Chapter

Specialising the
Framework with
| nheritance

A 4.1 Introduction

In the previous chapter we introduced and discussed a framework for an object-
based programming language. In this chapter we will specialise this framework
to include inheritance. It will be shown that inheritance can be added without
modifying the basic structure of the framework.

First we will discuss the issues involved in designing a language that employs
some form of inheritance. Closely related to this is the topic of scoping and
visibility rules in object-oriented languages. An overview of the design issues
will be given. Based on this a full-fledged object-oriented programming language
is presented (Agora). It is shown that although Agora differs from Simple in
some fundamental ways, the framework presented in the previous section can be
used as a skeleton to implement Agora. This implementation will be used to
define a second layer of abstract classes in the framework that handles
inheritance.

Chapter 4

a4.2

421

Inheritance, Design Issues

In this section we will discuss the design issues that arise when designing an
object-oriented programming language that employs some form of inheritance.
We use the term inheritance for both object-based inheritance and class-based
inheritance. We already saw that both forms are closely related, they are both a
form of incremental modification. The problems and design issues that are
discussed are independent of whether one considers either class-based or object-
based inheritance. To emphasise this, we will use the terms inheritor or heir (for
subclass/inheriting object), and ancestor or parent (for superclass/ancestor object).
The terms class and object will be used both, even though in most places ‘class or
object” would be more appropriate. First we will go into some general problems
with inheritance, then we will consider the problems that relate strictly to
multiple inheritance.

Inheritance and Encapsulation Problems

In a similar way that it is important for an object that it can encapsulate
attributes, it is equally important that an inheritor can encapsulate the fact that
it depends on an ancestor for the implementation of certain attributes. When an
inheritor is not free to change its inheritance structure we say that the
inheritance is exposed. It is important that inheritance is not exposed to future
inheritors or clients that use instances of a class/object. Examples of exposed
inheritance will be given in the section on multiple inheritance, but can also be
found in typed object-oriented languages where the notions of type and class are
identified with each other.

Another interaction between encapsulation and inheritance stems from the fact
that in most object-oriented languages an inheritor can access its ancestor in two
ways. One, by direct access to the private attributes of the ancestor (direct access
to the implementation details). Two, by access to the public attributes of the
ancestor (parent operations). The trade-off between direct access to the
implementation details of an ancestor and using parent operations is discussed in
[Snyder87].

If an inheritor depends directly on implementation details of its ancestor, then
modifications to the implementation of the ancestor can have consequences for
the inheritor’s implementation. An inheritor that uses only parent operations is
likely to be less sensitive to ancestor changes (it is more abstract). Inheritors that
make use of the implementation details of an ancestor are said to inherit from
their ancestor in a non-encapsulated way; inheritors that make use of parent
operations only are said to inherit from their ancestor in an encapsulated way.
That is to say, whereas strict encapsulation implies that the private attributes
of an object are not directly accessible by other objects; similarly strictly
encapsulated inheritance implies that the private attributes of a subobject!
within an object are not directly accessible by other subobjects within that object.

One solution to this problem is to have all ancestor references done through
parent operations. This implies that for each class/object two kinds of interfaces
must be provided: a public interface destined for instantiating clients that use
instances of that class/object and, a so called private interface for future
inheritors that are called the inheriting clients of the class/object.

104

Each object is composed out of subobjects according to the inheritance hierarchy.

Specialising the Framework with Inheritance

422 The Need for Flexible and Controllable Inheritance

The need to control and abstract over the way inheritance hierarchies are
constructed has been expressed in several ways and in several places. On the one
hand it seems an obvious extension of the “incremental changes” philosophy of
the object-oriented paradigm to be able to incrementally change entire
inheritance hierarchies. On the other hand there is a need to control the
complexity arising from the use of multiple inheritance [Hendler86] [Hamer92].

A notable example of the first is that given by Lieberman in [Cook87]. The
question is how an entire hierarchy of black and white graphical objects can be
incrementally changed so that the initially monochrome graphical objects can be
turned into coloured objects. In present day systems, one either has to
destructively change the root class of this hierarchy by adding a colour attribute,
or one has to manually extend each class in the hierarchy with a colour subclass.

The second need stems from the observation that unconstrained multiple
inheritance hierarchies often end up as tangled hierarchies. Multiple
inheritance is less expressive than it appears, essentially in its lack to put
constraints on multiple inheritance from different classes [Hamer92]. For
example, one would like to put a mutual exclusion constraint on triangle and
rectangle classes, registering the fact that a graphical object can not be both a
triangle and a rectangle. Consequently, a graphical object class can not multiply
inherit from both the triangle and rectangle class.

Multiple inheritance is used to combine existing classes in order to construct new
classes. Tangled inheritance hierarchies occur in multiple inheritance
hierarchies where the classes expose a high degree of possible combinations.
This is often the case where classes are decomposed in an unusually fine
granularity or where classes are decomposed into different views or perspectives.
An example of a tangled multiple inheritance hierarchy is given below. The
example shows points that can be implemented as either polar or cartesian
points. Point movements can be bounded; both the cartesian and the polar point
classes have their own way to implement these boundaries.

Bounds

Point
BoundsForCartesianPoint / \ BoundsForPolarPoint

CartesianPoint PolarPoint

BoundedCartesianPoint BoundedPolarPoint

Figure 4.1

Some observations concerning tangled hierarchies can be made on the basis of the
above hierarchy. The first observation is that there is a proliferation of classes.
In the worst case, where there are two orthogonal sets of classes that can be
combined, the possible subclasses are in the cartesian product of these two sets. In
the example this is not the case since it does not make sense to combine e.g.
BoundsForCartesianPoint with PolarPoint. The two sets of classes in the example
are not orthogonal. In most languages with multiple inheritance all combinations
of orthogonal sets of classes must be explicitly constructed. Most of the so
constructed classes are so called empty classes, i.e. they contain no declarations.
Empty classes serve only as a basis for instantiation. This phenomenon is referred
to as the proliferating subclass problem.

105

Chapter 4

423

106

Another observation that can be made is the fact that the above hierarchy does
not represent all the information that is available about this hierarchy.
Essentially this hierarchy only shows what combinations have been made but
says nothing about what other possible combinations can still be made, or,
equally important, what combinations can not be made. The fact that it is
senseless to combine e.g. BoundsForCartesianPoint with PolarPoint is not
represented in the hierarchy.

Even more important than the observation that constraints on the possible
combinations are not represented, is the observation that the hierarchy does not
represent the fact that the classes BoundsForCartesianPoint and
BoundsForPolarPoint play a similar role in the respective resulting combination
classes BoundedCartesianPoint and BoundedPolarPoint. The correspondence
between the two can be summarised in the following table:

CartesianPoint PolarPoint
Add Boundaries BoundsForCartesianPoint BoundsForPolarPoint
Result BoundedCartesianPoint BoundedPolarPoint
Figure 4.2

Multiple inheritance mechanisms are poor at expressing the role an ancestor
plays in the inheriting class; let alone to express the fact that two classes, used
each as ancestor for a different inheritor, play a similar role (such as in the
above example) for their respective inheritors.

Multiple Inheritance

It is important to distinguish single inheritance from multiple inheritance.
Single inheritance is characterised by the fact that each inheritor has exactly
(or at most) one parent. With multiple inheritance each inheritor can have
multiple parents. Proponents of single inheritance say that multiple inheritance
is not as yet well-understood and that in most cases single inheritance is
satisfactory to express their problems. Proponents of multiple inheritance find
that a sufficient number of ‘real world” problems can not be expressed with a tree-
structured classification mechanism.

The design issues in inheritance mostly concern multiple inheritance, since single
inheritance is yet well-understood. In the design of an inheritance mechanism
the chief concern is the interaction between inheritance and encapsulation, and
also how flexible an inheritance hierarchy can be constructed.

In languages that use multiple inheritance each class/object can have multiple
parents. This gives rise to inheritance graphs rather than inheritance trees (as is
the case with single inheritance). This graph is a directed acyclic graph.
Usually the graph has one single root (i.e. the root class/object). We will discuss
different multiple inheritance mechanisms and the different problems involved.
These different mechanisms are distinguished by how they treat the inheritance
graph and how name conflicts are resolved. We will briefly overview the two
major problems involved.

The first problem one has to face when an inheritor inherits from two or more
parents is the problem of name collisions. Parents can have attributes with the
same names. In [Knudsen88] three different sorts of name collision are identified:
intended name collision, casual name collision and illegal name collision. These
three sorts of name collision correspond roughly to respectively: 1) a name

Specialising the Framework with Inheritance

collision where the attributes of the names that collide are intrinsically the
same (e.g. in the case where the names are inherited, in their turn, of a common
superclass) or intrinsically separable (e.g. in the case where the attributes are of
a different nature such as a method and an instance variable, or the attributes
have a different domain such as two methods that apply to arguments with
disjunct types); 2) collision of names that are not related at all, but the names are
separated by e.g. a qualifier; 3) collision of names that are not related and the
names are not separated.

Conflicts are resolved in different ways (according to the specific language at
hand). Either a mechanism is provided to rename the conflicting operation in one
of the subclasses, or a mechanism is provided for qualified message passing, or it
is an error to inherit two operations with the same name. With qualified
message passing a message is qualified with an ancestor’s name to direct the
method lookup.

The second problem one has to face when dealing directly with the multiple
inheritance graph is the diamond problem (or common ancestor duplication
problem) depicted in figure 4.3. An inheritor B multiple inherits from
classes/objects S1 and S2, which in their turn inherit from a common ancestor A.
Now the question is whether the inheritor B will contain one or two subobjects A,
and how the name collisions for the attributes defined on A will be be handled.
That is, do we deal with the graph as is, or do we transform the graph into a
linear chain, or do we transform the inheritance graph in e.g. a tree where both
S1 and S2 have their own ‘copy’ of the ancestor A ?

Figure 4.3

We will consider all problems that are related to the diamond problem. We will
see how these problems are resolved, or not resolved, in the different multiple
inheritance strategies.

Graph Multiple Inheritance
A first approach to multiple inheritance are strategies that deal with the
inheritance graph directly without transforming it.

In graph multiple inheritance operations are inherited along the inheritance
graph unless they are redefined in an inheritor. Conflicts arise when two
operations with the same name are inherited along different paths in the graph.
Conflicts are resolved either with qualified message passing or with renaming of
conflicting attributes.

107

Chapter 4

In general a distinction is made between 1) conflicts arising from two attributes
that have the same name and are essentially different and 2) conflicts arising
from two attributes that have the same name and are essentially the same (i.e.
an attribute that is inherited along two different paths from one and the same
non-direct ancestor, such as can be seen in the diamond problem). In general,
whereas for the former case special provisions must be made (i.e. it is an error or
qualified message passing must be used), the latter case is not really seen as a
name conflict. This option is motivated by convenience but is shown to violate the
encapsulation of inheritance.

It can be shown easily that not considering these "same attributes" as name
conflicts exposes the use of inheritance. Consider the diamond figure again. An
attribute ' x' defined on A is, according to the above rule, not conflicting in B.
However if S2 is changed so that it is implementing attribute ' x' itself, this
operation becomes a conflict in B. On the other hand, if names inherited from a
shared parent along different paths are considered as name conflicts then in
languages where all classes/objects inherit from a given root class/object (with
attributes defined on the root, of course) any instance of multiple inheritance
would result in conflicts for the root attributes.

The foremost reason why it is argued that we should not deal directly with the
inheritance graph is that it exposes the inheritance structure [Snyder87]. The
inheritor B should not be aware of how S1 and S2 are realised and whether they
inherit from A or not. Let’s take a look at the situation where S1 implements by
itself (i.e. by not inheriting from A) all attributes that were previously defined
in A and compare it with the situation where S1 inherits from A for the purpose
of implementing these attributes. In the former case side-effects on the ‘A-
attributes” via S1 are not visible to S2, in the latter case they are. Just like in the
previous paragraph this means that if one deals with the inheritance graph
directly the implementor of S1 has not the freedom to reimplement S1 without
inheriting from A or vice versa. The inheritance structure in S1 is exposed to its
inheriting clients.

An additional problem related to graph oriented multiple inheritance is that of
the undesired duplicate parent operation invocation. This will be illustrated
with an example (example taken from [Snyder87]). It is the, by now almost
classical, example of a point class with its two subclasses ‘BoundedPoint” and
‘HistoryPoint’. Points can be moved. History points record all point movements.
Bounded points can only be moved within certain boundaries.

class Roint
i nstance variables: xy
net hods
novex dx novey: dy
X =X +dx
yi=y+dy
| ocation
%)
endcl ass

class HstoryRoint
inherits Roint
extended with
i nstance vari abl es: history
net hods
novex dx novey: dy
history record: (“noved to: “, self location)
super noveX dx nove: dy
endcl ass

108

Specialising the Framework with Inheritance

cl ass BoundedRoi nt

inherits Rint

extended with

i nstance vari abl es: bounds

et hods

novex dx noveY: dy
if (self location + (Point x:dx y:dy)) wthin: bounds
then super noveX dx noveY: dy

endcl ass

In an attempt to make points that are both bounded and keep a history of moves,
we define the BoundedH storyPoint class that multiply inherits from
BoundedPoi nt and H st oryPoi nt classes. In the definition of the move operation
the move operation of both parents must be invoked. Of course this simple
solution has the wrong effect that each move message sent to a bounded history
point results in two move messages to the point subobject. The x and y instance
variables of the receiving object are incremented twice. The classes BoundedPoi nt
and HistoryPoint cannot be ‘sufficiently’ combined with graph multiple
inheritance to form bounded history points.

cl ass BoundedH st oryRoi nt
i nherits BoundedRoi nt H storyRoi nt
extended with
met hods
noveX dx noveY: dy
super BoundedRoi nt. noveXx dx noveY: dy
super HstoryRoint. noveX dx noveY: dy
endcl ass

Linear Multiple Inheritance (implicit and explicit)

Implicit linear multiple inheritance strategies first flatten the inheritance
graph for each class in a linear chain and then treat the collection of chains as a
single inheritance hierarchy. Of course the linearisation strategy must obey some
constraints. First of all it must preserve the ordering of classes/objects along each
path in the inheritance graph. That is, an inheritor of some class/object may not
become an ancestor of that class/object or vice versa during the linearisation
process. Other restrictions may apply also. In CLOS, for example, programmers
have some degree of control over the linearisation process by the order in which
the superclasses of some class are listed; this order is also respected in CLOS’s
linearisation strategy.

Name conflicts are resolved automatically in the linearisation process. In case of
a name conflict one of the conflicting attributes is selected even though there is no
single best choice. Consider again the diamond picture from above, and consider a
possible linearisation (A—S2—S1—B) of this inheritance graph (figure 4.4).
Suppose both S1 and S2 define a conflicting attribute ‘x’. In the linearised graph
B will inherit the x attribute of S1, and the x attribute of S2 has been ‘masked
away’ by S1, even though in an equally correct linearisation the reverse would be
true.

109

Chapter 4

110

Figure 4.4

Related to this problem is the fact that an inheritor can not reliably
communicate with its direct ancestors. Due to linearisation sometimes unrelated
classes/objects are inserted between an inheritor and one of its direct ancestors.
This is the case for S1 in the linearised inheritance graph above. Even though in
the graph representation S1 has A as direct ancestor, in the linearised graph S2
has become the direct ancestor of A (A becomes an indirect ancestor of S1).
Especially when name conflicts are involved this can give surprising results.

Another way to look at the above problem is that with linearised inheritance it
is not possible to ‘combine’” two conflicting methods. In case of a conflict there is
one single attribute that is visible to the inheritor. The other attributes are
masked. To resolve this problem most languages with linearised inheritance
provide a declarative mechanism that is called method combination (in CLOS,
for example, an entire range of method combination mechanisms are provided
[Moon89]). Method combination provides solutions to the above problems for a set
of standard situations, still it does not take away the need for a class to be able to
set up reliable communication with its direct ancestors.

Apart from the advantage that no name conflicts arise, linearised multiple
inheritance performs well with respect to the problem of duplicate parent
operations invocation. This is best illustrated by looking at the point, history
point and bounded point example from the previous section. Whereas with graph
multiple inheritance the classes BoundedPoint and HistoryPoint could not be
combined to get the desired effect, this is perfectly possible with linearised
inheritance.

In an encoding with linearised multiple inheritance the BoundedHistoryPoint
class’s move method must only invoke (and in fact can only invoke, since no name
conflicts can arise) the move method of its ancestor once. This encoding is shown
below.

Specialising the Framework with Inheritance

cl ass BoundedH st oryRoi nt
i nherits BoundedRoint H storyRoi nt
extended with
met hods
noveX dx noveY: dy
super noveX dx novey: dy
endcl ass

This solution is heavily based on the knowledge that the inheritance graph will
be linearised. In a possible linearisation, shown below, the effect will be as such
that the move method in BoundedHistoryPoint invokes the one in HistoryPoint
which in turn invokes the one in BoundedPoint which in his turn invokes the
final move method in the Point ancestor. In fact what we first considered as a
problem, i.e. the insertion of unrelated superclasses, now turns out to be part of a
solution. We will see below that this sort of techniques can be generalised to
what is called mixin-based inheritance, and that both the HistoryPoint and the
BoundedPoint classes are best encoded as mixins (see also [Snyder87]).

BoundedPoint

HistoryPoint

BoundedHistoryPoint

Figure 4.5

Although implicit linearisation solves some of the problems that occur in graph
multiple inheritance, these problems are solved in a radical way. No name
conflicts can occur due to changes in the inheritance hierarchy of some class
(changes that do not alter the semantics of that class), but on the other hand
conflicts are resolved even if there is no clear ‘best choice’.

An important, and possitive, side effect of the unintended interleaving of an
unrelated ancestor class is the concept of mixin-classes. Again, let’s have a look
at the diamond example, and its linearisation (A—S2—S1—B) above. It is
possible for S1 to invoke parent operations that are not declared in its direct
ancestor A, but due to linearisation are found in the newly assigned ancestor S2
(e.g. consider an operation x that is defined on 52 and not on A that is invoked via
a parent operation from S1).

Going one step further, it is trivial to see that it is possible to have classes that
have no apparent ancestor but that do invoke parent operations in a meaningful
way. This sort of classes have been named mixin-classes since they rely on the
linearisation to be ‘mixed in’ at the appropriate place (i.e. as inheritor from a
class that provides the necessary operations) in the linearised inheritance
hierarchy. The effect is that it is possible to create mixin-classes that can be

111

Chapter 4

112

applied (mixed-in) to a set of different superclasses. (in mixin terminology also
called base classes) The prototypical example of a mixin-class is the one that
adds colour attributes to all sorts of base classes. We will see many more
examples in the remainder of this text.

Mixins have been identified as very useful and flexible building blocks to
construct inheritance hierarchies. Another approach to multiple inheritance uses
mixins as the sole mechanism to create inheritance hierarchies, and is called
mixin-based inheritance [Bracha&Cook90] [Bracha92] [Hense92]
[Steyaert&al.93] [Codenie,Steyaert,Lucas92].

Mixin-based inheritance and its relation to multiple inheritance will be further
explored in subsequent sections.

Tree Multiple Inheritance

If it is said that linear multiple inheritance solves name collision problems in a
radical way by not having any name collisions at all, then tree multiple
inheritance solves name collision problems in a radical way by always having
name collisions. Tree multiple inheritance is directly motivated by a need to
solve problems related with the diamond problem. We saw that graph multiple
inheritance exposes the inheritance structure due to two reasons. One, by not
duplicating parents that are inherited via different paths in the inheritance
graph; two, by not signalling name conflicts when one and the same operation is
inherited via different paths in the inheritance graph. With respect to these
two problems tree multiple inheritance takes exactly the two opposing design
decisions as graph multiple inheritance.

Just as with implicitly linearised multiple inheritance the multiple inheritance
graph is transformed, but in a less radical way. Rather than transforming the
inheritance graph for some class in a linear chain, the inheritance graph is
transformed into a tree where each parent that is inherited via different paths
in the graph has been duplicated. For the diamond above this results in the
following tree.

Figure 4.6

After this transformation all name collisions are treated on an equal footing. No
name collisions can arise from attributes that are inherited via different paths,
because all ancestors in joining paths have been duplicated.

Although tree multiple inheritance solves the inheritance encapsulation
problems of both graph and implicitly linearised multiple inheritance it does so
at a certain cost. But, let us first look at an example (example due to [Knudsen88])
where tree multiple inheritance works fine.

Specialising the Framework with Inheritance

In the example we want to model a small part of the employees database from
some university. There are two sorts of employments, lecturer and administrative
staff. Each employee has a seniority. The seniority is used for example to
calculate wages. In a very sensible way, the management of the seniority
attribute is factored out in some abstract superclass called “Uni versity Enpl oyee’.
For the example no other attributes are considered.

University
Employee
seniority
Lecturer Administrative
\ Staff
Lecturer
& Administrative
Employee
Figure 4.7

While designing the hierarchy we come to the conclusion that there are
employees that take up both a position as lecturer and as administrative person.
This is easily modelled by a class that multiply inherits from the lecturer class
and the administrative staff class. What about seniority then ? The employee in
question has two seniorities, one for each sort of employment. Of course this
example only works fine with tree multiple inheritance. The transformation to a
tree has the effect that for the “Lecturer&Administrative Employee” class, the
Employee class is duplicated and as such also the seniority attribute.

Student
nr

Sporting Cultural
Student Student

Sporting

& Cultural

Student

Figure 4.8

It is obvious that examples can be found where things don’t work out as well as
above. Consider the same university. This time we want to model a small part of
the student database. Very similar to our employment database, there are two
sorts of students: sporting students and students that take an interest in culture.
Each student has a student number. The student number is used for administrative
purposes. In a very sensible way, the management of the student number attribute
is factored out in some abstract superclass student. For the example no other
attributes are considered.

While designing the hierarchy we come to the conclusion that there are students
that take up both an interest in sports as well as in culture. This is easily
modelled by a class that multiple inherits from the sport student class and the
cultural student class. What about student number then ? In contrast with the
employee example all students have only one student number, regardless of

113

Chapter 4

114

whether they are interested in sports or culture or both.

The student example can not be implemented easily in tree multiple inheritance.
Not only because a cultural and sporting student will have two copies of his
student number (that need to be synchronised), but also since the operations that
are needed to manage this student number are now inherited from each duplicate
of the student class and consequently raise name conflicts that need to be resolved.
Solutions to this problem exist and are given in [Snyder87]. The idea is to avoid
shared ancestors, leading to an extensive use of mixins, however.

The above problem imposes a serious limitation on the use of tree multiple
inheritance since in most cases a very similar situation occurs if one wants to use a
single root class in the inheritance graph that contains a set of general purpose
attributes. These attributes are normally inherited by all objects in the system.
With tree multiple inheritance, however, every class in the system that
multiple inherits from two or more ancestors will need to resolve the conflicts
that arise from the duplication of this root class. This imposes an absurd
overhead on the use of multiple inheritance.

In conclusion, tree multiple inheritance avoids the exposure of inheritance that is
inherent to graph multiple inheritance and implicitly linearised multiple
inheritance, but does it at the cost of usability. Solutions to the problems of tree
multiple inheritance exist, but must be found in an extensive use of mixins.

Point of View Notion of Multiple Inheritance

The point of view notion of multiple inheritance [Carré&Geib90] has grown out of
a concern about the problems involved with qualified message passing as a means
to resolve name conflicts. It handles somewhat orthogonal problems to the above
discussed forms of multiple inheritance. Still we find it important enough to
discuss it here.

Let’s start with reviewing what possible problems can arise due to the use of
qualified message passing. In the discussion qualified message passing means
that every message (either an ‘ordinary’ message or an invocation of a parent
operation) can be qualified with the name of a class. Any class that is in the
inheritance chain of the receiver of a message can be used as qualifier. Due to this
qualification method lookup starts from the specified class rather than directly
from the class of the receiver of the message. It is important to note this since
there are useful restrictions to the above scheme. One useful restriction is to allow
only qualification for invocation of parent operations. This can further be
restricted to allow only qualification with the names of the direct ancestors of
the class that invokes the parent operation.

Unrestricted qualified message passing exposes the inheritance structure of each
class. Not only does it make visible all the names of the ancestors of a class, it
also allows a user of a class to select a non-most-specific definition of some
attribute defined on that class (refinement inhibition problem). Furthermore,
qualified message passing encodes too much information about the class
hierarchy, which may change, as constant information [Bobrowé&al.86]. Due to
this it can disable further refinement of a certain attribute. Consider a class A,
with two methods x and y. Although at first glance it does not seem so, there is a
fundamental difference between sending a message y, from within the method x,
to self, and sending a message y, from within the method x, to self qualified with
class name A. Both have the same behaviour for instances of class A, but for
inheritors of class A it is in the latter case impossible to refine (overwrite) the
method y (genericity inhibition problem).

Specialising the Framework with Inheritance

It would seem reasonable to impose the above mentioned restrictions on the use of
qualified message passing. These restrictions can be interpreted such that from
the viewpoint of some class the only information about the inheritance
hierarchy that it can rely on is the list of its direct ancestors. It should also be
noted that using a renaming technique for inherited attributes to solve name
conflicts is as safe as this restricted form of qualified message passing. Renaming
must be done explicitly by the programmer. This is an obvious disadvantage. On
the other hand we will see later on in the text that renaming has an advantage
over qualified message passing.

The effect of the above restrictions (and also for renaming as a technique for
solving name conflicts) is that name conflicts must always be resolved in an
explicitly defined inheritor. This is not always desirable. Consider the
following example (example due to [Carré&Geib90]).

cl ass Sportshan
inherits Rerson
extended with
i nstance vari abl es
spor t snanNnfer
net hods
car d\Untver : X
if self validateGrd x
t hen sportsnanNinber : = X
val i dat eGar d: x
...check if x is avalid sportsnan card nunioer
car d\untoer
\spor t snanNuntoer
endcl ass

cl ass S udent
inherits Rerson
extended with
i nstance vari abl es
st udent Nuntoer
net hods
car d\Untver : X
if self validateGrd x
t hen student Nunfer : = x
val i dat eGar d: x
..check if xisavaid student card nunfer
car d\untoer
st udent Nuntoer
endcl ass

cl ass SoortyS udent
i nherits Soortshn S udent
endcl ass

Both the class SportsMan and Student are given classes. A possible combination
of these two classes results in name conflicts for the methods that manipulate the
card number of either the person as a student or the person as a sportsman. Still a
student that is also a sportsman will have two different card numbers and as such
a class that is a combination of the classes SportsMan and Student must respond to
two sets of messages to manipulate the two different card numbers. Here, in this
case some sort of qualified message passing, to differentiate between the
messages sent to some person as a student and messages sent to that same person
seen as a sportsman, seems appropriate. It must be possible to send messages to a
person object seen from different viewpoints. Hence the name of this sort of
multiple inheritance.

115

Chapter 4

116

We will make a sharp distinction between the multiple viewpoint sort of
inheritance, where the interfaces of the combined classes are kept separate, and
all the other discussed sorts of inheritance where the name conflicts in the
interfaces of the combined classes are explicitly resolved in the inheritor.

Although both sorts of inheritance have to address some of the same problems —
e.g. the common ancestor duplication problem —, they both have to address
problems that are specifically related to either sort of inheritance. The problem
of duplicate invocation of parent operations is, for example, not relevant for the
point of view sort of inheritance, because in the point of view approach
conflicting methods are not combined in the inheritor.

One problem that is specific for the point of view sort of inheritance has to do
with self reference in ancestor classes. This problem can be made apparent in the
previous example. Take John a student that is also a sportsman. Let’s presume
that we can refer to e.g. the card number attribute of John as a student as ‘John
St udent . cardnunier” and to this same attribute of John as a sportsman as ‘John
Spor t sMan. car dnunier” respectively. Irrespective of the fact that this sort of
qualified message passing is problematic with respect to encapsulation
(refinement and genericity inhibition problems), a simplistic approach to this
sort of qualified message passing will fail with respect to self references in the
so-invoked methods.

What will happen to the following valid message: John
Spor t sMan. car dnunier : 423 ? The method lookup will correctly find the method
named cardnumber: in the Spor sMan class, and will invoke this method. This
leads to the evaluation of ‘sel f validateCard: 423, which is an unqualified
message expression. The desired effect, of course, is that this expression is
interpreted as ‘sel f Sportsnan. val i dateCard: 423'. Any other interpretation
would lead to either an error or unpredictable behaviour. All ‘naive” approaches
to qualified message passing will fail to correctly interpret this sort of programs.

We will not give solutions to the above problem, for the time being it suffices to
point out the problem. Solutions exist, in the form of a modified sort of qualified
message passing [Carré&Geib90]). Later on in the text we will see that “points of
view’ are strongly related to incremental modifications of objects in the prototype
based approach to object-oriented programming.

One reason to introduce the viewpoint notion of multiple inheritance is that it
enables us to give a crisp example of a particular sort of multiple inheritance
that has largely been neglected, i.e. that of multiple inheriting of one and the
same parent class. Consider again our sporting student example. Considering the
fact that the SportsMin class and the Student class have very similar code it
seems obvious to make the following abstraction:

cl ass Mnber i nherits Rerson
extended with
i nstance vari abl es
nentoer Nunfoer
net hods
car d\untoer : X
if self vaidateGrd: x
t hen nenter Nunbber : = x
val i dat eGar d: x
...check if xis avalid nenber card nunter
car d\Untver
“nentoer Nuntoer
endcl ass

Specialising the Framework with Inheritance

Of course this means that a possible sporting student class must inherit the
Member class twice. The first time to express a student view and a second time to
express a sporting view on the same person. It is obvious to see that, in the case
that we do not want to define two ‘empty’ classes ‘SportsMan’ and ‘Student” just to
provide appropriate qualifiers, messages qualified with a class name are no
longer sufficient in this example. Another means to make qualifiers must be
provided.

Multiple Inheritance, Conclusions?
We confirm with Knudsen that:

“...by choosing strict and simple inheritance rules, one is excluding some
particular usage of multiple inheritance ...”
(Knudsen88)

We add to this conclusion that there is a frade-off between full encapsulation of
inheritance and the expressiveness of the inheritance strategy (in how
effectively existing classes can be combined), and consequently, that it is
sometimes necessary to expose the inheritance structure in a controlled way.

The trade-off between expressiveness and exposure of inheritance is apparent in
two of the above examples. Firstly, in the example where one wants to avoid
duplication of a shared parent (the sporting and cultural student example);
secondly in the example where one wants to avoid duplicate invocation of a
parent operation (the bounded history point example). In both cases it is
necessary to expose some of the inheritance structure. In the former case both the
‘SportyStudent” class and the ‘Qul tural Student” class must expose the fact that
they inherit from the ‘Student’ class and that they both don’t mind that this
parent will become a shared parent, so that the Student class can be shared in the
‘Sporting&ul tural -Sudent” class. In the latter case either the ‘BoundedPoint’
class or the ‘H storyPoi nt” class must expose the fact that it inherits from the
‘Point” class and that it doesn’t mind that another parent (hopefully with a
similar behaviour) gets inserted between itself and its original Point parent, so
that one of both can be assigned the other as parent (for the purpose of
linearisation).

A possible solution could be devised where the programming language provides
different inheritance operators: one that exposes inheritance and one that does
not expose inheritance (much like in C++). Furthermore, a multiple inheritance
operator that linearises the specified parents must be provided, one that keeps
the inheritance graph as is and one that duplicates specified parents. This is
more or less the direction taken in [Knudsen88], although there, the set of
inheritance operators has been restricted to those that control the duplication
and sharing of shared ancestors (unification inheritance and intersection
inheritance).

In this text we propose a different solution based on mixins. We will extend the
mixin-based approach with a mechanism to resolve name conflicts and we will
show that, given this extension, mixins are sufficient to express all the above
multiple inheritance hierarchies in an effective and simple way. Mixin-based
inheritance was not only chosen because of its capacity to effectively construct
multiple inheritance hierarchies but also for its capabilities to control and
abstract over how these hierarchies are constructed, given the fact that mixins
can be seen as attributes. The scope rules that emerge from the use of nested mixins
also play an important role. We will show that mixins are exactly the right
building blocks to construct (multiple) inheritance hierarchies.

117

Chapter 4

424

118

Mixin-based inheritance

Mixin-Classes

In multiple inheritance languages that linearise the inheritance graph, it is
possible to have classes that have no apparent ancestor but that do invoke parent
operations in a meaningful way. This sort of classes has to rely on linearisation to
be ‘mixed in’ at the appropriate place in the linearised inheritance hierarchy
(i.e. as inheritor from a class that provides the necessary operations). These
classes have therefore been named mixin-classes. The effect is that it is possible
to create mixin-classes that can be applied to (mixed in) a set of different
superclasses (in mixin terminology also called base classes).

A mixin-class in CLOS is a class that has no fixed superclass and as such can be
applied to different superclasses. In CLOS terminology, this means that a mixin-
class can invoke a Call-Next-Method, even though it has no apparent superclass.
Mixin-classes in CLOS depend directly on multiple inheritance, and more
specifically linearisation, for them to work.

The prototypical example is that of a colour mixin-class, that adds a colour
attribute and the associated access methods, and can be applied to classes as
different as vehicles and polygons. A typical example involving the invocation
of parent operations (Call-Next-Method) is the “bounds” mixin that puts
boundaries on the co-ordinates of a geometric figure. The actual base class can be
taken from a set of possible classes. This could be, amongst others, a class Point, a
class Line or a class Circle.

Mixin-Based Inheritance

Contrary to mixin-classes, in mixin-based inheritance, a mixin is not a class (a
mixin cannot be instantiated for example), and multiple inheritance is a
consequence of, rather than the supporting mechanism for, the use of mixins. In
contrast to CLOS, in which mixins are nothing but a special use of multiple
inheritance, mixins are promoted as the only abstraction mechanism for building
the inheritance hierarchy [Bracha&Cook90] [Bracha92] [Hense92]
[Codenie,Steyaert,Lucas92] [Steyaerté&al.93].

To introduce mixins, we must return to our model of inheritance of the previous
chapter. Inheritance was modelled as an incremental modification mechanism
where a parent P (the superclass) is transformed with a modifier M to form a
result R=PAM =P + M(P).

The above model is the essence of the model of inheritance in [Bracha&Cook90]
where it is used as a basis for the introduction of mixin-based inheritance. In
[Bracha&Cook90] it is also shown that mixin-based inheritance subsumes the
inheritance mechanisms provided in Smalltalk, Beta and CLOS.

Whereas in conventional single or multiple inheritance the modifier M has no
existence of its own (generally it is more or less part of the result R), the essence of
mixin-based inheritance is exactly to view the modifier M as an abstraction that
exists apart from parent and result. Modifiers are called “mixins”. The
composition operation A is called “mixin application”. The class to which a
mixin is applied is called the base class. In “pure” mixin-based inheritance,
classes can only be extended through application of mixins.

The A operator sees to it that the parent P is passed as explicit parameter to the
modifier M. In practice a mixin does not have its base class as explicit parameter,
but rather, a mixin has access to the base class through a pseudo variable, in the
same way that a subclass has access to a superclass through a pseudo variable

Specialising the Framework with Inheritance

(e.g. the “super” variable in Smalltalk). In a statically typed language, though,
this means that a mixin must specify the names and associated types of the
attributes a possible base class must provide. This is why mixins are sometimes
called “abstract subclasses”.

cl ass-based inheritance
class RL
inherits PL
extended with NanedAtribute; ... NnedAtribute,

endcl ass

class R
inherits P2
extended with NnedAtribute; ... NanedAtribute,

endcl ass

m xi h- based i nheritance
Mis nmixin
defining NanedAtribute; ... NnedAttribute,

appl i cabl e to base-cl ass with?
SQuper Atributed gnature ... SuperAtributed gnat urep
endm xi n
class RLinherits Pl extended wi th Mendcl ass
class R inherits P2 extended w th Mendcl ass

425 Mixin-Method Based Inheritance

Mixin-based inheritance in the above form is an inheritance mechanism that is
directly based on the model of inheritance as an incremental modification
mechanism. It makes wrappers and wrapper application explicit
[Bracha&Coo0k90] [Hense92]. In this section we generalise mixin-based
inheritance in three ways.

Our mixins are based on a more general form of wrappers, where wrappers can
have multiple parents. The notion of wrappers with multiple parents has
already been pointed out in [Cook89]. The notion of multiple parents will be used
to solve name-collision problems for multiple inheritance hierarchies where the
interfaces are merged.

Furthermore, we extend the use of mixins to object-based inheritance. This sort of
object-based inheritance is similar to implicit anticipated delegation
[Stein,Lieberman&Ungar89], the resulting objects are comparable to split objects
of [Dony,Malenfant&Cointe92]. We will show how this solves the problem of
name-collisions in multiple inheritance hierarchies where the interfaces are not
merged.

And finally we address the question of how mixins can be seen as named
attributes of objects in the same way that objects and methods are seen as named
attributes of classes. The general idea is to let an object itself have control over
how it is extended. This results in a powerful abstraction mechanism to control
the construction of inheritance hierarchies in two ways. Firstly, by being able to
constrain the inheritance hierarchy; secondly, by being able to extend a class in a
way that is specific for that class. Nested mixins are a direct consequence of
having mixins as attributes. The scope rules for nested mixins are discussed, and
shown to preserve the encapsulation of objects.

This specification will be omitted in further examples for reasons of brevity.

119

Chapter 4

120

Mixins with Multiple Parents
Consider the following classical example for multiple inheritance: we have a
class Gar and a class Toy and we want to combine their features to make toy cars.
We want to merge both interfaces, so that only one version of the pri nt-message
is applicable to ToyGar (for the example no other attributes will be considered).
In the definition of the pri nt-method on the ToyGar-class we want to invoke the
print-methods of both parents. That way we can combine e.g. the brand name of
the car and the size of the toy to form the specification of the toy car. To do this,
we need a mechanism to combine the conflicting methods.
Gr-Mxinis mxin
defi ning
i nstance vari abl es brand
met hods
print
brand print
endni xi n
Toy-NIXinis mxin
defining
i nstance vari abl es size
met hods
print
size print
endni xi n
ToyGr-Mxinis mxin
defining
met hods
print
--- invoke print operation of ny 'car' part
--- invoke print operation of ny 'toy’ part
endmi xin

Simple qualified message passing does not work for mixin-based inheritance since
a mixin does not have a single base class that could serve as a qualifier. In the
above example the ToyCar- M xi n mixin has no knowledge of the base classes to

which it will be applied. In fact, it does not even know whether the car or the
toy mixins will be part of the base class to which it will be applied.

'
'
'
'
'
'
'
'
'
'
'
'
'
'
‘
/
i
!

@ ©) ©)

Figure 4.9

Specialising the Framework with Inheritance

The problem here is that we have to deal with a linearised inheritance chain
(figure 4.9b), but we still want to be able to refer to non-direct super classes (i.e.
we want to simulate figure 4.9a). To do this we have to bring some ‘hierarchy’
into the chain. We already mentioned in the introduction that the solution
should be found in mixins that have access to non-direct parents. We therefore
introduced the notion of stubs. Just as mixins, the stubs have to be inserted at the
right place in the inheritance chain (figure 4.9c). In this manner subclasses can
use non-direct superclasses as parameters and ‘mimic” a graph structure in the
linear chain (dashed arrows in figure 4.9c). Stubs then serve as pointers to the
place in the inheritance chain where method lookup should start when invoking
parent operations.

ToyGr-NIxinis mxin
needs Gr-3ub Toy-Sub
def i ni ng
met hods
print
print super:Gr-Sub
print super:Toy-Sub
endmi xi n

cl ass ToyGxr inherits Root
extended with Gr-Mxin defining Gr-Sub for ToyGxr-Mxin
extended wi th Toy-Mxin defini ng Toy-Sub for ToyGr-Mxin
ext ended wi th ToyGxr-Nxin

endcl ass

Using these stubs, a ToyGar -mixin can be created, that solves the name conflicts
appearing when combining Toy and Gar. To avoid problems with self references in
inherited methods, all name conflicts have to be explicitly resolved here. It is
not sufficient to simply resolve name conflicts occurring through combination of
CGar and Toy. Consider different implementations of the pri nt-methods in the Car-
and Toy-mixins, that do a self send of e.g. a message get Nane. This method could
equally well be implemented in one of the ancestors of Car or Toy. It is therefore
necessary to resolve all name conflicts in ToyGar.

The use of stubs must be restricted so that they can only be used to invoke parent
operations of non-direct parents. In the case of the toy car, only the ToyCar -mixin
should be able to use Gar - & ub and Toy- S ub. On the other hand the definition of
stubs cannot put constraints on the order in which mixins are applied. A concrete
realisation of stubs should respect these constraints.

Separated Interfaces

Let us return to the example used in the introduction of the point of view notion on
inheritance. We clearly want to keep the interfaces of the Student and Sport snan
classes strictly separate. We want to be able to treat a SportyStudent as a student
or as a sportsman, depending on the situation. We already mentioned that points
of view are strongly related to incremental modifications of objects in the
prototype-based approach to object-oriented programming.

In the previous discussion we left implicit the fact that mixins can be applied to
objects. However, mixins can be used to dynamically extend objects in a prototype-
based approach to object-oriented programming. New objects can be created by
taking an existing object and extending it with a set of variables and methods.
Similar to mixins in a class-based language we can identify a base object and a set
of extensions. Here as well, extensions can be considered as separate abstractions.
The terminology mixins and mixin application from the class-based case can be
retained. Application of mixins to objects is an important part of the solution to
our multiple inheritance problems. Consider the following example.

121

Chapter 4

122

Fersonis class ...

Sportsnat-Mxinis mxin
-- sane definitions as before
endm xi n

Sudent-Mxinis mxin
-- sane definitions as before
endm Xi n

johnis instance of Rerson;

j:&twsAajortsnan i s john extended with SportsnanMxin;
johnAsAS udent i s john extended with Sudent-Mxin;

In the code displayed above, we first create an instance j ohn of class Person. We
can then create two new objects, j ohnAsASport snan and j ohnAsASt udent, each
representing a different view on j ohn. Being two dynamic extensions of j ohn, they
share its attributes (i.e. the attributes of Person).

Furthermore, as we now send messages to these new objects, the self reference
problem is also resolved. When set GardN is sent to either j ohnAsASport man or
j ohnAsASt udent , sel f get GardN' is accordingly sent to this same initial receiver
object. All Person-messages sent to j ohnAsASportnan or j ohnAsAStudent are
implicitly delegated to j ohn.

Mixins as Attributes: Mixin-Methods

Applying the orthogonality principle to the facts that we have mixins and that
an object consists of a collection of named attributes, one must address the question
of how a mixin can be seen as a named attribute of an object. The adopted solution
is that an object lists as mixin attributes all mixins that are applicable to it. The
mixins that are listed as attributes in a certain object can only be used to create
inheritors of that object and its future inheritors. Furthermore, an object can only
be extended by selecting one of its mixin attributes. In much the same way that
selecting a method attribute from a certain object has the effect of executing the
selected method-body in the context of that object, selecting a mixin attribute of a
certain object has the effect of extending that object with the attributes defined
in the selected mixin. So, rather than having an explicit operation to apply an
arbitrary mixin to an arbitrary object, an object is asked to extend itself. This form
of inheritance has been named mixin-method based inheritance in the previous
chapter.

Inheritance of mixins plays an important role in this approach. If it were not for
the possibility to inherit mixins, the above restriction on the applicability of
mixins would amount into a rather static inheritance hierarchy and duplication
of mixin code (each mixin would be applicable to only one object).

A mixin can be made applicable to more or less objects according to its position in
the inheritance tree. The higher it is defined, the more objects that can be
extended with this mixin. In a programming language (such as Agora) where
mixin-based inheritance is the only inheritance-mechanism available, this
means that all generally applicable mixins (such as a mixin that adds colour
attributes) must be defined in some given root object.

Specialising the Framework with Inheritance

inheritance of a mxin-attribute
--- Root object attributes ---
@lourMxinis mxin

def i ni ng co our

endm xi n

GrMxinis mxin
def i ni ng engi netype
endm xi n

car i s object obtained by GrMxin extension of Roat
--- car inherits @l ourMxin fromthe Root obj ect
col ouredGxr i s object obtained by @l ourMxin ext ensi on of Gr

42,6 Mixin-based inheritance, A Solution o Multiple Inheritance Problems ?

Applicability of Mixins

An object lists as mixin-attributes those mixins that are applicable to it. What
defines applicability of a mixin to an object ? There is no decisive answer to this
question. The possible answers accord to the possible varieties of incremental
modification mechanisms (e.g. behavioural compatible, signature compatible,
name compatible modification, and modification with cancellation) used for
inheritance [Wegner&Zdonik88]. In a regime where nothing but behavioural
compatible modifications are allowed, only the mixins that define a behaviour
compatible modification of a certain object are applicable to that object.

To put it another way, restricting the applicability of mixins puts a constraint on
the possible inheritance hierarchies that can be constructed. This could answer
our desire to constrain multiple inheritance hierarchies.

One such constraint is a mutual exclusion constraint on subclasses. The following
example is taken from [Hamer92]. Consider a Person class with a Female and a
Male subclass. A mutual exclusion constraint on the Female and the Male
subclasses expresses the fact that it should not be possible to multiple inherit
from both Female and Male at the same time. In terms of mixin-based
inheritance, we have a Person class, with two mixin-attributes: Fenal e-M xi n,
and Mil e-M xi n. Once the Female mixin is applied to the person class, the Male
mixin should not be applicable to the resulting class, and vice versa. This mutual
exclusion constraint is realised simply by cancelling the Mal e-Mxin in the
Fenal e- M xi n, and by cancelling the Femal e- M xi n in the Mal e- M xi n. This solution
relies on the ability to cancel inherited attributes. Other more formal solutions
can be developed.

nut ual _excl usion constraint on cl asses
--- MrriedRerson class attributes ---
Fenale-Mxinis mxin

def i ni ng husband

cancel ling Mle-Mxin

endm xi n

Mle-Mxinis mxin
defining wfe

cancel |'i ng Fenal e-Nixin
endm xi n

123

Chapter 4

124

A Global View on the Inheritance Graph with Mixins

Mixin-based inheritance causes explicitly linearised inheritance. The order in
which mixins are applied is important for the external visibility of public
attribute names. Attributes in the mixin override the attributes of the base class
having the same name. In absence of any name clash resolution mechanism,
attribute name lookup is determined by application order.

Apart from this explicit linearisation, duplication of sets of attributes of shared
parent classes (mostly used for duplication of instance variables) can be
controlled explicitly by the programmer as well: not by the order of application,
but by the number of applications of one and the same mixin.

Since mixin-based inheritance gives rise to linearised inheritance, it is obvious
that the undesired duplicate invocation of parent operations can be resolved
with mixins. A possible implementation of the bounded history point can be found
below.

Rin-Mxinis mxin
defining
i nstance variables x y
met hods
noveX dx novey: dy
X =X + X
yi=y+dy
endm xi n

Hstory-Nixinis mxin
defining
i nstance vari abl es history
met hods
noveX dx novey: dy
history record: (“noved to: “, self location)
super noveX dx noveY: dy
endm xi n
Bounds-Mxinis mixin
defining
i nstance vari abl es bounds
met hods
noveX dx novey: dy
if self (location getX+ dX wthin bounds
& (location getY +dY) wthin bounds
then super noveX dx noveY: dy
endm xi n

cl ass BoundedH storyRoint i nherits Root
extended with Roint-Mxin
ext ended wi t h Bounds-Mxi n
ext ended with Hstory-Mxin

endcl ass

As the programmer has total control over the linearisation, there are no
unforeseen insertions of unrelated classes between a class and its parent. This
leads to the preservation of encapsulation of the inheritance hierarchy and
makes parent invocations safe, as one always has control over the direct parent.
It should be noted that the above solution is heavily based on global information
of the inheritance graph. The bounded history point can only be constructed as a
linear chain of the point, history and bounds mixin because we have information
about the way each of them invokes parent operations. Since a mixin is an
abstract subclass, the parent operations it invokes are part of its interface.

Let us now take a look at the common ancestor duplication problem. Reconsider

Specialising the Framework with Inheritance

the examples of the sporty student and the univesity employee that were used to
illustrate the common ancestor duplication problem. It is obvious that these are
examples of the view on inheritance in which the interfaces of the combined
classes are kept strictly separate. They can easily be described in a mixin-based
approach. One remaining problem is that we want duplication of the attributes
inherited from the common ancestor in the first example, while we want only one
shared copy in the latter. This can easily be resolved here by applying an
Enpl oyee-M xi n twice in the first example, and a Person- M xi n only once in the
second. This results in the following definitions.

jonis instance of Rerson

johnAsASortsnan i s john extended with Sportsnar-Mxin ;
johnAsAS udent is john extended with Sudent-Mxin ;

johnAsAlect is john extended wi th Enpl oyee-Mxin Lect-Mxin
johnAsAnAdnin i s john ext ended wi t h Enpl oyee-Mixi n Adnin- Mixi n

Mixin-Methods, Conclusions and Open Questions

In response to our analysis of multiple inheritance we proposed an inheritance
mechanism based on mixins. We extended the mixin-based approach with
mechanisms to resolve name conflicts. We showed that, given these extension,
mixins are sufficient to express an entire range of multiple inheritance
hierarchies in an effective and simple way. Mixins are so expressive because
they allow unanticipated combinations of behaviour to be made. If uncontrolled,
one faces an explosion of possible combinations of mixins. A mechanism to control
this combinatorial explosion is needed. Mixin-methods are proposed as a uniform
framework to control and make abstraction of the way multiple inheritance
hierarchies are constructed. Central to this are the notions of applicability of
mixins and dynamic application of mixins. Due to the treatment of mixins as
attributes, mixins can be inherited and overridden. This introduces an extra level
of abstraction in the way classes are extended that is not available (to the
authors' best knowledge) in present day object-oriented languages.

The approach suggested was based on two different views on the inheritance
hierarchy. In one view the interfaces of the combined classes were merged, in the
other they were kept separate. One question now suggests itself: should it be
possible to combine these two views ? In other words, should we be able to merge
and separate interfaces within one single branch of the hierarchy ? These
problems are related to the problems with split objects
[Dony,Malenfant&Cointe92] and to the modelling of inheritance with explicit
bindings [Hauck93]. They are left open for future research.

Another question that was left open is a more formal approach to restricting the
applicability of mixins. In the next section we will show how mixin
applicability can be restricted when a mixin depends on the implementation
details of the base class it is applied to. A natural form of nesting of mixins will
result from this. Other mechanisms for restricting the applicability of mixins
will be shown in the section on extensions to Agora.

125

Chapter 4

443

Visibility and Nesting in Object-Oriented Languages

Visibility rules are an important issue in the design of a programming language.
In an object-oriented language this is especially so. Names (Identifiers) are very
important in object-oriented languages. Objects are essentially collections of
named attributes and defining an object is essentially the definition of a
collection of names. Furthermore, the notion of encapsulation puts an a priori
restriction on visibility.

This section is not about visibility rules for attributes that are in the interface of
some object and are accessible through passing a message to that object (e.g. this
section is not about different views on one object), but rather about the visibility
rules of the attributes that are directly (i.e. without message passing to an
explicit receiver) accessible for some object, and that are part of this object’s
encapsulated part.

The scope of an identifier is defined as the program code in which this identifier
is visible. A name space is defined as a collection of all identifiers with a same
given scope. Name spaces can be nested.

Most object-oriented languages define the scope of identifiers more or less ad hoc.
In those languages (including Smalltalk), scope rules do not emerge from nesting,
but rather for each kind of “variable” a different lookup strategy is defined.
Smalltalk for example, has a blend of variables (class variables, class instance
variables, global variables, pool variables, instance variables, arguments, local
variables) each with their own visibility rules.

Block and nested structures have come into disfavour in object-oriented languages
(with the notable exceptions of Simula and its descendant BETA). Block
structures provide locality. The lack of locality in e.g. Smalltalk, where all
classes reside in one flat name space, has its drawbacks to structure large
programs?. Block structures are a natural way to hierarchically structure name
spaces (modules are an alternative). Accordingly scope rules can be imposed.
Typically the scope of an identifier declared in some block includes this block
and all the blocks enclosed in it, but not the enclosing blocks.

Introducing block structure in an object-oriented system is a very delicate
operation [Buhr&Zarnke88]. This is because the "natural" form of scoping that
emerges from the nesting of blocks -- identifiers declared in some context are
visible in blocks declared in the same context -- can seriously interfere with the
notion of encapsulation.

One must take care since in an object-oriented language in which objects are
considered to be encapsulated, this encapsulation implies that each object has a
separate name space; similarly strictly encapsulated inheritance implies that
each subobject* within an object has a separate name space. The intention is to
regulate the sharing of name spaces of subobjects. While this breaks the
encapsulation of subobjects, objects are still considered as totally encapsulated,
i.e. access to the encapsulated part of an object is reserved to the implementation
of the public part of that object, but one subobject can access the encapsulated part
of another subobject within the same object (mediated by the above discussed
rules of course).

126

In Smalltalk this is partially remedied with the category concept. Classes are organised into
categories. Categories however are only for documentation purposes.
Each object is composed out of sub-objects according to the inheritance hierarchy.

Specialising the Framework with Inheritance

43.1

Sometimes there is a need to share name spaces between objects, rather than
subobjects. The above mentioned class variables and global variables, as found in
Smalltalk, are examples of such name spaces that are shared by a number of (or
all) objects. In the same way that the scope rules for nested mixins regulate the
sharing of name spaces of subobjects, it is obvious that another set of scope rules
can regulate the creation of shared name spaces for objects. This is normally what
is done with nested classes, and will be discussed in the section on class nesting.

Is There a Need for Scope Rules for Encapsulated Attributes ?

The visibility rules that are discussed in this section apply to the names of the
private attributes of an object. Alternatively, visibility rules can be, and have
been, devised for the names of the public attributes. In the normal case any object
can send any message to all the objects it has knowledge of, provided that the
messages it sends are in the receiver’s interface. Sometimes it is desirable to
restrict this. In its most general form the invocation of a particular method can be
restricted to a limited set of objects. Vice versa, it is possible that all objects that
have knowledge of some common object, can not all send the same messages to this
common acquaintance. In most cases visibility restrictions on the interface of an
object take a particular form. Visibility is, in these cases, based on the fact
whether one object is derived from another object, according to inheritance.

It can be argued that in presence of visibility restrictions on the interface of an
object, there is no need for encapsulated attributes. In fact this is argued in
[Ungar&Smith87] for the programming language Self. We will take a closer look
at this.

Self is a slot-based language, i.e. variable access and method invocation take the
same form. This is realised by access-methods. Each variable declaration
introduces two access-methods: one to retrieve the value and one to store some
value in the variable. Hence no assignment statement nor identifier lookup is
needed in slot-based languages. All variable access takes place by sending
messages.

Uniform access to state and behaviour has certain important advantages. First of
all the message passing paradigm is not diluted with assignment and state access
or identifier lookup. Secondly it allows a programmer to freely re-implement
variable declarations into corresponding method declarations without having to
check all the users of a variable. Furthermore, when inheriting from a class, all
variable declarations can be overridden with method declarations (override
both or one of both access-methods), or vice versa.

Since in slot based languages all variable access is done by message passing, this
leads to very verbose programs. An object that needs to access one of its variables
must send a message to its ‘self’, the receiving object. Special provisions are made
to overcome this problem. For instance, in the language Self all messages that are
sent from an object to this object itself (i.e. to the self) can omit the receiver. In
the remainder of this text messages with an implicitly determined receiver (not
necessarily the self), will be called ‘receiverless messages’.

Self objects are ‘flat” objects. All attributes (called slots) are part of an object' s
interface, including those slots that correspond to what would be called instance
variables elsewhere. Encapsulation is realised by dividing the interface in
public slots and private slots. All possible objects can send messages that invoke
public slots. Only an object itself can send messages that invoke private slots. As
such Self could be called an object-oriented programming language with
encapsulation. Encapsulation depends on the identification of the sender of a

127

Chapter 4

128

message. An object has, as a sender of messages to itself, a greater accessibility to
itself than other objects. However, we will argue that the encapsulation
achieved this way is essentially module based.

Of course, visibility rules for interfaces of objects interfere with inheritance. Are
visibility properties, associated to some method, inherited or not ? This question
is the more relevant, in view of the encapsulation of inheritance, if these same
rules are used to enforce encapsulation. We will explore some variations for
public and private slots, and we will show that only module based encapsulation
can be supported.

A private slot can not only be made visible for the container object itself but also
for its inheritors. This corresponds to non-encapsulated inheritance: an inheritor
can access the private slots of its parent. It should be noted that an object can also
access the private slots of non-direct ancestors. This need not always be desirable.

Conversely, a private slot can be made visible to the ancestors of the container
object. This is not only a prerequisite for exploiting the full potential (i.e. the
ability to override variable slots with methods in inheritors) of slot-based
languages, but results in a cumbersome semantics otherwise. As depicted in the
following figure, an ancestor can only access its own private attributes by sending
messages to the inheritor that it is part of. Consequently the ancestor also has
access to the private slots of its inheritor.

self x

Figure 4.10

Private slots that are visible to ancestors can give rise to module based
encapsulation [Ungar&Smith87]. In prototype based languages parent-objects can
be used to store shared attributes. Typically, the collection of methods that
implement a data type are stored in an object shared by all members of that data
type. Parent objects that are used for this purpose are called ‘traits’ objects in
Self. Traits objects play the role of classes in prototype based languages. The
result is that all objects that belong to a certain ‘data type’ (e.g. all point objects)
are derived from one and the same traits object. The traits object has as ancestor
access to private slots of all the elements of the data type it implements. Every
method in the implementation of the data type has access to the private slots of
the elements of the data type.

Even in cases where private slots are made visible only to an object itself (and not
to its descendants or ancestors), it can be shown that this leads to a degenerate
form of module based, rather than object-based encapsulation. This can be
observed in a method that takes an actual argument that is the same as the
receiver of the method. This method has, in contrast with object-based
encapsulation, access to all the private slots of both the receiver and the
argument object.

As we saw earlier module based encapsulation is useful in cases where for
example two elements of one and the same data type need to be compared. Other

Specialising the Framework with Inheritance

43.2

useful examples include the initialisation/creation of elements of a data type.
However, as we argued earlier module based encapsulation is best provided by a
separate language construction, i.e. modules.

To conclude: although visibility restrictions on the interface of an object are very
useful and can be used as a way to achieve encapsulation, they serve the purpose
of encapsulation far from perfect. The essence of the above is that visibility
restrictions on interfaces allows the separation of private from public attributes,
but nothing is provided to structure the name space of the private attributes. We
will see in the following sections that there is a need to structure the private
name spaces of objects that are more sophisticated. Two important concepts were
discussed in this section: that of slot based languages, i.e. languages where
message passing is not diluted with state access primitives, and that of
receiverless messages, i.e. messages that have an implicitly determined receiver.

Nested Classes, Classes as Attributes

Having classes as attributes, or having nested classes can serve two different
purposes:

® locally visible classes: classes that are only visible in some local context

® Jocally defined classes: classes that are only meaningful in some context

In most object-oriented languages, classes reside in a name space shared by all
objects. Indeed, almost all classes should be visible for all objects. Still, the
ability to have classes that can only be used in a limited context is useful. In most
cases this amounts to having a class as attribute-value of a private attribute of
some object or class. On the other hand for class-based inheritance the ability to
have classes as attributes normally implies class nesting, and as such it is not
possible to have locally visible classes without nesting.

Apart from restricting the scope from some class, a class can be nested in another
class in order to express the fact that a class only has meaning in relation to an
instance from the enclosing class. This kind of nesting usually occurs when the
nested class is a public attribute of instances of the enclosing class. Consider the
following example (example from [Madsen&Maoller-Pedersen89]):

cl ass Gammar

cl ass Synhol
met hods
i sTer nnal
i sNonTer nnal
end Synhal ;
et hods
...granmar nethods cone here
end Gammar ;
d : Gamar; SL: @ Snbd ;
@ : Ganmar; TL,T2: @ Snd ;

A class Grammar is defined and a class Symbol is defined local to this Grammar
class. Notice that there is no sub- or superclass relation between Symbol and
Grammar. The example is such that the class Symbol is a public attribute of
instances of class Grammar. The class Symbol is used to represent the lexical
symbols that occur in a grammar. With each grammar a different set of symbols is
used. This is naturally expressed by the fact that the class Symbol is an attribute
of instances of — and is nested in — the class Grammar. As can be seen in the

129

Chapter 4

433

130

example, instances of the Symbol class can only be created by selecting the
Symbol attribute of an instance of grammar. In fact we can talk about different
‘versions’ of class Symbol. In the example the classes GL. Synibol and G2. Syniol
are different, and in some sense incompatible, classes.

As said before, for class-based inheritance the ability to have classes as
attributes normally implies class nesting. When nesting classes, the scope rules
that are naturally connected with nested block structures result in shared name
spaces for objects. This is obviously apparent in the grammar example. Presume
the existence of a set of instance variables in the class grammar. Instances of some
version of the Symbol class have direct access to the instance variables of the
grammar instance on which they depend. Although the example is taken from
BETA, a language in which objects are not encapsulated, we will illustrate the
effect of nested classes on encapsulation.

Although nested classes can be very useful (as is shown in both [Madsen87] and
[Buhr&Zarnke88]), they can be used by a programmer to break the encapsulation
of objects. The next example is an example of class nesting. Both bl and b2 can
access the same variable i. Modification of this variable in, let' s say b1, has an
effect on the variable seen by a and b2. So, instances of class B can directly access
the instance variables of an instance of class A even if there is no sub or superclass
relation between A and B.

cl ass Aextends SuperGA
i : Integer ;

cl ass Bextends SuperdB
-- i isvisible here!
end B;

end A;

a: A;

bl: aB;

b2: aB

Non-encapsulated inheritance and nested classes do not mix very well. This is
apparent in languages such as BETA [Madsen87]. Identifier lookup is ambiguous,
because in every class, two different contexts can be consulted: the surrounding
block context or the context of the superclass. In the above class nesting example
this ambiguity would be apparent if an instance variable with the name “i” were
defined in the super class of B. This problem is resolved by giving priority to one
of both name spaces in case of a name clash, e.g. by first looking in the super class
chain and then in the surrounding scope (here again the superclass chain must be
searched and so on ...). Ironically, nested classes, that can be used to break the
encapsulation of objects, can only be used unambiguously in a language with
strictly encapsulated inheritance.

Nested Mixins

In most object-oriented languages a subclass can access its superclass in two ways.
One, by direct access to the private attributes of the superclass (direct access to
the implementation details). Two, by access to the public attributes of the
superclass (parent operations). A mixin is applicable to a class if this class
provides the necessary private and public attributes for the implementation of
the mixin. This puts an extra restriction on the applicability of a mixin.

The trade-off between direct access to the implementation details of a superclass
and using parent operations is discussed in [Snyder87]. If a mixin depends directly
on implementation details of the class it is applied to, then modifications to the
implementation of the base class can have consequences for the mixin’s

Specialising the Framework with Inheritance

implementation. A mixin that uses parent operations only is likely to be
applicable to a broader set of classes (it is more abstract). Mixins that make use
of the implementation details of a superclass are said to inherit from their
superclass in a non-encapsulated way; mixins that make use of parent operations
only are said to inherit from their superclass in an encapsulated way.

One solution to this problem is to have all superclass references done through
parent operations. This implies that for each class, two kinds of interfaces must
be provided: a public interface destined for classes (= instantiating clients) that
use instances of that class and, a so called private interface for future subclasses
(= inheriting clients).

The solution we adopt is to differentiate between mixins that don’t and mixins
that do rely on implementation details of the base class they are applied to,
recognising the fact that in some cases direct access to a base class’s
implementation details is needed. To put it otherwise: a mixin is applicable to a
class, if this class provides the necessary private attributes for the
implementation of the mixin, but not all mixins that are applicable to a class
need access to the private attributes of that class. Essentially mixins are
differentiated by how much of the implementation details of the base class are
visible to them.

nested mxin-attributes
--- BaseQass attributes ---
MCis mxin

defini ng

pr oper ToC --- e.g aninstance variab e

MCis nmxin

defining
--- properToCis visibl e here

endm xin --- AMC---
endmxin --- MC---

NotPMCi s miXxin
defi ning

--- properToCis N visibl e here
endm xin --- NotPMC ---

Cis class obtai ned by MCextension of BaseQass
FCis class obtai ned by IMCextension of C
NotRCi s class obtai ned by Not AMC ext ensi on of C

--- both RCand Nt RC are subcl asses of G but the visibility of C
attributes is different for both subcl asses ---

The degree to which a mixin has access to the implementation details of a class
is solely based on whether a mixin is a proper or an inherited attribute of a
certain class. Consider a class C that was constructed by application of a mixin
MC to some base class. There are two sorts of mixins that can be used to create
subclasses of C: mixins that are proper attributes of C (in the example: PMC
defined in the mixin MC) and mixins that are inherited (in the example:
NotPMC). A mixin that is a proper attribute of the class C, has, by definition,
access to the proper private attributes of that class C, and to the same private
attributes that the mixin MC has access to. A mixin that is inherited has no
access to the proper private attributes of the class it is applied to. Note that this
leads in a natural way to, and is consistent with, nested mixins. For a mixin to be
a proper attribute of the class C, it must be defined in (and consequently nested in)
the mixin MC, and according to lexical scope rules has access to the names of the
attributes defined in the mixin MC.

131

Chapter 4

4.4

44.1

132

So, the amount of detail in which a subclass depends on the implementation
aspects of its superclass is determined by the relative nesting of the mixins used
to create the sub- and superclass. Not only are the instance variables defined in a
mixin visible for the method declarations in that mixin, but also those of the
surrounding mixins. A mixin can be made more or less abstract according to its
position in the inheritance tree.

Complete abstraction in mixins can be obtained by not nesting them in other
mixins, resulting in a totally encapsulated form of inheritance, as is proposed in
[Snyder87]. It is called abstract because the resulting subclass must use message
passing to access inherited private attributes.

If abstraction is not required, exposure of inherited private attributes in mixins
can be obtained by making the nesting and inheritance hierarchy the same, i.e.
by nesting the mixin provided to create the subclass in the mixin provided to
create the superclass. Consequently it is very easy to construct Smalltalk-like
inheritance using this approach.

Of course, combinations between full and no nesting at all are possible. The
higher in the hierarchy a mixin is defined, the more objects that can be extended
with this mixin, the more abstract the mixin has to be. Thanks to the fact that
the applicability of a mixin is restricted to the classes where it is defined on, it
is always guaranteed that the resulting object is consistent in the sense that
components referred to through nesting always exist.

It is obvious that the possibility to nest mixins provides the user with a very
powerful tool for building inheritance hierarchies. Instead of promoting one
single strategy for handling encapsulation between inheriting clients (instance
variables are either always or never visible in subclasses) one allows the user to
build his own application specific encapsulation mechanism.

Design of Agora

Introduction

Agora is solidly rooted in the object-oriented paradigm. Agora is a prototype-
based language [Ungar&Smith87] featuring a generalised mixin
[Bracha&Cook90][Steyaert&al.93] approach to inheritance. The extension of
prototypical objects through the application of mixins is embedded in the lexical
scoping of identifiers in Agora [Buhr&Zarnke88, Madsen89]. Consistent
reification [Smith84] is the approach used for capturing features such as name
binding, deferred evaluation, self reference etc.

Any of these features, taken by themselves, do not constitute innovations. Agora
is innovative in the way that these features are bound together in one consistent
language framework. Mixins are specified as methods and mixins are applied in
the same way that ordinary messages are sent. Reification is equally structured
as message passing: reifiers are nothing but methods defined within the bodies of
abstract grammar prototypes. Whereas in most programming languages, e.g.
inheritance and name-binding mechanisms are expressed in structures that differ
fundamentally from ordinary programming structures, Agora requires but one

Specialising the Framework with Inheritance

44.2

programming paradigm for all components of the system.

Agora Syntax

Agora syntax resembles Smalltalk syntax in its message expressions. The
different kinds of message expressions are: unary, operator and keyword
messages. Message expressions can be imperative (statements) or functional
(expressions). For clarity, in the text keywords and operators are printed in
italics.

alring size unary nessage
aSringl + aSring2 operator nessage
a3ring at:index put:aChar keyword nessage

A second category of message-expressions is the category of receiverless messages.
Receiverless messages have the same syntax as the pattern part of message
expressions. Their principal usage is to invoke messages on an implicit receiver,
for example to invoke private methods; they will also be used as part of other
syntactic structures where message patterns need to be manipulated (i.e. method
declarations).

si ze recei verl ess unary nessage (i dentifier)
+asring2 recei verl ess operator nessage
at:index put:aChar recei ver| ess keyword nessage

A third category of message expressions is the category of reify messages®. Reify
messages have the same syntax as message expressions, and respectively
receiverless message expressions except for their bold-styled
keywords/operators. Reify expressions (i.e. reify messages, receiverless reify
messages, and reify aggregates as can be found in the next paragraph) collect all
“special” language constructs in one uniform syntax (comparable to Lisp special
forms). They correspond to syntactical constructs such as variable declarations,
pseudo variables, control structures and many other constructs used in a more
conventional programming language. Reify expressions help in keeping Agora
syntax as small as possible. Special attention must be paid to the precedence
rules. Reify expressions have, as a group, lower precedence than regular message
expressions. In each category unary messages have highest precedence, keyword
messages have lowest precedence.

sel f recei verless unary reifier
a<>3 operator nessage reifier
adefine: 3 keyword nessage reifier

Message expressions can be grouped to form blocks. Blocks are an example of the
third kind of reify expressions, i.e. reify expression whereby the delimiters are
the variable part of the syntax (it is not necessary to have bold styled delimiters
since delimiters are not used for any other purpose). Although other expression
aggregates are imaginable, in this text only blocks will be considered.

[cl define: Gonplex cl one ;
c2 define: Gnplex cl one ;
clrea:3inag 4 ;

2 <- c]

5

In a reflective variant of Agora it is possible to add reify methods, hence the name. Reify
methods are executed ' at the level of the interpreter' in which all interpreter parameters
(context and such) are ' reified' .

133

Chapter 4

443

134

The following shows the concrete grammar of Agora in BNF form. Terminals are
included in quote (“”) symbols. Production rules have the form: ... -> ..., where the
left-hand side is always a non terminal. In the right-hand side of a production
vertical bars (1) are used to indicate alternatives, square brackets ([]) to indicate
optional parts, and curly brackets ({}) to indicate zero or more repetitions.

Agora Concrete Grammar
Expressi on -> ReifierMssage | ReifierPattern | Pattern
ReifierPattern -> ReifierlharyPattern | ReifierQueratorPattern
| ReifierkeywordRattern
Pattern -> UharyPattern | QueratorPattern | KeywordPettern
Rei fi er Mssage -> ReifierQeration { ReifierkeywordRattern }
Rei fierkeywordPattern -> Bol dkeyvord Reifierperation
Rei fi erQperation -> Reifierlhary [Reifier(peratorPattern |
ReifierQperatorPattern -> Bold(perator ReifierQperation
Rei fierUnary -> Mssage { ReifierlharyPattern }
ReifierlharyPattern -> Bl didentifier
Mssage -> (peration { KeywordRattern }
Keyvor dRat tern -> Keyword Qperation
Qperation -> lhary [QperatorRattern]
QperatorPattern -> (perator (peration
Lhary -> Factor { WharyPattern}
WharyPattern -> |dentifier
Fact or ->Litera | Aggregate | “(” Expression “)”
Agregate -> Left Aggregat eSyntool
[Expression { “;” Expression}]
R ght Aggr egat eSyntool
Identifier -> Qharacter { Garacter@Dgit }
Bol di denti fier -> Bl dGweracter { BoldGeracter@Dgit }
Qperator -> (peratorSynioal [Qperator Syntool]
Bol dQer at or -> Bol d(erat or Synool [Bol dQper at or Syntool]
Keyvord -> |dertifier “:”
Bol dkeyvord ->Biddetifier “:”
Litera ->8ringliteral | RealLitera |
IntegerLiteral | GaracterLlitera
Geracter SR S I « S IO B 4
Dagit > O A I IR il
Garacter@Dagit -> Gharacter | Dgit
Bol dChar act er ->tat | b | .| 2"
Bl dD gt ->0"] 1] . 9
Bol dGharacterQDgi t -> Bl dGeracter | BildDgit
Cper et or Syl S B MR IS e
Bol dQper at or Syl Sl DL A R I I I
Lef t Agor egat eSyniool - e
R ght Aggr eget eyl >y

Standard Agora Reifiers

Agora' s syntax consists of two layers. The above given syntax only specifies the
generic or variable layer. Reifiers form the variable part of Agora' s syntax.
Much of the design of Agora is found in the exact list of reifiers that can be used
by the programmer. In the section on reflection we will show how the set of
reifiers can be extended. For the time being we will need a standard set of
reifiers. We will not try to be complete in this list. The idea is to define a vanilla
variant of Agora, that can be used in a subsequent section to be extended with
more elaborate constructions.

Specialising the Framework with Inheritance

Variable Slots
Variables, be it instance variables or local variables, are declared with a
variant of the def i ne reifier. Its three standard variants are listed below.

x defi ne variable declaration reifier
x define: 3 sane, but wthinitial vaue
d <> Dctionary sane, but wth clone of initia vaue

Agora is a slot based language. The value of its variables must be accessed and
modified through message passing. The receiver, however, can, in case of an
access to a private variable, be left implicit. So, a private variable ' x' is accessed
via the receiverless unary pattern ' X and its value is set to e.g. 3 with the
receiverless keyword message ' x3' . An equivalent assignment can be used also:

X vari abl e access
x: 3 vari abl e assi gnnent
X< 3 assignnent reifier; equivaent to the above

A note should be made here. Since receiverless messages are used to access
variables, they must, in contrast with other messages, obey the lexical scoping
when being looked up (more on this in the section on nested mixin methods).

Control Structures

Due to Agora' s nature control structures can be introduced in two ways. The first is
as user defined control structures based on a notion comparable to first class

' blocks' (e.g. Smalltalk) or closures (e.g. Scheme). A second way is by the
definition of reifiers that implement a fixed set of control structures. The former
will be discussed as an extension to Agora in a later section. For the time being,
examples of the standard control structure reifiers are listed below.

a=bifTrue:[a<- 3]
ifFalse:[a<- 4] if reifier

a<bwhileTrue:[a<- a+1] vhile reifier

More importantly Agora has a self pseudo variable reifier and a reifier to invoke
parent operations. Both reifiers are receiverless.

sel f sel f pseudo variabl e reifier

super :(at:3 put:5) super nessage i nvocation reifier; invokes the
parent's ' at:put:' nethod

The self pseudo variable reifier, when evaluated, returns the current receiver.
The super reifier delegates its message argument (which must be receiverless) to
the parent object. The super reifier has a bit of an unusual form. Rather than
having a super pseudo variable, invocation of parent operations looks more like a
control structure. The difference between a super pseudo variable and a parent
invocation control structure is subtle, however.

Note also the difference between receiverless messages and messages to the self
pseudo variable. Both are directed to different parts of the receiver. The former
is used to invoke private operations (and in this variant of Agora only identifier
lookup is supported), the latter to invoke public operations. So ' 8l f X' and " x
generally have a different result.

135

Chapter 4

Mixins & Methods

The following is an example mixin method. This method adds a col our attribute
and its access methods to the object it is sent to. In all the examples that follow,
mixin definitions standing free in the text (top-level mixins), are presumed to be
defined on the root object called (bj ect. So, in the example below, the root object
(oj ect is extended with colour attributes by invoking its addQl our mixin (sending
the message add@l our to it). The resulting Col our Cbj ect object is an inheritor of
(oj ect .

[add@® our M xi n:
[cdour define ;
col our: newdl our Met hod: [col our <- new®l our] ;
col our Met hod: cal our

1
@l ourQy ect define: Qyect add®l our
]

(pj ect is extended with an instance variable “col our” and two methods: an
imperative method colour: and a functional method col our. The body of a
method can be either a block or, for example for functional methods, a single
expression. To the left of the Method: reifier keyword is the pattern to invoke the
method; it has the form of an ordinary message expression, except that it has no
receiver and the arguments to the keywords are replaced by the names of the
formal arguments.

Although we often used the term ' class' in the explanations of the above
examples, Agora is at its heart an object-based language with object-based
inheritance. In fact in ' standard'" Agora no notion of classes exists. Agora' s mixin
method are applicable to objects. An object is extended by invoking one of its
mixin methods.

In Agora, mixins and methods are very similar. Methods are to be considered as
executing in a temporary, local extension of the receiver object. An explicit notion
of closures, or method activation can be avoided due to the object-based nature of
Agora. The difference between methods and mixins is that the one extends the
receiver object only temporarily and the other extends the receiver object more
permanently. Due to this similarity, arguments and local variables of methods
can be defined and accessed in a totally similar way as instance variables. This
opens the question of method declarations local to method declarations. Agora' s
design restricts all declarations within method bodies, to variable declarations !

Object Creation

Agora objects are created by taking copies (clones) of existing objects. In its most
elementary form this takes the form of a clone reifier. A more elaborate cloning
method will be discussed in a later section. Whereas in class-based languages one
talks about classes and instances, in object-based languages one speaks about
prototypes and clones. By convention the names of objects that are consistently
used as prototypes start with an uppercase letter.

pl <- (Pclone) assignacopy of Ptopl

pL<>P declare a newvariable pl wthinitia va ue
acopy of P

Another way to create new objects is by application of mixins to objects. Since
mixins can be applied to objects (rather than classes), different independent

extensions of one and the same object can be made.

In the following example two extensions of a same, shared parent (john) are

136

Specialising the Framework with Inheritance

made. These extensions implement different views on the same object, in this case
to resolve the ' card number' name conflict. This example encodes, in Agora, the
" multiple viewpoint' example from the section on multiple inheritance.

MikeRerson M Xxi n:
[nane define ;
nane: nevhane Met hod: [nane <- nevNane] ;
nane Met hod: nane | ;

MkeSort snan M xi n:
[cardnunbber define ;
nunber : newN Met hod: [cardnuniber <- newN | ;
nuniber Met hod: car dnunfoer] ;

MkeS udent M xi n:
[cardnunbber define ;
nuniber : newN Met hod: [cardnuniber <- newN | ;
nuniber Met hod: nunber] ;

Ferson defi ne: (j ect MkeRerson ;
john <> Rerson ;

j ohnAsASport snan def i ne
johnfsAS udent define ;

j ohnAsASoort snan <- j ohn MikeSport snan ;
johnAsAS udent <- j ohn MkeS udert

john nane: ' j ohn'
j ohnAsASport snan nane ---->"john
j ohnAsAS udent nane ---->"john

j ohnAsASport snan nunioer: 4 ;

j ohnAsAS udent nuntoer: 5 ;

j ohnAsASport snan nuntoer >4
j OhnAsAS udent nuntoer ---->5

An Example of Mixin Nesting in Agora

As said before, a mixin is either nested in another mixin, or not nested at all, to
control the amount of detail to which an inheritor depends on the
implementation of its heir. This is illustrated in the two following examples.

The general idea in the first example is to have turtles which are, in our case, a
sort of point that can be moved in a “turtle-like” way (no drawing is involved at
the moment). The essence is that a turtle user does not manipulate the location
and heading of the turtle directly but uses the hone/tur n/f orwar d protocol.

MkeTurtl e M xi n:
[location define: Roint rhoO theta: Opi ;
headi ng defi ne: Opi ;
position Met hod: |ocation ;
hone Met hod: [location <- Roint rho:O theta: O*pi; heading <- O*pi];
turn:turn Met hod: [heading <- heading + turn] ;
forverd: di stance Met hod:
[location <- location + (Roint rho:distance theta:heading)] ;

MikeBounded M Xxi n:
[bound define: Grcle mlocationr:infinite ;
hone Met hod:

[super:hone ; bound <- Grcle mlocationr:infinite] ;
nevBound: naxFho Met hod: [bound <- Grcle mlocation r:naxRo] ;
forvard: di stance Met hod:

[newtocation define ;

newocation <- location + (Roint rho: di stance theta headi ng) ;

(newkocation - (bound center)) rho > bound r

i fTrue:
[super: (forvard:

137

Chapter 4

138

(((LineSg pl:l ocation p2: new.ocat i on)
intersect:bound) - location)rho)]
i fFal se: [super:(forvard:distance)] 1] 1] ;
Turtle define: Qpyect MkeTurtle ;
BoundedTurtl e def i ne: Turtl e MkeBounded ;
aBoundedTurt| e def i ne: BoundedTurtl e cl one ;
alurtl e defi ne: Turtle cl one ;
aBoundedTurtl e forvard: 1 ;
alurtle forvard: 3

Once the turtle is defined, the next step is to create an inheritor that puts
boundaries on the movements of the turtle. In the example turtles are restricted to
move within the bounds of a circle. For this purpose the f orward method is
overridden in the inheritor that implements this boundary checking. This
overridden forward method uses direct access to the turtle instance variables
| ocat i on and headi ng in its implementation.

For the construction of the prototypes Turtle and BoundedTurtl e, two mixins,
MikeTurtl e and MakeBounded respectively, are defined. To make sure that the
prototype BoundedTurtl e inherits from prototype Turtl e in a non-encapsulated
way, the MakeBounded mixin is nested in the MakeTurt| e mixin. Notice that, since
the MakeBounded mixin is defined only for Turtl e, it can only be used to extend the
Turtl e prototype and its inheritors. Not only is it impossible to extend the root
object (j ect with the MakeBounded mixin since it is not defined for the root object
but also since pj ect does not define the | ocat i on/headi ng instance variables that
are required by the MikeBounded mixin.

Each clone of Turtle and each clone of BoundedTurtle has its own set of
| ocati on/headi ng instance variables. Furthermore, if in the MakeBounded mixin an
instance variable were to be declared with a name that collides with a name in
the MakeTurt| e mixin (e.g. an instance variable with the name “headi ng”), then
each BoundedTurtl e would have two instance variables with this name. One
instance variable would only be visible from within methods defined in the
MikeTur t| e mixin, the other instance variable would only be visible from within
methods defined in the MakeBounded mixin. There is a “hole in the scope” of the
instance variable defined in the MakeTurt!| e mixin. So, there is no merging going
on for instance variables with equal names, neither is it an error to have an
instance variable with the same name in an inheritor (as is the case in
Smalltalk). Notice that identifier lookup is a static operation: the instance
variable that is referred to in an expression can be deduced from looking at the
nested structure of the program. No dynamic lookup strategies are applied.
Similar observations can be made for non-nested mixins. Encapsulating the names
of instance variables in this way is an important aid in enhancing the potential
for mixin composition. This is all the more important if mixins are used to
create/emulate multiple inheritance hierarchies.

Thus, if a mixin is nested in another mixin, objects created by the innermost mixin
are always (not necessarily direct) inheritors of objects defined by the outermost
mixin. However, the reverse statement is not always true. Nesting is not a
requirement for inheriting.

MkeDr aw ngTurtl e M xi n:
[penDown define: true ;
toggl eFen Met hod: [penDown <- penDown nat] ;
forvard: di stance Met hod:
[newRosition define ;

o drRosition define: sel f position ;
super : (forvard: di stance);
newRssi tion <- sel f position ;
penDown i f True:[...drawline fromold position to newposition .]];

Specialising the Framework with Inheritance

MkeDashed M xi n:
[dashd ze define: 1;
set CashS ze: nevd ze Met hod: [dashS ze <- nevd ze] ;
forvard: di stance Met hod:
[penDown
i fTrue:
[1to: (distance div: dashS ze)
do: [super:(forvard: dashdze); self toggeFen] ;
super: (forvard: (distance nod: dashS ze)) ;
penDown <- true]
i fFal se: [super:(forvard:distance)]]

]

15
DawngTurtl e defi ne: Turtl e MkeDraw ngTurtle ;
DashedDr aw ngTurtl e def i ne: Draw ngTurt! e Mkelashed ;

The goal in the above example is to extend the Turtl e object so that it draws, or
does not draw (depending on the status of the pen), on the screen where the turtle
is heading. The drawing capabilities can be added fairly independently of the
implementation of the turtle. Once again the f orward method is overridden. But
all that is needed in the implementation of the overridden f orwar d method is the
old forwar d method and a method that returns the current location of the turtle.
Notice that, even though an accessor method to the location of the turtle must
now be made public, the headi ng instance variable is still encapsulated. The
MakeDr aw ngTurtl e mixin that implements this extension does not have to be
nested in the Turtl e mixin, resulting in a MakeDraw ngTurtl e mixin that can be
applied to other sorts of turtle objects that respect the f orwar d/posi ti on protocol.

Earlier on we said that the MakeBounded mixin could only be applied to the Turtl e
object and its inheritors. Draw ngTurtl e is such an inheritor. We now have two
ways to create bounded drawing turtles. On the one hand, by applying the
MakeDr aw ngTurtle to a B oundedTurtle (D raw ngBoundedTurtle defi ne:
BoundedTurtl e MkeDraw ngTurtle), on the other hand, by applying the
MakeBounded mixin to a Draw ngTurtle (B oundedDraw ngTurtle defi ne:
Drawi ngTurtl e MkeBounded). In this example both results are the same; the
forwar d method in the MikeDr aw ngTurt| e mixin is such that it only draws a line
up to the position where the turtle has moved, even if it moved a shorter distance
than was intended.

It is important to note that the order of mixin application has no effect on the
exposure of implementation details of the applied mixins to each other. The
order in which the mixins MakeDr aw ngTurtl e and MkeBounded are applied has
no effect on the respective exposure of implementation details of the turtle base
object to the inheriting clients Draw ngBoundedTurtl e or BoundedDraw ngTurt! e.
The makeBounded and the makeDrawi ngTurtle cannot access each other’s
encapsulated part (independently of which mixin is applied first), and in both
cases only the MikeBounded mixin has access to the turt| e object’s implementation
details.

It is coincidental in the example that we can choose in which order the mixins
MakeDrawi ngTurtl e and MikeBounded are applied, and that both results exhibit
the same behaviour. Not all mixins are commutatively applicable. Therefore
the order of mixin application must not have an effect on the exposure of
implementation details of the applied mixins to each other.

139

Chapter 4

140

Mixin Methods

The fact that mixin application is realised by mere message passing, and that
mixins can be applied dynamically has clear advantages. In this section we will
give a simple example of dynamic mixin application, and an example of late
binding of mixins.

Mixins can be combined to form chains of mixins that can be applied as a whole.
Chains of mixins are useful to abstract over the construction of complex object
hierarchies. A simple example is given making use of the Turtle objects shown
earlier on. The idea is to construct different sorts of dashed drawing turtles
without having to explicitly create a simple drawing variant, and a dashed
drawing variant for each sort of turtle. This is, of course, the simplest example of
how dynamic mixin application is used to abstract over the construction of an
inheritance hierarchy.

MkelashedDraw ng Met hod: sel f MkeDraw ngTurt| e Mkelsshed ;

CoshedDr awi ngTurtl e def i ne: Turtl e MikelashedD aw ng ;
CashedDr aw ngBoundedTurt | e def i ne: BoundedTurt| e MkeDashedDr aw ng

In the example a chain of mixins is constructed as a method that successively
applies two mixins. A declarative operator (as in [Bracha&Cook90]) to construct
chains of mixins (or even entire hierarchies) could prove useful.

To illustrate the use of late binding of mixin attributes, consider a program in
which two freely interchangeable implementations of point objects exist; one
implementation based on polar co-ordinates and one based on cartesian co-
ordinates. In some part of the program, points must be locally (for this part of the
program only) restricted to bounded points, i.e. points that can not move outside
given bounds. To do this, every point must have a mixin attribute to add methods
and instance variables that implement this restriction. Each of the point
implementations can have its own version of this mixin in order to take
advantage of the particular point representation. For example, the mixin defined
on polar co-ordinate represented points, can store its bounding points in polar co-
ordinates in order to avoid excessive representation transformations. An
anonymous point object (one of which we don’t know whether it is a polar or a
cartesian point; typically a parameter of a generic class) can now be asked to
extend itself to a bounded point by selecting the bounds mixin by name. The
appropriate version will be taken.

MkeCGrtesianFoint M xi n:
[xdefine: 0; ydefine: O;
nove: aFoi nt Met hod: ...;

MkeBounded M Xi n:
[bound defi ne: Girtesi anBasedBounds cl one;
nove; aRoi nt Met hod: ...
]
1

MkeRdl arFoint M xi n:
[rhodefine: O; theta define: Op ;
nove: aRoi nt Met hod: ...

MkeBounded M xi n:
[bound def i ne: Rl ar BasedBounds cl one;
nove: aRoi nt Met hod: ...
]
1
--- suppose Roint is bound to either a Polar or Gartesian Roint
BoundedRoi nt def i ne: Roint nakeBounded

Specialising the Framework with Inheritance

a4.5

The highly expressive combination of nested mixin methods and object-based
programming (apart from the reflective architecture, which will be discussed
later on) is what differentiates this variant of Agora from most object-oriented
programming languages.

The Agora Framework

The experiences, techniques and terminology acquired in building the framework
for Simple can now be put to use in building a framework for a full-fledged object-
oriented programming language. The standard variant of Agora is used for this

purpose.

We will see that the kernel of the framework — i.e. expression, object, pattern
and slot classes —, is shared between Simple and Agora. This should come as no
surprise. The differences between Agora and Simple are important however. In
Simple the encapsulation operator played an important role. In Agora this

operator is abandoned®’, and a more standard way of argument passing is
employed. Simple has no inheritance, inheritance is an important aspect of
Agora. Agora is entirely built around generic expressions, called reify
expressions. So, Agora is not a specialisation of Simple, rather Simple and Agora
are both specialisations of the same framework.

An important aspect of Agora is how much the representation of objects is
affected by the inheritance structure. Especially for object-based inheritance, one
could be tempted to encode the inheritance structure by means of delegation. An
example is given below.

cl ass Shoul dBeDx egat edToyj ect
met hods
abstract delegate pattern recel ver:recel ver
resul t Shoul dBelH egat edTo(hy ect
endcl ass

cl ass Oy ectWthRarent ext ends Shoul dBeDel egat edTo(hy ect
i nst ance vari abl es
slats: St(9at)
parent: Shoul dBelel egat edTohj ect
met hods
concret e del egate: pattern recel ver: recel ver
resul t Shoul dB=Del egat edToy ect
slot :=slots find9at:pattern
if slot found
then [...eva uate the body part of the slot ..]
el se ["parent del egate: pattern recei ver: recel ver]
endcl ass

Incorporating this encapsulation operator in Agora is a non-trivial task due to interference
with Agora’s inheritance. We think, however that it is an important lack in Agora since this
issue is related to the issue of virtual private attributes (that are also lacking in Agora).
Note that this does not mean that encapsulation is abandoned. Agora’s objects still make a
distinction between encapsulated and public attributes.

141

Chapter 4

45.1

142

Here objects (i.e. objects of class (bj ect Wt hParent) that have a parent object,
will, upon reception of a message, look up the corresponding slot in their own set
of slots and delegate the message if the right slot is not found. For this to work,
all objects must be represented as instances of concrete subclasses of the abstract
Shoul dBelel egat edToQyj ect class, that specifies the nature of delegation.

Such an implementation can be discarded as being too operational. In our analysis
of object-oriented programming languages, we discarded those languages that
have an explicit delegation operator. So, when introducing an explicit delegation
operation in the implementation of objects, again, at the implementation level
we have a finer view to distinguish objects than is possible at the programming
language level. Thus, such an implementation is not ‘fully abstract’. We will
show that it is possible, even in the presence of inheritance, to maintain our
abstract representation of objects.

Abstract Grammar, Expression Objects and Reifier Methods

Agora takes the notion of generic expressions to the extreme. Its syntax (see
previous section) is built up solely with message passing expressions and generic
expressions. Generic expressions in their own right are formulated in the form of
message expressions. Message passing forms the kernel of Agora.

Agora Abstract Grammar

Nort Ter ni nal ={ Agoregate, Mssage, ReifierMssage, UharyPRattern,
(QperatorPattern, KeywordPattern, ReifierUharyPattern,
ReifierQueratorPattern, ReifierkeywordRattern }

Ter ninal ={ ldentifier, Cperator, Keyword, Literal, Delimter }
Root = Expressi onSet

--- expansi on sets ---

Expr essi onSet ={ Litera } +{ Aggregate }

+{ Mssage } +{ ReifierMssage }

+ PatternSet + ReifierPatternSet

UnaryPattern } +{ QueratorPattern } +{ KeywordPattern }
ReifierlharyPattern } +{ ReifierQperatorPattern }

+{ ReifierkeywordPattern }

Pat t er nSet
ReifierPatternSat

LY e Yo Vo ~—

I dentifierSet ={ ldentifier }

Cper at or St ={ Qoerator }

Keyvor det ={ keyvord }

Del i mt er St ={ Delinter }

--- productions ---

Mssage -> Expressi onSet x PatternSet

Rei fierMssage -> ExpressionSet x ReifierPatternSet

Rei fi er KeyvordRat tern -> (KeywordSet x Bxpressi onSet)*
ReifierQueratorPattern -> (Qperator Set x Expressi onSet
ReifierlharyPattern -> | dentifierSet

Keyvor dRat tern -> (KeywordSt x Expressi onSet) +
QperatorPattern -> (perator St x Expressi onSet
UharyPattern -> | dentifierSet

Aogregate -> DelimterSet x ExpressionSat*

The class hierarchy that implements Agora’s abstract grammar can be found
below.

Specialising the Framework with Inheritance

Agora Expression Class Hierarchy

Abst r act Expr essi on
MessageExpr essi on (recel ver: Abstract Expressi on, pattern: Abstract Pattern)
Rei fi er MessageExpr essi on (recei ver: Apst ract Bxpressi on,
pattern: Aostract ReifierPattern)
Aggr egat eExpr essi on (expressi ons: Array(Abst ract Expressi on),
del inter: Delinter)
Li t eral Expressi on (val ue Literal Val ue)
Pat t er nExpr essi on (pattern: Abstract Pattern)
Rei fi erPatt er nExpr essi on (pattern: Abstract ReifierRattern)

Abstract Pattern

UnaryPattern (id:ldentifier)

QperatorPattern (op: Querator, argunent: Abstract Expressi on)

Keywor dPat t er n (keys: Aray(Keyword), argunents: A ray(Abst ract Expressi on))
AbstractReifierPattern

UnaryReifierPattern (id:ldentifier)

peratorReifierPattern (op: Querator, argunent: Abstract Expressi on)

Keywor dRei fi er Pat t er n (keys: Aray(Keyvord),

argunent s: Array(Abst ract Expressi on))

I dentifier (nane Sring)

Qper at or (nane Sring)

Keywor d (nane: Sring)

Delimter (left:Sring, right:Sring)

Three forms of generic expressions exist: reifier messages, reifier patterns and
aggregate expressions; instances of the respective expression classes
Rei fi er MessageExpressi on, R eifierPatternBExpressi on, A ggregat eExpressi on.
Their evaluation functions are responsible for dispatching to an appropriate
evaluation method. We will not go into the technical details of this mapping. An
evaluation method that is invoked due to a reifier message is called a reifier
method. We will not go into the details of how reifier methods are represented.
We will use a pseudo code instead for introducing new reifier methods (and we
will see in the section on reflection that this pseudo code is not to far away from
reality).

A reifier method is declared as a special sort of method in an expression or
pattern class. Since it defines an evaluation method, a reifier method has, in
addition to its apparent “subexpression” arguments, a context argument (hidden
at the call site of the reifier). This is reflected in the pseudo code by the using
clause. An example will illustrate this. The example is the declaration of an
assignment reifier method. A reifier method is invoked by an instance of
Rei fi er MessageExpr essi on.

cl ass WharyPattern ext ends AbstractPattern
net hods
reifier < (rightHand: Abstract E¢pression)
usi ng (context: S andar dCrt ext)
...eval uate the right Haind expression, and store the val ue
..inthe context, using the receiver as key

endcl ass
usage in Agora
a<- 3

In a similar vein it is possible to declare reifier classes. A reifier class is created
and its evaluation method is invoked, every time an instance of the class
Rei fi er Patt er nExpressi on is evaluated. The dispatcher function for reifier
patterns creates an instance of the correct reifier class and then sends an
evaluation message to this instance. A reifier class is declared as a special sort of

143

Chapter 4

class. It has an associated pattern (i.e. the name of the reifier pattern that
creates it). The associated pattern automatically contains the declaration of the
instance variables for subexpressions.

reifierclass S fEpression
pattern self
ext ends Abst ract Expressi on
net hods
concr et e eva : (context: S andar dCont ext)
...return the current recei ver fromthe context

endcl ass
usage in Agora
3 +self

Generic aggregate expressions (i.e. generic compound expressions with a variable
number of subexpressions) are a straightforward variation of reifier classes. The
pattern of an aggregate reifier class contains the delimiters for the aggregate,
and a declaration of an “instance variable” for the sequence of subexpressions.

reifiercl ass B ockEpression
pattern [exps: Sequence(Abst ract Expressi on) |
ext ends Abst ract Bxpressi on
net hods
concr et e eva : (context: S andar dCont ext)
...eval uat e each of the subexpressions in the context
endcl ass

usage in a

[g o]

45.2 Message Passing

Like in the implementation of the calculus, the implementation of message
expressions plays an eminent role. Unlike the calculus, in the implementation of
message passing in Agora, parameter passing must be dealt with. Still, the
implementation of message expressions can be done in a way that is independent
of evaluation categories.

Agora Message Passing

cl ass MssageBxpressi on ext ends Abstract Expressi on

i nstance vari abl es

recel ver: Abst ract Expressi on,

pattern: Abstract Pattern
et hods

concret e eval : (context: & andar Gntext 1)

resul t Abstract Mt aQj ect
| ocal vari abl es argunents: A gunent Li st

for each argunent i n pattern do
argunents add: (argunent eval : (context asFunctional Gontext))

recel ver eval : (context asFunctional Gntext))
send: (pattern asGit egory: cont ext)
client:(SandardQient argunents:argunents)
endcl ass

144

Specialising the Framework with Inheritance

In the description of message passing three things should be noted. One is that
arguments are stored in the client object. As announced earlier client objects are
used to carry information from the sender object to the receiver. Notice that
Agora’s client objects are totally unrelated to Simple’s client objects due to the
lack of an explicit encapsulation operator in Agora.

Agora Standard Client

cl ass SandardQi ent
public instance vari abl es
ar gunent s: A gunent Li st
endcl ass

Secondly, and more importantly, note the need for casting the context in the
course of evaluating expressions. In the above case, contexts are cast to ensure that
message expressions can be evaluated in all possible evaluation categories. When
evaluating a message expression, the context in which the entire message
expression is evaluated, and the context in which the receiver and argument
expressions are evaluated can not be (exactly) the same since the receiver and
arguments always have to be evaluated in a functional evaluation category. On
the other hand, the context in which the receiver and arguments of a message
expression are evaluated must be derived from the context in which the entire
message expression is evaluated. So the context in which message expressions are
evaluated is cast to a functional context for the evaluation of receiver and
arguments. The protocol of context objects is adapted accordingly.

Agora Standard Context (Extract)

cl ass S andar dCnt ext
public instance variabl es

met hods
abst ract asFunctiona Gntext resul t S andar dGnt ext
..return aninstance of functiona context wth the sane
...cont ent
endcl ass

The need for casting contexts is not limited to message expressions. Due to Agora’s
extremely simple syntax, evaluation categories play an eminent role, and
thereby also the need for expressing dependencies between evaluation categories.

Finally, a word is in order about the role of patterns in the implementation of
Agora. Unlike patterns in the calculus, Agora patterns that are part of some
program representation, include argument expressions. For this reason an
uncoupling of message patterns that are part of a program representation, and
patterns that are used at run-time is in order. The latter sort of patterns
(instances of the class Abstract GategoryPattern) are mainly used as unique
identifiers. Patterns that are part of a program representation are turned into
patterns that can be used for message passing via the asCat egory message, i.e.
this transformation process must take evaluation categories into account.

145

Chapter 4

453

146

Patterns Used in Expressions Versus Patterns Used in Messages

cl ass AbstractPattern
met hods
abstract asGiegory: & andardntext t
result AbstractGiegoryPattern
endcl ass

cl ass Abstract GtegoryPattern

et hods

abstract = Abstract GtegoryPatternt resul t Bool ean
endcl ass

Apart from message expressions with an explicit receiver, Agora also has
message expressions with an implicit receiver. These are the so called
receiverless message expressions. They are represented as instances of the
Pat t er nExpr essi on class. The implementation of this class is similar to the
implementation of message expressions, except for the fact that the receiver is a
predefined part of the context.

Evaluation of Receiverless Messages

cl ass PatternBxpressi on ext ends Abstract Expressi on
i nstance vari abl es
pattern: AbstractPattern
nmet hods
concret e eval : (context : § andared@nt ext 1)
resul t Abstract Mt aQj ect
| ocal vari abl es argunents: A gunent Li st

for each argunent i n pattern do
argunents add: (argunent eval : (context asFunctional Gntext))

context privatePart)
send: (pattern asGit egory: cont ext)
client:(SandardCient argunents:argunents)
endcl ass

Mixin Application and Object Structures

Agora objects differ from the previously discussed objects, from the calculus, in
different ways. Although the essential protocol of message passing is the same,
Agora objects have a more complex internal structure. Furthermore, since Agora is
essentially a language with side-effects, issues such as object equality and object
cloning must be dealt with. Calculus objects are richer in one way, the
encapsulation operator on objects, that plays such an eminent role in the calculus,
is not present in Agora. We will see that internally, Agora objects will use an
operator reminiscent of Simple' s encapsulation operator. The difference is that
the latter is an encapsulation operator on objects, and the former is more
comparable to an encapsulation operator on generator functions as discussed in the
previous chapter.

A note should be made about the relation of the framework with (nested) mixin
method inheritance. Mixin method inheritance is important for Agora, and it is
this form of inheritance that will be discussed in the framework. The question
then arises whether it is possible to implement other inheritance mechanisms in
the framework. This question can not be answered with a convincing ‘yes’.
Clearly the fact that interaction with objects is limited to message passing (and
not delegation for example) is a serious constraint in this context. Since with
mixin methods, inheritance is based upon sending messages to objects this is no

Specialising the Framework with Inheritance

454

problem. For other inheritance mechanisms such a strong encapsulation probably
is a problem. Accordingly implementing such a mechanism in this framework
will involve extending the framework outside its intended usage, i.e. it will
involve extending the framework in a less reusable fashion.

Agora Internal Object Structure

As we already said before, there exists a plethora of different kinds of objects.
Still, we have opted for, and briefly discussed the advantages of, an abstract
object representation. In casu, objects that can be sent messages. All
implementation details of objects remain hidden in the object representation.
This must be equally true for the inheritance structure of objects. It should not
become apparent in an objects representation whether it inherits (or should
inherit) from another object.

Unlike Simple objects, Agora objects have a complex internal structure. On the one
hand this structure must be hidden in the object representation, on the other
hand, with the eye on extensibility, a complex, and ad hoc, object structure needs
to be avoided.

A solution was found in encoding the object structure as a structure of finer grained
internal objects that communicate with each other with (variants of) delegation.
This solution is based on the fact that it is possible to mimic almost any
inheritance structure with a delegation based system [Lieberman86]. As we will
show in a moment, the notion of delegation is extended to take mixins and objects
with structured private attributes into account.

The general idea is to delegate messages to objects in an explicitly given context.
This context not only encodes how message passing must proceed, but also how the
body of a slot must be interpreted once it has been found. For example, the context
can have a field that stores the original receiver of the object for interpreting
future “self expressions” (which is the original meaning of delegation); it can
have a “parent” field that will either be used to further delegate a message if no
slot is found in the current object that corresponds to the message, or it is used for
interpreting “super expressions” in the evaluation of the slot if it is found; or it
can have an “encapsulated part” field that is used, amongst other things, as the
receiver of all receiverless messages (in casu identifier lookup) that occur in the
evaluation of the body of the found slot.

This will give rise to a set of different (internal!) objects that can be flexibly
combined through delegation. The subset used in the implementation of Agora is
given below. It will be shown how this set of internal objects is used to implement
mixin based inheritance. Abstractly all internal objects respond to a delegate
message that has an extra delegation context argument. This latter argument
encodes all extra delegation information.

Root of the Abstract Internal Object Classes

cl ass Abstract|nternal Qj ect
et hods
abstract delegate GtegoryPattern
client: SandardQi ent
context : Del egat i on@ntext *
resul t Abstract Mt aQy ect
endcl ass

A delegation context is a context in which extra fields can be filled in. The two
extra fields used in the delegation structure for the encoding of mixin methods in

147

Chapter 4

148

Agora are a parent field and a private field.

While delegating a message the parent field contains the parent object of the
object that receives the delegation request. In fact when an object that is not
composed of subobjects receives a delegated message that it does not want to reply
to, it can use the parent field to further delegate the message.

The private field is used in the encoding of objects that have encapsulated
attributes. Again, an object that is not composed of subobjects and that accepts a
delegated message can use the private part of the delegation context to evaluate
its method bodies in.

Contexts Used in the Realisation of Mixin methods

cl ass el egati onGntext ext ends S andar dnt ext
met hods

concrete parent: Abstractinternal ject resul t Del egati onCont ext
--- returns a copy of the context wth a newparent field
concrete private: Asstractinternal @y ect resul t Del egati onCont ext
--- returns a copy of the context wth a newprivate field
concrete noParent resul t Del egati onGnt ext
--- returns a copy of the context wth a enpty parent field
concrete noRrivate resul t Del egati onCont ext
--- returns a copy of the context wth a enpty private field

endcl ass

class Parent@ntext ext ends Del egati onCont ext
public instance variabl es
parent: Abstract!nterna @y ect

endcl ass

cl ass Enhcapsul ati ngGntext ext ends Dl egati onCont ext
public instance variabl es
private: Aostract!nternal Qy ect

endcl ass

Agora’s inheritance structures are constructed by means of instances of the
following three internal object classes. The first class encodes objects that have a
parent object. On reception of a delegated message, this message is forwarded to
the object that contains the locally defined attributes (i.e. thisPart). It is
forwarded such that the parent object (the parentPart) is recorded in the
delegation context. The local part of the object will forward the message to the
parent if it does not respond, itself, to the message.

Concrete Internal Object Classes: 1) Objects with a Parent

cl ass QyectWthParent ext ends Abstract | nternal @y ect
i nstance vari abl es
thisPart: Abstract!nternal Qo ect
parentPart: Abstract|nternal Qo ect
net hods

concrete delegate pattern client:client context: (context: Del egati onGontext V)
resul t Abstract Mt aQj ect
thisPart del egate pattern
client:client
context: (context parent:parentPart)

endcl ass

The second class encodes objects that have encapsulated attributes. Similar to
above a message is forwarded to the object that contains the public attributes

Specialising the Framework with Inheritance

(the publicPart) in a delegation context that records the private part of the
object. The selected attribute in the public part will be evaluated in a context
that is built up with the private attributes found in the delegation context.

This class resembles the Conpound(hj ect class from the implementation of
Simple. The difference is that here attributes are not encapsulated into an object
after the object was created by an explicit encapsulation operator, but rather
they are declared encapsulated when the object is created. This difference has
already been discussed in the section on encapsulation operators for objects in the
previous chapter.

Concrete Internal Object Classes: 2) Objects with Encapsulated Attributes

cl ass Encapsul at edyj ect ext ends Abstract | nternal Qo ect
i nstance vari abl es
publ i cPart: Abstract|nternal Qy ect
privatePart: Abstract!nternal Qyj ect
et hods
concrete delegate: pattern client:client context: (context: Del egati on@ntext)
resul t Abstract Mt aQy ect
“publ i cPart
del egate: pattern
client:client
context: (context private: privatePart)
endcl ass

The last class encodes objects that have no further subobjects, but directly store
slots. These objects are important in this discussion since they will use the
information in the delegation context to respond to delegated messages. First of
all they will use the parent field of the delegation context to further delegate a
message when this message is not locally handled. Secondly, they combine all
other information found in the client (i.e. the information coming from the
sender), and the information from the delegation context. This combined
information is used to evaluate selected slots in. The parent field of the
delegation context, for example, will be used to interpret parent operation
invocations.

Concrete Internal Object Classes: 3) Objects without Subobjects

class 9 npl ey ect extends Abstract!nternal Qy ect
i nstance vari abl es
thi sPart: Sequence(d ot)
net hods
concret e delegate pattern client:client context:(context: Parent Gntext™)
resul t Abstract Mt aQy ect
slot :=thisPart finddot:pattern
if slot
then ~slot val uel n: (context wth:client)
el se M(context parent) del egate: pattern
client:client
context: (context noParent)

endcl ass

The above internal objects can be combined in different ways. The corresponding
delegation contexts must be combined likewise. Delegation contexts can be
combined with an appropriate multiple inheritance mechanism. The exact
details are not important. What is important is that the delegation context in an
actual implementation will be a combination of the two above listed and all
other delegation contexts defined further on in the text.

149

Chapter 4

150

Agora’s inheritance structure can be used to illustrate how the above internal
objects can be combined in a useful way. In the construction of nested mixin
methods, objects with parents are not only used to link all public parts of an
object, but also to link all encapsulated parts of an object. This can best be
illustrated with an example. Figure 4.11 shows the internal representation of the
objects of the following Agora program. This figure is best interpreted from right
to left. The wrapper objects, totally on the right will be explained in the next
section.

[MkeX M xi n:
[xiv define ;
xmMethod: [xiv<- 3] ;

MikeY M xi n:
[yvivdefine;
ymMethod: [xiv<- 4; vyiv<- 8]1];

MkeZ M xi n:
[ziv define ;
zmMethod: [xiv<- 5; ziv<- 9]11];

Foot define: self ;
X define: Root MkeX ;
XY def i ne: X MkeY ;
XYZ def i ne: Y MkeZ]

Each mixin-application adds a set of public attributes and a set of private
attributes to the receiving object. Correspondingly each mixin application results
in the creation of a new ‘layer’ in the hierarchy of internal objects. All layers are
linked by instances of Cbj ect Wt hParent (the linked chain of objects on the right
in the figure). Within each layer the private attributes are associated to the
public attributes with an encapsulated object. Finally, all encapsulated objects
form a hierarchy built up, again, with objects of class Chj ect Wt hParent. This
hierarchy encodes the nesting structure of the mixins in the above program.

Specialising the Framework with Inheritance

455

MakeX
Root
X
XY
XYz
XV
X
yiv
XY
ziv
XYz
SimpleObject EncapsulatedObject ObjectWithParent
slots _ parentPart
publicPart
WrapperObject) ;
@ privatePart thisPart
Figure 4.11

The way the scoping of nested mixins is dealt with is worth noting. The scoping of
nested mixins is totally resolved with inheritance of encapsulated objects. In the
figure both Z, and Y inherit in their encapsulated part from X, without
inheriting from each other.

External Object Structures and Wrapper Objects

Internal objects can not be used directly in the evaluation of expressions. They do
not hide enough details of their implementation, as opposed to meta-objects that
only respond to the pure message passing protocol. Internal details of Agora
internal objects are hidden by wrapper objects. Wrapper objects serve two
purposes: 1) they act as holders of internal objects, thereby hiding their internal
details 2) they are the explicit identity of objects. Wrapper objects are the only
kind of meta-objects in use in the implementation of Agora. All variations on
objects in Agora are due to variations in the internal object structures.

A wrapper object is essentially a forwarder of messages to its wrapped object. All
accepted messages are delegated to the wrapped object, that is stored in the
del egat e instance variable. The wrapped object can be any constellation of
internal object structures. Wrapper objects are responsible for generating recursive
object structures, i.e. wrapper objects record themselves in the delegation context
as receiver object. The recei ver field of the delegation context can be used to
interpret self expressions. The wrapped object is also put in the delegation

151

Chapter 4

45.6

152

context. This has to do with the mechanism to extend a receiver object with
mixins, as will be shown in the next section. A specialised delegation context
with a receiver field and a public field is used in the implementation of
wrapper objects.

Wrapper Objects

cl ass Wapper (i ect ext ends Abst ract Mt aQj ect
i nstance vari abl es
del egate: Aostract|nternal Qj ect
nmet hods
concrete send:pattern client:client result Aostract MtaQy ect
"del egat e del egate: pattern
client:client
context: (Dl egati onGntext recei ver:sel f
publ i c: del egat €)

endcl ass

Agora Delegation Contexts that Record the Receiver

cl ass Del egati ng@ntext ext ends D egati onCont ext
public instance vari abl es
recel ver: Abstract Mt aQy ect
public: Abstract!nternal Qyj ect

endcl ass

Wrapper objects encode the identity of Agora objects. As stated before, since
Agora is an imperative programming language testing objects for identity is an
important operation. Internally objects can have shared structures, but each object
in Agora is represented by a unique wrapper. This allows dramatic changes to the
internal object structures without changes to the identity of an object. An identity
swap operation could easily be defined, for example. It suffices for two wrapper
objects to swap their (private) wrapped objects. Other, more constructive,
examples such as object reclassification can be implemented as easily. Note that
it is this kind of variations that are the useful variations on wrapper objects.

For simplicity reasons we also expect, in the remainder of the text, that all
internal objects have a wrap method. This wrap method puts a wrapper object
around the receiving internal object, or in general hides the internal details of
that object.

Extending Objects, Execution of Mixin Methods

Agora objects are extended by executing mixin methods. A mixin method is like an
ordinary method except that its body is evaluated in a special mixin evaluation
category (this is by the way, a good example of the usage of evaluation
categories). Only block-expressions evaluate in the mixin evaluation category.
They do so by extending the receiver with a new public and private part, and
evaluating all the component expressions in this new receiver.

The evaluation of blocks in the mixin evaluation category is listed below. The
mixin context used in this implementation indicates this evaluation category.
This description may seem a bit involved, but what it actually does is adding an
extra layer to the internal object structures to store public and private slots.

Specialising the Framework with Inheritance

mixin method execution

reifierclass B ockBxpression
pattern [exps: Sequence(Abst ract Expressi on) |
ext ends Abstract Bxpressi on

abstract class attributes
Ext ensi bl eS npl ey ect Ay ect Wt hParent Bncapsul at ed@y ect
nmet hods
concrete eva :(context: Mxi nGntext) result Abstract Mtady ect
| ocal variables privatedots pudicSots privatePart
nyPart publi cRart newRecel ver newGont ext
privateS ots : = Extensi bl eS npl eQyj ect new
publicdats : = Extensi bl eS npl eQy ect new
privatePart := QyectWthParent thisPart:privatedots
parent Part: (context private)
nyPart : = Encapsul at ed(yj ect publicPart:pubicSats
privatePart: privatePart
publicPart := Qy ect WthParent thi sPart: nyPart
parent Part: (context public)
newRecel ver ;= publicPart wap
newdntext := (context aslnperativeCrtext)
privateS ots: privateS ots
publicSots:publicdats
recei ver: nenRecel ver
for each expin exps do
exp eval : newlont ext
newRecel ver
endcl ass

Unlike Simple, Agora objects are not created by first collecting their slots and
then creating an object with this collection of slots. In Agora slots are added to an
object by means of declaration reifiers (e.g. method declaration, variable
declaration, etc.). Declarations and other expressions may be mixed. For this
reason, it must be possible to add new slots to the receiver after it has been
created. This is possible with the following extension to the S npl e(j ect class of
internal objects. With this extension slots can be added to this particular kind of
internal objects. Also the mixin evaluation context must have two fields, each
containing a reference: one to the object in which the public slots of the current
extension are stored, and one to the object in which the private slots are stored.

Adding Slots to Agora Internal Objects

cl ass Extensibl ed npl e(nj ect ext ends 9 npl ey ect
met hods
concret e add: sl ot
slots add: sl ot
endcl ass

Agora Delegation Contexts that Record the Public and Private Slots

cl ass Nixi nGntext ext ends Del egati onGnt ext
public instance vari abl es
pudlicdats: Extensi bl eS npl e ect
privated ats: Extensibl ed npl ey ect

endcl ass

Notice however that only the public and private slots of the current receiver
object can be extended. The context only contains references to the extensible
objects of the current receiver. All other objects can only be accessed via their
wrapper, and they can only be extended by sending mixin messages (i.e. messages
that result in the execution of a mixin method). Encapsulation is preserved !

153

Chapter 4

457

154

Obiject Cloning

Object cloning plays an important role in Agora (as in any object-based
programming language). In some form or another one can expect a cloning
operation for objects. This might take the form of a simple clone method on
objects, or, as we will see later on, more sophisticated constructions are possible.

Given the nature of how objects are represented internally, it is not evident how
cloning must be implemented. First of all, internal objects use a non hierarchical
sharing structure (e.g. in the realisation of nested scoping), this sharing structure
must be preserved after cloning. Moreover, the cloning mechanism must be
extensible, i.e. it must be possible to add new internal objects with their
associated cloning strategy.

The cloning strategy for internal objects is made flexible through the introduction
of clone maps. Clone maps (or a variant thereof) are typically used when copying
circular pointer structures. They record the objects already copied, and associate
each original object with its copy. It is obvious that this information can be used
to copy objects while preserving circular or shared references.

Clone maps provide the classical operations for object cloning. A clone map can be
asked to deep copy an object. Objects already present in the map will not be
copied, rather the associated object in the map will take the place of the copy. A
map can be asked to shallow copy an object. If this object is already in the map,
the associated object is returned.

Clone Maps

cl ass G oneMp

et hods
concr et e shal | on one: Abst ract @ onabl el nt er nal Qyj ect
result Abstract @ onabl el nternal Qy ect
..take a shallowclone of the argunent if not present
..inthe nap
concr et e deepQ one: Abst ract @ onabl el nt er nal Gy ect
resul t Abstract @ onabl el nternal Qj ect
..take a deep clone of the argunent preserving the sharing
..structure
..al ogectsinthe nap wll not be cl oned
..the nap is extended wth the newy copi ed o ects
concr et e shal | oaNoQG one: Abst ract @ onabl el nt er nal (yj ect
...extend the nap wth an identity associ ati on on the argunent
concr et e deepNo@ one: Abst ract @ onabl el nt er nal Qyj ect
...extend the nap wth identity associations of al the direct
...and indirect acquai ntances of the argunent
endcl ass

In our case clone maps are used to achieve a general and flexible object cloning
mechanism. All clonable internal objects must provide three sorts of cloning
operations. An object' s outline (i.e. acquaintances are not copied) is copied with
the shallow copy operation. Deep cloning is used to copy an object' s acquaintances
while respecting the clone map.

Specialising the Framework with Inheritance

458

Abstract Class for Clonable Internal Object Classes

cl ass Abstract @ onabl el nternal (o ect ext ends Abstract | nternal Gy ect
et hods
abstract shalowdone result Abstract G onabl el nternal Gy ect
abstract deepGone GoneMp result Aostract G onabl el nternal Gy ect
abstract deepNoQG one: @ oneMdip

endcl ass

An example of how compound objects are cloned will illustrate the above.

cl ass @ onabl eQy ect WthParent ext ends
Aost ract @ onabl el nt er nal Q) ect,

Gonpoundy ect
met hods

concrete shalondone resul t Aostract G onabl el nternal Qj ect
A onabl eQy ect Wt hPar ent
publ i cPart: publ i cPart
privatePart: privatePart.
concr et e deepC one: cl oneMp resul t Abstract @ onabl el nt er nal Gy ect
publ i cPart : = cl oneMip deepd one: publ i cPart
privatePart := cl oneMp deep one: pri vat ePart
concr et e deepNo@ one: G oneMdp
cl oneMip deepdC one: publ i cPart
cl oneMip deepNbC@ one: pri vat ePart
endcl ass

Finally note that, for now, clone maps are only used when copying the internal
structure of objects. It is often desirable to use clone maps on the level of objects
themselves, or even provide clone maps at the language level. Although this
seems no problem in principle, this was not our initial motivation for the
introduction of clone maps, and we did not further investigate this possibility.
We refer the reader to [Mittal, Bobrow,Kahn86] for this matter.

Mixin, Method and Instance Variable Declaration Reifiers and Slots

A set of reifiers has been defined for adding slots to objects. Listed below are the
mixin and other method declaration reifiers. Their implementation is
straightforward. They just add a slot to the public part of the receiver object.
This slot associates the method pattern to the method body.

Method and Mixin Declaration Reifiers on Patterns

cl ass AstractPattern
abstract class attributes
Mt hodd ot Mxi n9 ot
met hods
rei fier Mthod (rightHand: Abstract Expressi on)
usi ng (context: Mxi nCont ext)
context publicSots add:
(Mthodd ot key: sel f val ue: ri ght Hand)

rei fier Mxin: (rightHnd: Aostract Bxpressi on)
usi ng (context: Mxi nCont ext)
context public9ots add:
(Mxind ot key:self val ue: ri ght Hand)
endcl ass

Reifiers for declaring variables — either local variables or instance variables —
are restricted to unary patterns. Only the define reifier has been listed below, all
other variations have a similar implementation. A variable declaration adds
two accessor slots to the private part of the receiver: one for reading the

155

Chapter 4

459

156

variable, one for writing the variable. These slots share a reference to a variable
holder that stores the value of the variable. As mentioned in the introduction to
Agora, the assignment reifier is interpreted as a message that is sent to the
private part of the receiver object. The equivalent message of assigning for
example the value 3 to an identifier X is the receiverless message x: 3.

Variable Declaration and Assignment Reifiers on Unary Patterns
(Identifiers)

class UharyPattern extends AbstractPattern
abstract class attributes
Veri abl eHbl der ReadVariabl eS ot WiteVari abl eS ot
nmet hods
reifier define using (context:|nperativeCntext)
vari abl eHbl der : = Vari abl eHbl der new
context privatedots add:
(ReadVeri abl ed ot
key: (sel f asFuncti onal Git egoryPat t ern)
val ue: vari abl eHbl der)
context privatedots add:
(WiteVeriadl ed ot
key: (sel f asl nperati veGit egoryPat tern)
val ue: vari abl eHbl der)

reifier < (rightHand Abstract Expressi on)
usi ng (context: | nperativeCntext)
context privatePart
send: (sel f asl nperati veGit egoryPat t ern)
client:(rightHand eval : (context asFunctional Gntext))
endcl ass

The slots that are used in Agora, have the same functionality as slots in the
calculus. We will not go into the details of all the different slots introduced in
the above description. Their implementation is a straightforward extension of
previously defined slots. The context in which slot-bodies are evaluated in Agora
are a direct derivation of the context used in delegating messages. This is logical.
The body of a method is evaluated in a context that is essentially the receiver
object.

Summary of the Application of the Framework to Agora

Whereas the implementation of Simple was used to improve our initial proposal
for a framework (e.g. the introduction of client and context objects, the
introduction of evaluation categories), the implementation of Agora indicates
refinements and extensions to this improved framework.

The most important refinement is the introduction of internal object structures.
This adds an extra layer to the framework. It is a partial concretisation of how
meta-objects can be implemented. The notion of wrapper objects can be important
for the implementation of flexible imperative objects. The framework was
extended with notions such as object cloning. It was shown that a cloning facility
can be constructed while preserving flexibility in the internal representation of
objects.

Most importantly it was shown that the framework, albeit simple in nature, is
general enough to form the basis for the construction of a full-fledged object-
oriented language. It is also important to note that the notions of reifier methods
and classes were consistently used for the entire definition of Agora, except for
message passing. Message passing, which forms the kernel of Agora is the only
built-in language construction.

Specialising the Framework with Inheritance

d 4.6 Extensions to Agora

4.6.1

The framework introduced in the previous section can be used to define a set of
extensions to Agora. The purpose of this section is to illustrate the flexibility of
the framework. In our previous discussions we encountered an entire range of
language concepts that should be supported, either for the construction of
frameworks or for the construction of multiple inheritance, A selection of such
language concepts is presented below. They are expressed in the framework.

Public Instance Variables and Private Methods

The standard set of reifiers for Agora does not include the declaration of neither
private methods nor public instance variables. This is a straightforward
extension however, due to two facts. One is that instance variables are
represented as a "get instance variable", and a "set instance variable" slot, and
that reading and writing instance variables is done through message passing. The
second fact is that we already provide a mechanism to provoke private methods,
i.e. receiverless messages. Their implementation can be found in the previous
section.

[MkeX M xi n:
[xiv publicdefine ;
testRint:a3ring PrivateMethod: [aSring print] ;
test Method: [testRint:"test"]] ;

Xdefine: (yject MkeX;

XXiv:4;
Xxiv print ---- 4 on transcript
Xtest ---- "test" on transcript

]

The implementation of the declaration reifiers for public instance variables and
private methods is straightforward.

Agora Extension: Private Method Declaration Reifier

cl ass Extendedfbstract Pattern ext ends AbstractPattern
et hods
rei fier FrivateMthod: (right Hand: Abst ract Expressi on)
usi ng (context: S andar dCnt ext)
context privated ots add: (Mthodd ot key:sel f val ue ri ght Hand)
endcl ass

Agora Extension: Public Instance Variable Declaration Reifier

cl ass ExtendedUharyPattern ext ends UharyPattern
nmet hods
reifier publicdefine usi ng (context:SandardGntext)
variabl etbl der ;= Vari abl eHbl der new
context publicdots add: (Readvariabled ot key:sel f val ue: vari abl etbl der)
context publicSots add:
(Witevariabled ot key: (sel f asl nperati veGat egoryPat t ern)
val ue: vari abl el der)

endcl ass

157

Chapter 4

4.6.2

158

Cloning Methods

In object-based programming languages there is a need for sophisticated cloning
operations (see for example [Mittal, Bobrow&Kahn86]). Up until now we only
discussed a simple clone reifier in Agora. As an example of a more sophisticated
cloning operation we will show an extension of Agora in which cloning and
initialisation of objects are combined.

For encapsulation reasons it is often desirable to combine initialisation of the
private state of an object and copying of that object. In pure object-based
languages, where new instances can only be made by copying old instances, one
usually needs to initialise the newly created instance after copying it. This is
done with an initialisation method. In most cases this initialisation method
must only be invoked on a newly created instance, but in most languages this is not
enforced. The same problem occurs in class-based languages (in Smalltalk for
example, as a convention between Smalltalk programmers, a special message
category of "initialisation methods" or "private methods" is reserved for this
purpose, in C++ a special copy constructor mechanism is available).

We propose the following alternative where a special category of methods, the
category of cloning methods, is reserved for cloning objects. A cloning method
contains initialisation code. When a cloning method is invoked, it will be
invoked on a copy of the receiver object.

[MkeX M xi n:
[xiv define ;
xiv:newx A oni ngMethod: [xiv <- new] ;
xiv Method: xiv Result:Integer]] ;

Xdefine: Qyect MkeX;

y define: Xxiv:3;
z define: Xxiv:5;
y Xivprint ; --- 3 on transcript
zZxivpint ; --- 5 on transcript

]

The implementation of cloning method slots is less straightforward than can be
expected. This has to do essentially with the scoping rules of Agora and the way
messages are delegated (rather than being looked up) internally. On reception of
a message an object does not know whether this will result in the execution of an
ordinary method or for example a cloning method. So, it can not decide at this
point whether to proceed with a copy of itself or not. This decision can only be
made when a method is found. The point is that by then the (delegation) context
contains parts of the receiver object that is to be copied. Consequently the receiver
object can not be copied as a whole, but needs to be copied part by part, whereby
all parts need to be assembled. Cloning maps are a very suitable solution for this
problem.

Specialising the Framework with Inheritance

4.6.3

Agora Extension: Cloning Methods

cl ass Extendedbstract Pattern ext ends AbstractPattern
met hods
rei fier @ oni ngMthod: (right Haind: Abst ract Expr essi on)
usi ng (context: S andardCnt ext)
context privateS ots add:
Q@ oni ngMit hodS ot key: sel f val ue:ri ght Hand
endcl ass

cl ass GoningMthodd ot ext ends Mthodd ot
et hods
concr et e val uel n: (cont ext : S andar dCont ext)
l ocal variables aMyp parentPart privatePart publicPart
recel ver
aMp : = G oneMp new
parentPart := (aMyp clone:context parentPart).
privatePart := (aMp clone:context privatePart).
publicPart := (aMp clone: context publicPart).
receiver ;= (publicRart wap).
super val ueln: (context parentPart: parentPart
privatePart: privatePart
publ i cPart: publ i cPart
recei ver:recel ver).
r ecei ver
endcl ass

The positive point about this implementation is that it has some interesting
variations. In some cases it is not desirable that the entire receiver is copied. One
variation is that the receiver is only copied up to the point where the cloning
method is found. This can easily be realised. Instead of copying the parent part
from the context (i.e. parentPart := (aMap clone:context parentPart)), the
parent part is inserted ' as is' in the cloning map (i.e.Myp noQd one: cont ext
parent Part). Such variations are useful for the introduction of shared instance
variables or when handling ' split objects’ .

Stubs for Multiple Inheritance

In the section on mixins with multiple parents, a message qualification
mechanism for mixins was discussed. It was based on the notion of inserting stubs
in the inheritance chain. This mechanism can be adapted for Agora. The car-toy
example that illustrated the usage is translated to Agora, extended with stubs,
as follows:

[nakeGr M xin:
[fuel publicdefine:"gasdine" ;
print Method:[sel f fuel print 1] ;

nakeToy M xi n:
[age publicdefine:2;
print Method:[self age print]] ;

CGrSub St ub:
[ToySub St ub:
[MkeGrToy M xi n:
[print Method: [GrSub super:print ;
ToySub super:print]]]
15

Gr <> (yect nakeGr ;

Toy <> yj ect nakeToy ;

ToyGr <> Gr GrSub nakeToy ToySub MkeGrToy ;
aloyGr <> ToyGr ;

afoyGr print]

159

Chapter 4

464

160

Notice that to stay in Agora’s philosophy, stubs are declared in the same way
that methods and mixins are declared (they can even be nested as in the above
example). A stub is inserted in between two mixin applications by sending a
corresponding (stub) message. An object, upon reception of a message that leads to
the selection of a stub-slot, inserts that stub in its inheritance chain. A special
super invocation reifier is provided that takes stubs into account, i.e. to invoke
operations of non-direct parents.

Remark that the above example can also be interpreted in a less operational
manner. A mixin declares the number and formal names of its possible parents
(with the stub declarations). These formal names can be used in parent
invocations. The formal names are bound to actual parents in the mixin
application chain by inserting references to the formal parent names (with stub
applications).

A second remark is about the role of nesting stubs and mixins. A stub name serves
two purposes. It is used in the declaration of a public stub attribute with which
the stub can be inserted in the inheritance chain. When inserted it serves as the
name of a private attribute used in the parent invocation. Since private names
are lexically scoped in Agora, mixins must be nested in the stub declarations of
the stubs they want to use in their parent invocations. In the above example, the
nesting of stubs imposes an order on the mixin-applications with which car-toys
can be made. First a car must be made and then, and only then, this car can be
extended to a toy-car. An alternative stub declaration in which the order of stub-
application is free, can be devised. It would take the form:

{GrSub, ToySub} Stub:
[MkeGrToy Mxin: [..]]

The notion of stubs fits well in the framework. Still, extending the framework
with stubs is a bit more complicated than the previous extensions. We will
confine ourselves to a brief overview.

Agora must be extended with two new reifiers: a reifier to declare stubs and a
reifier to invoke operations of non-direct parents. Upon evaluation, the stub
declaration reifier inserts a ‘stub-slot” in the public part of an object. This stub
slot can be invoked by a (stub) message. The effect is that the receiving object is
extended with a stub-object. This stub-object is set to contain, in a private slot, a
reference to the object to which it is applied. The contents of this private slot is
used by the parent invocation reifier to delegate messages to (a parent operation
invocation is implemented by delegation !). Therefore the stub-object must
contain a reference to the internal representation of the object that it refers to.

The above implementation involves a number of technicalities. How can the stub-
object get a hold on a non-encapsulated version of the receiver object (in fact the
internal representation of the receiver) ? How can we avoid that stub-objects are
passed around and see to it that they are only used in parent invocations ? How
do stub-objects influence object cloning ? We will not go into the details. We only
note that it is possible to solve them within the constraints of the framework.

Single Slot Nested Objects

The standard flavour of Agora includes a fixed set of control structures. In object-
oriented programming languages the construction of user-defined control structures
is an important issue. In general a derivative of closures is employed for this
purpose. The extension of Agora with single slot nested objects goes along these
ways. The idea is to create objects with a single slot (objects that respond to only

Specialising the Framework with Inheritance

4.6.5

one message), and that are dependent on their creation context. An example is
given below. It is the classical object-oriented definition of boolean values. The

' @' reifier combines a pattern and a body for that pattern to a single slot nested
object. The example only features single slot objects that respond to unary
messages, in general operator and keyword patterns can also be used in the
creation of single slot objects. Standard argument passing applies for single slot
objects.

[nakeTrue M xin:
[ifTruetBock ifFal se:fBock Met hod:[tHock true]

1

nakeFal se M xi n:
[ifTruetBock ifFal se:fB ock Met hod:[fBock fal se]

1

True <> Qy ect nakeTrue ;
Fal se <> yj ect nakeFal se ;

aBool ean defi ne ;
aBool ean <- True ;

aBool ean ifTrue (true@"this" print])
i fFdl se: (fal se@"that" print])
]

Again, we will only give a brief overview of how the framework must be
extended. Single slot nested objects are best regarded upon as a variation of
wrapper objects. They are objects that reinterpret the notion of self reference and
private attributes. Single slot objects inherit their ' self' and their private
attributes from the surrounding context. This is the basis for their
implementation. They are wrapper objects that contain a reference to the context
in which they are created, and a reference to a single slot. Upon reception of the
appropriate message, the body of this single slot is evaluated in the stored
creation context. Single slot nested objects are a good example of the useful
variations on wrapper objects.

Classes

Agora is at its heart a prototype based programming language. Still, following

the analysis of a previous section, classes can be reintroduced. It suffices to make

a distinction between ' class' objects and ' instance' objects. In the following
example this distinction is introduced by the ' class' reifier. Variables declared
with the class reifier can only contain class objects. Class object can only be sent
mixin and cloning messages. A clone of a class object is an instance object. Instance
objects can not be sent mixin nor cloning messages.

MikeRerson M xi n:
[nane defi ne ;
nane: newhNane d oni nghet hod: [nane <- newNane] ;
nane Met hod: nane | ;
MkeSoortsnan M xi n:
[cardnunbber define ;
nuniber : newN A oni nghet hod: [car dnunber <- newN | ;
nunier Met hod: car dnunfoer | ;

Ferson cl ass: @ ect MikeRerson ;
Sport sRerson cl ass: Ferson MikeSport snan ;

john defi ne: Rerson nane: ' John';

161

Chapter 4

4.6.6

4.6.7

162

Class objects are another good variation of wrapper objects. They are wrapper
objects that filter the accepted messages. They do so by heavily relying on the
notion of pattern-categories. All messages received by a class object are delegated
to the internal object structures in a special pattern category that is only
compatible with mixin and cloning patterns. All messages received by an instance
object are delegated to the internal object structures in a special pattern category
that is not compatible with mixin and cloning patterns. Accordingly, a mixin
message sent to an instance object results in a' message not understood' error.

Abstract Methods, and Abstract Class Atftributes

Obviously the introduction of abstract methods is a very easy extension of the
framework. It suffices to define an abstract method declaration reifier that stores
an abstract method slot in the public part of an object. This slot responds with an
error when selected. Or, even better, the cloning of objects could be adapted such
that an object with an abstract method slot returns an error when cloned.
Concretisation of an abstract method relies on method overriding. In a statically
typed variant of Agora the information provided by an abstract method
declaration could be useful.

MkeButton M xi n:
[draww ndow Abst r act Met hod]

The introduction of abstract class attributes is less trivial. Concretisation of
abstract class attributes relies on overriding of private attributes. Since in
standard Agora private attributes are lexically scoped (and not dynamically)
this proves to be a problem. In fact, the lack of overridable private attributes is
an open problem for Agora. Preliminary investigations have shown that the
solution is closely related to introducing an explicit encapsulation operator in
Agora (such as can be found in Simple), thereby simplifying the entire structure of
internal and context objects. This needs further attention.

A Simple Form of Monotonic Reclassification

Mixins can be applied to objects. The result is a new extended object, that shares
the parent object with all other such extensions. In some cases an object must be
extended without resulting in a new object. This is a form of monotonic
reclassification. Consider the following example. A person john becomes a doctor.
Note that john truly becomes a doctor: all the references to john see john as a
doctor after the object that represents john is extended. In an extension of Agora
this is realised by applying a mixin in an imperative manner (previously all
mixin applications returned a result: the extended object).

MikeRerson M xi n:
[nane defi ne ;
nane: neviNane d oni nghet hod: [nane <- neviNang] ;
printnane Met hod: [nane print]] ;

MkeDoctor M xi n:
[printnane Met hod:['Dr. ' print ; super:printnang]] ;

Ferson defi ne: (b ect MkeRerson ;

john defi ne: Rerson nane:' John' ;
johny <- john ;

john MkeDpctor ;

johny print nane --- prints Or. John

Specialising the Framework with Inheritance

Wrapper objects play an important role in the implementation of the above
imperative mixins. The idea is to extend the internal object structures of an object
while keeping the same wrapper object. For the rest normal mixin application
does it.

The above is a simplified form of reclassification. It allows for an object to gain
new attributes. More powerful mechanisms are imaginable. A similar notion to
stubs, for example, could be used as marker points to drop attributes from an object.

4.6.8 Classifiers

Mixins tend to split up the inheritance hierarchy into small chunks of behaviour.
Generally, the number of attributes declared in a mixin is much smaller than the
number of proper attributes declared in a class with a ' plain' inheritance
mechanism. Therefore mixins form highly combinable primitives for the
construction of objects. On the other hand a mechanism is needed to manage this
combinatorial explosion. In the multiple inheritance literature the notion of
classifiers [Hamer92] or inheritance dimensions [McGregor&Korson93] has
already been proposed for this purpose. Classifiers can be easily adapted for
mixin methods.

Consider the following example. The fact must be recorded that the mixin to turn
a person into a female can not be combined with the mixin to turn a person into a
male. The notion of gender is introduced at the level of persons. It is formally
declared that a person can be classified according to its gender (i.e. a person can
have a gender dimension in her/his inheritance chain), but can only be classified
once according to the gender. Both the MakeFenal e and the MakeMal e mixins
subscribe to the gender classifier. An attempt to apply both to the same person
will result in an error.

MkeRerson M xi n:
[gender Excl usived assification ;

1

MikeFenal e M Xi n:
[dassification:gender ;

]

MkeMl e M xi n:
[dassification:gender ;
]
The evaluation of classifier declarations results in the insertion of classification
slots into an object. A classification slot will contain the mixin patterns of the
mixins applied to the object that contains the slot. Each mixin application must
check and update classification slots for possible conflicts. In an actual extension

of the framework this can be realised by an ingenious system of delegating
classifier information. We will not go into the details.

Other useful classifiers have been investigated. A covering classifier for example
can be used to enforce the application of at least one mixin out of a selection of
mixins. An object that is not complete with respect to a covering classifier is an
abstract object.

163

Chapter 4

4.7

164

Conclusion

In this chapter we discussed how our framework can be refined with an
inheritance mechanism by adding a layer to it.

For this purpose we discussed the design issues that are involved, including issues
such as multiple inheritance, constraining inheritance hierarchies, scoping
issues, ... We came up with a novel inheritance mechanism on objects called
mixin-methods, and discussed a language (Agora) that incorporated this
inheritance mechanism. Other salient features of Agora are: it has a minimal
syntax — essentially message passing syntax — due to its extensive use of reifier
expressions; it is slot based; it features nesting of mixin-methods; it is prototype
based.

We discussed a framework layer that handles mixin-method based inheritance.
We showed that this layer is a refinement of our basic framework due to the fact
that the mixin-method inheritance mechanism can be totally encapsulated, i.e.
it has no effect on the interface of meta-objects. We discussed an internal object
representation that can be used to implement mixin-methods. We also discussed
cloning (or copying) mechanisms for objects.

Finally we showed how the refined framework can be used to define a set of
useful extensions to Agora.

