
- 1 -

Monads as a theoretical foundation for AOP

Wolfgang De Meuter
(wdmeuter@vnet3.vub.ac.be)
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussels - Belgium

1. Introduction

Looking at today's software engineering, the major abstraction technique is to divide
systems into code units that are about a particular encapsulated ‘issue’ of the system,
such that changes to a particular unit do not propagate through the entire system.
However, this is only applicable as long as all the ‘issues’ of the system can indeed be
classified in units. And that’s exactly where the shoe pinches. Some issues — called
aspects — are system wide and cannot be put into a single unit. As a consequence,
every piece of code that deals with these aspects is cluttered with them. Changing a
property of an aspect requires one to rewrite all the code that deals with it. This
problem is avoided if only we could program these aspects separately and afterwards
weave them together with an ‘aspect weaver’. The activity of doing this is called
aspect-oriented programming. In AOP, we separate the functional code of a system
from all the additional aspects that surround it. But what exactly is an aspect and what
power can one expect from the weaver ? The position of this paper is that much can be
learned both about aspects and the aspect weaver if we think of the functional code as a
monadic style program and we couch the different aspects into monads. The weaver
then becomes a lifter to transform programs through different monads.

2. Monads

Monads come from category theory and were introduced in computer science by
Moggi [6], but we had to wait for Wadler’s popularization [8] for monads to become
widely used and for a ‘monad technology’ to arise. Originally, monads were introduced
to solve the modularity problem of denotational semantics but nowadays they are
heavily used to solve more technical issues such as the IO problem of functional
programs. This problem is due to the fact that IO operators are actually side-effects
(e.g. ‘write’ is a side effect on the screen) and thus complety demolish referential
transparancy. For many years, this was a major obstacle to write functional applications
with interactive IO. Functional programs were usually batch programs and IO was
treated in a stepmotherly fashion precisely because the IO ‘aspect’ was all around and
was considered a technical burden that completely ruined the beauty of a program.
Until people learned how to encapsulate this system-wide aspect in a monad!
Another problem were in-place array operations. When a functional program uses
arrays, conceptually these arrays have to be copied each time a position in the array is
assigned. Indeed, assignment in arrays has to be modelled as a function and can
therefore not have side effects. But of course, copying an array each time it is assigned
yields hopelessly inefficient programs. Again, the problem was solved by putting the
updatable array in a monad. Monadic programs that use the array can only access (and
assign) it through so called monadic operations. This way, arrays are treated in a
completely referential transparant way, but inside the monad, the operation can be
safely programmed in a destructive way.

A monad is most effectively described as a computation that eventually returns a value.
Monadic programming then consist of gluing together computations with an operator
called 'bind' (denoted by *). Each monad defines such a * and * is allowed to see the

- 2 -

internal details of the monad. On top of this, there is an operation unit to inject any
value into a zero computation that does nothing but returning the value:

c x = ... /* c x denotes the type of computations
 that will return a value of type x */

* : c x -> (x -> c y) -> c y
/* glues together c x and c y parametrised
 by the value of c x (i.e. x -> c y)
 into c y */

unit : x -> c x

Hence, unit injects any value into a zero computation. * glues together a computation
c1 of type c x and a computation c2 of type c y that is parametrised by the value of
c1, into a resulting computation c3. When we run c3, the effect will be to run c1, and
then run c2 thereby passing the value of c1 to c2. Although not part of the categorial
definition of a monad, functional programmers provide a third operation called run.
run actually runs the computation of type c x thereby returning its value (of type x).
Of course all additional information about the computation will then be lost.

run : c x -> x

3. Monad Operations & Monadic Programming

Now that we now what a monad is, we have to discuss how monadic programs are
written. Any monadic style program contains two kinds of code: code that does not
depend on the details of the underlying monad and code that does depend on the details
of the particular monad at hand.
• The easiest code is the one that is independent of a particular monad. This code
manipulates values by applying operations onto values. It does not depend on the
nature of the computations that produced those values. Here is the general strategy:
suppose we write a monadic program that calls n monadic programs pi, that each
produce a value vi. The effect of our monadic program is to apply a function f onto the
values that will be produced by the computations. Of course, the result of applying f
must be a computation again so that we have to unit it:

p1 * (λv1. p2 * (λv2. pn * (λvn . unit(f(v1, ..., vn))) ...)

This pattern occurs so frequently that modern functional languages like Gofer [2]
provide a special syntax for it:

do { v1 <- p1; v2 <- p2; ...; vn <- pn} result{ f(v1,...,vn) }

• The second kind of code fragments are those that depend on the nature of the
underlying monad. Surely these fragments will exist for otherwise it would not be very
useful to write monadic programs after all. In order to access the interal information of
the monad, we need monad operations. These are extra operations (besides unit and *)
that are added to a particular monad. Any code that uses such an operation admits that
it can only be executed in a monad that strong. Let us for example consider a very
simple tracing monad, in which every computation takes a stream (onto which tracing
happens) and returns a value and a resulting stream

c x = Stream -> (x,Stream) /* (a,b) means a x b */
unit x = λstr . (x,str)
cmp * f = λstr . let (x,str’) = cmp str

 in f x str’

The computations of the monad return values thereby transforming a stream into a
possibly modified stream. In order to get something onto the stream that is passed
around by the computations, we need a monad operation write:

write : String -> m void
write s = λstr . (void,append str s)

- 3 -

The write operation takes a string. It returns a computation that takes an output stream
and adds the string to it. Of course, code that has nothing to do with tracing, does not
have to know about write.

4. Monads and Aspect Oriented Programming

The resemblances between MP and AOP are really remarkable:
1) Both monadic style programs and aspect-oriented programs give us the same feeling
about writing 'layered' code . The top layer consist of the 'functional layer', that is the
'actual code of the program'. The other layers are the aspects (or different monads) that
help the actual code to accomplish its task. Join points (AOP terminology) allow
different aspects to meet each other. In a monadic program the join points are those
functions that acces information of (a) monad(s).
2) Both monads and aspects have system wide repercussions . When 'expanding' a
functional monadic program (i.e. throwing away all the unit's and *'s) we get code
that is completely tangled with 'global information'. In functional programs, this
technical cluttering might consist of system wide state (i.e. assignable memory) or IO
streams that enter and leave every function, exception handling and so on. This is
precisely the phenomenon described by the AOP papers, in which the 'global
information' is called systemic information.
3) Both MP and AOP endorse the viewpoint that the compiler's job is integration rather
than inspiration. Just like AOP, MP forces a programmer to separate the different
'aspects' into different monads himself. When all monads are described and the
interactions between them [4] is known, they can fairly easily be integrated. It is not a
compiler's job to define or extract the monads.

Of course, the only way to test wether monads can really serve as a theoretical basis for
AOP is to try to formulate a few AOP instances in monadic style. To this extent, we
have implemented a small monadic OOPL in Scheme. We have used the macro
facilities of Scheme to implement the following syntactic constructs:

(class parent . declarations)

(var name value)

(Omethod name fargs . body) -- definition of ordinary method
(Obegin . lst) -- body of ordinary method
(Oself) -- self reference
(Osuper) -- parent reference
(O! name value) -- assignment
(O? name) -- variable referencing
(O: receiver name . aargs) -- message passing

(Mmethod name fargs . body) -- definition or a monadic method
(Mbegin . lst)
(Mself)
(Msuper)
(M! name value)
(M? name)
(M: receiver name . aargs)

A class consist of a parent class and a list of declarations. Each declaration is either an
instance variable or a method. Methods can be ordinary or monadic. Within an
ordinary method, all instructions must be ordinary. Within a monadic method,
everything must be monadic. The reason why we distinguish between ordinary and
monadic methods is that, in our work, we wanted to study the interactions between
monadic code and non-monadic code. This is not really relevant for this paper. Just
keep in mind that the monadic code denotes 'monadic objects', i.e. objects that have
been injected in a monad using unit. The monadic constructions have the same
semantics as the ordinary constructions, except that the values have become

- 4 -

computations and that, in the implementation of the language, these computations are
bound together using *. When a monadic method calls a monadic method, the
associated computations are bound together. When a monadic method calls an ordinary
method, the ordinary method is executed and the result is returned after unit'ing it.
When an ordinary method calls a monadic method the monadic method is 'run'.

The following example is a number class built on top of Scheme numbers:

(define numberç
 (class rootç
 (var val 0)
 (var tmp '())
 (Omethod ! (i) (O! val i))
 (Omethod ? () (O? val))
 (Omethod + (i) (Obegin (O! tmp (numberç 'new))
 (O: (O? tmp) ! (+ (O? val) (O: i ?)))
 (O? tmp)))
 (Omethod - (i) (Obegin (O! tmp (numberç 'new))
 (O: (O? tmp) ! (- (O? val) (O: i ?)))
 (O? tmp)))
 (Omethod == (i) (Obegin (if (= (O? val) (O: i ?))
 true
 false)))
 (Mmethod fib ()
 (Mbegin
 (M: (M: (Mself) == (unit (num 0)))
 MifTrueIfFalse
 (Mblock0 (unit (num 1)))
 (Mblock0 (M: (M: (Mself) == (unit (num 1)))
 MifTrueIfFalse
 (Mblock (unit (num 1)))
 (Mblock (M: (M: (M: (Mself) - (unit (num 1))) fib)
 +
 (M: (M: (Mself) - (unit (num 2))) fib)
))))))))
))

(define (num number)
 (define i (numberç 'new))
 (O: i ! number)
 i)

The focus of our experiments was the fib monadic method. It is invoked by evaluating

(run (M: (unit (num 8)) fib))

By executing this method in the identity monad, we get a normal Fibonacci method1.
The identity monad looks as follows. Its computations simply are values.

(define (unit x) x)
(define (bind x n f)
 (f x))
(define (run x) x)

The following experiment shows how unit and bind can be used to make the
Fibonacci method more efficient. As everyone knows, fib is a tree recursive algorithm

1Notice that we slightly changed the definition of bind. Besides a computation (x) and a computation
(f) parametrised by the value of the first computation, bind is paramtrised with the name (n) of the
message for which bind was used. This way, we have a finer grained control over how the monad is
used by the program. From this perspective, bind can be regarded as a very abstract notion of a MOP
since it can intercept messages from the 'base level program'.

- 5 -

that does most work twice. This can be optimised by caching the computed Fibonacci
numbers (a technique called memoizing):

(define **fiblist** '())

(define (unit x) x)

(define (bind x n f)
 (if (equal? n 'fib)
 (let ((aFib (assq (O: x ?) **fiblist**)))
 (if aFib
 (cdr aFib)
 (begin
 (set! aFib (f x))
 (set! **fiblist** (cons (cons (O: x ?) aFib) **fiblist**))
 aFib)))
 (f x)))

(define (run x) x)

In this variant of the state monad, we use the name of the message to intercept calls to
fib. We then look up the receiver in a list of (n,fib(n)) pairs. When it is already in the
list, we simply return its associated Fibonacci number. Otherwise, we actually perform
the computation and store its result in the list for later usage.

The final experiment consists of allowing both branches of the Fibonacci recursion tree
to be computed in parallel. We therefore use the special form (future ...) which
starts the (Scheme) computation ... in parallel with the rest of the computation. Only
when its value is needed, the interpreter will wait for the parallel computation to be
finished. Here are the implementations of unit, bind and run:

(define (unit x) x)

(define (bind x n f)
 (future (f x)))

(define (run x) x)

Gluing together x and f now consists of returning (f x) but allowing the interpreter to
compute this in parallel with the remainder of the computation (which is the monadic
method whose implementation called bind in the first place).

The above experiments strongly indicate that monadic style programs and AOP have a
lot in common. By using another monad, we get system-wide changes. Furthermore,
our code only contains the functional aspects of a normal Fibonacci implementation as
taught in high school. Both the caching and parallellism aspects can be put in a monad
without cluttering up the code. An argument in favour of monads is that our
implementation uses Scheme which is rather close to denotational semantics. Another
argument is that only very recently, monads have been used to split objects into several
'features' using a method quite different from ours [7]. In this work, objects have
features (aspects?) and adding more features is done by using a richer monad. As such,
our experiments and those of Prehofer [7] indicate that the monad concept might be a
very good candidate to give formal semantics to aspect-oriented programming
languages. This can in its turn improve our understanding of AOP.

As can be seen from our experiments, bind is certainly a major join-point of the code.
As a matter of fact, we didn't use any monad operations at all. Hence, a natural reaction
would be to separate every aspect in a single monad and combining their bind's into a
single bind to be used by the monadic program. Unfortunately, monads do not
compose[3]. If we have a monad c x and a monad c’ x , c(c’ x) is not necessarily a
monad. The problem is that in general, it is not possible to implement bind for c(c’
x) solely in terms of unit and bind of c and c’.

- 6 -

However, monads do transform using so called monad transformers. A monad
transformer is a monad t parametrised by another monad m. Programming unit and
bind for a monad transformer is exactly the same as programming them for a monad,
except that one can use the unit and bind of the monad m with which the transformer
is parametrised. For an extensive discussion of the technicalities concerning (the
relatively new) monad transformer technology, we refer to [4] and [1].

5. Conclusions and Future Research

The experiments described in this short paper illustrate a very strong simularity
between AOP and MP. Of course, much more research needs to be done to completely
understand that relation. At the time of writing, the status of our work at least raises the
following questions:
• What is the relation between our approach to AOP and Prehofer's feature oriented
programming ?
• How can monads (and the experience with monads in the functional community) be
of any help to identify aspects in a program or in a problem statement ?
• Much of the monad technology used in functional programming involves the
implementation of visitors (the simplest example being an evaluator). What is the
relation with Adaptive Programming [5] as described by Lieberherr ?
• As already indicated in the text, our version of bind is slightly more general than the
conventional one because it is extra parametrised by the name of a message. This
formulation of monads immediatly raises the question what the relation is between
monads and meta-object protocols. As described by the AOP papers, the latter is
strongly related to AOP.
• At first sight, monads seem to be able to capture a variety of completely different
aspects and it seems to be a very interesting research question to see just how far we
can take this.

7. References

[1] D. A. Espinosa. Semantic Lego. PhD. Thesis, Columbia University, 1995.
[2] M. Jones. Introduction to Gofer 2.20. Ftp from nebula.cs.yale.edu in
pub/haskell/gofer, September 1991.
[3] M. Jones and L. Duponcheel. Composing Monads. Technical Report
YALEU/DCS/RR-1004, Yale University, 1993.
[4] S. Liang, P. Hudak, and M. Jones. Monad Transformers and modular
interpreters. In Conference Record of POPL'95, page 472, ACM Press, 1995.
[5] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, 1996.
[6] E. Moggi. A modular Approach to Denotational Semantics. Category Theory
and Computer Science - Lecture Notes in Computer Science, 530:138, 1991.
[7] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects, to appear
in ECOOP'97 Proceedings, Springer Verlag, 1997.
[8] P. Wadler. The essense of functional programming. In Conference Record of
POPL'92, ACM Press, 1992.

