types" of constructors, the latter are usually
referred to as kinds. The kind * is the kind of all types. A constructor such as [] or Tree takes
a type as argument and returns a type so therefore it has kind *->*. The pair constructor
(,) has kind *->*->*, it is a (curried) \type function" taking two types as arguments and
returning another type. Figure 2.5 lists examples of kinds and some type expressions of that
kind.

Kind Constructors

* Int, Bool, (Int,Bool), Tree Int

-> [], Tree
->->* (,)

->->*->* (,,)

Figure 2.5: Some examples of kinds and constructors of that kind

2.9 The Expressiveness of Gofer's Type Language

In this section we �nally come to the most important and interesting part of the chapter. We
are going to have a close look at Gofer's type language from the perspective of a programming
language. As we will see, Gofer's type language is remarkably expressive. Nevertheless, the
type language has some very important restrictions built into it that hamper its expressive-
ness. As a result, even though it is possible to express a lot of things by means of Gofer
type programs, it is not always clear how to go about this, and where exactly the boundary
between what can and what cannot be expressed is situated. Often one hits this wall rather
unexpectedly. To illustrate this, we will give some examples that try to use the type language
as a programming language and point out the problems we encountered.

Gofer's type language has several features that make it look like a programming language.
More speci�cally, it has features of both functional and logic programming languages. The
most basic features of a functional programming language are lambda abstraction and ap-
plication. Gofer's type language has features resembling both of these. Type synonyms and
data type declarations are like lambda abstraction for types since they de�ne constructors.
Since the introduction of the kind system Gofer even allows declaring higher-order type con-
structors, that take other type constructors as arguments. The kind system plays the role of
a \meta type system" for statically typing type abstractions and applications. Gofer's type
language also has features which are highly reminiscent of a logic programming language.
Quali�ed types and class and instance declarations look very much like logic Horn clauses.

We will now explore the combined power of the logic and functional features of the type
language. The way we will do this is by means of some examples, \benchmarks", that probe
the expressiveness of the type language as a programming language. These benchmarks fall

2.9. THE EXPRESSIVENESS OF GOFER'S TYPE LANGUAGE 43

into two categories. The �rst category assesses how well the type programming language can
express decision making (if then else). The second category determines how well it can
handle iteration or recursion. Both of these are essential and basic features of any program-
ming language. The next two subsections present the benchmark programming assignments
and our attempts to express them in Gofer.

2.9.1 Decision Making Benchmarks

An essential feature of any programming language is that it allows decision making. De-
pending on a condition, a program may take di�erent paths of execution or return a di�erent
result. This does not necessarily mean that the language must have an explicit if-then-else
construct. Logic languages for example support decision making implicitly through pattern
matching and uni�cation and do not need an explicit if-then-else. We have seen some
examples that illustrate the lack of a good decision making feature, leading to serious loss
of expressiveness in typical parametric typing extensions of Java, in section 1.6. We recycle
these examples to probe the expressiveness of Gofer's type language.

Conditional Implementation

The �rst example in section 1.6.1 was an array of elements and an implementation of an
interface Searchable on this data structure. The implementation of the searchable interface
entailed calling a method that compares elements for equality. Therefore it was only valid
for arrays that contain elements which support that method. As a consequence of the lack of
a decision making feature in the type language, arrays could only be created with elements
that support equality tests. What we wanted was to allow arrays to be created with elements
that do not support an equality test. In this case, the implementation of Searchable would
be invalid and should not be included in the array. Gofer has no arrays11 so we have adapted
this example a little bit and have taken a List data structure. The spirit of the example
remains unchanged however.

Benchmark 1 Implement a function contains on a List (or Array) data structure that
searches the list for the presence of an element by means of an equality test on elements. If
the elements in the list do not support the equality test simply omit the function or method
declaration but do not prohibit the instantiation or use of the data structure altogether.

It turns out that in Gofer's type language it is possible to express this example very
elegantly. Simply de�ne the contains function as an overloaded function, a member of a
constructor class Searchable as follows:

class Searchable c e where

contains :: c e -> e -> Bool

Note that we used a constructor class rather than a simple type class to express a many-to-one
relationship between the collection type c e and the element type e. Simply using a type
class, we would soon run into the kind of problems already illustrated in section 2.7.2 where we
explained why constructor classes were introduced in Gofer's type language. Note furthermore
that we used a two-parameter class. We need the seemingly redundant parameter e to be

11Arrays are typically mutable data structures and Gofer is purely functional.

44 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

able to constrain it later, when declaring instances of the class. For example, we declare the
list constructor [] an instance of the class, but only if the elements in the list support an
equality test.

instance Eq e => Searchable [] e where

contains [] e = False

contains (x:xs) e = (x == e) || contains xs e

This accomplishes precisely what benchmark 1 asked for. One may still use lists the same
way as before. Additionally, lists of elements that support equality have become instances of
Searchable so we may invoke contains on them.

Positioning Abstract Code

The second motivating example from the introduction roughly illustrates the same problem
but is somewhat more di�cult. Instead of implementing the contains method on a speci�c
data structure, it is implemented on top of some abstract functionality to enumerate elements.
Therefore it is a somewhat bigger challenge for the expressiveness of the type language. The
example in section 1.6 illustrated that in most typical parametric type extensions for Java
abstract code must be placed in abstract classes which ties the code too rigidly to a certain
position in the class tree structure.

Benchmark 2 Implement a function contains on all data structures which provide a way
of enumerating their elements. If the elements do not support equality tests, then omit the
declaration of contains but do not prohibit instantiation or use of the data structure alto-
gether.

This example can also be naturally expressed in Gofer by means of quali�ed type dec-
larations. Suppose we o�er the possibility to \enumerate" elements by means of a function
elements. This function returns a list of the elements in the collection. To be able to de�ne
this function on a variety of di�erent data structures we declare it as an overloaded function,
i.e. a member of a type class.

class Enumerable c e where

elements :: c e -> [e]

The abstract implementation of the function contains for all Enumerable types can now
be provided for by means of a quali�ed instance declaration:

instance (Enumerable c a,Eq a,Searchable [] a) => Searchable c a where

contains xs x = contains (elements xs) x

This declaration �rst enumerates the elements of the collection in a list. Subsequently it
simply calls contains on the list. This will work because we already provided an instance
declaration which establishes that lists are searchable in the solution for benchmark 1. Note
that we had to include the predicate Searchable [] a in the quali�cation of the declara-
tion because Gofer will not infer12 it from Eq a, even though it is implied by the instance
declaration that implements contains on lists.

12This is connected with the concern for separate compilation.

2.9. THE EXPRESSIVENESS OF GOFER'S TYPE LANGUAGE 45

Every type constructor which is an instance of Enumerable now also automatically is an
instance of Searchable whenever its elements are instances of Eq. As an example let us
declare a new \home-made" type of list, by means of a data declaration.

data List a = Cons a (List a)

| Empty

Next we implement a way to enumerate this list by declaring it an instance of Enumerable.

instance Enumerable List a where

elements Empty = []

elements (Cons x xs) = x:elements xs

A List of elements that support equality will now be an instance of Searchable so we can
invoke contains on it.

? contains (Cons 1 (Cons 2 (Cons 3 Empty))) 2

True

(9 reductions, 27 cells)

Type-Dependent Internal Representation

This is the last benchmark that probes the power for decision making. It involves a \type
function" that creates an abstract data type and makes a decision about its internal repre-
sentation on the basis of type information. It is similar in nature to the dictionary example
briey mentioned in section 1.6. The example we have chosen here is the implementation of
an abstract data type to represent mathematical sets of elements.

Benchmark 3 Implement an abstract data type Set representing a set of elements of some
type a. When implementing a set of element types that merely support equality tests use a
simple list data structure which is searched sequentially. For the implementation of a set of
ordered elements, comparable by means of <, use a binary search tree.

This task appears to be just out of reach for the expressive power of Gofer's type language.
The benchmark problem can almost be expressed. The partial solution is shown in �gure 2.6.
Let us take a closer look and explain why it falls short of a complete solution for the benchmark
problem.

Since we want to have two di�erent data structures as representations for sets, we declare
Set to be a constructor class. That is the only way we can implement the same functionality
on two di�erent data structures. Notice that we again used a multi-parameter class to be
able to constrain the type of elements in the set when giving instance declarations. There
are two instance declarations, one for element types that are instances of Eq, that support
an equality test, and another for instances of Ord that can be compared with each other by
means of <. This seems a good solution. We can write polymorphic code that can handle both
kinds of sets, without knowing what kind of set we are actually dealing with. For example
we can de�ne the following singleton function that takes some type of element and creates
a singleton set with it:

46 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

class Set s a where

empty :: s a

add :: a -> s a -> s a

contains :: s a -> a -> Bool

data Tree a = Leaf a

| Node a (Tree a) (Tree a)

| Empty

instance Ord a => Set Tree a where

empty = Empty

add e Empty = Leaf e

add e t@(Node x l r)

| e == x = t

| e < x = Node x (add e l) r

| e > x = Node x l (add e r)

contains Empty e = False

contains (Node x l r) e

| e == x = True

| e < x = contains l e

| e > x = contains r e

instance Eq a => Set [] a where

empty = []

add x [] = [x]

add x (y:ys) | x==y = y:ys

| otherwise = y:add x ys

contains = flip elem

Figure 2.6: Representing a Set with a Tree or a list

2.9. THE EXPRESSIVENESS OF GOFER'S TYPE LANGUAGE 47

singleton :: Set s a => a -> s a

singleton x = add x empty

Unfortunately we cannot actually create sets without somehow specifying which of the two
implementations must be used. If we for example try to invoke the function singleton to
actually create a set, this is what happens:

? singleton 2

ERROR: Unresolved overloading

*** type : Set a Int => a Int

*** translation : singleton 2

The only way to resolve this overloading is to provide an explicit type declaration that tells
what implementation we want for the set as follows:

? singleton 2 :: Tree Int

Leaf 2

(5 reductions, 16 cells)

So when it comes down to it, we cannot actually create a Set without explicitly stating
what internal representation we want for it. It was the intent of the benchmark problem that
a suitable internal representation would be chosen automatically on the basis of the type of
the elements. This would be more in accordance with the spirit of an abstract data type that
the user should not be concerned with its internal representation.

Apparently, Gofer's power for decision making is capable of diversifying the operations
and implementation of operations on a single data structure. However it is incapable of
making decisions about the data representation itself. What is possible in Gofer for example
is to provide two di�erent implementations of the Set functionality on a single data structure,
for example a list. For Eq element types the list could just be an unsorted list whereas for
Ord elements the list could be a sorted list instead. This is possible because the internal
representation in both cases is the same, only the functions that act upon it are implemented
di�erently.

Note that in this case, the type Int is an instance of both Ord and Eq13. This is not really
the cause of the error however. The same error would still be reported even when using a
type of element which is only an instance of Eq and not of Ord.

2.9.2 Iteration Benchmarks

Another important feature for a programming language is its capability to express iterations.
Some programming languages o�er primitive iteration constructs, others simply use recursion
to get iterations as a special case. In this section we probe the expressiveness of the type
language to express iteration or recursion.

The following benchmark requires a form of iteration or recursion to deal with a data struc-
ture that can be instantiated with di�erent arity every time. Its arity is nevertheless static
and known at compile time. In a way, this benchmark tests the type languages' capability to
handle lists of types and counting with (positive) integers.

13Since the class Eq is declared a super class of Ord this will be the case for all instances of Ord

48 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

Benchmark 4 De�ne a tuple-like container type, that contains a statically known number
of elements of types a0, a1, . . .an�1. Implement accessors project0, project1, project2
etc. on this tuple type. These accessors return the �rst, second, etc. element from the tuple
respectively.

It would seem that this is an impossible task for the Gofer type system at �rst. For
one thing, this task requires a counter to \compute" the names of the functions project1,
project2, etc. Obviously Gofer's type language does not have integers in it so this seems
impossible. Another problem is that there is no way to express recursion over standard Gofer
tuples. A tuple of arity 3 has no connection with a tuple of arity 2 for example. Gofer
does o�er the possibility to express recursive type programs over types by means of instance
declarations. It also has native tuple type constructors. Tuple types are very much like lists
of types. Regrettably, Gofer's tuple types are not inductively de�ned: there is no relationship
between tuples of arity n + 1 and tuples of arity n. Therefore we cannot use native Gofer
tuples to solve this benchmark problem since we cannot exploit recursion to de�ne operations
on arity n+ 1 tuples from the operations on arity n tuples.

Summarizing the above, we identify two basic problems with Gofer's type language that
seem to make it impossible to express benchmark 4.

� The type language has no integers.

� The type language has no recursively de�ned lists.

Gofer's type language is nevertheless very expressive and we can get around these problems
by using (abusing?) the type system in a creative way. We start by tackling the lack of integers
by building our own \type numerals". With type numerals, we mean types t0, t1, t2, etc.
that can be used as representations for the the numbers 0, 1, 2, etc. respectively. This is
accomplished fairly easily. We start with the number 0 and de�ne the type Zero that will
represent it as follows.

data Zero = Zero

Note that Gofer allows using the same name for the type and the constructor. In this case,
Zero has two meanings. When it occurs in a type expression it denotes the type Zero. When
it occurs in a regular Gofer expression on the other hand it denotes the zero-arity constructor
Zero, which is in fact the only value of type Zero.

Now we will de�ne a type constructor with which the rest of the positive integers greater
than 0 can be inductively constructed by applying an Inc type constructor to the preceding
type numeral. The type Inc Zero for example will represent 1 and the type Inc (Inc Zero)

represents 2 etc. Again there is precisely one value for each of these type numerals which has
the same name as the type itself.

data Inc a = Inc a

We will de�ne a type class Number to group together all types representing numbers. This
type class has no members14 since we only use it to group the number types under a common
denominator. The class Number serves as a kind of \meta type" for \numeric values" in the
type language. Every type which is an instance of the class Number represents a positive
integer.

14Do not confuse the word \member" with the word \instance".

2.9. THE EXPRESSIVENESS OF GOFER'S TYPE LANGUAGE 49

class Number a

instance Number Zero -- Zero is a number

instance Number a => Number (Inc a) -- A number+1 is also a number

The next thing we need is a representation for lists of types. As we explained, tuples seem
natural candidates for this. Regrettably Gofer's native tuples are not usable because there is
no inductive relationship between tuples of arity n+1 and tuples of arity n. Again we resort
to the use of some data type constructors and a type class to de�ne our own lists of types.

data Empty = Empty -- An empty List

data Cons a b = Cons a b -- Consing a type to a list of types

class List l

instance List Empty -- Empty is a list

instance List l => List (Cons a l) -- Consing to a list yields a list

Now we are almost done. We have all of the machinery we need. We have lists of types and
we have positive integer numbers represented as types. We still need to de�ne the projection
functions project0, project1, etc. This means that we somehow need to incorporate a
number into the name of the function. The \trick" here is to observe that in an overloaded
function, it is as if the type of a function's argument virtually becomes part of the name of the
function. Therefore, instead of de�ning functions project0, project1, etc. we will simply
de�ne an overloaded function project:

class (List t,Number idx) => Project t idx a where

project :: idx -> t -> a

The type of the �rst parameter, idx, identi�es which projection function is used. This is
nearly the same as having the type part of the name since there is only one value of every
type numeral. Instead of writing project0 for example, we simply have to write project

Zero and instead of writing project1 we will have to write project (Inc Zero). Note that
the function project Zero and project(Inc Zero) are truly di�erent projection functions,
and will e�ectively have a di�erent return type for tuples with di�erent types of elements at
position 0 and 1.

Let us now take a look at how we can de�ne projection functions for all kinds of tuples
inductively. This is rather intuitive. We �rst de�ne the \project0" function on all tuples
with at least one element in them as follows.

instance List l => Project (Cons a l) Zero a where

project Zero (Cons x _) = x

Next we provide an inductive de�nition for projection on an index greater than zero.

instance Project t i a => Project (Cons b t) (Inc i) a where

project (Inc i) (Cons _ t) = project i t

This de�nition states that a projection to index i+1 is accomplished by invoking the projection
to index i on the remainder of the tuple after stripping of the �rst element.

50 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

Except for the rather verbose representation of numbers and lists of types, this solution
is exactly what benchmark 4 requested. There are however a number of problems with this
solution. Because of the way we used multi-parameter type classes we run a very high risk
of running into problems with \unresolved overloading" and \ambiguous type" errors. These
can sometimes but not always be solved by providing explicit type declarations. Consider the
following example where we try to project a \pair" onto its element at position 0.

? project Zero (Cons 'a' (Cons 1 Empty))

ERROR: Unresolved overloading

*** type : Project (Cons Char (Cons Int Empty)) Zero a => a

*** translation : project Zero (Cons 'a' (Cons 1 Empty))

This is the same old problem we encountered already several times before. The type system
will not notice that there is only one possible candidate for the type variable a. If we tell the
type system explicitly what type we are expecting then it carries out this example without
complaining:

? project Zero (Cons 'a' (Cons 1 Empty)) :: Char

'a'

(2 reductions, 13 cells)

It is not always possible to solve this kind of problems by means of an explicit type
declaration however. Consider for example the following function which is intended to be a
projection function for nested tuples. It works by composing two projection functions with
one another by means of the function-composition operator \.".

double_project :: (Project tt i1 t, Project t i2 a) => i1 -> i2 -> tt -> a

double_project i1 i2 = project i1 . project i2

*** ambiguous type : (Project a b c, Project c d e) => d -> b -> a -> e

*** assigned to : double_project

This problem cannot really be solved by explicit type declarations. We cannot disambiguate
the intermediate type t without losing genericity. Another idea might be to try and solve
the problem by using constructor classes instead of type classes. This solved the problems
when we encountered them before in section 2.7.2. Regrettably this is also impossible. We
would need to de�ne some kind of tuple constructor that takes a list of types as argument
and builds a tuple type from this. This simply cannot be de�ned because type constructors
cannot make decisions based on the kind of argument they get. Therefore they cannot decide
whether the argument type is an empty or non-empty list, or even whether it is a list at all.

2.10 Summary

In this chapter we have taken a close look at the type-language of the functional programming
language Gofer. We consider this to be a type system that comes close to our ideal of having
a true programming language as part of the type language. The introductory sections gave

2.10. SUMMARY 51

an overview of Gofer and its type language. We discussed the type language gradually,
introducing new features in a way that illustrates how an increasingly more expressive type
language increases the exibility for dealing with various forms of polymorphism. As the type
language becomes more complex, it starts to resemble a combination of a logic programming
language and a functional programming language with which static types can be manipulated
as data at compile time.

In section 2.9 we have explored the potential of Gofer's type language as a programming
language to manipulate types at compile time. We did this by means of some benchmark
programming assignments which were carried out in Gofer. The results of these benchmarks
are summarized in �gure 2.7.

Decision-making benchmarks

Benchmark 1: Conditional
implementation of a function
contains on a list.

Can be elegantly expressed

Benchmark 2: Abstract im-
plementation of contains for
Enumerable collection types.

Can be elegantly expressed.

Benchmark 3: Implementa-
tion of a Set abstract data
type the internal representa-
tion of which depends on the
type of elements stored.

Can almost be expressed as wanted. The only defect in the
solution is that the user of the set abstract data type will
have to indicate the correct internal representation upon
creating a set. Gofer's type language cannot support mak-
ing decisions a�ecting the representation of a data type. It
can make decisions a�ecting how and whether some func-
tionality is implemented for a speci�c data structure.

Iteration / recursion benchmarks

Benchmark 4: Generic imple-
mentation of projection func-
tion on tuples of di�erent ari-
ties.

We succeeded eventually after a lot of e�ort. The solution
feels like \walking on the edge of a volcano", just within
the boundaries of the expressiveness of the type language,
using it in ways it was not intended to be used:

� We had to de�ne our own type numerals.

� We had to create our own lists of types because na-
tive tuple types could not be used for this purpose.

� We used overloading to simulate function names con-
taining a counter.

� When we started using the projection functions, am-
biguous type errors caused problems which could not
always be solved.

Figure 2.7: Summary of the benchmark results for Gofer

The overall conclusion is that Gofer's type language is remarkably expressive15. The

15There is a strong suspicion that Gofer's type language is in fact theoretically Turing Complete in the

52 CHAPTER 2. GOFER: CONSTRUCTOR CLASSES AND HIGHER-ORDER TYPES

examples we gave in section 1.6 to illustrate problems in existing parametric-type proposals
for Java were solved quite naturally by Gofer's type language. Nevertheless, it clearly was not
intended to be a true programming language. An excellent illustration of this is the solution
for benchmark 4, the implementation of generic tuples with di�erent arity. We were able to
express the benchmark program eventually with a great deal of e�ort. It is clear however that
we are very near to the boundary of the expressiveness of Gofer's type language. Clearly the
type language was not designed to be a real programming language because, for example, we
had to implement our own integers. Nobody expects to have to do this in a real programming
language. We also had to de�ne our own \list of types" representation because the native tuple
types could not be used for this purpose, even though they seem to be natural candidates.
Finally, ambiguous-type errors and problems with unresolved overloading are hiding behind
every corner when we start using the tuples we have de�ned. Because of this we probably
would only be able to use them in very limited ways .

Note that the criticism of Gofer's type language given in this chapter should be seen in
its proper context. We mainly want to illustrate the point of our thesis that decidability and
unambiguity of a type system is not an absolute rule, and that undecidable and potentially
ambiguous typing schemes can also be useful. The usefulness of such type systems would be
the power of the type language as a programming language. The goals of the designers of
Gofer however were completely di�erent from ours. They did not design their type language as
a programming language, for maximal expressiveness. Instead a number of strongly limiting
design constraints were adopted as prerequisites. Given this, it is remarkable how expressive
a type system they were able to design and implement in an e�cient way. The power of
Gofer's type language comes mostly from the mechanism of quali�ed types, which introduces
a kind of logic programming language into the type system. Despite the limitations imposed
by Gofer, the power of this approach is apparent and was the major motivating force behind
the choice of a logic meta language for our system.

sense that any \program" that computes a boolean result, can be translated into a Gofer program the type
correctness of which corresponds exactly to the computed truth value.

Chapter 3

Java and Parametric Types

3.1 Introduction

The purpose of this chapter is to provide an overview of existing parametric types proposals
for Java, and to argue that they do not o�er adequate support for type-oriented programming.
Concretely, we will discuss the proposals of Odersky and Wadler (Pizza) [OW97], the proposal
of Agesen, Freund and Mitchell [AFM97], the proposal of Myers, Bank and Liskov [MBL97],
and Bruce's proposal [Bru97].

In chapter 1 we already briey discussed how extending Java with parametric types in-
troduces a rudimentary functional language into the type system. Therefore introducing
parametric types is a step towards type-oriented meta programming for object-oriented lan-
guages. For this reason it is interesting to make a thorough study of existing Java parametric
type extensions. We will consider these proposals mostly from a user's point of view because
we are primarily interested in their expressiveness and not as much in their implementation.

In section 3.2 we will give a general overview and a comparison between existing pro-
posals, pointing out the similarities and di�erences between them. For completeness we will
also discuss another approach to genericity, known as virtual types [Tho97] in section 3.4.
Virtual types are an alternative to parametric types. Both approaches have their merits and
shortcomings as pointed out by Bruce et al. who integrate both in a single proposal [BOW98].

The rest of the chapter, from section 3.5 on will mainly be spent arguing that the functional
language Gofer, discussed elaborately in chapter 2, comes much closer to our ideal of having
a true programming language for a type language. In this respect, current parametric types
proposals for Java cannot compete with Gofer. We will argue about this using the same
benchmark programming assignments we also used to assess the expressive power of Gofer's
type language. The benchmark results will clearly demonstrate that current Java parametric
type extension come nowhere near the expressive power of Gofer's type language. Except for
one exception, none of the benchmark problems can adequately be expressed in any of the
existing Java parametric types proposals. Gofer did not get a perfect score either, nevertheless
it did allow the expression of several of the benchmarks quite elegantly.

3.2 Parametric and Bounded Parametric Polymorphism

In order to have a common syntax with which to express example code and discuss di�erences
between existing proposals, we present a �ctional Java extension, PJava, which o�ers para-

53

54 CHAPTER 3. JAVA AND PARAMETRIC TYPES

metric and bounded parametric types. We purposefully do not give precise speci�cations of
this �ctional language extension. We are just going to use it informally, as a uniform syntac-
tic notation which will allow us to accentuate the semantic di�erences of existing proposals
without getting caught up in discussions about unimportant syntactic di�erences.

PJava adopts as a lexical convention that type parameters and type variables start with a
\?". This makes them easy to recognize. Other proposals do not follow this lexical convention,
instead type variables are distinguished from other identi�ers by the way they are used.
Syntactic di�erences such as identifying type variables by means of a \?" are not really
important. The reason we adopt this lexical convention is that it will result in a more
obvious syntactic correlation of PJava programs and the emulation of bounded parametric
polymorphism in TyRuBa which we will present in section 7.3.

3.2.1 Parametric Classes and Interfaces

The syntax of a PJava parametric class or interface declaration is similar to the Java class
or interface declaration syntax, with the di�erence that an additional type-parameter list is
appended after the name of a class or interface. The parameter list is delimited by angular
brackets \<" and \>".

Parametric types are very useful to support the use of generic data-structures. Every Java
programmer knows painfully well that using generic data structures, such as for example stacks
and lists, in Java programs usually implies writing bundles of dynamically-checked typecasts.
The reason for this is that in Java the only way to de�ne generic data structures is to use
the type Object as element type. This will allow all types of elements to be stored in the
data structure. However, as a result the static type of the stored elements is lost. Therefore
it is often needed to use a typecast to reassert the forgotten static type. The solution to this
problem is the use of a parametric class Stack<?a>. In this, the symbol ?a is a type variable
denoting a type parameter. Thus, Stack is not really a class, but is more like a function
accepting a type ?a as argument and creating a class Stack<?a> from it. Note the similarity
to a type constructor in Gofer. Below is an example of a parametric Stack class declaration.

class Stack<?a> {

private ?a[] elements = new ...;

private int top = 0;

public ?a pop() {...}

public void push(?a e) {...}

public boolean empty() {...}

}

Because the type of a stack now explicitly states the type of the elements stored in them,
a typecast will no longer be necessary when retrieving for example String elements from a
Stack<String>.

Stack<String> stack = new Stack<String>();

String s;

while (...more strings?...) {

3.2. PARAMETRIC AND BOUNDED PARAMETRIC POLYMORPHISM 55

s = ...get a string...;

stack.push(s);

}

while (!stack.empty()) {

s = stack.pop(); // NO Type Cast!

... do something with s ...

}

3.2.2 Bounded Parametric Polymorphism

The Stack class is a relatively easy example because it can be instantiated with any type
of elements. No messages are ever sent to elements, they are simply stored and retrieved.
The situation is more complex when we have to deal with data structures which also send
messages to their elements. As an example of this consider the implementation of a hashtable1.
A hashtable class is parameterized by two types. One type for the keys and another for the
values associated with the keys. The implementation of a hashtable requires computing a
hash value for a key. This will be accomplished by sending a key the message hashCode. An
implication of this is that not just about any type may be used as the key type for a hashtable,
only a type that supports the message hashCode should be allowed. To be able to express
this, PJava's syntax is extended, allowing constraints on type variables to be expressed in a
where clause, added to a class or interface declaration.

As an example we present the outline of a Hashtable implementation in PJava below.

interface Hashable {

int hashCode();

}

class Hashtable<?k,?v>

where ?k implements Hashable

{

public void put(?k k,?v v) { ... k.hashCode() ... }

public ?v get(?k k) { ... }

}

A bounded type parameter is constrained by a condition in the where clause. In the
above example the ?k parameter is constrained by the condition that it must implement the
interface Hashable. Other \predicates" for constraining type variables are possible. We will
not go deeper into this right now. The main semantic di�erence between parametric-type
proposals is precisely the kind of conditions that can be expressed in order to constrain type
parameters. We will discuss the kinds of constraints that are expressible when we discuss
individual proposals in the following section. A summary of the di�erent type-constraining
predicates o�ered by di�erent proposals can be found at the end of this section in �gure 3.4.

The idea of where clause syntax comes from Myers, Banks and Liskov's proposal [MBL97].
Other proposals typically attach a condition to a type variable in the type-argument list
directly. We chose to adopt a where-clause-like syntax because it is more general and because

1Example taken from [AFM97].

56 CHAPTER 3. JAVA AND PARAMETRIC TYPES

it corresponds more closely to the emulation of bounded polymorphism we will present in
section 7.3.

3.3 Concrete Parametric-Type Proposals

In this section we will have a look at the di�erences and similarities between individual
proposals. We will discuss them mostly from a user's point of view, and avoid the details
of their implementation as much as possible. Some of the semantic di�erences however stem
from the di�erence in the underlying implementation. For this reason we will briey discuss
the two main categories into which implementation strategies can roughly be divided.

3.3.1 Pizza and the Agesen-Freund-Mitchell proposal

We start with the proposal of Agesen, Freund and Mitchell (from now on referred to as AFM)
[AFM97] and the proposal of Odersky and Wadler (Pizza) [OW97]. We treat these together
because they are highly similar. They mainly di�er in the way they are implemented while
their semantics is very similar. There are some di�erences in exibility, mostly dictated by
implementation-related concerns.

As an example we present the outline of a parameterized PriorityQueue class below. This
example was taken verbatim from the AFM paper and then translated into PJava syntax.

interface Comparable<?I> {

boolean lessThan(?I);

}

class PriorityQueue<?T>

where ?T implements Comparable<?T>

{

?T queue[];

void insert(?T t) {

...

if (t.lessThan(queue[i])) ...

...

}

?T remove() { ... }

...

}

The kind of type constraints that can be expressed to constrain type variables in both
proposals are of the form of an extends or an implements clause. These both constrain the
type variable in a similar way. An \X extends C" constraint restricts X to be the class C or
a subclass thereof. A constraint \X implements I" restricts X to a class or interface, imple-
menting or extending the interface I respectively. In other words, both of these constraints
correspond to the Java subtype relationship between classes and interfaces.

The di�erences between Pizza and AFM are mainly due to the di�erent implementation
strategies. Pizza is implemented using a homogeneous strategy whereas AFM is implemented

3.3. CONCRETE PARAMETRIC-TYPE PROPOSALS 57

using a heterogeneous strategy. The terminology of heterogeneous versus homogeneous imple-
mentation was introduced by Odersky and Wadler [OW97]. We briey explain the di�erence
between the two.

Homogeneous versus heterogeneous implementation

A homogeneous and a heterogeneous implementation di�er in the way code is shared between
di�erent instantiations of a parametric class. A homogeneous implementation uses shared
code for di�erent instantiations whereas a heterogeneous implementation duplicates the code
each time a parametric class is instantiated. As an illustration, we have listed in �gure 3.1 and
�gure 3.2 a homogeneous and a heterogeneous translation of the parametric stack example
into Java. Note the type cast which is inserted by the homogeneous translation.

/** Shared code for all instances of Stack<?a> */

class Stack {

private Object[] elements = ...;

private int top = 0;

public Object pop() {...}

public void push(Object e) {...}

public boolean empty() {...}

}

/** Code using the Stack performs type casts */

Stack stack = new Stack();

String s;

while (...more strings?...) {

s = ...get a string...;

stack.push(s);

}

while (!stack.empty()) {

s = (String)stack.pop(); // Type Cast Inserted

... do something with s ...

}

Figure 3.1: Homogeneous translation of the Stack example

An implementation using a homogeneous strategy tends to be more restrictive than a
heterogeneous translation with respect to where type parameters may be used. The reason for
this is that in order to be able to share the exact same code between di�erent instantiations of
a parametric type, some restrictions must be imposed. Agesen [AFM97] provides an example
that can be handled by AFM but not by Pizza, illustrating this kind of restriction. The given
example is a mixin class, i.e. a class which uses a type parameter in an extends clause. This
class can be instantiated to add functionality to some base class passed to it as a parameter.
This usage of a type variable is allowed in AFM but not in Pizza. The reason for this is that

58 CHAPTER 3. JAVA AND PARAMETRIC TYPES

/** Specific code instantiated for Stack<String> */

class Stack_String {

private String[] elements = ...;

private int top = 0;

public String pop() {...}

public void push(String e) {...}

public boolean empty() {...}

}

/** Code using the Stack */

Stack_String stack = new Stack_String();

String s;

while (...more strings?...) {

s = ...get a string...;

stack.push(s);

}

while (!stack.empty()) {

s = stack.pop(); // No Type Cast Inserted

... do something with s ...

}

Figure 3.2: Heterogeneous translation of the Stack example

3.3. CONCRETE PARAMETRIC-TYPE PROPOSALS 59

Pizza's homogeneous translation implies that a single class �le2 must be shared between all
instantiations of a class. Because a Java class �le speci�es the class �le containing the super
class from which a class inherits, this implies that the super class must be a known class and
cannot be a type parameter. A declaration of the kind

class C<?x> extends ?x { ... }

will therefore not be allowed by Pizza, but is allowed in AFM.

The above is an example that shows how a heterogeneous translation seems to be more
interesting for obtaining a more expressive type system. It is however not all that clear
cut which one is best, because a homogeneous implementation also has advantages. Most
importantly, it allows parameterized methods. A parameterized method is a method which
uses a type variable that is not a parameter of the class in which it occurs. An example of
this is a zip method which is implemented on a parametric List<?a> class. The zip method
takes as argument a List<?b> and constructs a new list by pairing the elements of the two
lists element by element3.

public class Pair<?a,?b> {

public ?a fst;

public ?b snd;

}

public class List<?a> {

...

public List<Pair<?a,?b>> zip(List<?b> b) { ... }

...

}

This is an example that is expressible in Pizza but not in AFM. To understand why, take a
look at the homogeneous translation of the example.

public class Pair {

public Object fst;

public Object snd;

}

public class List {

...

public List zip(List b) { ... }

...

}

The important thing to notice is the type of the zip method. The homogeneous translation
removes type variable and replaces the types List<?b> and List<Pair<?a,?b>> by List. The
class List is the homogeneous translation for List<?a> and will be used for every instance of

2A class �le is a binary format for storing compiled classes for the Java Virtual Machine.
3The zip example was borrowed from [BOW98]

60 CHAPTER 3. JAVA AND PARAMETRIC TYPES

this parametric class. Similarly, the zip method does not represent one method but is used as
the implementation of an in�nite number of methods, one method for each possible value of
the type variable ?b. Because a homogeneous translation replaces all instances of List<?b>
by List, it is able to reuse the same fysical method declaration for each one of the virtually
in�nite number of zip method instantiations. This makes the implementation of a parametric
method like zip relatively easy. A heterogeneous implementation on the other hand does not
do this kind of code sharing and therefore it should in principle include code for an in�nite
number of zip methods. Clearly that is not possible. This does not mean that implementing
parametric methods is entirely impossible in a heterogeneous setting, it is however certainly
much more complicated. A possible implementation could for example determine which of
the in�nite number of methods are actually used and only generate code for these. These
complications in implementing parametric methods in a heterogeneous setting is probably
one of the reasons why AFM does not support them.

3.3.2 Bruce's proposal: LOOMJava

Bruce [Bru97] also proposes a Java extension o�ering parametric types. Essentially his pro-
posal is a transplantation of the LOOM type system [BPF97] into Java. We will therefore
refer to Bruce's proposal as LOOMJava from here on.

As far as parametric types are concerned, LOOMJava is very similar to Pizza and AFM.
There are however a number of other extensions and changes to the type system that increase
its exibility to deal with with binary methods[BCC+95].

� A ThisType construct.

� Use of @ to signal an exact type.

� Java subtyping is replaced by matching.

We briey discuss the extensions and changes to the Java type system. For a more
elaborate discussion we refer to [Bru97].

ThisType, matching and exact types

ThisType provides for a kind of \late binding of self" in the type system. This is useful
for typing methods such as for example the clone method. In Java this method cannot be
adequately typed and is declared as returning Object. The following kind of code is therefore
very frequently seen in Java programs:

SomeVerySpecificClass x = (SomeVerySpecificClass)x.clone(); //Type Cast!

In reality the clone method always returns a value of exactly the same type as the object
you send it to. In LOOMJava this would be declared as follows:

interface Clonable {

@ThisType clone();

}

3.3. CONCRETE PARAMETRIC-TYPE PROPOSALS 61

The introduction of ThisType poses a complication with respect to subtyping and inher-
itance. If a class (or interface) using ThisType is extended, the subclass is not usually a
subtype4 of the extended class. The reason for this is that the type ThisType changes when
moving from a superclass to a subclass. We provide a classical example to illustrate this:

class Float {

float value;

Float(float v) { value=v; }

@ThisType add(@ThisType a) {

@ThisType result = this.clone();

result.value+=a.value;

}

}

class Complex extends Float {

float imag;

Complex(float v,float i) { super(v); imag=i; }

@ThisType add(@ThisType a) {

@ThisType result = super.add(a);

result.imag += a.imag;

}

}

In the class Float the method add has signature5:

@Float add(@Float);

In the class Complex the signature becomes:

@Complex add(@Complex);

Therefore the Complex class is not a subtype of the Float class because it overrides the add
method covariantly. Covariant overriding means that the argument of the overridden method
is changed into a subtype of the former argument type. A consequence of covariant overriding
is that the subclass cannot simply be used in a context where an instance of the superclass
is expected and thus is not a subtype of the superclass. To illustrate this we present the
following example where problems arise because an object of type Complex is stored in a
variable of type Float.

4A subtype of a type T is a type T 0 such that a value of type T 0 can be substituted for a value of type T ,
in any context, without introducing type errors.

5This is not entirely correct because Bruce explicitly states that ThisType refers to the interface of the class
and not to the class itself. For the sake of obtaining simpler example code and argumentation, we chose to
ignore this fact.

62 CHAPTER 3. JAVA AND PARAMETRIC TYPES

Float c = new Complex(1,-1);

Float f = new Float(1);

Float sum = c.add(f); //ERROR

The call of add in this example should not be allowed because the complex c should only
accept another complex as argument. The conclusion is that Complex is not a subtype of
Float.

It would seem that because Complex is no longer a subtype of Float the assignment to
c above should be disallowed. However, LOOMJava solves the problem di�erently. The
subtyping relationship is weakened to an alternative relationship called matching. Whether
a type matches another type corresponds to implements and extends between classes and
interfaces. The class Complex matches Float for example. Practically speaking, the relation-
ship remains the same, but the name for it changes because technically speaking, the term
\subtype" is no longer correct in the presence of the ThisType feature. The assignment above
is thus still allowed. Instead, in order to keep type-safeness, it is no longer allowed to send
binary methods to c. Objects to which binary methods are sent must be declared with an
exact type. So the following program excerpt for example would be acceptable:

@Complex c1 = new Complex(1,-1);

@Complex c2 = new Complex(2,2);

@Complex sum = c1.add(c2); //OK

Parametric and Bounded Parametric Types

Except for the fact that instead of subtyping, matching is used to constrain type parameters
in LOOMJava, the mechanism of bounded parametric polymorphism is essentially the same
as in AFM and Pizza. Type parameters can be constrained by a predicate of the form

X extends I

which signi�es that X matches I rather than that X is a subtype of I. It is interesting to
note that for programs which do not use ThisType or @, matching and Java subtyping are
completely identical.

3.3.3 Myers, Bank and Liskov's proposal

The proposals discussed up until now|Pizza, AFM and LOOMJava|are highly similar.
They all allow restricting type parameters by an extends or implements clause. Myers,
Banks and Liskov's proposal [MBL97] o�ers a di�erent mechanism. Type parameters are
constrained by stating a where clause6 which restricts a type variable to types which support
a given set of method and constructor signatures. We will therefore refer to this proposal as
WhereJava from here on.

As a �rst simple example, we reconsider the PriorityQueue class, this time expressed
with the kind of type-constraint supported by WhereJava.

6When Myers et. al. are talking about where clauses they implicitly assume signature-conformance type
constraints. We also use where clause syntax in PJava for other kinds of type constraints to obtain a uniform
syntactic notation.

3.3. CONCRETE PARAMETRIC-TYPE PROPOSALS 63

class PriorityQueue<?T>

where ?T { boolean lessThan(?T); }

{

?T queue[];

void insert(?T t) {

...

if (t.lessThan(queue[i])) ...

...

}

?T remove() { ... }

...

}

WhereJava's type constraining predicates are generally more exible than those of the
other proposals. Whether a type satis�es a list of signatures is not determined by an exact
match, but also allows for contravariant method types. Another advantage is that it is possible
to restrict types not only on the basis of the methods they support but also on the basis of
the constructors they support.

WhereJava has one other interesting extension. It allows where clauses not only to be
attached to classes and interfaces, but also to individual methods. A method with an indi-
vidual where clause is a conditional method and it is only allowed to be called on a particular
instance of the parametric type in case the constraint in the where clause is satis�ed. This
enables the implementation of benchmark problem 1 as listed in �gure 3.3.

class Array<?El> {

?El[] contents;

Array<?El>(int size) { contents = new ?El[size]; }

?El at(int i) { return contents[i]; }

void atPut(int i, ?El e) { contents[i]=e; }

int length() { return contents.length; }

boolean contains(?El e) {

boolean found = false;

int i = 0;

while (!found && i<length())

found = e.equals(at(i++));

return found;

}

where ?El { boolean equals(?El); }

}

Figure 3.3: Conditional implementation of contains in Where(P)Java

3.3.4 Summary

From a user's point of view existing parametric types proposals for Java mainly di�er in
the kind of type-constraints they allow for bounded parametric types. A short overview

64 CHAPTER 3. JAVA AND PARAMETRIC TYPES

Proposal Predicate Meaning

Pizza/AFM ?T extends ?C ?T is a subtype of class ?C
?T implements ?I ?T is a subtype of interface ?I

LOOMJava ?T extends ?I ?T matches ?I.

WhereJava ?T fsignaturesg ?T supports all methods and constructors the signa-
tures of which are listed between {}.

Figure 3.4: Type-constraint predicates available in di�erent proposals

can be found in �gure 3.4. Apart from the di�erence in the predicates that can be used to
constrain types, there are also some other di�erences in exibility which seem to stem from
the underlying implementation strategy. It is not clear which proposal is \best". Let us
summarize and compare them quickly.

The constraints expressed in WhereJava seem to be the most exible. Advocates of the
other proposals point out however that it introduces the notion of signature conformance into
Java. This seems to overlap to some extent with the already existing notion of interfaces.
Therefore the orthogonality of its design might be criticized. The other proposals integrate
their constraint predicates more neatly with existing Java interfaces and the Java subtype
relationships, but are less exible.

Pizza and AFM both use the Java subtype relationship to constrain type variables. There
are di�erences between the two because of their di�ering implementation strategies. Which
one is best is hard to say. Pizza supports parametric methods and AFM does not. At the
same time however, Pizza is more restrictive with respect to where type variables are allowed
to occur.

We have not enough detailed knowledge about or experience with LOOMJava and its
implementation to compare it with AFM or Pizza on �ner points. Potentially, given either an
adequate heterogeneous or homogeneous implementation its expressive power could at least
equal that of either AFM or Pizza. Additionally it has some extra features to support the
typing of binary methods, and can thus be seen as an extension of either of these proposals
(which proposal depends on which implementation strategy is chosen).

3.4 Virtual Types and Related

3.4.1 Thorup's Virtual Types Proposal

The idea of virtual types is based on Beta's[MMPN93] notion of virtual class patterns. Virtual
types were �rst proposed as an alternative generic types mechanism for Java by Thorup
[Tho97]. It introduces the possibility to declare types as attributes of classes. Such a type
attribute is called a virtual type because it can be specialized in a subclass. Instead of
instantiating a parametric type, one therefore uses subclassing to concretize generic types.
As an example, consider the following de�nition of a generic pair class using virtual types.

class Pair {

/** Virtual types A and B for the components of the Pair */

typedef A as Object;

typedef B as Object;

3.5. EXPRESSIVENESS OF PARAMETRIC JAVA PROPOSALS 65

A car;

B cdr;

public A getCar() { return car; }

public B getCdr() { return cdr; }

}

More concrete or speci�c pairs can be obtained by subclassing this class and overriding the
types A and/or B.

class StringPair {

typedef A as String; //Override

typedef B as String; //Override

}

3.4.2 Bruce's Alternative to Virtual Types

It is argued by Bruce et al. [BOW98] that both parametric types and virtual types have
their merits and defects and are in a way complementary. They present several examples to
illustrate this. Some examples are more easily expressed with parametric types, others are
better handled by virtual types. Typically the examples which work well with one proposal
can also be expressed by the other, but often involving great di�culty and complications
which make the resulting code virtually unusable in practice.

Typical examples which work well with parametric types but not with virtual types, are
generic collections, such as lists, stacks, etc. Examples which work well with virtual types but
not with parametric types typically involve families of types. For more details and speci�c
examples we refer to [BOW98].

Because the proposals appear to be complementary, Bruce et al. [BOW98] present a pro-
posal which combines the strengths of both systems. Basically their proposal comes down to a
generalization of Bruce's former proposal (LOOMJava) [Bru97] we discussed in section 3.3.2.
The notion of ThisType is generalized so that a group of classes or interfaces may assign
names to refer to each other's \ThisType".

The declaration of such a \ThisType" name is similar to a virtual-type declaration. This
proposal also adopts the other extensions proposed as part of LOOMJava: parametric types,
exact types, and matching. This results in a statically type safe alternative to Thorup's
virtual types which require runtime type checks.

We will not elaborate on this any further and refer to [Tho97, Bru97] for details. In
section 11.10.2 we will come back to the issue of virtual types and how it relates to our
approach.

3.5 Expressiveness of Parametric Java Proposals

We want to asses the expressiveness of the existing parametric-types proposals with respect
to the benchmark problems from chapter 2. These benchmarks were aimed at probing the
type-language's capability to facilitate type-oriented meta programming. We will present
example code in the uniform syntax of PJava. We have not given precise speci�cations of

66 CHAPTER 3. JAVA AND PARAMETRIC TYPES

PJava. As explained before this is intentional. We merely use PJava syntax to be able to
express all example code using a uniform syntactic notation. We will be careful to provide
su�cient explanation to clarify the relationship between PJava example code and existing
parametric-types proposals.

In the following subsections we will discuss the benchmark problems one by one. As a re-
minder we will repeat each benchmark programming assignment at the start of the subsection
that discusses it.

3.5.1 Conditional Interface Implementation

Benchmark 1 Implement a function contains on a List (or Array) data structure that
searches the list for the presence of an element by means of an equality test on elements.
If the elements in the list do not support the equality test simply omit the function or
method declaration but do not prohibit the instantiation or use of the data structure
altogether.

In the introduction (chapter 1) this example was used to illustrate that most parametric
types proposals' type languages have inadequate decision making capabilities.

In this particular example we would want to make the implementation of the inclusion of
the containsmethod conditional, depending on whether the type parameter supports testing
for equality. Most parametric type systems do not provide a way to do this. WhereJava is an
exception because it allows where clauses to be attached to individual methods as was noted
earlier. Therefore, benchmark 1 can be expressed in WhereJava. We already presented the
implementation of benchmark 1 in �gure 3.3 as an example.

3.5.2 Positioning Abstract Code

In the previous section we have seen that WhereJava has a somewhat better decision-making
capability than the other proposals because it allows attaching type constraints to individual
methods. As a result the simplest decision making benchmark problem, benchmark 1 can
be expressed. However, it will become clear in this section that decision making capabilities
still remain limited and cannot deal adequately with the slightly more di�cult benchmark
problem 2.

Benchmark 2 Implement a function contains on all data structures which provide a way of
enumerating their elements. If the elements do not support equality tests, then omit the
declaration of contains but do not prohibit instantiation or use of the data structure
altogether.

Benchmark problem 2 corresponds to the second motivating example from section 1.6.2.
In that section we already briey discussed the problems in expressing this benchmark. We
will give a more detailed and structured discussion in this section. We will discuss three
alternative attempts which all fall short of a good and complete solution. The �rst one is an
attempt using abstract classes, the second one uses a mixin class, and the third one tries to
exploit the decision making implicitly supported by attaching a where clause to an individual
method. For each of these attempts we will discuss why they are inadequate or incomplete
solutions to the benchmark problem at hand.

3.5. EXPRESSIVENESS OF PARAMETRIC JAVA PROPOSALS 67

Abstract Classes

The most obvious place|in many proposals actually the only possible place|to put abstract
code, is an abstract class. In such a solution we would provide the contains method as part
of an abstract class and rely on concrete subclasses to provide the speci�c implementation
for Enumerable functionality. The abstract class code from the introduction is repeated in
�gure 3.5.

interface Enumerable<?El> {

Enumeration<?El> elements();

}

interface Enumeration<?El> {

boolean hasMoreElements();

?El next();

}

abstract class Searchable< ?El >

where ?El implements Equality<?El>

implements Enumerable<?El>

{ boolean contains(?El e) {

boolean found = false;

Enumeration<?El> elems = elements();

while (!found && (elems.hasMoreElements()))

found = e.equals(elems.next());

return found;

}

}

Figure 3.5: Abstract Class Implementation of Searchable

If we consider how to integrate this kind of code into an already existing class hierarchy it
quickly becomes clear why using an abstract class is not always an adequate way of dealing
with abstract code. The Enumerable functionality could be spread out all over the class tree
and be implemented by several otherwise unrelated classes. It is thus not always possible to
�nd a suitable place, a common super class, where we can insert the abstract Searchable

class. This might be impossible without a complete reorganization of the class-tree structure.
The problem becomes exponentially worse when several pieces of abstract code have to be
integrated into one and the same class tree structure.

Intuitively, we can argue that abstract code purposefully ignores implementation details of
speci�c classes. As a result it is typically applicable to a wide variety of classes not necessarily
linked through inheritance. This is completely contradictory to the fact that putting abstract
code in an abstract class requires pinpointing a speci�c location for it in the class tree.

Mixin

A solution which does not tie the abstract code to a speci�c location in the class tree can
be accomplished by using a so-called mixin. A mixin is a piece of functionality which can
be \mixed into" a class. In some parametric types proposals|AFM to name one| this can
be simulated by means of a parametric class which uses its type parameter for a super class.
Such a mixin class is like a function which can be applied to any class, provided that it meets

68 CHAPTER 3. JAVA AND PARAMETRIC TYPES

the required type constraints. The example mixin class from the introduction is repeated in
�gure 3.6.

class SearchableMixin<?Super>

where ?Super implements Enumerable<?El>,

?El implements Equality<?El>

extends ?Super

{ boolean contains(?El e) { ... } }

Figure 3.6: Mixin implementation of Searchable

This is a more natural and elegant way of dealing with the abstract implementation of the
contains method because unlike an abstract class, it is not �xed to a speci�c position in the
class tree. The mixin can be applied to any class which meets the required type constraints.
These classes do not have to be related to one another through inheritance. Nevertheless, this
is not a true solution to the benchmark problem. Even though a mixin class can be applied
to the classes that meet the requirements, the extension is not added automatically. Instead
the user must explicitly create a subclass by applying the mixin. For example, instead of
using Array<X>, one must explicitly use SearchableMixin<Array<X>> when one needs an
array which supports the contains method.

As already pointed out in section 1.6.2, another problem with this mixin-class approach
is that it is nearly impossible to specialize the mixin for a speci�c class. For example a Set

abstract data type class, represented internally with a hashtable would bene�t from a more
speci�c implementation of contains that makes use of the hashtable instead of enumerating
the elements of the Set. It is possible to de�ne several mixin classes, each one with a di�er-
ent implementation strategy, but providing an implementation for the same interface. The
user must however decide for himself which is the correct mixin to apply for a speci�c type
parameter. This decision cannot be made by the type system.

Using a \conditional method"

A last attempt uses a where clause attached to the contains method. We declare the
contains method in WhereJava as follows:

abstract class Enumerable<?El>

...

boolean contains(?El e) { ... }

where ?El { boolean equals(?El) }

...

The only way to provide an implementation for a method is by declaring it in a class. Since
we want the method to a�ect all classes which are Enumerable, this means we have to have a
common parent for all of these classes. In other words, we need an abstract Enumerable class.
The Enumerable functionality must thus be captured at a speci�c point in the class tree. This
again raises the problems with abstract classes which were discussed earlier. The problems
merely shift from the implementation of Searchable functionality to the implementation of
Enumerable functionality.

3.5. EXPRESSIVENESS OF PARAMETRIC JAVA PROPOSALS 69

Final Conclusion for Benchmark 2

Existing proposals fall short on this benchmark problem. The closest to a good solution
is probably a mixin class. Mixin classes can only be expressed in some of the proposals.
Even then, a mixin class is not truly a solution to the benchmark problem because it does
not actually add the contains method to a class but only provides a way for the user to
manually add the method by explicitly creating a subclass. Another problem with the mixin
\solution" is that it cannot be specialized for speci�c classes.

3.5.3 Type-Dependent Internal Representation

Benchmark 3 Implement an abstract data type Set representing a set of elements of some
type a. When implementing a set of element types that merely support equality tests
use a simple list data structure which is searched sequentially. For the implementation
of a set of ordered elements, comparable by means of <, use a binary search tree.

This benchmark requires another kind of decision making than the two former benchmark
problems. It turned out that Gofer's type language falls short just a little bit to solve this
problem completely. Apparently Gofer's type language can be used to make decisions about
functionality and implementation of functionality onto a data structure, but it cannot be used
to express decisions that a�ect the data structure itself.

The situation for parametric Java is similar. We can easily declare two di�erent imple-
mentations for an abstract Set class.

abstract class Set<?El> {

abstract void insert(?El e);

abstract boolean contains(?El e);

}

class TreeSet<?El>

where ?El { boolean equals(?El);

boolean lessThan(?El); }

extends Set<?El>

{

private contents Tree<?El>

void insert (?El e) { ... }

boolean contains(?El e) { ... }

}

class ListSet extends Set<?El>

where ?El { boolean equals(?El); }

extends Set<?El>

{ ... }

Since Set is an abstract class it cannot be instantiated. Thus, the situation is exactly the
same as in Gofer: we must explicitly state the name of the speci�c concrete implementation
class upon creating a Set. For example:

Set<String> x = new TreeSet<String>

70 CHAPTER 3. JAVA AND PARAMETRIC TYPES

We could try to get around the problem by means of a factory method or something similar.

abstract class Set<?El> {

...

/** Factory method */

static Set<?El> make() {

...???implementation of factory method???...

}

}

The question of how to implement such a factory method remains to be answered. The factory
method should create an instance of the right concrete subclass depending on the type ?El.
The only way to make this kind of decision based on the static type ?El is to provide two
implementations of the method and constrain each of them by an appropriate where clause
as follows:

abstract class Set<?El> {

...

static Set<?El> make() {

return new ListSet<?El>

}

where ?El { boolean equals(?El); }

static Set<?El> make() {

return new TreeSet<?El>

}

where ?El { boolean lessThan(?El); }

}

Since this attaches a type constraint directly to a method the only proposal that might
possibly support this kind of programming is WhereJava. None of the other proposals allows
attaching constraints to individual methods. This mechanism in WhereJava can however only
be used to de�ne optional methods, and it is not allowed to provide two alternative method
implementations this way. Code as presented above is rejected by WhereJava because it has
two declarations for the method make. Note that this cannot be considered as a kind of
overloading because both versions of the method have the same argument-type list.

3.5.4 Iteration or Recursion

Benchmark 4 De�ne a tuple-like container type, that contains a statically known number of
elements of types a0, a1, . . . an�1. Implement accessors project0, project1, project2
etc. on this tuple type. These accessors return the �rst, second, etc. element from the
tuple respectively.

This problem is too di�cult to be expressed by any of the proposals. Let's try to ex-
press it and see how far we get. Before starting, note that we will have to give conditional
implementations of the project methods. Therefore WhereJava is the only proposal which

3.5. EXPRESSIVENESS OF PARAMETRIC JAVA PROPOSALS 71

potentially could be used to express this problem. The other proposals do not o�er the pos-
sibility to declare conditional methods. We therefore limit our discussion of this benchmark
to WhereJava alone.

As in Gofer, we are faced with the problems that we have no numbers or lists in the
type language. In Gofer we were able to implement these ourselves. We can do the same
thing in PJava. For example, we can simulate type numerals by means of a class Zero and a
parametric type Inc. We will need to be able to express constraints that limit type variables
to be a number or a list. In WhereJava we only have signature constraints. We therefore
identify numbers by providing a dummy method, the presence of which \tags" the class as
being a type numeral.

class Zero {

/** any class with this method is a number. The implementation of the

method itself is irrelevant since it merely serves as a ``signature

tag'' to recognize type numerals */

public void numberTag() {}

}

class Inc<?x>

where ?x { void numberTag(); }

{

void numberTag()

}

Similarly we can simulate lists of types:

class Empty

{

void listTag() {}

}

class Pair<?a,?b>

where ?b { void listTag(); }

{

?a car;

?b cdr;

?a project(Zero dummy) { return car; }

}

In Gofer we used overloading to \simulate" the index which is part of the projection function's
name. We do the same thing here, instead of de�ning a method project0 for example, we
add a dummy parameter of type Zero to the projection function. Overloading on the dummy
parameter determines the index of the projection function.

This is as far as the similarity between Gofer and WhereJava goes however. The �nal
step in the Gofer solution was the inductive de�nition of the projection functions for indexes

72 CHAPTER 3. JAVA AND PARAMETRIC TYPES

greater than 0. This cannot be expressed in WhereJava because it lacks the computational
power o�ered by Gofer's quali�ed type system. Inserting the following conditional method
into the Pair class is the best we can do.

class Pair<?a,?b>

...

?return project(Inc<?pos> dummy) {

cdr.project(new ?pos());

}

where ?b { ?return project(?pos); }

}

Unfortunately this will not work in WhereJava because the type variables ?return and ?pos

are not parameters of the Pair class and therefore the above is a parametric method, a feature
which is not supported by WhereJava.

3.6 Conclusion

In this chapter we have given an overview of existing parametric types proposals for the
language Java. We used the benchmark programming assignments from chapter 2 to asses the
capability of these proposals for type-oriented programming. The results of the benchmarks
are summarized in �gure 3.7.

Gofer AFM Pizza WhereJava

Benchmark 1 Yes No No Yes

Benchmark 2 Yes No No No

Benchmark 3 Almost Almost Almost Almost

Benchmark 4 Yes, but . . . No No No

Figure 3.7: Benchmark results for Java parametric-types proposals

The overall conclusion is that existing parametric types proposals perform poorly on the
benchmark programming assignments. Only WhereJava is able to express one out of four
benchmarks adequately due to its conditional method feature. The underlying reason for the
failure to express the benchmark problems is because the type languages of the proposals are
not designed as programming languages and have numerous implicit and explicit restrictions
on what kind of type constraining predicates can be expressed, and where type variables are
allowed to be used. These restrictions stem from theoretical concerns such as decidability
of typing, and also from implementation related concerns such as performance of the typing
algorithm and the implementation in terms of the Java virtual machine.

In comparison to Gofer, the situation is clearly worse, as is indicated by the benchmark
results: Gofer does at least as good for any of the benchmark problems, as any parametric
types proposal. The most challenging of the lot is benchmark 4 which requires counting with
numbers and manipulating lists of arbitrary length. Even though Gofer does not have either
type numerals nor recursively de�ned type lists, it was possible to overcome this problem and
simulate them by making explicit use of the implicit computational power o�ered by Gofer's
quali�ed types. Existing Java parametric-types proposals come nowhere near this.

Chapter 4

Type-Oriented Meta Programming

4.1 Introduction

One of the central research hypotheses (hypothesis 1) of this dissertation states that there
is unused and mostly unexplored potential in actively using static type information. Some
examples in the introduction (section 1.6) already hinted at some possible applications of \ac-
tive type manipulation". Programs expressed in a type programming language, may actively
use static type information. These type \meta" programs are executed not as part of the
actual \base" program, but instead are run as part of the compilation and type checking pro-
cess, at compile time, with respect to the base language program. We call this programming
technique \type-oriented meta programming". The goal of this chapter is to de�ne exactly
what we mean by type-oriented meta programming.

Many di�erent languages and systems are referred to in the literature as meta-
programming systems, meta languages or meta systems [MN87]. To avoid confusion we
want to clarify what we understand under the terms meta programming, meta program, base
program, etc. Therefore this chapter starts by introducing some terminology with respect to
meta programming. After introducing the necessary terminology we give a concise de�nition
of \type-oriented meta programming".

4.2 Meta-programming terminology

A program is a speci�cation of a computational system that manipulates representations of
entities from some \universe of discourse". For example, an address book application is a
computational system that reasons about a universe of discourse which contains persons,
names, phone numbers, addresses, etc. Consequently a computational system implementing
an address book application manipulates representations for persons, names, etc.

De�nition 1 A program is a formal, executable speci�cation of a computational system.

De�nition 2 The universe of discourse of a program is the collection of concepts and entities
which the computational system speci�ed by the program can reason about.

The program is expressed in a formalism that can be interpreted automatically in order
to obtain the computational system it speci�es. This formalism is called a \programming
language".

73

74 CHAPTER 4. TYPE-ORIENTED META PROGRAMMING

De�nition 3 A programming language is a formalism that can be interpreted in an auto-
matic manner in order to obtain the computational system speci�ed by a program written in
it.

Programs can be constructed to reason about almost anything imaginable. It just boils
down to de�ning representations of the entities or concepts one wants the program to reason
about in terms of the data structures that are built into the programming language. Conse-
quently, programs can be constructed that reason about other programs. Examples of such
programs are compilers, type checkers, interpreters, code generators, etc.

De�nition 4 A program, the universe of discourse of which contains programs, is called a
meta program or a meta-level program. The programs in the universe of discourse are called
base programs or base-level programs

In principle one can write meta programs in any general-purpose programming language.
This involves de�ning and implementing representations of the programs in the universe of
discourse in terms of the data structures o�ered by the general programming language. Apart
from general programming languages there are also domain-speci�c programming languages
that are tuned for speci�c application domains, i.e. with a bias towards certain types of
universes of discourse.

De�nition 5 A meta language is a domain-speci�c programming language speci�cally tuned
for specifying meta programs.

In the sense of the above de�nition, core TyRuBa (see chapter 6) is a meta language for
Java because it has speci�c features that facilitate manipulating pieces of Java programs.
Typically meta languages have native data structures speci�cally intended for representing
parts of programs or information about programs in the universe of discourse. Usually (but
not necessarily) these data structures are tuned for representing information about programs
written in a speci�c language called the base language.

De�nition 6 The base language for a given meta language is the language (if any) for which
the meta language is speci�cally tuned.

Not all objects in the universe of discourse need to be represented explicitly by objects in
the computational system (speci�ed by the program). Whenever an object or concept has an
explicit representation we say that it is rei�ed.

De�nition 7 An entity or concept in the universe of discourse that has an explicit repre-
sentation in the computational system represented by the program is said to be rei�ed by the
program.

4.3 Reection

Even though we have explicitly chosen to avoid reection and the complications that come
with it we want to say a few words about reection, if only to emphasize that we are not
proposing to use reection.

4.4. TYPE-ORIENTED META PROGRAMMING 75

Given the de�nitions above we can say that a reective program is a special kind of
meta program the universe of discourse of which contains (aspects of) its own computational
system. Following the treatment of [Smi82] a reective system has a \causally connected self
representation". This means that a program has access to some kind of data structure which
represents (rei�es) its computational system or aspects thereof. This can be inspected or it
can be acted upon. \Causally connected" means that acting upon the self representation
directly a�ects the computational system (this is sometimes called absorption). For a more
detailed explanation of this terminology and theory we refer to [Smi82, Ste94b].

The self-referential nature of reective systems makes them inherently very complicated
both theoretically and with respect to implementation. Issues such as reective overlap, meta-
stability, in�nite towers etc. need to be considered [Smi82, Smi84, Mae87, WF88, KdRB91,
Ste94b, DVS95]. The complications with reection mainly have one common cause: its self-
referential nature creates confusion between what is \meta" and what is \base". Sometimes
what is \meta" can be \base" at the same time and vice versa. A \simple" meta system does
not have this problem and has a clean separation of meta level and base level thus avoiding
the theoretical and practical problems related to reection.

4.4 Type-Oriented Meta Programming

Finally we have enough terminology to state exactly what we mean by \type-oriented meta
programming". As the phrase says, it is a meta-programming technique, this means that
it is used in meta programs that reason about base programs. The wording \type-oriented"
signi�es that type information about base-level programs is rei�ed and manipulated explicitly
by the meta program.

De�nition 8 Type-oriented meta programming is a meta-programming technique relying on
rei�ed type information about base-level programs.

4.5 Summary

In this chapter we have established some terminology and stated concisely and precisely what
we mean by \type-oriented meta programming".

76 CHAPTER 4. TYPE-ORIENTED META PROGRAMMING

Chapter 5

Logic Meta Programming

5.1 Introduction

In this chapter we present the idea of Logic Meta Programming independently of the choice
of a particular base language. It could in principle be applied to any programming language
or even to any other structured form of textual data such as for example html [Gra97] or
LATEX

1.

The main idea of logic meta programming is describing base-language programs by means
of logic programs. The central concept around which everything revolves is a mapping which
associates every base-language program with a set of logic propositions which describe its
properties in su�cient detail to be called a \representation" of it. A logic program is nothing
more than a sophisticated way to specify a set of logic propositions. Therefore it follows that
logic programs can be used to specify base language programs indirectly. This situation is
depicted in �gure 5.1.

Base Language Program

Logic Program

R
epresents

Represents

Set of Propositions
Represents

Mapping

Figure 5.1: The role of the Mapping

This chapter outlines the typical architecture of a logic meta programming system based
on this idea and explains what is expected of the representational mapping with respect to
the chosen base language. The choice of a representational mapping scheme is an important
design decision since it determines how useful and how well suited the resulting system will
be for a particular purpose.

1An example of this is �gure 9.7. The LATEX source code to produce this �gure was generated with the help
of our logic meta programming system.

77

78 CHAPTER 5. LOGIC META PROGRAMMING

In the next chapter we will apply the ideas presented in this chapter to a particular base-
language: Java. This will allow us to build a system, TyRuBa. The TyRuBa system will be
used as medium for experimentation in the rest of this dissertation. TyRuBa will allow us to
provide solid arguments to support our thesis. It will allow us to reify static type information
about Java base-language programs and achieve type-oriented logic meta programming. Thus
we will be able to illustrate the immense and currently unharvested potential of active type
manipulation.

5.2 Base Programs as Sets of Propositions

The central concept around which everything revolves is a mapping of base-language programs
onto sets of logic propositions that represent them. If the representation scheme is well
chosen, the possibilities opened up can be immense. A logic programming language is just
an expressive way to denote sets of logic propositions so we can then use the full power of a
logic programming language to describe the structure of base-language programs indirectly
represented as logic propositions.

De�nition 9 The symbol P denotes the set of all base language programs.

De�nition 10 The symbol S denotes the set of all sets of logic propositions.

De�nition 11 A mapping is a function M : P! S that associates a set of logic propositions
S =M(P) with any base language program P .

Not just any function M mapping base programs onto sets of propositions can rightfully
be called a representational mapping. The fact that we call a set S of logic propositions a
representation of a base-language program implies that the base-language program can be
reconstructed from the set of propositions. However the representation does not have to be
syntactically complete in the sense that the reconstruction of the base-language program may
be syntactically di�erent from the original program as long as both base-language programs
have the same semantics.

De�nition 12 A representation scheme M mapping base language programs onto sets of
logic propositions is called syntactically complete i� 8P; P 0 2 P :M(P) =M(P 0)) P = P 0.
Where = denotes the relation \. . . is syntactically identical to . . . ".

De�nition 13 A representation scheme M mapping base language programs onto sets of
logic propositions is called semantically complete i� 8P; P 0 2 P : M(P) = M(P 0)) P � P 0.
Where � denotes the relation \. . . is semantically equivalent with . . . ".

Note that any syntactically complete mapping is automatically also semantically complete
since it is trivially true that programs with identical syntax also have the same semantics.

De�nition 14 A mapping M is called a representational mapping if M is semantically com-
plete.

De�nition 14 implies that a representational mapping need not necessarily be syntactically
complete but is free to \ignore" syntactic properties of a program as long as this does not
alter the program's semantics. It is for example allowed to ignore comments.

5.3. CHOOSING THE REPRESENTATIONAL MAPPING 79

5.3 Choosing the Representational Mapping

The choice of the representational mapping is an important part of the system's design since
this mapping de�nes what aspects of the base-level program are made explicit and can be
reasoned about by the meta program. The representational mapping should at least be
semantically complete. It is not desirable that it should be syntactically complete. To see
that this is the case consider a trivial mapping which represents any base-language program
simply with a single proposition of the form:

program("...program text...").

Clearly this mapping is syntactically complete since it contains the entire text of the
program as a string. It is also very obvious that this representation is at the same time almost
completely useless for any purpose. It only regards a program as a string and consequently
does not reveal anything interesting about it. With this mapping \meta programs" merely
amount to string manipulations.

A useful mapping describes the structure of the program in more detail. Preferably the
mapping is based on the base language's semantics rather than its syntax since programmers
are more interested in reasoning about the semantics of their program than about the syntax
of their programs. An aspect which is not relevant for the intended semantics of a program
should therefore not be represented if this can be avoided. For example, in a C program the
order in which functions are declared is not relevant for the meaning of the program. Therefore
it is not a good choice to represent a C program with a list of function declarations. A list
is a kind of collection of elements in which the order of the elements is considered relevant.
Thus with a list representation, programs with distinct orderings of function declarations will
have distinct representations. It is better to represent the C program as a set of individual
assertions, one assertion per function declaration. This is closer to the semantics of the C

program because the order of elements in a set is considered irrelevant.
With respect to reecting the program's semantics rather than its syntax as much as

possible, the trivial mapping is the worst possible choice. It only depends on the syntax of
the program and reveals nothing more than the text of the program itself.

If at some point the syntax of a program or part of it is to be represented, this is best
done in a structured hierarchical form, modeling the parse tree of the program rather than as
a string. Also in this respect, the trivial mapping is the worst possible choice. It represents
a program syntactically but doesn't even reveal the syntactic structure of the program.

The mapping also depends on the aspects we are interested in for the particular application
we have in mind. In this dissertation we are interested in \type-oriented programming",
therefore it will be important to make types and type relations explicit in the representation
of the base-language program.

5.4 Architecture of a Logic Meta-Programming System

The make up of a logic meta programming system is depicted in �gure 5.2. The heart of the
system is a logic inference engine and database which stores the logic meta program. A logic
program can be regarded as representing a set of deducible propositions. A proposition is in
this set if and only if it can be derived from the facts and rules in the logic program. This
virtual set of logic propositions can be consulted by querying the logic system. The interface of

80 CHAPTER 5. LOGIC META PROGRAMMING

Code Generator

Meta Program
Logic Virtual Set of

Logic Propositions

Queries Represents

Outputs

Virtual base-language program
Requested part of

Virtual base-language program

Logic Meta-Programming System

Request part
of VBLP

Represents

Logic System
Interprets

Figure 5.2: Architecture of Logic Meta-Programming System

5.4. ARCHITECTURE OF A LOGIC META-PROGRAMMING SYSTEM 81

the system with its \user" is the code generator which outputs base language code. The code
generator roughly corresponds to the inverse of the representational mapping. The following
section elaborates on the exact relationship between the code generator and the mapping.

5.4.1 The Code Generator

The user asks the code generator to extract parts of the \virtual" base-language program
represented by the meta program. The logic database contains all the necessary information
to construct the base program so the code generator need only \ask" for it by making the
right queries and then outputting the retrieved information in a suitable form in the syntax
of the base language. This will become clearer when we discuss the concrete system TyRuBa
for base-language Java in chapter 6.

The rationale behind the fact that speci�c parts of the virtual base-language program
are requested from the code generator rather than having a code generator that outputs the
entire program in one go is that the virtual program might possibly be in�nitely large. This
is due to the power of the logic paradigm which is able to express in�nite sets of propositions.
Suppose a C program is represented as a set of propositions asserting the presence of function
declarations in the source �le. It would be possible to declare an in�nitely large program with
in�nitely many function declarations in it. However, trying to compile such a program by
feeding it directly to an ordinary C compiler is impossible. The program would take an in�nite
time to compile. This does not necessarily mean that the program is useless altogether. Maybe
it constitutes a library of an in�nite number of (related) functions. It is perfectly reasonable
to extract only the �nite number of functions from the library that are actually called in the
body of the main program using the library. So even though the virtual program might be
in�nite, it makes sense to be able to extract speci�c parts of its source code.

Disregarding the fact that the base program is accessible in parts let us now investigate
more closely the properties of the \reverse" mapping implemented by the code generator.

De�nition 15 A code generator is a partial function G : S! P mapping sets of propositions
onto base language programs.

Note that a code generator is a partial function. That is, it does not necessarily de�ne a
valid base-language program for every possible set of propositions. This corresponds to the
fact that some sets of propositions do not represent base-language programs.

A meaningful code generator is related to the representational mapping. The minimum
requirement for the code generator is to be consistent with the representational mapping.

De�nition 16 A code generator G is called consistent with a representational mapping M

i� 8P 2 P;8S 2 S : G(S) = P)M(P) = S.

Note also that the representational mapping is not an injective function so there might
be two syntactically distinct programs P and P 0 which have the same representation
S = M(P) = M(P 0). Hence it is nonsense to require that M(P) = S) G(S) = P .
Clearly this condition cannot be satis�ed when two distinct programs P and P 0 exist for
which S = M(P) = M(P 0). Therefore the condition can only be satis�ed for a syntactically
complete representational mapping. However we already explained that syntactic complete-
ness is usually not a desirable property.

82 CHAPTER 5. LOGIC META PROGRAMMING

Consistency with the representational mapping is a minimum requirement for a code
generator to be meaningful. Therefore, from now on whenever we speak of a code generator
we assume it to be consistent with the representational mapping. Note however that it is not
speci�ed what a code generator should do with a set of propositions that do not represent
a base language program, i.e. a set S for which there is no P such that M(P) = S. This
choice is left to the designer or implementor of the meta-programming system. It is also not
completely speci�ed what the code generator should return when several base level programs
have the same representation. In principle any of the programs may be returned by the code
generator in this case.

5.5 Summary

In this chapter we de�ned the concept of Logic Meta Programming and some related termi-
nology. The central concept around which everything revolves is a representational mapping
which de�nes how base level programs are represented as sets of logic propositions. We gave
a schematic overview of the typical architecture of a logic meta programming system. This
consists out of a logic inference engine and data base containing the meta program. The inter-
face to the user is the code generator which is able to query the logic database and interpret
the results in order to generate base-level code consistent with the representational mapping.
An important aspect of the design of a logic meta-programming system is the choice of the
representational mapping. The mapping is required to be semantically complete but syntactic
completeness is not required. In fact, it is desirable to model the mapping after the semantics
of base-language programs and explicitly ignore syntactic aspects of the program that do not
a�ect the semantics.

Chapter 6

TyRuBa

6.1 Introduction

In this chapter we apply the principle of logic meta programming as outlined in chapter 5 with
Java as base language. The system we present in this chapter is called TyRuBa which is an
acronym for \Type Rule Base". The name is mainly historic as the core TyRuBa system has
no speci�c features that make it focus on types. The system presented in this dissertation is a
general system that lends itself to logic meta programming in general and is not preoccupied
with types. The core of TyRuBa is a Prolog-like [SS94, CM81] language with a quoting
mechanism that allows pieces of Java code to be treated as terms in logic programs. Similarly
an unquoting mechanism allows logic terms to appear as part of these quoted pieces of Java
code. The TyRuBa core system described thus far is not yet a logic meta-programming
system as de�ned in chapter 5. It is just a particular variation of Prolog that is meant to
allow more or less easy manipulation of Java source code fragments. To achieve logic meta-
programming we will specify a representational mapping and add a consistent code generator
to the system. The choice of the representational mapping and a corresponding code generator
are important parts of the system design. They are also the most di�cult part of the design
and it is not even sure that there can be such a thing as \the best" representational mapping.
What is \best" depends on what the system will be used for. Logic meta programming still
being a very experimental technique it would be a bad idea to hardcode a highly speci�c
representational mapping and code generator into the core TyRuBa system. We therefore
chose a general mapping much like the trivial mapping given as an example in chapter 5.
It was explained that this mapping is not very useful by itself, however, it will allow us to
implement a more speci�c code generator in TyRuBa itself as an extra layer of rules that
specify how the more speci�c representational mapping relates to the general mapping. This
allows easy experimentation with di�erent representational mappings and code generators,
simply by providing di�erent initialization �les.

The rest of this chapter presents the core TyRuBa language and the general represen-
tational mapping that is hardcoded into the core TyRuBa code generator. At the end of
the chapter we show an example initialization �le that illustrates the implementation of a
�ner-grained code generator on top of the hardcoded code generator.

83

84 CHAPTER 6. TYRUBA

Code Generator

Represents Virtual Set of

Logic Propositions

Queries Represents

Outputs

Virtual Java Program

TyRuBa System

User Rules

TyRuBa Core-Language System

declaration
or interface
Request class

Requested class or interface

declaration

+
Init File Rules

=
Logic Program

Figure 6.1: Architecture of TyRuBa

6.2. HISTORY OF TYRUBA 85

6.2 History of TyRuBa

Before presenting the actual system, we �rst give some background information about the
history of the TyRuBa system. This will help the reader in putting the system and its
design into its proper context. The system certainly has many points upon which it can be
criticized. However, it must be kept in mind that it was only designed and implemented
as a medium for experimentation. The main purpose of it is to enable the exploration of
the technique of type-oriented logic meta programming, and thus to provide evidence that
this technique has considerable potential. Indirectly this evidence also supports our thesis,
because the potential of type systems which sacri�ce non-ambiguity and decidability of typing
for expressiveness lies in the potential o�ered by a type-language which itself is designed as a
true programming language. Such a type language opens up the possibility to do type-oriented
meta-programming.

We wanted to do all this with minimal e�ort and come to the point of experimentation
and validation as soon as possible. Therefore, all was sacri�ced in order to obtain more
expressive power for the type-manipulation language. Other aspects, including type-checking
and syntactic issues were ignored as much as possible. A considerable research e�ort and
implementation work will therefore still be needed in order to obtain a system which can truly
be used in practice. A more elaborate sketch of TyRuBa's history, and some speculations
about how it can be made more usable in practice will be given in chapter 11. We now only
present a general discussion.

Originally it was our intent to create something which looks more like Java/Pizza, and
which hides the logic system from the user under a layer of surface syntax. The �rst version
of TyRuBa therefore looked much more like a traditional language and tried to \cover up"
the underlying logic engine under some Java like syntactic extensions. As a consequence the
system also had a very speci�c representational mapping hardcoded into it. The syntactic
layer itself and the hardcoded mapping soon proved to be major obstructions. It was often
felt that the syntactic layer provided too narrow an interface to the underlying logic language
and thus was an obstruction in using the full potential of logic meta programming. The �xed
representational mapping also was a considerable restriction. It soon became apparent that
the chosen mapping was too coarse grained. Since it had been hardwired into the system's
implementation and into the design of the surface syntax it was not easy to change or re�ne
the mapping. Eventually it was decided to, at least temporarily, abandon the idea of a surface
syntax and directly express meta programs in the logic language itself. The resulting system
is presented in the remainder of this chapter.

6.3 The TyRuBa Language

Basically the TyRuBa language is a simpli�ed Prolog with a few modi�cations that allow
pieces of quoted Java code to occur as terms in TyRuBa programs. We will now take a
closer look at the structure and the di�erent elements of a TyRuBa program and give some
examples illustrating their use. A summary of the TyRuBa grammar in EBNF notation is
given in �gure 6.10 at the end of this chapter.

6.3.1 Programs

A TyRuBa program is a list of interspersed logic rules, facts, queries and directives.

86 CHAPTER 6. TYRUBA

TyRuBaFile ::= (Rule | Fact | Query | IncludeDirective |

GenerateDirective | VerbatimDirective)*

A typical example of a TyRuBa \main program" �le is displayed in �gure 6.2. This
particular example only consists of directives. The actual rules and facts of the logic program
are included from another �le called "Array.rub".

#verbatim {package aRuBa.tyRuBa.examples;}

#include "Array.rub"

#generate Array<String>

#verbatim {

public class ArrayTest {

static final int size = 3;

public static void main(String[] args) {

Array<String> box = new Array<String>(size);

for (int i=0;i<size;i++) {

box.setElementAt("("+i+")",i);

}

for (int i=0;i<size;i++) {

System.out.print(box.elementAt(i));

}

System.out.println();

}

}

}

Figure 6.2: Example \main" �le

The rules in the program are stored in a database. Note that when queries are executed,
the rules in the database will be considered in the opposite order from that in which they occur
in the TyRuBa source �le. We have established this order of precedence for rules because it
conforms to the intuitive feeling that more recent rules are more important.

6.3.2 Rules, Facts and Queries

Query ::= ":-" Expression "."

The queries (or \goals") are not really part of the TyRuBa program since they will not
a�ect the generated Java code in any way. When a query is executed its solutions are dumped
onto the standard error device. This is useful mainly for debugging purposes.

Rule ::= Predicate ":-" Expression "."

Fact ::= Predicate "."

6.3. THE TYRUBA LANGUAGE 87

Rules consist of a conclusion term followed by a \:-" followed by a condition expression.
If a rule's condition is always true, then it may be omitted. Such a rule is called a fact. The
semantics and syntax of rules and facts is the same as in Prolog so we will not elaborate any
further on them.

6.3.3 Directives

Directives instruct the TyRuBa system to perform a special action.

IncludeDirective ::= "#include" <STRING_LITERAL>

VerbatimDirective ::= "#verbatim" Term

GenerateDirective ::= "#generate" Term

An include directive works like an include directive in C [KR88]. The string literal is
interpreted as a �le name and the contents of the corresponding �le is read and substituted
for the include directive.

The generate and verbatim directives are related to Java code generation and will be
discussed in section 6.4.

6.3.4 Terms

Term ::= Variable | Constant | CompoundTerm

| QuotedCode | List

There are some super�cial syntactic di�erences with Prolog for variables, constants and
compound terms. There is also a special QuotedCode term for including pieces of Java as
data in logic programs. We will now discuss the di�erent kinds of TyRuBa terms one by one.

6.3.5 Variables and Constants

The lexical rules for variables and constants in TyRuBa are di�erent from Prolog. In Prolog
variables are identi�ers that start with a capital letter. Identi�ers starting with a lower case
letter are constants. This would be confusing in TyRuBa because of the mix with Java. Java
is case sensitive and allows variables and names of classes and interfaces etc. to start with
upper case as well as with lower case letters. In order to avoid ambiguity TyRuBa therefore
lexically distinguishes variables from constants by a leading \?" rather than by an uppercase
letter. Some examples of variables and constants are listed in �gure 6.3.

Variables ?x, ?Foo, ?bar23, ?code

Constants x, X, Foo55, 1, 1234

Figure 6.3: Some examples of TyRuBa variables and constants

6.3.6 Compound Terms

CompoundTerm ::= Constant "<" TermList ">"

88 CHAPTER 6. TYRUBA

Compound terms in TyRuBa are written with \< and \>" rather than with \(" and \)"
as in Prolog. This avoids confusion with function calls when terms appear as part of quoted
Java code. It also has the advantage of making the syntax of predicates and terms distinct
from one another. In regular Prolog these two are written in exactly the same manner even
though they have di�erent semantic roles1. Some examples of TyRuBa compound terms are:

Array<String>

Bar<Foo,1>

triplet<?first,?second,?third>

Deeply<Nested<compound<term,?x>>>

6.3.7 Lists

List ::= "[" ListRest

ListRest ::= "]"

| Term ListCdr

ListCdr ::= "," Term ListCdr

| "|" Term "]"

| "]"

Lists and pairs in the standard Prolog notation are supported in TyRuBa. A [] denotes
the empty list and the notation [X | Y] denotes a pair. The pair [X | Y] is semantically
equivalent to (and internally represented by) a compound term with a special quali�er as
follows: _pair_(X,Y). The notation [a,b,c] as shorthand for [a | [b | [c | []]]] is
also supported. Since this is exactly as in regular Prolog we need not elaborate on this any
further.

6.3.8 Quoted Java Code

TyRuBa provides a special kind of compound term that represents a piece of \quoted" Java
code.

QuotedCode ::= "{" (QuotedElement)* "}"

QuotedElement ::= Variable

| CompoundTerm

| "{" (QuotedElement)* "}"

| "@" Term

| JavaTokenNotBraces

JavaTokenNotBraces ::= Identifier

| IntegerLiteral

| StringLiteral

| ...

| "," | "(" | ")" | ";"

| ...

1In Prolog this may create confusion for the programmer but also allows meta-circular code that treats
Prolog expressions as data (i.e. terms). We thought this to be of minor importance in the context of this
dissertation since we explicitly decided to avoid the theoretical and practical complications of reection and
meta-circularity (section 4.3).

6.3. THE TYRUBA LANGUAGE 89

In the version of TyRuBa presented and used in this text the quoting mechanism is very
rudimentary. Basically a quoted Java term is nothing more than a kind of string starting
after a \{" and ending just before the next balanced \}". Unlike a string it is not composed
of characters but of Java tokens, variables, constant terms and compound terms. The Java
tokens are treated as special name constants whose name is equal to the printed representation
of the token. The following example of a quoted Java term illustrates all kinds of quoted
elements:

{ void foo() {

Array<?El> contents = new Array<?El>[5];

?El anElement = contents.elementAt(1);

}

}

In the above example we see a compound term \Array<?El>". We �nd several name
constants \contents", \new", \anElement", . . . There are two integer literals 5 and 1. The
remainder of the tokens such as \=", \." and \(" are Java tokens treated as name constants
with \strange names". Note that a quoted code block may contain \{" and \}" tokens, as
long as these are properly balanced. Let it be clear that a nested \{" or \}" is treated just
as any other token and does not introduce a nested quoted code block.

The meaning of a quoted Java term in the context of a TyRuBa program is derived directly
from its internal representation. A quoted Java term corresponds to a compound term of arity
1 with a special quali�er. As its subterm it contains a TyRuBa list of quoted elements. The
example given above is internally represented by the following compound term2:

{}([void, foo, (,), {, Array<?El>, contents, =, ...])

The \@" is an \unquoting" symbol and may be used to explicitly include any TyRuBa
term as part of the quoted code. Variables and compound terms may be inserted without an
explicit unquote symbol, they are unquoted implicitly. The implicit unquoting of variables
and compound terms mostly makes the explicit unquoting with \@" obsolete. However it is
left in the language for unquoting lists.

6.3.9 Expressions

Expression ::= Disjunction

Disjunction ::= Conjunction (";" Conjunction)*

Conjunction ::= SimpleExpression ("," SimpleExpression)*

SimpleExpression::= Predicate | Arithmetic

| "(" Expression ")"

Expressions in TyRuBa are similar to regular Prolog expressions. Conjunction (and) is
expressed with a \," and disjunction (or) with a \;".

2This is not actually correct TyRuBa syntax but is given only as an illustration.

90 CHAPTER 6. TYRUBA

6.3.10 Predicates

Predicate ::= Constant ["(" TermList ")"]

Predicates in TyRuBa are the same as in Prolog. A predicate is the simplest type of
expression from which more complicated expressions are composed by means of disjunctions
and conjunctions. Evaluating a predicate is just as in Prolog. Unify with the head of a rule to
determine whether it is applicable and then evaluate the body of the applicable rule. We will
not explain this process in detail since it is pretty much the same as in Prolog. We refer to
[CM81, SS94, Llo88, Roy94, ASS96] for elaborate background material about implementation-
related and theoretical issues regarding Prolog-like languages and their evaluation.

TyRuBa o�ers a number of \meta" predicates3 which as a convention have quali�er names
written entirely with capitals. Each of these special predicates have their own method of
evaluation and can be used to control various aspects of the evaluation and backtracking
process of the system. Some of these can be found in regular Prolog also. We will now briey
explain these special predicates one by one. In order to clarify the explanations we will give a
few simple examples which are evaluated with the \facts" shown in �gure 6.4 present in the
database of the TyRuBa system.

person(Kim,Mens).

person(Tom,Mens).

person(Wolfgang,DeMeuter).

person(Theo,DHondt).

mathematician(Kim,Mens).

mathematician(Tom,Mens).

Figure 6.4: A Simple TyRuBa Database

The FIRST meta predicate

FIRST(expression)

The expression is evaluated and only the �rst solution is retained, while all the remaining
solutions are discarded. This corresponds roughly4 to a \cut" in Prolog.

:- person(?fn,?ln).

#SOLUTION : person(Theo,DHondt)

#SOLUTION : person(Wolfgang,DeMeuter)

#SOLUTION : person(Tom,Mens)

#SOLUTION : person(Kim,Mens)

:- FIRST(person(?fn,?ln))

#SOLUTION : FIRST(person(Theo,DHondt))

Note the order of the solutions. It is exactly the reverse of the order in which the facts
were listed. This of course is because of the reverse order in which TyRuBa considers rules
and facts.

3These are called \meta" predicates because they fall outside of �rst order logic and are \about" terms or
expressions.

4In Prolog we could de�ne FIRST using a cut as follows: first(E) :- call(E), !.

6.3. THE TYRUBA LANGUAGE 91

The FINDALL predicate

FINDALL(expression,term,variable)

This is exactly the same as the standard Prolog findall meta predicate. It will �nd all
instances of the term for which the expression is true and collect all of these instances into a
list that will be bound to the variable.

:- FINDALL(person(?fn,?ln),?ln,?lns)

#SOLUTION : FINDALL(person(?fn,?ln),?ln,[DHondt, DeMeuter, Mens, Mens])

The NODUP predicate

In the context of code generation it is often useful or needed to eliminate duplicate or partially
duplicate solutions to a query. Examples of using NODUP in the implementation of code
generators can be found throughout the remainder of this dissertation. In section 7.2.2, it
is used to eliminate duplicate names from a generated extends or implements clause for
example.

NODUP(term,expression)

Execution of the above NODUP predicate is the same as evaluating the expression and
eliminating from its solution all \duplicates". A solution is considered to be a \duplicate"
solution if the instantiation of the term relative to this solution is identical to an instantiation
of the same term relative to an earlier solution. The following example uses NODUP to remove
duplicate lastnames.

:- NODUP(?ln,person(?fn,?ln))

#SOLUTION : NODUP(DHondt,person(Theo,DHondt))

#SOLUTION : NODUP(DeMeuter,person(Wolfgang,DeMeuter))

#SOLUTION : NODUP(Mens,person(Tom,Mens))

Again, the reversed order in which rules are considered explains why TomMens is preferred
over Kim Mens by the TyRuBa system.

A word of caution is in order here. The NODUP predicate does not function properly when
the �ltered solutions still contain unbound variables. This not really a problem for its intended
use: to �lter duplicates from pieces of generated code. Unbound variables are not supposed
to occur in generated code anyway (see section 6.4.3).

The NOT predicate

NOT(expression)

The NOT predicate fails whenever its argument expression succeeds (i.e. has at least one
solution) under the current context of variable bindings.

:- person(?fn,?ln),NOT(mathematician(?fn,?ln))

#SOLUTION : person(Theo,DHondt),NOT(mathematician(Theo,DHondt))

#SOLUTION : person(Wolfgang,DeMeuter),NOT(mathematician(Wolfgang,DeMeuter))

The BOUND predicate

BOUND(variable)

The BOUND predicate veri�es whether variable is bound. It fails otherwise.

92 CHAPTER 6. TYRUBA

Arithmetic

TyRuBa o�ers some predicates to do simple integer arithmetic and comparison. They are
summarized in �gure 6.5.

TyRuBa expression Mathematical relationship

+(?a,?b,?s) s = a+ b

*(?a,?b,?p) p = ab

<(?a,?b) a < b

Figure 6.5: Special predicates for integer arithmetic and comparison

The predicates \+" and *" for simple integer arithmetic only work if at least two of the
three arguments have integer values at the moment the predicate is evaluated. If the third
one is also bound it will be veri�ed whether the value is correct. In case the third one is still
unbound, it will be bound to the correct value.

The comparison predicate \<" functions as a �lter and only works when both arguments
are bound to integers at the moment the predicate is evaluated. In this case it is veri�ed
whether the �rst argument is smaller than the second and the \<" predicate succeeds or fails
accordingly.

Note that a comparison for equality is not strictly needed since this can be done by means
of the implicit equality test in the uni�cation algorithm when a variable occurs more than
once in a rule or query. The following fact that de�nes an equal predicate is provided as part
of one of the TyRuBa initialization �les.

equal(?x,?x).

6.4 Code Generation

What we have described in the preceding sections, is basically just a simpli�ed Prolog system
with some super�cial syntactic di�erences and with an extension for including quoted pieces
of Java code. This does not yet constitute a meta-programming system for Java as outlined
in chapter 5. We still need a code generator that is consistent with some representational
mapping. We are going to introduce a coarse-grained general-purpose representational map-
ping and a consistent code generator in this section. This code generator is hardcoded in
the TyRuBa system. However, we can experiment with more speci�c and more �ne-grained
representational mappings and code generators by implementing a code generator on top of
the hardcoded code generator in TyRuBa itself. We will show one example of this in order
to demonstrate how it can be done.

6.4.1 The Hardcoded Representational Mapping

When looking at Java programs, the most coarse-grained entities in them are class declarations
and interface declarations. The hardcoded representational mapping does not split up these
entities but just regards them as one large chunk of quoted Java code. The presence of a
class declaration with name X in the base program (to be generated) is thus represented with
a proposition:

6.4. CODE GENERATION 93

generate(X,{class X extends ... implements ... {...}}).

Similarly for an interface declaration:

generate(X,{interface X extends ... {...}}).

The name of the predicate generate is chosen thus because the user usually implements it
himself in some initialization �le in order to specify a code generator for the representational
mapping he wants to adopt.

According to the observations from chapter 5 the representational mapping presented
here is not a very suitable one. The classes and interfaces are just treated as big string like
entities. No semantic information is available. However it is not the intention to use this
mapping directly. Hardcoding this mapping into the system merely establishes a convenient
interface that allows the user to implement his own representational mapping on top of it.
Given the experimental stage we are in, it would be a bad idea to hardcode a highly speci�c
code generator into the system directly. Thus, the hardcoded, coarse-grained, general-purpose
code generator allows easy experimentation with di�erent representational mappings and code
generators simply by swapping initialization �les.

6.4.2 Directives for the code generator

The code generator is driven by directives in the TyRuBa source �les. There are two directives
which address the code generator, the verbatim and the generate directive. We now briey
discuss their function.

The generate directive

This directive invokes the code generator and requests it to generate the part of the source
�le (i.e. a class or an interface declaration) corresponding to the name given by its argument.
The example in �gure 6.2 uses the directive

#generate Array<String>

to instruct the code generator to dump the de�nition of the class Array<String> onto the
output �le.

All the code generator does is invoke the TyRuBa core system and evaluate a query:

:- generate(Array<String>,?code).

The solutions to the query will bind the \generated code" to the ?code variable. It is
possible that the meta program does not provide an entity with the speci�ed name. In this
case the query has no result and the code generator will report an error message.

It is also possible that the meta program is ambiguous and that the query has more than
one solution. In this case the code generator will disregard all but the �rst solution. Knowing
that rules are tried in the reverse order of which they were read, this can be used to obtain
a primitive kind of \overriding" of older class or interface de�nitions with newer ones.

94 CHAPTER 6. TYRUBA

The verbatim directive

This is nothing but a shortcut to allow easy inclusion of some speci�c verbatim pieces of
Java code. The argument of the verbatim directive is dumped directly onto the generated
�le. This shortcut falls out of the conceptual model of representational mapping and code
generator but is nevertheless often useful. In �gure 6.2 a verbatim directive is used twice.
The �rst directive adds a package declaration to the start of the generated Java �le. The
second one adds a \main" class which constitutes a small test application which uses the
generated Array<String> class.

6.4.3 The Meaning of Terms in Java Code

Consider the (hardcoded) representational mapping. If we take an existing Java program and
look at the set of propositions which represent it we will �nd only propositions of the form

generate(?entityName,?quotedJavaTerm).

In place of the variable ?entityName there will be a Java identi�er and in place of
?quotedJavaTerm there will be chunk of quoted Java code which does not contain any
TyRuBa variables or compound terms, but only Java tokens. This is so because the pieces of
quoted Java code correspond with class and interface declarations taken from the Java pro-
gram. Since Java programs do not contain TyRuBa variables and compound terms neither
do the quoted code blocks.

However, the code generator works exactly in the opposite direction than does the (the-
oretical) representational mapping. The code generator starts from a logic program, i.e. a
\virtual" set of logic propositions and from this it generates Java code. The question there-
fore arises what meaning the code generator should assign to compound terms, variables,
etc. when they occur in some of the propositions. The simplest idea is to simply forbid this
kind of use and issue an error message or something like this. However, the system can be
made considerably more exible and expressive by giving some sensible meaning to compound
terms, variables etc. We now explain the choices that were made in this respect.

Compound Terms

In the TyRuBa code generator, compound terms (which do not contain any unbound variables,
either directly or nested inside one of their subterms) are treated as Java identi�ers. Thus
meta programs may use structured names for classes and interfaces. This facilitates, for
example, the simulation of parametric classes and interfaces (section 7.3). All that is required
to be able to use compound terms as special Java identi�ers is a translation scheme which
maps compound terms onto valid Java identi�ers. The translation scheme in the TyRuBa
code generator simply takes the compound term's textual representation and replaces all
occurrences of \<", \>" and \," by \ L", \ R" and \ C" respectively. Some examples of
compound terms and what they look like in generated Java code are displayed in �gure 6.6.

Variables

An error is generated when unbound variables occur in pieces of quoted Java code output by
the code generator. The reason for this is that in general, it is hard or maybe even impossible
to assign a reasonable substitute for a free variable in the generated code. It might be

6.5. REFINING THE CODE-GENERATOR 95

TyRuBa term In generated Java code

Array<String> Array LString R

triplet<1,2,3> triplet L1 C2 C3 R

deeply<nested<term>> deeply Lnested Lterm R R

Figure 6.6: Examples of compound terms and their Java \mangled" name.

reasonable to replace variables by the identi�er Object in case the variable occurs in a place
where a class name is expected. However this is just a particular case. If the variable occurs
anywhere else it is far less obvious to �nd a reasonable substitute. To complicate things further
the conception of quoted Java code as a sequence of tokens without any further syntactic or
semantic information makes it impossible to determine the nature of the context in which a
variable occurs5.

List

Output generated for a list occurring in a quoted-code block is produced by generating output
for each element in the list one by one with white space in between each element.

Quoted Code Blocks

When the code generator encounters a nested quoted code block it treats it in the same way
that it treats a list. That is, generate output for each element of the quoted code block with
white space in between. Note that the \{}" are delimiters indicating the start and end of a
quoted code block and are not considered to be part of the quoted code block's contents so
therefore they are not printed. To make this a little clearer consider the piece of TyRuBa
code in �gure 6.7. It makes a piece of quoted code with two other pieces of quoted code
as elements. Note that the delimiting \{}" of the nested blocks are not printed. Note also
that this is not the same as an append of the two blocks. The nesting structure is retained.
Although not visible at �rst sight, the constructed code block is not a list of tokens but really
a list of two quoted code blocks. When looking more closely, this is visible from the amount
of white space printed in between tokens.

blockpair(?b1,?b2,{?b1 ?b2}).

:- blockpair({Just a},{list of tokens},?pair).

#SOLUTION : blockpair({ Just a },{ list of tokens },{ Just a list of tokens })

Figure 6.7: Make a quoted code block of two elements

6.5 Re�ning the Code-Generator

Since the hardcoded code generator is not very useful by itself, we will need to implement
a more �ne-grained code generator. We can do this by providing an initialization �le which

5The latter complication might be solved by a more structured representation of pieces of quoted Java code.
We could then replace variables by something suitable (e.g. Object) in some situations.

96 CHAPTER 6. TYRUBA

implements it on top of the hardcoded code generator. In this section we will illustrate how
to do this by giving an example.

The code generator we implement here as an example is only a little more �ne grained than
the hardcoded code generator. Consequently this code generator is not very useful either.
The example merely aims at illustrating the method of implementing a code generator in
TyRuBa on top of the existing hardcoded code generator. We do not want to go into the
details of a more complicated code generator just yet.

6.5.1 Representational mapping

The hardcoded mapping does not make a distinction between a class and an interface dec-
laration. Both are treated simply as big chunks of quoted Java code associated with the
name of the de�ned entity by means of the generate predicate. A simple \re�nement" of
this representational mapping makes a distinction between a class declaration and an in-
terface declaration and stores class declarations and interface declarations under di�erent
predicates in the TyRuBa logic database. Additionally it also asserts separately whether the
class or interface is public or �nal with a proposition of the form public(entityName) or
final(entityName) respectively.

The remainder of the class or interface declaration, i.e. from the extends clause on, is put
into a proposition class or interface predicate respectively. This representational mapping
is illustrated in �gure 6.8.

6.5.2 Code Generator

We can implement a code generator that is consistent with this representational mapping
by means of an initialization �le that provides de�nitions for the generate predicate from
the hardcoded mapping in terms of the predicates public, final, class and interface as
shown in �gure 6.9.

6.6 Summary

In this chapter we presented the TyRuBa system, a concrete system that allows logic meta
programming for Java. The system o�ers a core consisting of a simple Prolog-like logic
language with an extension that allows pieces of Java code to be included as terms in logic
programs. The syntax of TyRuBa is summarized in �gure 6.10.

The core TyRuBa system has a large-grained general-purpose code generator hardcoded
into it. The large-grained code generator is not very useful by itself but provides a convenient
interface to \plug in" custom made code generators implemented in TyRuBa itself in an
initialization �le. In the next chapters we will make elaborate use of this and propose and
implement more �ne-grained mappings and code generators whenever the need for them arises.

6.6. SUMMARY 97

public interface anInterface

extends ...

{ ... }

final class aFinalClass extends ...

implements ...

{ ... }

public class aPublicClass ...

class anotherClass ...

public(anInterface).

interface(anInterface,{

extends ...

{ ... }

}).

final(aFinalClass)

class(aFinalClass,{

extends ...

implements ...

{ ... }

}).

public(aPublicClass).

class(aPublicClass,{...}).

class(anotherClass,{...}).

Figure 6.8: A Java program (on top) and its representation.

generate(?class,{?public ?final class ?class ?rest}) :-

gen_public(?class,?public),

gen_final(?class,?final),

class(?class,?rest).

generate(?itf,{?public ?final interface ?itf ?rest}) :-

gen_public(?itf,?public),

gen_final(?itf,?final),

interface(?itf,?rest).

gen_public(?entity,{}) :- NOT(public(?entity)).

gen_public(?entity,{public}) :- public(?entity).

gen_final(?entity,{}) :- NOT(final(?entity)).

gen_final(?entity,{final}) :- final(?entity).

Figure 6.9: Sample implementation of a code generator in TyRuBa

98 CHAPTER 6. TYRUBA

TyRuBaFile ::= (Rule | Fact | Query | IncludeDirective |

GenerateDirective | VerbatimDirective)*

IncludeDirective::= "#include" <STRING_LITERAL>

VerbatimDirective::= "#verbatim" Term

GenerateDirective::= "#generate" Term

Rule ::= Predicate ":-" Expression "."

Fact ::= Predicate "."

Query ::= ":-" Expression "."

Expression ::= Disjunction

Disjunction ::= Conjunction (";" Conjunction)*

Conjunction ::= SimpleExpression ("," SimpleExpression)*

SimpleExpression::= Predicate | Arithmetic

| GreaterFilter | "(" Expression ")"

GreaterFilter ::= "<" "(" Term "," Term ")"

Predicate ::= Constant ["(" TermList ")"]

Term ::= Variable | Constant | CompoundTerm

| QuotedCode | List

CompoundTerm ::= Constant "<" TermList ">"

List ::= "[" ListRest

ListRest ::= "]"

| Term ListCdr

ListCdr ::= "," Term ListCdr

| "|" Term "]"

| "]"

Constant ::= <IDENTIFIER>

| Literal

TermList ::= [Term ("," Term)*]

Variable ::= <VARIABLE>

QuotedCode ::= "{" (QuotedElement)* "}"

QuotedElement ::= Variable

| CompoundTerm

| "{" (QuotedElement)* "}"

| "@" Term

| JavaTokenNotBraces

Figure 6.10: The Syntax of TyRuBa

Chapter 7

Type-Oriented Meta Programming

in TyRuBa

7.1 Introduction

This chapter will show that TyRuBa can be used for type-oriented meta programming for
Java. To accomplish this we propose a representational mapping that rei�es base-level types
and relationships between base-level types. A corresponding code generator consistent with
this representational mapping is implemented by means of a suitable TyRuBa initialization
�le.

The mapping and code-generator in this chapter are \minimalistic" in the sense that we
have kept them as coarse grained as possible while still allowing type-oriented programming.
Classes and interfaces are rei�ed as atomic units in the sense that the body of a class or
interface declaration is treated as a big chunk of quoted Java code which is not split up
into smaller elements. However, the extends and implements relationships between classes
and interfaces is rei�ed. Subsequent chapters will present applications of type-oriented meta
programming in TyRuBa which typically require a more �ne-grained view of the base-level
program. We will introduce more �ne-grained representational mappings and implement
re�nements of the code generator when the need arises.

At the end of this chapter we will give a tentative example that illustrates the potential
power of type-oriented meta programming in TyRuBa. This example is speci�cally chosen
because it makes full use of the fact that the logic meta language is an unrestricted, fully
Turing-complete programming language.

7.2 Reifying Type Information

The �rst thing we need in order to accomplish type-oriented meta programming is to reify
base-level type information into meta programs. This can be accomplished by means of a
suitable representational mapping and corresponding code generator that makes types ex-
plicit. In this section we propose a representational mapping and code generator which do
just this.

99

100 CHAPTER 7. TYPE-ORIENTED META PROGRAMMING IN TYRUBA

7.2.1 Representational Mapping

In a Java program a (user de�ned) type is either a class or an interface. The relationships
between types are class extension, interface extension and interface implementation. For the
time being this is all we are interested in, and we consider this to be the absolute minimum
of rei�ed information needed to do type-oriented programming for Java.

The presence of a class declaration in the base-level program is represented by means of
a proposition of the form:

class (className,fclassBodyg).
This \asserts" that there is a class declaration for the class className with a class

declaration body given by classBody . A similar proposition asserts the presence of an
interface declaration:

interface (interfaceName,finterfaceBodyg).
Whenever an interface name appears in the implements clause of a class declaration this

is asserted by a proposition of the form:

implements (className,interfaceName)

Extends clauses are treated similarly. Whenever a type (class or interface) appears in the
extends clause of another type this is asserted by a proposition of the form:

extends (subTypeName,superTypeName)

Note that we have adopted the naming convention of ending predicate names with a _"
if they have an assigned meaning in this representational mapping. We will use di�erent
naming conventions for the re�ned representational mappings given in subsequent chapters
thereby making it implicitly clear what representational mapping scheme is being used.

A schematic Java program and the corresponding set of logic propositions are given in
�gure 7.1.

7.2.2 Code Generator

We now show the implementation of a code generator that is consistent with the represen-
tational mapping given above. As we explained in section 6.5 we can implement this code
generator in TyRuBa itself, on top of the hard-coded code generator. The entire implemen-
tation of the code generator is given in �gure 7.2. The code generator is implemented as an
extra layer on top of the hard-coded code generator by implementing the generate predicate
in terms of the predicates of the representational mapping. Code for classes and interfaces
are both generated in more or less the same way. We will take a closer look at one of them,
for example the generation of code for a class:

generate(?class,{

class ?class

?extendsclause

?implementsclause

{ ?body }

}) :- class_(?class,?body),

generate_extendsclause(?class,?extendsclause),

generate_implementsclause(?class,?implementsclause).

The extends clause, the implements clause and the body of the class are computed by
the condition of the above rule. The body of the class is simply looked up in the logic

7.2. REIFYING TYPE INFORMATION 101

interface interface1

extends superInterface1,superInterface2

{ ...A... }

interface interface2 { ...B... }

class aClass extends aSuperclass

implements interface1, interface2 {

/** The body of aClass */

...C...

}

interface_(interface1,{...A...}).

extends_(interface1,superInterface1).

extends_(interface1,superInterface2).

interface_(interface2,{...B...}).

class_(aClass,{

/** The body of aClass */

...C...}).

extends_(aClass,aSuperClass).

implements_(aClass,interface1).

implements_(aClass,interface2).

Figure 7.1: A Java Program (on top) and its representation (below)

102 CHAPTER 7. TYPE-ORIENTED META PROGRAMMING IN TYRUBA

generate(?class,{

class ?class

?extendsclause

?implementsclause

{ ?body }

}) :- class_(?class,?body),

generate_extendsclause(?class,?extendsclause),

generate_implementsclause(?class,?implementsclause).

generate(?itf,{

interface ?itf

?extendsclause

{ ?body

}

}) :- interface_(?itf,?body),

generate_extendsclause(?itf,?extendsclause).

generate_extendsclause(?x,?extendsclause) :-

FINDALL(NODUP(?extended,extends_(?x,?extended)),

?extended,?extendslist),

JavaClause(extends,?extendslist,?extendsclause).

generate_implementsclause(?x,?implementsclause) :-

FINDALL(NODUP(?itf,implements_(?x,?itf)),

?itf,?implementslist),

JavaClause(implements,?implementslist,?implementsclause).

/***** Auxiliary predicates for constructing Java syntax */

/*Create an implements or extends clause (?symbol indicates which)

Example 1:

JavaClause(extends, [a,b,c], ?result)

==> JavaClause(extends,[a,b,c], {extends a,b,c})

Example 2:

JavaClause(extends, [], ?result)

==> JavaClause(extends, [], {})

*/

JavaClause(?symbol,[],{}).

JavaClause(?symbol,[?f|?r], {?symbol ?itflist})

:- JavaCommaList([?f|?r],?itflist).

/*Construct a list of comma separated elements

Example:

JavaCommaList([a,b,c],?result)

==> JavaCommaList([a,b,c],{a,b,c})

*/

JavaCommaList([],{}).

JavaCommaList([?e1],{?e1}).

JavaCommaList([?e1,?e2 | ?er],{?e1,?cr}) :- JavaCommaList([?e2|?er],?cr).

Figure 7.2: A code-generator for type-oriented meta programming

7.3. PARAMETRIC AND BOUNDED PARAMETRIC TYPES 103

database. The extends and implements clauses are computed by two auxiliary predicates,
generate_extendsclause and generate implementsclause respectively. These auxiliary
predicates look up all type names that are in an extends or implements relationship with
the class being generated. From this an extends or implements clause is constructed. For
the precise de�nition of the auxiliary predicates see �gure 7.2. Note the usage of NODUP to
eliminate duplicate type names in the generated extends or implements clause.

7.3 Parametric and Bounded Parametric Types

As a �rst simple example of type-oriented programming we show how to simulate parametric
and bounded parametric polymorphism. We explained in chapter 1 that parametric types
can be seen as o�ering a very limited form of type-oriented programming. It is therefore
reasonable to assume that TyRuBa, which we claim o�ers a capability for unrestricted type-
oriented meta programming, should at least support parametric types.

The ability to express parametric types in TyRuBa is a straightforward result of being
able to use logic terms in place of identi�ers, more speci�cally in place of identi�ers that
represent type names. Reconsider the example of a parametric array class from section 1.6.1.
This parametric array class can be expressed in TyRuBa as follows:

class_(Array<?El>,{

private ?El[] contents;

/** Construction */

Array<?El>(int sz) { contents = new ?El[sz]; }

/** Basic Array functionality */

?El at(int i) { return contents[i]; }

void atPut(int i, ?El e) { contents[i]=e; }

int length() { return contents.length; }

}).

Such a de�nition represents not one but several classes: one for each binding of the
variables in the class name. In the given example, that is one Array<?El> class for each
possible ?El element type. We can also simulate bounded parametric polymorphism by
imposing restrictions on the variables by using a rule with a condition. Figure 7.3 shows a
translation of the example from �gure 1.1 into TyRuBa. Note that if a class imposes a bound
on one or more of its type parameters, then the rules asserting that the class implements an
interface (or extends an other class) should also be guarded by the same condition.

Note that the subtype predicate is not de�ned by the representational mapping. It
corresponds to the Java subtype relationship between classes and interfaces and is de�ned in
TyRuBa itself. Figure 7.4 shows some rules which de�ne subtype along with a few other useful
predicates. These rules are provided as part of the initialization �le which also de�nes the
code generator and is included automatically into the TyRuBa rule base upon initialization.

With respect to the existing proposals for parametric types in Java [OW97, AFM97,
MBL97], this emulation of bounded parametric polymorphism resembles most that from Pizza
[OW97] and [AFM97]. The given implementation of subtype corresponds to the type restric-
tions with which type parameters in these two systems can be bounded. Pizza [OW97] and

104 CHAPTER 7. TYPE-ORIENTED META PROGRAMMING IN TYRUBA

interface_(Equality<?This>,{

boolean equals(?This e);

}).

interface_(Searchable<?El>,{

boolean contains(?El e);

}).

class_(Array<?El>,{

?El[] contents;

/** Construction */

Array<?El>(int sz) { contents = new ?El[sz]; }

/** Basic Array functionality */

?El at(int i) { return contents[i]; }

void atPut(int i, ?El e) { contents[i]=e; }

int length() { return contents.length; }

/** Searchable Interface */

boolean contains(?El e) {

boolean found = false;

int i = 0;

while (!found && i<length())

found = e.equals(at(i++));

return found;

}

}) :- subtype(?El,Equality<?El>).

implements_(Array<?El>,Searchable<?El>) :- subtype(?El,Equality<?El>).

Figure 7.3: A \bounded" parametric Array class in TyRuBa

7.3. PARAMETRIC AND BOUNDED PARAMETRIC TYPES 105

/**** Predicates that deduce information from "_" facts */

/* Is there a class named ?cl */

class(?cl) :- class_(?cl,?body).

/* Is there an interface named ?itf */

interface(?itf) :- interface_(?itf,?body).

/* Does a class implement an interface (directly or indirectly) */

implements(?cl,?itf) :- implements_(?cl,?itf).

implements(?cl,?itf) :- BOUND(?itf),extends(?itf0,?itf),implements_(?cl,?itf0).

implements(?cl,?itf) :- BOUND(?cl),NOT(BOUND(?itf)),

implements_(?cl,?itf0),extends(?itf0,?itf).

implements(?cl,?itf) :- NOT(BOUND(?itf)),NOT(BOUND(?itf)),

extends(?itf0,?itf),implements_(?cl,?itf0).

implements(?cl,?itf) :- extends_(?cl,?super),implements(?super,?itf).

/* Does ?cl extend ?super (?cl class or interface) */

extends(?cl,?super) :- extends_(?cl,?super).

extends(?cl,?super) :- extends_(?cl,?super0),extends(?super0,?super).

/* Is ?cl a subclass of ?super */

subclass(?cl,?super):-extends(?cl,?super),class(?cl).

/* Is ?t1 a subtype of ?t2 according to Java type rules */

subtype(?t1,?t2) :- extends(?t1,?t2);implements(?t1,?t2).

subtype(?t,?t) :- class(?t);interface(?t).

Figure 7.4: Some rules deducing useful type information

106 CHAPTER 7. TYPE-ORIENTED META PROGRAMMING IN TYRUBA

[AFM97] are very similar to each other but because of its heterogeneous implementation,
[AFM97] is somewhat more exible. The terminology \heterogeneous" and \homogeneous"
was introduced in [OW97]. We briey explained the di�erence between homogeneouos and
heterogeneous implementation in section 3.3.1. A heterogeneous implementation reinstanti-
ates the code of a parametric class every time it is used whereas a homogeneous implemen-
tation shares the code. In order to be able to share the code between all instantiations of a
parametric class more restrictions must be imposed. TyRuBa �ts into the \heterogeneous"
category since it generates separate Java source code for every instantiation of a class.

7.4 Fully Exploiting Turing Equivalence

TyRuBa is a fully Turing-equivalent meta language for manipulating pieces of Java code to-
gether with their type properties. This allows for sophisticated forms of generic programming
where code for a certain class or interface can be generated by an arbitrary computation
speci�ed in Prolog. This section gives an example illustrating this. The example is a para-
metric class for a multidimensional array data structure where the dimension of the array
is a parameter of the class. This example is interesting because it recurses over an integer
representing the dimension of the array. An iteration like this leads to potential in�nite loops
when there is no adequate condition that makes it terminate after a �nite number of steps.
Hence this example can not be expressed in a system which guarantees that \compile-time
type programs" always terminate.

We start with the most trivial case which ends the recursion, namely an array with
dimension equal to zero:

class_(MArray<0,?El>, {

private ?El contents;

?El elementAt() { return contents; };

void setElementAt(?El el) { contents = el; }

}).

Before giving the recursive class that speci�es how an array with n dimensions can be
speci�ed in terms of an array of n� 1 dimensions, let us �rst have a look at how the speci�c
example of a three-dimensional array can be implemented in terms of a two-dimensional array
in �gure 7.5. This will help to understand the recursive TyRuBa code we will give afterwards.

As can be seen, the implementation of a three-dimensional array in terms of a two dimen-
sional one is pretty much as expected. It stores the array as a Java array of two dimensional
arrays. Its constructor and accessor methods have an extra parameter to use for the Java
array and pass the rest of the arguments on to the respective two dimensional constructor or
method.

We now present the recursive1 part of the implementation of MArray part of the imple-
mentation in �gure 7.6. The condition of the rule restricts it to be applicable only when
the dimensionality of the array is 1 or greater than 1. This restriction is responsible for the
recursion ending when zero is reached. The condition of the rule also computes bindings

1The implementation of a three dimensional MArray was only given as a clarifying example and is subsumed
by the recursive code

7.5. SUMMARY 107

class_(MArray<3,?El>, {

private MArray<2,?El>[] contents;

MArray<3,?El> (int size3, int size2, int size1) {

contents = new MArray<2,?El> [size3];

for (int i=0;i<size3;i++) {

contents[i] = new MArray<2,?El> (size2,size1);

}

}

?El elementAt (int index3,int index2,int index1) {

return contents[index3].elementAt(index2,index1);

}

void setElementAt (?El el,int index3,int index2,int index1)

{

contents[index3].setElementAt(el, index2, index1);

}

}).

Figure 7.5: A three-dimensional array

for the variables ?CFormals and ?atFormals by means of some auxiliary predicates. The
de�nition of the auxiliary predicates used in this example are listed in �gure 7.7. Note that
the de�nition of JavaCommaList was given before in �gure 7.2 so it is not repeated here.

One remark about the names of the formals in the generated formals list. The name of
a formal is given by a compound term a<?name,?counter>. Remember that the hard-coded
code generator has a name hashing scheme which allows compound terms (with no unbound
variables) to be used as identi�ers. Up to now we have just used this feature for simulating
parametric type names, however we can just as well use it for names of variables and such.
So this is just a way of making a list of formals with distinct names by including a counter
as part of the name. The names of the formals will not be literally the same as those given
in the three-dimensional array implementation but they are similar in spirit. The names will
just be a little bit messier, for example \a_Lindex_C3_R" instead of just \index3".

7.5 Summary

In this chapter we showed how TyRuBa can be used for type-oriented logic meta program-
ming. This is accomplished by implementing a code generator that is consistent with a
representational mapping that rei�es types (class and interface names) and the relationships
between them (extends and implements). The representational mapping and code generator
presented in this chapter are kept as coarse as possible while still enabling a minimal capa-
bility for type-oriented meta programming. We will present more �ne-grained re�nements in
subsequent chapters as the need arises.

The coarse grained mapping already su�ces to emulate parametric and bounded paramet-
ric types similar to existing proposals for adding parametric types to Java [OW97, AFM97].
The emulation of parametric polymorphism in TyRuBa is a straightforward consequence of
using logic variables in logic terms representing type names. The kind of constraints that
can be used to impose bounds on the type parameters depends on the information that is

108 CHAPTER 7. TYPE-ORIENTED META PROGRAMMING IN TYRUBA

class_(MArray<?Dim,?El>, {

private MArray<?DDim,?El>[] contents;

MArray<?Dim,?El> (?CFormals) {

contents = new MArray<?DDim,?El>[?CFirst];

for (int i=0;i<?CFirst;i++) {

contents[i] = new MArray<?DDim,?El> (?CRest);

}

}

?El elementAt (?atFormals) {

return contents[?atFirst].elementAt (?atRest);

}

void setElementAt (?El el, ?atFormals)

{

contents[?atFirst].setElementAt (?elAtRest);

}

})

:- >(?Dim,0), +(?DDim,1,?Dim),

JavaFormals(?Dim, int, size, ?CFormals0),

JavaRemoveTypes(?CFormals0,[?CFirst | ?CRest0]),

JavaFormals(?Dim, int, index, ?atFormals0),

JavaRemoveTypes(?atFormals0, [?atFirst | ?atRest0]),

JavaCommaList(?CFormals0,?CFormals),

JavaCommaList(?CRest0,?CRest),

JavaCommaList(?atFormals0,?atFormals),

JavaCommaList(?atRest0,?atRest),

JavaCommaList([el | ?atRest0],?elAtRest).

Figure 7.6: A multidimensional array class in TyRuBa

/*Generate a list of formals with type {?Type a<?Name,?counter>}*/

JavaFormals(0, ?Type, ?Name, []).

JavaFormals(?Dim, ?Type, ?Name, [{?Type a<?Name,?Dim>} | ?RestFormals])

:- >(?Dim,0), +(?DDim,1,?Dim),

JavaFormals(?DDim, ?Type, ?Name, ?RestFormals).

/*Take a list constructed in JavaFormals and remove the types*/

JavaRemoveTypes([],[]).

JavaRemoveTypes([{?T ?I} | ?RT] , [?I | ?R]) :- JavaRemoveTypes(?RT,?R).

Figure 7.7: Auxiliary predicates used in MArray

7.5. SUMMARY 109

rei�ed by the representational mapping. The mapping presented in this chapter is very coarse
grained. It is however possible to de�ne and implement more �ne-grained mappings that reify
more information, and we will e�ectively do this in subsequent chapters.

At the end of this chapter we have given a tentative example illustrating the potential
power of having a Turing-complete meta language to manipulate types and the code that
implements them. This example illustrates the potential use of recursion in type-manipulating
meta programs.

110 CHAPTER 7. TYPE-ORIENTED META PROGRAMMING IN TYRUBA

Chapter 8

Benchmarking TyRuBa's

Expressiveness

8.1 Introduction

We have explained in previous chapters what is meant by type-oriented logic meta program-
ming and how the TyRuBa system provides a means to this end in the context of Java. In this
chapter we will take another look at the benchmark programming assignments of section 2.9.
We used these benchmarks as a means to explore and assess the expressiveness of Gofer's
type language as a programming language.

Benchmark problems 1 and 2 correspond roughly to the motivating examples from sec-
tion 1.6, illustrating the loss of expressiveness due to the lack of a suitable decision making
feature in typical Java parametric types proposals. Gofer's type language is considerably
more sophisticated and even though it was not designed as such it comes very close to a
programming language. Because of this, benchmark problems 1 and 2 were easily solved in
Gofer. When we push the boundary some more however we soon reach the limits of its expres-
siveness. Benchmark problem 3 could only be partially solved. The solution to benchmark 4
was very complicated and only achieved using the type language in ways it was clearly not
intended to be used. As a result, the solution was easily shown to have some problems due
to ambiguous type errors which make it only of very limited use in practice.

The type languages in traditional type systems have a lot of restrictions built into them to
ensure termination, avoid ambiguity and generally keep the type checking or inferencing al-
gorithm tractable. As a consequence of these restrictions the type language is not designed as
a programming language and has only a very limited capability for supporting type-oriented
meta programming. In contrast, TyRuBa o�ers the possibility for type-oriented meta pro-
gramming in an unrestricted (logic) meta language that is truly a programming language.
In this chapter we will show what we gain in terms of expressiveness by implementing the
benchmark problems from section 2.9 in TyRuBa. We will see that all of the programming
assignments can be easily expressed. While studying the �rst example it will however become
evident that TyRuBa with the coarse grained mapping proposed in chapter 7 is not su�cient
to solve the problems. We need a more �ne-grained mapping that splits up the class declara-
tion into smaller parts. After de�ning and implementing the more �ne-grained mapping all
of the benchmark problems are easily solved.

111

112 CHAPTER 8. BENCHMARKING TYRUBA'S EXPRESSIVENESS

8.2 Conditional Implementation Re-examined

Let us start by re-examining benchmark 1. In keeping with the motivating example from sec-
tion 1.6 we will again implement arrays rather than lists. For easy reference we have repeated
the example in �gure 8.1. Rather than expressing the example in the \�ctional" parametric
extension of Java used in section 1.6, we express it in TyRuBa with the representational
mapping from chapter 7 (i.e. the _" mapping).

interface_(Equality<?This>, {

boolean equals(?This e);

}).

interface_(Searchable<?El>, {

boolean contains(?El e);

}).

implements_(Array<?El>,Searchable<?El>) :-

implements(?El,Equality<?El>).

class_(Array<?El>, {

?El[] contents;

/** Construction */

Array<?El>(int size) { contents = new ?El[size]; }

/** Basic Array functionality */

?El at(int i) { return contents[i]; }

void atPut(int i, ?El e) { contents[i]=e; }

int length() { return contents.length; }

/** Searchable Interface */

boolean contains(?El e) {

boolean found = false;

int i = 0;

while (!found && i<length())

found = e.equals(at(i++));

return found;

}

}) :- implements(?El,Equality<?El>).

Figure 8.1: A Parametric Array Class

Note the use of implements instead of implements to constrain the ?El parameter to
be a class implementing the Equality interface. This is intentional, we purposefully refer to
the implements predicate from the initialization �le (�gure 7.4). Using implements_ instead
would only signify element types which directly implement the equality interface but would
\forget about" classes that implement it indirectly (i.e. inherit it or have it implicitly included
via a wider interface).

Despite being written in TyRuBa, the code in �gure 8.1 still exhibits the same problem
as the code previously given: the type bound for element types is imposed on the array

8.3. MORE FINE-GRAINED REIFICATION OF CLASSES 113

class as a whole. We cannot instantiate the Array class for elements not implementing
equality. We could \solve" this problem by providing an extra declaration of Array without
the implementation of Searchable as shown in �gure 8.2. This \solution" is inadequate
because it duplicates the code for basic array functionality.

/** Arrays of elements NOT supporting Equality tests */

class_(Array<?El>,{

/** Basic Array functionality */

...

}) :- NOT(implements(?El,Equality<?El>)).

/** Arrays of elements that DO support Equality tests */

implements_(Array<?El>,Searchable<?El>)

:- implements(?El,Equality<?El>).

class_(Array<?El>, {

/** Basic Array functionality */

...

/** Searchable Interface */

...

}) :- implements(?El,Equality<?El>).

Figure 8.2: Two alternative, mutually exclusive declarations of Array

8.3 More Fine-Grained Rei�cation of Classes

In order to really solve the problem we must treat the body of a class declaration not as a
single monolithic block of code, but chop it up into smaller pieces. Thus, restrictions can
be imposed on every piece individually. For the purpose of this example (and of the other
benchmark problems treated later on) it will su�ce to chop the class up into pieces responsible
for implementing interfaces, on an interface by interface basis. This is accomplished by
implementing a more �ne grained re�nement of the code generator which is consistent with
the following representational mapping.

8.3.1 Representational Mapping

The basic idea of the representation scheme is that a class body is chopped up into pieces pro-
viding the implementations for interfaces1. Every one of these pieces2 is put into a proposition
of the form:

implements I(className,interfaceName,f...g).

1We implicitly assume that interfaces do not overlap. This is not a serious restriction because it is always
possible to create an extra interface for the shared part of two overlapping interfaces and add this new interface
to their extends clause. Note that this only requires editing the interface declarations themselves, but does
not have any impact on the classes which implement the interfaces.

2Code implementing an interface which is inherited from a superclass must not be declared in an
implements I clause for the subclass. Only code with occurs in the actual declaration of the class itself
must be declared.

114 CHAPTER 8. BENCHMARKING TYRUBA'S EXPRESSIVENESS

The remaining code in the class body is put into a proposition:

class_I(className,{...}).

Just like the mapping, the I mapping rei�es the extends and implements relationship
which is declared between classes and interfaces. Whenever a type is listed in the extends

clause of another type, this is asserted by a fact of the form:

extends_I(subtypeName,superTypeName).

Thus, the extends I predicate is merely a renamed version of the extends predicate.

The implements relationship is expressed in a similar way, by means of a fact of the form:

implements_I(className,interfaceName).

Note the \overloaded" usage of the name implements I. When used with two arguments it
states the occurrence of an interface name in a class's implements clause. When used with
three arguments it also provides a piece of source code that must be inserted into the class's
body and actually provides the needed method declarations.

A schematic Java program and the corresponding set of logic propositions are given in
�gure 8.3. Note the _I" at the end of predicate names. The predicates of the representa-
tional mapping introduced in this chapter all follow this naming convention. The \I" stands
for \Interface", indicating the representational mapping which considers classes at interface
granularity.

8.3.2 Code Generator

We now present a code generator consistent with the representational mapping given above.
Its implementation is given in �gure 8.4. It is implemented on top of the _" code generator
in a way similar to how this itself was implemented on top of the hard-coded code generator.
The implementation of the code-generator is thus just a set of rules that establishes how the
_" predicates are deduced from the _I" predicates. The most complicated of these rules is
the one for class . It �nds all pieces of a class's body which implement interfaces on that
class. From this, duplicate interface names are eliminated by using NODUP. Finally, all of the
thus obtained pieces of class body are pasted together with the class's basic class body.

8.4 Solving the Benchmark Problems

Because TyRuBa, with the proposed representational mapping, constitutes an environment
where a real programming language is available for manipulating Java interface types and
pieces of Java code that implement them, the possibilities are virtually unlimited. One can
write logic programs to implement classes, de�ne interfaces, implement interfaces on classes
etc. These programs may infer di�erent implementations or interfaces depending on a type
parameter. The extra expressive power this o�ers is more than su�cient to easily express all
of the benchmark problems.

8.4. SOLVING THE BENCHMARK PROBLEMS 115

interface interface1

extends superInterface1,superInterface2

{ ... }

interface interface2 { ... }

class aClass extends aSuperclass

implements interface1, interface2 {

/** Some code specific to aClass */

...

/** Some code implementing interface1 */

...

/** Some code implementing interface2 */

...

}

interface_I(interface1,{...}).

extends_I(interface1,superInterface1).

extends_I(interface1,superInterface2).

interface_I(interface2,{...}).

class_I(aClass,{

/** Some code specific to aClass*/

...

}).

extends_I(aClass,aSuperClass).

implements_I(aClass,interface1,{

/** Some code implementing interface1 */

...}).

implements_I(aClass,interface2,{

/** Some code implementing interface2 */

...}).

Figure 8.3: A Java Program (on top) and its representation as a set of propositions

class_(?class,{?basics ?interfaces}) :-

class_I(?class,?basics),

FINDALL(NODUP(?itf,implements_I(?class,?itf,?how)),

?how,?interfaces).

implements_(?cl,?itf) :- implements_I(?cl,?itf).

extends_(?a,?b) :- extends_I(?a,?b).

interface_(?itf,?body) :- interface_I(?itf,?body).

implements_I(?cl,?itf) :- implements_I(?cl,?itf,?body).

Figure 8.4: A Code Generator splitting up classes into \interface implementations"

116 CHAPTER 8. BENCHMARKING TYRUBA'S EXPRESSIVENESS

8.4.1 Conditional Interface Implementation

Benchmark 1 corresponds to the \Conditional Interface Implementation Problem" from sec-
tion 1.6.1. The problem comes down to the fact that sometimes we are not satis�ed with
simply putting type constraints on an entire class but want �ner control on an interface by
interface basis. As an example we presented a parametric Array class (�gure 8.1) which
implements the Searchable interface. In this particular example we would want to make
the implementation of the Searchable interface conditional, depending on whether the type
parameter provides an implementation for the Equality interface. Typical parametric type
systems do not provide a way to do this. They usually do o�er a mechanism of bounded
parametric polymorphism which allows constraining the instantiation of a parametric class
by imposing a \bound" on type parameters. However this is an all or nothing situation. The
class can either be instantiated, or it cannot be instantiated. A situation where in some cases
the class is instantiated but without an implementation for a certain interface is impossible.

In TyRuBa, with a representational mapping which divides classes into parts implementing
interfaces, we may impose restrictions on every separate piece of the class body. We may say
for every individual part on what condition it may be included into the actual class declaration
body that will appear in the generated Java program. This is a very natural way of providing
\conditional interface implementations". Figure 8.5 shows TyRuBa code for an Array class
with a conditional implementation of the Searchable interface.

class_I(Array<?El>,{

private ?El[] contents;

/** Construction */

Array<?El>(int size) { contents = new ?El[size]; }

/** Basic Array functionality */

?El elementAt(int i) { return contents[i]; }

void setElementAt(?El e,int i) { contents[i]=e; }

int length() { return contents.length; }

}).

implements_I(Array<?El>,Searchable<?El>,{

public boolean contains(?El e) {

boolean found = false;

int i = 0;

while (!found && i<length())

found = e.equals(elementAt(i++));

return found;

}

}) :- implements(?El,Equality<?El>).

Figure 8.5: Array with conditional implementation of Searchable

8.4.2 Positioning Abstract Code

Benchmark problem 2 corresponds to the second motivating example from section 1.6.2. In
that section we discussed that it is not always adequate to put abstract code into abstract

8.4. SOLVING THE BENCHMARK PROBLEMS 117

classes. The reason is that it is not always easy or possible to �nd a suitable place in the class
tree for the abstract class. The problem becomes exponentially worse when several abstract
classes are to coexist in the same class library. A nicer solution we also discussed is using a
mixin class but this requires explicit subclassing to add the abstract functionality to the class
and makes it di�cult to specialize the abstract functionality in speci�c classes. In TyRuBa it
is very natural to write an abstract implementation for an interface completely separate from
the class hierarchy and declare to which classes it should be applied by means of an arbitrary
logic expression. Figure 8.6 shows a logic rule that implements the searchable interface on
any collection class that implements the Enumerable interface and has elements comparable
for Equality.

/* Abstract implementation of Searchable on top of Enumerable */

implements_I(?X,Searchable<?El>,{

public boolean contains(?El e) {

boolean found = false;

Enumeration<?El> elems = this.elements();

while (!found && (elems.hasMoreElements()))

found = e.equals(elems.nextElement());

return found;

}

}):- implements(?X,Enumerable<?El>),

implements(?El,Equality<?El>).

/* Something which contains elements can usually enumerate them */

interface_I(Enumerable<?El>,{

Enumeration<?El> elements();

}).

/* TyRuBa-ized version of Java.util.Enumeration */

interface_I(Enumeration<?El>,{

boolean hasMoreElements();

?El nextElement();

}).

Figure 8.6: An Abstract implementation of Searchable in TyRuBa

8.4.3 Type-Dependent Internal Representation

Benchmark problem 3 was the implementation of an abstract data type Set, the internal
representation of which depends on the type of elements that will be stored in it. This requires
another kind of decision making than the two former benchmark problems. It turned out that
Gofer's type language falls short just an inch to solve this problem completely. Apparently
Gofer's type language can be used to make decisions about functionality and implementation
of functionality onto a data structure, but it cannot be used to express decisions that a�ect
the data structure itself.

Now let us have a look at the TyRuBa solution. We start by de�ning an interface for the
functionality of sets. Basically one can do two things with a set: insert elements into it, or
ask whether it contains a particular element:

118 CHAPTER 8. BENCHMARKING TYRUBA'S EXPRESSIVENESS

interface_I(SetInterface<?El>,{

void insert(?El e);

boolean contains(?El e);

}).

Before going on we �rst implement the classes that will be used to represent lists and trees
respectively. These can be found in �gure 8.7. They are just two simple classes with a few
instance variables and a constructor to initialize them.

class_I(List<?El>,{

?El first;

List<?El> rest;

List<?El>(?El f,List<?El> r) {first=f;rest=r;}

}).

class_I(Tree<?El>,{

?El elem;

Tree<?El> left;

Tree<?El> right;

Tree<?El>(?El e,Tree<?El> l,Tree<?El> r) {

elem=e; left=l; right=r;

}

}).

Figure 8.7: Tree and List internal representation classes

Next, we will declare the concrete implementations of this interface onto a class Set<?El>.
We will have two declarations of this class, with two di�erent internal representations.

/** If the elements implement Equality use this */

class_I(Set<?El>,{

private List<?El> representation = null;

}) :- implements(?El,Equality<?El>).

/** If the elements implement Ordered use this instead */

class_I(Set<?El>,{

private Tree<?El> representation = null;

}) :- implements(?El,Ordered<?El>).

Note that the order in which these declarations are given matters. The last declared one will
take precedence over the other. This is important because usually a class that implements
Ordered will also implement Equality. By giving the Tree representation after the List

representation we ensure that a Tree representation will be chosen for sets with elements
that implement both Ordered and Equality at the same time.

We still have to declare how these internal representations can be used to implement the
SetInterface. We start with the implementation of List represented sets, listed in �gure 8.8.
The implementation is pretty straightforward and does not need a lot of explanation. The

8.4. SOLVING THE BENCHMARK PROBLEMS 119

implements_I(Set<?El>,SetInterface<?El>,{

public void insert(?El e) {

if (!contains(e)) {

representation = new List<?El>(e,representation);

}

}

public boolean contains(?El e) {

return listContains(representation,e);

}

private static boolean listContains(List<?El> l,?El e) {

return (l!=null) && (

l.first.equals(e) || listContains(l.rest,e)

);

}

}) :- implements(?El,Equality<?El>).

Figure 8.8: Implementing SetInterface for List representations

contains method calls an auxiliary function that traverses the list sequentially. The insert
method �rst checks whether the element is not already in the list. If it is not, then it is added
to the front of the list.

The implementation of the SetInterface for sets with an internal Tree representation
is listed in �gure 8.9. We will not explain this code in detail since it is just a simple and
straightforward implementation of the insert and lookup algorithms on binary search trees.

Again, it is important that the Tree implementation is given last, after the List imple-
mentation to make sure that the Tree implementation will be chosen in case element types
implement both Equality and Ordered.

This concludes the solution for benchmark 3. The TyRuBa solution to the benchmark
does not have the problem found in the Gofer solution. Whenever code is generated for a
class Set<?El> the appropriate implementation with either a list or a tree representation will
be chosen automatically depending on the type of elements. The user of the set abstract data
type does not have to be concerned with the internal representation at all.

8.4.4 Iteration or Recursion

Benchmark problem 4 was an implementation of tuples which contain a �xed number of
elements. Each element possibly of a di�erent static type. The arity of the tuple may vary
but is known at compile time. We were able to express this problem eventually in Gofer,
but we were clearly nearing the edge of the type language's expressiveness. We had to de�ne
our own numerals and \list of type" representations. The Gofer solution was not entirely
satisfactory because it was not very usable in practice because of ambiguous-type related
errors hiding around the corner.

We will now express the same programming benchmark in TyRuBa. We will do so in two
di�erent ways. The �rst solution is nearly the same as the Gofer solution. The di�erence is

120 CHAPTER 8. BENCHMARKING TYRUBA'S EXPRESSIVENESS

implements_I(Set<?El>,SetInterface<?El>,{

public void insert(?El e) {

representation = insertTree(representation,e);

}

private static Tree<?El> insertTree(Tree<?El> t,?El e) {

if (t==null)

return new Tree<?El>(e,null,null);

else {

int comparison = t.elem.compareTo(e);

if (comparison<0)

t.left = insertTree(t.left,e);

else if (comparison>0)

t.right = insertTree(t.right,e);

return t;

}

}

public boolean contains(?El e) {

return treeContains(representation,e);

}

private static boolean treeContains(Tree<?El> t,?El e) {

if (t==null)

return false;

else {

int comparison = t.elem.compareTo(e);

if (comparison<0) /*Less*/

return treeContains(t.left,e);

else if (comparison>0) /*Greater*/

return treeContains(t.right,e);

else /*Equal*/

return true;

}

}

}) :- implements(?El,Ordered<?El>).

Figure 8.9: Implementing SetInterface for Tree representations

8.4. SOLVING THE BENCHMARK PROBLEMS 121

that we do not have to create our own numbers and lists. These are provided by the TyRuBa
logic programming language. This solution also has no problems with the kind of errors that
render the Gofer solution nearly useless in practice. TyRuBa does not perform the stringent
ambiguity checks that Gofer does.

We will also present another solution. This will make more explicit use of TyRuBa's capa-
bility as a programming language. The second solution will have a more e�cient, non-recursive
representation of tuples and a more natural way of constructing tuples. To accomplish this
we will have to use more of TyRuBa's capabilities as a true programming language.

Recursive Tuples

Let us start with the recursive representation of tuples which is the simplest of both. We
will de�ne a tuple by means of a parametric class, the parameter of which is a list of types
corresponding to the respective types of the elements stored in the tuple. We begin by de�ning
tuples of arity zero. These are extremely simple since they do not contain anything.

/** 0 arity Tuple */

class_I(Tuple<[]>,{

}).

Next we will declare tuples of arity greater than zero inductively. A tuple of arity n+1 has
an instance variable for storing the �rst element and another instance variable that contains
a nested tuple of arity n with the remaining elements.

/** Inductive definition of Tuple of arity greater than 0 */

class_I(Tuple<[?T|?R]>,{

private ?T first;

private Tuple<?R> rest;

Tuple<[?T|?R]>(?T f,Tuple<?R> r) {

first = f;

rest = r;

}

}) :- class(Tuple<?R>).

The Project type class from the Gofer solution (section 2.9.2) corresponds to the following
interface declaration:

interface_I(Project<?index,?El>,{

?El project<?index>();

}).

Finally we declare the implementation of this interface onto tuples by means of one base
case for projecting to index zero and one inductive case for indexes greater than zero. Again
this is nearly identical to the Gofer solution.

implements_I(Tuple<[?El|?R]>,Project<0,?El>,{

public ?El project<0>() { return first; };

122 CHAPTER 8. BENCHMARKING TYRUBA'S EXPRESSIVENESS

}).

implements_I(Tuple<[?F|?R]>,Project<?i,?El>,{

public ?El project<?i>() { return rest.project<?iMinus1>();}

}) :- implements(Tuple<?R>,Project<?iMinus1,?El>),

+(?iMinus1,1,?i).

This solves the benchmark problem quite nicely. The solution is a little bit simpler and
more intuitive than the Gofer solution because we did not have to invent our own representa-
tion for numbers and lists of types. Remember that the Gofer solution had a very restricted
usability because when using the tuples we get problems with \ambiguous type" related er-
rors. Because TyRuBa imposes none of the strict \ambiguous type" related restrictions Gofer
imposes, this is not a problem either.

The solution with recursively represented tuples is not optimal. We can do better in
TyRuBa if we make more elaborate use of its power as a programming language than we do
now. Creating a tuple is not practical, it is far too verbose because it requires creating a
nested tuple object. The following example which creates a tuple (1,"Hello",'f') clearly
illustrates the problem:

Tuple<[int,String,char]> triplet =

new Tuple<[int,String,char]>(1,

new Tuple<[String,char]>("Hello",

new Tuple<[char]>('f',

new Tuple<[]>())));

The performance characteristics of recursive tuples are also not as good as we would like.
A \at" representation where a tuple of arity n is represented by an object with n instance
variables would be better. A recursive representation clearly consumes more space because
of all the internal tuple objects. It also consumes more time because the projection function
onto index n + 1 has to invoke another projection function recursively n times to arrive at
the correct nesting level whereas in a at representation the correct instance variable could
simply be accessed directly.

Non-recursive, at tuples

The problems of the solution in the previous section are due to the fact that we \translated"
the tuple implementation too directly from the Gofer solution presented in section 2.9.2. In
Gofer we had no choice but to implement the tuples recursively because that is the only way
we can o�er generic support for tuples of di�erent arities.

In TyRuBa this is not true. We can implement the tuples any way we like because we
have the full power of a programming language at our disposal to generate the required
implementation. We may therefore just as well choose a non-recursive tuple representation.

Before continuing and presenting the TyRuBa code for at tuples let us have a preview of
what the generated code will look like eventually. As an example consider the code generated
for the tuple class Tuple<[int,String,char]> listed in �gure 8.10. We have applied some
minor cosmetic changes to make the code more readable: we \unmangled"3 identi�er names,

3Name mangling of terms was explained in section 6.4.3. As a quick reminder note that the term
element<String,1> for example corresponds to the \mangled" Java identi�er element LString C1 R.

8.4. SOLVING THE BENCHMARK PROBLEMS 123

class Tuple<[int,String,char]>

implements Project<2,char> , Project<1,String> , Project<0,int>

{

/** Constructor */

Tuple<[int,String,char]> (int element<int,0>,

String element<String,1>,

char element<char,2>)

{

this . element<int,0> = element<int,0> ;

this . element<String,1> = element<String,1> ;

this . element<char,2> = element<char,2> ;

}

/** interface Project<2,char> */

private char element<char,2> ;

public char project<2> () { return element<char,2> ; } ;

/** interface Project<1,String> */

private String element<String,1> ;

public String project<1> () { return element<String,1> ; } ;

/** interface Project<0,int> */

private int element<int,0> ;

public int project<0> () { return element<int,0> ; } ;

}

Figure 8.10: Example code generated for a \at" 3-tuple

124 CHAPTER 8. BENCHMARKING TYRUBA'S EXPRESSIVENESS

cleaned up the indentation and added some comments.
The representation of a 3-tuple is an object with three instance variables to hold

the elements of the tuple. The names of these instance variables have the form
element<?Type,?idx>. The ?idx is the index of the element in the tuple. When invok-
ing the projection function project<1> for example, this will simply return the value of the
instance variable with ?idx equal to 1 which in this particular example is element<String,1>.
Strictly speaking it is not really necessary to have the type of the element part of the instance
variable's name. This was merely convenient because it simpli�es the TyRuBa program by
making it easy to tell the type of an instance variable from its name.

Now let us have a look at the TyRuBa program which implements at tuple representa-
tions. We start by implementing an auxiliary predicate tupleElementNames to compute the
names of the instance variables of the tuple class.

tupleElementNames(?T,?N) :- tupleElementNames(0,?T,?N).

tupleElementNames(?idx,[],[]).

tupleElementNames(?idx,[?T|?TR],[element<?T,?idx>|?R]) :-

+(?idx,1,?idxPlus1),

tupleElementNames(?idxPlus1,?TR,?R).

When this predicate is invoked with a list of types in ?T it will compute a list of the corre-
sponding instance variable names in ?N as the following example shows:

:- tupleElementNames([int, String, char],?N).

#SOLUTION : tupleElementNames([int, String, char],

[element<int,0>, element<String,1>, element<char,2>])

This predicate will be used to compute the names of the instance variables and also for the
names of the formal arguments of the tuple's constructor function. Below is the declaration of
the tuple class with its constructor. The instance variables are not yet provided in the basic
class functionality but will be provided with the implementation of the respective Project

interfaces later.

class_I(Tuple<?TypeList>,{

/** Constructor */

Tuple<?TypeList>(?constructorFormals) {

?constructorBody

}

}) :- tupleElementNames(?TypeList,?formalsNamesList),

JavaFormals(?TypeList,?formalsNamesList,?constructorFormals),

tupleConstructorBody(?formalsNamesList,?constructorBody).

The formals of the constructor are generated by means of a prede�ned auxiliary predicate
JavaFormals that pairs up a list of type names and a list of formal argument names. The
body of the constructor is computed by the auxiliary predicate tupleConstructorBodywhich
is given below:

tupleConstructorBody([],{}).

tupleConstructorBody([?i | ?r],{this.?i=?i; ?cr}) :-

8.5. SUMMARY 125

tupleConstructorBody(?r,?cr).

interface_I(Project<?index,?El>,{

?El project<?index>();

}).

This predicate generates a list of assignment statements of the form this.?i=?i; for every
instance variable name ?i.

Finally we implement the projection interfaces on this class. The respective instance
variables are de�ned together with each interface implementation.

implements_I(Tuple<?TypeList>,Project<?idx,?El>,{

private ?El element<?El,?idx>;

public ?El project<?idx>() { return element<?El,?idx>; };

}) :- tupleElementNames(?TypeList,?elements),

element(element<?El,?idx>,?elements).

The prede�ned predicate element is true when the �rst argument is an element of the list
in the second argument. The result of the query element(element<?El,?idx>,?elements)

will thus �nd the instance variable for the correct index ?idx in the list of instance variables
?elements and bind the name of its type to ?El.

This solution is somewhat more complicated than the recursive tuple solution. We needed
a number of auxiliary predicates to iterate over a list and to generate names of instance vari-
ables with a counter. What this extra e�ort gets us however is a more e�cient representation
for tuples. The tuples are also more easily created by means of a constructor function of
which the arity corresponds to the arity of the tuple. A tuple of arity three for example is
created as follows:

Tuple<[int,String,char]> test= new Tuple<[int,String,char]>(1,"Hi",'f');

The point of all this is that if the more straightforward solution is not completely satisfactory,
we can always resort to the power of TyRuBa as a programming language. At the cost of
some extra (meta) programming we can then generate exactly what we want.

8.5 Summary

In this chapter we re-examined the benchmark programming tasks from section 2.9. We were
able to solve them in TyRuBa in an elegant and natural way. In order to solve the problems,
we have introduced a representational mapping which looks at a class body as being composed
of pieces of source code responsible for implementing Java interfaces.

An overview of the benchmark problems and a short discussion of the solutions in TyRuBa
can be found in �gure 8.11. The overall result is that TyRuBa solves all of the problems quite
naturally. This illustrates that it is indeed worthwhile to consider designing a type-language
as a true programming language, purposefully ignoring concerns such as decidability and
ambiguity in order to augment the expressive power of the type language tremendously. This
is worthwhile since it considerably improves the power of the language for writing generic code,

126 CHAPTER 8. BENCHMARKING TYRUBA'S EXPRESSIVENESS

Decision-making benchmarks

Benchmark 1 Conditional implementation of a function contains on an array: Can be
elegantly expressed

Benchmark 2 Abstract implementation of contains for Enumerable collection types:
Can be elegantly expressed: A logic expression can be used to characterize
which classes an abstract implementation is applicable to. This allows the
abstract code to be expressed more independently of the actual class tree
structure.

Benchmark 3 Implementation of a Set abstract data type the internal representation of
which depends on the type of elements stored: Can be elegantly expressed.
Two di�erent implementations of a single class can be provided. Either
one is chosen dependent on the truth value of logic expressions.

Iteration / recursion benchmarks

Benchmark 4 Can be elegantly expressed. Integers and lists are native data types of
the type programming language. We have shown two solutions. The �rst
one was straightforward and represented tuples recursively. This is not
an optimal solution because creating tuples is too verbose and because
the representation is too time and space consuming. A second more e�-
cient solution represented tuples non-recursively. This solution could be
expressed by means of some extra (meta) programming to generate the
names for the instance variables and the formal arguments and the body
of the constructor method.

Figure 8.11: Summary of the benchmark results for TyRuBa

as is clearly illustrated by the benchmark solutions. We think this is of particular importance
for object-oriented languages and type systems since these are especially concerned with
genericity and polymorphism.

Chapter 9

Case Study

9.1 Introduction

This chapter presents an example which illustrates the use of type-oriented logic meta pro-
gramming to obtain a high degree of genericity. The example makes very sophisticated use of
the logic meta language to manipulate and construct types and generate concrete implemen-
tations for the types. The user of a framework only implements part of the class hierarchy.
If he respects some conventions that are prescribed by the framework implementor, then an-
other part of the class hierarchy will be generated automatically. This style of programming
is very powerful and enables sophisticated forms of genericity.

We will illustrate the technique in this chapter with a simple framework that implements
a hierarchy of classes and interfaces for representing the expressions of a calculator. The
framework will provide a number of expression classes and interfaces, and a factory class to
build expressions. The framework instantiator only implements classes representing values.
The rest of the classes and interfaces will be derived from this by the framework.

Before presenting the actual example we �rst introduce a representational mapping, a
code generator and a number of predicates that reify information about methods, instance
variables and constructors in classes and interfaces. These will be used throughout the rest
of the chapter in expressing the example.

9.2 Representational Mapping

We will not present the implementation of the code generator but only describe the represen-
tational mapping itself and the information that is derived from it by a number of predicates
de�ned in initialization �les. The exact implementation of these predicates will also be omit-
ted, we only describe them and the kind of information they are intended to make accessible.
The complete listing of the initialization �les can be found in appendix B. All the predi-
cates directly linked to the representational mapping in this chapter will follow the naming
convention of ending with _M".

The representational mapping we use in this chapter rei�es the implements and extends
relationship between classes and interfaces as did the mapping from chapter 7. The predi-
cates extends M and implements M are just renamed versions of the predicates extends and
implements . We briey repeat their meaning here as a reminder. Whenever a type ?Super
occurs in an extends clause of a type ?Sub this is asserted as follows:

127

128 CHAPTER 9. CASE STUDY

extends_M(?Sub,?Super).

Implements clauses are handled similarly. Whenever an interface ?I occurs in an imple-
ments clause of a class ?C this is asserted as follows:

implements_M(?C,?I).

The _M" mapping re�nes the _" mapping. It also rei�es information about individual
members of classes and interfaces whereas the _" mapping treated class and interface bodies
as atomic units. Therefore predicates class M and interface M do not contain a class or in-
terface body anymore. The class M predicate simply states the presence of a class declaration
in the generated source �le as follows:

class_M(?C).

The presence of an interface ?I is declared similarly:

interface_M(?I).

Classes are viewed as being composed of methods, instance variables and constructors.
Interfaces are viewed as being composed of methods. The types of instance variables, the
argument types of constructors and methods, and the return type of methods are rei�ed. For
simplicity we will not reify exceptions and tags such as private, public or protected since we
won't need that information for the examples in this chapter.

Whenever a type ?T (class or interface) declaration contains a method ?m with return type
?R and argument types ?A1,?A2, . . . ?An this is asserted as follows:

method_M(?T,?R,?m,[?A1,?A2,...,?An],{...declaration...}).

The Java code between the {} is the entire declaration as it will appear in the body of
the class or interface. The following shows an example of a method declaration for an add

method on a class called Integer.

class_M(Integer).

method_M(Integer,Integer,add,[Integer],{

Integer add(Integer other) {

return new Integer(this.value+other.value);

}

}).

The corresponding declaration in Java can be found in �gure 9.1.

Declarations for constructors are asserted in a similar way. When a class ?C contains a
declaration for a constructor with argument types ?A1,?A2, . . . ?An this is asserted as follows:

constructor_M(?C,[?A1,?A2,...,?An],{...declaration...}).

The constructor from �gure 9.1, for example, is expressed as follows:

9.3. DERIVED INFORMATION 129

class Integer {

int value = 0;

Integer(int init) {

value = init;

}

Integer add(Integer other) {

return new Integer(this.value+other.value);

}

}

Figure 9.1: Example Java class declaration

constructor_M(Integer,[int],{

Integer(int init) {

value = init;

}

}).

The presence of a declaration for a variable of type ?T with name ?n and initializer ?i in
a class ?C is asserted as follows:

var_M(?C,?T,?n,?i).

The variable declaration in �gure 9.1, for example, is expressed as follows.

var_M(Integer,int,value,{=0}).

This concludes what we have to say about the representational mapping itself.

9.3 Derived Information

The information rei�ed by the representational mapping is very basic, it only tells about
things declared in classes or interfaces directly, but does not state the features they inherit
from super types. Usually when meta programs need to know whether a type has a certain
feature, such as a method or instance variable they do not care whether this feature is declared
in the class itself or inherited from one of its super classes. In order to make this kind of
information accessible, we implemented a number of predicates that deduce useful higher level
information from the basic information rei�ed by the representational mapping. We only list
the predicates and describe their meaning. For their exact de�nition by means of TyRuBa
rules we refer to appendix B which contains listings of the initialization �les.

The predicate extends is the transitive closure of the extends M predicate. Hence
extends(?A,?B) is true if and only if there is a chain of types starting with ?A and end-
ing with ?B such that every type in the chain appears in the extends clause of the preceding
one.

130 CHAPTER 9. CASE STUDY

The predicate subtype implements the Java subtype relationship between classes and
interfaces. Which is, in other words, the transitive reexive closure of the union of the
implements M and extends M predicates.

The predicate implements is a restriction of subtype that is true only when the �rst
argument is a class and the second an interface.

The predicates feature and feature1 provide a uniform way of asking whether a class
or interface has a \feature". A \feature" may be a method, a variable or a constructor. It
is possible to ask whether a class or interface has a feature directly present (i.e. not via
inheritance from a super type) by means of the predicate feature1 as follows:

feature1(?type,?feature).

The predicate feature is like feature1 but also takes inheritance into account. Note
that not all features are inheritable from super types. For example, (non private) methods
are inherited, but constructors are not. Features are described by TyRuBa terms as outlined
in �gure 9.2.

Term Represents

var<?T,?n> A variable of type ?T with name ?n.

method<?R,?m,[?A1,...,?An]> A method ?m with return type ?R and argument
types ?A1, . . . ,?An

constructor<[?A1,...,?An]> A constructor with argument types ?A1, . . . ,?An

Figure 9.2: Representation of \features" as TyRuBa terms

Note the use of the following naming convention. When we use the number 1 as a post�x
in names of predicates this usually signi�es \directly" in some or other way. The name
without the post�x is then obtained as a composition or transitive closure of some kind. In
this case, feature is a composition of feature1 with the transitive closure of the inheritance
relationship on classes.

9.4 An Evaluator for Arithmetic Expressions

We will now start presenting the example of a generic expression evaluator. Rather than
presenting the generic framework by itself we will start from the instantiator's point of view,
with a concrete instance of the framework in mind: an evaluator of arithmetic expressions
with integers and oating point numbers. Keeping the concrete instantiation in mind will
make it easier to understand the framework code.

The instantiator implements two classes for representing integer values and oating point
values respectively. The declarations of these can be found in �gure 9.3. Note that the
names of the operations on the classes are somewhat peculiarly written as terms of the form
op<?name>. This naming convention is part of the contract between framework instantiator
and developer. The framework will make use of this naming convention to identify what
messages on values represent operations. Except for the names of the operations we have
used Java syntax in these �gures to make them more readable. It is assumed however that in
reality they are written in TyRuBa using the code generator and representational mapping
presented in section 9.2. From now on we will write explicit TyRuBa syntax when we are

9.4. AN EVALUATOR FOR ARITHMETIC EXPRESSIONS 131

using logic rules and terms in such a way that the code cannot be expressed in Java directly.
It will be implicitly assumed that everything is expressed in TyRuBa regardless of how it is
presented in the �gures.

class Integer {

int value;

public Integer(int init) {value=init;}

public op<add>(Integer other) {

return new Integer(value+other.value);

}

public op<sub> ...

public op<mul>...

}

class Float {

float value;

public Float(float init) {value=init}

public op<add>...

...

}

Figure 9.3: Instantiator's classes for Integer and Float values

In order for the framework to know that these classes represent values, the instantiator
must \declare" this by stating the following facts:

value(Integer).

value(Float).

We can now start presenting the code of the framework. From the above declarations,
given by the instantiator, the framework will derive the calculator expression class and inter-
face hierarchy and the factory class. Let us see how this is accomplished by means of logic
rules.

As there are two kinds of values there should also be two kinds of expressions which return
the respective value type when evaluated. We will make all expressions of a certain type ?T

implement the interface Exp<?T> where ?T should be a type of value. In TyRuBa:

interface_M(Exp<?T>) :- value(?T).

method_M(Exp<?T>,?T,eval,[],{

?T eval();

}).

So with the above instantiation code for the framework this will de�ne two interfaces
Exp<Integer> and Exp<Float>. We might anticipate extending the framework with more
complicated expressions later and allow the user to assert what kind of arguments the eval
method takes. This would for example facilitate an extension of the framework that allows
variables in expressions and passes a dictionary with values for variables as an argument

132 CHAPTER 9. CASE STUDY

to eval. To keep this example simple we have not done so and assume that eval has no
arguments.

The simplest types of expressions are constants. We implement constants by automatically
implementing the Exp<?T> interface on values of type ?T. The eval method for values simply
returns the value itself.

implements_M(?T,Exp<?T>) :- value(?T).

method_M(?T,?T,eval,[],{

public ?T eval() { return this; }

}) :- value(?T).

Next we declare the Factory class and to this we add methods for creating constants.
We assume that a value has a constructor of one argument to initialize it. This allows us to
declare the following:

class_M(Factory).

method_M(Factory,?T,q,[?Init],{

static ?T q(?Init init) { return new ?T(init); }

}) :- value(?T),

feature(?T,constructor<[?Init]>).

This declares a class Factory with two static methods with signatures Integer q(int)

and Float q(float) for creating constants1.

Now we will implement classes for compound expressions that apply operations to subex-
pressions of appropriate types. This will be a little more complicated. We will need to de�ne
an expression class for every operation that is de�ned on every value. We should consider
an addition of integers to be a di�erent kind of expression than an addition of oating point
numbers so the types of the arguments must become part of the class's name. We can de�ne
the classes as follows:

class_M(Op<?name,[?A1 | ?Ar]>) :-

value(?A1),

feature(?A1,method<?R,op<?name>,?Ar>).

Note how we use a pair [?A1 | ?Ar] for the types of the arguments. The �rst argument
?A1 must be a type of value and the remaining arguments ?Ar must be the arguments of an
operation method on ?A1. Thus, the above rule will declare (amongst others) classes with
names Op<add,[Integer,Integer]> and Op<mul,[Float,Float]>. Note that it is conve-
nient that we have adopted the naming convention that methods for operations on values
have a name of the form op<?x>. This avoids confusing them with other methods on values
such as eval.

So far we have only declared the existence of the classes for operation expressions. Now
we still need to implement them. They will require instance variables for storing the subex-
pressions, a constructor for initializing them and an eval method for evaluating them. Be-
fore showing the TyRuBa code that generates this implementation for any operation with
any number of subexpressions, let us �rst have a look at one particular operation class and

1The name of the method, q, stands for \quote".

9.4. AN EVALUATOR FOR ARITHMETIC EXPRESSIONS 133

see what the generated code looks like. Figure 9.4 shows the code generated for the class
Op<add,[Integer,Integer]>, representing an addition of two integer expressions. For read-
ability we have replaced the mangled names in the Java output by the TyRuBa terms for
which they stand. We also indented the code properly and added a few comments. Except
for these cosmetic changes the code is presented exactly as generated by the TyRuBa system.

class Op<add,[Integer,Integer]> implements Exp<Integer>

{

/** Constructor */

Op<add,[Integer,Integer]> (Exp<Integer> f<2>,Exp<Integer> f<1>) {

this . f<2> = f<2> ;

this . f<1> = f<1> ;

}

/** Evaluation */

public Integer eval () {

return f<2> . eval () . op<add> (f<1> . eval ()) ;

}

/** Subexpressions */

Exp<Integer> f<1> ;

Exp<Integer> f<2> ;

}

Figure 9.4: Generated code for class Op<add,[Integer,Integer]>

Note that the names of the instance variables and formal arguments of the constructor is a
bit counter intuitive: they are numbered in reverse order, i.e. f<1> is the second subexpression
whereas f<2> is the �rst subexpression. The reason for this is that the numbering is generated
with a recursive rule that descends a list. It is easiest to start numbering at the end because
of the way the list is traversed. Most complications in the generation of the code for the
Op<?name,?Args> classes is that we want to accommodate an arbitrary number of ?Args.
The formals list for the constructor and the declaration of the instance variables will have to
be computed from a list of types. The following auxiliary predicate calculates a list types of
the form Exp<?Ai> from a list of types ?Ai. We can use this predicate to calculate a list of
types for the instance variables and the arguments of the constructor.

CAL_ExpTypes([],[]).

CAL_ExpTypes([?T | ?R],[Exp<?T> | ?ER]) :- CAL_ExpTypes(?R,?ER).

As part of one of the initialization �les, some predicates for generating and manipulating
lists of formals are provided. We have listed the predicates used in this chapter in �gure 9.5.
The complete initialization �le can be found in appendix A. Using these predicates we can
now declare the constructor method for an operation expression class as follows:

constructor_M(Op<?name,[?A1 | ?Ar]>,?Exp,{

Op<?name,[?A1 | ?Ar]>(?formals) {

?initCode

}

}) :- class_M(Op<?name,[?A1 | ?Ar]>),

CAL_ExpTypes([?A1 | ?Ar],?Exp),

134 CHAPTER 9. CASE STUDY

/* Generate JavaFormals from a list of types and argument names */

JavaFormals([],[],{}).

JavaFormals([?T|?R],[?n|?r],?formals) :-

JavaCommaCons({?T ?n},?Rr,?formals),

JavaFormals(?R,?r,?Rr).

/*Generate JavaFormals from type names only. Argument names are computed*/

JavaFormals(?T,?f) :-

JavaGenNames(?T,?n),

JavaFormals(?T,?n,?f).

/*Is a formal an element of a list of JavaFormals? */

JavaFormalsElement({?T ?n},?formals) :-

JavaCommaCons({?T ?n},?rest,?formals).

JavaFormalsElement({?T ?n},?formals) :-

JavaCommaCons({?TTT ?nnn},?rest,?formals),

JavaFormalsElement({?T ?n},?rest).

/* Generate a list of numbered names [f<n>,...f<2>,f<1>] */

JavaGenNames([],[]).

JavaGenNames([?x1],[f<1>]).

JavaGenNames([?x1,?x2|?xs],[f<?c1>,f<?c2>|?rest]) :-

JavaGenNames([?x2|?xs],[f<?c2>|?rest]),

+(?c2,1,?c1).

/* "Consing" an element to a comma separated Java list */

JavaCommaCons(?x,{},{?x}).

JavaCommaCons(?x,{?y},{?x,?y}).

JavaCommaCons(?x,{?y,?z},{?x,@{?y,?z}}).

/*Construct a list of comma separated elements*/

JavaCommaList([],{}).

JavaCommaList([?e|?r],?c) :-

JavaCommaCons(?e,?cr,?c),

JavaCommaList(?r,?cr).

Figure 9.5: Auxiliary Predicates to generate Java code

9.4. AN EVALUATOR FOR ARITHMETIC EXPRESSIONS 135

JavaFormals(?Exp,?formals),

JavaFormals(?Exp,?names,?formals),

CAL_initCode(?names,?initCode).

This de�nes a constructor method for every class representing an operation expression.
The �rst call to JavaFormals will generate the list of formals for the constructor declaration.
The second call is used in \reverse", to extract the generated names from the generated
list of formals and bind it to the variable ?names. This is then passed to the auxiliary
predicate CAL initCode to construct the body of the constructor which initializes the instance
variables. We will give the instance variables the same name as the names of the formals of
the constructor so the predicate CAL initCode is de�ned as follows:

CAL_initCode([],{}).

CAL_initCode([?f|?r],{this.?f=?f; ?ir}) :- CAL_initCode(?r,?ir).

Next we de�ne the instance variables of the operation class. For every formal argument
of the constructor generated above, we have to de�ne an instance variable of the exact same
type and name. We can write this in TyRuBa as follows:

var_M(Op<?name,[?A1 | ?Ar]>,?type,?var,{}) :-

class_M(Op<?name,[?A1 | ?Ar]>),

CAL_ExpTypes([?A1 | ?Ar],?Exp),

JavaFormals(?Exp,?formals),

JavaFormalsElement({?type ?var},?formals).

The only thing that remains to be done is to de�ne the evaluation method and declare that
the operation class implements Exp<?T> of the appropriate type ?T. The following TyRuBa
rule �nds out what the return type ?T of the operation is and declares that the operation
implements Exp<?T>.

implements_M(Op<?name,[?A1 | ?Ar]>,Exp<?T>) :-

class_M(Op<?name,[?A1 | ?Ar]>),

feature(?A1,method<?T,op<?name>,?Ar>).

Finally we declare the eval method for the operation expression.

method_M(Op<?name,[?A1 | ?Ar]>,?T,eval,[],{

public ?T eval() {

return ?a1.eval().op<?name>(?evalar);

}

}) :- class_M(Op<?name,[?A1 | ?Ar]>),

feature(?A1,method<?T,op<?name>,?Ar>),

CAL_ExpTypes([?A1 | ?Ar],?Exp),

JavaFormals(?Exp,?instVars),

JavaFormals(?Exp,[?a1 | ?ar],?instVars),

CAL_evalcals(?ar,?evalar).

136 CHAPTER 9. CASE STUDY

It evaluates its �rst subexpression ?a1 and then calls the appropriate operation method
op<?name> on the resulting value. The arguments passed to the operation come from evalu-
ating every other subexpression. This list of evaluated subexpressions ?evalar is computed
by the auxiliary predicate CAL evalcals.

CAL_evalcals([],{}).

CAL_evalcals([?a1],{?a1.eval()}).

CAL_evalcals([?a1 , ?a2 | ?ar],{?a1.eval(),?rest}) :-

CAL_evalcals([?a2 | ?ar],?rest).

This concludes the declaration of the classes that represent operation expressions. How-
ever, we still have to add methods to the Factory class to make it easy to create opera-
tion expressions. We will use Java's overloading to relieve the user of having to mention
the types of the arguments expressions (which are part of the class's name). For the class
Op<add,[Integer,Integer]> for example the generated factory method will be as follows:

static public Op<add,[Integer,Integer]> add (Exp<Integer> f<2>,

Exp<Integer> f<1>)

{

return new Op<add,[Integer,Integer]> (f<2> , f<1>) ;

}

We may declare the factory methods for all operation expression with the following rule.

method_M(Factory,Op<?name,?A>,?name,?CA,{

static public Op<?name,?A> ?name(?formals) {

return new Op<?name,?A>(?actuals);

}

}) :- class_M(Op<?name,?A>),

feature(Op<?name,?A>,constructor<?CA>),

JavaFormals(?CA,?formals),

JavaFormals(?CA,?actualsL,?formals),

JavaCommaList(?actualsL,?actuals).

This concludes our presentation of the framework for now. We can easily generate the
needed classes and interfaces to be able to run the following small program which builds an
expression, evaluates it and displays the result. The entire code of the framework and the
instantiation code, complete with #generate directives etc. is listed in appendix B.

public class Calculator extends Factory {

static public void main(String[] args) {

Exp<Float> e = add(mul(q((float)5.0),q((float)3.3)),

sub(q((float)4.0),q((float)5.0)));

float i = e.eval().value;

System.out.println(i);

}

}

9.5. ADDING BOOLEANS 137

9.5 Adding Booleans

The calculator framework allows instantiation with di�erent types of values in a very straight-
forward way. As an example we will show how values of type boolean can be added easily.
All we really have to do as instantiator is implement a class Boolean with the operations
we want on booleans, and declare the class Boolean to be a type of value for the expression
framework.

class Boolean {

boolean value;

Boolean(boolean init) {value=init;}

Boolean op<not>() { return new Boolean(!value); }

Boolean op<or>(Boolean other) {

return new Boolean(this.value||other.value);

}

...

}

value(Boolean).

We can de�ne an ifThenElse operation on these booleans that accepts two values of the
same type and returns either value dependent on whether the boolean is true or false.

method_M(Boolean,?T,op<ifThenElse>,[?T,?T],{

public ?T op<ifThenElse>(?T thn,?T els) {

if (value)

return thn;

else

return els;

}

}) :- value(?T).

9.6 Adding Subtyping

We are now going to present an extension to the calculator framework that makes it easy
for the instantiator to declare a subtype relationship that may exist between values such as
Integer and Float. The framework should be able to use this to allow operations such as
addition, multiplication and subtraction to \lift" an integer, turning it into a oat when it
happens to be used in a context where a oat is expected. As instantiator, we can already
accomplish roughly the same result in the existing framework merely by implementing oper-
ations of mixed integer and oat types on integers and oats. This is tedious however and
we have to repeat it for every operation and possibly valid combination of mixed types. The
extension of the framework we will present will relieve the instantiator of this tedious labour.

9.6.1 Instantiation of the Framework

Again, we will explain the framework by starting from the instantiator's point of view. We
only want the instantiator to go through a minimal e�ort to establish a subtype relationship

138 CHAPTER 9. CASE STUDY

between value types. A �rst idea is to make the subtype relationship of values in the calculator
follow the Java subtype relationship between classes implementing values. However this seems
impractical since it is for example not natural to make an Integer a subclass of Float. This
would mean that an integer would contain a oating point value in its instance variables.
Therefore we have opted to let the instantiator signify a subtype relationship by implementing
a conversion method on a type of value which is a subtype of another. The method should
have the following signature:

?To as<?To>();

For example, the framework instantiator can \declare" the subtype relationship which
exists between Float and Integer by implementing an as<Float> method on class Integer
as follows:

method_M(Integer,Float,as<Float>,[],{

public Float as<Float>() { return new Float(value); }

}).

We don not wish to burden the framework instantiator with declaring every possible
conversion between values. Only between values which have a \direct" link. The transitive
(and reexive) closure of type conversions will be taken into account automatically. For
the sake of the example we will therefore introduce Double, a third type of value for high
precision oating point numbers. The framework instantiator will only provide conversions
from integers to oats and from oats to doubles. The conversion from integers to doubles
does not have to be explicitly declared since it can be regarded as a composition of the two
other conversions. Figure 9.6 gives an overview of all the code provided by the instantiator
of the framework.

9.6.2 The Framework Code

We will now present the extensions to the framework that support subtyping in the calculator.
Before plunging in and presenting the actual TyRuBa code in full detail, let us �rst have a
look at the Java interface and class hierarchy we intend to generate. We have depicted it in
�gure 9.7. Because the picture would not �t on a page otherwise we have abbreviated the
class names Float, Double and Integer to F, D and I respectively. Class names in the �gure
are written in boldface to distinguish them from interface names.

The classes for operation expressions, Op<?n,[?V,?V]>, are de�ned by the simple ver-
sion of the framework presented in the previous sections. There is also one new kind of
expression represented by the classes TypeConv<?F,?T> to do type conversions. The class
TypeConv<?F,?T> is a wrapper class containing an expression of type ?F turning it into an
expression of type ?T.

Type conversion expressions are meant to be created implicitly when needed. This will be
supported by a smart \subtype aware" factory that accepts anything which is convertible to
an expression of type ?T whenever the simple factory accepts an Exp<?T>. The smart factory
will apply the necessary type conversions before invoking the simple factory accepting only
expressions of a speci�c type. The purpose of the Convertible<?T> interfaces is to provide a
common supertype for everything which is directly or indirectly convertible to an expression of

9.6. ADDING SUBTYPING 139

class Double {

double value;

public Double(double init) { value = init; }

public op<add>(Double other) { return new Double(this.value+other.value); }

public op<mul> ...

...

}

class Float {

float value;

...

Double as<Double>() { return new Double(value); }

}

class Integer {

int value;

...

Float as<Float>() { return new Float(value); }

}

value(Integer).

value(Float).

value(Double).

Figure 9.6: Sample Calculator Instantiation Code with Subtyping

Op<?n,[I,I]> I

��
aaaa

Exp<I>

Convertible<I>

TypeConv<I,F> Op<?n,[F,F]> F

�����
aaaa

hhhhhhhhhh

Exp<F>

((((((((((
PPPPP

Convertible<F>

TypeConv<F,D> Op<?n,[D,D]> D

������
aaaa

hhhhhhhhhh

Exp<D>

((((((((((

hhhhhhhhhhhhhh

Convertible<D>

Figure 9.7: Calculator expression class and interface hierarchy

140 CHAPTER 9. CASE STUDY

type ?T. This will allow constructing the subtype aware factory by simply replacing argument
types Exp<?T> by Convertible<?T>.

We now give a step by step overview and explanation of the TyRuBa code that de�nes
the type hierarchy of �gure 9.7.

Type conversion expressions

Whenever the instantiator provides a type conversion method as<?T> on values of type ?R,
we declare a class that represents an implicit type conversions from an expression of type ?R
to an expression of type ?T. The name of this class is TypeConv<?R,?T>.

class_M(TypeConv<?R,?T>) :-

value(?R),value(?T),

feature(?R,method<?T,as<?T>,[]>).

This class is a wrapper class around an expression of type ?R. We will store the \wrapped"
expression in an instance variable named from.

var_M(TypeConv<?R,?T>,Exp<?R>,from,{}) :- class_M(TypeConv<?R,?T>).

The constructor for a TypeConv expression has one argument which will be stored in the
previously declared instance variable.

constructor_M(TypeConv<?R,?T>,[Exp<?R>],{

public TypeConv<?R,?T>(Exp<?R> init) { from = init; };

}) :- class_M(TypeConv<?R,?T>).

An object of the class TypeConv<?R,?T> should behave as an expression of type ?T. There-
fore we declare that TypeConv<?R,?T> implements Exp<?T> and we provide a corresponding
implementation for the eval method that invokes eval on the wrapped expression and con-
verts the returned value to the correct type.

implements_M(TypeConv<?R,?T>,Exp<?T>) :- class_M(TypeConv<?R,?T>).

method_M(TypeConv<?R,?T>,?T,eval,(),{

public ?T eval() {

return from.eval().as<?T>();

}

}) :- class_M(TypeConv<?R,?T>).

The Convertible<?T> interface

The next thing we will do is declare and implement the Convertible<?T> interface on all
expressions which can be converted to expressions of type ?T. We will do this in such a way
that type conversions on expressions correspond to the transitive reexive closure of the type
conversions explicitly de�ned on values by the instantiator.

All expressions that are convertible to type ?T will include a method that returns a
converted expression of type ?T. We therefore de�ne the Convertible<?T> interface as follows:

9.6. ADDING SUBTYPING 141

interface Convertible<?T> {

Exp<?T> cast<?T>();

}

Note that the conversion method is called cast<?T> instead of as<?T> to distinguish
conversion of expressions from conversion of values. Values are also considered to be (self
evaluating) expressions so both an as<?T> and a cast<?T> method may be de�ned on them.
Therefore the distinct names are important to avoid a name collision.

Next we will implement this interface on the appropriate expression classes and insert it
into the type tree as depicted in �gure 9.7. Every expression of type ?T is trivially convertible
to its own type. This is reected in the type hierarchy by making every Exp<?T> an extension
of Convertible<?T>.

extends_M(Exp<?T>,Convertible<?T>) :- interface_M(Exp<?T>).

Of course, this declaration implies that we should also provide an implementation of
cast<?T> on every expression of type ?T. Converting an expression to its own type is simple:
merely return the expression itself. We have to insert this trivial conversion method into
every class representing an expression of type ?T. In other words, we have to insert it into
every class that implements Exp<?T>.

method_M(?E,Exp<?T>,cast<?T>,[],{

public Exp<?T> cast<?T>() { return this; }

}) :- implements_M(?E,Exp<?T>).

Now we are going to de�ne the transitive closure of type conversion. We can do this by
observing that if there is conversion from values of type ?R to values of type ?T then every
expression which is Convertible<?R> can also be regarded as Convertible<?T>. We solidify
this observation into the interface hierarchy by declaring Convertible<?R> an extension of
Convertible<?T>.

extends_M(Convertible<?R>,Convertible<?T>) :- class_M(TypeConv<?R,?T>).

Again we will have to provide a corresponding implementation for the castmethod. Every
class which implements Convertible<?R> now also implements Convertible<?T> and must
have a cast<?T> method de�nition.

method_M(?E,Exp<?T>,cast<?T>,[],{

public Exp<?T> cast<?T>() {

return new TypeConv<?R,?T>(this.cast<?R>());

}

}) :- implements1(?E,Convertible<?R>),

class_M(TypeConv<?R,?T>).

142 CHAPTER 9. CASE STUDY

A subtype aware factory

Finally, we will provide support for implicit type conversions by de�ning a new subtype
aware factory class SubtypeFactory. SubtypeFactory will call the methods of Factory. The
methods in SubtypeFactory are more or less identical to those of Factory, however, whenever
the Factory method has an argument of type Exp<?T> the method in SubtypeFactory will
have an argument of type Convertible<?T> instead. The code that declares and implements
SubtypeFactory can be found in �gure 9.8. Rather than explain this in detail we just
illustrate what it does by showing what the generated code looks like. Figure 9.9 shows
part of the generated code for the subtype aware factory. Every method in Factory gives
rise to a corresponding method in SubtypeFactory. The SubtypeFactory method passes its
arguments on to the Factory method after applying the appropriate type conversions.

class_M(SubtypeFactory).

method_M(SubtypeFactory,?R,?m,?A,{

static ?R ?m(?formals) { return Factory.?m(?actuals); }

}) :- feature(Factory,method<?R,?m,?A0>),

CAL_convertibleTypes(?A0,?A),

JavaFormals(?A,?formals),

JavaFormals(?A,?a,?formals),

CAL_typeConversions(?a,?A0,?actualsL),

JavaCommaList(?actualsL,?actuals).

CAL_convertibleTypes([],[]).

CAL_convertibleTypes([?A0|?A0r],[?A|?Ar]) :-

CAL_convertibleType(?A0,?A),

CAL_convertibleTypes(?A0r,?Ar).

CAL_convertibleType(Exp<?T>,Convertible<?T>).

CAL_convertibleType(?A,?A) :- NOT(equal(Exp<?T>,?A)).

CAL_typeConversions([],[],[]).

CAL_typeConversions([?a|?r],[?A|?R],[?Ca|?Cr]) :-

CAL_typeConversion(?a,?A,?Ca),

CAL_typeConversions(?r,?R,?Cr).

CAL_typeConversion(?a,Exp<?T>,{?a.cast<?T>()}).

CAL_typeConversion(?a,?A,?a) :- NOT(equal(Exp<?T>,?A)).

Figure 9.8: TyRuBa code for generating SubtypeFactory

9.7 Conclusion

In this chapter we have presented a sophisticated example which illustrates how type-oriented
logic meta programming opens up tremendous possibilities for genericity. We showed how a
class and interface hierarchy can be partially speci�ed by a framework instantiator while the
remainder is generated by the framework. In order to \complete the picture", the framework
may extend classes and interfaces provided by the instantiator and it may also de�ne new
classes and interfaces. The generated classes and interfaces in this example depend on the

9.7. CONCLUSION 143

class SubtypeFactory {

static Op<add,[Double,Double]> add (Convertible<Double> f<2> ,

Convertible<Double> f<1>)

{

return Factory.add(f<2>.cast<Double>() , f<1>.cast<Double>());

}

static Op<add,[Float,Float]> add (Convertible<Float> f<2> ,

Convertible<Float> f<1>)

{

return Factory.add(f<2>.cast<Float>() , f<1>.cast<Float>());

}

static Op<add,[Integer,Integer]> add ...

...

static Double q (double f<1>) { return Factory . q (f<1>) ; }

static Float q (float f<1>) { return Factory . q (f<1>) ; }

static Integer q (int f_L1_R) { return Factory . q (f_L1_R) ; }

}

Figure 9.9: Generated code for the SubtypeFactory class

instantiator's classes in a non-trivial manner and the full power of a programming language
is needed to capture the dependencies between them. Consequently the entire example relies
heavily on the expressive power of TyRuBa as a real programming language to manipulate
and consult type information in the base level program. Therefore it constitutes a signi�cant
piece of evidence which supports our thesis that the type manipulation language should not
be restricted for reasons of avoiding ambiguity and non-termination of type checking.

144 CHAPTER 9. CASE STUDY

Chapter 10

Aspect-Oriented Programming

10.1 Introduction

This chapter illustrates an interesting and powerful application of the TyRuBa sys-
tem and type-oriented logic meta programming to support aspect-oriented programming
[MLTK97, KLM+97]. The notion of aspect-oriented programming is motivated by the obser-
vation that there are aspects of programs which defy the abstractive capabilities of general-
purpose programming languages. These so called aspects cannot be neatly packaged into
separate modules or components but cut across the entire program. This harms the readabil-
ity and maintainability of the program seriously because its source code becomes a tangled
mess of instructions and expressions that belong to the implementation of di�erent aspects.

The example we are going to look at in this chapter is the aspect of synchronization. Multi-
threaded Java applications can become seriously complicated because of synchronization code
which ensures data integrity of data structures which can be accessed by several threads
of execution simultaneously. The synchronization aspect is more or less orthogonal to the
program's functionality. Nevertheless the synchronization code is spread all over the program
thus making it completely unintelligible. Aspect-oriented programming proposes to solve the
problem by separating aspect code from the base functionality of the program itself. The
aspects are described separately by means of a special purpose aspect language. A so called
aspect weaver generates the actual code, intertwining aspect code with basic functionality
code.

As an illustration of the expressive power of TyRuBa we will show that it is well suited
to support aspect-oriented programming. Following the treatment of Lopes [LK97] we will
implement a subset of the aspect language, Cool, proposed by her to express the synchroniza-
tion aspect of Java programs separately from their basic functionality. We do not intend to
copy all of her work, this would lead us too far and take too much time and e�ort. Instead
we will restrict ourselves to a simpli�ed subset. What we want to draw attention to is the
fundamental advantage TyRuBa has over a special-purpose aspect language. TyRuBa com-
prises a full-edged logic programming language instead of a restricted special-purpose aspect
language. This has a major fundamental advantage because the aspect declarations are rep-
resented as facts in a logic program. Aspect declarations therefore can be accessed by means
of queries and declared indirectly by means of logic rules, thus enabling aspect-oriented meta
programming. This increases the expressive power of the \aspect language" tremendously.

145

146 CHAPTER 10. ASPECT-ORIENTED PROGRAMMING

10.2 The Synchronization Problem

The problem in writing multi-threaded Java applications is that synchronization code ensuring
data integrity tends to dominate the source code completely. As a result it becomes entangled
and unmanageable. As an illustration of the problem, consider the implementation of a
BoundedStack abstract data type which is given in �gure 10.1. The �gure just lists the \bare
bones" version without synchronization code. This code is simple, straightforward and easy
to read.

class BoundedStack {

static final int MAX = 10 ;

int pos = 0 ;

Object[] contents = new Object [MAX] ;

public void print () {

System.out.print("[");

for (int i=0 ; i<pos ; i++) {

System.out.print(contents[i]+" ") ;

}

System.out.print("]");

}

public Object peek () {

return contents[pos]; }

public Object pop () {

return contents[--pos]; }

public void push (Object e) {

contents [pos++]=e ; }

public boolean empty () {

return pos == 0 ; }

public boolean full () {

return pos == MAX ; }

}

Figure 10.1: The \bare bones" version of the class BoundedStack

The readability of the class BoundedStack with synchronization code added is a lot worse.
It is even too complicated to �t comfortably onto a single page. Therefore we will only take
a look at one of the methods in it. The other methods are messed up in a similar way.
Figure 10.2 lists the declaration of the peek method, complete with synchronization code.

To implement synchronization at the granularity of methods, a number of counter instance
variables will be added to the BoundedStack class. One such counter will be declared for each
method. A counter instance variable will therefore have a name such as BUSY pop, BUSY peek

etc. Code must be added to the start and end of each method to increment and decrement
these counters. Also added to the start of the method is a \guard condition" which veri�es
whether the method may start executing. If the guard is not satis�ed the method must wait

10.2. THE SYNCHRONIZATION PROBLEM 147

public Object peek () {

synchronized (this) {

while (! ((BUSY_pop == 0) && (BUSY_push == 0))) {

try { wait () ; }

catch (InterruptedException e) { }

}

++ BUSY_peek ;

}

try {

return contents [pos] ; }

finally {

synchronized (this) {

-- BUSY_peek ;

notifyAll () ;

}

}

}

Figure 10.2: The peek method with synchronization code

for the guard to become true. The peek method for example waits until there are no more
threads currently executing a push or a pop method. It is obvious from �gure 10.2 that
the synchronization code completely dominates the source code: almost all of the code in the
�gure is synchronization code. Aspect oriented programming solves this problem by providing
a special purpose language, called an aspect language, with which the synchronization aspect
can be described separately from the base functionality. A code generator, called an aspect
weaver takes a base program without aspects and an aspect program and generates output
code integrating both.

We are going to implement a simple subset of the Cool aspect language proposed by
Lopes [LK97]. The Cool aspect language is used to specify the synchronization aspect of a
Java base program. We are not going to copy the syntax exactly. Instead, we express the
synchronization aspect by means of logic facts. The following facts for example declare which
methods should not be called concurrently in the BoundedStack example.

selfExclusive(BoundedStack,push).

selfExclusive(BoundedStack,pop).

selfExclusive(BoundedStack,print).

mutuallyExclusive(BoundedStack,[push,pop,peek]).

mutuallyExclusive(BoundedStack,[push,pop,empty]).

mutuallyExclusive(BoundedStack,[push,pop,full]).

mutuallyExclusive(BoundedStack,[push,pop,print]).

Whenever there is a fact selfExclusive(?c,?m) this means that the method
?m of class ?c should not be started concurrently with itself. If there is a fact
mutuallyExclusive(?c,?methods) then this means that no method in the list ?methods

may be started concurrently with any other method in the list. A method from a mu-
tually exclusive list may however be started concurrently with itself unless it is declared

148 CHAPTER 10. ASPECT-ORIENTED PROGRAMMING

selfExclusive as well. The peek method for example is allowed to be executed concurrently
with itself, but not with push or pop. Note that by identifying methods by their names only,
we implicitly assume that the base program does not use method overloading. The same
simplifying assumption is made by Lopes also. It is not di�cult to support overloading, but
the example would then become more verbose because the types of the arguments would also
have to be listed to identify a method.

Additional guards, other than those derived from the above synchronization declarations,
may be added to a method by declaring a fact:

requires(?c,?m,?condition).

This means that the method ?m in class ?c may not be started unless the ?condition ex-
pression evaluates to true. The following example declarations ensure that no elements are
ever popped from an empty stack nor pushed onto a stack which is full.

requires(BoundedStack,push,{!full()}).

requires(BoundedStack,pop,{!empty()}).

All of the above facts together form the aspect program that describes the synchroniza-
tion aspect of the BoundedStack class. For easy reference we have listed all of the aspect
declarations together in �gure 10.3.

selfExclusive(BoundedStack,push).

selfExclusive(BoundedStack,pop).

selfExclusive(BoundedStack,print).

mutuallyExclusive(BoundedStack,[push,pop,peek]).

mutuallyExclusive(BoundedStack,[push,pop,empty]).

mutuallyExclusive(BoundedStack,[push,pop,full]).

mutuallyExclusive(BoundedStack,[push,pop,print]).

requires(BoundedStack,push,{!full()}).

requires(BoundedStack,pop,{!empty()}).

Figure 10.3: The BoundedStack synchronization-aspect program

Declarations of facts onEntry and onExit can be used to specify synchronization related
actions that have to be performed upon entry and exit of a method.

onEntry(?class,?method,?statements).

onExit(?class,?method,?statements).

The above were not used in the example but will be used indirectly to specify the actions
that maintain the counter variables upon entry and exit of a method.

10.3 TheWeaver: a Special Purpose TyRuBa Code Generator

The framework of logic meta-programming supported by the TyRuBa system is an excellent
medium to implement the Cool aspect weaver. In this section we will explain how we go

10.3. THE WEAVER: A SPECIAL PURPOSE TYRUBA CODE GENERATOR 149

/** The class BoundedStack */

class_(JCore,BoundedStack).

extends_(JCore,BoundedStack,Object).

/** Instance Variables */

var_(JCore,BoundedStack,int,MAX,{static final int MAX = 10;}).

var_(JCore,BoundedStack,{Object[]},contents,

{Object[] contents = new Object[MAX];}).

var_(JCore,BoundedStack,int,pos,{int pos = 0;}).

constructor_(JCore,BoundedStack,[],{public BoundedStack()},{}).

method_(JCore,BoundedStack,boolean,full,[],{

public boolean full()},{

return pos==MAX;}).

method_(JCore,BoundedStack,boolean,empty,[],{

public boolean empty()},{

return pos==0;}).

method_(JCore,BoundedStack,void,push,[Object],{

public void push(Object e)},{

contents[pos++]=e; }).

method_(JCore,BoundedStack,Object,pop,[],{

public Object pop()},{

return contents[--pos]; }).

method_(JCore,BoundedStack,Object,peek,[],{

public Object peek()},{

return contents[pos]; }).

method_(JCore,BoundedStack,void,print,[],{

public void print()},{

System.out.print("[");

for (int i=0;i<pos;i++) {

System.out.print(contents[i]+" ");

}

System.out.print("]");

}).

Figure 10.4: The BoundedStack \core" program

150 CHAPTER 10. ASPECT-ORIENTED PROGRAMMING

about implementing the aspect weaver. As an indication that TyRuBa is very well suited
to the task at hand we may mention that it took us less then a day to implement the code
generator to support the above aspect declarations.

10.3.1 Layers of Code-to-code Transformations

The �rst thing we did was take the implementation of the M code generator1 and re�ne it a
little bit so that method declarations are separated into a method body and a method signa-
ture declaration. This makes it easy to \wrap" synchronization code around a method body.
The following example declares the bare-bones peek method. The TyRuBa representation of
the entire base functionality of the BoundedStack class is listed in �gure 10.4.

method_(JCore,BoundedStack,Object,peek,[],

{public Object peek()}, //signature

{return contents[pos]; } //body

).

Note that we no longer follow the convention of ending the code generation predicate
names with X where X is a letter to identify the code generator. Instead, the code generator is
identi�ed by an explicit quali�er symbol JCore2 which is added as �rst argument to every code
generation predicate. This facilitates implementing a series of code transformations layered
one on top of the other. The �nal layer is quali�ed by the symbol FI and used to output the
�nally resulting Java code. The intermediate layers in between are never turned into actual
Java code but simply remain represented by method (?layer,...), var (?layer,...) etc.
Because some code to code transformations mostly just copy the layer above and then make
some changes to it, a trivial code transformation which simply copies one layer onto the next
is provided with the implementation of the code generator. As an illustration we list the rules
that de�ne this trivial code to code transformation below. For a complete listing of all of the
code generation and transformation rules we refer to appendix C.

class_(?dest,?cl) :- copyLayer(?source,?dest), class_(?source,?cl).

interface_(?dest,?cl) :- copyLayer(?source,?dest), interface_(?source,?cl).

implements_(?dest,?cl,?itf) :- copyLayer(?source,?dest),

implements_(?source,?cl,?itf).

extends_(?dest,?cl,?itf) :- extends_(?source,?dest),

implements_(?source,?cl,?itf).

var_(?dest,?class,?type,?name,?impl) :- copyLayer(?source,?dest),

var_(?source,?class,?type,?name,?impl).

method_(?dest,?class,?retType,?name,?argTypes,?head,?body) :-

copyLayer(?source,?dest),

method_(?source,?class,?retType,?name,?argTypes,?head,?body).

constructor_(?dest,?class,?argTypes,?head,?body) :-

copyLayer(?source,?dest),

constructor_(?source,?class,?argTypes,?head,?body).

1The M representational mapping rei�es classes at member granularity: each individual method, constructor
and variable is asserted by a separate proposition.

2Named after the JCore language from Lopes's system. In Lopes's system JCore is a simpli�ed version of
Java which is used to express the basic functionality without aspect code.

1
0
.3
.
T
H
E
W
E
A
V
E
R
:
A
S
P
E
C
IA
L
P
U
R
P
O
S
E
T
Y
R
U
B
A
C
O
D
E
G
E
N
E
R
A
T
O
R

151

JC
ore L

ayer

C
O

O
L

 L
ayer

Program
 w

ith synchronization code

C
opy

FI L
ayer

C
opy

"B
are B

ones" program
C

O
O

L
 aspect

declarations

W
eave

User InputOutput

F
igu

re
10.5:

T
h
e
C
o
ol
co
d
e
gen

erator

T
h
is
im

p
lem

en
tation

is
p
retty

sim
p
le
3.

E
very

co
d
e-gen

eration
related

fact
from

a
layer

?
d
e
s
t

is
d
e�
n
ed

as
b
ein

g
tru

e
w
h
en
ever

th
e
ex
act

sam
e
fact

is
tru

e
in

layer
?
s
o
u
r
c
e
.
A
s
an

ex
tra

con
d
ition

every
on
e
of
th
e
ru
les

is
gu
ard

ed
b
y
a
p
red

icate
c
o
p
y
L
a
y
e
r
(
?
s
o
u
r
c
e
,
?
d
e
s
t
)
.
T
h
is

m
ean

s
th
at

w
e
\trigger"

a
cop

y
in
g
tran

sform
ation

from
on
e
layer

to
th
e
n
ex
t
b
y
d
eclarin

g
a

fact
su
ch

as
c
o
p
y
L
a
y
e
r
(
o
n
e
L
a
y
e
r
,
n
e
x
t
L
a
y
e
r
)
.

T
h
e
setu

p
for

im
p
lem

en
tin

g
th
e
C
o
ol

co
d
e
gen

erator
con

sists
of

th
ree

layers
of

co
d
e
on

top
of

each
oth

er.
T
h
e
situ

ation
is
d
ep
icted

in
�
gu
re

10.5.
T
h
e
top

layer
is
th
e
J
C
o
r
e
layer.

T
h
is
is
cop

ied
to

th
e
C
O
O
L
layer.

T
h
e
C
o
ol

co
d
e
gen

erator
ad
d
s
som

e
in
stan

ce
variab

les
an
d

w
rap

s
sy
n
ch
ron

ization
co
d
e
arou

n
d
th
e
b
o
d
ies

of
th
e
m
eth

o
d
s
w
h
ere

n
eed

ed
.
T
h
e
C
O
O
L
layer

is
th
en

cop
ied

on
to

th
e
F
I
layer

to
m
ake

th
is
th
e
�
n
ally

gen
erated

ou
tp
u
t
co
d
e.

W
e
m
igh

t
ad
d
m
ore

layers
in

b
etw

een
in

ord
er

to
im

p
lem

en
t
ad
d
ition

al
asp

ect
lan

gu
ages

an
d
w
eavers.

T
h
e
follow

in
g
tw
o
d
eclaration

s
rou

gh
ly

d
e�
n
e
th
e
layerin

g
stru

ctu
re

of
th
e
co
d
e
gen

erator.

/
*
*
F
i
r
s
t
w
e
c
o
p
y
a
l
l
c
o
d
e
f
r
o
m
t
h
e
J
C
o
r
e
l
a
y
e
r
a
b
o
v
e
:
*
/

c
o
p
y
L
a
y
e
r
(
J
C
o
r
e
,
C
O
O
L
)
.

/
*
*
F
o
r
t
h
e
t
i
m
e
b
e
i
n
g
t
h
e
C
O
O
L
l
a
y
e
r
i
s
t
h
e
f
i
n
a
l
l
a
y
e
r
*
/

c
o
p
y
L
a
y
e
r
(
C
O
O
L
,
F
I
)
.

If
n
o
oth

er
ru
les

or
fact

d
eclaration

s
are

ad
d
ed

th
en

th
e
ab
ove

p
rov

id
es

a
co
d
e
gen

erator
th
at

cop
ies

th
e
J
C
ore

p
rogram

to
th
e
C
O
O
L
layer

an
d
su
b
seq

u
en
tly

cop
ies

th
e
co
d
e
from

th
e
C
O
O
L

layer
to

th
e
F
I
layer.

T
h
e
co
d
e
w
h
ich

ap
p
ears

on
th
e
F
I
layer

w
ill

�
n
ally

b
e
u
sed

to
gen

erate
actu

al
ou
tp
u
t
co
d
e.

1
0
.3
.2

S
y
n
c
h
r
o
n
iz
a
tio

n
A
sp
e
c
t
C
o
d
e

T
h
e
ab
ove

c
o
p
y
L
a
y
e
r
d
eclaration

s
on
ly

cop
y
co
d
e
w
ith

ou
t
ch
an
gin

g
it.

W
e
still

n
eed

ru
les

th
at

m
o
d
ify

th
e
co
d
e
in

th
e
C
o
ol

layer
to

ad
d
sy
n
ch
ron

ization
asp

ect
co
d
e
to

it.

B
efore

con
tin

u
in
g
w
e
n
ote

th
at

p
art

of
th
e
asp

ect
lan

gu
age

can
b
e
d
e�
n
ed

in
term

s
of

th
e

m
ore

low
-level

featu
res

of
th
e
asp

ect
lan

gu
age

itself.
T
h
e
sy
n
ch
ron

ization
co
d
e
for

m
ain

tain
in
g

3In
a
fu
ll
P
ro
lo
g
im

p
lem

en
ta
tio

n
th
is
co
u
ld

b
e
ex
p
ressed

ev
en

sh
o
rter

b
y
u
sin

g
th
e
\
.
.
"
m
eta

p
red

ica
te

152 CHAPTER 10. ASPECT-ORIENTED PROGRAMMING

the counters could be added by means of onEntry and onExit declarations. Likewise, the
conditions that consult the counters to verify whether a method may be started concurrently
can be added by means of a requires declaration. We therefore �rst implement support for
the more low-level aspect declarations onExit, onEntry, and requires. Afterwards we will
implement support for selfExclusive and mutuallyExclusive easily in terms of the more
low-level declarations.

Low-level aspect declarations

The core of the Cool code generator is very simple. Basically it merely adds some wrapper
code around the body of a JCore method declaration. Below is the rule which adds wrapper
code around a method in the COOL layer. The wrapper code should look familiar since it
has roughly the same layout as the example synchronization code we presented for the peek
method in �gure 10.2.

/** Add wrapper code to COOL methods */

method_(COOL,?class,?Return,?name,?Args,?head,{

synchronized (this) {

while (!(?condition)) {

try { wait(); }

catch (InterruptedException COOLe) {}

}

?atStart

}

try {?body}

finally {

synchronized(this) {

?atEnd

notifyAll();

}

}

}) :- method_(JCore,?class,?Return,?name,?Args,?head,?body),

COOL_allRequired(?class,?name,?condition),

COOL_atStartStatements(?class,?name,?atStart),

COOL_atEndStatements(?class,?name,?atEnd).

A number of auxiliary predicates compute the ?condition expression and the ?atStart and
?atEnd statement lists to be inserted into the template wrapper code.

The auxiliary predicate COOL allRequired collects all of the conditions declared by
requires aspect declarations for a certain method. All of these are combined into a con-
junction, i.e. a list of Java expressions combined together by means of the Java logical and
operator \&&".

COOL_allRequired(?class,?name,?exp) :-

FINDALL(NODUP(?cond,requires(?class,?name,?cond)),

?cond,?conditions),

JavaConjunction(?conditions,?exp).

10.3. THE WEAVER: A SPECIAL PURPOSE TYRUBA CODE GENERATOR 153

The use of NODUP avoids duplicate conditions from being included more than once.
The COOL atStartStatements and COOL atEndStatements collect the onEntry and

onExit statements respectively.

COOL_atStartStatements(?class,?name,?statements) :-

FINDALL(onEntry(?class,?name,?stat),

?stat,?statements).

COOL_atEndStatements(?class,?name,?statements) :-

FINDALL(onExit(?class,?name,?stat),

?stat,?statements).

Mutually exclusive and self exclusive declarations

The rules presented in the previous section implement the core of the Cool code generator
which supports the more low-level aspect declarations that add synchronization statements
and conditions to the synchronization wrapper code of a method. We can easily provide
support for selfExclusive and mutuallyExclusive declarations in terms of the more low-
level declarations.

The following declaration adds the condition that makes sure that a selfExclusive

method is never started concurrently with itself4.

requires(?class,?name,{COOLBUSY<?name> == 0}) :-

selfExclusive(?class,?name).

This code makes use of a counter variable COOLBUSY<?name> which registers how many times
a method has been entered. We still have to declare these variables and the onEntry and
onExit code that increments and decrements the counter appropriately. We will come to
these declarations later. First let us have a look at the rule that provides the entry condition
for a mutuallyExclusive method, which also consults a counter variable.

requires(?class,?name,{COOLBUSY<?other> == 0}) :-

mutuallyExclusive(?class,?names),

element(?name,?names),

element(?other,?names),

NOT(equal(?name,?other)).

What this rule states is that a guard condition COOLBUSY<?other> == 0 must be added to a
method ?name whenever ?name and ?other are two distinct methods occurring together in a
single mutuallyExclusive list declaration.

Now, the only thing that remains to be done to complete the Cool code generator is
add the counter variables and the administrative code that increments and decrements the
counter upon entry and exit. Since the counters are used for veri�cation of mutually exclusive
as well as self exclusive conditions we provide a counter variable for every method which is
self exclusive or an element of a mutually exclusive list.

4The implementation of our simpli�ed code generator also prohibits recursive calls from the same thread.
This is usually not the intention. In Lopes's work this is patched by using a more complicated Lock object
instead of a simple int counter. The Lock object also records which thread is locking the object and allows
calls from the same thread explicitly. We could easily support this more complicated locking strategy. All we
need to change are the guard conditions and the declaration of the counter instance variables.

154 CHAPTER 10. ASPECT-ORIENTED PROGRAMMING

var_(COOL,?class,int,COOLBUSY<?name>,{

private int COOLBUSY<?name> = 0;

}) :- NODUP([?class,?name],

selfExclusive(?cl,?name);

mutuallyExclusive(?cl,?mutList),element(?name,?mutList)).

The use of NODUP is not strictly necessary because the code generator ignores duplicates
anyway. However, it makes the declaration of the onEntry and onExit code simpler. We can
simply declare statements to increment and decrement the counters on the condition that a
counter variable is declared in the class. Without using NODUP above this could result in the
counter being incremented or decremented more than once5.

/** Every method for which there is a COOLBUSY counter

must get some onEntry and onExit statements to maintain

the counter */

onEntry(?class,?name,{

++COOLBUSY<?name>;

}) :- feature1(COOL,?class,var<int,COOLBUSY<?name>>).

onExit(?class,?name,{

--COOLBUSY<?name>;

}) :- feature1(COOL,?class,var<int,COOLBUSY<?name>>).

This concludes the implementation of our simpli�ed version of the Cool aspect language
and code generator. An excerpt from the resulting output code for BoundedStack is listed in
�gure 10.6.

10.4 Aspect-Oriented Meta Programming

There is a major fundamental advantage to using TyRuBa instead of a special purpose aspect
language. The facts declaring the aspects are easily accessible from logic programs and it is
possible to indirectly declare aspects by means of logic rules of arbitrary complexity. As a
result we can do aspect-oriented meta programming. We can write logic programs that infer
aspect declarations from other aspect declarations. In fact, we already made use of this poten-
tial in the implementation of the code generation for selfExclusive and mutuallyExclusive

which was de�ned in terms of onEntry, onExit and requires.

That this is indeed a considerable advantage and increases the power of the aspect language
tremendously will become clear in the following example. As we were experimenting with the
BoundedStack example we were not entirely pleased with the way method locking strategies
are expressed by means of mutuallyExclusive and selfExclusive declarations. As we
reasoned about which methods should be declared selfExclusive we came to the conclusion
that these were methods which somehow make a change to some state. Because they make
a change to this state they should not be invoked together with any method which also
modi�es this state, this includes the method itself. Methods which do not modify a state
but only inspect it can safely be invoked concurrently with themselves and each other. They
should however not be invoked concurrently with other methods that modify the same state.

5Even this would not be a real problem since we only test for equality to 0.

10.4. ASPECT-ORIENTED META PROGRAMMING 155

class BoundedStack {

public void print () {

synchronized (this) {

while (! ((COOLBUSY_Lpush_R == 0) && (COOLBUSY_Lpop_R == 0)

&& (COOLBUSY_Lprint_R == 0))) {

try { wait () ; }

catch (InterruptedException COOLe) { }

}

++ COOLBUSY_Lprint_R ;

}

try {

System . out . print ("[") ;

for (int i = 0 ; i < pos ; i ++) {

System . out . print (contents [i] + " ") ;

}

System . out . print ("]") ;

}

finally {

synchronized (this) {

-- COOLBUSY_Lprint_R ;

notifyAll () ;

}

}

}

public Object peek () {

synchronized (this) {

while (! ((COOLBUSY_Lpush_R == 0)

&& (COOLBUSY_Lpop_R == 0))) {

try { wait () ; }

catch (InterruptedException COOLe) { }

}

++ COOLBUSY_Lpeek_R ;

}

try {

return contents [pos] ; }

finally {

synchronized (this) {

-- COOLBUSY_Lpeek_R ;

notifyAll () ;

}

}

}

...other method declarations...

private int COOLBUSY_Lprint_R = 0 ;

...other counter variables...

private int COOLBUSY_Lpeek_R = 0 ;

int pos = 0 ;

Object [] contents = new Object [MAX] ;

static final int MAX = 10 ;

}

Figure 10.6: Code Generated for BoundedStack

156 CHAPTER 10. ASPECT-ORIENTED PROGRAMMING

This kind of reasoning, about which method modi�es and/or inspects what state was the
real rationale behind the selfExclusive and mutuallyExclusive declarations. It would
therefore be better if this kind of information can be declared directly and explicitly. Instead
of the previously given set of xxxExclusive declarations, we would like to write:

modifies(BoundedStack,push,this).

modifies(BoundedStack,pop,this).

inspects(BoundedStack,peek,this).

inspects(BoundedStack,empty,this).

inspects(BoundedStack,full,this).

modifies(BoundedStack,print,SystemOut).

inspects(BoundedStack,print,this).

The above should provide su�cient information to derive selfExclusive and
mutuallyExclusive properties automatically. We will see that indeed it does and that we
can de�ne some simple rules that express how to do so.

The �rst rule simply states that a method is self exclusive if it modi�es some state.

selfExclusive(?class,?method) :- modifies(?class,?method,?thing).

A method which inspects a state is mutually exclusive with all methods which modify the
same state. This is captured by the following rule.

mutuallyExclusive(?class,[?inspector|?modifiers]) :-

inspects(?class,?inspector,?thing),

FINDALL(NODUP(?method,modifies(?class,?method,?thing)),

?method,

?modifiers).

We need one more rule to say that all methods which modify the same state should be
mutually exclusive with each other.

mutuallyExclusive(?class,?modifiers) :-

NODUP(?thing,modifies(?class,?xxx,?thing)),

FINDALL(NODUP(?method,modifies(?class,?method,?thing)),

?method,

?modifiers).

For the BoundedStack example this last rule is superuous. It only infers two redundant
facts:

:- mutuallyExclusive(BoundedStack,?x).

****START Solutions*****

#SOLUTION : mutuallyExclusive(BoundedStack,[print])

#SOLUTION : mutuallyExclusive(BoundedStack,[pop, push])

...

10.5. CONCLUSION 157

The �rst one states that the print method is mutually exclusive with itself. This does
not make a lot of sense since a mutually exclusive declaration is only useful when it states at
least two methods. The declaration doesn't harm though, it just will not result in any code
being generated. The second one states that pop and push are mutually exclusive. This one
is also redundant because it is already implied by other inferred facts:

:- mutuallyExclusive(BoundedStack,?x).

****START Solutions*****

...

#SOLUTION : mutuallyExclusive(BoundedStack,[print, pop, push])

#SOLUTION : mutuallyExclusive(BoundedStack,[full, pop, push])

#SOLUTION : mutuallyExclusive(BoundedStack,[empty, pop, push])

#SOLUTION : mutuallyExclusive(BoundedStack,[peek, pop, push])

For other situations the rule might be needed though. For example, for a version of
BoundedStack which only has two methods, push and pop, the rule would not be superuous
because without it the methods push and pop would not be regarded as being mutually
exclusive with one another.

10.5 Conclusion

In this chapter we have presented how an aspect language can be embedded in the logic
paradigm as a set of well-chosen logic facts. We did this for a simpli�ed subset of the Cool
aspect language proposed by Lopes to express synchronization aspects of Java programs. For
this particular example it was fairly easy to implement the aspect weaver as a special purpose
code generator/transformer.

An equally clean syntactic separation between aspect program and basic functionality can
be achieved when using a general purpose declarative programming language such as TyRuBa
instead of a special purpose aspect language. In the presented example, one set of facts
speci�es the basic functionality of the BoundedStack class. Another completely disjunctive
set speci�es the synchronization aspect.

That aspects are expressed by means of a full-edged logic programming language has
a major fundamental advantage over using a restricted special-purpose aspect language. It
allows for what we called aspect-oriented meta programming. Aspect declarations are merely
facts in the logic program and they can therefore be consulted or de�ned indirectly by means
of logic rules. Bluntly put, this means that if you do not like the aspect language the way it
is, you can simply de�ne your own language or language extension by means of a few simple
rules. As an example we presented and implemented an alternative to the Cool declarations
that allows us to capture the reasoning behind the mutuallyExclusive and selfExclusive

declarations in terms of which method inspects or modi�es what state. Implementing this
extension of the aspect language was very easy, only requiring three simple and intuitive logic
rules.

158 CHAPTER 10. ASPECT-ORIENTED PROGRAMMING

Chapter 11

History and Future of TyRuBa

11.1 Introduction

In this chapter we will give some historic background about the development of the TyRuBa
system, and some ideas about further research. This will help the reader in putting the system
and its design into the proper context. The system certainly has many points upon which it
can be criticized. However, keep in mind that it was mostly designed as a medium for exper-
imentation. Its main purpose is to enable the exploration of the technique of type-oriented
logic meta programming, providing evidence that this technique has considerable potential.
We wanted to do all this with minimal e�ort and come to the point of experimentation and
validation as soon as possible. Therefore, all was sacri�ced in order to obtain maximal expres-
sive power for the type manipulation language. Other aspects, including type checking and
syntactic issues, were ignored as much as possible. As a result, the current TyRuBa system
has two major shortcomings which make it unusable in a development environment.

The �rst shortcoming is the lack of a suitable surface syntax. As a consequence of this, the
user has to program Java indirectly, describing the base language program by means of logic
rules and facts. This is rather inconvenient and makes the TyRuBa programs unnecessarily
verbose and di�cult to read at times. Section 11.3 discusses this problem in some detail and
sketches a prospective solution.

The second major shortcoming of TyRuBa is its inadequate support for type checking.
TyRuBa itself does no type checking of its own. It only generates Java code. Type errors are
detected no sooner than when the generated code is being compiled by the Java compiler. In
section 11.4 we will present some ideas about how to integrate type checking into the TyRuBa
system.

The remaining sections discuss various other topics for future research: more additions
and improvements to the system/language, potential areas in which type-oriented logic meta
programming might be useful, better implementations of the logic inference engine etc.

11.2 History of TyRuBa

We will start by presenting a short summary of the historic evolution of the ideas behind
TyRuBa, and the di�erent versions of the system. So far there are four versions of the
TyRuBa system/language. In the following discussion, we will refer to these as TyRuBa0.9,
TyRuBa1.0, TyRuBa1.9 and TyRuBa2.0. TyRuBa2.0 is the current version, used throughout

159

160 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

this dissertation. Whenever we neglect to mention an explicit version number, it is assumed
that we are referring to the current version: TyRuBa2.0.

Only two of these four have actually been implemented: TyRuBa1.0 and TyRuBa2.0. The
other two systems were never completely implemented but can be considered to be premature
versions of their respective successors.

11.2.1 TyRuBa0.9

The �rst sketchy presentation of the ideas behind TyRuBa was given in [DVM97]. This short
position paper presents a �ctional extension of a Pizza-like language with a special kind of
declaration resembling a logic rule.

Since TyRuBa0.9 was only a sketchy idea and was never concretized and turned into a
working system we will not elaborate on it any further. Instead we move on to TyRuBa1.0
which can be regarded as a concrete instantiation of the vague ideas of TyRuBa0.9.

11.2.2 TyRuBa1.0

The TyRuBa1.0 system was the result of an attempt at implementing the TyRuBa0.9 pro-
posal. In order to make the implementation easier a few changes were made to the syntax.
Most importantly, the lexical convention of pre�xing logic variables with a \?" was adopted.

TyRuBa1.0 is similar to current TyRuBa2.0 in many ways. The major di�erences are
that in TyRuBa1.0 the representational mapping and code generator are hardwired, and that
it has a Pizza-like surface syntax which is intimately linked to the representational mapping.

The particular representational mapping adopted in TyRuBa1.0 corresponds most closely
to the \ I" mapping from chapter 8. This mapping rei�es classes as being composed of pieces
which implement a particular interface.

TyRuBa1.0 provides a Pizza-like syntax that allows parametric and bounded parametric
types to be expressed easily. An extra extension of the syntax allows expressing logic rules
that infer implementations for interfaces onto classes. Let us have a look at some examples
illustrating the surface syntax.

Parametric Types

Figure 11.1 lists a small excerpt from one of our early experiments with type oriented meta-
programming: the implementation of a small collection hierarchy in TyRuBa1.0. The �gure
shows three parametric interface declarations. The only major di�erence with Pizza para-
metric types is the lexical convention that type variables start with a \?".

The TyRuBa1.0 parser simply converts these declarations into logic facts, in more or less
the same way that parametric types were emulated by means of TyRuBa2.0 in section 7.3.
The declaration of the Searchable interface for example corresponds to the following logic
facts.

interface_I(Searchable<?El>,{

boolean includes(?El e);

}).

extends_I(Searchable<?El>,Collection<?El>).

11.2. HISTORY OF TYRUBA 161

/** Interface for *all* collections */

interface Collection<?El> {

boolean isEmpty();

}

/** Interface for collections with a finite number of elements */

interface Finite<?El> extends Collection<?El> {

int size();

}

/** Interface for collections you can search for the presence

of an element */

interface Searchable<?El> extends Collection<?El> {

boolean includes(?El e);

}

Figure 11.1: Some TyRuBa1.0 parametric interface examples.

Bounded Parametric Types

TyRuBa1.0 syntax also has provisions for expressing bounded parametric types. An outline
of a TyRuBa1.0 bounded parametric Set class declaration is given below.

class Set<?El>

whenever ?El implements Equality<?El> ;

implements ...

{

private LinkedStorage<?El> store = new LinkedStorage<?El>();

...

}

This corresponds to a class which is declared by a rule, rather than by a simple fact. The
condition for the rule is provided in a whenever clause.

It would probably have been more logical to use the keyword where instead of whenever, in
analogy with WhereJava [MBL97]. However, the type constraints expressible in TyRuBa1.0
are di�erent from WhereJava's. TyRuBa1.0 type constraints are based on the Java subtype
hierarchy whereas WhereJava instead adopts the notion of signature conformance.

Rules to implement interfaces

Inspired by the way quali�ed types introduce rules into Gofer's type language (see chapter 2),
and by the analogy between Gofer's type classes and Java's interfaces, TyRuBa1.0 provides a
syntax for declaring rules that infer implementations of interfaces onto classes. The following
is an example of such a rule.

/** Default implementation for "isEmpty" for all finite collections */

rule ?X implements Collection<?El>

whenever ?X implements Finite<?El>;

162 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

{

public boolean isEmpty() {

return size()==0;

}

}

A rule may also target a more speci�c class rather than use a variable. Thus it is for
example possible to declare a \conditional" interface implementation which is only included
into a particular parametric class depending on whether some condition on its type param-
eters is ful�lled. The following example rule implements Readable for a parametric class
ArrayStorage if the elements stored in it are themselves Readable.

/** Conditionally implement Readable for class ArrayStorage */

rule ArrayStorage<?El> implements Readable<ArrayStorage<?El> >

whenever ?El implements Readable<?El>;

{

static ArrayStorage<?El> read(BufferedReader in) {

int size = Number<int>.read(in).value();

?El[] initvals = new ?El[size];

for (int i=0;i<size;i++) {

initvals[i] = ?El.read(in);

}

return new ArrayStorage<?El>(initvals);

}

}

Inherent Restrictions Imposed by TyRuBa1.0

The use of this kind of surface syntax seems preferable over using the logic meta language's
Prolog like syntax directly. The TyRuBa1.0 surface syntax however imposes a number of
implicit limitations which we will now discuss.

Because it only o�ers explicit notations for certain kinds of predicates, the syntax implic-
itly limits the kinds of predicates that can be expressed. In TyRuBa1.0, for example, the syn-
tax only provides a way to express implements predicates. A special, Java-like implements-
clause syntax is provided for this purpose. Other kinds of predicates are not expressible
however. A consequence of this is that it is nearly impossible for the user to implement or
invoke auxiliary predicates.

TyRuBa1.0 does not have the quoting mechanism of TyRuBa2.0. In a way, it does have
a similar mechanism internally. There is however no syntax that allows the user to make
explicit use of it! The quoting mechanism is only used internally, for example when parsing
a rule which implements an interface. In this case the body of code that implements the
interface will be parsed as quoted Java code. There is however no syntax with which the user
may explicitly quote a piece of Java code and subsequently manipulate it.

Another implicit restriction linked with the surface syntax is due to the translation which
transforms surface syntax into rules and facts. The translation algorithm is speci�c to the
representational mapping. Therefore, providing a surface syntax translator also implies that
the representational mapping be hard coded into the system. The hard-coded representational

11.3. A SURFACE SYNTAX FOR TYRUBA 163

mapping of TyRuBa1.0 soon turned out to be too coarse grained. An indication of this is the
fact that in our very �rst experiment with the system, an implementation of a small collection
library, we got an enormous proliferation of small interfaces. Most interfaces contained only a
single method each. There were even a number of \dummy" interfaces which did not contain
methods at all but merely served as a kind of \logic tags" attached to classes.

The TyRuBa1.0 surface syntax, its parser implementation, and its code-generator and
representational mapping are intimately related to one another. If the mapping is changed or
re�ned, the surface syntax must be revised in order to make it possible to express predicates
for accessing the newly rei�ed information. The parser, which translates surface syntax into
rules and facts according to the representational mapping, must also be revised. All of this
is a lot of work and would seriously slow down and hinder the experimentation process.
Realizing this, and also realizing that we probably were not going to �nd \the ultimate"
representational mapping on the next try, we decided to drop the surface syntax altogether,
at least for a while, and simply use the underlying logic language directly. This eventually
gave rise to the TyRuBa1.9 proposal [DV98].

11.2.3 TyRuBa1.9 and TyRuBa2.0

The TyRuBa1.9 proposal as presented in [DV98] was only implemented partially, but it is
highly similar to the current TyRuBa2.0 version. TyRuBa2.0 has already been discussed and
used elaborately throughout this dissertation, therefore we will not discuss TyRuBa1.9 and
2.0 any further here.

We directly move on to presenting some ideas about future research, and improvements
to the TyRuBa system and its implementation.

11.3 A Surface Syntax for TyRuBa

One of the major shortcomings of the current TyRuBa system is that the user is required to
write everything in the logic meta language directly. This has some important drawbacks.
The logic representation often exhibits a certain degree of redundancy and is more verbose
than the equivalent written in a Java or Pizza-like surface syntax. As an illustration of the
problem, consider the following outline of a Hashtable class declaration expressed in PJava1.

class Hashtable<?k,?v>

where ?k implements Hashable

{

public void put(?k k,?v v) { ... k.hashCode() ... }

public ?v get(?k k) { ... }

}

If we express this in TyRuBa's logic language, using the \ M" mapping we get the following:

class_M(Hashtable<?k,?v>) :- implements(?k,Hashable).

method_M(Hashtable<?k,?v>,void,put,[?k,?v],{

public void put(?k k,?v v) { ... k.hashCode() ... }

1PJava is the �ctional parametric types syntax we used in chapter 3.

164 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

}) :- implements(?k,Hashable).

method_M(Hashtable<?k,?v>,?v,get,[?k,?v],{

public ?v get(?k k) { ... }

}) :- implements(?k,Hashable).

This is clearly more verbose and less readable than the same thing expressed in PJava. The
TyRuBa code also exhibits redundancy in several places. The name of the class for example
must be repeated with every method declaration. In PJava on the other hand, the fact
that a method belongs to a class is conveniently expressed by nesting. Another example of
redundancy is the repetition of the predicate implements(?k,Hashable) which expresses a
type constraint on type variable ?k. The constraint must be repeated with every class member
because it should a�ect the entire class declaration as a whole. In PJava this is succinctly
expressed by a single where clause attached to the class. A last example of redundancy is
the fact that type signatures for methods are expressed twice. Once inside the quoted code
block, and once more in the other arguments of the method M predicate.

The above shows that directly expressing things in the logic language is not very practical.
Remember however that TyRuBa is an experimental system. A more mature implementation
would o�er a suitable surface syntax, shielding the user from the problems illustrated by the
above example. A parser would read a program written in the surface syntax and translate
it into the appropriate rules and facts.

As we explained before we did not design a surface syntax for TyRuBa2.0, and did not
implement a parser and translator for it because of two reasons. First, it would have to be
changed every time we adapt or re�ne the representational mapping, something which we did
several times in this dissertation! Second, the syntax itself can be an implicit limitation of
how the underlying logic system can be used. The latter problem can probably be solved by
providing a suitable escape mechanism with which one can always resort to expressing logic
rules and facts directly whenever the regular surface syntax falls short.

To give a general idea of what a suitable surface syntax could look like, we present a
sketchy description of the hypothetical system, FutuRuBa.

11.3.1 A Hypothetical System: FutuRuBa

FutuRuBa is a system designed for allowing type-oriented logic meta programming. It is
built around a core implementation, basically corresponding to the TyRuBa2.0 system. The
TyRuBa logic language is hidden from the user behind a convenient surface syntax which
supports parametric and bounded parametric types. FutuRuBa syntax is parsed by the
FutuRuBa parser and translated into TyRuBa rules and facts.

The rules and facts which are produced by the translation are de�ned in terms of predicates
de�ned by FutuRuBa's representational mapping, and in terms of some prede�ned predicates
from a library of predicates for deriving higher level information from the directly rei�ed
information.

We will now briey discuss the above mentioned components of the FutuRuBa system one
by one.

11.3. A SURFACE SYNTAX FOR TYRUBA 165

Surface Syntax, Parser and Translation

FutuRuBa has a surface syntax which is based on PJava syntax. It o�ers the PJava syntax
for easy expression of parametric and bounded parametric types. FutuRuBa supports three
kinds of where clauses, for expressing di�erent kinds of type constraints.

The �rst one corresponds to subtyping constraints, following the declared extends and
implements relationship between classes and interfaces. Such a constraint is expressed with
an extends clause:

where ?a extends ?b

The second where clause syntax supports signature-conformance constraints as in Where-
Java. The syntax for it is similar to WhereJava's:

where ?X { ...signatures... }

The third where clause syntax is general purpose. It allows any arbitrary TyRuBa query
to be used as a constraint. The two former where-clause syntaxes can thus be considered to
be mere syntactic sugar for particular uses of this one. The where clause

where ?El extends Equality<?El>

can for example be written using the general syntax as follows:

where :- subtype(?El,Equality<?El>).

Any of these where clauses may be attached to a class or interface as a whole, or alterna-
tively, to an individual method, constructor or instance variable.

For situations where FutuRuBa surface syntax is an obstruction rather than a convenience,
we can use the keyword rule to declare rules or facts directly. The syntax of such a rule is
similar to the rules in TyRuBa1.0 (see section 11.2.2).

Representational Mapping

FutuRuBa's representational mapping is a re�nement of the \ M" representational mapping
which rei�es information about individual members of classes and interfaces. FutuRuBa's
representational mapping also rei�es information about individual constructors, methods and
instance variables. In contrast to the sketchy \ M" mapping which still has \holes" in it, in the
sense that it does not reify all of the available information, FutuRuBa's mapping is carefully
designed to reify all information in a suitable form. This includes:

� The implements and extends relationship between classes and interfaces.

� Individual members: methods, constructors, instance variables

� Declared type signatures of each member:

{ Argument and return types

{ Exception clauses

{ tags public, private, protected, static, . . .

166 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

� A parse-tree representation for bodies of methods and constructors.

� . . .

In order to support the rei�cation of method and constructor bodies as parse trees, Fu-
tuRuBa's core system has a more sophisticated quoting mechanism than TyRuBa2.0. In
contrast to the string-like quoted code blocks o�ered by TyRuBa2.0, FutuRuBa quoted code
blocks are parsed according to Java syntax, and turned into a parse tree which is repre-
sented by nested TyRuBa compound terms. The parse-tree terms behave exactly like normal
TyRuBa terms, except that printing them generates Java code.

A Predicate Library for Deduced Information

FutuRuBa provides an extensive library of prede�ned predicates that derive all kinds of useful
information from basic representational mapping facts. The representational mapping only
rei�es the most basic information about classes and interfaces. What information is rei�ed,
is typically that which can be read directly from the base-level program. More high-level
information which requires some deduction is typically derived by the rules in the library.

The predicates which are used for expressing type constraints are usually of the more
high-level kind. For example, the subtype predicate used in the translation of an extends

clause constraint is de�ned by a set of rules. These rules de�ne subtype in terms of the
facts that state which classes or interfaces list which other classes or interfaces directly in
their extends or implements clause. The latter information, which can be read directly from
base-level programs, is rei�ed by the representational mapping.

In TyRuBa2.0 we already followed the same approach. The initialization �les for TyRuBa
typically provide an implementation for a code generator, together with a library of predi-
cates which derive higher-level information, such as for example the subtype predicate. The
TyRuBa version of the library is only a simple proof of concept implementation. It does not
take into account public, private and protected tags and how these tags interact with
inheritance for example. FutuRuBa's library on the other hand, is carefully crafted to follow
the Java semantics precisely. It comprises a complete implementation of a Java type checker.
Every little bit of information deduced by the type checker is available through predicates
de�ned in the library. Some examples of what the FutuRuBa predicate library has to o�er:

� Take public, private and protected tags into account.

� The Java subtype relationship.

� Testing classes and interfaces for the presence of basic features:

{ instance variables (with type)

{ constructor (with argument types)

{ method (with argument and return types)

� Signature conformance testing.

� Information about which method or class throws what exceptions.

� . . .

11.4. TYPE CHECKING OF FUTURUBA PROGRAMS 167

11.4 Type Checking of FutuRuBa Programs

The second major shortcoming of TyRuBa2.0 is its lack of type checking. In this section
we will present some ideas of how it might be feasible to integrate a form of type-checking
into FutuRuBa. We will discuss two approaches. The �rst approach attempts to type check
only \nice" programs which do not make sophisticated use of logic meta programming, and
leaves more complicated programs unchecked. The second, more ambitious approach, tries to
devise a general mechanism for type checking which could also be used to type check more
complicated examples.

11.4.1 Determine a Type-Checkable Subset of FutuRuBa

The simplest and most obvious way to introduce some type checking into the FutuRuBa
system, is establishing a su�ciently conservative subset of FutuRuBa that can be type checked
relatively easily. Programs or parts of programs which fall into this subset can then be checked,
whereas more complicated FutuRuBa code, that makes more elaborate use of the underlying
logic meta system, is left unchecked.

It is not hard to argue that there exists a non-trivial subset of all FutuRuBa programs
which can be statically type checked. After all, WhereJava and Pizza both can be regarded
as restricted versions of FutuRuBa, and type checking algorithms for these languages already
exist.

This solution may not be perfect, some programs will not be type checked, but at least
programs that could be expressed and type checked before in Pizza and the like, will also
be type checked in FutuRuBa. This means that FutuRuBa will be at least as expressive as
Pizza or WhereJava, without losing type checking, and if the need arises, type-checking can
be abandoned in order to gain extra expressive power.

11.4.2 Type Checking Rules

A more ambitious research goal is to determine a more general mechanism with which arbi-
trary FutuRuBa programs can be veri�ed. The idea here is to try and do type checking at the
level of the logic representation of the program itself, checking rules and facts directly. This
is a hard problem indeed. It does not come down to merely de�ning a static type system for
a Prolog like language, but also requires incorporating type checking of potentially partially
unknown pieces of Java code. We must realize in advance that given the nature of the repre-
sentation, a full edged logic program, it is probably not possible to devise a type-checking
algorithm which always terminates for every FutuRuBa program. The challenge here is to
�nd a checking algorithm which terminates most of the time. The least we would require
of the algorithm is that type checking of FutuRuBa meta programs which always terminate
would also terminate.

Now let us reason a little bit about the most essential part of type checking, the type
checking of method bodies. The di�culty lies in checking methods which are de�ned by
rules. These are di�cult because they may be partially unknown, depending on a logic
variable which is constrained or computed by the condition of the rule. We will try to reduce
checking of such a method to ordinary Java type checking. For the sake of the argument let
us assume that we have access to a Java type checker, implemented by means of logic rules,
that can be invoked by executing the following query:

168 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

:- typeCorrect(aClassName,aMethodName,anArgumentTypeList).

Let us have a look at a typical rule de�ning a method, and reason about how we can
reduce type checking of such a rule to ordinary Java type checking.

method_M(Array<?El>,boolean,contains,[?El],{

boolean contains(?El e) {

boolean found = false;

int i = 0;

while (!found && i<length())

found = e.equals(at(i++));

return found;

}

}) :- implements(?El,Equality<?El>).

The idea is that a rule like this is considered type correct, if the condition of the rule
imposes enough constraints to guarantee that the method de�ned by this rule is type correct
in all possible instantiations. In other words, assuming the fact

implements(?El,Equality<?El>).

We should be able to deduce that

typeCorrect(Array<?El>,contains,[?El])

The deduction of the latter fact should make no assumptions about ?El, other than those
provided in the condition of the rule. The deduction should therefore be possible without
binding anything to the variable ?El. In essence, a variable which cannot be bound is no
longer truly a variable. We might therefore just replace it by some (unique) identi�er to
guarantee that it will not be bound to anything. In other words, type checking the rule
comes down to assuming the fact (by temporarily adding the assumption to the logic data
base for example)

implements(El,Equality<El>).

and executing the following query:

:- typeCorrect(Array<El>,contains,[El]).

Note that executing this query comes down to an invocation of a plain Java type checker, on
a fully instantiated class Array<El>. In other words, this means that type checking of the
example rule is e�ectively reduced to ordinary Java type checking.

Of course, in order for this to work, the typeCorrect predicate should be de�ned in such
a way that it knows what a fact such as implements(El,Equality<El>) implies. In this case,
it should be able to deduce that the type El has at least an equals method. It will have to
be investigated how to structure the implementation of the type checker so that it can deduce
what it needs to know from the various assumptions that may occur in conditions of rules.
This may occasionally entail that in order to type check arbitrary constraints, expressed by
arbitrary user de�ned predicates, the user may have to write some logic code and plug this

11.5. BETTER INTEGRATION WITH JAVA 169

into hooks provided by the type checker. It is also interesting to investigate in how far the
rules actually de�ning the user de�ned predicates may be used to automatically provide type
checking support for them.

Of course, there still are a great deal of lose ends and unanswered questions. Nevertheless,
we think this example and discussion gives some hope at least that a general type checking
mechanism for arbitrary FutuRuBa programs is possible, provided that the user may occa-
sionally be required to implement part of the type checker himself, in order to be able to
support arbitrary user de�ned type constraints.

11.5 Better Integration with Java

Another important point the system can be greatly improved upon, is the integration with
the Java language, and its virtual machine and class �le format.

Currently TyRuBa is completely separate from the underlying Java language implemen-
tation for which it generates code. Ultimately we would want to merge the Java implementa-
tion and the TyRuBa meta system into a single tightly integrated whole. The meta system
should provide access to all kinds of information typically available in the Java type checker.
Currently this is achieved through a library of derived information predicates. This library
actually reimplements part of the Java type checker by means of logic rules. Ideally every-
thing | the Java type checker, class reader, compiler, etc. | would be integrated neatly into
a single system which can be accessed directly from the logic meta language.

A strongly related point is providing access to existing class libraries, such as for example
the standard Java class library. In a system where the Java compiler is tightly integrated with
the logic meta system, information about existing classes from existing .class �les would be
rei�ed as part of the type checker. This would allow logic meta programs to access and use
classes from existing class libraries easily. In the current system information about existing
classes is not rei�ed. We usually worked around this by providing what little information we
needed about existing standard Java classes, as part of the initialization �les.

The problems discussed in this section are certainly not trivial. Nevertheless, we consider
them mostly technical in nature. They could all be �xed by a more sophisticated implementa-
tion. The most obvious (but not necessarily most e�cient) way to solve most of these problems
would be to implement the entire Java compiler as a TyRuBa logic program. Doing this would
probably be helpful in solving the type checking problems discussed in section 11.4.2 also.

11.6 Extensions of the Logic Meta Language

The point made in this dissertation is that the static type system of programming language
should comprise a type language which is itself designed as a programming language. To show
this we illustrated what di�erence this could make to the expressiveness of the language, by
enabling type-oriented meta programming.

The TyRuBa system o�ers a true programming language with which types and their
corresponding implementations can be manipulated at will. However, the TyRuBa logic meta
language is still a very simple programming language. Many extensions are still possible and
useful to increase its potential even further. A few examples are discussed in the following
subsections.

170 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

11.6.1 Module System

An extension that would be very useful is a module system for the meta language. This
would allow the logic rules to be packaged into modules. Currently we compensate for the
lack of a suitable module system by using naming conventions and the primitive mechanism
of include �les. An important point in the design of a module system for the meta language
is the interaction with the base language's module system: Java packages.

11.6.2 Object-Oriented Extensions

It is also interesting to consider using a more object oriented approach, and consider extending
the logic meta language with object oriented features that allow incremental modi�cation of
meta programs. There are numerous proposals which extend the logic paradigm with object-
oriented features [Dav93, McC92, Mos94] which can be used as sources of inspiration.

11.6.3 Reection and Meta Circularity

So far we have steered clear of adding reective features to the logic meta language. We did
this to avoid the complications entailed by its self referential nature. Nevertheless, it is a
natural next step to want to apply the technique of logic meta programming to the TyRuBa
meta programs themselves.

To do this we need a reective system, which o�ers logic meta representations of the logic
meta programs themselves. This leads to a complicated reective architecture comprising a
(virtual) in�nite tower of meta representations stacked one on top of the other, each layer
representing the layer below it. The bottom layer would be a representation for the Java base
language program.

The theory behind such a system and its implementation are very complicated matters.
It would require considerable research e�ort to design and implement this system. For more
detailed information about matters related to reection and in�nite towers we refer to [Smi82,
Smi84, Mae87, WF88, KdRB91, Ste94b, DVS95].

11.7 Using and Deducing Very-High Level Information

In this dissertation we have focussed on using logic meta programming to generate code. The
information used for this purpose was usually rather basic and relatively low level informa-
tion about types: subtype information, basic type information about methods and instance
variables etc.

Another potential application of logic meta programming is as a tool to deduce design
information and verify design constraints. The idea of using a logic meta language and
its powerful pattern matching and backtracking capabilities for this purpose is also being
investigated at our Lab. [Wuy98].

A possible application of this is, for example, detection of design patters [GHJV95]. It can
also be used to verify whether certain design decisions are respected as programs evolve. The
kind of constraints that can be veri�ed this way are numerous: naming conventions, reuse
contracts [Luc97, SLMD96], design patterns, consistency between methods and classes etc.

What we use logic meta programming for in this dissertation is completely complementary
to the above. The TyRuBa system is built to generate (Java) code from information, whereas

11.8. ADAPTIVE OBJECT-ORIENTED SOFTWARE 171

the above suggest using meta programming the other way around, starting from code and
deducing or verifying information about it. Ultimately a system should be built which allows
both techniques to be used together. It is to be expected that interaction between the two
complementary techniques will open up new opportunities for more sophisticated applications.
The deduction of more high level information will allow more powerful, more high level and
to the point code generation.

11.8 Adaptive Object-Oriented Software

Lieberherr [Lie96] presents a methodology using so called propagation patterns to write adap-
tive code. An adaptive program is written in terms of a partial class structure. It may be
used with any concrete class graph that is \compatible" with the partial class structure. Thus
the program is adaptive in the sense that it adapts to a concrete class graph. Propagation
patterns are a kind of graph constraints which provide information about what assumptions
the adaptive code makes about the actual class graph. Writing programs like this, that only
make use of partial knowledge about the actual class graph structure, is what Lieberherr
calls class shy programming. Lieberherr's adaptive programs are customized onto concrete
class structures by means of a code generator which inserts appropriate propagation code and
wrappers into the concrete classes upon which the adaptive program is instantiated.

There seems to be a lot of common ground shared between type-oriented logic meta pro-
gramming and adaptive object-oriented software with propagation patterns. The techniques
di�er, but they both provide some mechanism that allows for a form of class shy programming.
Perhaps the best illustration of what both have in common is the discussion about \position-
ing abstract code" we presented in section 8.4.2. We discussed how an arbitrary TyRuBa
logic query may be used to characterize the applicability of a piece of abstract code. The
problem with \normal" Java programs is that abstract code must be inserted into a speci�c
class. This requires pinpointing an exact location for it in the concrete class tree structure.
This in direct contradiction with the fact that abstract code should ignore concrete imple-
mentation details about concrete classes as much as possible. In other words, abstract code
must be written separately from the actual class tree structure, in a class shy manner. In
TyRuBa it is possible to specify abstract code separately from the concrete class tree, and
use an arbitrary logic expression to characterize the applicability of the code. In Lieberherr's
approach propagation patterns serve the same goal.

The exact relationship between the approach of using propagation patterns or using logic
expressions has not been investigated yet. This would be an interesting topic for future re-
search. It is our feeling however that adaptive object-oriented software with propagation
patterns could be considered as a particular application of type-oriented logic meta program-
ming. All that is essentially required to introduce support for propagation patterns into
TyRuBa is a prede�ned library of predicates with which propagation patterns can be ex-
pressed. By providing such a library the technique of using propagation patterns can be
embedded into the more general framework of logic meta programming o�ered by TyRuBa.
We suspect this would bring additional advantages because of the availability of a Turing
complete programming language which can always be used when the existing notion of prop-
agation patterns is not exactly what is required in a given situation. In this case, it would for
example be possible to implement slight variations of the propagation patterns predicates, in
terms of the already existing ones.

172 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

11.9 Improving the Logic Engine

11.9.1 More E�cient Implementation

The current logic inference engine is a straightforward Prolog like inference engine. There are
two major ways in which it can be improved upon. One is its e�ciency, it is currently not very
e�cient. We did not want to put a lot of e�ort into building an e�cient Prolog interpreter.
Many techniques already exist to build e�cient Prolog interpreters [Roy94]. Since TyRuBa
is essentially Prolog, these techniques could also be used to make the TyRuBa engine more
e�cient.

11.9.2 Better Support for Recursion

The second and more interesting adaption of the logic engine concerns its mode of inference.
Prolog's evaluation mechanism is rather simplistic. Starting out from a goal, Prolog searches
backwards from the goal, comparing it with conclusion of rules, and using the rules \back-
wards", from conclusion to condition . This kind of backward reasoning is called backward
chaining [Fla94]. Prolog has a very simple strategy concerning which rules to try and in what
order to try them: try all rules, exactly in the order in which they were declared. TyRuBa
is similar, the only di�erence basically is that TyRuBa tries the rules in the reverse order.
The simplicity of the inference algorithm allows Prolog to be easily implemented, but it also
has some drawbacks. A problem we have encountered several times in our experiments is
that it does not handle certain kinds of recursive rules well. The prototypical example is the
following simple logic program:

person(Micky).

person(Minny).

married(Micky,Minny).

married(?x,?y) :- person(?x),person(?y),married(?y,?x).

The rule in this program is intended to capture the symmetric nature of the married rela-
tionship. Saying that a person ?x is married to a person ?y is equivalent to saying that ?y
is married to ?x. The above programs seems perfectly reasonable and intuitively we would
expect it to work. Unfortunately a simplistic backward chaining engine does not handle this
program as we want it to. Executing a query married(?x,?y) for example will cause an in-
�nite loop. The married rule is invoked recursively over and over again, each time swapping
the variables.

It is also possible to build an inference engine which uses the logic rules the other way
around: reasoning from condition to conclusion. This is called forward chaining. A forward
chaining algorithm maintains a \model", which contains facts which can be deduced using
the declarations of the logic program. Initially the model starts out with all the facts of the
logic program. Then it veri�es whether there are any rules which can be instantiated in such
a way that its condition is true (is included in the model) but its conclusion is not. If such
a rule is found, then the conclusion is added to the model. This process continues until no
more facts can be added to the model. With a forward chaining algorithm the above logic
program would be handled quite nicely. The model would start out with the facts

person(Micky).

11.9. IMPROVING THE LOGIC ENGINE 173

person(Minny).

married(Micky,Minny).

In this model, the married rule can be instantiated as follows

married(Minny,Micky) :- person(Minny),person(Micky),married(Micky,Minny).

The condition of this rule is true. Since the conclusion is not yet in the model it is added.
After this one addition to the model no more new facts can be deduced this way and the
inference engine stops. Performing a query in such a system simply comes down to matching
the query to the facts in the model constructed by the inference engine. Hence in a system
with forward chaining, the query :-married(?x,?y) would produce the expected answer:

married(Micky,Minny).

married(Minny,Micky).

From this example, it would seem that forward chaining is more interesting than back-
ward chaining. Unfortunately a simplistic forward chaining algorithm has other important
problems. It does not work in a \goal oriented" way and �res rules rather arbitrarily. As a
consequence it typically deduces a lot of useless information which is not needed for answering
a given query. This is especially problematic when the model which is being constructed is
in�nitely large. In this case the inference algorithm does not stop. In�nitely large models are
not an exception, but occur frequently. Most real logic programs have in�nitely large models.
As an example consider the following very simple logic program.

class_M(Object).

class_M(BarFoo<?c>) :- class_M(?c).

In TyRuBa, this declares an empty parametric class BarFoo. The condition of the rule says
that the parameter of the class may be any declared class. The model that a forward chaining
engine would construct would be in�nitely large and contain the following facts:

class_M(Object).

class_M(BarFoo<Object>).

class_M(BarFoo<BarFoo<Object>>).

class_M(BarFoo<BarFoo<BarFoo<Object>>>).

class_M(BarFoo<BarFoo<BarFoo<BarFoo<Object>>>>).

...

A backward chaining engine such as TyRuBa would have no problem with this logic
program when we only query it for a speci�c class. Asking the TyRuBa engine to evaluate
the following query for example

:- class_M(BarFoo<Object>).

will not cause any trouble. A backward chaining engine works backwards from the query and
does not construct the in�nite model.

Both of the provided examples involved a recursive rule. The one kind is handled better
by a forward chaining engine and the other is handled better by a backward chaining engine.

174 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

What is needed is some sophisticated combination of backward and forward chaining. Ba-
sically the deduction algorithm should be a forward chaining algorithm, constructing proof
trees from the bottom up. However, it should still be goal oriented and not simply \blindly"
�re rules, but make a founded decision on which rules to �re through some form of backward
reasoning. This combined algorithm will have the bene�ts of a forward reasoning algorithm
but would only construct its model \lazily". Thus only the part of the model which is relevant
to answering queries will actually be constructed.

We know of an existing rule based system which o�ers this kind of sophisticated inference
engine. This system is ECLIPSE [Hal91] and it is mostly used in the context of expert systems
programming. ECLIPSE is a highly sophisticated and e�cient goal driven forward chaining
inference engine. It is a very interesting topic of future research to study how the ECLIPSE
engine or a similar engine, may be substituted for the simple naive and ine�cient TyRuBa2.0
engine, and what bene�ts this would bring with respect to expressiveness.

11.10 Away From Java

In this dissertation we have used TyRuBa as a meta language for the existing class-based
object-oriented language Java. An interesting topic of future research is to try and apply the
same technique to other base languages as well. The logic meta programming technique is in
theory generally applicable to any form of structured textual data.

It would be interesting however to try and design a base language speci�cally tuned for,
and integrated with, the logic meta system. This could increase the potential of type-oriented
meta programming even further. Currently there are some restrictions which are more or
less inherited from the Java type system, which can not easily be circumvented. Whatever
happens in between, eventually ordinary Java code is generated, compiled and type checked.
Therefore the type checking process is basically Java type checking. As a consequence, the
notion of a \type" in TyRuBa is basically the same as Java's notion of a type: a class or
an interface name. As we discussed earlier, ultimately the separation between base-language
implementation and meta system should fade away and both should become tightly integrated.
This opens up extra opportunities, such as a more general and open ended notion of types
de�ned by arbitrary logic rules.

11.10.1 Arbitrary Rules as Types

Essentially, a type is characterized by a set of values. If a variable is declared as being of a
certain type, this means it may only hold values which belong to this set. In a class based
language, the �nest possible distinction made on the level of the static type system is based
on what class a value belongs to. Therefore, a static type in a class based language basically
corresponds to a set of classes. A variable of a given type may thus be assigned any value
which is an instance of one of the classes in this set.

Considering that we have at our disposal a logic language, what would be the most general
and natural way to characterize a set of classes? A good characterization would be an isa

predicate de�ned by means of FutuRuBa rules. This isa predicate has two arguments. The
�rst one is the name of a type and the second one the name of a class. The predicate should
be de�ned in such a way that it is true if and only if the class is considered an element of the
type.

11.10. AWAY FROM JAVA 175

Existing types in Java �t nicely into this notion of a type. Suppose that X is the name
of a class for example. The type X could then be de�ned by means of the following TyRuBa
rule:

isa(X,?class) :- subtype(?class,X).

Interfaces can also be considered as predicates on classes. The fact that a class is an
element of a interface type comes down to satisfying a predicate which veri�es that the class
provides a number of required method signatures, and declares the interface in an implements
clause.

If arbitrary isa rules could be used as \type declarations" sophisticated user de�ned types
become possible. The user may state exactly, using a fully Turing complete logic language,
what properties a class must have in order to belong to a given type. This may have very
useful applications and help in solving some problems currently exhibited by the Java type
system. We provide a classical example. The example comes from [Sha96] which describes in
a rather amusing way why in Java cows are not animals. Cows and animals apparently have
incompatible eating habits which cannot be reconciled in Java. The problem is essentially
that Java's type system cannot capture exactly what an animal is.

We start presenting the example by giving two concrete animal classes: Cow and Tiger.
Subsequently we try to determine the commonalities between the two and try to de�ne an
interface which can serve as a supertype for both. We will see why it is not possible in Java
to de�ne a suitable Animal supertype for cows and tigers. Subsequently we will show how a
type characterized by a logic rule can solve the problem.

class Cow {

public void eat(Grass food) { ... munch munch ... }

}

class Tiger {

public void eat(Meat food) { ... crunch crunch ...}

}

In this simple example, apparently cows are entities which eat Grass and tigers are entities
which eat Meat. Grass and meat are both a type of food:

abstract class Food {

...

}

class Grass extends Food {

...

}

class Meat extends Food {

...

}

176 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

Now the question is: \What is an animal?". Apparently what animals have in common
is that they eat a kind of food. So it would be logical to declare the following interface to
describe the type Animal.

interface Animal {

void eat(Food food);

}

Unfortunately, in Java, the classes Cow and Tiger cannot be declared to implement this
interface because they eat a more speci�c type of food. Java has what is called no variance
typing, meaning that method signatures in a subtype must be exactly the same as method
signatures in a supertype.

In order to allow Animal to be a supertype of Cow and Tiger we need covariant typing.
In covariant typing, method signatures in subtypes may replace argument types by subtypes.
Covariant typing however has the problem that it is not type safe. To see this, suppose that
an Animal is a supertype of Cow and Tiger. This would mean that the following code would
be acceptable to the static type checker.

...

Animal creature = new Cow();

Food dinner = new Meat();

creature.eat(dinner); // Runtime type error:

...

Regrettably, this code will cause a runtime type error when a cow gets to eat meat and
chokes on it. The problem is that the interface Animal is not a correct characterization of
what an animal is. According to this interface, an animal is something which eats all kinds
of food. This is not usually the case however. A certain type of animal usually only eats a
certain type of food.

If we can specify what an animal is by means of declaring an arbitrary TyRuBa isa rule,
we can be more precise, and state exactly what it means to be an animal. We can de�ne an
Animal as something which eats a certain type of food:

isa(Animal,?class) :-

AnimalFoodType(?class,?Food),

feature(?class,method<void,eat,[?Food]>),

subtype(?Food,Food).

Every type of animal has a speci�c type of food associated to it by means of the
AnimalFoodType predicate. The following declarations specify the food type that goes with
cows and tigers respectively.

AnimalFoodType(Cow,Grass).

AnimalFoodType(Tiger,Meat).

The above declarations of Animal and AnimalFoodType de�ne accurately what an animal is:
something which eats a speci�c kind of food. What kind of food depends on the animal in

11.10. AWAY FROM JAVA 177

question. Both the classes Cow and Tiger are classes of type Animal according to the above
isa rule declaration.

Now let us reconsider how to feed an animal. As before, we can de�ne a variable of type
Animal and assign it an instance of class Cow, because a cow is an animal:

Animal creature = new Cow();

Similarly we can declare a variable of type Food and assign it an instance of the class Meat:

Food dinner = new Meat();

The following however should be rejected by the static type checker:

creature.eat(dinner); // Not allowed

The reason why the type checker2 should reject it is that the type Animal implies insu�cient
assumptions to allow it to be fed with something of type Food. The assumptions the type
checker may make about a ?class of type Animal are found in the body of the isa rule
de�ning the Animal type:

AnimalFoodType(?class,?Food),

feature(?class,method<void,eat,[?Food]>),

subtype(?Food,Food).

In plain English we can restate these assumptions as follows: \There is a type ?Food, which
is a subtype of Food. The class ?class has a method eat which accepts the type ?Food as
argument." There is no way to conclude from these assumptions that ?class has an eat

method which accepts an argument of type Food. We can only assume that the eat method
accepts some subtype of Food, but this does not imply that it accepts any kind of Food.

This means we cannot feed animals without somehow determining the speci�c type of
food that this particular type of animal eats. As an example we show how to implement a
section of a zoo where animals are being fed. There will be several such sections in a zoo,
each section providing a speci�c type of food. Only animals which eat the speci�c kind of
food provided in a particular section will be allowed to eat there.

class FeedingSection<?Food>

where ?Food extends Food

{

void feed(EaterOf<?Food> animal) {

?Food food = new ?Food();

animal.eat(food);

}

}

The type EaterOf<?Food> is once more a type de�ned by an isa rule:

isa(EaterOf<?Food>,?class) :-

isa(Animal,?class),

AnimalFoodType(?class,?Food).

Thus the type EaterOf<?Food> corresponds to a set of classes such that every class in the
set is some kind of animal that eats food of type ?Food.

2This would be the kind of type checker discussed in section 11.4.2.

178 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

11.10.2 Virtual Types, Families of Types

In chapter 3 we presented an overview of existing parametric types proposals for Java. We
also discussed some alternatives to parametric types: virtual types and Bruce's alternative to
virtual types. Virtual types and parametric types seem to be mostly complementary. It was
shown that parametric types can be emulated in TyRuBa quite naturally. So far we haven't
said much about virtual types and the like however. It turned out that examples which are
typically handled well by virtual types, but are di�cult with parametric types cannot always
be easily expressed in TyRuBa.

Virtual types are much harder to emulate in TyRuBa. The cause of this however is
basically that TyRuBa still generates ordinary Java code and thus basically only has Java's
simplistic notion of a type as a class or interface name. To explain this a little further, we
use the example of cows tigers and animals once more. This is a typical example which
is expressed easily with virtual types, but hard with parametric types. Virtual types are
attributes of classes which are themselves types. These attributes may be overridden in
subclasses. The type of food is typically a virtual type attribute of the class Animal. A
subclass of Animal, such as Cow or Tiger may override the type of food to a more speci�c
type. Thus this example can be easily expressed with virtual types. As was illustrated by
the discussion in the previous section, the generalized notion of a type as a set of classes
characterized by an arbitrary isa rule declaration would also allow expressing this example
quite naturally. The latter solution is however more general than a virtual-types-like solution.
Emulation of virtual types is but a particular usage of the power of the logic paradigm to
capture relationships between types. In this example, AnimalFoodType fact declarations were
used to establish the relationship between a type of animal and the type of food that it eats.

11.11 Summary

In this chapter we started by presenting a short historic overview of the development of
TyRuBa up to the current TyRuBa2.0 version. It was argued that many of the shortcom-
ings of the system are justi�able because of the experimental goals behind its design and
implementation.

Subsequently we discussed how a hypothetical future version of TyRuBa, FutuRuBa could
try to solve these problems. Not all of the problems will be solved easily. But at least workable
partial solutions can be found, given more time and resources to do further research. The
�rst addition to the system would be a suitable surface syntax which would make FutuRuBa
programs more succinct and readable than current TyRuBa programs which are often verbose
and exhibit redundancy.

Another important point is the issue of type checking which was neglected in TyRuBa2.0.
In part, this lack of type checking helped in increasing the system's expressiveness. In a
real development environment however, type checking is a must. A solution which would be
workable is type checking \nice" more conservative programs and allow more sophisticated
uses of the logic meta-system to go unchecked. A more ambitious goal is de�ning a general
type checking scheme which can also deal with the more complicated cases. We have hopes
that this is possible, even though it will de�nitely require serious research e�ort.

In the �nal section of this chapter (section 11.10) we let our imagination run free and
mused about designing the base and meta-language speci�cally tuned for each other. In our
opinion this could be the basis for \the type system of the future". The type system of

11.11. SUMMARY 179

the future should incorporate a fully Turing equivalent programming language into its type
language. Preferably this language would be a declarative logic language. However, a naive
Prolog like implementation seems too simplistic and ine�cient for a practical system. A more
sophisticated and e�cient inference engine based on a combination of goal directed reasoning
and backward chaining would be required. The type system of the future would be a fully
open ended system that allows types to be characterized by arbitrary predicates implemented
by means of arbitrary rules. Existing notions of types such as subtyping, interfaces, signature
conformance etc. can all be incorporated elegantly into such a system by means of a number
of prede�ned rules. The user may add rules of his own. In doing so, he would be able to
actually use any set of classes that can be characterized by any Turing-computable predicate
as a type.

180 CHAPTER 11. HISTORY AND FUTURE OF TYRUBA

Chapter 12

Conclusion

12.1 Thesis

In this dissertation we have illustrated that undecidable and ambiguous type systems have
useful applications and should therefore be considered viable options for future statically
typed object-oriented languages. This statement can probably be made about static type
systems in general. This dissertation however focuses on object-oriented languages.

The usefulness of a type system which is undecidable and which is less concerned with
avoiding ambiguity, will stem from its greatly enhanced expressive power. The type language
of such a system can be designed as a true programming language. This allows static types
and type information to be manipulated and consulted by \real" type programs which are
run as part of the type checking or inferencing process. As a result, static types can play an
active role in programs and become useful in ways beyond their traditional descriptive role.

12.2 Evidence for the Thesis

Chapters 2 through 9 represent the body of the dissertation, presenting arguments to support
the thesis. Basically there are three steps in our \proof". We briey summarize and discuss
these steps in the following subsections.

12.2.1 Existing Type Systems and Their Restrictions

We started by illustrating the loss of expressiveness incurred by existing type systems because
of their type language's de�ciency as a programming language. We discussed some existing
state of the art type systems in chapters 2 and 3. Chapter 2 presented and discussed Gofer
and its type system because we think that Gofer is a language which comes near to our ideal
of having a true programming language for a type language. Chapter 3 gave an overview of
existing parametric types proposals for Java. These were discussed mainly because of their
relevance to our work as being steps in the direction of type-oriented meta programming in
the context of Java.

Gofer as well as the Java parametric types extensions were assessed by means of a few
simple benchmark programming assignments aimed at probing the expressiveness of the type
language as a programming language. Attempts at implementing these benchmarks in existing
parametric types proposals were seriously hampered by restrictions inherent to their type

181

182 CHAPTER 12. CONCLUSION

languages. As a result, existing parametric types extensions for Java performed poorly on
the benchmarks and almost none of them could be expressed adequately. The functional
language Gofer, the type language of which is much more sophisticated, performed a lot better.
However, it did not solve all of the benchmark problems adequately either. We consider the
language Gofer to come very close to our ideal of having a programming language embedded
in the type system. Gofer's quali�ed types introduce a kind of logic rules into the type
system. In a way this represents a restricted logic language. Gofer's type system is not even
decidable although this does not seem to pose problems in practice. Nevertheless, Gofer's
type language is not designed as a programming language and still has a lot of implicit and
explicit restrictions built into it. This is the underlying reason why it falls short on solving
some of the benchmark problems.

12.2.2 Building an Experimental System

The next step in the \proof" is the construction of an experimental system which makes it
possible to illustrate the usefulness of type oriented (logic) meta programming. The most
logical approach would have been to design and implement a programming language, with an
undecidable and potentially ambiguous type system, which has a full-edged logic language
embedded in its type language. Subsequently examples of its usefulness could be presented,
and thus the truth of the thesis established. Unfortunately, due to limited time and resources
we were unable to follow this approach exactly and had to cut a few corners. We did not
design and implement a true type system. The system we built, TyRuBa, was described in
chapter 6. It does not perform any type-checking of its own, but generates Java code and
leaves type checking to the Java compiler which is used to compile the generated code. What
the system does o�er however, is a full-edged logic programming language, with which static
type information can be rei�ed and manipulated at compile time. Chapter 7 showed how the
TyRuBa system can be used to reify static type information and can thus be used to achieve
type-oriented logic meta programming.

As was argued, the extra usefulness of having a true (logic) programming language as
part of the static type system is complementary to the traditional descriptive role of types.
The added potential of such a system does not come from type checking, but rather from
the power of the type language to actively manipulate static types and type information as
data at compile time. Because the traditional type-checking role of a type system and the
extra potential of active type manipulation by compile-time meta programs are completely
complementary, neglecting the one does not preclude illustrating the potential usefulness of
the other. Therefore, the TyRuBa system is su�cient to prove our point.

12.2.3 The Expressiveness of Type-Oriented Logic Meta Programming

The �nal step in the \proof" is showing that e�ectively, the availability of a full-edged
compile-time logic meta language to manipulate static type information is very useful and
does o�er tremendous possibilities.

Chapter 8 showed that the expressiveness of the TyRuBa system is considerably greater
than that of traditional type languages. The TyRuBa system was compared to Gofer and
existing parametric types proposals for Java. The benchmark programming assignments
which were previously used to asses the expressiveness of Gofer's type language and of Java
parametric-types extensions are used as a basis for this comparison. The fact that TyRuBa

12.3. ASPECT-ORIENTED LOGIC META PROGRAMMING 183

is able to express all of the benchmark problems adequately is a strong indication that the
availability of a true programming language, to manipulate static types with, does represent
a considerable gain in expressiveness, and that this gain can be put to good use in solving
real programming problems.

Because the benchmark problems are only small programming tasks, chapter 9 presented a
somewhat larger scale example illustrating the usefulness of type-oriented logic meta program-
ming in the context of the implementation of a calculator-expression evaluator framework.
This example makes sophisticated use of the technique of type-oriented meta programming to
generate part of the framework's class hierarchy. The instantiator of the framework provides
classes which implement the values handled by the calculator. From this, the expression class
and interface hierarchy is generated by the framework.

12.3 Aspect-Oriented Logic Meta Programming

Chapter 10 presents a sophisticated example of using the TyRuBa system, beyond type-
oriented logic meta programming. It was shown in this chapter how TyRuBa can be used to
support aspect-oriented programming and aspect-oriented meta programming.

A type language and an aspect language have a lot in common. They are both special-
purpose declarative formalisms for expressing program annotations. In a way, aspect declara-
tions can often be regarded as a kind of high-level domain-speci�c type annotations. Therefore
our arguments also apply to aspect-oriented programming. Aspect languages, just like type
languages, are typically restricted declarative languages which do not o�er the full power of
a programming language. We feel that an aspect language should be embedded in a general
purpose (logic) meta-programming language. This will facilitate aspect-oriented (logic) meta
programming.

As an illustration of the potential of this approach, we implemented a subset of the aspect
language Cool as proposed by Lopes [LK97]. We did not copy all of her work because this
would have taken too much time and e�ort. Instead we restricted ourselves to a simpli�ed
subset. What we wanted to draw attention to is the advantage of using a full-edged logic
language. The Cool aspect declarations are represented as logic facts and can therefore be
accessed and declared by logic rules. The fundamental advantage this o�ers is that it enables
aspect-oriented logic meta programming, thus increasing the expressiveness of the \aspect
language" tremendously. We showed how aspect-oriented meta programming can for example
be used to extend or adapt the aspect language \on the y" in order to better suit a particular
situation.

12.4 Summary of the Contributions Made by this Dissertation

We feel the most important contribution of this dissertation is in pointing out that limitations
imposed on static type systems by requiring decidability and ambiguity of typing should be
reconsidered. We feel that currently existing programming languages adopt these restrictions
as prerequisites without much thought. The restrictions were very sound in the early days of
type systems when the role of static types was mostly descriptive. However, as type systems
naturally evolve towards more sophisticated \programming-language-like" type languages,
static types are starting to play an additional, complementary and more active role. Because
decidability and ambiguity of typing have been considered prerequisites for static type systems

184 CHAPTER 12. CONCLUSION

for so long, we feel that they are hardly being questioned any more. In our opinion, in light
of the importance of active usage of static type information, it should be considered to design
type languages as true programming languages. As a consequence the restrictions implied by
decidability and unambiguity of typing should be reconsidered. The choice of whether or not
the expressiveness of the type language is more important than decidability and unambiguity
of typing depends on the particular purpose for which one designs a particular programming
language. This choice should be made with a critical mind however, and it should not be taken
as a prerequisite that every type system should be decidable and unambiguous. We think
that this dissertation has provided su�cient arguments and examples to show that designing
a type-language as a programming language does represent a tremendous potential gain in
expressiveness, and that this expressiveness does have important advantages and applications.

Another contribution made by this dissertation is the de�nition of a conceptual framework
of logic meta programming. We explained our notion of logic meta-programming in terms of a
representational mapping which views a base-language program as a set of logic propositions.
The de�nition of this conceptual framework has allowed us to build TyRuBa. TyRuBa is a
simple but remarkably exible experimental system with which we were able to illustrate the
currently unharvested potential of writing logic meta programs which manipulate static type
information at compile time.

Finally, we think that the ideas presented in this dissertation can be applied in a much
broader context than merely type systems and static types. In principle any restricted declar-
ative formalism to express program annotations is subject to the same kind of reasoning. In
essence, static types are simply a particular kind of program annotations. We have illustrated
how the same line reasoning applies to the aspect language Cool. We feel that we have thus
made valuable contributions to the aspect-oriented programming community in two ways.
First by illustrating that aspect-oriented (logic) meta programming is an interesting idea and
that therefore it should be considered to embed aspect declarations in a full-edged declarative
programming language rather than expressing them in a restricted special purpose language.
Second, by showing that a system like TyRuBa, o�ering a exible logic meta-programming
framework, is a powerful tool for implementing aspect weavers, and a �rst step in the direc-
tion of the implementation of a general framework for aspect-oriented programming. This was
illustrated by the remarkable simplicity with which we were able to implement the simpli�ed
variant of the Cool aspect weaver.

Appendix A

Benchmark Examples Code

The following code is also available from ftp://progftp.vub.ac.be/languages/TyRuBa/.

A.1 Initialization Files

File: examples/init�le.rub

#include "prolog.rub"

#include "java.rub"

#include "codegeneration.rub"

#include "codegenerationI.rub"

#include "deduced.rub"

File: examples/prolog.rub

/* A few useful Prolog predicates */

append([],?X,?X).

append([?X | ?XS],?YS,[?X | ?ZS]) :- append(?XS,?YS,?ZS).

element(?E,[?E | ?R]).

element(?E,[?A | ?R]) :- element(?E,?R).

length([],0).

length([?x|?r],?i) :- length(?r,?iminus1),+(1,?iminus1,?i).

equal(?x,?x).

File: examples/java.rub

/***** Auxiliary predicates for constructing Java syntax */

/*Create an implements or extends clause (?symbol indicates which) */

JavaClause(?symbol,[],{}).

JavaClause(?symbol,[?f|?r], {?symbol ?itflist})

185

186 APPENDIX A. BENCHMARK EXAMPLES CODE

:- JavaCommaList([?f|?r],?itflist).

/*Construct a list of comma separated elements*/

JavaCommaList([],{}).

JavaCommaList([?e|?r],?c) :-

JavaCommaCons(?e,?cr,?c),

JavaCommaList(?r,?cr).

/*Construct a list of Semi-colon terminated elements */

JavaSemiList([],{}).

JavaSemiList([?f | ?r],{?f; ?sr}) :- JavaSemiList(?r,?sr).

/*Generate a list of formals from types and variable names*/

//JavaFormals(?Types,?Names,{...}).

JavaFormals([],[],{}).

JavaFormals([?T|?R],[?n|?r],?formals) :-

JavaCommaCons({?T ?n},?Rr,?formals),

JavaFormals(?R,?r,?Rr).

/*Generate a list of formals from type names */

JavaFormals(?T,?f) :-

JavaGenNames(?T,?n),

JavaFormals(?T,?n,?f).

/*Generate a list of formals with type {?Type a<?Name,?counter>}*/

JavaFormals(0, ?Type, ?Name, {}).

JavaFormals(?Dim, ?Type, ?Name, ?formals)

:- >(?Dim,0), +(?DDim,1,?Dim),

JavaFormals(?DDim, ?Type, ?Name, ?RestFormals),

JavaCommaCons({?Type a<?Name,?Dim>},?RestFormals,?formals).

/*Is a formal an element of a list of JavaFormals? */

JavaFormalsElement({?T ?n},?formals) :-

JavaCommaCons({?T ?n},?rest,?formals).

JavaFormalsElement({?T ?n},?formals) :-

JavaCommaCons({?TTT ?nnn},?rest,?formals),

JavaFormalsElement({?T ?n},?rest).

JavaGenNames([],[]).

JavaGenNames([?x1],[f<1>]).

JavaGenNames([?x1,?x2|?xs],[f<?c1>,f<?c2>|?rest]) :-

JavaGenNames([?x2|?xs],[f<?c2>|?rest]),

+(?c2,1,?c1).

JavaCommaCons(?x,{},{?x}).

JavaCommaCons(?x,{?y},{?x,?y}).

JavaCommaCons(?x,{?y,?z},{?x,@{?y,?z}}).

A.1. INITIALIZATION FILES 187

/*Generate code for a method declaration without the body */

JavaMethod(method<?R,?m,?A>,?a,{?R ?m(?formals)}) :-

JavaFormals(?A,?formals).

/*Generate a "Conjunction": (A1) && (A2) && (A3) ... */

JavaConjunction([?a],{(?a)}).

JavaConjunction([?a1, ?a2 | ?r],{(?a1) && ?rest}) :-

JavaConjunction([?a2 | ?r],?rest).

File: examples/codegeneration.rub

/***

The TyRuBa code generator calls the query

generate(aClassOrInterfaceName,?code)

This allows the code generator to be implemented in

TyRuBa itself.

This file provides a code generator for a very coarse representational

mapping that splits up Java source as shown in the following

Schematic example:

=== Java ===

class CLASS

extends SUPER

implements INTERFACE1,INTERFACE2

{ CLASSBODY }

=== TyRuBa ==>

class_(CLASS,{ CLASSBODY }).

extends_(CLASS,SUPER).

implements_(CLASS,INTERFACE1).

implements_(CLASS,INTERFACE2).

=============

=== Java ===

interface ITF

extends INTERFACE1,INTERFACE2

{ ITFBODY }

=== TyRuBa ==>

interface_(ITF,{ ITFBODY }).

extends_(ITF,INTERFACE1).

extends_(ITF,INTERFACE2).

=============

Note: We adopt as a convention that predicates that are "part of" the

representational mapping and directly affect generated java code end with

an "_"

188 APPENDIX A. BENCHMARK EXAMPLES CODE

This file provides the coarsest representational mapping. It represents

the class and interface body as an atomic unit. More fine grained

mappings can be obtained making the class_ predicate to be

computed from a more fine grained specification.

**/

generate(?class,{

class ?class

?extendsclause

?implementsclause

{ ?body }

}) :- class_(?class,?body),

generate_extendsclause(?class,?extendsclause),

generate_implementsclause(?class,?implementsclause).

generate(?itf,{

interface ?itf

?extendsclause

{ ?body

}

}) :- interface_(?itf,?body),

generate_extendsclause(?itf,?extendsclause).

generate_extendsclause(?x,?extendsclause) :-

FINDALL(NODUP(?extended,extends_(?x,?extended)),

?extended,?extendslist),

JavaClause(extends,?extendslist,?extendsclause).

generate_implementsclause(?x,?implementsclause) :-

FINDALL(NODUP(?itf,implements_(?x,?itf)),

?itf,?implementslist),

JavaClause(implements,?implementslist,?implementsclause).

File: examples/codegenerationI.rub

/***

A refinement of the "_" code generator. This code generator chops

class bodies up into smaller parts implementing interfaces.

Predicates related to this code generator follow the naming convention of

ending with "_I".

***/

class_(?class,{?basics ?interfaces}) :-

class_I(?class,?basics),

FINDALL(NODUP(?itf,implements_I(?class,?itf,?how)),

A.2. BENCHMARK SOLUTIONS 189

?how,?interfaces).

implements_(?cl,?itf) :- implements_I(?cl,?itf,?bod).

/* Predicates implements_ extends_ and interface_ retain the same

meaning as before. We provide renamed versions of them

ending in "_I". Therefore the former "_" versions should no longer

be used directly */

extends_(?a,?b) :- extends_I(?a,?b).

interface_(?itf,?bod) :- interface_I(?itf,?bod).

File: examples/deduced.rub

/**** Predicates that deduce information from "_" facts */

/* Is there a class named ?cl */

class(?cl) :- class_(?cl,?basics).

/* Is there an interface named ?itf */

interface(?itf) :- interface_(?itf,?body).

/* Does a class implement an interface (directly or indirectly) */

implements(?cl,?itf) :- implements_(?cl,?itf).

implements(?cl,?itf) :- BOUND(?itf),extends(?itf0,?itf),

implements_(?cl,?itf0).

implements(?cl,?itf) :- BOUND(?cl),NOT(BOUND(?itf)),

implements_(?cl,?itf0),extends(?itf0,?itf).

implements(?cl,?itf) :- extends_(?cl,?super),implements(?super,?itf).

/* Does ?cl extend ?super (?cl class or interface) */

extends(?cl,?super) :- extends_(?cl,?super).

extends(?cl,?super) :- extends_(?cl,?super0),extends(?super0,?super).

/* Is ?cl a subclass of ?super */

subclass(?cl,?super):-extends(?cl,?super),class(?cl).

/* Is ?t1 a subtype of ?t2 according to Java type rules */

subtype(?t1,?t2) :- extends(?t1,?t2);implements(?t1,?t2).

subtype(?t,?t) :- class(?t);interface(?t).

A.2 Benchmark Solutions

A.2.1 Benchmark 1 and 2

File: examples/SearchableArrayTest.jrub

#verbatim {package aRuBa.tyRuBa.examples;}

#include "Equality.rub"

190 APPENDIX A. BENCHMARK EXAMPLES CODE

#include "Searchable.rub"

#include "Enumerable.rub"

#include "Array.rub"

#include "AbstractSearchable.rub"

#include "SearchableArray.rub" //Overrides the abstact implementation

//comment out to

//test the abstract implementation.

implements_I(Array<?El>,Enumerable<?El>,{

public Enumeration<?El> elements() {

return new Enumeration<?El>() {

int pos = 0;

public boolean hasMoreElements() {

return pos<length();

}

public ?El nextElement() {

return elementAt(pos++);

}

};

}

}).

#generate Searchable<String>

#generate Enumerable<String>

#generate Enumeration<String>

#generate Array<String>

#verbatim {

public class SearchableArrayTest {

static final int size = 3;

public static void main(String[] args) {

Array<String> box = new Array<String>(size);

for (int i=0;i<size;i++) {

box.setElementAt("("+i+")",i);

}

for (int i=0;i<size;i++) {

System.out.print(box.elementAt(i));

}

System.out.println();

String e = "(1)";

System.out.println("contains \""+e+"\"="+box.contains(e));

e = "(2)";

A.2. BENCHMARK SOLUTIONS 191

System.out.println("contains \""+e+"\"="+box.contains(e));

e = "asads)";

System.out.println("contains \""+e+"\"="+box.contains(e));

e = "(0)";

System.out.println("contains \""+e+"\"="+box.contains(e));

e = "(rrasads)";

System.out.println("contains \""+e+"\"="+box.contains(e));

}

}

}

File: examples/Equality.rub

interface_I(Equality<?this>,{

boolean equals(?this e);

}).

implements_I(String,Equality<String>,{}).

File: examples/Searchable.rub

interface_I(Searchable<?El>,{

boolean contains(?El e);

}).

File: examples/Enumerable.rub

interface_I(Enumerable<?El>,{

Enumeration<?El> elements();

}).

interface_I(Enumeration<?El>,{

boolean hasMoreElements();

?El nextElement();

}).

File: examples/Array.rub

class_I(Array<?El>,{

private ?El[] contents;

/** Construction */

Array<?El>(int sz) { contents = new ?El[sz]; }

/** Basic Array functionality */

?El elementAt(int i) { return contents[i]; }

192 APPENDIX A. BENCHMARK EXAMPLES CODE

void setElementAt(?El e,int i) { contents[i]=e; }

int length() { return contents.length; }

}).

File: examples/AbstractSearchable.rub

/* Abstract implementation of Searchable on top of Enumerable */

implements_I(?X,Searchable<?El>,{

public boolean contains(?El e) {

boolean found = false;

Enumeration<?El> elems = this.elements();

while (!found && (elems.hasMoreElements()))

found = e.equals(elems.nextElement());

return found;

}

}):- implements(?X,Enumerable<?El>),

implements(?El,Equality<?El>).

File: examples/SearchableArray.rub

/** Implement, on the array class, the Searchable interface whenever

the elements in the array support an equality test (implement the

Equality interface) */

implements_I(Array<?El>,Searchable<?El>,{

public boolean contains(?El e) {

boolean found = false;

int i = 0;

while (!found && i<length())

found = e.equals(elementAt(i++));

return found;

}

}) :- implements(?El,Equality<?El>).

A.2.2 Benchmark 3

File: examples/SetTest.jrub

#verbatim {package aRuBa.tyRuBa.examples;}

#include "Equality.rub"

/** You can control whether TyRuBa knows that "String" implements

Ordered by commenting out the line below */

#include "Ordered.rub"

#include "SetWithInterface.rub"

#generate SetInterface<String>

#generate List<String>

A.2. BENCHMARK SOLUTIONS 193

#generate Tree<String>

#generate Set<String>

#verbatim {

public class SetTest {

public static void main(String[] args) {

Set<String> set = new Set<String>();

System.out.println(set.contains("World"));

set.insert("World");

System.out.println(set.contains("World"));

System.out.println(set.contains("Hello"));

set.insert("Hello");

System.out.println(set.contains("Hello"));

set.insert("Hello");

}

}

}

File: examples/Ordered.rub

interface_I(Ordered<?this>,{

int compareTo(?this);

}).

implements_I(String,Ordered<String>,{}).

File: examples/SetWithInterface.rub

/**\

A Set the internal representation of which depends on the

type of element stored in it.

**/

/*--

The functionality of all Sets

--/

interface_I(SetInterface<?El>,{

void insert(?El e);

boolean contains(?El e);

}).

/*--

Sets with ?El which merely implement Equality

--/

194 APPENDIX A. BENCHMARK EXAMPLES CODE

/** Representation Class */

class_I(Set<?El>,{

private List<?El> representation = null;

}) :- implements(?El,Equality<?El>).

/** Representation Data Structure */

class_I(List<?El>,{

?El first;

List<?El> rest;

List<?El>(?El f,List<?El> r) {first=f;rest=r;}

}).

/** Implementation of Set functionality */

implements_I(Set<?El>,SetInterface<?El>,{

public void insert(?El e) {

if (!contains(e)) {

representation = new List<?El>(e,representation);

}

}

public boolean contains(?El e) {

return listContains(representation,e);

}

private static boolean listContains(List<?El> l,?El e) {

return (l!=null) && (

l.first.equals(e) || listContains(l.rest,e)

);

}

}) :- implements(?El,Equality<?El>).

/*--

Sets with Ordered ?El

--/

class_I(Set<?El>,{

private Tree<?El> representation = null;

}) :- implements(?El,Ordered<?El>).

class_I(Tree<?El>,{

?El elem;

Tree<?El> left;

Tree<?El> right;

A.2. BENCHMARK SOLUTIONS 195

Tree<?El>(?El e,Tree<?El> l,Tree<?El> r) {

elem=e; left=l; right=r;

}

}).

/** Implementation of Set functionality */

implements_I(Set<?El>,SetInterface<?El>,{

public void insert(?El e) {

representation = insertTree(representation,e);

}

private static Tree<?El> insertTree(Tree<?El> t,?El e) {

if (t==null)

return new Tree<?El>(e,null,null);

else {

int comparison = t.elem.compareTo(e);

if (comparison<0)

t.left = insertTree(t.left,e);

else if (comparison>0)

t.right = insertTree(t.right,e);

return t;

}

}

public boolean contains(?El e) {

return treeContains(representation,e);

}

private static boolean treeContains(Tree<?El> t,?El e) {

if (t==null)

return false;

else {

int comparison = t.elem.compareTo(e);

if (comparison<0) /*Less*/

return treeContains(t.left,e);

else if (comparison>0) /*Greater*/

return treeContains(t.right,e);

else /*Equal*/

return true;

}

}

}) :- implements(?El,Ordered<?El>).

196 APPENDIX A. BENCHMARK EXAMPLES CODE

A.2.3 Benchmark 4

File: examples/TupleTest.jrub

#verbatim {package aRuBa.tyRuBa.examples;}

#include "tuple.rub"

#generate Tuple<[int,String,char]>

#generate Project<0,int>

#generate Project<1,String>

#generate Project<2,char>

/** When using the recursive version the following are needed */

#generate Tuple<[String,char]>

#generate Tuple<[char]>

#generate Tuple<[]>

#generate Project<0,String>

#generate Project<1,char>

#generate Project<0,char>

#verbatim {

public class TupleTest {

static Tuple<[int,String,char]> test =

new Tuple<[int,String,char]>(1,

new Tuple<[String,char]>("Hallo",

new Tuple<[char]>('f',

new Tuple<[]>())));

public static void main(String[] args) {

System.out.println(test.project<0>());

System.out.println(test.project<1>());

System.out.println(test.project<2>());

}

}

}

File: examples/tuple.rub

/***\

Generic tuples:

The arity of a tuple may be any integer from {0,1,2,3,...}

The arity of a tuple is statically known.

Every element of a tuple has a certain type.

A.2. BENCHMARK SOLUTIONS 197

Not all of the elements must have the same type.

***/

/*--

Recursively defined tuples

--*/

/** 0 arity Tuple */

class_I(Tuple<[]>,{

}).

/** Inductive definition of Tuple of arity > 0 */

class_I(Tuple<[?T|?R]>,{

private ?T first;

private Tuple<?R> rest;

Tuple<[?T|?R]>(?T f,Tuple<?R> r) {

first = f;

rest = r;

}

}) :- class(Tuple<?R>).

interface_I(Project<?index,?El>,{

?El project<?index>();

}).

implements_I(Tuple<[?El|?R]>,Project<0,?El>,{

public ?El project<0>() { return first; };

}).

implements_I(Tuple<[?F|?R]>,Project<?i,?El>,{

public ?El project<?i>() { return rest.project<?iMinus1>();}

}) :- implements(Tuple<?R>,Project<?iMinus1,?El>),

+(?iMinus1,1,?i).

File: examples/FlatTupleTest.jrub

#verbatim {package aRuBa.tyRuBa.examples;}

#include "flatTuple.rub"

#generate Tuple<[int,String,char]>

#generate Project<0,int>

#generate Project<1,String>

#generate Project<2,char>

198 APPENDIX A. BENCHMARK EXAMPLES CODE

#verbatim {

public class FlatTupleTest {

static Tuple<[int,String,char]> test =

new Tuple<[int,String,char]>(1,"Hallo",'f');

public static void main(String[] args) {

System.out.println(test.project<0>());

System.out.println(test.project<1>());

System.out.println(test.project<2>());

}

}

}

File: examples/atTuple.rub

/***\

Generic tuples:

The arity of a tuple may be any integer from {0,1,2,3,...}

The arity of a tuple is statically known.

Every element of a tuple has a certain type.

Not all of the elements must have the same type. Types

***/

/*--

Flat Tuples

--*/

class_I(Tuple<?TypeList>,{

Tuple<?TypeList>(?constructorFormals) {

?constructorBody

}

}) :- tupleElementNames(?TypeList,?formalsNamesList),

JavaFormals(?TypeList,?formalsNamesList,?constructorFormals),

tupleConstructorBody(?formalsNamesList,?constructorBody).

tupleElementNames(?T,?N) :- tupleElementNames(0,?T,?N).

tupleElementNames(?idx,[],[]).

tupleElementNames(?idx,[?T|?TR],[element<?T,?idx>|?R]) :-

+(?idx,1,?idxPlus1),

tupleElementNames(?idxPlus1,?TR,?R).

tupleConstructorBody([],{}).

A.2. BENCHMARK SOLUTIONS 199

tupleConstructorBody([?i | ?r],{this.?i=?i; ?cr}) :-

tupleConstructorBody(?r,?cr).

interface_I(Project<?index,?El>,{

?El project<?index>();

}).

implements_I(Tuple<?TypeList>,Project<?idx,?El>,{

private ?El element<?El,?idx>;

public ?El project<?idx>() { return element<?El,?idx>; };

}) :- tupleElementNames(?TypeList,?elements),

element(element<?El,?idx>,?elements).

200 APPENDIX A. BENCHMARK EXAMPLES CODE

Appendix B

Calculator Expressions Code

B.1 Initialization Files

File: calculator/init�le.rub

#include "prolog.rub"

#include "java.rub"

#include "codegenerationM.rub"

#include "deduced.rub"

File: prolog.rub

See appendix A.

File: java.rub

See appendix A.

File: calculator/codegenerationM.rub

/***

Code generator that chops a class body up into pieces declaring

1) Constructors:

constructor_M(?class,?argTypes,?declaration).

2) Methods:

method_M(?class,?returnType,?name,?argTypes,?declaration).

3) Instance variables:

var_M(?class,?type,?name,?declaration).

Also relationships between classes and interfaces declared in implements

201

202 APPENDIX B. CALCULATOR EXPRESSIONS CODE

and extends clauses are "reified".

1) When a ?name apears in the extends clause of ?type

extends_M(?type,?name).

2) When a ?name apears in the implements clause of ?type

implements_M(?type,?name).

** Naming conventions ***

CG_... : Predicates defined in this file meant to only be used internally

(auxiliaries)

..._M : Predicates which affect code generation directly. These

are declared by the user to "make code appear" in the generated

classes and interfaces.

Other: "Globally visible names"

***/

CG_feature(?class,var<?type,?name>,{?type ?name ?init;}) :-

var_M(?class,?type,?name,?init).

CG_feature(?class,method<?name,?argTypes>,?impl) :-

method_M(?class,?retType,?name,?argTypes,?impl).

CG_feature(?class,constructor<?argTypes>,?impl) :-

constructor_M(?class,?argTypes,?impl).

CG_extendsclause(?x,?extendsclause) :-

FINDALL(NODUP(?extended,extends_M(?x,?extended)),

?extended,?extendslist),

JavaClause(extends,?extendslist,?extendsclause).

CG_implementsclause(?x,?implementsclause) :-

FINDALL(NODUP(?itf,implements_M(?x,?itf)),

?itf,?implementslist),

JavaClause(implements,?implementslist,?implementsclause).

CG_abstract(?class,{abstract}) :- abstract_M(?class).

CG_abstract(?class,{}) :- NOT(abstract_M(?class)).

generate(?class,{

?abstract class ?class

B.1. INITIALIZATION FILES 203

?extendsClause

?implClause

{ ?features }

}) :-

class_M(?class),

CG_abstract(?class,?abstract),

CG_extendsclause(?class,?extendsClause),

CG_implementsclause(?class,?implClause),

FINDALL(NODUP([?class|?feature],CG_feature(?class,?feature,?implem)),

?implem,

?features).

generate(?itf,{

interface ?itf

?extendsClause

{ ?features }

}) :-

interface_M(?itf),

CG_extendsclause(?itf,?extendsClause),

FINDALL(NODUP([?itf|?feature],CG_feature(?itf,?feature,?implem)),

?implem,

?features).

File: calculator/deduced.rub

/***\

* Derived information :

* This is information computed from the "virtual base program"

* DO NOT ASSERT any of these! Only CONSULT them.

***/

class(?class) :- class_M(?class).

interface(?itf) :- interface_M(?itf).

/** subtype(?subtype,?supertype) :-

?subtype is a subtype of ?supertype according to Java type rules

*/

subtype(?t,?t) :- class(?t);interface(?t).

subtype(?sub,?super) :- BOUND(?sub),

subtype1(?sub,?mid),subtype(?mid,?super).

subtype(?sub,?super) :- NOT(BOUND(?sub)),

subtype1(?mid,?super),subtype(?sub,?mid).

/** Transitive closure of extends_M */

extends(?t1,?t2) :- extends_M(?t1,?t2).

extends(?t1,?t3) :- BOUND(?t1),extends_M(?t1,?t2),extends(?t2,?t3).

extends(?t1,?t3) :- BOUND(?t3),extends_M(?t2,?t3),extends(?t1,?t2).

204 APPENDIX B. CALCULATOR EXPRESSIONS CODE

/** Class mentions an interface in its implements clause */

implements1(?class,?itf) :- implements_M(?class,?itf).

implements1(?class,?itf) :- implements_M(?class,?itf2),extends(?itf2,?itf).

/** subtype1(?subtype,?supertype) :-

?supertype occurs in an extends or implements clause

of ?subtype

*/

subtype1(?subtype,?supertype) :-

implements_M(?subtype,?supertype);extends_M(?subtype,?supertype).

/** Is a "feature" in a type? */

/* Directly ? */

feature1(?type,method<?returnType,?name,?argTypes>) :-

method_M(?type,?returnType,?name,?argTypes,?decl).

feature1(?type,var<?varType,?name>) :-

var_M(?type,?varType,?name,?decl).

feature1(?type,constructor<?argTypes>) :-

constructor_M(?type,?argTypes,?decl).

/* Which features are inheritable ? */

inheritable(method<?R,?n,?A>).

inheritable(var<?T,?n>).

/* Direct or inherited feature ? */

feature(?type,?f) :- inheritable(?f),

NODUP([?type|?f],extends(?type,?super),feature1(?super,?f)).

feature(?type,?f) :- feature1(?type,?f).

B.2 Framework Code

File: calculator/calculator.rub

/** Expressions of type ?T implement Exp<?T> */

interface_M(Exp<?T>) :- value(?T).

method_M(Exp<?T>,?T,eval,[],{

?T eval();

}).

/** Values can be turned into self evaluating expressions */

implements_M(?T,Exp<?T>) :- value(?T).

method_M(?T,?T,eval,[],{

public ?T eval() { return this; }

}) :- value(?T).

B.2. FRAMEWORK CODE 205

/** Declare the factory and add methods for creating constants */

class_M(Factory).

method_M(Factory,?T,q,[?Init],{

static ?T q(?Init init) { return new ?T(init); }

}) :- value(?T),

feature(?T,constructor<[?Init]>).

/** Declare an Op<?name,?ArgTypes> class for every operation on values */

class_M(Op<?name,[?A1 | ?Ar]>) :-

value(?A1),

feature(?A1,method<?R,op<?name>,?Ar>).

/** Auxiliary predicate: calculate expression types from value types */

CAL_ExpTypes([],[]).

CAL_ExpTypes([?T | ?R],[Exp<?T> | ?ER]) :- CAL_ExpTypes(?R,?ER).

/** Insert constructors into the Op<...> classes */

constructor_M(Op<?name,[?A1 | ?Ar]>,?Exp,{

Op<?name,[?A1 | ?Ar]>(?formals) {

?initCode

}

}) :- class_M(Op<?name,[?A1 | ?Ar]>),

CAL_ExpTypes([?A1 | ?Ar],?Exp),

JavaFormals(?Exp,?formals),

JavaFormals(?Exp,?names,?formals),

CAL_initCode(?names,?initCode).

/** Auxiliary predicate to calculate body of constructor method */

CAL_initCode([],{}).

CAL_initCode([?f|?r],{this.?f=?f; ?ir}) :- CAL_initCode(?r,?ir).

/** Declare instance variables for Op<...> classes */

var_M(Op<?name,[?A1 | ?Ar]>,?type,?var,{}) :-

class_M(Op<?name,[?A1 | ?Ar]>),

CAL_ExpTypes([?A1 | ?Ar],?Exp),

JavaFormals(?Exp,?formals),

JavaFormalsElement({?type ?var},?formals).

/** Implement the Exp<?T> interface on Op<...> classes */

implements_M(Op<?name,[?A1 | ?Ar]>,Exp<?T>) :-

class_M(Op<?name,[?A1 | ?Ar]>),

feature(?A1,method<?T,op<?name>,?Ar>).

method_M(Op<?name,[?A1 | ?Ar]>,?T,eval,?Context,{

public ?T eval() {

return ?a1.eval().op<?name>(?evalar);

}

206 APPENDIX B. CALCULATOR EXPRESSIONS CODE

}) :- class_M(Op<?name,[?A1 | ?Ar]>),

feature(?A1,method<?T,op<?name>,?Ar>),

CAL_ExpTypes([?A1 | ?Ar],?Exp),

JavaFormals(?Exp,?instVars),

JavaFormals(?Exp,[?a1 | ?ar],?instVars),

CAL_evalcals(?ar,?evalar).

/** Auxiliary: Add {.eval()} to a list of arguments */

CAL_evalcals([],{}).

CAL_evalcals([?a1],{?a1.eval()}).

CAL_evalcals([?a1 , ?a2 | ?ar],{?a1.eval(),?rest}) :-

CAL_evalcals([?a2 | ?ar],?rest).

/** Declare Factory methods for creating Op<...> objects */

method_M(Factory,Op<?name,?A>,?name,?CA,{

static public Op<?name,?A> ?name(?formals) {

return new Op<?name,?A>(?actuals);

}

}) :- class_M(Op<?name,?A>),

feature(Op<?name,?A>,constructor<?CA>),

JavaFormals(?CA,?formals),

JavaFormals(?CA,?actualsL,?formals),

JavaCommaList(?actualsL,?actuals).

/************ Subtyping **/

/** A class TypeConv<?R,?T> for every value ?R and ?T such that

?R is directly convertable to ?T */

class_M(TypeConv<?R,?T>) :-

value(?R),value(?T),

feature(?R,method<?T,as<?T>,[]>).

/** The converted expression is stored in an instance variable */

var_M(TypeConv<?R,?T>,Exp<?R>,from,{}) :- class_M(TypeConv<?R,?T>).

constructor_M(TypeConv<?R,?T>,[Exp<?R>],{

public TypeConv<?R,?T>(Exp<?R> init) { from = init; };

}) :- class_M(TypeConv<?R,?T>).

/** TypeConv<?R,?T> is an expression of type ?T */

implements_M(TypeConv<?R,?T>,Exp<?T>) :- class_M(TypeConv<?R,?T>).

method_M(TypeConv<?R,?T>,?T,eval,[],{

public ?T eval() {

return from.eval().as<?T>();

}

}) :- class_M(TypeConv<?R,?T>).

/** Common supertype for every expression convertable to ?T */

B.2. FRAMEWORK CODE 207

interface_M(Convertable<?T>) :- value(?T).

method_M(Convertable<?T>,Exp<?T>,cast<?T>,[],{

Exp<?T> cast<?T>();

}) :- interface_M(Convertable<?T>).

/** Trivial type conversion ?T -> ?T */

extends_M(Exp<?T>,Convertable<?T>) :- interface_M(Exp<?T>).

method_M(?E,Exp<?T>,cast<?T>,[],{

public Exp<?T> cast<?T>() { return this; }

}) :- implements_M(?E,Exp<?T>).

/** Transitive closure of type conversions */

extends_M(Convertable<?R>,Convertable<?T>) :- class_M(TypeConv<?R,?T>).

method_M(?E,Exp<?T>,cast<?T>,[],{

public Exp<?T> cast<?T>() {

return new TypeConv<?R,?T>(this.cast<?R>());

}

}) :- implements1(?E,Convertable<?R>),

class_M(TypeConv<?R,?T>).

/** Subtype aware factory class */

class_M(SubtypeFactory).

method_M(SubtypeFactory,?R,?m,?A,{

static ?R ?m(?formals) { return Factory.?m(?actuals); }

}) :- feature(Factory,method<?R,?m,?A0>),

CAL_convertableTypes(?A0,?A),

JavaFormals(?A,?formals),

JavaFormals(?A,?a,?formals),

CAL_typeConversions(?a,?A0,?actualsL),

JavaCommaList(?actualsL,?actuals).

CAL_convertableTypes([],[]).

CAL_convertableTypes([?A0|?A0r],[?A|?Ar]) :-

CAL_convertableType(?A0,?A),

CAL_convertableTypes(?A0r,?Ar).

CAL_convertableType(Exp<?T>,Convertable<?T>).

CAL_convertableType(?A,?A) :- NOT(equal(Exp<?T>,?A)).

CAL_typeConversions([],[],[]).

CAL_typeConversions([?a|?r],[?A|?R],[?Ca|?Cr]) :-

CAL_typeConversion(?a,?A,?Ca),

CAL_typeConversions(?r,?R,?Cr).

CAL_typeConversion(?a,Exp<?T>,{?a.cast<?T>()}).

CAL_typeConversion(?a,?A,?a) :- NOT(equal(Exp<?T>,?A)).

208 APPENDIX B. CALCULATOR EXPRESSIONS CODE

//--

B.3 Instiantiation Code

File: calculator/Calculator.jrub

#verbatim{package aRuBa.tyRuBa.calculator;}

#include "calculator.rub"

/******* Values used in the calculator ************************/

value(Integer).

class_M(Integer).

var_M(Integer,int,value,{}).

value(Float).

class_M(Float).

var_M(Float,float,value,{}).

value(Double).

class_M(Double).

var_M(Double,double,value,{}).

/** Constructors for values */

constructor_M(?class,[?V],{

public ?class(?V init) { value = init; }

}) :- value(?class), feature(?class,var<?V,value>).

/** Implement a method ?binOp on all value(?class) containing

a numeric value */

method_M(?class,?class,op<?binOp>,[?class],{

public ?class op<?binOp>(?class b) {

return new ?class(this.value ?javaOp b.value);

}

}) :- value(?class),

feature(?class,var<?Num,value>),

numeric(?Num),

nativebinop(?Num,?binOp,?javaOp).

numeric(int).

numeric(float).

numeric(double).

nativebinop(?Num,add,{+}).

nativebinop(?Num,sub,{-}).

nativebinop(?Num,mul,{*}).

B.3. INSTIANTIATION CODE 209

/** Type Conversions between values */

method_M(Integer,Float,as<Float>,[],{

public Float as<Float>() { return new Float(value); }

}).

method_M(Float,Double,as<Double>,[],{

public Double as<Double>() { return new Double(value); }

}).

#generate SubtypeFactory

#generate TypeConv<Integer,Float>

#generate TypeConv<Float,Double>

#generate Exp<Integer>

#generate Exp<Float>

#generate Exp<Double>

#generate Convertable<Integer>

#generate Convertable<Float>

#generate Convertable<Double>

#generate Double

#generate Float

#generate Integer

#generate Factory

#generate Op<add,[Integer,Integer]>

#generate Op<add,[Float,Float]>

#generate Op<add,[Double,Double]>

#generate Op<mul,[Integer,Integer]>

#generate Op<mul,[Float,Float]>

#generate Op<mul,[Double,Double]>

#generate Op<sub,[Float,Float]>

#generate Op<sub,[Integer,Integer]>

#generate Op<sub,[Double,Double]>

#verbatim {

public class Calculator extends SubtypeFactory {

static public void main(String[] args) {

// Exp<Integer> e = add(add(q(5),q(3)),

// add(q(4),q(5)));

// int i = e.eval().value;

// System.out.println(i);

210 APPENDIX B. CALCULATOR EXPRESSIONS CODE

Exp<Double> e = add(add(q(5.0),q(3)),

add(q((float)4.0),q(5)));

double i = e.eval().value;

System.out.println(i);

// Exp<Boolean> e2 = not(not(not(q(true))));

// boolean b = e2.eval().value;

// System.out.println(b);

}

}

}

Appendix C

Aspect-Oriented Example Code

C.1 Initialization Files

File: cool/init�le.rub

#include "prolog.rub"

#include "java.rub"

#include "layered.rub"

#include "coolCodegenerator.rub"

#include "deduced.rub"

File: prolog.rub

See appendix A

File: java.rub

See appendix A

File: cool/layered.rub

/***

Layers of code to code transformations on top of eachother.

General Idea:

==

bottom layer= Base code. No aspects.

+

/-------------------------------

| Aspect declarations

/--------------------------------

============ V generate code ===============================

code with aspects "weaved" into it

/-------------------------------

211

212 APPENDIX C. ASPECT-ORIENTED EXAMPLE CODE

| More aspect declarations

/--------------------------------

============ V Generate code ===============================

....

============ V generate code ===============================

Final code with all aspects

==

*/

/* The final layer is always called FI. This layer is used to

actually generate real Java output code.

*/

CG_abstract(?class,{abstract}) :- abstract_(FI,?class).

CG_abstract(?class,{}) :- NOT(abstract_(FI,?class)).

CG_feature(?class,var<?name>,?impl) :-

var_(FI,?class,?type,?name,?impl).

CG_feature(?class,method<?name,?argTypes>,{?head {?body}}) :-

method_(FI,?class,?retType,?name,?argTypes,?head,?body).

CG_feature(?class,constructor<?argTypes>,{?head {?body}}) :-

constructor_(FI,?class,?argTypes,?head,?body).

generate(?class,{

?abstract class ?class

?extendsClause

?implClause

{ ?features }

}) :-

class_(FI,?class),

CG_abstract(?class,?abstract),

CG_extendsclause(?class,?extendsClause),

CG_implementsclause(?class,?implClause),

FINDALL(NODUP([?class|?feature],CG_feature(?class,?feature,?implem)),

?implem,

?features).

generate(?itf,{

interface ?itf

?extendsClause

{ ?features }

}) :-

interface_(FI,?itf),

CG_extendsclause(?itf,?extendsClause),

FINDALL(NODUP([?itf|?feature],CG_feature(?itf,?feature,?implem)),

?implem,

C.1. INITIALIZATION FILES 213

?features).

CG_extendsclause(?x,?extendsclause) :-

FINDALL(NODUP(?extended,extends_(FI,?x,?extended)),

?extended,?extendslist),

JavaClause(extends,?extendslist,?extendsclause).

CG_implementsclause(?x,?implementsclause) :-

FINDALL(NODUP(?itf,implements_(FI,?x,?itf)),

?itf,?implementslist),

JavaClause(implements,?implementslist,?implementsclause).

/** If you want to copy a layer to another layer just

assert the fact: copyLayer(?source,?dest).

*/

class_(?dest,?cl) :- copyLayer(?source,?dest), class_(?source,?cl).

interface_(?dest,?cl) :- copyLayer(?source,?dest), interface_(?source,?cl).

implements_(?dest,?cl,?itf) :- copyLayer(?source,?dest),

implements_(?source,?cl,?itf).

extends_(?dest,?cl,?itf) :- extends_(?source,?dest),

implements_(?source,?cl,?itf).

var_(?dest,?class,?type,?name,?impl) :- copyLayer(?source,?dest),

var_(?source,?class,?type,?name,?impl).

method_(?dest,?class,?retType,?name,?argTypes,?head,?body) :-

copyLayer(?source,?dest),

method_(?source,?class,?retType,?name,?argTypes,?head,?body).

constructor_(?dest,?class,?argTypes,?head,?body) :-

copyLayer(?source,?dest),

constructor_(?source,?class,?argTypes,?head,?body).

File: cool/coolCodegenerator.rub

/**

The cool "code generator" is the layer below the JCore layer. It "weaves"

COOL aspects into the JCore program.

**/

/** First we copy all code from the layer above: */

copyLayer(JCore,COOL).

/** For the time being the COOL layer is the final layer */

copyLayer(COOL,FI).

/***

requires(?class,?method,?condition).

means that the method ?method of the class ?class must wait

for ?condition to become true before it may start executing.

214 APPENDIX C. ASPECT-ORIENTED EXAMPLE CODE

If there is more than one such condition these are combined by means

of an &&

**/

/** If a method is selfExclusive it is "guarded" by the following

required expression */

requires(?class,?name,{COOLBUSY<?name> == 0}) :-

selfExclusive(?class,?name).

/** If a method is mutually exclusive with an ?other method */

requires(?class,?name,{COOLBUSY<?other> == 0}) :-

mutuallyExclusive(?class,?names),

element(?name,?names),

element(?other,?names),

NOT(equal(?name,?other)).

COOL_allRequired(?class,?name,?exp) :-

FINDALL(NODUP(?cond,requires(?class,?name,?cond)),

?cond,?conditions),

JavaConjunction(?conditions,?exp). //Note: fails when ?conditions=[]

/** Wrapper code for COOL methods */

method_(COOL,?class,?Return,?name,?Args,?head,{

synchronized (this) {

while (!(?condition)) {

try { wait(); }

catch (InterruptedException COOLe) {}

}

?atStart

}

try {?body}

finally {

synchronized(this) {

?atEnd

notifyAll();

}

}

}) :- method_(JCore,?class,?Return,?name,?Args,?head,?body),

COOL_allRequired(?class,?name,?condition),

COOL_atStartStatements(?class,?name,?atStart),

COOL_atEndStatements(?class,?name,?atEnd).

COOL_atStartStatements(?class,?name,?statements) :-

FINDALL(onEntry(?class,?name,?stat),

?stat,?statements).

COOL_atEndStatements(?class,?name,?statements) :-

C.1. INITIALIZATION FILES 215

FINDALL(onExit(?class,?name,?stat),

?stat,?statements).

/** Declare a COOLBUSY counter variable for every

method which is either self or mutually exclusive */

var_(COOL,?class,int,COOLBUSY<?name>,{

private int COOLBUSY<?name> = 0;

}) :- NODUP([?class,?name],

selfExclusive(?cl,?name);

mutuallyExclusive(?cl,?mutList),element(?name,?mutList)).

/** Every method for which there is a COOLBUSY counter

must get some atEnd and atStart statements to maintain

these counters */

onEntry(?class,?name,{

++COOLBUSY<?name>;

}) :- feature1(COOL,?class,var<int,COOLBUSY<?name>>).

onExit(?class,?name,{

--COOLBUSY<?name>;

}) :- feature1(COOL,?class,var<int,COOLBUSY<?name>>).

/**

An alternative "aspect" language which is defined in

terms of mutuallyExclusive and selfExclusive

modifies(?class,?method,?thing)

:- the ?method modifies the state of ?thing

inspects(?class,?method,?thing)

:- the ?method consults the state of ?thing

**/

selfExclusive(?class,?method) :- modifies(?class,?method,?thing).

mutuallyExclusive(?class,[?inspecter|?modifiers]) :-

inspects(?class,?inspecter,?thing),

FINDALL(NODUP(?method,modifies(?class,?method,?thing)),

?method,

?modifiers).

mutuallyExclusive(?class,?modifiers) :-

NODUP([?class,?thing],modifies(?class,?xxx,?thing)),

FINDALL(NODUP(?method,modifies(?class,?method,?thing)),

?method,

?modifiers).

216 APPENDIX C. ASPECT-ORIENTED EXAMPLE CODE

File: cool/deduced.rub

/***\

* Derived information :

* This is information computed from the "virtual base program"

* DO NOT ASSERT any of these! Only CONSULT them.

***/

class(?layer,?class) :- class_(?layer,?class).

interface(?layer,?itf) :- interface_(?layer,?itf).

/** subtype(?subtype,?supertype) :-

?subtype is a subtype of ?supertype according to Java type rules

*/

subtype(?t,?t) :- class(?t);interface(?t).

subtype(?sub,?super) :- BOUND(?sub),

subtype1(?sub,?mid),subtype(?mid,?super).

subtype(?sub,?super) :- NOT(BOUND(?sub)),

subtype1(?mid,?super),subtype(?sub,?mid).

/** Transitive closure of extends_ */

extends(?layer,?t1,?t2) :- extends_(?layer,?t1,?t2).

extends(?layer,?t1,?t3) :- BOUND(?t1),extends_(?layer,?t1,?t2),

extends(?layer,?t2,?t3).

extends(?t1,?t3) :- BOUND(?t3),extends_(?layer,?t2,?t3),

extends(?layer,?t1,?t2).

/** Class mentions an interface in its implements clause */

implements1(?layer,?class,?itf) :- implements_(?layer,?class,?itf).

implements1(?layer,?class,?itf) :- implements_(?layer,?class,?itf2),

extends(?layer,?itf2,?itf).

/** subtype1(?subtype,?supertype) :-

?supertype occurs in an extends or implements clause

of ?subtype

*/

subtype1(?layer,?subtype,?supertype) :-

implements_(?layer,?subtype,?supertype);

extends_(?layer,?subtype,?supertype).

/** Is a "feature" in a type? */

/* Directly ? */

feature1(?layer,?type,method<?returnType,?name,?argTypes>) :-

method_(?layer,?type,?returnType,?name,?argTypes,?head,?body).

feature1(?layer,?type,var<?varType,?name>) :-

C.2. BOUNDED STACK EXAMPLE 217

var_(?layer,?type,?varType,?name,?decl).

feature1(?layer,?type,constructor<?argTypes>) :-

constructor_(?layer,?type,?argTypes,?head,?body).

/* Which features are inheritable ? */

inheritable(method<?R,?n,?A>).

inheritable(var<?T,?n>).

/* Direct or inherited feature ? */

feature(?layer,?type,?f) :- inheritable(?f),

NODUP([?type|?f],extends(?layer,?type,?super),feature1(?layer,?super,?f)).

feature(?layer,?type,?f) :- feature1(?layer,?type,?f).

C.2 Bounded Stack Example

File: cool/BoundedStack.jrub

#verbatim{package aRuBa.tyRuBa.cool;}

#include "BoundedStack.rub"

#generate BoundedStack

File: cool/BoundedStack.rub

/*==

Basic functionality (no aspect stuff)

==*/

/** The class BoundedStack */

class_(JCore,BoundedStack).

extends_(JCore,BoundedStack,Object).

/** Instance Variables */

var_(JCore,BoundedStack,int,MAX,{static final int MAX = 10;}).

var_(JCore,BoundedStack,{Object[]},contents,

{Object[] contents = new Object[MAX];}).

var_(JCore,BoundedStack,int,pos,{int pos = 0;}).

constructor_(JCore,BoundedStack,[],{public BoundedStack()},{}).

method_(JCore,BoundedStack,boolean,full,[],{

public boolean full()},{

return pos==MAX;}).

method_(JCore,BoundedStack,boolean,empty,[],{

public boolean empty()},{

218 APPENDIX C. ASPECT-ORIENTED EXAMPLE CODE

return pos==0;}).

method_(JCore,BoundedStack,void,push,[Object],{

public void push(Object e)},{

contents[pos++]=e; }).

method_(JCore,BoundedStack,Object,pop,[],{

public Object pop()},{

return contents[--pos]; }).

method_(JCore,BoundedStack,Object,peek,[],{

public Object peek()},{

return contents[pos]; }).

method_(JCore,BoundedStack,void,print,[],{

public void print()},{

System.out.print("[");

for (int i=0;i<pos;i++) {

System.out.print(contents[i]+" ");

}

System.out.print("]");

}).

/*==

Synchronization Aspect Declarations

==*/

//selfExclusive(BoundedStack,push).

//selfExclusive(BoundedStack,pop).

//selfExclusive(BoundedStack,print).

//mutuallyExclusive(BoundedStack,[push,pop,peek]).

//mutuallyExclusive(BoundedStack,[push,pop,empty]).

//mutuallyExclusive(BoundedStack,[push,pop,full]).

//mutuallyExclusive(BoundedStack,[push,pop,print]).

requires(BoundedStack,push,{!full()}).

requires(BoundedStack,pop,{!empty()}).

/* Another way of expressing the outcommented lines above

(The advantage here is that the declarations do not "cross cut"

methods. Adding a new method is easy and does not require

reconsidering all of the "mutuallyExclusive" declarations

*/

modifies(BoundedStack,push,this).

modifies(BoundedStack,pop,this).

inspects(BoundedStack,peek,this).

C.2. BOUNDED STACK EXAMPLE 219

inspects(BoundedStack,empty,this).

inspects(BoundedStack,full,this).

modifies(BoundedStack,print,SystemOut).

inspects(BoundedStack,print,this).

File: cool/Test.java

package aRuBa.tyRuBa.cool;

class Consumer extends Thread {

public void run() {

Object hold;

for (int i=1;i<100;i++) {

synchronized(Test.st) {

hold = Test.st.pop();

System.out.print("C: ");

System.out.println(hold);

}

}

}

}

class Producer extends Thread {

public void run() {

for (int i=1;i<100;i++) {

synchronized(Test.st) {

Test.st.push(""+i);

System.out.println("P: "+i);

}

}

}

}

public class Test {

static BoundedStack st = new BoundedStack();

static Thread consumer = new Consumer();

static Thread producer = new Producer();

public static void main(String[] args) {

producer.start();

consumer.start();

}

}

220 APPENDIX C. ASPECT-ORIENTED EXAMPLE CODE

Bibliography

[AFM97] Ole Agesen, Stephen Freund, and John C. Mitchel. Adding type parametriza-
tion to java. In OOPSLA '97 Conference Proceedings, volume 32(10) of ACM
SIGPLAN Notices, pages 49{65, 1997.

[ASS96] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-
pretation of Computer Programs. The MIT Press, Cambridge, Mass., second
edition, 1996.

[BCC+95] Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Object Group,
Gary T. Leavens, and Benjamin Pierce. On binary methods. Theory and Practice
of Object Systems, 1(3):221{242, 1995.

[BDMN73] G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin.
Studentliteratur, Schweden, 1 edition, 1973.

[BI82] A. H. Borning and D. H. H. Ingalls. A type declaration and inference system for
smalltalk. In Conference Record of the Ninth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 133{141. ACM, ACM, January 1982.

[BOW98] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternative
to virtual types. In Object-Oriented Programming 11th European Conference,
ECOOP '98, Proceedings, Lecture Notes in Computer Science. Springer-Verlag,
1998. To appear.

[BPF97] K. B. Bruce, L. Petersen, and A. Fiech. Subtyping is not a good \match"
for object-oriented languages. In Mehmet Aksit and Satoshi Matsuoka, ed-
itors, Object-Oriented Programming 11th European Conference, ECOOP '97,
Proceedings, volume 1241 of Lecture Notes in Computer Science, pages 104{127.
Springer-Verlag, 1997.

[Bru97] Kim B. Bruce. Increasing java's expressiveness with thistype and match-bounded
polymorphism. Technical report, Williams College, 1997.

[CCH+89] Peter Canning, William Cook, Walter Hill, Walter Oltho�, and John Mitchell. F-
bounded quanti�cation for object-oriented programming. In Fourth International
Conference on Functional Programming Languages and Computer Architecture,
pages 273{280, September 1989.

[CM81] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, 1981.

221

222 BIBLIOGRAPHY

[Dav93] A. Davison. A Survey of Logic Programming-based Object Oriented Languages.
In G. Agha, P. Wegner, and A. Yonezawa, editors, Trends in Object-Based Con-
current Computing, pages 42{106. MIT Press, Cambridge, MA, 1993.

[DGLM95] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Meyers. Subtypes
vs. where clauses: Constraining parametric polymorphism. In OOPSLA '95
Conference Proceedings, volume 30(10) of ACM SIGPLAN Notices, pages 156{
168, 1995.

[DM82] L. Damas and R. Milner. Principal type-schemes for functional prograias. In
Richard DeMillo, editor, Conference Record of the 9th Annual ACM Symposium
on Principles of Programming Languages, pages 207{212, Albuquerque, NM,
January 1982. ACM Press.

[DN67] O.-J. Dahl and K. Nygaard. Simula Begin. Technical report, Norsk Regnesentral
(Norwegian Computing Center), Oslo/N, 1967.

[DV98] Kris De Volder. Type-oriented logic meta programming for java. Technical Re-
port vub-prog-tr-98-03, Programming Technology Lab, Vrije Universiteit Brussel,
1998.

[DVM97] Kris De Volder and Wolfgang De Meuter. Type-oriented programming. In Jan
Bosch and Stuart Mitchell, editors, ECOOP 97 Workshop Reader, Lecture Notes
in Computer Science, pages 123{125. Springer Verlag, 1997.

[DVS95] Kris De Volder and Patrick Steyaert. Construction of the Reective Tower Based
on Open Implementations. Technical Report vub-prog-tr-95-01, Programming
Technology Lab, Vrije Universiteit Brussel, 1995.

[Fla94] P. A. Flach. Simply Logical: Intelligent Reasoning by Example, chapter 2. John
Wiley, 1994.

[FM96] K. Fisher and J.C. Mitchell. The development of type systems for object-oriented
languages. Theory and Practice of Object Systems, 1:189{220, 1996. Preliminary
version appeared in Proc. Theoretical Aspects of Computer Software, Springer
LNCS 789, 1994, 844{885.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Addison Wesley, Reading, MA, 1995.

[GJS97] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. The
Java Series. Addison-Wesley, 1997.

[GK76] Adele Goldberg and Alan Kay. Smalltalk-72 instruction manual. Technical re-
port, Learning Research Group, Xerox Palo Alto Research Center, 1976.

[GR81] A. Goldberg and D. Robson. The Smalltalk-80 system. Byte Magazine, 6(8):36{
48, August 1981.

[Gra97] Ian S. Graham. HTML Sourcebook: A Complete Guide to HTML 3.2 and HTML
Extensions. Wiley, New York, NY, USA, third edition, February 1997.

BIBLIOGRAPHY 223

[Hal91] Paul Haley. Data-driven backward chaining. In Proceedings of the Second Annual
CLIPS Conference, Houston TX, September 1991. NASA Johnson Space Center.

[Hin69] J. R. Hindley. The principal type-scheme of an object in combinatory logic.
Trans. Amer. Math. Soc, 146:29{60, 1969.

[JD93] Mark P. Jones and Luc Duponcheel. Composing monads. Technical Report
YALEU/DCS/RR-1004, Department of Computer Science, Yale University, De-
cember 1993.

[JJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration
of the design space. In Proceedings of the Haskell Workshop. Amsterdam, The
Netherlands, June 1997.

[Jon91a] Mark P. Jones. GOFER 2.20, An Introduction to Gofer. CS, Yale, 1991.

[Jon91b] Mark P. Jones. GOFER 2.21 Release Notes. CS, Yale, februari 1991.

[Jon93a] Mark P. Jones. A system of constructor classes: overloading and implicit higher-
order polymorphism. In FPCA '93: Conference on Functional Programming and
Computer Architecture, Copenhagen, Denmark, pages 52{61, New York, N.Y.,
June 1993. ACM Press.

[Jon93b] Mark P. Jones. GOFER 2.28 Release Notes. Departement of Computer Science,
Yale University, februari 1993.

[Jon94a] Mark P. Jones. ML typing, explicit polymorphism and quali�ed types. In Masami
Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer Software,
volume 789 of Lecture Notes in Computer Science, pages 56{75. Springer-Verlag,
April 1994.

[Jon94b] Mark P. Jones. A theory of quali�ed types. Science of Computer Programming,
22(3):231{256, June 1994.

[Jon95] M. P. Jones. Gofer. CS, Yale, August 1995.

[JW85] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report | ISO
Pascal Standard. Springer-Verlag, Berlin, Germany / Heidelberg, Germany /
London, UK / etc., third edition, 1985. Revised by Andrew B. Mickel and James
F. Miner.

[Kae88] Stefan Kaes. Parametric overloading in polymorphic programming languages.
In H. Ganzinger, editor, Proceedings of the European Symposium on Program-
ming, volume 300 of Lecture Notes in Computer Science, pages 131{144. Springer
Verlag, 1988.

[KdRB91] Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, 1991.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP'97|Object-Oriented

224 BIBLIOGRAPHY

Programming, 11th European Conference, volume 1241 of Lecture Notes in Com-
puter Science, pages 220{242, Jyv�askyl�a, Finland, 9{13 June 1997. Springer.

[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second
Edition. Prentice-Hall, Englewood Cli�s, New Jersey, 1988.

[LC98] V. Litvinov and C. Chambers. Constraint-based polymorphism in cecil. Tech-
nical Report TR-98-01-01, University of Washington, Department of Computer
Science and Engineering, January 1998.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Conference Record of POPL '94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, California,
pages 333{343, January 1995.

[Lie96] Karl J. Lieberherr. Adaptive Object-Oriented Software | The Demeter Method
with Propagation Patterns. PWS Publishing Company, 1996.

[LK97] Cristina Videira Lopes and Gregor Kiczales. D: A language framework for dis-
tributed programming. Technical Report SPL97-007 P9710047, Xerox Palo Alto
Research Center, http://www.parc.xerox/aop, 1997.

[Llo88] J. W Lloyd. Foundation of Logic Programming. Springer-Verlag, 2 edition, 1988.

[Luc97] Carine Lucas. Documenting Reuse and Evolution with Reuse Contracts. PhD
thesis, Vrije Universiteit Brussel, 1997.

[Mae87] Patti Maes. Computational Reection. Phd thesis, Vrije Universiteit Brussel,
Arti�cial Intelligence Lab., Brussels, Belgium, January 1987.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized types
for java. In Proceedings of 24th ACM symposioum on Principles of Programming
Languages, pages 132{145, 1997.

[McC92] Francis G. McCabe. Logic & Objects. International Series in Computer Science.
Prentice-Hall, 1992.

[Mit96a] John C. Mitchell. Foundations for Programming Languages, chapter 1, pages
235{304. MIT Press, Cambridge, 1 edition, 1996.

[Mit96b] John C. Mitchell. Foundations for Programming Languages. MIT Press, Cam-
bridge, 1 edition, 1996.

[Mit96c] John C. Mitchell. Foundations for Programming Languages, chapter 4, pages
235{304. MIT Press, Cambridge, 1 edition, 1996.

[MLTK97] K. Mens, C. Lopez, B. Tekinerdogan, and G. Kiczales. Aspect-oriented program-
ming. In Jan Bosch and Stuart Mitchell, editors, ECOOP 97 Workshop Reader,
Lecture Notes in Computer Science, pages 483{496. Springer Verlag, 1997.

BIBLIOGRAPHY 225

[MMMP90] Ole Lehrmann Madsen, Boris Magnusson, and Birger M�ller-Pedersen. Strong
Typing of Object-Oriented Languages Revisited. In Proceedings of the
OOPSLA/ECOOP '90 Conference on Object-oriented Programming Systems,
Languages and Applications, pages 140{150, October 1990. Published as ACM
SIGPLAN Notices, volume 25, number 10.

[MMP89] Ole Lehrmann Madsen and Birger Moller-Pedersen. Virtual classes: A powerful
mechanism in object-oriented programming. In Norman Meyrowitz, editor, Pro-
ceedings of the 4th Annual Conference on Object-Oriented Programming : Sys-
tems, Languages and Applications (OOPSLA '89), pages 397{406, New Orleans,
Louisiana, USA, October 1989. ACM Press.

[MMPN93] Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
Reading, 1993.

[MN87] P. Maes and D. Nardi, editors. Meta-Level Architectures and Reection. North-
Holland, 1987.

[Mos90] Peter D. Mosses. Denotational semantics. In J. van Leewen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, chap-
ter 11, pages 577{631. The MIT Press, New York, N.Y., 1990.

[Mos94] Chris Moss. Prolog++: The Power of Object-Oriented and Logic Programming.
Addison-Wesley, New York, N.Y., 1994.

[OW97] Martin Odersky and PhilipWadler. Pizza into Java: Translating theory into prac-
tice. In Conference Record of POPL '97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 146{159, Paris,
France, 15{17 January 1997.

[PH+97] John Peterson, Kevin Hammond, et al. Report on the programming language
haskell, a non-strict purely-functional programming language, version 1.4. Tech-
nical report, Yale University, April 1997.

[PS90] Jens Palsberg and Michael I. Schwartzbach. Type Substitution for Object-
Oriented Programming. In Proceedings of the OOPSLA/ECOOP '90 Conference
on Object-oriented Programming Systems, Languages and Applications, pages
151{160, October 1990. Published as ACM SIGPLAN Notices, volume 25, num-
ber 10.

[Roy94] Peter Van Roy. 1983{1993: The wonder years of sequential Prolog implementa-
tion. Journal of Logic Programming, 19/20:385{441, 1994.

[Sch94] David A. Schmidt. The Structure of Typed Programming Languages. MIT Press,
1994.

[Sha96] D. Shang. Are cows animals? Object Currents 1.
http://www.sigs.com/objectcurrents, January 1996.

226 BIBLIOGRAPHY

[SLMD96] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D'Hondt. Reuse Contracts:
Managing the Evolution of Reusable Assets. In OOPSLA 1996 Conference Pro-
ceedings, ACM Sigplan Notices. ACM Press, 1996.

[Smi82] Brian C. Smith. Reection and Semantics in a Procedural Language. PhD thesis,
MIT, January 1982. Also available as MIT/LCS/TR-272.

[Smi84] Brian C. Smith. Reection and semantics in LISP. Report ISL-3, ACM/ Xerox
PARC, Intell. Systems Lab., Palo Alto, CA, June 1984.

[SS94] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, Cambridge,
Mass., second edition, 1994.

[Ste94a] G. L. Steele Jr. Building interpreters by composing monads. In ACM, editor,
Proceedings of 21st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pages 472{492, New York, NY, USA, 1994. ACM
Press.

[Ste94b] Patrick Steyaert. Open Design of Object-Oriented Languages, A Foundation for
Specialisable Reective Language Frameworks. PhD thesis, Vrije Universiteit
Brussel, 1994.

[Tho97] Kresten Krab Thorup. Genericity in java with virtual types. In Mehmet Ak-
sit and Satoshi Matsuoka, editors, Object-Oriented Programming 11th European
Conference, ECOOP '97, Proceedings, volume 1241 of Lecture Notes in Computer
Science, pages 444{471. Springer-Verlag, 1997.

[Wad92] Philip Wadler. The Essence of Functional Programming. In 19th Annual Sym-
posium on Principles of Programming Languages, January 1992.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In 16th
ACM Symposium on Principles of Programming Languages, pages 60{76, 1989.

[WF88] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: A
non-reective description of the reective tower. In P. Maes and D. Nardi, editors,
Meta-Level Architectures and Reection, pages 111{134. Elsevier Sci. Publishers
B.V. (North Holland), 1988. Also to appear in Lisp and Symbolic Computation.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object-oriented sys-
tems. In Proceedings of TOOLS USA'98, 1998. To appear.

