
ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) #1

Vrije Universiteit Brussel
Faculteit Wetenschappen

SREVINU

ITEIT
EJI

R
V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Virtual Hypertext based on
Paths and Warm Links

Serge Demeyer

Techreport vub-prog-tr-94-10

Programming Technology Lab
PROG(WE)

VUB
Pleinlaan 2

1050 Brussel
BELGIUM

Fax: (+32) 2-629-3525
Tel: (+32) 2-629-3308

Anon. FTP: progftp.vub.ac.be
WWW: progwww.vub.ac.be

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) #2

Virtual Hypertext
based on

Paths and Warm Links

Serge Demeyer
Brussels Free University / Faculty of Sciences / PROG

Pleinlaan 2
B-1050 Brussels, Belgium

fax: (32) 2 641 34 95 (629 replaces 641 from June '94 on)
e-mail: sademeye@vnet3.vub.ac.be

ABSTRACT

Throughout the last years a huge amount of work has been
devoted to the definition of hypertext models. Even more
resources have been directed towards the domain of virtual
(dynamic/ computational) hypertext, among others
motivated by the idea of building open systems.
Surprisingly enough, almost nobody stressed the role of the
underlying model in such virtual systems.
That is precisely the aim of this text: to define a general
hypertext model that is able to support the notion of
virtuality. Our assertion is that the combination of the
ancient concepts 'Paths' and 'Warm Links' provide just the
extra support needed. Moreover this allows for a model
where links are but one of the possible ways to relate
nodes.
While experimenting with the model, an interesting
question arose: do bi-directional links fit into a virtual
model ? This paper attempts to answer the question.
We chose a constructive approach, because our aim was to
create a laboratory where ideas concerning virtual hypertext
might be explored. We applied recent viewpoints from the
field of software engineering (namely object oriented
frameworks and mixins) to assist the iterative design
process.
In order to show the value of the work, we have
implemented two prototype applications. The first is a
browser for viewing (Smalltalk) source code which includes
query facilities, the second is an electronic agenda. These
experiments demonstrate three desired properties of the
model: the applicability (considering the differences between
the prototypes), the open endedness (since it is able to

 Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice is
given that copyright is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1994 ACM 0-89791-xxx-x/xx/xxxx...

establish hypertext structures on top of underlying foreign
constructions) and the extensibility (while building the
applications, we continued to expand the model).

KEYWORDS: Virtual Hypertext, Open Hypertext,
Extensible Architecture for Hypertext, Path, Warm Links

1 INTRODUCTION AND INSPIRATION

In this part we will give an overview of the most important
streams of research that influenced this work. As has been
stated in the abstract, the main idea is to define a hypertext
model that supports the notion of virtual hypertext. The
first sections are devoted to the subfields of the hypertext
research dealing with these topics: section 1.1 outlines the
different models proposed in the hypertext literature; section
1.2 sketches the virtual hypertext domain. The third section
presents some recent insights from the field of object
oriented software engineering.

1.1 Hypertext Models

During the last years, many attempted to define a hypertext
model. Motivating factors for such experiments were:
comparing systems, coining terminology and exploring
information exchange facilities. Sometimes designers
applied general purpose tools and methodologies,
sometimes no special formalism was used; some modelled
general system architectures, others focused on special
features.

HAM [HAM] and Neptune [NEP] introduced a layered
approach (user-interface level/ abstract machine level/
database level) and the notion of contexts to partition data.
Garg [GAR] defined a formal model that was able to impose
abstraction structures (aggregations, generalisations,
revisions, ...) on the information network. Trellis [TRE]
was built upon the well-known formal computation model
of petri-nets. Lange [LAN] started from a general purpose
data-modelling technique (VDM) to define a set of abstract
data types. The Dexter-model [DEX] combined a layered

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 3

approach (run-time layer/ storage layer/ within-component
layer) with a formal specification language (Z) to define a
commonly accepted model (see [CA'94]). The GOOD-model
[GOO] applied a general purpose database model to define
the basic node-link model. Afrati and Koutras [AFR]
extended the work of Garg with anchors, scripts (for
presentation specific computations), and queries. Beeri and
Kornatzky [BEE] augmented a basic node-link model with a
structural query mechanism. Lucarella [LUC] used inference
networks (nodes are facts, links are weighted rules) with
fuzzy logic. Schütt and Streitz [SCHU] combined the HAM
and Dexter approaches into database model for a relational
database. ABC [ABC] did a similar job for distributed
(data)servers. The "Nested Context Model" [CAS] paid
special attention to the interface between the storage-layer
and the runtime layer. HyperSet [PAR] employed set-theory
to argue that links are not necessary for navigation. HDM
[HDM] was tailored for large engineering design tasks.
MacWeb [MWB] attached type information to nodes and
links, and methods on types. As such, the model was able
to perform various computations (among others tuning the
behaviour of the system). Multicard [MUL] viewed links as
communication channels between processes manipulating
the hypertext contents. De Bra et al. [BRA] augmented the
node-link-anchor model with constructors like
Composition, Tower and City, which turn it into an
extensible data model. HYDESIGN [HYD] is a model with
a rigid hierarchical backbone but provides aliasing nodes for
overlapping hierarchies. Several higher order nodes and link
types are provided, which gives rise to flexible building
blocks.

Obviously there is no need for "yet another hypertext
model", especially if one regards the fact that introducing
new hypertext models goes against the integration idea that
everyone agrees will be the key success factor for the
hypertext community.
We chose to make another attempt, however: the
motivation being that we needed a laboratory-set-up to
experiment with different approaches in the virtual
hypertext field.

1.2 Virtual Hypertext

An idea that has received even more attention throughout
the years is the notion of virtual (dynamic, computational)
hypertext. Especially since Halasz [HAL1] identified this as
one of the issues for the next generation of hypertext
systems1. We quote: "In the current model, nodes and links
are extensionally defined, that is nodes and links are defined
by specifying the exact identity of their components. In
contrast, virtual structures are defined intentionally, that is
by specifying a description of their components. The exact
subcomponents of a virtual structure are determined by a

1 Actually Halasz reviewed the issue in [HAL2]. Virtual
structures as such is not on the research agenda anymore; it is
replaced by "Ending the tyranny of the Link" and "Open
systems".

search procedure whenever the structure is accessed or
instantiated."

This vision has been explored in several experiments from
different angles.
Very soon, people felt that the notion of links was too
static and coupled links with computations: activating a
link computed the next point to visit. We encountered this
property in early systems like KMS [KMS], Guide [GUI]
and HyperCard [HPCD]. Today, computational links are
almost standard: they are included in the Dexter reference
model [DEX], and as such found their way in systems like
MicroCOSM [MICR], MacWeb [MWB], WEBS [WEB],
DHM [DHM], Hyperform [HFR].
Trellis [TRE] is a special case. Links are inherited from an
underlying computational model (petri nets). One of the
experiments was to adapt the hypertext structure based on
the behaviour of users while browsing [TRE-HT'91].
Combining searching and information retrieval techniques
with the notion of links provided another line of
experiments. Links as the triggers for search procedures
appeared in the medical handbook [MED1, MED 2],
SuperBook [SUP], Document Examiner [DOC], Intermedia
[COOM] and many, many more. Some tried to use the
structure of the hypertext network to guide searching
([CRO], [FREI]) or to change the search strategies
depending on the users response ([MED2, WALT]).
Volatile hypertexts [VOL] have been tackled by discarding
the notion of links completely. SaTellite [PINT] uses an
affinity browser where nodes are displayed in a two-
dimensional representation and the distance between them
gives a clue about their affinity. HyperSet [PAR] classifies
information into structured sets. Aquanet [AQU] tries to
deduce implicit relations from spatial layouts.
The idea of virtual nodes took longer to find its way into
the literature. An early experiment was conducted in [SCH]
where a simulation model was manipulated. PhiDIAS [PHI]
used virtual nodes to provide automatic restructuring of
information depending on user input. Bieber [BIEB]
describes a Hypertext shell for a decision support system.
The World Wide Web [WWW] hypertext system has virtual
nodes that link the system with the contents of various
news servers, ftp-sites, Nanard & Nanard [MWB -
HT'93 p. 51] report on synthesised nodes: nodes constructed
on the fly by copying parts of other nodes.

Virtual hypertext seems to be a domain rich of ideas and
currently various hybrid forms of the above approaches are
studied. Nevertheless, none of the proposed hypertext
models (see section 1.2) provide constructs to support
computation: it is seen as "an orthogonal dimension of all
modelling constructs" [BRA]. We agree that orthogonality
is an important factor in design, yet we believe that the
notion of computation needs support from the other axes.
To be more precise, computations need communication
channels (to store and retrieve data) and contexts (to connect
these channels and to hold status information).

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 4

1.3 Object Oriented Frameworks

Applying techniques from the software engineering world
(especially object orientation) is not new to the hypertext
community. Intermedia advocated the use of object oriented
languages [MEYR] and later object oriented databases [SMI]
in building the system. Lange [LAN], Schütz & Streitz
[SCHU], WEBS [WEB], ABC [ABC (HT'93)] moulded
their model in a class hierarchy; DHM [DHM] and
HYDESIGN [HYD] implemented their systems on top of
an object oriented database. Recently, some aimed at
building extensible systems: De Bra et al. [BRA] exploit
generic modelling constructs; Hyperform [HFR] benefits
from an extension language based on Scheme.
Our goal was to implement a laboratory-set-up for
experimenting with ideas concerning virtual hypertext. In
such a setting a "design by wandering around" approach is
most appropriate. Extensibility is a key factor as our model
should be able to grow with emerging needs. To assist in
this dynamic process we adopted recent techniques from the
field of software engineering. It is beyond the scope of this
paper to give an overview of this field, but the following
paragraph will summarise the ideas we find important.

It is generally accepted that "Object-Oriented programming
permits the reuse of design as well as programs" [JO/RU].
This capability helps a lot in an iterative design process
since it reduces the turn-around time in-between the
iterations. However, "software reuse does not happen by
accident, even with object oriented languages" [JO/FO].
Object oriented frameworks are constructs that enable
software reuse in an object oriented language. "A framework
is a set of classes that embodies an abstract design for
solutions to a family of related problems, and supports
reuse at a larger granularity than classes" [JO/FO]. As
frameworks themselves can be refined [JO/FO, HELM],
they typically impose a layered structure on the design.

A true engineering discipline requires a set of tools to solve
routine design problems quickly and reliably [JO/RU]. In
(software) engineering practice, such tools are called design
patterns. We did benefit a lot from the catalogue of object-
oriented design patterns described in [GAM, PATT]. An
additional bonus was obtained by using mixins to allocate
the implementation of design choices. "A mixin is an
abstract subclass; i.e. a subclass definition that may be
applied to different superclasses to create a related family of
modified classes" [MIX1]. Mixins are helpful since they
allow to reuse implementations. For a discussion on
mixins see [MIX2].

2 THE MODEL

The model itself is a variation on the traditional link/node
model (links are not an essential part of the model !) found
in most hypertext systems [CON]. It is extended with the
notion of 'anchors' [INTERMEDIA, DEX], 'warm links'
[INTERMEDIA], 'paths' [ZEL] and -in a second layer-
'contexts' [HAM] and 'links'. The layering of the model

enables us to regard links as not essential (links are but one
of the possible ways to interconnect nodes).
Sections 2.1 and 2.2 list the operations defined in the first
layer. Section 2.3 explains the second layer of the
framework. Section 2.4 reports on how we brought
virtuality in the model. Section 2.5 discusses the conflict
between bi-directional and virtual links.

Since we have deliberately chosen for an object oriented data
model, we use classes and messages as basic building
blocks for our framework. The first layer of the framework
(sections 2.1 and 2.2) will be listed explicitly.

All the classes below are abstract classes [JO/RU, JO/FO].
As such, none of them contain variables (although
subclasses might use variables to implement the protocol).

2.1 The Basics

Like in most hypertext models, we state that every
hypertext object should have a set of named attributes
associated with it (typical attributes might be: creation
time, original author, last modification time, last
modification author, global identifier,).

Object subclass: HypertextObject

attributeAt: Name -> AttributeObject
{Return the value of the attribute with the
given name.}

hasAttributeAt: Name -> Boolean
{Answers whether the given name is used as an
attribute-name for the receiver.}

We want attribute values to be of type AttributeObject, not
listed here for reasons of brevity. There is no method for
setting an attribute to a given value because there might
exist objects that are not able to hold such attributes (the
attributes might be virtual). Other overall functionality
(printing, displaying, saving to disk, saving to database,
…) is not part of the model but should be considered in an
implementation.

2.2 Anchor, Node and Path

Nodes hold some piece of information (the contents) and are
connected to other nodes to form an information network.
The points where the network connects to nodes are called
'anchors'. An anchor may be any selection in the contents
of the node. (see [INTERMEDIA] for a discussion on
anchors). A hypertext reader will navigate through the
information space from one node to another by activating
an anchor on a node which will trigger the corresponding
link and lead the reader into another place (another anchor in
some other node). The result of this activities forms a path
through the hypertext.

We begin by introducing the classes Anchor and
AnchorNodePair. The latter is needed for technical reasons:

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 5

when following a link the hypertext reader arrives in a place
identified by an anchor and a node so the model needs a way
to combine them in one object. The protocol for the former
is rather small since we do not want to restrict the possible
anchor types.

HypertextObject subclass: AnchorNodePair

anchor: -> Anchor
{Returns the anchor of the aggregation.}

node: -> Node
{Returns the node of the aggregation.}

In the following definition of an anchor we meet a typical
example of a factory method [PATT]. The @ operator
returns an object, subtype of AnchorNodePair. The decision
on the returned values exact class is delegated to subclasses
(since AnchorNodePair is an abstract class, it is not
supposed to have instances).

HypertextObject subclass: Anchor

@: Node -> AnchorNodePair
{Combines the receiver with the given node into
an aggregation.}

value: -> Object
{Answer some kind of value that may be used to
identify this anchor.}

Many researchers agree that links in hypertext systems
should be considered less important. That is the main
reason why we postpone the introduction of links (together
with contexts) to a later stage. We believe that the idea of
connecting nodes is crucial to hypertext and we choose to
focus on anchors instead of links. Activating an anchor on a
node follows the connection at the given anchor, and
answers the anchor and node on the other side. An extra
parameter (type Path) is passed, and will be used to resolve
the link.
Objects that are used as contents of a node should obey the
protocol defined in ContentsObject. This class is not listed
here due to space considerations. It might contain
implementation specific properties (printing, displaying,
persistence, ...).

HypertextObject subclass: Node

followAtAnchor: Anchor * Path -> AnchorNodePair
{Returns the node and anchor-pair at the other
side of the given anchor. Use the path to store
the new status of the navigation.}

validAnchor: Anchor * Path -> Boolean
{Answer whether a given anchor is valid for this
node and path.}

validAnchorsDo: Computation * Path -> Nil

{Enumerate all valid anchors (validation using
path) and apply the given computation on them.}

contents -> ContentsObject
{Returns the contents of a node.}

The main rationale for this work was the ability to model
virtual hypertext where the structure and contents of the
network are computed at traverse-time. For computation it
is essential to pass data around. This is accomplished
through the idea of warm linking introduced in
[INTERMEDIA]: "Warm linking allows a user to not only
traverse a link from a selection in one document to a
selection in another document but also to transport data
across the same link". This idea of links as communication
channels is also explored in Multicard [MUL]. (Note that
we avoided to include links in the model by careful usage of
the anchor and path concept.)
A node may request for information by pulling a certain
connection (i.e. anchor). This will result in the execution of
a pulled method with the node and anchor on the other side
of the connection, which will compute the desired value.
Complementary to these are the push and pushed messages,
used for sending new values to other nodes. (Note that
passing parameters is possible by using attributes of the
path.)

Class Node (continued)

pullAtAnchor: Anchor * Path -> Object
{Request some data through a given connection
(identified by anchor) using the given path.}

pulledAtAnchor: Anchor * Path -> Object
{Some node requested some data through a given
connection (identified by anchor). Answer it
using the given path.}

pushAtAnchor: Anchor * Object * Path -> Nil
{Disclose some data through a given connection
(identified by anchor) using the given path.}

pushedAtAnchor: Anchor * Object * Path -> Nil
{Some node disclosed some data through a given
connection (identified by anchor). Receive it
using the given path.}

The only missing concept in our framework is the Path. In
a minimal setting, paths can be regarded as an ordered
collection of the nodes and anchors the hypertext reader has
already seen.
Paths play a more important role in our model: every
anchor operation will eventually be passed to the path, even
the operations for validating an anchor. This means that
paths can (and will) determine the navigation potential of
the hypertext network. Another particular function the path
may fulfil is the 'Presentation Specifications' layer in the
Dexter reference model [DEX].
Implementors are able to plug in different behaviour by
accommodating special paths. In section 2.3 we will use

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 6

this ability to plug in 'links', section 3.2 will report on an
implementation based on searching.

We assumed that the anchors that may be activated from a
certain node depend more on the path than on the node, so
we delegate the navigating functionality to paths (we will
see that the model is open enough to explore other
strategies when discussing chooser nodes in section 2.4).
Thus the default behaviour for anchor operations on nodes
is to pass them on to the path involved. Nodes can (and
will) override this behaviour.
Anchor methods on nodes are examples of template
operations [JO/RU]: an abstract algorithm defined in terms
of one or more abstract operations. An abstract operation is
not implemented by the abstract class but is left to
subclasses to define. The anchor methods on paths are
examples of abstract operations.

HypertextObject subclass: Path

isValidFrom: Node * Anchor -> Boolean
{Tell whether the given anchor may be triggered
on the given node.}

validFrom: Node * Computation -> Nil
{Enumerate all valid anchors on the given node
and apply the given computation on them.}

followFrom: Node * Anchor -> AnchorNodePair
{Activate the given anchor on the given node and
answer the anchor and node on the other side}

pullFrom: Node * Anchor -> Object
{Pull the connection starting in the given
anchor on the given node and answer the received
data}

pushFrom: Node * Anchor * Object -> Nil
{Push the given data through the connection
starting in the given anchor on the given node.}

2.3 Context, Link and PathWithContext

For reasons of brevity, and as this part of the framework is
less relevant, we will not list the definitions of the classes
and methods anymore.

Given a hypertext created with objects obeying the
protocols in the previous section, one could easily
implement navigation tools like we find in all hypertext
systems. To create such hypertexts we need to implement
the model, especially the way a path resolves the
connections.
We have several possibilities here: set-based structures like
in HyperSet [PAR], indexed search facilities like in QRL
[QRL], implicit relations like in Aquanet [AQU], and many
more. In fact, the model is open enough to experiment with
different techniques, and in section 3.2 we will present such
an experiment based on searching.

There is one option we (explicitly) excluded in the above
enumeration: links. Indeed, many people agree that
"Linking should be considered harmful" [YOUNG], and
advocate that the hypertext community should "end the
tyranny of the link" [HAL2]. We decided to retain links, but
chose to isolate them in a separate layer of the framework.
This way links are but one of the options in relating nodes.
In what follows we will focus on this layer.

An issue that has been widely debated is the "lost in hyper
space" phenomenon [CON]. One way to approach this
problem is to reduce the possible links that may be active
at a certain time. Both Intermedia [INTERMEDIA] and
Neptune [NEP, HAM] followed this approach: the former
with the concept of webs, the latter with the introduction of
contexts. In both approaches links are collected in special
structures (called webs or contexts respectively); only those
links belonging to the current web (context) may be
followed.
One of the nicer things of the Neptune approach is that
contexts themselves are gathered in a hierarchy. Moreover
Casanova et al. [CAS] defined formal support for (nested)
contexts. That is why we chose context as the name for the
component.

We define a context as a collection of nodes (nodes may
belong to more than one context) and a collection of links.
The links in the context should start from nodes part of the
same context but may arrive in another context2. Various
methods for manipulating nodes and links in a context are
available.

A link is a unidirectional connection between (anchors of)
two nodes each one attached to a certain context. The two
sides of the link are designated departure and arrival
implying the direction of the link. Accessor functions for
anchors, nodes and contexts on both sides are defined in the
link class.
Actually we are not completely satisfied with this definition
of a link. With others [INTERMEDIA, NIELS] we agree
that links should be bi-directional with multiple endpoints.
We have tried to fit such a link in our model but faced some
difficulties. See section 2.4 for a discussion on this matter.

Now we are able to build on the path concept.
PathWithContext is defined as a subclass of Path with extra
accessor functions for a current context, node and anchor.
When a path activates an anchor on a certain node the link
will be looked up in the current context and used to jump to
(push, pull) the arrival side. The internal state of the path
will be updated accordingly: pushing or pulling links will
update the current anchor; following links will modify the
current anchor, node and context.

2 In the nested context model [CAS] there should exist a
context in the hierarchy that is parent of the linked contexts.

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 7

2.4 Virtual Nodes & Links

As we have said in the introduction, computations need
communication channels (to pass data) and contexts (to
connect these channels and to store parameters). The former
is provided by warm links (i.e. the push and pull operations
on nodes), the latter by paths.

The proof of the pudding is in the eating: we have defined
all the necessary components of the system, now it is time
to come back to the notion of virtuality.
Integrating virtual nodes in the system was quite easy. At
creation time a computation must be supplied to the virtual
node. When calling the contents method the computation is
evaluated and the result is returned. For virtual links an
similar scheme was followed, the only difference being that
the computation returns an aggregation object (i.e. a
combination of an anchor, node and context).
We had several options for the parameters to be passed on
the computations: we adopted a minimal solution by
passing the virtual object and the path. It is essential to
pass the path to the computation to enable link
communication (pushing & pulling data). Passing the
virtual object itself is the easiest way to deal with
computations independent of the actual object they are
representing. Attributes (section 2.1) in the path may be
used to pass additional parameters.
An extra facility built into the virtual objects was the
buffering of results to avoid recomputing the same value
over and over again.
The choice of Objectworks\Smalltalk as the implement-
ation vehicle has proven to be worthwhile. As
computations (BlockClosure) are first class citizens it was
quite comfortable to experiment with different parameter
passing strategies, eager and lazy evaluation, etc.
Nevertheless, once this experimentation phase is over, we
believe that porting the framework to other Smalltalk
environments or other languages (CLOS, C++) will not
cause enormous problems.

An extra challenge was the notion of a virtual chooser node.
In the applications we envisioned as our first testbed (see
section 3.1) users would encounter several forking points:
places where a range of options must be displayed and one
must be chosen. We extended the model with the notion of
a chooser node, having as contents a collection of
(displayable) anchors. A chooser node has its private set of

links, and thus overrides the default behaviour of nodes
(passing anchor operations to a path). Integrating this
concept into the framework was almost effortless.
Afterwards we assembled a virtual chooser node from a
chooser node, a virtual node and a virtual link.

2.5 Bi-directional versus Computational Links

With other designers [INTERMEDIA, NIELS] we feel that
bi-directional links have nicer properties. However
computational links prevented us from building this feature
into the model.
Indeed, an intrinsic characteristic for computational links is
that the arrival part is unknown until the link is computed.
As a consequence it is impossible to follow the link in
reverse mode before it is triggered (given the fact that there
are no restrictions on the computation).
The solution might be twofold. The first is to stick with
unidirectional links, but provide aggregation facilities to
combine two (or even more) unidirectional links into one
bi-(multi-)directional link. The other is to limit the
computation power so links become reversible.
In the current implementation we use Smalltalk [SMALL]
as the computation engine. This comfortable situation
gives us the opportunity to experiment with various
computation models (unification languages [UNI] in
particular seem quite interesting) and this is one of the
future directions we consider.

3 PROTOTYPE I: A SMALLTALK BROWSER

To illustrate the merits of the framework we will present a
small prototype application implemented on top of our
hypertext model. It consists of a class browser
(demonstrating the use of virtual nodes and links) with a
query mechanism (to reveal the possibilities of navigation
by query instead of traditional link chasing).

We present the development as a process where the
improvement of the application gives feedback to the design
of the framework, this way showing the extensibility of our
model.

3.1 The Class Browser

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 8

Figure 1: a view of the class browser implemented on top of the virtual hypertext model

The class browser is one of the programming tools
available in a Smalltalk programming environment
[SMALL]. Via the browser one can edit the class definition
(instance & class variables, superclass, ...), the class
comment (documentation) and the methods associated with
that class. In the Objectworks environment, methods are
grouped into protocols.

Figure 1 shows a screendump of our browser. A row of pull
down menus are located just below the window title bar.
Underneath one can find a text field containing the name of
the class, two selectable lists (on the right a list of
protocols, on the left a list of method selectors) and finally
a small text editor. Selecting an item in the protocol list
changes the contents of the method selector list (all method
selectors in this protocol). Selecting an item in the method
selector list displays the source for this particular method in
the text editor. Users can edit this source. By choosing
'Accept' from the 'Source'-menu the method is compiled
into the Smalltalk system. When no method is selected, the
editor contains a template for entering new methods. The
class definition is displayed when there is no protocol
selected. After selecting 'Comment' or 'Definition' the
corresponding class attributes are displayed in the editor.
The Protocols and Methods menu are used to add/remove
items to/from the respective lists. We will come back on
the Queries menu when we discuss query based navigation
in section 3.2.

Implementing this browser on top of a traditional node-link
hypertext is not so difficult. One creates text nodes for the
class definition, the class comment and every method
defined on the class. A few chooser nodes are needed to link
everything together (one chooser node for the protocols and
a chooser node for every protocol in the list). All that is left
to do is glue the interface actions to the appropriate link

activations.
This can be done in a straightforward way but requires lots
of glue code. We used the facilities of the model whenever
possible. When appropriate, we extended the model to
minimise the programming effort.
The first thing we did was pushing the state information the
browser needs into the hypertext model. Indeed, when
choosing 'Accept' from the source-menu the appropriate
actions vary on the current mode of the browser: accepting a
modified method requires other steps than accepting a class
definition. This is normally implemented through a state
variable that contains the current text mode. We supplied
every text node with an extra link that connects it to a
'status' node. When the user arrives in such a node we push
the node name through this link so that the status node is
able to store the current text mode. We extended the model
with a special node type to store pushed values.
Then we observed that a lot of code went into the
translation of a single user action in a sequence of link
activations. Again we extended the model, but now with the
notion of scripted paths. A script is a sequence of <anchors,
action> pairs, where an action stands for 'follow', 'pull' or
'push'. A scripted path is a path with a set of (named)
scripts. Implementors are able to plug in code that is
executed on every script transition, so certain interface
effects may be hooked into the hypertext.

But the most important perception was that adding or
removing methods and protocols was very hard. Besides the
fact that the underlying Smalltalk system itself must be
updated (this part of the job is inevitable), one needs to do
all the bookkeeping tasks on the hypertext network itself
(i.e. to add a method or a protocol one extra node and three
extra links are necessary). This requires careful coding and a
lot of knowledge about the hypertext structure inside the
browser which goes against good software engineering

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 9

Figure 2: a view on selecting 'Messages ...' from the Queries menu

practice.
With the introduction of virtual nodes and virtual links the
problem was solved. Modifying the hypertext graph has
become obsolete. When adding or removing objects, the
browser must update the underlying Smalltalk system.
Pushing certain nodes forces the necessary recomputations
and updates the display.

This experiment showed us that the model may be used to
incorporate traditional static hypertexts. Adding virtuality
enables an 'open' system: the application is then smoothly
integrated with foreign data structures.

3.2 Querying the Smalltalk system

One of the appealing things of the Smalltalk browser is
that it may be used to query the system. A user may browse
all other implementations of a method, all senders of a
message, all messages a particular method sends, all
methods that access a certain instance variable, In our
browser these queries are issued from the 'Queries' menu.
Figure 2 shows what happens when a user selects
'Messages ...' from the 'Queries' menu. First of all a pop-up
menu with all the messages in the selected method is
activated; choosing one method opens a method browser
(the window in the back).

It would have been easy to add extra links and nodes to the
hypertext graph in order to support this kind of navigation.

For every message in a method node one can add a link to
other method nodes. Some coding effort is needed to collect
the pop-up menu from the anchors in the method and to
open the new browser on the collection of valid methods,
but in total this is feasible.
Apart from the extra resources involved (extra links when
computing the contents a virtual method node) adding many
links appeared to us an unnatural way of tackling the
problem. An extension of the hypertext model was more
appropriate, so we decided to build a QueryPath.
In contrast with a ContextPath, a QueryPath will not use
contexts to resolve anchors. Instead it manages a set of
<anchor, query> pairs: on activating an anchor the
corresponding query is evaluated returning a context
containing nodes and links. The path will pass this context
to a special browser and open it.
As was the case with computational links, we used
Smalltalk [SMALL] as the computation engine behind
queries. Again the model is open enough to experiment
with other languages here.

This prototype demonstrated the extensible nature of the
architecture and proved that the model is able to handle
hypertext structures without explicit links. The latter is due
to the path concept.

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 10

Figure 3: a view on two synchronising agenda managers

4 PROTOTYPE II: AN ELECTRONIC
AGENDA

To show the applicability of the model we implemented
another application from an entirely different field, namely
Computer Supported Co-operative Work (CSCW).
With others [HAL1, HAL2, CSCW] we believe that
hypertext might play a substantial role in developing
CSCW-applications. This persuaded us to favour an
application from this domain as our second prototype. We
picked an electronic agenda because we felt this could
demonstrate the power of the hypertext model. We are well
aware of the fact that this is not a very good candidate for
investigating the possibilities of CSCW an sich [GRU1,
GRU2, MAR].

What we are describing here is work in progress. For the
moment the application runs on a single machine, and all
agendas are kept in main memory. We will integrate
database (Gemstone) and communication (plain e-mail)
technology to build a real CSCW prototype. The user
interface will be improved as well.

Figure 3 shows two open agenda managers. The window on
the left is the one from 'Koen De Hondt': he has included
Patrick Steyaert in the user list, so the bottom window
contains agenda pages of both Koen and Patrick. On the
right is the agenda of Karel Driesen with user list Karel,
Koen and Serge. When Koen chooses 'Edit agenda ...' from
the 'Agendas' menu, a dialogue window will appear where
he can modify his agenda page. Afterwards the pages of
both agenda managers will be updated to reflect the new
status.

This application demonstrates the power of warm links and
the added value when combining them with virtual nodes.

The opening and closing of agendas is registered in an
agenda server (for the moment a global variable, but in a
later implementation it will be moved to the object oriented
database). The agenda server is a hypertext node and the
registering takes place via link pushing.
An agenda is modelled with a set of nodes containing the
owner, the user-list, the date and the page. The page is a
virtual node: it pulls information from the other nodes of
the agenda and requests the page from the agenda-server
(again by pulling links; attributes in the path are used as
parameters).
When editing an agenda, the new data is pushed into the
server. The server will push invalidation messages to all
agendas opened on the same date and including this user in
its user list. Recomputing the page node updates the
window.

Besides the applicability of our approach, this experiment
shows that the 'warm link' concept is useful, certainly when
joined with virtual structures.

5 CONCLUSIONS & FUTURE WORK

We applied recent ideas from the world of software
engineering to build a hypertext model supporting the idea
of virtuality.
The major advantage of a virtual hypertext model is its
open ended character. We have proven this by building a
hypertext browser on top of a data structure without explicit
hypertext concepts like links and nodes (i.e. a Smalltalk
class browser and an electronic agenda).
Adding new concepts was relatively easy. This was
experienced as a bonus, and was due to the extensible nature
of an object oriented framework (the building methodology
borrowed from the software engineering community).

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 11

The model itself is a layered one. The first layer consists of
the concepts Anchor, Node and Path; the notion of warm
links [INTERMEDIA] is integrated. The second layer
defines Contexts and Links as one of the possibilities to
connect nodes.
It is rather new to have paths as first class citizens of a
hypertext model, although Zellweger [ZEL] advocated this
idea. It enabled us to experiment with the way nodes are
connected and as such, makes links less important. To build
computational power into the model (e.g. to make it
virtual) we exploited the first class citizenship of paths and
the warm linking facilities. The latter was needed to pass
information over the network.
We perceived a conflict between the notion of
computational links versus the notion of bi-directional
links. We suggest two solutions: stick with unidirectional
links and build an aggregation facility for links or limit the
computational power of links to reversible calculations. We
are able to conduct experiments in both directions, due to
the extensibility of the framework and the ability to plug
different computation engines into the model.

Iteration is known to be crucial in framework design
[JO/RU]. As such we will continue to build applications on
top of our class library, whenever necessary extending it to
support emerging needs.
One particular class of applications we are thinking of is
'Computer Supported Co-operative Work' (CSCW). It is
generally believed that hypertext technology can play a
substantial role in developing CSCW applications [HAL1,
HAL2, CSCW]. We plan to implement a 'Group Decision
Support System' (GDSS) [GDSS] and see how this fits
into our hypertext model.

ACKNOWLEDGEMENTS

I would like to thank Professor Theo D'Hondt for setting up
the inspiring environment in which this work has found its
roots. The various influences from the outside world have
proven to be a fertile ground for a whole bunch of
productive ideas.
All of my colleagues and all of the proof-readers are to be
acknowledged here, but Patrick Steyaert (who provided the
framework background), Koen De Hondt and Karel Driesen
(for shooting holes while designing) deserve special
attention.
Buon viaggio, mio caro, Ann.

REFERENCES

General References
[HT'87] ACM Hypertext'87 proceedings (November 13-15,

Chapel Hill, North Carolina)
[HT'87+] ACM Hypertext '87 proceedings

(November 13-15, Chapel Hill, North Carolina) +
Communications of the ACM 31(7), July '88

[HT'89] ACM Hypertext'89 proceedings (November 5-8,
Pittsburgh, Pennsylvania)

[NI'90] Proceedings of the 1990 NIST Hypertext
Standardization Workshop (January 16-18,
Gaithersburg, MD)

[EC'90] Rizk, A. / Streitz, N. / André, J. "Hypertext:
concepts, systems and Applications - Proceedings
of the European Conference on Hypertext"
(November, Versailles, France)

[HT'91] ACM Hypertext '91 Conference Proceedings
(December 15-18, San Antonio, Texas)

[EC'92] ACM Hypertext '92 Proceedings (November 30 -
December 4, Milano, Italy)

[HT'93] ACM Hypertext '93 Conference Proceedings
(November 14-18, Seattle, Washington USA)

[CA'94] Communications of the ACM 37(2),
February '94

Specific References
[ABC] Schackelford, D. E., Smith, J.B. / Smith, F.D,

"The Architecture and Implementation of a
Distributed Hypermedia Storage System" in HT'93
[HT'93]

[ABC] Smith, J.B. / Smith, F.D, "ABC: A Hypermedia
System for Artifact-Based Collaboration" in HT'91
[HT'91]

[AFR] Afrati, F. / Koutras, C.D. "A hypertext model
supporting query mechanisms" in EC'90 [EC'90]

[AQU] Marshall, C. C. / Halasz, F. G. / Rogers, R. A. /
Janssen, W. C. Jr. "Aquanet: A Hypertext Tool to
Hold Your Knowledge in Place" in HT'91 [HT'91]

[AQU] Marshall, C. C. / Rogers, R. A. "Two Years
Before the Mist: Experiences with AquaNet" in
EC'92 [EC'92]

[AQU] Marshall, C. C. / Shipman, F. M. "Searching for
the Missing Link: Discovering Implicit Structure
in Spatial Hypertext" in HT'93 [HT'93]

[BEE] Beeri, C. / Kornatzky, Y. "A logical query
language for hypertext systems" in EC'90 [EC'90]

[BIEB] Bieber, M. "Issues in Modeling a "Dynamic"
Hypertext Interface" in HT'91 [HT'91]

[BRA] De Bra, p. / Houben, G. J. / Kornatzky, Y. "An
Extensible Data Model for Hyperdocuments" in
EC'92 [EC'92]

[CAS] Casanova, M. A. / Tucherman, L. / Lima, M. J.
D. / Netto, J. L. R. / Rodriguez, N. / Soares, L.
F. G. "The Nested Context Model for
Hyperdocuments" in HT'91 [HT'91]

[CON] Conklin, J. "Hypertext: An Introduction and
Survey" in IEEE Computer 20 (9), September
1987.

[COOM] Coombs, J. H. "Hypertext, Full Text, and
Automatic Linking", Proceedings of SIGIR'90 -
13th conference on Research and Development in
Information Retrieval (Brussels, Belgium)

[CRO] Crof, W. B. / Turtle, H. "A retrieval Model
Incorporating Hypertext Links" in HT'89 [HT'89]

[CSCW] Streitz, N. / Halasz, F. / Ishii, H. /
Malone, T. Neuwirth, C. / Olson, G. "The Role

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 12

of Hypertext for CSCW Applications (panel)" in
HT'91 [HT'91]

[DEX] Halasz, F. / Schwartz, M. "The Dexter Hypertext
Reference Model" in NIST'90 [NI'90]. An edited
version of this paper appeared in [CA'94].

[DHM] Grønback, K. / Trigg, R. H. "Design issues for a
Dexter-based hypermedia system" in EC'92
[EC'92]. Also in [CA'94]

[DHM] Grønback, K., Hem, J. A. / Madsen, O. L. /
Sloth, L. "Designing Dexter-based Cooperative
Hypermedia Systems" in HT'93 [HT'93]. Also in
[CA'94]

[FREI] Frei, H.P. / Schäube, P. "Designing a Hypermedia
Information System" in DEXA'91 Conference
Proceedings (Vienna, Austria) (Springer-Verlag)

[FREI] Frei, H.P. / Stieger, D. "Making Use of Hypertext
Links when Retrieving Information" in EC'92
[EC'92]

[GAM] Gamma, E. / Helm, R. / Johnson, R. / Vlissides,
J. "Design patterns: Abstraction and Reuse of
object-oriented design" in European Conference on
Object-Oriented Programming Proceedings (July
'93, Kaiserslauteren, Germany)

[GAR] Garg, P. J. "Abstraction Mechanisms in
Hypertext" in HT'87 [HT'87+]

[GDSS] Kenis, D. / Bollaert, L. "MacPolicy: A
Group Decision Support System" in Journal of
Decision Systems-Revue des systeèmes de
décision, numero special: Decision Support
Systems: The IFORS-SPC 1 Conference 1992

[GDSS] Kenis, D. / D'Hondt, T. "A Client-server
Architecture for Groupwork, Initial findings on the
study of state-of-the-art computing environments
for cross-disciplinary group dynamics" in EUC'92
Conference Proceedings (Apple's European
University Consortium, April 21-23, Bruges,
Belgium)

[GOO] Gyssens, M. / Paredaens, J. / Van Gucht D. "A
Graph-Oriented Object Model for Database End-
User Interfaces", ACM SIGMOD '90 Conference
Proceedings (May 23-25, Atlantic City, New
Jersey)

[GRU1] Grudin, J. "Groupware and Social
Dynamics: Eight Challenges for Developers" in
Communications of the ACM 37(1), January '94

[GRU2] Grudin, J. "Why CSCW Applications
Fail: Problems in the Design and Evaluation of
Organizational Interfaces" in ACM CSCW'88
Proceedings (September 26-28, Portland, Oregon)

[GUI] Brown, P. J. "Turning Ideas into Products: The
Guide System" in HT'87 [HT'87]

[HAL1] Halasz, F. "Reflections on NoteCards: Seven
Issues for the Next generation of Hypermedia
Systems" in HT'87 [HT'87+]

[HAL2] Halasz, F. "Seven issues revisited". Slides from
the ACM Hypertext '91 Conference Keynote
speech (December 15-18, San Antonio, Texas)

[HAM] Campbell, B. / Goodman, J. M. "HAM: A
General - Purpose Hypertext Abstract Machine" in
HT'87 [HT'87+]

[HDM] Caloini, A. "Matching Hypertext Models to
Hypertext Systems: a Compilative Approach" in
EC'92 [EC'92]

[HDM] Garzotto, F. / Paolini, P. / Schwabe "HDM: A
Model for the Design of Hypertext Applications",
D. in HT'91 [HT'91]

[HDM] Schwabe, D. / Cloini, A. / Garzotto, F. / Paolini,
P. "Hypertext Development Using a Model-based
Approach", Software-Practice and Experience,
22(11), November '92

[HELM] Helm, R. / Holland, I. M. /
Gangopadhyay, D. "Contracts: Specifying
Behavioral Compositions in Object-Oriented
Systems" in ACM ECOOP/OOPSLA'90
Conference Proceedings (October 21-25, Ottawa,
Canada)

[HFR] Wiil, U. K. / Legett, J. J. "Hyperform: Using
Extensibility to Develop Dynamic, Open and
Distributed Hypertext Systems" in EC'92 [EC'92].

[HFR] Wiil, U. K. "Concurrency Control in
Collaborative Hypertext Systems", ACM
Hypertext '93 Conference Proceedings (November
14-18, Seattle, Washington USA).

[HPCD] Apple Computer, Inc. "Macintosh
HyperCard User's Guide"

[HYD] Marmann, M. / Schlageter, G. "Towards a Better
Support for Hypermedia Structuring: The
HyDESIGN Model" in EC'92 [EC'92]

[INTERMEDIA] Catl in, T. / Bush, P.
Yankelovich, N. "InterNote: Extending a
Hypermedia Framework to Support Annotative
Collaboration" in HT'89 [HT'89]

[INTERMEDIA] Haan, B. J. / Kahn, P. / Riley,
V. A. / Coombe, J. H. / Meyrowitz, N. K. "IRIS
Hypermedia services" in Communications of the
ACM 35(1), January '92

[INTERMEDIA] IRIS (Institute for Research in
Information and Scholarship) "IRIS Intermedia
User's Guide". User's guide with InterMedia 3.0
(Brown University)

[INTERMEDIA] Yankelovich, N. / Meyrowitz, N.
/ Van Dam, A. "Reading and Writing the
Electronic Book" in IEEE Computer, October '85

[JO/FO] Johnson, R. E. / Foote, B. "Designing
Reusable Classes" in Journal of Object-Oriented
Programming 1(2), February '88 p. 22 - 35

[JO/RU] Johnson, R. E. / Russo, V. F. "Reusing
Object-Oriented Designs" University of Illinois
technical report UIUCDCS 91-1696

[KMS] Ackscyn, R. / McCracken, D. / Yoder, E. "KMS:
A Distributed Hypermedia System for Managing
Knowledge in Organizations" in HT'87 [HT'87+]

[LAN] Lange, D. B. "A Formal Model of Hypertext" in
NIST'90 [NI'90]

[LUC] Lucarella, D. "A model for hypertext-based
information retrieval" in EC'90 [EC'90]

[MAR] Markus, M. L. / Conolly, T. "Why CSCW
applications fail: Problems in the adoption of
interdependent work tools" in ACM CSCW'90

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 13

Proceedings (October 7-10, Los Angeles,
California)

[MED1] Frisse, M. E. "Searching for Information
in a Hypertext Medical Handbook" in HT'87
[HT'87]

[MED2] Frisse, M. E. / Cousins, S. B.
"Information Retrieval from Hypertext: Update on
the Dynamic Medical Handbook Project" in HT'89
[HT'89]

[MEYR] Meyrowitz, N. "Intermedia: The
Architecture and Construction of an Object-
Oriented Hypermedia System and Applications
Framework" in ACM OOPSLA'86 Conference
Proceedings (Sept 29 - October 2, Portland,
Oregon)

[MICR] Fountain, A. / Hall, W. / Heath, I. /
Davis, H.C. "MICROCOSM: An open model for
hypermedia with dynamic linking" in EC'90
[EC'90]

[MIX1] Bracha, G. / Cook, W. "Mixin-based inheritance"
in ACM ECOOP/OOPSLA'90 Conference
Proceedings (October 21-25, Ottawa, Canada)

[MIX2] Steyaert, P. / Codenie, W. / D'Hondt, T. / De
Hondt, K. / Lucas, C. / Van Limberghen, M.
"Nested Mixin-Methods in Agora". Proceedings of
ECOOP'93 (7th European Conference on Object-
Oriented Programming; July 26-30,
Kaiserslautern, Germany). Springer-Verlag Lecture
Notes in Computer Science no. 707

[MIX2] Boyen, N. / Lucas, C. / Steyaert, P. "Generalised
Mixin-based Inheritance to Support Multiple
Inheritance". Submitted to ACM OOPSLA '94
Conference. Will be available through anonymous
ftp at 'progftp.vub.ac.be'

[MUL] Rizk, A. / Sauter, L. "Multicard: An Open
Hypermedia System" in EC'92 [EC'92]

[MWB] Nanard, J. / Nanard, M. "Should Anchors Be
Typed Too ? An experiment with MacWeb" in
HT'93 [HT'93]

[MWB] Nanard, J. / Nanard, M. "Using Structured Types
to Incorporate Knowledge in Hypertext" in HT'91
[HT'91]

[NEP] Delisle, N. / Schwartz, M. "Neptune: a Hypertext
System for CAD applications", ACM
SIGMOD '86 Conference Proceedings (28-30
May, Washington, DC)

[NIELS] Nielsen, J. "Hypertext & Hypermedia"
(Academic Press)

[PAR] Van Dyke Parunak H. "Don't Link Me In: Set
Based Hypermedia for Taxonomic Reasoning" in
HT'91 [HT'91]

[PAR] Van Dyke Parunak H., "Hypercubes Grow on
Trees (and Other Observations from the Land of
Hypersets)" in HT'93 [HT'93]

[PATT] Gamma, E. / Helm, R. / Johnson, R. / Vlissides,
J. "A Catalog of Object-Oriented Design Patterns"
Draft verion of a report to be submitted for
publication.

[PHI] McCall, R. / Bennet, P. / d'Ornozio, P. D. /
Ostwald, J. / Shipman, F. / Wallace, N.

"PHIDIAS: integrating CAD-graphics into
dynamic hypertext" in EC'90 [EC'90]

[PINT] Pintado, X. / Tsichritziz, D. "Satellite: Hypertext
navigation by affinity" in EC'90 [EC'90]

[QRL] Charoenkitkarn, N. / Tam, J. / Chignell, M. H. /
Golovchinsky, G. "Browsing Through Querying:
Designing for Electronic Books" in HT'93 [HT'93]

[SCHU] Schütt, H. / Streitz, N. "HyperBase: A
hypermedia engine based on a relational data-base
management system" in EC'90 [EC'90]

[SCH] Schnase, J. L. / Leggett, J. J. "Computational
Hypertext in Biological modelling" in HT'89
[HT'89]

[SMALL] Golberg, A. / Robson, D. "Smalltalk-80:
The Language and its Implementation" (Addison
Wesley)

[SMI] Smith, K. E. / Zdonik, S. B. "Intermedia: A case
study of the Differences Between Relational and
Object-Oriented Database Systems" in ACM
OOPSLA'87 Conference Proceedings (October 4-8,
Orlando, Florida)

[SUP] Egan, D. E. / Lesk, M. E. / Ketchum, R. D. /
Lochbaum, C. C. / Remde, J. R. / Littman, M. /
Landauer, T. K. "Information Retrieval from
Hypertext: Update on the Dynamic Medical
Handbook Project" in HT'91 [HT'91]

[SUP] Remde, J. R. / Gomez, L. M. / Landauer, T. K.
"Superbook: An automatic Tool for Information
Exploration - Hypertext ?" in HT'87 [HT'87]

[TRE] Furuta, R. / Stotts, P. D. "Programmable
Browsing Semantics in Trellis" in HT'89 [HT'89]

[TRE] Furuta, R. / Stotts, P. D. "The Trellis Hypertext
Reference Model" in NIST'90 [NI'90]

[TRE] Stotts, P. D. / Furuta, R. / Ruiz, J. C.
"Hyperdocuments as Automata: Trace-based
Browsing Property Verification" in EC'92 [EC'92]

[TRE] Stotts, P. D. / Furuta, R. "Hierarchy,
composition, scripting languages, and translators
for structured hypertext" in EC'90 [EC'90]

[TRE] Stotts, P. D. "Dynamic Adaption of Hypertext
Structure" in HT'91 [HT'91]

[UNI] Abelson, H. / Sussman, G. J. "Structure and
Interpretation of Computer Programs" sections
4.2-4.5 (The MIT Press)

[VOL] Bernstein, M. / Bolter, J. D. / Joyce, M. /
Mylonas, E. "Architectures for Volatile Hypertext"
in HT'91 [HT'91]

[WALT] Frisse, M. E. / Cousins, S. B. / Hassan,
S. "WALT: A Research Environment for Medical
Hypertext" in HT'91 [HT'91] (Technical briefing)

[WEB] Monnard, J. / Pasquier-Boltuck, J. "An Object-
Oriented Scripting Environment for the WEBSs
Electronic Book System" in EC'92 [EC'92]

[WWW] NCSA-MOSAIC. To get information send e-mail
to mosaic@ncsa.uiuc.edu. Mosaic is available
through anonymous ftp at 'ftp.ncsa.uiuc.edu'

[YOU] De Young, L. "Linking considered harmful" in
EC'90 [EC'90]

[ZEL] Zellweger, P. T. "Scripted Documents: A
Hypermedia Path Mechanism" in HT'89 [HT'89]

ECHT'94 paper (Virtual Hypertext Based on Paths and Warm Links) # 14

[ZEL] Zellweher, P. T. "Position Statement in Structure,
Navigation, and Hypertext: The Status of the
Navigation Problem" in HT'91 [HT'91]

