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Abstract

This paper describes the implementation of a small experimental Scheme
compiler, using Continuation Passing Style (C P S ) as an intermediate
representation for the source code. CPS is a form of code  that makes control flow
and control information explicit. This, in combination with a solid theoretical
basis (lambda-calculus) makes it an excellent medium for representing
intermediate code.

0 Introduction:

The main goal of the project was to study the techniques used in transforming a high-level Scheme
program into a low-level program, expressed in a typical, assembler like, register oriented language. We
did not aim to produce a viable compiler. Our main interest was to explore the possibilities and
usefulness of the CPS approach.  Using CPS in compilation is a novel approach to compiler writing,
first suggested by Steele [16,17]. It has been successfully applied to write compilers for Scheme in
other projects [9,16,18]. We have depended very strongly upon this work, especially upon the
implementation of Orbit [9].

The VM is implemented in Scheme. By depending on Scheme's garbage collector, and
representation for lists, vectors, strings, etc., we only put the least possible effort into nitty-gritty
details.

This paper describes our system, starting with an overview of the compiler's layered structure, and
then proceeding to describe every individual layer and it's purpose in a separate section. The code
generation phase is technically complicated, therefore only the most important aspects will be
highlighted. We will show that the resulting compiled code is reasonably efficient. However there still
is a lot of room for improvement. Finally we will summarise the advantages and disadvantages of the
CPS approach, and discuss related work.

1 Overview of the compiler

Figure 1 shows a schematic view of the compiler's layered architecture. Source code passes through
successive layers of transformations. Every layer in the process produces equivalent Scheme code which
is in some way or another either simpler, more efficient, or closer to compiled code than the code from
the layer above.

The compiler is divided into a front-end and a back-end. The front-end contains a number of pre-
processing phases that produce code in CPS-form. The result is then passed on to the back-end which
contains the optimisation and code generation phases. Optimisations are performed directly on CPS-
code, transforming it into optimised CPS-code which is subsequently used by the code generator to
produce executable code. Note that the code generation phase is the only phase that does not produce
Scheme code (it produces code in the target language), all other phases are "Scheme to Scheme"
transformations.

The idea behind this structure is that the front end layers rewrite expressions of as many types as
possible into combinations of more primitive types. Because only a few types of expressions are left in
the resulting code only a few simple optimisations should suffice to obtain a high degree of
optimisation.
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Figure 1: "Schematic view of the Compiler"

2 Macro Expansion

The macro expansion phase transforms derived expression types into primitive expression types.
All derived expressions are lists starting with a particular symbol identifying the type of the expression.
The macro expander consists of a table of transformation procedures, that associates a particular
transformer to a symbol identifying a derived expression type. The expander recursively traverses the
expression, invoking the appropriate transformers whenever it encounters a derived expression type.

We will not go into more detail because the expansion of macros1 is a traditional and well known
component of a Scheme implementation and there are not many difficulties in implementing it.

3 Alpha Conversion

This is a simple transformation, that is used frequently in compilers or code transformers that have
to deal with code that possibly contains aliased variables. Alpha conversion renames all local variables
to unique names, thus avoiding problems with aliassing in subsequent phases of the compiler.

We won't go into further detail because this is a rather trivial code transformation.

1 This might be a little bit of a misrepresentation. The R3RS report [11] which was used as a
specification for our implementation, does not specify any macro facility as a part of the Scheme language.
Most R3RS implementations however do provide a macro-system similar to the macro-system of Common
Lisp. These kinds of macro-systems are well known things, and are not hard to implement. Recently however
there has been a lot of fuss: the opinion is growing that the traditional Common-Lisp notion of macros is
inadequate, and attempts are being made to improve upon this, defining a better macros-system for Scheme.
The R4RS report [12] specifies an optional macro extension to Scheme, and there are numerous other macro-
proposals for Scheme [4,5,6,8]. These systems are much harder to implement, and their implementation and
definition is still under study. These topics fall outside of the scope of our work, that's why we chose not to
implement a macro-system for user-defined macros and only use a simple, more traditional macro
transformation engine to implement  derived expression types as pre-defined macros.
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4 Assignment Conversion

4.1 What is assignment conversion?

This phase eliminates assignments to local variables. Assignment conversion introduces an extra
indirection for side effected variables, replacing them by "cell" data-structures that hold the contents of
the variable. References and assignments to these variables are converted into calls to primitive
operations that get or set the contents of the cell.

4.2 Dealing with global variables

We also deal with global variables in this phase. Normally this isn't part of assignment conversion
as described in [9]. However, we chose to also eliminate side effects to global variables by converting
references, definitions and assignments to global variables into calls to the primitives get-top, def-top
and set-top! that access the global variables array. This results in an efficient implementation of access
and assignment to global variables because the variable names can be replaced by indexes in the table.

Not all global variables are handled this way: a distinction is made between integrable and non-
integrable variables. The integrable variables are guaranteed to be side effect-free, and they will not be
transformed. In our implementation all global variables containing primitives (like cons, +, <, car,
etc.) are integrable and they cannot be assigned2 to.

4.3 Advantages and disadvantages

Scheme is based on the theory of lambda-calculus, and many optimisations stem directly from the
theory, but side effects are not part of lambda calculus. Therefor it is often necessary to insure that no
side effect is involved before performing an optimisation. This has the disadvantage of complicating the
optimisation phase, and prohibiting a great number of optimisations in cases where it is not certain
that a side effect could be involved. Assignment conversion moves side-effects out of the environment,
by introducing an extra indirection. This guarantees that environments are immutable, which greatly
simplifies the optimisation phases, and additionally has advantages for code generation. It makes it
possible to generate code that keeps multiple copies of variables in different places to enhance
performance.

The disadvantage of assignment conversion is the extra indirection that is introduced. This makes
references and assignments to local variables less efficient. This inefficiency is often argued to be of
minor importance because it is bad programming style in Scheme to do side effects to local variables.
Often this is true, but one has to be aware of it that in an object-oriented programming style, side
effects to local variables are commonly used to model objects with state.

5 CPS and CPS-conversion

5.1 A few introductory words about CPS

CPS stands for "Continuation Passing Style". CPS-code is a form of Scheme code that  has the
property that no function call ever returns. Control flow like procedure call and return is explicit. Every
function call passes a continuation as an extra argument. The continuation represents the program point
after the procedure call, the point where the computation is to continue after the called procedure has
completed. This continuation is represented by a procedure of one argument, receiving the value that
would normally have been returned as a result from the procedure call. Thus in CPS code every transfer
of control is represented by a procedure call. This includes return from a procedure, which will be
represented by a call to a continuation procedure. Instead of returning a result, procedures call a
continuation procedure, thus no procedure call ever returns. This is why procedure call in CPS-code
actually behaves more like some kind of goto statement. A call in CPS only transfers control in one
direction, from caller to callee.

2 This does not conform to R3RS [11], which does not provide the distinction between integrable and
non-integrable variables. All variables should be the same and can all be assigned to. We took this option in
our implementation to make things simpler, in a real implementation, an analyses of the program must
determine whether or not a global variable is involved in a side effect and can be categorised as integrable.
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5.2 The CPS-transformation

The actual transformations we have used, are based upon, and very similar to those used in Orbit
[9]. Therefore we won't give a specification, instead we will use an example to give an idea of the spirit
of CPS-code to the reader not already familiar with it. The main idea is to convert all calls and lambda
expressions, adding an extra continuation argument to the front of the argument list.

(define (fac n) (if (= n 0) 1 (* n (fac (- n 1)))))

If we put this through the front end of our system this will result in the following CPS-code. All
administrative beta-redexes have been removed from this code. Normally this isn't done until later, in
the optimisation phase. For clarity we have removed them manually.

(def-top *top-cont*
      'fac
      (lambda (cont137 n131)
        (= (lambda (cps-if140)
             (cps-test
               cps-if140
               (lambda () (cont137 '1))
               (lambda ()
                 (get-top (lambda (cps-proc144)
                            (- (lambda (cps-arg145)
                                 (cps-proc144
                                   (lambda (cps-arg143)
                                     (* cont137 n131 cps-arg143))
                                   cps-arg145))
                               n131
                               '1))
                          'fac))))
           n131
           '0)))

Notice how every call in this piece of code has an extra first argument, which is usually a lambda
of one argument, a continuation. There is one call that is different: (cont137 '1) this is a call to a
continuation procedure, representing the continuation of the call to factorial. This particular call to
cont137 represents the return of the value 1 to the call-site of the factorial procedure. Another call that
differs a bit is the call to the CPS-test primitive, which represents the if from the original source code.
An if is translated into a call to the CPS-test primitive, which takes 2 continuations as arguments, for
the true-branch and for the false-branch respectively.

We can also observe the effect of most of the other front-end phases. Alpha-conversion has renamed
all local variables to unique names, numbers are appended to all local variable names to make them
unique. The effect of assignment conversion on the global variable fac can also be seen here. The
definition of fac has been converted into a call to the def-top primitive, and the reference to it goes via
the get-top primitive. For clarity the argument to def-top and get-top is simply the symbol fac,
normally this symbol would be replaced by an index into the global-variables array. The assignment
conversion of side-effected local variables cannot be seen here because the code contains no
assignments.

CPS-code only consists of a very limited number of different syntactic constructs: function call,
quoted constants  and variables. Variables are either local variables, or global variables corresponding to
some primitive operation (like +, =, CPS-test, …), all other "non primitive" global variables (in this
case fac) have been removed by assignment conversion.

6 Optimisations

The optimisation phases are currently very primitive and consist of two co-operating mechanisms.
Beta-reduction and a limited form of partial evaluation.

6.1 Beta-reduction

 This is a direct derivative of beta-reduction in the lambda-calculus. It serves to eliminate
administrative redexes from CPS-conversion and to optimise LET and similar constructs that are
represented as lambda calls. In our implementation this phase is absolutely necessary because the CPS
phase generates a great number of administrative beta-redexes which if not reduced will cause
unacceptably inefficient code to be generated. This is a bit counter-productive: CPS-transformation
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generates a lot of redundant beta redexes and beta-reduction removes them. The whole process could be
made significantly more efficient when CPS wouldn't generate all those administrative redexes in the
first place. This can be accomplished with a more complex CPS-transformation algorithm, as described
in [7]. Though important in a real system, performance was considered to be of minor importance in
our experimental implementation and we choose to keep the transformations simple.

Beta reduction works on so called beta-redexes, that is lambda's that are called directly. It replaces
formals by actuals in the body of a beta-redex and eliminates lambda calls without arguments. This is
summed up in the following 2 transformation rules:

Rule1: Replacing formals by actuals
((lambda (arg1 … argi-1 argi argi+1 … argn) body) expr1 … exprn)

=>
((lambda (arg1 … argi-1 argi+1 … argn) subst-body) expr1 … expri-1 expri+1 … exprn)

Subst-body is body, where every occurrence of argi is substituted by expri. To avoid infinite
expansion and code duplication this transformation rule is only applicable if either expri is a constant or
variable, or if argi occurs at most once in body.

Rule 2: Removing lambda applications without parameters
((lambda () body)) => body

6.2 Partial Evaluation of Primitives

A limited form of partial evaluation replaces calls to primitives by their result whenever possible.
For example: (+ <continuation> 3 4), would be replaced by (<continuation> 7).

Partial evaluation co-operates intimately with beta-reduction, because sometimes partial evaluation
of a primitive makes more beta-reductions possible and vice-versa.

The partial evaluation phase is driven by a table that associates a partial evaluation method with
every primitive. Many sophisticated optimisations strategies could be implemented this way. Boolean
short-circuiting for example could be accomplished through implementing a sufficiently smart method
for the CPS-test primitive [9]. Currently our system only handles constant folding for arithmetic
operations, but this can easily be extended because of the table driven implementation.

7 Code Generation

This is the final and technically the most complicated phase, transforming optimised CPS code into
code for the virtual machine. The crucial point is to generate as efficient code as possible for lambda
expressions and calls, since these are the most frequently used constructs (representing every transfer of
control). Normally evaluation of a lambda would involve creation of a heap closure. This would be
hopelessly inefficient. The solution is classification of lambda's.

Currently we have 2 categories of lambda's: Class 1 are those that are called directly in the same
environment as where they are defined (lambda's from LETs and continuations to primitive procedures).
Class 2 are all the others. Class 1 lambda's are the majority in CPS code and calls to them are compiled
even without a jump instruction and without generating a closure for them. Class 2 are compiled with
heap closures. More efficient code could ultimately be generated by further diversifying the classes, but
our simple classification already yields reasonable results. Reconsider for example the factorial function.
The CPS-code for factorial from section 5.2 is repeated here, but this time all lambda's have been
numbered. Class 1 lambda's are underlined and class 2 lambda's are in bold.
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(def-top *top-cont*
  'fac
  (lambda248 (cont231 n224)
    (=
     (lambda249 (cps-if234)
       (cps-test cps-if234
                 (lambda254 () (cont231 '1))
                 (lambda250 ()
                   (get-top
                    (lambda251 (cps-proc238)
                      (-
                       (lambda252 (cps-arg239)
                         (cps-proc238
                          (lambda253 (cps-arg237)
                            (* cont231 n224 cps-arg237))
                          cps-arg239))
                       n224
                       '1))
                    'fac))))
     n224
     '0)))

The majority of the lambda's are class 1. Only two of them are class 2: the lambda representing the
factorial procedure itself, and the lambda representing the continuation to the recursive call. The code
generated from this CPS-code is shown in figure 2 below.

The rectangle indicates the code that corresponds to the factorial procedure, the surrounding code
binds a closure corresponding to the code within the rectangle to the global variable fac. The only place
within the rectangle where a heap-closure is being generated, is at line 14. This corresponds to
lambda253 in the CPS-code. This heap closure saves (in the heap) the registers that will be needed upon
return from the recursive call. Then a jump to endlambda253 jumps over the continuation's code (that is
the code that will be executed upon return from the recursive call, the body of lambda253). The
recursive call itself is at line 25. The 2 indicates that 2 arguments are passed along in register R0 and
R1. The first argument in R0, is the continuation, and the second one is the real argument.

There are a few minor inefficiencies. Some jumps that could have been avoided by rearranging the
code,  the jump to endlambda253 is an example. And some unnecessary register to register transfers, for
example at line 23, the contents of R1 is "saved away" in R7 because an argument needs to be stored in
R1, but R7 is not used anymore in the rest of the code. These inefficiencies are the result of an
oversimplification of the code generator. They can be avoided with a more complex code generator.
Since we were not trying to build  a "real" compiler, we didn't make the extra effort.

A more serious inefficiency is that registers which are used across the recursive call are saved on
the heap. A traditional compiler could probably have saved them on the stack3, which is more efficient.
This problem is more difficult to solve, we will elaborate on it in section 8.2.

3 This is certainly true for compilers for (C, PASCAL, etc.) languages that do not have Scheme's
powerful call-with-current-continuation mechanism. Call/cc makes things much more complicated because it
is no longer guaranteed that continuations are always allocated and deallocated in a stack like manner, usually
however they are allocated in a stack like manner because people do not tend to use call/cc very often.
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1     R0 := fac
2     R1 := closure lambda248
3     JUMP endlambda248

::lambda248
4     ARGS 2
5     R2 := 0
6     R3 := =(R1 R2 )
7     IF NOT R3 THEN JUMP else255
8     R4 := R0
9     R0 := 1
10    JUMP-PROC 1 R4

::else255
11     R4 := get-top(R2 )
12     R5 := -(R1 R2 )
13     R6 := R0
14     R0 := closure lambda253 R0 R1
15     JUMP endlambda253

::lambda253
16     ARGS 1
17     R1 := Lev:0 Ofs:1
18     R2 := R0
19     R0 := *(R1 R0)
20     R3 := Lev:0 Ofs:0
21     JUMP-PROC 1 R3

::endlambda253
23     R7 := R1
24     R1 := R5
25     JUMP-PROC 2 R4

::endlambda248
26     R2 := R0
27     R0 := def-top(R0 R1 )
28     R3 := (%closure #f #f #f '*top-cont*)
29     JUMP-PROC 1 R3

Figure 2: Code generated for "factorial"

8 Conclusion

8.1 Why use CPS as an intermediate representation

There are several reasons why CPS is an interesting representation for compiling programs.
It makes control flow and control information explicit. Pieces of control information, that is for

example return addresses for procedure calls, are explicitly represented by continuation procedures. CPS-
code has a very sequential nature, mostly because of the "goto-like" behaviour of procedure call. CPS
has a low-level "almost compiled" look and feel to it, which makes it easier to transform into the target
language than "normal" Scheme code.

The explicitness of control information has the advantage that in CPS-code, there is no distinction
between user data and control information. Both are explicit in the code, both are stored in variables,
and the variables are not distinguishable from one another. When performing optimisations on, or
generating efficient code for variable lookup, these optimisations or code generation techniques equally
apply to both user variables and control variables. Traditional compilers usually treat control
information and user information differently, implementing separate mechanisms for both of them. For
example, suppose we implement a strategy to analyse the CPS-code, deciding to keep some variables in
registers while storing others on the stack and yet others in the heap. This would automatically apply
to both user data (variables from the source program) and compiler data (for example return addresses)
alike.

CPS combines both a low-level "close to compiled code" nature, with a solid theoretical
foundation, the lambda calculus. This is especially advantageous for languages like Scheme, which are
closely related to the lambda calculus. The theoretical nature of the code makes it a good medium for
optimisations, while the low-level sequential nature of the code accommodates the code generation
phase.
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8.2 Complications with the CPS approach

As previously pointed out in section 7, we are having some trouble with using the stack. A good
compiler should be able to allocate some variables on the stack, while our compiler will always
allocate variables that cannot be kept in registers on the heap. The problem is that it is unclear when
storage on the stack can be released (i.e. when to "pop" the stack). Normally this would be done upon
return from a procedure call. In CPS it is not clearly distinguishable which calls are "real calls" and
which calls are "procedure returns". Continuations are not theoretically distinguishable from "normal"
procedures. This makes compilation towards a stack oriented target language more complicated to
implement. What would solve the problem is a sufficiently powerful analysis (this is certainly not
trivial!) that can categorise lambda's into 3 categories in stead of 2: register allocatable (currently class
1), heap-allocatable (class 2), and stack-allocatable.

9 Related work

Our whole system is modelled after the techniques employed in Orbit [9]. One difference is in the
handling of Scheme's LETREC construct to create locally recursive procedures. In Orbit LETREC
constructs are regarded as primitive expression types in order to be able to implement them efficiently.
In our opinion this is contradictory to the reasoning of transforming source code into a form with as
few types of expression as possible. Thus we did not regard LETREC as primitive since it can be
expressed in terms of SET! and LAMBDA. The disadvantage of this is of course that one will have to
make sure that suitable optimisation techniques will combine to optimise the code resulting from
LETRECs efficiently. Although we did not succeed in doing this, because of lack of time, we do feel
confident this should be possible. Very probably the effort will prove to be worthwhile because the
extra optimisations introduced will not only optimise LETREC but will also be useful on their own and
combine to optimise various other constructs.

Another difference is in the handling of continuation lambda's (see also section 8.2). Orbit treats
continuation lambda's as special cases. This allows for allocating closures for such lambda's on the
stack, thus gaining efficiency (less garbage collection). We chose not to do this because there is no
theoretical ground to distinguish them from other lambda's. In fact Orbit employs the heuristic that
most of the time these closures can be allocated and deallocated in a stack-like manner. Sometimes
however (when call/cc is used) this is not true. Therefore Orbit has to provide a more complicated and
more inefficient implementation of call/cc, involving copying the entire runtime stack. It is our
opinion that it is possible to devise a strategy for categorising some lambda's as being stack-
allocatable, without treating continuations as special cases.
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