
PART 2
The Zypher Design

Chapter 3: The Zypher Software Artefact . 70
The Zypher Design Pattern Form...71

Chapter 4: Data Structures For An Interoperable Hypermedia Framework 76
Interoperability: Unaware Repositories and Applications..78

Navigation: Provide Seamless Integration..86

Chapter 5: A Design Space For A Hypermedia Framework . 93
Resolver: The Core of an Extensible Link Engine...94

Editor: Incorporate External Viewer Applications...100

Loader: Incorporate Information Repositories..103

Chapter 6: A Layered Hypermedia Framework. .106
Events: Co-ordinate Functional Layers...107

Chapter 7: Tailorabil ity In An Open Hypermedia Framework.. .115
Meta-objects: Introduce System Level Tailorability..116

Meta-meta-objects: Configuration Level Tailorability...130

Chapter 8: Protocols in an Open Hypermedia Framework. .138
Navigation Template: Specifying The Control Flow..138

- 69 -

CHAPTER 3

The Zypher Software Artefact

In the domain of software engineering, it is common practice to validate techniques
experimentally [NationalAcademy'94]. One builds a prototype for a particular application
domain to investigate benefits and drawbacks of certain techniques and generalises the
findings to a broader set of application domains afterwards. Such a prototype system is
called a software artefact and in our dissertation this is role is played by the Zypher system.

Such an experimental validation methodology is summarised in the proverb "The proof of
the pudding is in the eating". In the first part, we have been collecting a number of
ingredients and instruments for a delicious pudding — the hypermedia design space, the
three levels of tailorability, object-oriented frameworks and meta-object protocols. Also, we
have been describing how such a delicious pudding might taste — the framework browser
scenario. Finally, we have sketched a recipe to cook the pudding — the framework design
methodology.

This second part, describes the cooking process we have carried out in order to cook a real
pudding — the Zypher open hypermedia framework. This software artefact serves as a
'proof of concepts' that our framework design methodology is applicable for the
construction of a concrete open system that incorporates the three levels of tailorability. Also,
we describe the actual proof of the pudding, that is the eating process — the refinement of
the Zypher framework into a prototype of a framework browser. This show how the three
levels of tailorability helped us to tailor the open system for a prototype of a framework
browser.

- 70 -

The Zypher Design Pattern Form

One of the main difficulties in describing a software artefact is that one must list a large
number of issues and problems, relate this to the description of a software architecture and
somehow convince the reader that this architecture provides a solution for the initial list of
problems. This is a very difficult job that requires skills far beyond that of a typical software
engineer.

The problem is even more difficult when describing object-oriented software architectures,
because such an architecture must be reusable, thus address a number of similar, recurring
problems. The object-oriented community acknowledges this problem and forwards design
patterns as a way to describe reusable aspects of an object-oriented design. In a design
pattern approach, instead of arguing how a particular architecture covers a complete list of
problems, one argues how a small aspect of that particular architecture solves a subset of the
initial list of problems. This way, certain aspects of that particular architecture can be reused
in other architectures. Also, it is more easy to adapt the design to a changing list of
problems. Using the design pattern approach, those reusable aspects are described in a
systematic way to help authors and readers identifying the important facets; this is called the
design pattern form.

There are several attempts to assemble design pattern classified in two main categories.
Generic catalogues collect domain independent patterns; examples are [GammaEtAl'95] and
[Pree'94]. Domain specific catalogues collect patterns about a specific problem domain;
HotDraw [Johnson'92], [Beck,Johnson'94] is a well-known example for the domain of
graphical editors.

In what follows, we describe the Zypher open hypermedia framework using the design
pattern approach. So the second part of this dissertation is presented as a domain specific
design catalogue for open hypermedia systems. We also include a description of the design
pattern form as we have applied it in writing the Zypher design pattern catalogue.

!
The real power of design patterns lies in the idea of overlapping many of them on a small
number of system elements. All the following patterns include numerous mutual references,
to stress the way they work together. Nevertheless we want to stress that for a first tour, the
sequential path is probably the best. Only for an in depth study, the referencing scheme is
essential to understand how all patterns work together to achieve the overall design.

The Zypher design pattern catalogue is available in hypertext format as well; among others it
has been used as part of the construction of a framework browser. Also, it is available on the
world-wide web from the Zypher home page at http://progwww.vub.ac.be/pools/Zypher/.

Outlining the Zypher Design Pattern Form

All sections are mandatory, unless stated otherwise.

Title

The title names the pattern and provides a glimpse on the essence of the design. The
title consists of a few keywords followed by a colon and a short phrase. The keywords
constitute the name used in other design patterns as a reference and alludes to the

- 71 -

problem or solution discussed in the design pattern. The short phrase condenses the
core of the pattern and motivates its existence in the global problem.

Intent

The intent section summarises (2 to 4 lines) the design pattern. As such, the intent
section elaborates on the short phrase in the title without mentioning the name. An icon
reflects the level of tailorability (see the [puppet master metaphor]).

Analysis

The analysis section introduces the problem addressed by the design pattern and lists
relevant issues. As such, the analysis section forms a bridge between the intent section
and the reference in the title. The analysis section uses examples to illustrate how the
problem is manifested in some problem domain without hinting at solutions. The
keywords in the title are not necessarily mentioned in the analysis section; this depends
whether the keywords refer to the problem or to the solution.

Problem

The problem section recapitulates the problem the design pattern tackles based on the
issues addressed in the analysis section. The problem section is always stated as a
question; usually a "How ?" question to emphasise that a solution is desired. The
problem section is short and does not contain examples.

Solution

The solution section proposes a design that answers the question stated in the problem
section. The solution section is written in a clear and concise style that emphasises on
the proposed technique and/or structure. Normally, the examples taken from the
analysis section are reproduced in the proposed design to demonstrate how it solves
the problem.

Contract

The contract section includes charts (applying [class diagrams] or [object interaction
diagrams]; see below) specifying the internal structure of the proposed solution. The
rest of the contract section enumerates all elements of the charts (including relations
between the elements) and charges them with precise responsibilities. Wherever
possible, the messages that constitute the contracts are listed and the refinements
subclasses are allowed to make are specified. The contract section does not contain any
examples.

Motivation

The motivation section answers why the proposed solution solves the issues raised in
the analysis domain. Among others, the motivation section includes alternative
solutions and why they are rejected. The examples taken from the analysis and solution
sections are reconstructed to illustrate certain advantages or drawbacks.

Issues (optional)

The issues section, if present, discusses issues subordinate to the ones listed in the
analysis section. Typical issues handled in this section include naming, implementation
remarks, relations with similar approaches, references to the literature, … .

Consequences (optional)

The consequences section, if present, discusses design trade-offs and includes
references to other design patterns that handle the drawbacks raised by the introduction
of the design pattern.

- 72 -

Relations

The relations section links the pattern with other design patterns in the text. This
section also includes references to well-known design pattern catalogues. The section
includes at least one 'default' reference, pointing to the most obvious next pattern to
read. The reference is marked with a triangle symbol in the margin (∇).

References

All the Zypher design patterns are organised in a mutual referencing structure. References are
surrounded by brackets "[]" and use the name in the title (i.e. the keywords preceding the
colon) to refer to another design pattern. To refer to a section within the pattern, the reference
is followed by the ~ character and the title of the subsection.

Diagrams

Throughout this document, class diagrams are represented using a variant of the "Object
Modelling Technique" (OMT) notation. We refer to [Blaha,Premerlandi,Rumbaugh'88] and
[RumbaugEtAl'91] for a full description of OMT. Below is a brief survey of the main
elements in adapted notation.

Class & Messages

A class is denoted by a box with the class name
at the top (i.e. SampleClass). A class name
always starts with a capital. The set of messages
understood by instances of that class appear
below the class name; some messages may be
separated by a dotted line to group related
messages. Names of messages start with a small
letter; names of parameters correspond with the

SampleClass

message1 ()
message2 (integer)

message3 (float1, float2)

name of the class but start with a small character (i.e. integer, float1, float2). In the
example we see a parameterless message (i.e. message1), a one parameter message
(message2) and a two parameter message belonging to another category (i.e.
message3). Note that none of our classes have instance variables.

Calling Order

A grey arrow between to classes indicates a
calling order from the CallerClass to the
CalleeClass, meaning that an instance of
CallerClass having received the message
caller must send the message callee to an

CallerClass

caller ()

CalleeClass

callee ()

instance of CalleeClass. Note that, one of the participating messages may be left
unspecified, which implies that this side of the calling order is not important in the
design. The calling order is only shown when it is essential to the design being
explained, as it quickly leads to cluttered schema's; Object Interaction Diagrams (see
below) are preferred for larger calling structures.

One-to-Many Association

A line with a black circle indicates a one-to-many
association from ClassA to ClassB, meaning that
—at a certain moment— an instance of ClassA

ClassA ClassB

may be associated with multiple instances of ClassB. The line between the classes
means that there is an association, the black circle means that this side of the
association is the 'multiple' side. Usually, both classes understand messages to modify
and query the association relation.

- 73 -

Aggregation

A line with a white diamond indicates an
aggregation association from ClassC to ClassD,
meaning that —at a certain moment— an

ClassC ClassD

instance of ClassC may contain multiple instances of ClassD. The line between the
classes means that there is an association, the diamond means that this side of the
associations is the 'container' side. Usually, only one class (the container class)
understands messages to modify and query the aggregation relation.

Inheritance

A line with a white triangle indicates an
inheritance relation with one superclass and two
subclasses, meaning that all instances of
Subclass1 and Subclass2 inherit the structure
and behaviour of Superclass. Nevertheless, the
structure and behaviour of the three classes may
be different, since Subclass1 and Subclass2 may
extend and override the structure and behaviour

Subclass1 Subclass2

Superclass

of the Superclass. The line between the classes means that there is an association; the
top of the triangle points towards the superclass; the base points towards the
subclasses.

Unspecified Aspect

In some occasions, an aspect of the design is left
unspecified. This means that its existence plays a
crucial role in the overall design, but the actual

ClassE AspectF

structure is unimportant. The example shows that ClassE is related with an aspect
AspectF, meaning that AspectF participates in the object configurations of ClassE, but
that the actual structure of AspectF is yet unknown.

Interaction Diagrams

Throughout this document, object interaction diagrams are represented using an adapted
version of the Objectory notation. We refer to [JacobsonEtAl'92] for a full description of the
notation. Below is a brief survey of the main elements in the notation.

Message send

This is an example of an object interaction
diagram illustrating message exchange between
objects. The message involves three objects
(object1, object2, object3) indicated by the
vertical lines; the names of the objects are placed
on top of the lines. One object (i.e. object1) is
the originator of the interaction: its name is
placed a little higher than the others and is
displayed in a slightly larger and underlined
font.

object1
object3 object2

messageA (object3)

messageB()

messageC()

The time flows from the top to the bottom of the
diagram. Vertical rectangles denote objects that
are handle messages during a certain period: the
bottom and top of the vertical rectangles denote
the moment the object starts or ends handling the message. The messages themselves
are depicted by horizontal arrows starting in the object sending the message and ending
in the receiver of the message. The name of the message is written above the horizontal
arrow; the names of the argument objects stand between braces.

- 74 -

The example shows an object1 sending a message messageA to object2 with object3
as parameter. While object2 is handling the message, it sends a parameterless
messageB to object3 and thereafter it sends the messageC to itself. Since the bottom
of the object1 rectangle is below the bottom of the object2 rectangle, control returns to
object1 afterwards.

Return Object / Create Object

Existing objects returned as the result of a
message send, are depicted with a line emerging
from the message handling rectangle; the name
of the object appears on top of the line (i.e.
object 3). Objects created during a message send
are depicted with an arrow emerging from the
message handling rectangle; the name of the
object appears just below the arrowhead (i.e.
object4). To emphasise the difference, the object
creation arrow is drawn in a dashed line while
usual object lines are dotted grey lines.

object1
object2

object3

returnA ()

createB ()

object4

The example shows an object1 sending a
message returnA to object2 that returns an existing object3. Afterwards, object1
sends a createB message to object3 that creates an object4.

- 75 -

