
Research Topics in Composability 1

Research Topics in Composability
Carine Lucas, Patrick Steyaert, Kim Mens
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, BELGIUM
http://progwww.vub.ac.be/

Abstract

While composability is a much desired quality for software artefacts, there is
no consensus whatsoever on what composability really is, nor on how it can
be achieved. In this position paper we discuss three inhibitors of
composability and hint at possible solutions. It is our conjecture that tackling
these three problems is crucial to achieve true composability.

1. Inhibitor 1: Lack of a consistent terminology and insight in
the relations between different composition techniques

Composability is not the only research area that focuses on building large and
complex systems while emphasising modularity and separation of concerns. During
the last few years, research in object-oriented software engineering has resulted in a
proliferation of new terms and techniques that all strive for more composable,
reusable, adaptable, … software:

• components often need to be adapted before they can be composed into some
application;

• components can in some cases only be composed in some framework;
• components need an open implementation for tailorability;
• components can be stored as reusable assets in a reuse library;
• to improve compositionality sometimes part of the meta-system in which the

components are expressed needs to be reified, hence the need for
computational reflection and meta-level architectures;

• and so on, …

This abundance of new terms and techniques raises a series of questions. First, what
does composability mean? When browsing through articles with composition in their
titles, subjects as diverse as framework instantiation, CORBA IDLs, inheritance, …
pop up. But the problem is not finding a clear definition for composition. What is
important is to realise that issues like composability, adaptability and maintainability
are all just subgoals. The main goal is to build good quality software that can be
integrated with other systems and has the ability to evolve over time. Therefore to
achieve more insight an effort should be made to develop a classification of

2 Carine Lucas, Patrick Steyaert, Kim Mens

techniques, so that it becomes clear what different approaches do and do not offer,
which problems they handle and how they overlap.

Even more important, to fully benefit from these new technologies we should be
able to use them in combination. Therefore, a study of the interactions between the
different techniques is called for. The interaction between reflection (and meta-
level architectures) and increased compositionality is already actively being
researched. For example, [Aksit&al.93] studies how object interactions can be
abstracted in order to achieve a higher degree of reusability. [Demeyer96] studies
how the combination of framework technology and meta-object protocols can be
used to achieve different levels of tailorability (domain level, system level and
configuration level) in open hypermedia systems. Combining framework technology
and meta-object protocols shows that explicit representations of framework contracts
should be part of a meta-object protocol, an insight that is helpful for the design of
meta-object protocols.

While these are first steps towards an integration of different composition
techniques, more efforts in this research area are necessary.

2. Inhibitor 2: Absence of composition interfaces that allow both
flexibility and predictability of composition

To be able to compose components clear composition interfaces are needed. While
this may seem evident, current practice shows that we are still far from having clear
and unambiguously defined composition interfaces that allow the composition of
components with a predictable outcome. On the one hand a strong emphasis has been
put on black box composition. A black box interface only shows what functionality is
provided, not how this functionality is achieved. Black boxes can be composed by
plugging them together via their interface. While black box composition offers a
guarantee that changes in the black box will not cause problems where it is used,
black boxes often do not provide enough information to realise more sophisticated
forms of composition.

The other extreme is white box composition, where you can see the inside and
outside of the component and change it, e.g., through inheritance or delegation.
While white box composition offers more possibilities for different types of
composability, it also causes a bigger risk for users to be negatively affected by a
change in one of the components. Furthermore, white boxes leave it to the user of the
component to inspect the implementation of a component to see how it can be used.
This is often a difficult job and therefore not without the risk of causing errors.

What we need is an intermediate solution. A kind of grey box interfaces, that
allow independent programmers to use components without having to inspect all
implementation details, but on the other hand do not hide so much information that
usability gets too severely restricted. Therefore, these interfaces need to provide all
necessary information for the desired type of composition, while hiding

Research Topics in Composability 3

unimportant implementation details. Grey box interfaces thus also allow
component builders to restrict the ways in which a component can be used. It is clear
that different types of composability call for different types of interfaces. For
example, for using components through cloning, black box interfaces may suffice.
For more complex composition mechanisms like inheritance or part-whole
relationships other information is called for.

Let us investigate the example of inheritance in more detail. Inheritance is one of
the oldest and most well-known composition techniques in OO. Still the
development of composition interfaces for inheritance has started only recently.
Inheritance is mainly seen as a mechanism to compose the behaviour of objects. It
does so by composing independently developed packages of behaviour and
combining them with an inheritance mechanism. A common characteristic of
different inheritance mechanisms is method overriding. It allows for an inheritor
component to adapt the behaviour of the parent component. While method overriding
is fundamental to inheritance, it is also the source of many problems with respect to
composition. The composition of a parent and child component can have
unpredictable results as, for example, methods that are overridden in the inheritor
methods can be accidentally invoked by methods in the parent component. (An
example of another kind of problem will be given in section 3.) In an attempt to
tackle these problems specialisation interfaces were introduced [Lamping93] (see
also [Stata&Guttag95]). A specialisation interface describes which methods invoke
which other methods in a class through self sends. This documentation can be used
by programmers of subclasses to assess the effect of overriding a method, without
having to inspect all implementation details of the parent classes.

As an example, consider an abstract class Set which defines a method add to
add a single element to the set and a method addAll to add a collection of elements
to the set simultaneously.

Class Set
method add(Element) = 0
method addAll(aSet:Set) =
 begin

for e in aSet do
self.add(e)

 end
end

When creating a subclass CountableSet of Set that keeps a count of the number
of elements in the set, we need information on which methods depend on what other
methods, in order to decide which methods need to be overridden. For example, if
we know that addAll depends on add in its implementation, it is sufficient to
override the method add to take counting into account. In [Steyaert&al.96] we
introduce reuse contracts for classes to document exactly these dependencies. In
such a reuse contract each method has a specialisation clause (in italics in the
example below) that documents how it depends on the other methods from this reuse

4 Carine Lucas, Patrick Steyaert, Kim Mens

contract. The reuse contract is an interface description to which the implementation
must comply.

Reuse Contract Set
abstract

add(Element) {}
concrete

addAll(Set) {add}
end

Reuse contracts for classes cannot only be used by inheritors to decide which
methods need to be overridden but can also be used by parent classes to restrict the
possible ways in which a component can be changed. For example, the reuse contract
of the class Set above restricts possible subclasses by stating that the method
addAll should always call (at least) the method add.

More complex components will need more complex interfaces. Early results exist
on developing reuse contracts for interclass interactions (in analogy to contracts as
defined by [Helm&al.90]), which show that the concept can be generalised to other
structures than class hierarchies. Also, reuse contracts for state transition diagrams
are currently under development. In general, reuse contracts are interface
descriptions that document the protocol between developers and users of reusable
components. The first aim of reuse contracts is to provide the necessary information
on how components can be composed. They can also be used to provide different
views on components for different users or to enlighten different aspects.

Reuse contracts can only be composed or adapted by means of certain predefined
reuse operators. This gives the opportunity to specify the composition semantics on
a more fine-grained level. For example, instead of composing classes merely by
means of inheritance, reuse contracts for classes can be manipulated by means of
reuse operators: concretisation, extension, refinement (and the inverse operators).
Concretisation makes abstract methods concrete, extension adds new methods to a
reuse contract and refinement refines the design of some methods by adding extra
information to their specialisation clause. These reuse operators not only allow
documenting the changes  and the intentions of these changes  made to a class,
but a careful investigation of their interactions also allows to predict and manage the
effect of these changes. This brings us to our third and last inhibitor.

3. Inhibitor 3: Lack of clear composition semantics that
describe the intention of the composition and allow to
manage change propagation

A final problem is that current composition mechanisms are too technical and too
coarse-grained. It is our conjecture that it is not sufficient to have composition
interfaces that describe the interface of a component. It is just as crucial to have
information on the intention with which a component is composed with other
components: does it extend or refine the behaviour of these other components, does it

Research Topics in Composability 5

make other components more concrete, etc.? Below, we demonstrate through an
example1 that this information can allow the detection of possible unpredictable or
incorrect behaviour of the composed entity by checking the compatibility of
composed components. Moreover, the introduction of explicit reuse operators
enables us to manage the evolution of components. One of the main benefits of
composable software could exactly be that software that makes use of components
can benefit from later improvements to the composed components. Managing the
propagation of changes made to components so that (re-)users of that component are
not invalidated remains one of the most essential problems in the development of
composable software.

Let us focus again on our previous example of abstract classes as components
and inheritance as composition technique. Suppose we want to make an optimised
version OptimisedSet of Set. In this version addAll stores the added elements
directly rather than invoking the add method to do this. This leads to inconsistent
behaviour in CountableSet when Set is upgraded to OptimisedSet; additions
made by addAll will not be counted anymore. This is because the assumption that
addAll invokes add, whereon CountableSet implicitly depends, is broken in
OptimisedSet. Using the terminology of [Kiczales&Lamping92] we say that
addAll and add have become inconsistent methods. Although in this simple
example the conflict can easily be derived from the code, in larger examples this is
not so trivial. In practice it should be possible to detect such conflicts without code
inspection. Reuse contracts and their operators provide the necessary information by
making the assumptions made by adaptors explicit. For example, the reuse contracts
of CountableSet and OptimisedSet document how they were derived from Set,
and thus what assumptions about Set they rely on.

Reuse Contract CountableSet concretises Set
concrete

add(Element)
end

Reuse Contract OptimisedSet coarsens Set
concrete

addAll(Element) {- add}
end

The fact that add and addAll have become inconsistent can be detected directly by
inspecting the reuse contracts. OptimisedSet is a coarsening (the inverse of a
refinement) of Set, which means that it partially breaches Set’s design. This is done
by removing a method from its specialisation clause (in italics above).
CountableSet is a concretisation of Set, as it makes one of its abstract methods
concrete. In general, inconsistent methods appear when a concretisation is performed
of a method that has been removed from the specialisation clause of the exchanged
parent by a coarsening.

1 For a more detailed discussion and validation of our approach described here, we refer to

[Steyaert&al.96]

6 Carine Lucas, Patrick Steyaert, Kim Mens

This example illustrates that by examining the interactions between the different
reuse operators and by investigating which operators respect the design, it becomes
possible to detect attempts to compose incompatible components and to signal
possible problems as, for example, inconsistent methods. Furthermore, rules can be
constructed that assist the users of components in understanding how components
can be used and in assessing the consequences of changes they make for systems that
have already incorporated these components.

4. Conclusion

In this position paper we have discussed three inhibitors for true composability:

1. Lack of a consistent terminology and insight in the relations between different
composition techniques.

2. Absence of composition interfaces that allow both flexibility and predictability
of composition.

3. Lack of clear composition semantics that describe the intention of the
composition and allow to manage change propagation.

We propose a solution based on the concept of reuse contracts and reuse operators:
In [Steyaert&al.96], reuse contracts have been developed for abstract classes as

components and inheritance as composition technique. Currently reuse contracts are
being developed for interclass interaction diagrams and state transition diagrams,
which makes us believe that the same approach is applicable to other and more
general composition techniques.

Reuse contracts are flexible interface descriptions that document the protocol
between developers and users of reusable components. They provide detailed
information on how components can be composed. Reuse contracts can be
manipulated by means of reuse operators. As explained, reuse operators not only
document the intentions of changes made to some component, but a careful
investigation of their interactions also allows to predict and manage the effect of
these changes.

References

[Aksit&al.93] Aksit, M, Wakita, K, Bosch, J, Bergmans, L and Yonezawa, A: Abstracting Object

Interactions Using Composition Filters , In Rachid Guerraoui, Oscar Nierstrasz, and Michel Riveill,

editors, ECOOP ’93, Workshop on Object-Based Distributed Programming, number 791 in Lecture

Notes in Computer Science, pages 152-184, Berlin Heidelberg, July 1993, ECOOP.

[Demeyer96] Demeyer, S: ZYPHER: Tailorability as a Link from Object-Oriented Software

Engineering to Open Hypermedia , PhD thesis, Vrije Universiteit Brussel, July 96

Research Topics in Composability 7

[Helm&al.90] Helm, R, Holland, I M and Gangopadhyay, D: Contracts: Specifying Behavioral

Compositions in Object-Oriented Systems , In Proceedings of ACM Joint OOPSLA/ECOOP’90

Conference Proceedings, pp.169-180, ACM Press 1990.

[Kiczales&Lamping92] Kiczales, G and Lamping, J: Issues in the Design and Specification of Class

Libraries, Proceedings of OOPSLA '92, Conference on Object-Oriented Programming, Systems,

Languages and Applications, pp. 435-451, ACM Press 1992.

[Lamping93] Lamping, J: Typing the Specialization Interface , In Proceedings of OOPSLA ‘93

Conference on Object Oriented Programming, Systems, Languages and Applications, pp. 201-214,

ACM Press 1993.

[Stata&Guttag95] Stata, R and Guttag, J: Modular Reasoning in the Presence of Subclassing , In

Proceedings of OOPSLA '92, Conference on Object-Oriented Programming, Systems, Languages

and Applications, pp. 200-214, ACM Press 1995.

[Steyaert&al.96] Steyaert, P, Lucas, C, Mens, K and D'Hondt, T: Reuse Contracts: Managing the

Evolution of Reusable Assets, To appear in Proceedings of OOPSLA ‘96 Conference on Object

Oriented Programming, Systems, Languages and Applications, ACM Press 1996.

