
1

can be are

Abstract

Keywords:

Workshop Goals:

Working Groups:

Reuse Contracts: Making Systematic Reuse a Standard Practice

Patrick Steyaert, Carine Lucas, Kim Mens

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
Tel: (32) 2-629-3581,
Fax: (32) 2-629-3525

Email: prsteyae@vnet3.vub.ac.be, clucas@vnet3.vub.ac.be, kimmens@is1.vub.ac.be

While object-orientation has had a large impact on the popularisation of reuse, reuse in OO

is mostly ad hoc and thus lessons can be learned from the work on systematic reuse. On the

other hand, the emphasis of object-orientation on iterative development can help in reducing

the large up-front investments that are typically associated with systematic reuse. We claim

that systematic reuse needs to be reconciled with iterative development in order to make reuse

a standard practice. Such a reuse methodology must emphasise the co-operation between asset

providers and asset reusers to control how assets reused, how assets reused and how

changes propagate from assets to applications during iterative development. We propose reuse

contracts as the basis for such a methodology.

Reuse contracts, change management, iterative development, object-orientation.

Cross-fertilisation between the OO community and the reuse community,

get feedback on our ideas on reuse contracts from the reuse community.

Component Certi�cation Tools, Frameworks and Processes; Reuse of Ear-

liest Life-Cycle Artifacts.



�

1 Background

2 Position

2.1 Issues in Making Reuse Standard Practice in OO

Systematic reuse must be disciplined but not too coercive

disciplined

not too coercive

The Programming Technology Lab is involved in a number of research initiatives that aim to

solve mostly technical problems that prevent the establishment of systematic reuse. Both our

inspiration on which problems are most important to solve and the validation of our work come from

joint projects with industrial partners. These projects are mostly aimed towards the development

of frameworks for vertical markets (broadcasting planning, hypermedia, group decision support

systems, . . . ). While, before, our work mainly focused on implementation aspects, now our goal is

to develop a methodology for systematic reuse that covers all phases of the life-cycle and is formally

based, as well as practically applicable.

It is often claimed that artefacts created with object-oriented techniques are, by their very nature,

more reusable than artefacts created with conventional means. Consequently object-orientation has

had a large impact on the popularisation of reuse, and object-oriented methods hold many promises

for making reuse a standard practice. However, because of the opportunistic - ad hoc - nature,

the reuse potential obtained with object-oriented methods alone, leads to marginal gains only.

The reuse community has emphasised that to obtain more substantial gains, a more systematic

approach to reuse is necessary. Systematic reuse requires a shift from crafting one system at a time

to the use of engineering principles for entire families of systems. However, object-oriented software

engineering has been traditionally concerned with the development of custom built single systems.

So, none of the currently used OOA/OOD methods [1], [2], [7], [14], [16] are suited for this kind of

systematic software reuse.

It thus seems obvious that the solution lies in introducing the concept of systematic reuse in

OOSE. One main disadvantage of systematic reuse, however, is that it requires a very large up-

front investment and it seems to be in con
ict with the iterative development process that is so

typical for OO. We therefore suggest a methodology that combines the best of both worlds by

introducing systematic reuse in the OOSE process, while controlling the necessity for large up-

front investments by focusing on an iterative development process. The following criteria express

how to reconcile the principles that underly systematic reuse with those that underly iterative

development in OO.

Systematic reuse is based on building models that are reused in a disciplined manner. So, in

contrast with what is customary today, \design reuse" does not simply mean taking an existing

design, copying it and modifying it to some particular need, but rather the development of a

design model of our software that can be reused in a fashion. Still, in current OOSE

methodologies the issue of disciplined reuse of analysis and design as well as programming

artefacts is almost entirely neglected.

While reuse should not be ad hoc, it should be either. A developer of reusable

assets should provide a reuser with speci�cations that are powerful enough to enable reuse,

while not overconstraining the reuser. For example, the typical black box reuse mechanisms

2



�

�

2.2 Reuse Contracts

Evolution is an inherent property of systematic reuse

evolutionary process

Notations for systematic reuse must be formal but understandable

formal

understandable

that are so popular these days are considered too coercive, because they do not allow reusers

to adapt their components before reuse.

Systematic reuse should not only recognise the need for a reusable asset to evolve both during

its initial design and when it is being reused, it should actually advocate the development

of a methodology for managing change in the process of engineering reusable software. The

development of reusable assets is inherently an . It requires a number

of iterations of building/modifying the asset and reusing it to see if it is properly reusable.

To be able to leverage on the investment made in building an asset, reusers must be able

to bene�t from future improvements of the assets they reuse: proper evolution of reused

assets should not invalidate previous reuse. In a similar vein, reuse should go beyond the act

of copying out code fragments and adapting them to current requirements without regard

for the evolution of the reused fragments. This implies the management of some kind of

consistency in the evolution of reusable software, to prohibit di�erent versions of a reusable

asset from propagating through di�erent applications. While systematic reuse should present

an opportunity to reduce maintenance e�ort, a proliferation of versions actually increases it,

as older versions of an asset behave di�erently than newer versions. The absence of change

management mechanisms is recognised as an important inhibitor to successful reuse [5], [12],

[16].

Much of what is currently being proposed for object-oriented software reuse (frameworks,

design patterns,...) lacks notation and rules. There is, for example, a general under-

standing that a framework may only be reused in a pre-de�ned way: the basic framework

structures may not be violated. The rules to do so remain informal documentation however.

When using only informal descriptions of reusable artefacts, reasoning about, for example,

how to reuse an artefact, e�ort estimations, or the impact of changes to reusers can only

be done by error prone informal reasoning and no discipline in the reuse of artefacts can be

enforced. Disciplined reuse requires models expressed in a formal notation and formal rules

on how to reuse an artefact based on such models.

On the other hand, reusable artefacts are preferably reused by as many reusers as possible.

This means that they need to be expressed in terms that are by reusers.

For example, the models that are used early in the life-cycle at the analysis phase must be

expressed in terms that are understandable to end users. Moreover, di�erent models are

needed for the same artefact ranging from very abstract models for quick assessment of the

feasibility of reuse to detailed models for the actual reuse. This suggests some form of layering.

The art is in �nding the right balance between descriptions that are easily understood and

expressed, and descriptions that capture enough of the semantics of the asset being built and

reused.

In the next subsection we propose reuse contracts as a methodology for systematic reuse that

handles these issues.

Based on the problems described above, it is our conjecture that substantial reuse requires a strong

and well-de�ned co-operation between asset providers and asset reusers. We therefore suggest the

3



�

3 Comparison

reuse contracts

reuse operators

Frameworks, Design Patterns and Cookbooks

introduction of explicit [15]. The asset provider must document that part of an

asset that is relevant to reusers, while reusers must declare how an asset is actually reused. When

reuse is based on such a formal contract, reusers can pro�t from the changes made to reusable

assets because formal rules can be de�ned that facilitate change propagation. Providers can pro�t

from the information given by reusers to make their assets more reusable. This not only solves

the maintenance problem, caused by the proliferation of versions, but also assists in the iterative

development, as crucial feedback from reusers is made available to the asset developers.

Because the best-known object-oriented reuse technique today is undoubtedly the use of abstract

classes with inheritance, in [15] we focused on the problem of reuse of class hierarchies as a more

tangible case to express the ideas behind reuse contracts. In that case, a reuse contract documents

the design of a class by means of its specialisation interface [11]. This information is used by reusers

to decide which methods have to be overridden and which methods can be inherited. Furthermore,

reuse contracts can only be changed by means of formal . These encode the di�erent

ways a class can be reused and adapted: extension, concretisation and re�nement are design pre-

serving operators and their inverses: cancellation, abstraction and coarsening are design breaching

operators. Although not the only operators imaginable, they do coincide with the typical ways to

reuse abstract classes. Together, reuse contracts and reuse operators record the protocol between

the providers and users of a reusable asset (in this case, abstract classes). Simple formal rules were

de�ned that signal possible con
icts in existing reusers (inheritors), when changes are made to the

assets they are reusing (parent classes). Most of the possible con
icts can be directly expressed in

terms of reuse contracts and operators rather than on the level of interfaces and calling structures.

This allows developers to reason about change in more intuitive terms and on a higher level than

previously possible. As reuse contracts can only be adapted by means of certain prede�ned reuse

operators, reuse is disciplined. Moreover, since we also included design breaching operators, reuse

is not too coercive.

Because con
icts upon change can be easily detected, reuse contracts help to predict the work

e�ort in updating existing applications. Because they document what aspects possible reusers can

rely on, they can also be used by developers of a reuse library to decide whether making a certain

change to the reuse library is a good idea or not. In the same vein, con
ict detection rules can

be used to guide application developers both in understanding where testing is needed when the

reusable asset has changed and how to �x the problems.

Up until now, reuse contracts were only fully developed for the reuse of classes in an inheritance

hierarchy. Early results on the application of the same principles to reuse of multi-class components

and state chart diagrams, however, show a lot of promise regarding the scalability of the approach.

Similarly, while this �rst experiment with reuse contracts mainly concentrated on implementation

con
icts, current work is being done to apply the same ideas to the earlier life-cycle phases. These

preliminary results support the premise that reuse contracts have a lot of potential as a general

reuse methodology.

As was already mentioned in section 2.1 most state-of-the-art object-oriented reuse method-

ologies are insu�ciently formally supported. This is e.g. the case for object-oriented frame-

works [9], [3] that are usually documented through very informal documents. One way to

additionally document frameworks is through design patterns [4], [8], [13], but these su�er

4



�

References

Facades and Variation Points

Object-Oriented Analysis and Design with Applications, (Second Edition)

Object-oriented

Development: the Fusion method

Inside Talingent Technology

Design Patterns

Succeeding with Objects: Decision Frameworks for Project Man-

agement

Software Reuse: Architecture, Process and Organi-

zation for Business Success

Object-Oriented Software Engi-

neering - A Use Case Driven Approach

Proceedings OOPSLA '92,

ACM SIGPLAN Notices

Journal of Object-Oriented

Programming

Journal of Object-Oriented Programming

Proceedings OOPSLA '93, ACM SIG-

PLAN Notices

Communications of the ACM

the same lack of formal underpinnings. Cookbooks [10] that guide reusers step by step in

the reuse process (the \customisation" process for frameworks) were suggested as another

approach, but these su�er from the additional problem that they are overly coercive, i.e.

they can only guide reuses that were speci�ed up front. Reuse contracts provide a formally

underpinned documentation, that still allows enough 
exibility.

While, up until now, the issue of disciplined reuse was almost entirely neglected in object-

oriented analysis and design techniques, recently new concepts as facades and variation points

[6] were introduced to tackle this problem. These approaches try to discover possible points

of evolution at the earliest phases of the life-cycle and incorporate them in the design. While

a good starting point, we believe that a complete methodology should also incorporate the

handling of unforeseen reuses and adaptations. That concern is one of the main contributions

of reuse contracts to these other methodologies.

[1] G. Booch. . Ben-

jamin/Cummings, Redwood City, CA, 1993.

[2] D. Coleman, P. Arnold, S. Bdo�, H. Gilchrist, F. Hayes, and P. Jeremaes.

. Prentice Hall, Englewood Cli�s, NJ, 1994.

[3] S. Cotter and M. Potel. . Addison-Wesley, 1995.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. . Addisson-Wesley, 1994.

[5] A. Goldberg and K. Rubin.

. Addisson-Wesley, 1995.

[6] I. Jacobson, M.L. Griss, and P. Jonsson.

. Addisson-Wesley, 1997.

[7] I. Jacobson, M.Christerson, P. Jonsson, and G. Overgaard.

. Addisson-Wesley, 1992.

[8] Ralph E. Johnson. Documenting frameworks using patterns. In

, pages 63{76, October 1992. Published as Proceedings OOPSLA '92,

ACM SIGPLAN Notices, volume 27, number 10.

[9] Ralph E. Johnson and Brian Foote. Designing reusable classes.

, "1(2), February 1988.

[10] G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-View-Controller User In-

terface Paradigm in Smalltalk-80. , pages 26{49,

August/September 1988.

[11] John Lamping. Typing the specialization interface. In

, pages 201{214, October 1993. Published as Proceedings OOPSLA '93, ACM

SIGPLAN Notices, volume 28, number 10.

[12] C. Pancake. Object Roundtable, The Promise and the Cost of Object Technology: A Five-Year

Forecast. , 38(10):32{49, October 1995.

5



4 Biography

Patrick Steyaert

Carine Lucas

Kim Mens

Design Patterns for Object-Oriented Software Development

Object-Oriented Modeling

and Design

Proceedings OOPSLA '96, ACM SIGPLAN Notices

Object-Oriented System Design: An Integrated Approach

[13] W. Pree. . Addisson-Wesley, 1994.

[14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

. Prentice Hall, 1991.

[15] P. Steyaert, C. Lucas, K. Mens, and T. D'Hondt. Reuse Contracts: Managing the Evolution

of Reusable Assets. In , pages 268{285.

ACM Press, 1996.

[16] E. Yourdon. . Yourdon Press Com-

puting Systems, Prentice Hall, 1994.

holds a post-doc position at the Programming Technology Lab at the Vrije

Universiteit Brussel, where he received his PhD in 1994 with work on object-oriented programming

languages, re
ection and semantics. His current interest is in the integration of reuse contracts

in existing object-oriented modeling techniques and the development of a methodology for the

interative development of reusable assets.

is a teaching assistant and researcher at the Programming Technology Lab at

the Vrije Universiteit Brussel. She received a Licentiate Degree in Computer Science from the

Vrije Universiteit Brussel in 1991. While before she conducted research in design and typing of

object-oriented languages, her PhD will focus on the use of reuse contracts for implementation,

maintenance and refactoring.

is a teaching assistant and researcher at the Programming Technology Lab at the Vrije

Universiteit Brussel. He received a Licentiate Degree in Mathematics from the Vrije Universiteit

Brussel in 1992 and a Licentiate Degree in Computer Science from the same institution in 1994.

He has previously been working on object-oriented programming calculi and on typing of object-

oriented programming languages. His long-term research goal is to develop the formal foundations

of a general reuse methodology, based on the concept of reuse contracts.

6


