ARITHFDCT TAL B INTEL L L FGIEINICTE

LaBlor[alolrly

Pattie Maes

'COMPUTATIONAL REFLECTION

technical report 87.2

A oA A A0 A S A A AN AT I o 7oA H A,
R »\‘S&\\}@s}\&\&\\“\\\\\\ Y

LIS,
A
SHALAAY,

N S
NN %

Yo A]

LA o
o A T AT,

[
R R R TR R AR AR

N Pattie Maes
'COMPUTATIONAL REFLECTION

technical report 87.2

for my parents

Abstract

Computational reflection is a new approach for introducing modularity in
programs. This work makes two original contributions towards a better
understanding and utilisation of this approach. The more general contribu-
tion is that it brings some perspective to various issues in computational
reflection. A definition of computational reflection is presented, the impor-
tance of computational reflection is discussed and the design and construc-
tion of architectures that support reflection is studied. Illustrations are
drawn from different sorts of languages inéluding procedural, logic-based
and rule-based languages. The more specific contribution is that it presents
the first effort to introduce reflection in an object-oriented language. The
implementation of a concrete reflective architecture is worked out and the
- programming style made possible by this architecture is extensively illus-
trated. The examples show that a lot of programming problems that were
previously handled on an ad hoc basis, can in an architecture for computa-
tional reflection be solved more elegantly.

Keywords:

Artificial Intelligence, Introspection, Meta-Architecture, Meta-Knowledge,
Object-Oriented Language, Programming Language, Reflection, Reflective
Architecture, Self-Reference.

Carlo Maria Mariani
La Mano Ubbidisce all’Intelletto, (1983)

Summary Table of Contents

Abstract

Summary Table of Contents

Table of Contents

Acknowledgements

Introduction

Chapter I: What Is Reflection

Chapter II: Uses of Reflection

Chapter III: Examples of Reflective Architectures
Chapter IV: How To Build a Reflective Architecture
Chapter V: Design Issues

Chapter VI: Implementing a Reflective Architecture
Chapter VII: Examples of Programming in a Reflective Architecture
Overall Conclusion

Bibliography

Table of Contents

Abstract

Summary Table of Contents
Table of Contents
Acknowledgements

Introduction

1. Sketch of the Problem
2. The Proposed Solution
3. Contributions

4. Overview

Chapter I: What is Reflection

1. Introduction
2. Definitions
2.1. Computational Systems
2.2. Causal Connection
2.3. Meta-Systems
2.4. Reflective Systems
2.4.1. Example 1
2.4.2. Example 2
2.4.3. Example 3
2.5. Meta-Programming Versus Reflective Programming
. Languages with Reflective Facilities |
. Languages with a Reflective Architecture
. Reflective Architectures Versus Meta-level Architectures
. Conclusions

N L bW

10
11

13

13
13
13
15
17
19
21
22
22
24
25
27

28
33

Chapter II: Uses of Reflection

7.

Chapter III: Examples of Reflective Architectures -

Chapter IV: How To Build a Reflective Architecture

B R

. Introduction
. Reflective Computation about ones Program:

Computation about the Problem of Control

. Reflective Computation about ones Data:

Table of Contents

36

36

38

Maintenance, Acquisition and Communication of Knowledge 42

Dynamically Modifiable Interpreters

Handling Exceptions

. What Not To Do with Reflection: |

Dangers of Reflection
Conclusions

Introduction

Reflection in a Procedural Language
Reflection in a Logic-Based Language
Reflection in a Production Rule System
The Power of a Reflective Language
Conclusions

1. Introduction o
2. The Self-Representation of a System
2.1. Introduction

2.2. The Meta-theory of the Language

2.3. The Reference Mechanism
3. Programming Reflective Computation
3.1. Introduction
3.2. Level-Shifting Triggers
3.3. Computation after a Level Shift
4. The Causal Connection Requirement
4.1. Introduction -

- Reflective. Computation about the Program of the Executer:

- 46

. Reflective Computation about the Data of the Executer:)

49

51
53

55

55
57
63
69
76
78

79

79
79
79
80
83
86
86
86
87
88
88

4.2. Examples
5. Reflective Languages
6. The Cost of a Reflective Architecture
7. Conclusions

Chapter V: Design Issues

1.
2.

Introduction
Theory Relativity of a Reflective Architecture
2.1. Introduction o
2.2. The Terminology of the Meta-Theory
2.3. A Space of Variations

2.3.1. Introduction

2.3.2. Syntax

2.3.3. Denotation

2.3.4. Deduction/Computation

2.3.5. Operation

. Variations on Programming Reflective Computation

3.1. Introduction
3.2. Implicit Reflection
3.3. Explicit Reflection

. Type of Causal Connection

4.1. Introduction

4.2. Procedural Reflection

4.3. Declarative Reflection

4.4. Read-Only Reflective Representations

. The Problem of Reflective Overlap
. A Classification of Existing Reflective Architectures
. Conclusions

Chapter VI: Implementing a Reflective Architecture

1.
2.

Introduction

Brief Introduction to KRS

2.1. Data-Structures _

2.2. Programs and Computation
2.2.1. Introduction

Table of Contents

90
95
96
98

L

99
100
100
100
104
104
105
106
106
107
108
108
109
110
111
111
111
112 .
114
115
116
117

120

120
122
122
125
125

Table of Contents

2.2.2. Sending a Message 126

2.2.3. Creating an Object : 126
2.2.4. Inheritance : 127
3. Representing Programs as Objects | 128
4. The Self-Representation of an Object-Oriented System 132
4.1. Introduction 132
4.2. The Meta-Theory ' : 133
4.2.1, Introduction 133
4.2.2. The Default Meta-Object 134
4.2.3. The Meta-Objects of Program-Objects 137
4.3. The Reference Mechanism 139
S. The Causal Connection Requirement 141
5.1. Introduction | 141
5.2. Meta-Circularity of Program-Objects 141
5.3. Meta-Circularity of Objects 144
6. Programming Object-Oriented Reflection _ 148
6.1. Introduction 148
6.2. Implicit Reflection 149
6.2.1. Local Implicit Reflection 149
6.2.2. Default Implicit Reflection _ 153
6.3. Explicit Reflection 154
7. Related Work | ' 155
7.1. Introduction " 155
7.2. Comparison with Existing Object Oriented Languages 155
7.2.1. Introduction 155
7.2.2. The Need for Reflective Facilities 156
7.2.3. The Evolution Towards a Reflective Architecture 158
7.2.4. Distinct properties of 3-KRS 160
7.3. Comparison with Existing Reflective Architectures 162

~ 8. Conclusions _ - 163

Chapter VII: Examples of Programming in a Reflective Architecture 166

1. Introduction 166
2. The 3-KRS Environment ' 168
3. Demonstration of the Use of Meta-Objects 170

Table of Contents

3.1.- An example Computational System 170

3.2. Variations on the Language 174

3.3. Frames 177

3.4. Tracing 182

3.5. Improving the Object-Computation 185

4. Conclusions ..1_88.
Overall Conclusion 189
Bibliography 191

Acknowledgements

First of all I would like to thank my supervisor Luc Steels for teaching me
that research is a playful and fascinating activity. I would also like to thank
him for creating the material and intellectual environment that made this
work possible.

Apart from Luc Steels, some other people substantially improved the
presentation of this work. Walter Van de Velde, Kris Van Marcke and Ken
Haase all read this text very carefully and provided very useful comments.
I also would like to thank the members of my thesis committee, Pierre
Cointe, Michel Sintzoff, Theo D’Hondt and Anton Nijholt for the valuable
suggestions they provided.

The members of the VUB AI-LAB provided a stimulating and cordial
environment. The people I share my office with, Viviane Jonckers, Kris
Van Marcke and Walter Van de Velde were always willing to discuss open
questions or solve technical problems.

I also profited from a most interesting stay at the Xerox Palo Alto Research
Labs, which gave me the opportunity to personally interact with many of
the leading researchers in this field.

Finally, I would like to thank the Belgian National Fund for Scientific
Research whose fellowship I enjoyed the last three and a half years. The
research presented in this work was also partially supported by ESPRIT
project 440 "Message Passing Architectures and Description Systems” and
the COST-13 project on "Advanced Issues in Knowledge Representation”.

Introduction

1. Sketch of the Problem

Most computational systems exhibit besides object-computation, i.e. compu-
tation about their problem domain, also reflective computation, i.e. compu-
tation about their own computation. Examples of reflective computation are:
to keep- performance statistics, to keep information for debugging purposes,
stepping and tracing facilities, interfacing (e.g. graphical output, mouse
input), computation about which computation to pursue next (in the case of
non-deterministic programs), self-optimisation, self-modification (e.g. in
learning systems) and self-activation (e.g. through monitors or deamons).

Reflective computation does not directly contribute to solving problems in
the domain of the computational system. Instead, it contributes to the inter-
nal organisation of the system or to its interface to the external world. Its
purpose is to guarantee the effective and smooth functioning of the dbject-
computation. This work argues that reflective computation is so inherent in-
real world computational systems that it should be supported as a fundamen-
tal tool in programming languages.

Programming languages today do not fully recognise the importance of
reflective computation. They do not provide adequate support for its modu-
lar implementation. For example, if the programmer wants to follow tem-
porarily the computation, e.g. during debugging, he often changes his pro-
gram by adding extra statements. When finished degugging, these state-
ments have to be removed again from the source code, often resulting in
new errors.

Introduction

Some types of reflective computation might be supported by a programming
environment for the language. Nevertheless, in general the reflective com-
putation of systems has to be programmed in ad hoc ways and reflective
code has to be mixed into object—level code. Often programmers are forced
to re-implement reflective computation over and over again for every new
application. '

2. The Proposed Solution

Important advances in programming are often the result of the introduction
of larger modular structures. Consequently, the evolution of programming
languages is characterised by a search for more modularity. We believe
that explicit support for reflective computation is such a step towards more
modularity.

Reflective architectures are architectures which provide tools for handling
reflective computation explicitly. First of all they support the decomposition
of computation in separate modules for object-computation and reflective
computation. They also provide the tools to program these types of compu-
tation independently and to assemble them later without too many interaction
problems.

The decomposition of computation into object-computation and reflective
computation introduces more modularity into computational systems. . As is
generally known, enhanced modularity makes computational systems more
manageable, more readable and easier to understand and modify. But these
are not the only advantages of the decomposition. What is even more
important is that it becomes possible to introduce computational abstractions
which facilitate the programming of reflective computation the same way
abstract control-structures such as DO and WHILE facilitate the program-
ming of control flow.

A computational system implemented using a reflective architecture has data
representing its own object-computation. The system is able to access and
manipulate those data at run-time. These data are causally connected to the
object-computation itself, which means that they are always a faithful
representation of the computation and that changes to the data are also

Introduction

reflected “in the ‘actual -object-computation of the system. A reflective archi-
tecture should support frequently used operations on those data.

For example, in a computational system.simulating a chemical process, the
code which describes the computation that has to be pursued is intertwined
with code that specifies how statistics of the simulation should be kept, how
the graphical output should be constructed, how a backtrace of the course of
the process is built up, etc. This simulator would in a reflective architecture
consist of object-level modules which contain code specific to the simulation
domain, and reflective modules ‘which contain code concerned with this
computation. '

There would. for example be a module . for keeping statistics, one for han-
dling the graphical output, one that builds up a backtrace of the course of
the process, one that organises the data-directed style of computation, etc.
The two types of modules are linked to each other, such that the data of the
reflective modules are’ causally connected to the appropriate entities in the
computation ‘of the object-level modules.

The run-time computation of the simulation system would then take place at
two levels. The computation at the object-level takes care that the simula-
tion is performed. It manipulates data representing the problem domain.
The computation at the reflective level takes care of the internal organisation
of the computational system and its interface to the outside world. It mani-
pulates data représentixig the actual object—levél ‘computation that is going on.

3. Contributions '

The original contributions made in this work are of two types. A first type
is of a more general nature. Although many people, especially those from
the Artificial Intelligence tradition, have intuitively felt the importance of
reflection, particularly for building intelligent systems (Hofstadter,1981)
(Doyle,1980) (Perlis,1985), the issue has until now mostly been covered by
studies of a more philosophical or a more theoretical nature. We believe
that progress in this area can only be made through solid technical work.

- 10 -

Introduction

The issues related to the computational aspect of reflection, i.e. how
reflective systems can be built, are very complex and at the moment still
badly understood. The first international workshop on computational
reflection took place only recently (Maes and Nardi,1987). This work
presents a first attempt to make a complete, technical study of the issues in
computation reflection. It presents a definition of computational reflection,
identifies the notion of a reflective architecture, discusses what to do and
what not to do with reflection, studies design issues of reflective architec-
tures, including the components and possibilities, and the relation between
function and structure.

The second type of contribution is of a more specific nature. Although a
reflective architecture has already been realised for procedural, logic-based
and rule-based languages, this work presents the first realisation of a
reflective architecture in an object-oriented language. It extensively
describes how a reflective architecture was realised in the language KRS by
means of accessible object-oriented circular interpreters. This experiment
shows that the well-known advantages of an object-oriented language have
also a substantial value for reflective architectures, and that object-oriented
languages may also gain from this confrontation.

4. Overview

Chapter I presents a definition of computational reflection. It defines con-
cepts such as computational systems, meta-systems and reflective systems.
It also discusses languages which provide facilities for implementing
reflective computation. It shows that there exist a lot of languages with lim-
ited, compiled-in reflective facilities, but only few that provide an explicit
and uniform architecture for reflection. The latter type of languages will be
called languages with a reflective architecture.

Chapter II shows that reflection is a fundamental concept in real-world pro-
‘gramming that should consequently be supported by any high-level program-
ming language. It presents concrete examples of programming problems
which would in languages with reflective facilities be greatly facilitated.

211 -

Introduction

Chapter III presents examples of existing languages which were designed for
supporting reflective computation. The design and use of a procedural, a
logic-based and a rule-based language with a reflective architecture are
presented. The chapter argues that these languages support a new form of
modular programming.

Chapter IV identifies the common problems that have to be faced when
building a language with a reflective architecture. It also discusses the tech-
niques that can be used to solve these problems.

Chapter V focuses on the relation between the structure of a reflective archi-
tecture and the reflective fuctionality that results. It argues that the reflective
architectures that have already been built have only explored a fraction of
the designs that can be adopted.

Chapter VI illustrates issues in the implementation of a reflective architec-
ture with a concrete example. It shows how a reflective architecture can be
built into an object-oriented language. The discussion describes a concrete
experiment that was performed to realise a reflective architecture in the
language KRS (Steels,1986). The chapter also surveys the facilities for
reflection provided by existing object-oriented languages and stresses the
innovations of this new language.

Chapter VII illustrates by means of the same experiment what programming
in a reflective architecture is like. It shows how a lot of programming
problems that were previously supported on ad hoc basis can by means of
such a reflective architecture be solved more elegantly. Examples presented
include interfacing, tracing and metering, variations on the language, and
self-optimisation.

We conclude with a summary of the achievements and some topics for
further research.

- 12 -

CHAPTER 1

What is Reflection

1. Introduction

Although “reflection” is a popular term these days, it does not yet have a
well-established meaning and is certainly not used in a uniform way. The
purpose of this chapter is to introduce a definition for this concept and thus
lay a foundation for further discussions. We will define a reflective system
as a computational system that reasons and acts upon itself. In order to sub-
stantiate this definition we will discuss relevant concepts such as computa-
tional system, meta-system and causal connection. At the end of the chapter
the notion of a reflective architecture is introduced.

2. Definitions

2.1. Computational Systems

A computational system (here called a system) is something that reasons
about and acts upon some part of the world, called the domain of the sys-
tem (cf. figure 1). A computational system represents its domain under the
form of data. Its program prescribes how these data should be manipulated.
It dictates the actions that can or must be taken in order to reason about and
act upon the domain in a way that complies with the semantics of the
domain, i.e. with the relations and properties' of entities that hold in the
domain.

S 13 -

CHAPTER 1 What is Reflection

A program is made up of lines of code (also called sentences) in some pro-
gramming language. We say that the computational system is implemented
in this language. The computation of the system actually results because of
the execution of the program by an execution process. This is either an
interpreter for the programming language in which the program is written
or the CPU for programs written in machine language. The computation
returns results that convey new information about the domain or that actu-
ally act upon the domain.

COMPUTATIONAL SYSTEM

DATA A
SOME PART
OF . THE
WORLD

reasons about -~
and acts upon 7

PROGRAM
DOMAIN

EXECUTER

W stands for: representation of / returning information about

Fig. 1. A computational system.

An accounting system, for example, is a computational system which has as
domain the world of accounts and financial transactions. Its data are
representations of the actual accounts of some organization. Its program
specifies how these data should be manipulated such that valid information
can be returned about the domain or appropriate actions can be taken in the
domain. It specifies for example, that in a transfer between accounts, the
amount that is added to one account should be the same as the amount that
is subtracted from the other account.

- 14 -

CHAPTER 1 What is Reflection

The accounting system reasons about its domain when answering questions
about financial transactions and the state of various accounts. It acts upon its
domain by creating new accounts and by making transfers between accounts.
Its results convey new information about the financial state of the organiza-
tion. Suppose this system is implemented in PASCAL, then the program of
the accounting system are sentences in the PASCAL language and the exe-
cuter of the system is a PASCAL compiler/executer. .

2.2. Causal Connection

Most of the time, the links between the domain of a computational system
and the computational system itself are taken care of by hand. The pro-
grammer is responsible for making the data and program of the system be
an honest representation of the domain. And the user is responsible for the
appropriate interpretation of the results returned by the computation into the
actual domain. For example, an accounting system is built and also used in
a way that guarantees that its data and programs mirror the actual financial
situation of the organization. |

But a computational system may also be causally connected to its domain.
This means that the system and its domain are linked in such a way that if
one of the two changes, this leads to an effect upon the other!. A system
‘steering a robot-arm, for example, incorporates data representing the posi-
tion of the arm. These data are causally connected to the position of the
robot’s arm in such a way that (i) if the robot-arm is moved by some exter-
nal force, the data change accordingly (e.g. through sensors) and (ii) if
some of the data are changed, the robot-arm moves to the corresponding
position.

When implementing a causally connected system, the programmer only has
to set up the causal connection link once. After that, the representation and
return relations between the system and its domain are automatically
guaranteed. So a causally connected system and its domain can, through
the causal connection link, actually act upon one another without human
interaction.

- 15 -

CHAPTER 1 What is Reflection

Since the program of a computational system represents the semantics of the |
domain, and since these semantics are most of the time fixed, the problem
of causal connection between them does not really exist. Consequently, the
causal connection link only has to be implemented between the domain and
the data of the system. Under this condition, a system is said to be causally
connected to its problem domain if (cf. figure 2) '

() when data of the system change, the entities in the "domain
represented by these data are affected, and

(ii) when entities in the domain change, the data representing these (or
aspects of these) in the system are affected.

COMPUTATIONAL SYSTEM

DATA T —
— SOME PART

OF THE
WORLD

reasons about
PROGRAM and acts upon

DOMAIN

EXECUTER

— e .-?- stands for: causally connected representation

Fig. 2. A causally connected computational system.

Implementing a causal connection between the data and the domain of a sys-
tem involves specifying what the data of the system ought to represent. For
example, if the data of the system should represent true properties of enti-
ties in the domain, then the causal connection link should be constructed
such that it guarantees that this coﬁsistency relation holds at all times.
Which is to say that when a change happens in either the data or the
domain, the effects that are caused in the other are such that the data never

- 16 -

CHAPTER I What is Reflection

attribute false nor unknown properties to the entities of the domain.

For most computational systems, the programmer is not too much con-
cerned with specifying this representation relation, because it is the
programmer/user himself who “implements” this relation: he has to decide
to what properties and relations of entities in the real world the data of the
system correspond. For causally connected systems, it is crucial ‘to for-
mally specify which data in the system should represent what aspects of the
entities in the domain, such that some mechanism can try to maintain these
specifications. °

The concepts of representation and causal connection will prove to be very
important for meta and reflective systems.

2.3. Meta-systems

A meta-system is a computational system that has as its domain another
computational system, called its object-system. Thus a meta-system is a sys-
tem that reasons about and acts upon another computational system. A
meta-system has a representation of its object-system in its data. Its pro-
gram specifies meta-computation about the object-system and is therefore
called a meta-program. The meta-computation returns new information about
the object-system or actually acts upon the object-system (cf. fig 3).

- 17 -

CHAPTER 1 What is Reflection

META-SYSTEM OBJECT-SYSTEM

DATA N

reasons about
PROGRAM and acts upon

S

PROGRAM

EXECUTER EXECUTER

DOMAIN

reasons about
and acts upon

DOMAIN

/\v’\J’\J75> stands for: representation of / returning information about

Fig. 3. A meta-system.

(Hayes-Roth,1983) defines “meta-X” as "X about X”, meaning X about
something of the same type as X. For example, a meta-system is a system
about another system. A meta-program is a program about another program.
Meta-computation is computation about other computation. The X that fills
the about-role in these relations is called the object-X. Consequently we
also use the terms object-system, object-program and object-computation in
the context of meta-systems.

A programming language interpreter is a well-understood example of a
meta-system. An interpreter for LISP, for example, is a system that rea-
sons and acts upon systems implemented in LISP. When the interpreter is

_ 18 -

CHAPTER 1 What is Reflection

running, i.e. interpreting a LISP program, it does meta-computation, or
computation about computation. In particular, it emulates the computation of
its object-system by virtue of its own computation.

The data of the LISP-interpreter are representations of the object-system’s
program, data and state of computation. They incorporate for example vari-
ables bound to the sub-expression that is currently being evaluated, the
stack, the environment of interpretation, etc. The program of the inter-
preter prescribes‘ how to execute LISP systems: it tells how to simulate the
LISP object-system in compliance with the semantics of the LISP language.

There may be a causal connection link between the data of the meta-system
and what they represent, namely entities and relations in the object-system.
A run-time program-optimiser and a debugging system are examples of
causally connected meta-systems. They make modifications to their object-
system in such a way that the behavior of this obiect-system is also actually
affected. The causal connection link is here established by modifying the
code of the object-system the way the meta-computation dictates. The
object-system can only change by modifications prescribed by the meta-
level.

Another example of a causally connected meta-system is that of an operating
system. An operating system has a lot of object-systems, called processes.
It has representations of these processes. It keeps information about them
such as the time they were created, their current status, the computer time
already used, their priority, etc. The operating system reasons about these
processes when deciding which one to activate or to kill. It also acts upon
its object-systems by actually activating or killing them, which means by
starting up or terminating their computation. The causal connection link is
realised here because this meta-system actually executes its object systems.

2.4. Reflective Systems

Reflection is the process of reasoning about and/or acting upon oneself. A
reflective system is a causally connected meta-system that has as object-
system itself2. The data of a reflective system contain, besides the
representation of some part of the external world, also a causally connected

- 19 -

CHAPTER 1 What is Reflection

representation of itself, called the self-representation of the system (cf.
figure 4). ‘

The program of a reflective system prescribes, besides the computation
about a domain, also reflective computation about itself. It specifies how the
data representing the system itself should be manipulated in compliance with
its semantics. So, the program of a reflective system actually defines -part of
the semantics of the system.

= —
REFLECTIVE SYSTEM

PROGRAM

reasons about
and acts wupon

'l

EXECUTER

DOMAIN

DOMAIN

reasons about

f\/\/> stands for: representation of / returning information about

— gy .ia; stands for: causally connected representation

Fig. 4. A reflective system.

When a system is reasoning about or acting upon itself, we speak of
reflective computation. The code in the program specifying such reflective
computation is called reflective code.

The object- and reflective code necessarily have the same format (are in the
same language), because there is only one executing process which produces
both sorts of computation. This means that the same representation and

-20 -

CHAPTER 1 What is Reflection

reasoning capabilities are used for object-computation and reflective compu-
tation. In contrast, meta-systems are often implemented in a different
language than their object-systems.

The following subsections present a few simple examples of reflective com-
putation. More examples are given in chapter II.

2.4.1. Example 1

LISP supports various reflective functions. Some of these reflective func-
tions can actually modify programs by means of destructive operations.
This makes it possible to compute and modify the program of a computa-
tional system to be executed at run-time. Consider for example the follow-

ing definitions>

(define integer-stream ()

(0))

(define integer-stream-element ()
(let* ((list-of-integers (integer-stream))
(last-generated-integer (car list-of-integers)))
(eval ‘(define integer-stream ()
’,(cons (l+ last-generated-integer)
list-of-integers)))
last-generated-integer))

Fig. 5. Modifying the program to be executed at run-time in LISP
(in italics).

Integer-stream computes the stream of integers. Integer-stream-element
returns the next integer of the integer-stream. It also destructively modifies
the definition of the function integer-stream. The first time integer-stream-
element is called, it returns O

(integer-stream-element) --> 0

and redefines the function integer-stream to be

(define integer-stream () ’(1 0))

-21 -

CHAPTER 1 What is Reflection

so that the next time integer-stream-element is called, it returns 1
(integer-stream-element) --> 1
The function integer-stream is again redefined to be

(define integer-stream () ’(2 1 0))

and so on.

24.2. Example 2

Another field in which samples of reflective computation frequently recur, is
expert systems. The need is often felt in expert systems to reason about the
_knowledge and computation of the system itself during computation. The
system EMYCIN provides several handles to alter the computation from
within an application system itself. Consider the following example from
MYCIN (Van Melle,1980):

(a) IF it is not known whether there are factors that interfere with
the patients bleeding,
THEN it is definite (1.0) that there are no factors that interfere
with the patients bleeding.

Fig. 6. Reflective computation in EMYCIN.

Reflective computation is used here to deal with the problem of incomplete
knowledge. Rule (a) shows a special type of rule, called a self-referencing
rule. This rule refers to the own status of the system. It is used to form a
conclusion out of uncertainty. When all the regular rules have failed to
~ make a conclusion about whether there are interfering factors or not, rule
(a) will conclude that there are no interfering factors.

2.4.3. Example 3

An example of a reflective system stemming from yet another background is
a learning system. A system with learning capabilities reasons about itself
and acts upon itself in such a way that its performance at a certain task

_29 .

CHAPTER 1 What is Reflection

improves. The system LEX2 discussed in (Mitchell,1983), for example,
has a representation of its own program which it can access and modify.
The purpose of LEX? is to become better at solving integrals.

The system incorporates a program (in the form of a set of rules) for each
type of integral. For example (from Mitchell,1983)

S: | 3x cos(x) dx --> Apply substitution
with u = 3x, and dv = cos(x) dx

G: | fl(x) f2(x) dx --> Apply substitution
with u = fl(x), and dv = f2(x) dx

Fig. 7. Part of the LEX2 program.

Initially solving an integral with this set of rules involves a lot of search.
But after such a search, the LEX2 system analyses the search tree to see
whether the rules cannot be refined to avoid search in the future. E.g. after
some positive and negative training instances, LEX 2 has modified the
above program to

S: | 3x trig(x) dx --> Apply substitution
with u = 3x, and dv = trig(x) dx

Gl: { poly (x) f2(x) dx --> Apply substitution
with u = poly(x), and dv = f2(x) dx

G2: § fl(x) transc(x) dx --> Apply substitution
with u = fl(x), and dv = transc(x) dx

Fig. 8. The revised LEX2 program (after reflection).

This is only possible because the LEX2 system has a representation of its
own program that it can analyse and make changes to.

-23 .

CHAPTER 1 What is Reflection

2.5. Meta-Programming Versus Reflective Programming

The causal connection requirement in the definition of reflective systems is
crucial to distinguish between systems that only support meta-programming,
and systems that actually support reflection (which entails meta-
programming). A lot of systems represent aspects of computational systems
without causally connecting these representations to the system itself. Sup-
pose we have a system implemented in PROLOG, in which we define a
predicate "Demo” which represents the top-level of the PROLOG interpreter
(cf. figure 9).

demo(true).
demo(A,B) :- demo(A), demo(B).
demo(X) :- clause(X,Y), demo(Y). -

Fig. 9. Top-level loop of a circular PROLOG interpreter.

Symbols in this program starting with a capital represent variables. Symbols
starting with a lowercase character represent constants. The ”:-” sign indi-
cates (reverse) logical implication, while commas should be read as "and”.
The first clause states that the goal “true” is always proven. The second
clause states that the conjunction of two goals is proved if you prove both
of them. The third clause states that a goal can be proved by finding a
clause in which this goal is on the left-hand side of a clause, and by then
proving the right-hand side of this clause. Note that the first and third
clause together make that all clauses of the form '

p(Tl,...,TN) :- true.

also written as
p(T1,...,TN).

are proved.

The system in which this predicate is incorporated can be said to have data
representing its own interpreter. Since in PROLOG one can also view pro-
grams as data the computational system is even able to simulate the

-24 -

CHAPTER I What is Reflection

interpretation of programs and predict the outcome. Moreover, the system
is able to do some limited reasoning about its own interpretation. E.g. it
can make use of clauses such as

innocent(X) :- not(demo(guilty(X))).

However, recall that the representation of the interpreter should be causally
connected to the real interpretation if we want the system to ‘be able to
make correct predictions (i.e. to have an accurate representation of the inter-
preter). The representation of the PROLOG interpreter in the above example
is not linked to the real PROLOG interpreter. It might be a faulty or
incomplete representation of the interpreter. It does not represent the CUT
operator for example. Because there is no causal connection, the system is
not at all able to affect the real underlying interpreter-process by making
changes to the representation of the interpreter.

We say that such systems incorporate disconnected (Smith,1986) representa-
tions of (aspects of) themselves. If one changes the representation of the
system, the system itself is not affected by it. Vice versa, if the system
itself changes, the representation does not reflect this change. So it is due
to the causal connection link that a reflective system is able to actually rea-
son about and act upon its own behavior.

3. Languages with Reflective Facilities

Several approaches can be identified for building reflective systems. They
can be classified according to the paradigm that is used for combining
object-computation and reflective computation.

First, there are systems that incorporate some form of reflection in an ad
hoc way. For example, learning systems necessarily exhibit some sort of
reflective behavior since they are able to make improvements to themselves.
However most learning systems today, implement this reflective ability in a
ad hocs way. The design choices, such as what situations trigger the
reflective computation (i.e. learning), what representations are manipulated
during reflective computation, or how these manipulations affect the future
performance of the system, are not made explicit. This makes it difficult to
compare different designs or experiment with alternatives.

- 25 -

CHAPTER 1 What is Reflection

A second group of systems makes use of reflective facilities provided by the
programming language in which they are implemented. Some programming
languages incorporate a selection of meta-constructs to support specific types
of reflective computation. LISP is an example of such a language. LISP
provides functions for reflecting upon programs given as data (e.g. eval,
apply), for reflecting upon the run-time stack (e.g. catch & throw) and for
reflecting upon the run-time environment (e.g. boundp). These functions
give LISP-systems the possibility to access and manipulate parts of their
own computation4.

Systems implemented in such languages have only limited possibilities for
reflection, because the set of meta-constructs is not open-ended. The
different types of reflective computation which can be implemented are fixed
by the design of the language. Another limitation of these languages is that
reflective computation is not full-fledged computation. E.g. LISP provides
functions to access and manipulate the run-time stack, but in most LISPs
this stack is not a real data-object which can be manipulated in the way
object-data are manipulated. We can for example not name a stack and
pass it as an argument to a call of the evaluator.

A third category of reflective systems are those which are implemented in a
programming language that provides a uniform and open-ended architecture
for the specification of reflective computation. Examples of such languages
are 3-LISP (Smith,1982), FOL (Weyhrauch,1980) and TEIRESIAS
(Davis,1982). These languages allow all systems implemented in them to
reflect upon themselves in an explicit and uniform way. All systems have
access to and can modify a causally connected representation of themselves.
We will say that these languages have a reflective architecture. A charac-
teristic of languages with a reflective architecture is that object programming
is identical to reflective programming: they have the same representational
and computational behavior with linking rules or reflection principles
between the two levels to guarantee the causal connection link. Because
object computation and reflective computation are identical, reflection can
recur.

- 26 -

CHAPTER 1 What is Reflection

4. Languages with a Reflective Architecture

The purpose of a programming language is to provide building blocks for
the implementation of computational systems. One building block consists
of a syntactical construct in the language and the appropriate machinery in
its interpreter to make this building block work in the overall language.

A programming language stresses the importance of a programmiing concept
by providing building blocks for it and supporting (or even forcing) the use
of these blocks as much as possible. Some languages, e.g. machine
language, are designed to support very simple and small blocks as the unit
of construction. Other languages, e.g. higher level languages, provide
larger and more complex units.

We say that a language has an architecture for X if the language stresses
the importance of the programming concept X and thus supports building
blocks for X. For example, a programming language such as MODULA,
has an architecture for modules because it stresses the importance of
modules in programming. It provides building blocks for arranging the pro-
gram of a computational system in modules. A programming language, such
as SMALLTALK, has an architecture for data-abstraction because it pro-
vides syntactic constructs and the associated interpretative machinery for
realising data-abstraction.

A programming language is said to provide an architecture for reflection, or
also to have a reflective architecture, if it recognises reflection as a funda-
mental programming concept and thus provides building blocks for reflection
and encourages their use as much as possible. This implies that the language
provides syntactical constructs for specifying reflective code and that the
interpreter of the language is able to actually execute this reflective code
during computation.

So a language with a reflective architecture supports (besides object-
computation) the explicit and uniform representation of the reflective compu-
tation of the computational systems that are implemented in it. Programs in
such a language have the possibility to specify reflective computation. They
can employ syntactical constructs for specifying reflective data and reflective

-27 -

CHAPTER 1 What is Reflection

code. The language interpreter guarantees that the causal connection
requirement between these data and the aspects of the system they represent
is fulfilled. In this way the resulting computational systems have access to
causally connected representations of themselves during computation. The
modifications they make to these representations during computation are
reflected in their own behavior. '

Note that a lot of confusion with the term ”reflection” originates from a
failure to respect the distinction between languages with a reflective architec-
ture and reflective systems. Reflective systems are systems that actually
show a reflective behavior. While a language with a reflective architecture
has an architecture that supports the construction of potentially reflective
systems: systems implemented in it have the capability for reflective compu-
tation.

5. Reflective Architectures Versus Meta-level Architectures

On many points the concept of a reflective architecture runs parallel to the
concept of a meta-level architecture. There is often confusion between these
two types of architectures. Therefore it is interesting to work out their
exact differences. |

A programming environment has a meta-level architecture if it has an archi-
tecture which supports meta-computation, without supporting reflective com-
putation. A meta-level architecture is designed for building systems which
are about other systems. However, it does not make it possible to build
systems which are about themselves.

We purposely use the term programming environment here, instead of pro-
gramming language, because typically meta-level programming environments
present different languages for the object-computation and the meta-
computation®. These two languages each have their own syntax and inter-
preter.

A programming environment in which the code of the interpreter is made
accessible and modifiable to the programmers, is an example of a meta-level
architecture. - For example, assume an environment for PROLOG

- 28 -

CHAPTER 1 What is Reflection

programming in which the source of the PROLOG interpreter is a program
written in LISP, made accessible to the programmer. The programmer can

make variants of the PROLOG interpreter, by making modifications to this
 LISP program and recompiling it. The environment may even provide
especially designed tools for specialising the interpreter to be used for a par-
ticular PROLOG program. Figure 10 illustrates this idea.

(define interpret-PROLOG-program (program goals)
(let ((special-interpreter
(get ’special-interpreter
(program-name program))))
(funcall (or special-interpreter ’default-PROLDG-interpreter)
program goals)))

(define default-PROLOG-interpreter (program goals)
cees)

(define modify-interpreter-for-program (program-name new-interpreter)
(putprop ’special-interpreter new-interpreter program-name))

(define tracing-information-generating-interpreter (program goals)

o)

(define reduced-language-interpreter (program goals)

o)

(define extended-language-interpreter (program goals)

o)

Fig. 10. Allowing program-dependent variations on the interpreter.

The function default-PROLOG-interpreter represents the default interpreter
for PROLOG programs. It takes as input a file containing the source-code
PROLOG program and the list of goals we want to prove with this pro-
gram. The function modify-interpreter-for-program allows the specification
of a special interpreter for a specific PROLOG program. For example:
(modify-interpreter-for-program

‘my-program

*tracing-information-generating-interpreter)
The above expression specialises the interpreter to be used for the program
with name “my-program”. The function tracing-information-generating-

-720 .

CHAPTER 1 What is Reflection

interpreter could for example print information about the status of the
interpretation.

When the LISP program above is interpreting a PROLOG program, it is a
meta-system for this PROLOG system. The interpreter has a representation
of its object-system (the program to run). It incorporates variables bound to
the program-source, the goals to be proved, the specific interpreter to be
used for this program, etc. .

However, notice that this representation of the object-system is only
modifiable from the meta-level. The object-system itself has no access to
this representation of itself. This implies that modifications to this meta-
representation can only happen before the interpretation of the PROLOG
program starts. A programmer can modify the interpreter of a program
before running it, but the program itself can not modify its own interpreter
during computation. Figure 11 gives an illustration. .

reasons about
INTERPRETER ? COMPUTATIONAL-SYSTEM
(meta-system) and acts upon (object-system)

reasons about
and acts upon

Fig. 11. A meta-interpreter.

Many concrete examples of such programming environments can be cited.
For example, nearly all compilers are able to compile themselves. Another
popular example is the notion of meta-interpreters and partial evaluation, as

- 30 -

CHAPTER 1 What is Reflection

used in the LISP and logic programming communities. A lot of PROLOG
dialects, for example, provide a facility for changing the interpreter to be
used for some program. They incorporate a default-meta-interpreter which
can be used as a basis for building a special-purpose meta-interpreter. The
obtained variation of the default-meta-interpreter can be compiled together
with the program that it is designed for, thereby producing a more efficient
special-purpose interpreter. -

Contrary to the above example, meta-interpreters are written in the same
language as the programs they interpret. However, this is the only
difference that exists between the notion of a meta-interpreter and the exam-
ple presented above. So, although the language of the object and meta-level
are the same, meta-interpreters only provide static access to the interpreta-
tion of a program. Meta-interpreters are mainly used to implement variants
on the language. We find examples in the literature of enhanced meta-
interpreters to implement different control strategies (Gallaire and
Lasserre,1982), to implement deduction with uncertainties (Shapiro,1983b),
to implement analysis and debugging tools (Shapiro,1983a), etc.

The alternative example, illustrating a reflective architecture, is the notion of
a meta-circular interpreter, as for example used in 3-LISP. 3-LISP pro-
vides facilities for dynamically accessing and changing the interpreter for a
program from within that program itself. The example in section 2 of
chapter III demonstrates these facilities. Figure 12 presents an illustration®.

-3] -

CHAPTER 1 What is Reflection

META-CIRCULAR INTERPRETER

reasons about reasons about
and acts upon and acts upon

COMPUTATIONAL SYSTEM
(reflective system)

Fig. 12. A meta-circular interpreter.

Here the meta-level is accessible from the object-level at run-time. Conse-
quently, the possibilities for meta-computation are of a different order. The
program itself is able to interrupt its computation, change something to its
interpretation and continue with a modified interpretation process afterwards.
It is for example possible in 3-LISP to specify how the interpretation should
proceed form a particular error, and to activate this piece of code whenever
an error in the computation occurs. This can be realised because in 3-LISP,
the code to be executed to process a program is (i) computed at run-time
and (ii) accessible and modifiable from the object-level. |

These functionalities can clearly not be realised by' means of meta-
interpreters. The special-purpose meta-interpreter for a PROLOG program is
partially evaluated together with the program before running the program.
Partial evaluation is a program transformation technique which happens at
compile-time. The purpose of partial evaluation is to optimise the program
and its interpreter as much as possible at compile-time. This means that a
lot of the information on the program and its interpreter gets lost. E.g. the
conditionals which can be evaluated at compile-time are no longer explicit in
the code that is run. So the code to be executed to proccess a program is (i)
computed at compile-time and (ii) thus not accessible and modifiable from

_3) -

CHAPTER 1 What is Reflection

the object-level.

(Maes, 1986d) presents a more extensive overview of the differences between
meta-level architectures and reflective architectures.

6. Conclusions

A computational system is said to reason about some part of the world if it
incorporates data representing this part of the world, which it can manipu-
late during computation.

A computational system is said to also act upon a part of the world if the
data representing the part of the world are causally connected representa-
tions; which means that the data and the part of the world they represent
are linked in such a way that a change to one of them affects the other.

A computational system is called a meta-system if it reasons (and possibly
also acts upon) another computational system, which is to say that it incor-
porates data representing this other computational system (possibly in a
causally connected way).

A computational system is said to be reflective if it incorporates and also
manipulates causally connected data representing (aspects of) itself.

A language with a reflective architecture is a language in which all systems
have access to a causally connected representation of themselves.

A programming environment has a meta-level architecture if it has an archi-
tecture which supports meta-computation, without supporting reflective com-
putation.

The main difference between a meta-level architecture and a reflective archi-
tecture is that a meta-level architecture only provides static access to the
representation of a computational system, while a reflective architecture also
provides dynamic access to this representation. The result is that a meta-
level architecture is more efficient, but less general than a reflective archi-
tecture.

-33.

CHAPTER 1 What is Reflection

The next chapter presents an initial identification of the kind of program-
ming problems reflective architectures are good for. The chapter ends with
a section on the dangers of reflection, or what reflection should not be used
for.

NOTES

[1] The term “causal connection” was introduced by B. C. Smith in the cE)nfext of
reflective systems (Smith,1982). We believe it can be applied to (and is relevant for) com-
putational systems in general.

{2] Since recently, B. Smith adopts a different definition for reflection (Smith,1986). What
we call reflection here, he now calls introspection. Smith would say that an introspective
system is also actually reflective if it has a representation of (and is thus also able to rea-
son about and act upon) itself relative to its embedding world. For example, if it has a
reflective representation about whether its data are an honest representation of the domain
or not. Another example would be that the system can represent at a reflective level that
the semantics exhibited by its program is inconsistent with the real semantics of the
domain. This notion of reflection has sprung out of the idea of the circumstantial rela-
tivity of language and thought. According to (Smith,1986) a representational structure not
only has

(i) a content, the thing the structure refers to in a particular use of the structure
(depending on the set of circumstances of that particular use),

(ii) and a meaning, indicating what and how this representational structure contri-
butes to the content of any larger structure in which it participates (something the
structure has on its own),

But a representational structure also has, and this is new,

(iii) a significance, including not only the content of a particular use, but the full
conceptual and functional role that the representational structure plays in and for the
system that incorporates it.

Content and meaning of a structural representation are specifiable independent of concep-
tual and functional role. But, a great deal of the significance of a representational struc-
ture is not directly or explicitly represented by any of the structures by which it is com-
posed. Instead it is often relative to its circumstances. Systems which are able to reason
about and act upon themselves in more than just a local way, which are able to ”de-
relativize” their thoughts and actions of the “here, now and self”, are called reflective sys-
tems according to Smiths definition. No concrete reflective systems have already been
built.

[3] The integer-stream is not a realistic example in the sense that a more obvious solution
would be to use closures or # & Rplaca. The Eval & Define combination was chosen to
clearly show the novice how in LISP one may at run-time (i.e. from within the language
itself) define and manipulate programs and then call the interpreter on them.

-34 -

CHAPTER 1 What is Reflection

[4] Stepping and tracing facilities are often provided by the programming environment of a
language. We claim that the problems of stepping and tracing are basically not different
from other reflective programming problems such as statistics and interfacing. These types
of computation should in a consistent programming language design be handled in a simi-
lar way. This becomes possible in reflective architectures.

[S] Some reflective facilities are only available for interpreted programs (and not for com-
piled programs).)

[6] Some authors call a system where meta-level and object-level have their own special-
purpose language a two-level architecture as opposed to a meta-level architecture.

[7] It is interesting to compare the notion of reflection with that of recursion. Non-
reflective computation is realised by a known number of computational levels. For exam-
ple, my PROLOG program is interpreted by an interpreter written in LISP, which is pro-
cessed by machine language. Reflection means that computation is recursively defined by
a beforehand unknown number of computational levels. The number of executer levels
which is needed in order to realise the computation can only be decided at run-time. The
recursion in the computation of the code to be executed stops at the level where no more
reflective functionalities are used. Just like recursion, reflection allows you to define in a
very concise manner very powerful (meta-) computation.

- 135 -

CHAPTERII

Uses of Reflection

1. Introduction

This chapter argues that a lot of functionalities in computation require
reflection. As the examples will show, having access to representations of
aspects of the system itself during computation is often very useful. The
purpose of the discussion is to demonstrate that reflective computation
should be supported by programming languages.

A systematic overview of the positive uses of reflection is difficult to
present. However, it is possible to catalogue these uses on the basis of the
aspects of a system they reason about and act upon. Following the
definition of a computational system presented in chapter I, aspects of a
computational system that can be made accessible for reflective computation
(cf. figure 1) are:

(i) The program of the system,

(ii) The data of the system,

(iii) The program of the executing process,

(iv) The data of the executing process,

and so forth (the program and data of the process executing the executing
process).

- 36 -

CHAPTER 11

Uses of Reﬂeétion

(\hEFLECTIVE SYSTEM

-

Vs
{8

A J

DATA

{

>

PROGRAM

A

\
N\

EXECUTER

7
Y

A DATA
stack
environment

N

(=

AN

PROGRAM

EXECUTER

reasons about

DOMAIN

/w"n\lf1;> stands for: representation of / returning information about

— —7 stands for: causally connected representation

and acts upon

DOMAIN

reasons about

Fig. 1. Some possible self-representations.

It is easy to identify several interesting reflective uses of all these sorts of
self-representations: (i) makes it possible to influence the code of a computa-
tional system to be executed at run-time. (ii) stands for data about the data
of a computational system. This type of self-representation is useful for the
maintenance, acquisition and communication of data. (iii) makes it possible

to implement variants or extensions on the language. (iv) opens a way to

alter the environment of the execution process of a computational system at

run-time. The most straightforward use is the manipulation of the flow of

control from within the computation itself.

- 37 -

CHAPTER 11 Uses of Reflection

This chapter does not present a complete overview of the uses of these
different types of self-representations (and their combinations). Instead it
presents a number of typical real-world programming problems which
involve the use of these four types of self-representations.

Note that more advanced programming environments might provide facilities
for handling some of the problems discussed. However, typically, program-
ming environments are not built in an "open-ended” way, which means that
they only support a fixed number of those functionalities. Further, they
often only support computation about computation in a static way (cf.
chapter III). One of the interesting perspectives of reflection is that it
makes it possible to construct and use a programming environment from
within the language itself. Which has of course the advantages of readabil-
ity, open-endedness and portability.

2. Reflective Computation about ones Program:
Computation about the Problem of Control

The primary reason why a lot of programming languages incorporate
reflective constructs, is that reflection makes it possible to control the flow
of computation in a flexible way. Giving computational systems causally
connected access to a representation of their own program introduces very
powerful forms of control. It allows systems to decide about what to do
next, not only on the basis of data about the problem domain, but also on
the basis of data about their own program.

The problem of controlling computation differs according to the model of
computation that is adopted in a programming language. In the deterministic
model of computation, adopted by programming languages such as LISP or
PASCAL, the program of a computational system exactly prescribes the
sequence of steps a system has to take. The control aspect of the system is
fixed by the program of the system. The deterministic model is suited for
implementing the type of systems for which the flow of control can be
defined before the system is executed. Consequently, the problem of flexi-
ble control is merely a problem of handling the exceptions in which the
predefined flow of control does not work. This use of reflection is dis-
cussed in section 4.

~ 38 -

CHAPTER I Uses of Reflection

This section discusses the problem of control in the non-deterministic
model! of computation, adopted in languages such as PROLOG or OPSS
(Brownstow, Farell, Kant and Martin,1985). In the non-deterministic
model, the sequence of steps that has to be taken during computation is not
known beforehand. The program of a computational system describes a
search-space of possible paths that could be followed during computation.
However, it does not define how this search space should be explored.
Computation is viewed as a search for some desired state in this search
space.

The search space of real-world problems is typically very large, such that
exhaustive search (trying all of the possible paths systematically) quickly
leads to combinatorial explosions. Consequently, a primary concern of
research in the non-deterministic model is to control this search, i.e. to
find the most effective ways to explore this search space. Progressively
more powerful strategies to do so have been developed. When first non-
deterministic languages were developed, researchers tried to develop gen-
eral, domain-independent strategies to control the search. Examples of gen-
eral strategies are depth-first search or hill climbing (Nilson,1971). These
strategies were hard-wired in the interpreter of a language.

Later, it became clear that domain-independent strategies would not suffice.
The expert systems wave introduced the idea of knowledge-based or
domain-specific strategies to control the search. Concretely, this domain-
specific knowledge was implemented by guiding the search by means of
heuristic rules.

More recently, a lot of non-deterministic languages also incorporate tech-
niques to decide upon the flow of computation from within the computation
itself. While building real-world systems, programmers felt the need to
incorporate context-specific strategies in systtems. MYCIN for example
incorporates several reflective functionalities to reason about the flow of
computation from within the computation: prevention of circular reasoning,
antecedent rules, the preview mechanism, the concept of a unity path, the
initial-data mechanism, self-referencing rules, etc (cf. Van Melle,l980).
However, these functionalities are wired into the inference engine of
MYCIN in an ad hoc way.

-39 -

CHAPTER 1 Uses of Reflection

" Consequently, the idea has arisen to design non-deterministic languages that
allow a computational system to specify computation about the use of its
own program. The system TEIRESIAS (Davis,1982) was one of the earli-
-est rule-based languages to provide an architecture for reasoning about the
rules of a system, as well as for using those rules to reason about the prob-
lem domain. Reflective computation in TEIRESIAS has the same status as
object-level computation. Reflective computation is specified by' means of
reflective rules, or rules which are about other rules. The ad hoc selection
of reflective facilitics of MYCIN can be implemented in a system like
TEIRESIAS in a much more elegant way 2

Consider for example the self-referencing rules of MYCIN discussed in
chapter I. In principle, the order in which rules are executed in MYCIN is
arbitrary. However, in order to be able to deal with self-referencing rules,
the MYCIN interpreter incorporates an obscure piece of code, which
ensures that self-referencing rules are only applied after the regular rules
that can possibly make a conclusion about the goal. Figure 2 shows how
control over the use of self-referencing rules can be implemented in
TEIRESIAS (Davis,1982).

IF- 1) there are rules which do not mention the current goal
in their premise, and
2) there are rules which do mention the current goal in
their premise

THEN it is definite that the former should be used before the latter

Fig. 2. The control on the use of self-referencing
rules is made explicit in TEIRESIAS.

This rule makes explicit both to the ‘system and to the programmer what is
happening.v In addition, possibilities for reflective computation about rules
have become open-ended in TEIRESIAS. The TEIRESIAS system provides
(i) a meta-language which can be used to create reflective rules and (ii) a
mechanism to refer to object-rules from within a reflective rule. Using these
facilities, many control strategies can be realised in TEIRESIAS without

- 40 -

CHAPTER 11 Uses of Reflection

being possible in MYCIN (Davis and Buchanan,1984).

Even more, because of its reflective facilities, TEIRESIAS makes it possible
to define run-time control-strategies of the three types discussed previously
in this section. General control strategies are implemented by means of
reflective rules which make reference to all the rules in the rule-base. For
- example, the following reflective rules implement a forward reasoning stra-

tegy

IF 1) there are rules whose premises are matched
by the current data, and
2) there are rules whose premises are not matched
by the current data,

THEN it is definite (1.0) that the former should be used
before the latter.

Domain-specific control strategies are implemented by means of reflective
rules that make reference to the set of rules that mention a particular
domain problem. For example, the following reflective rule is extracted
from TEIRESIAS’ application domain
IF 1) if the infection is pelvic-abscess, and
2) there are rules which.mention invtheir premise

enterobacteriaceae, and
3) there are rules which mention in their premise grampos-rods,

THEN there is suggestive evidence (.4) that the former should be
done before the latter.

Context-specific control strategies are implemented by means of reflective
rules that make reference to the current status of the computation. For
example, the following reflective rule invokes a procedure to handle situa-
tions in which the computation cannot proceed.

IF all the rules that mention the current goal in their
conclusion have failed to achieve the goal,

THEN the rule mentioning a no-change impasse in its premise
is definitely useful (1.0)

These examples show that reflection presents an ideal foundation for han-
dling the problem of controlling non-deterministic computation.

_ 41 -

CHAPTER 11 Uses of Reflection

3. Reflective Computation about ones Data:
Maintenance, Acquisition and Communication of Information

The maintenance, acquisition and communication of the information con-
tained in a computational system is a knowledge-intensive task3. The
knowledge required for this task was previously recorded in informal and
unorganised ways. It was scattered in manuals, lines of code, programmers
and users notes, or was sometimes not recorded at all. In addition, it was
represented in different formats and conventions.

Frame-based languages (Minsky,1974)(Roberts and Goldstein,1977) have
introduced the idea to represent this knowledge explicit as normal data
within the computational system itself. A data-item in a frame-based system
is surrounded by a whole set of reflective data and procedures. These are
used for different purposes:

- they help the user cope with the complexity of a large system by
providing documentation, history, and explanation facilities,

- they keep track of relations among representations, such as consisten-
cies, dependencies and constraints,

- they encapsulate the value of the data-item with a default-value, a
form to compute it, etc,

- they guard the status and behavior of the data-item and activate
specific procedures when specific events happen (e.g. the value
becomes instantiated or changed).

Not only does the knowledge for the maintenance, acquisistion and com-
munication of the information contained by a system become represented in
a uniform format, but it also becomes explicit, which means that the system
itself can also make use of it.

Figure 3 gives an example. It represents the general form and a specific
instance of a frame. The item "age of John” in the knowledge base contains
a lot of data which convey internal system information.

42 -

CHAPTER II Uses of Reflection

ITEM a name . .

value: the current value of this item

source-of -current-value: user-supplied/default/computed/. .

modifiable: yes/no

showable: yes/no

documentation: a string documenting this data item

part-of: the more global item this item is part of

author: the name of the author of this data item

when-created: the date this item was created

when-last-accessed: the date the value of this item was last accessed

constraints: g list of constraints the value has to fulfill

type: the type the value has to fulfill

comparison-function: the method that should be used to compare the

value of this item with another value
default-value: the value to be used when no value is stored and no
value can be derived or computed
items-depending-on-this-value: the list of information items that
have made use of this value to compute
their own value

items-this-value-depends-on: the list of information items whose

value was used to compute this value

ITEM age of John
value: 27
source-of -current-value: computed
modifiable: yes
showable: yes
documentation: ”this item represents the age of the object John”
part-of: John
author: pattie
when-created: 3/10/76
when-last-accessed: 7/12/85
constraints: (and (< 0 value) (> 100 value))
type: integer
comparison-method: equal
default-value: 25
items-depending-on-this-value: (adultp-of-John)
items-this-value-depends-on: (birthyear-of-John current-year)

Fig. 3. A frame includes reflective data about a data-item.

Apart from the slot “value”, all the slots of an item represent reflective data
about this item. These data are frequently used during update and retrieval
of the value of the item. For example, when the item “age of John” is
asked for its value, the interpreter checks whether this item is showable to
the outside world (the salary of John would not be showable). When some-
body wants to set the value of the age of John, the interpreter checks

- 43 -

CHAPTER 11 Uses of Reflection

whether this item is modifiable, whether the proposed value is of the
appropriate type and whether this value fulfills the constraints. Subsequently,
it will reset the slot source-of-current-value to the supplier of the new value,
and the slot items-this-value-depends-on to NIL. Finally the interpreter will
set the values of the items listed in items-depending-on-this-value to
undefined. '

Frames also make it possible to specify reflective computation about a data-
item. They allow to define subroutines which are activated by specific
events in the computation. Typically, these implement tasks such as con-
sistency maintenance, documentation and explanation facilities, acquisition of
new data, appropriate communication of data, garbage collection, etc. Fig-
ure 4 shows an example. .

- 44 -

CHAPTER 11 Uses of Reflection

ITEM a name
reflective data (cf. above)

before-retrieved: a procedure to be executed before the item is
asked for its value .
after-retrieved: a procedure to be executed after the item is asked
for its value -
when-initialised: a procedure to be executed when the item is
initialised
before-modified: a procedure to be executed before the value of the
item is modified
after-modified: a procedure to be executed after the value of the
item is modified
when-displayed: a procedure to be executed when the item is displayed

ITEM salary of John
value: 23

.:}- reflective data (cf. above)

before-retrieved: a procedure which checks in the slot ”showable”
whether the value of this slot is public
after-retrieved: a procedure which resets the slot
‘ when-last-accessed to the present date
when-initialised: a procedure which sets up procedures to pay John’s
salary every month
before-modified: a procedure which checks whether: (i) the requestor
is allowed to modify the salary of John, (ii)
whether the proposed salary is reasonable, etc.
after-modified: a procedure which handles the consistency of the
knowledge base
when-displayed: a procedure which prints the salary of John with
a $ sign in front of the amount

Fig. 4. A frame includes reflective procedures about a data-item.

Several reflective procedures are associated with the knowledge item
representing John’s salary. When the salary of John is requested, the system
first checks whether the salary of John is a showable item. If not, the value
of John’s salary is not returned. If positive, the present value of the salary
of John is returned and the system records the fact that somebody accessed
this item at the current moment. When the salary of John is given a value
for the first time, the system sets up the procedures that take care that
John’s salary is paid every month.

- 45 -

CHAPTER 11 Uses of Reflection

When somebody wants to modify the value for the salary of John the sys-
tem checks whether (i) the requestor is allowed to modify the salary of John
and (ii) whether the proposed salary is acceptable. After the change is
made, the system takes the appropriate actions to ensure the consistency
maintenance of the knowledge base. All items in the knowledge base whose
value depends upon the value of John's salary will have to be reje(.:_tgd.. For
example, John's social security contribution will receive a new value.:

The success of the reflective facilities provided by frames is unquestionable.
The idea has been incorporated in almost all commercially available expert
system shells (cf. KEE (Intellicorp,1985) or ART (Clayton,1985)).

4. Reflective Computation about the Program of the Executer:
Dynamically Modifiable Interpreters

A major advantage of a language with meta facilities is that it is open-
ended, i.e. that it can be adapted to user-specific needs. For example,
before meta-interpreters became popular in the field of logic programming,
variants of the language were obtained by introducing extensions to the
language. Such an extension involved the definition of a new syntactical
construct and the adaptation or rewriting of the interpreter code. Extensions
were proposed for handling defaults, for handling multiple contexts, for
uncertain reasoning, etc.

Meta-interpreters make it possible to define extensions to the language in a
more flexible way. They are designed to facilitate static manipulations of the
interpreter (cf. chapter II). A meta-interpreter for PROLOG, for example,
makes it possible to define a special interpreter for a program by modifying
an interpreter for PROLOG written in PROLOG. It is thus possible to pro-
vide only a very simple and pure deduction mechanism in the (kernel-)
language and to obtain more complex behavior (non-standard logics) if
needed, by exploiting the meta facilities.

The‘speciﬁc contribution of reflection to making languages open-ended is to
allow an explicit investigation of these variants. Reflective computation
makes it possible to switch between variants of the interpreter from within
the computation itself. It makes it possible to dynamically create variants of

- 46 -

CHAPTER 11 ' ' Uses of Reflection

the interpreter and immediately use them.

For example, in a logic-based language with reflective facilities, such as
F.O.L. (Weyhrauch,1980), each program (or theory) can have a reflective
counterpart (or meta-theory). This meta-theory embodies a logical interpreta-
tion that can be given to the theory. It incorporates an explicit causally
connected representation of the language in the language itself (the fhéory
META) and the program-specific modifications that are made to this
default-interpreter. Because of this reflective facility greater expressive and
deductive power is obtained while retaining (globally) the standard semantics
of logic.

The reflective facilities of F.O.L. for example overcome the problem of
deduction from a single fixed theory. In one application several meta-
theories, each implementing a variant of the default-interpreter (the theory
META) can coexist. One meta-theory may implement a default-behavior,
another meta-theory may implement reasoning with uncertainties, etc. An
application is able to investigate the provability of a theorem in these
different meta-theories. Figure 5 illustrates two such meta-theories (example
inspired by Bowen and Kowalski,1982). '

- 47 -

CHAPTER 11 Uses of Reflection

META: provable(T,F) :- theorem(T,F).
provable(T,and(F,G)) :- provable(T,F), provable(T,G).
provable(T,F) :- clause(T,F,G), provable(T,G).

VARIANT-1: provable(T,F) :- theorem(T,F).
provable(T,and(F,G)) :- provable(T,F), provable(T,G).
provable(T,F) :- clause(T,F,G), provable(T,G).
theorem(T,lives-in(X,Y)) :- provable(T,works-in(X,Y)),
not(provable(T,lives-in(Z,Y))).

VARIANT-2: provable(T,F) :- theorem(T,F).
provable(T,and(F,G)) :- provable(T,F), provable(T,G).
provable(T,F) :- clause(T,F,G), provable(T,G).
theorem(T,lives-in(X,Y)) :-
provable(T,lives-in(X,spouse(Y))),
not(provable(T,lives-in(Z,Y))).

Fig. 5. Two variants on the default meta-interpreter META. Variant
1 and variant 2 both implement a form of non-monotonic reasoning.

Variant-1 and variant-2 both implement a specific example of default-
reasoning. In variant-1 it is possible to deduce the fact that a person Y
lives in a city X, if Y works in X, and we cannot prove that Y lives in a
city Z. In variant-2 it is possible to deduce the fact that a person Y lives in
a city X, if the spouse of Y lives in X and we cannot deduce that Y lives
in a city Z. By means of reflection it is possible to refer to these alterna-
tive interpreters during computation. The technical realisation of this is dis-
cussed in the next chapter. For example, the clause
lives-in(Z,X):- not(reflect(META,lives-in(W,X))),

reflect(VARIANT-1,lives-in(Y,X))),
reflect(VARIANT-2,lives-in(Z,X))).

states that if it is not provable in the default-meta-theory that it is a theorem
that person X lives in a city W, and in variant-1 it can be deduced that it is
a theorem that X lives in a city Y, and in variant-2 it can be deduced that it
is a theorem that X lives in city Z, then conclude that X lives in city Z (the
city where the spouse lives).

This example demonstrates that reflection makes it possible to dynamically
switch between alternative designs of the language interpreter. This
dynamic open-endedness makes a language with reflective facilities an ideal

- 48 -

CHAPTER 11 _ Uses of Reflection

tool for language design. A minimal kernel of the language, incorporating
reflective facilities, can be implemented. Variants and extensions of the
language can be constructed and studied from within the language itself by
means of reflection.

5. Reflective Computation about the Data of the Executer: -
Handling Exceptions

In the deterministic model of computation, the sequence of steps that have
to be taken during computation is fixed by the program of a computational
system. The type of problems that are solved in deterministic languages, are
problems for which it is possible to specify an algorithm that leads the com-
putational system to the solution. waever, in real-world systems, there are
sometimes exceptional situations were the state of things is not exactly as
expected by the algorithm. Examples of such exceptional situations are
inconsistent data, incomplete data, errors, loops, and deadlocks.

Some programming languages have responded to the need for handling these
exceptions by supporting reflective constructs such as catch & throw, escape
and exit. We discuss here a concrete use of such a reflective construct pro-
vided by Zeta-LISP. This facility is refered to as "condition signalling and
handling”. It makes it possible to set up a monitor which temporarily
watches the computation and checks whether a certain event happens. This
monitor may for example be on the look out for whether an error occurs,
whether a certain variable is set, or whether a variable obtains a specific
value. If the event takes place, the monitor will activate a procedure, called
a “handler”, which can alter the flow of computation.

Consider a function "search-graph” defined as

(defun search-graph (node attribute)
(if (has-attribute node attribute)
node
(if (father-node node)
(search-graph (father-node node) attribute)
NIL)))

The purpose of the function is to search an inheritance-graph of nodes, in
order to find the father-node of a given node which has an attribute with a
given name. When the user by accident defined an inheritance-graph with a

- 49 -

CHAPTER 1I Uses of Reflection

circularity in it, this will cause the function search-graph to loop. Figure 6
illustrates how this special event can be guarded by a condition signaller and
handler.

(defun search-graph (node attribute)
(catch ’circular
(condition-bind ((sys:pdl-overfow
‘(lambda (error-flavor-instance)
(circularity-checker
’ ,node
error-flavor-instance))))
(if (has-attribute node attribute)
node
(if (father-node node)
(search-graph (father-node node) attribute)
NIL))))) '

(defun circularity-checker (node error-flavor-instance)
(do ((already-encountered ()
(cons current-node already-encountered))
(current-node node (father-node current-node)))
((or (member current-node already-encountered)
(null (father-node current-node)))
(if (father-node current-node)
(throw ’circular
(format t ”The computation was halted due to an
error in the inheritance-graph. Starting
from node A, a circular path of
father-nodes exists. Correct this
immediately to avoid further problems.”
current-node))
(send error-flavor-instance :proceed :grow-pdl))))))

Fig. 6. Conditions in Zeta-LISP make it possible to alter the
flow of control from within the computation.

Sys:pdl-overflow is one of the standard error events recognised by the
Zeta-LISP interpreter. It is signalled when there is a stack-overflow. The
condition-bind construct defines a local handler for this error. If the stack

overflows in the interpretation of the body of the function search-graph, the
form

(circularity-checker node error-flavor-instance)

will be executed. The function circularity-checker tests whether the graph is

- 50 -

CHAPTER 11 Uses of Reflection

really circular (it might just be a very large graph). It puts the nodes that it
encounters in the list “already-encountered”. Note that this function was
written in an iterative way, because it would 6therwise also cause the stack
to overflow. If the graph is circular, i.e. if current-node is a member of
the list of already-encountered nodes, a message is printed and the interpre-
tation of search-graph is halted. If the graph is not circular, i.e. if the
current-node has no father-node, the computation will proceed.from the
error. The computation that was interrupted is continued with a larger
stack.

Condition signalling and handling is used to implement limits on the avail-
able resources for computation, to implement active values, to implement
default computation, to add ”side-computation” to computation (e.g. step-
ping, tracing), etc.

So, reflection gives systems an escape mechanism for handling the excep-
tional situations that can occur when operating in a real environment. Even
more, reflective computation provides the technical means for constructing
self-understanding and self-debugging programs. Reflective computational
systems can analyse their own computation. This makes it technicallsy pos-
sible for systems to recognise error-situations, such as loops and deadlocks.
Reflective computational systems also modify their own computation. This
makes it technically possible for systems to recover from error situations.*
A system may, when it has recognised an error, change the environment
and the continuation of its own object-computation such that this computa-
tion may proceed from the error.

6. What Not To Do with Reflection:
Dangers of Reflection

The previous sections showed that reflection provides interesting solutions to
many programming problems. Although the examples unquestionably prove
that reflective computation can be very useful, there is certainly a danger
attached to its use.

There are limits to controlling and understanding reflective computational
systems. A reflective system is able to make modifications to itself. This

- 51 -

CHAPTER 11 Uses of Reflection

means that some of the control over computation is actually shifted from the
programmer to the system. Consequently programming the computation of
such a system is less straightforward. It involves programming the object-
level computation, reflective computation, and so forth. This may become
an extremely difficult task, since these different levels of computation actu-
ally act upon one another. The computation of a specific level of computa-
tion is not only determined by the code for that level, but also by the code
of the reflective levels above that level.

The shift of control also implies a loss of information. For example, if we
build a system that is able to handle exceptional or erroneous situations, the
programmer/user is no longer informed about these situations. It might be
that the fact that for example a symbol is not bound, indicates to the pro-
grammer that his program is not correct. Often a programmer wants to
know when and why a variable is not as it should be. This certainly sug-
gests not to use reflection for exception-handling during the development
phase of a system.

Another problem in reflective systems is to understand what a computational
system actually does. Reflection makes the semantics of a system more
explicit to the system itself. But at the same time, since a system may
modify itself, this semantics becomes less clear to the programmers and
users of a system. Actually, the semantics of a language becomes opened by
reflection. The (object-) program of a system is no longer a means for
understanding the behavior of a system. It might for example be that at
run-time a different program is executed, or that a different interpreter is
executing the program. So in a reflective language the semantics of sen-
tences in the language is pulled down.

Clearly reflection might sometimes be a dangerous facility. However, it
would be wrong to therefore conclude that the programming community
should discard reflection. All powerful engineering tools can be dangerous
(cf. for example the LISP-machine). One solution to the problem is a dis-
cipline in the use of reflection. What this discipline should look like is not
yet known. Only now that reflection becomes better understood, can this
become a topic for further research. We need to experiment with reflection
in order to distinguish its positive and negative uses. On the basis of such

- 52 -

CHAPTER 1 Uses of Reflection

a study, safer (weaker) versions of reflective facilities will have to be
designed.

7. Conclusions

This chapter presented an informal discussion of the uses of reflection.
Four concrete programming problems requiring reflective computation were
discussed:

- reasoning about control,
- handling exceptional situations occuring during computation,

- making variants of a language and its interpreter from within the
language,

- giving systems data about the use, structure, and validity of their
information,

As the examples demonstrate, having access to representations of aspects of
the system itself during computation can be very useful. It is therefore that
we believe that reflective computation should be supported by programming
languages. Languages with a reflective architecture are designed exactly for
this purpose.

Chapter III present some examples of languages with a reflective architec-
ture which have already been built.

NOTES

{1] In languages adopting the non-deterministic model of computation, theoretically
different sequences of action can be followed. However, practically the interpreter of such
a language imposes a particular flow of control such that the same sequence of actions is
adopted for the same program/input pair. However, different flows of control remain
potentially present. In PROLOG, for example, these different sequences may all be
explored through the backtracking mechanism.

[2] We call TEIRESIAS’ rules reflective rules, instead of meta-rules, as Davis does,
because this conforms with the terminology used throughout this dissertation. TEIRESIAS
indeed has a reflective architecture, as opposed to other rule-based systems, which only
incorporate meta-knowledge. Albeit that the reflective architecture of TEIRESIAS, as
described in (Davis,1982), could have been designed with more powerful capabilities.
TEIRESIAS’ reflective rules are only used to decide which rules to invoke next during
computation. Reflective rules cannot modify or create new object-level rules.

- 53 -

CHAPTER 11 Uses of Reflection

[3] The main obstacle for the construction of self-debugging systems is the issue of side-
effects. If programs would be side-effect free, a system could (in principle) when
encountering an error, inspect the current state of computation, identify the errant code,
modify and recompile it and resume the computation at the point of the stack where this
procedure was used.

[4] Logicians have also since long been interested in self-referencing data. Research in
autoepistemic logics studies self-reference from a theoretical point of view. The question
this research tries to answer is what the logically "correct” foundations for self-referencing
data are. Several axioms sets for studying knowledge bases containing this type of data
have been proposed. They are similar to the set S5 shown below.

Al. All tautologies of the propositional calculus
A2. [Kp and K(p => q)] => Kq

A3. Kp=>1p

A4, Kp => KKp

AS5. not(Kp) => K(not(Kp))

”=>" stands here for logical implication, while p and q represent facts. The K-operator
can be read as "knows” or "probable” or "belief” (Perlis,1987). However, notice that
most of these theories are proposed as theories for studying the knowledge content of a
system. They represent the reasoning about the knowledge contents of a system by a
second system (e.g. the theorist). In order to speak of reflection these theories should be
attributed to the systems themselves.

- 54 -

CHAPTER III

Examples of Reflective Architectures o

1. Introduction

The previous chapter argued that a lot of programming problems might
profit from reflective facilities. Some programming languages have
responded to this need by incorporating reflective constructs without
recognising reflection as a primary programming concept. The reflective
constructs they support are not part of the kernel design of the language.
Consequently, these languages only support a finite set of reflective con-
structs, designed and implemented in an ad hoc way. Often different
dialects of the language support different reflective functionalities.

A common theory of the representation, the use and the role of reflective
computation is clearly not yet established. This is precisely the role and
contribution of reflective architectures. Reflective architectures seek to
identify general principles of reflection and to support them. They recog-
nise the importance of reflection for computational systems and present a
general framework for the representation and use of reflective computation.
They do not restrict the possibilities for reflection to a fixed number of con-
structs, but provide mechanisms for constructing reflective functions the way
one constructs regular functions. Consequently, they provide a more modu-
lar and open-ended solution. |

Actually reflective architectures offer a completely new paradigm for think-
ing about computation systems. In a reflective architecture, a computational
system is viewed as incorporating an object part and a reflective part. The

- 55 -

CHAPTER 111 Examples of Reflective Architectures

task of the object computation is to solve problems about the external
domain, while the task of the reflective level is to solve problems about the
object computation. A computational system implemented in a reflective
architecture has data representing aspects of itself. These data can be
accessed and manipulated like ordinary data. Because of the causal connec-
tion link between these data and the things they represent, such manipula-
tions are reflected in the status of the actual system. ‘ .

For example, in a reflective architecture one can temporarily associate
reflective computation with a program such that during its interpretation
tracing is performed. Assume a session with a rule-based system has to be
traced. The goal is to receive a trace of the rules that are applied. This can
be achieved in a language with a reflective architecture by stating a
reflective rule such as!

IF a rule has the highest priority in a situation,
THEN print the rule and the data which match its conditions

In a rule-based language that does not incorporate a reflective architecture,
the same result can only be achieved either by modifying the interpreter
code (such that it prints information about the rules it applies), or by rewrit-
ing all the rules such that they print information whenever they are applied.

Reflective architectures introduce fascinating new perspectives on program-
ming. The computation of real world systems is flooded with pieces of
reflective computation. Examples are keeping statistics, documentation,
type-declaration, interfacing (e.g. graphical output, mouse input, etc),
debugging, tracing, breaking, stepping, active values, consistency mainte-
nance, etc. Reflective architectures provide a means to implement these
activities in a more modular way. It makes the implementation effort
easier, and produces more elegant and more adaptable computational sys-
tems.

We are now ready to move to a more technical level. The following sec-
tions illustrate reflective architectures in procedural languages, logic-based
languages and production rule systems. The discussions are based on a
number of existing languages with a reflective architecture, namely, 3-LISP,
F.O.L, METAPROLOG, SOAR and TEIRESIAS. The purpose of the

- 56 -

CHAPTER III ' Examples of Reflective Architectures

discussions is not to give a complete and accurate description of these
languages, but to present concrete illustrations. Consequently, the accounts
of these languages may sometimes be oversimplified or imprecise. The dis-
cussions do remain faithful to the philosophy and overall design of the
languages. This remark holds also for the other chapters in which these
languages serve as illustrative vehicle.

2. Reflection in a Procedural Language

3-LISP is a dialect of LISP designed by B. C. Smith (1982). 3-LISP has a
reflective architecture. It has two sorts of functions. Simple functions, con-
" structed with define-SIMPLE or lambda-SIMPLE, specify regular object-
level computation. Reflect functions, constructed with define-REFLECT or
lambda-REFLECT, specify reflective computation. Reflective functions bring
the computation temporarily to the level at which the interpreter of the
current computation is run. Reflective functions take a number of quoted
arguments. They represent, so to say, a local special interpreter for their
arguments. Reflective functions have a representation of the current compu-
tation: they have access to two extra variables, called "env” and “cont”,
which by default represent the environment (a list of bindings) and the con-
tinuation at the time the reflect function is called.

A reflect function is able to inspect these (e.g. checking variable bindings)
and to modify these (e.g. changing the continuation or changing variable
bindings). The env and cont variables are causally connected to the real
environment and continuation of the system, such that the results of this
reflective computation are reflected in the system’s future object-level com-
putation.

Figure 7 shows a very simple reflective 3-LISP program. Note that the pur-
pose of this example is to introduce the design of the 3-LISP language. It is
thus not written to serve as an example of a programming problem for
which a reflective architecture should be used (cf. chapter III and VII).
Note also that to convey the essence of the notion of a reflective architec-
ture, we took the liberty to simplify aspects of 3-LISP as compared to
(Smith,1982)2. The code represented below is conform with the Common-
LISP conventions.

- 57 -

CHAPTER III Examples of Reflective Architectures

(define-REFLECT boundp-else-bind-to-one (symbol &optional env cont)
(let ((value (binding symbol env)))
(funcall cont
(if value
value
(rebind symbol 1 env)))))

Fig. 7. A reflective procedural program. -

When the above function is called, for example in

(let ((x 36)) (1)
(/ x (boundp-else-bind-to-one y)))

The evaluation returns 36 after reflection (because the symbol y is not
bound in this environment). On the other hand, the evaluation of
(let ((x 36)
(y 12))
(/ x (boundp-else-bind-to-one y)))
returns 3. These results can be explained with the help of some of the suc-
cessive states of the interpretation process.

3-LISP has a continuation-passing interpreter. One state of the interpreter is
characterised by

(i) A level of computation.

Level O is the level at which ordinary procedures about the domain are
run. Level 1 is the level at which the interpreter and the reflective pro-
cedures of level O are run. Level 2 runs the reflective procedures of
level 1, i.e. the procedures that reflect upon the reflective activities of
level 0, and so on.

(i) The expression that is being evaluated by the interpreter at that
moment.

(iii) The list of bindings (called the environment) existing at that
moment.

(iv) The continuation of this evaluation.
The continuation is the lambda-function that will be applied to the
result of the current evaluation. If the continuation and the expression

- 58 -

CHAPTER III ‘ Examples of Reflective Architectures

that is being evaluated are both NIL, the final result is returned.

When evaluating expression (1) the state of the interpreter is initially as fol-
lows:

LEVEL: O
EXPRESSION: (let ((x 36))
(/ x (boundp-else-bind-to-one y)))
ENVIRONMENT: () .
CONTINUATION: NIL

First the bindings specified in the let-construct are made:

LEVEL: O

EXPRESSION: (/ x (boundp-else-bind-to-one y))
ENVIRONMENT: ((x.36))

CONTINUATION: NIL

The subexpression

(boundp-else-bind-to-one y)

is evaluated, the continuation being the division by the result of the value of

X:

LEVEL: O

EXPRESSION: (boundp-else-bind-to-one y)
ENVIRONMENT: ((x.36))

CONTINUATION: (lambda-SIMPLE (c) (/ x c))

Note that reflective functions do not evaluate their arguments. A reflective
function such as boundp-else-bind-to-one represents a local deviating inter-
preter. It explicitly prescribes the interpretation of a particular piece of code
(here a symbol). Calling a reflective function causes a jump to the
reflective level.

LEVEL: 1
EXPRESSION: (let ((value (binding symbol env)))
(funcall cont
(if value
value
(rebind symbol 1 env))))
ENVIRONMENT: ((symbol.y)
(env.((x.36)))
(cont.(lambda-SIMPLE (c) (/ x ¢))))
CONTINUATION: NIL

”Symbol” is in the function-call of boundp-else-bind-to-one bound to the

- 50 .-

CHAPTER 1II ' Examples of Reflective Architectures

symbol y. A reflective function also binds two extra arguments, named
“env” and "cont” at the moment of its call. These are optional arguments,
which have a default-value. In case values for ”env” and "cont” are absent
in the call of a reflective function, they will respectively be bound to the
current environment (list of bindings) and current continuation of the
interpretation. |

First, the bindings of the let-construct are made. ”Binding” is a function
that returns the binding of a symbol in an environment. If the symbol is
unbound it returns NIL. Since the symbol y is not bound in “env”,
representing the environment of the object-computation, the symbol value
will be bound to NIL in the environment of the reflective computation:

LEVEL: 1
EXPRESSION: (funcall cont
(if value
value
(rebind symbol 1 env)))
ENVIRONMENT: ((value.NIL)
(symbol.y)
(env.((x.36)))
(cont.(lambda-SIMPLE (c) (/ x €))))
CONTINUATION: NIL

Funcall sets up a new evaluation-process for the object-level by means of
the current continuation “cont” and the if-expression. The if-expression is
first evaluated, the result being passed to

(lambda-SIMPLE (c)
(funcall cont c))

We get:

LEVEL: 1
EXPRESSION: (if value
value
(rebind symbol 1 env))
ENVIRONMENT: ((value.NIL)
(symbol.y)
(env.((x.36)))
(cont.(lambda-SIMPLE (c) (/ x c))))
CONTINUATION: (lambda-SIMPLE (c)
(funcall cont c))

Because the symbol value is NIL., we get:

CHAPTER III Examples of Reflective Architectures

LEVEL: 1
EXPRESSION: (rebind symbol 1 env)
ENVIRONMENT: ((value.NIL)

(symbol.y)

(env.((x.36)))

(cont.(lambda-SIMPLE (c) (/ x ¢))))
CONTINUATION: (lambda-SIMPLE (c)

(funcall cont c))

The function "rebind” is defined such that

(rebind symbol value environment)

modifies the environment “environment” to contain a binding of the symbol
“symbol” to the evaluation of ”value”. It returns the new value. The sym-
bol y is bound to 1 in the environment “env” (in italics):
LEVEL: 1
EXPRESSION: (funcall cont 1)
ENVIRONMENT: ((value.NIL)
(symbol.y)
(env.((x.36)(y.1)))

(cont.(lambda-SIMPLE (c) (/ x ¢))))
CONTINUATION: NIL

Finally the continuation “cont” of the object-level, which is the lambda-
function

(1ambda-SIMPLE (c) (/ x ¢))

is applied to the number 1. Calling the continuation of the lower level
makes the interpretation descend one level, thereby reflecting the values of
the env and cont variables in the actual environment and continuation of the
computation of the level below. Consequently, the procedure divide contin-
ues its computation with the modified runtime environment, in which y is
bound to 1:

LEVEL: 0

EXPRESSION: (/ x 1)

ENVIRONMENT: ((x.36)(y.l))
CONTINUATION: NIL

The evaluation of this last expression returns 36.

This example illustrates the architecture for reflection of 3-LISP: any 3-
LISP program can specify reflective computation by means of a reflective

-6l -

CHAPTER III Examples of Reflective Architectures

function application. The evaluation of this reflective sub-expression brings
the interpretation of the program one level up, being the level where the
interpretation of the program was run until that moment. This level reasons
about and acts upon the environment and continuation of the level below.

The 3-LISP interpreter takes care of the causal connection between the sys-
tem and the representation it has of itself. Whenever the program specifies
reflective computation (by calling a “reflect” function), the interpreter con-
structs variables denoting the environment and the continuation at that
moment of interpretation. The reflective computation can manipulate these
variables. When the reflective computation reactivates the object-
computation, the interpreter continues the computation at the level below,
after reflecting the bindings of these variables in the actual environment and
continuation.

level-2 expressions

v lcausal connection
-
v
3-LISP interpreter f j;:level—l expressions
~
~

~ lcausal connection

A level-0 expressions

representation
return

SOME
PART OF
THE WORLD

Fig. 8. The interpretation of a 3-LISP program.

The actual 3-LISP interpreter constantly moves from one level of activity to
another as prescribed by the reflective expressions. When moving from one

- 62 -

CHAPTER III Examples of Reflective Architectures

level to another, it takes care of the causal connection link between these
levels: (i) when going up, by representing the state of the lower level at the
higher level in the variables cont and env, (ii) when going down, by
reflecting these variables in the state of computation at the lower level
again.

3. Reflection in a Logic-Based Language

This section discusses an example of a reflective architecture in a logic-
based language. The example is based on the languages F.O.L.
(Weyhrauch,1980) and META-PROLOG (Bowen,1985). Logic-based
languages express programs by means of theories. The theory called my-
theory in figure 9 contains some facts and inference rules that I believe in.
The theory called john's-theory contains facts and inference rules John
believes in. Meta-t is a meta-theory for john’s-theory (or any other theory
which models the beliefs of somebody other than myself).

The data (or variables) of meta-t are representations of the theorems and
clauses of another theory T. This means that the predicates of meta-t range
over predicates and clauses of T. The example adopts the syntactical con-
ventions explained in section 2.5 of chapter I. Note particularly the final
rule of meta-t which states that a clause from my theory may be used to
prove a theorem F in a theory T. If this happens,

theorem(T,F)

is asserted in meta-t.

- 63 -

CHAPTER 111 Examples of Reflective Architectures

my-theory: mortal(X) :- human(X).

john's-theory: human(X) :- greek(X).
greek(socrates).
P :- reflect(meta-t,P).

meta-t: provable(T,F) :- theorem(T,F).
provable(T,and(F,G)) :- provable(T,F), provable(T,G).
provable(T,F) :- clause(T,F,G), provable(T,G).
provable(T,F) :- clause(my-theory,F,G), provable(T,G),
assert(theorem(T,F)).

Fig. 9. A reflective logic program.

This implements the autoepistemic rule that I may assume that somebody
else uses the same inference rules (but not the same facts) as I do, comple-
mented by inference rules specific to him. An attempt to prove in john'’s-
theory

mortal(socrates)

results, when the other clauses have failed to prove the goal, in the explora-
tion of the last clause of john’s-theory. This means that the interpreter
proceeds with an attempt to prove

reflect(meta-t,mortal(socrates))

Reflect is a special predicate that attempts to prove a theorem in a meta-
theory. If the meta-theory succeeds in proving the theorem, this result is
reflected in the theory. For the above example, it means that the fact

mortal(socrates)

will be asserted in john’s-theory, if the theory meta-t succeeded in proving
the theorem

provable(john’s-theory,mortal(socrates))

We again try to explain this result by means of some of the successive
states of the interpreter. One state of the interpreter is characterised by the
following information:

CHAPTER III Examples of Reflective Architectures

(i) A level of computation (here called deduction).
Level O represents deduction about some external domain. Level 1
represents reflective deduction about level 0, etc.

(ii) The theory in which deduction happens.
This theory consists of the data-base of already known facts and
clauses.

(iii) The current goal,

The current goal is the goal the interpreter is currently trying to solve.
A goal is solved if it is a theorem in the theory. If it is not a theorem,
the interpreter (a) retrieves the set of clauses in the theory whose left-
hand matches this goal, (b) adds the right-hand of one of those clauses
to the list of goals (see iv) (c) adds a frame to the stack (see vi) for
each of the other clauses of the set.

(iv) The list of goals that remain to be proved in order to prove the
overall goal.
If this list is empty, the interpreter succeeded in proving the overal
goal of this level. If at that moment the current level is level O, the
interpreter halts computation, else, the computation at the level below
is continued.

(v) The bindings that hold at this moment in the proof.

(vi) The stack,

The stack holds the backtracking information for the proof. It consists
of frames which specify a theory, a list of goals and a list of bindings.
If the interpreter fails to prove the current goal, it pops a frame from
this stack and tries to bring that interpretation state to a good end.

The initial state of interpretation is as follows:

LEVEL: O

THEORY: human(X) :- greek(X).
greek(socrates).
P :- reflect(meta-t,P).

GOAL: mortal(socrates).

GOALS: ()

BINDINGS: ()

STACK: ()

All clauses that can possibly solve this goal are explored sequentially.
Since there is not enough information in john’s-theory to prove that socrates

- 65 -

CHAPTER III Examples of Reflective Architectures

is mortal, the deduction proceeds in an attempt to prove

reflect(meta-t,mortal(socrates))

So the interpreter continues with:

LEVEL: O
THEORY: human(X) :- greek(X).
greek(socrates).
P :- reflect(meta-t,P).
GOAL: reflect(meta-t,P)
GOALS: ()
BINDINGS: ((P.mortal(socrates)))
STACK: ()

reflect(T,F) is a special predicate that attempts to prove provable(ct,F),
where ct is the current theory, in the theory T. This means that the goal

provable(john’s-theory,mortal(socrates))
is stated in meta-t:

LEVEL: 1

THEORY: clause(my-theory,mortal(X),human(X)).
clause(john's-theory,human(X),greek(X)).
theorem(john’s-theory,greek(socrates)).
clause(john’s-theory,P,reflect(meta-t,P)).

provable(T,F) :- theorem(T,F). (1)
provable(T,and(F,G)) :- provable(T,F), provable(T,G). ~ (2)
provable(T,F) :- clause(T,G,F), provable(T,G). (3)

" provable(T,F) :- clause(my-theory,G,F), provable(T,G), (4) .
assert(theorem(T,F)).
GOAL: provable(john’s-theory,mortal(socrates)).
GOALS: ()
BINDINGS: ()
STACK: ()

Meta-t has a representation of john’s-theory and my-theory. It knows how
a theory T has to be interpreted ((1) .. (4)), and knows what theorems have
already been proved. Meta-t is able to modify john’s-theory (as well as
my-theory) and its deduction process by means of these causally connected
representations. The deduction will arrive at (4) where the first subgoal

clause(my-theory,F,G)

unifies with

clause(my-theory,mortal(X),human(X))

- 66 -

CHAPTER III Examples of Reflective Architectures

leading to:

LEVEL: 1

THEDRY: clause(my-theory,mortal(X),human(X)).
clause(john’s-theory,human(X),greek(X)).
theorem(john's-theory,greek(socrates)).
clause(john’s-theory,P,reflect(meta-t,P)).
provable(T,F) :- theorem(T,F).
provable(T,and(F,G)) :- provable(T,F), provable(T,G).
provable(T,F) :- clause(T,F,G), provable(T7,G).
provable(T,F) :- clause(my-theory,fF,G), provable(T,G),

assert(theorem(T,F)).

GOAL: provable(T,G)

GOALS: ()

BINDINGS: ((T.john’s-theory)(F.mortal(socrates))
(G.human(X))(X.socrates))

STACK: ()

This goal will be solved using facts and inference rules of john’s-theory,
leading to the following state of the interpreter (see italics):

LEVEL: 1

THEORY: clause(my-theory,mortal(X),human(X)).
clause(john’s-theory,human(X),greek(X)).
theorem(john’s-theory,greek(socrates)).
clause(john’s-theory,P,reflect(meta-t,P)).
provable(T,F) :- theorem(T,F).
provable(T,and(F,G)) :- provable(T,F), provable(T,G).
provable(T,F) :- clause(T,F,G), provable(T,G).
provable(T,F) :- clause(my-theory,F,G), provable(T,G),

assert(theorem(T,F)). (*)
theorem(john's-theory,mortal(socrates)). (1)
GOAL: /
GOALS: ()
BINDINGS: ((X.socrates))
STACK: ()

Note that (1) is asserted because of the assert-predicate in clause (*). Note
that an assert predicate is always true. Reflection principles such as those
specified in figure 10 are responsible for the communication of results
between the meta-theory and the theory.

- 67 -

CHAPTER III Examples of Reflective Architectures

For all W wff:

(In meta-t) theorem(W)
(In t) W
For all F,G wff: -
(In meta-t) clause(F,G)
(In t) F :-G

Fig. 10. Two reflection principles of F.O.L.

This means that john’s-theory is affected by the reflective deduction of
meta-t. It will contain the new fact

mortal(socrates).

Finally

P :- reflect(meta-t,P).

succeeds, such that the initial goal is proven in john’s-theory, and in addi-
tion there has been a side-effect. Note that it would not have been possi-
bleto deduce

mortal(socrates).

in my-theory.

This example illustrates an architecture for reflection in a logic-based
language. Programs are represented by means of theories. A theory may
have one or more meta-theories which specify deduction about the theory.
The language interpreter has mechanisms that are responsible for the causal
connection between a theory and a meta-theory. These mechanisms guaran-
tee the communication of results between the two levels, i.e they specify
how to reflect the results of meta-theory computation in object-theory com-
putation (and vice versa) and are therefore called reflection principles

_ 68 -

CHAPTER 1II Examples of Reflective Architectures

(Weyhrauch, 1980).

Just like in 3-LISP, the interpreter can switch from one level to another as
prescribed by the program. Since all information of the object-level is also
present at the reflective level (because of the reflection principles), a proof
in the object-level could be completely simulated at the reflective level.
Nevertheless, object-level computation remains useful because it is .more
efficient (it is "compiled” in some sense).

4. Reflection in a Production Rule System

We now illustrate a reflective architecture in a rule-based system. The
example is inspired by systems like SOAR (Laird, Rosenbloom and
Newell,1984) and TEIRESIAS (Davis,1982). Computational systems are
implemented in a rule-based language by means of production rules. A pro-
duction rule has a condition and an action part. Computation consists of
“firing” these rules on a working-memory of data. A rule can be fired if
its condition part matches the working-memory. When a rule is fired, the
actions specified in the action part are executed. In the language presented
here, the computation halts when the working-memory matches a certain
goal.

The executing process of a rule-based system is called the inference engine.
The task of the inference engine is to determine which rules are relevant to
a given working-memory configuration and to fire these. In some cases
deciding upon the rules to be fired requires computation. These control
problems are handled in standard rule-based systems such as EMYCIN and
OPSS by a wired-in control structure coded into the LISP implementation of
the inference engine.

Rule-based systems with a reflective architecture, such as TEIRESIAS, han-
dle them by means of reflective computation. When an “impasse” in the
inference process occurs, a reflective production-rule program is generated
that tries to resolve the impasse®. A typical example of an impasse is when
there is more than one rule which matches with data in the current
working-memory.

_69 -

CHAPTER III Examples of Reflective Architectures

The rules of this reflective program are called reflective rules. -Reflective
rules are rules which are about the inference process itself (e.g. about
impasses). The working-memory these rules operate on represents the com-
putation of the object-level rule-program. There are domain-independent
and domain-dependent reflective rules. An example of a domain-
independent reflective rule from TEIRESIAS is
IF 1) there are rules which do mention
the current goal in their premise,

2) there are rules which do not mention
the current goal in their premise,

THEN it is definite that the former should be done before the latter.

An example of a domain-dependent reflective rule from TEIRESIAS is

IF 1) the infection is a pelvic-abscess, and
2) there are rules which mention in their
premise enterobacteriaceae, and
3) there are rules which mention in their premise grampos-rods,

THEN there is suggestive evidence (.4) that the former should be
done before the latter.

Domain-dependent reflective rules have priority over domain-independent
rules.

When the domain-dependent and independent reflective rules have succeeded
in solving the impasse, the reflective computation will have affected the
object computation. Consider for example the reflective system in figure 11.

-70 -

CHAPTER III Examples of Reflective Architectures

WORKING-MEMORY: ((ol.True)(o02.True)(o3.True)(pl.)(p3.)(p2.)...)
GOAL: ((pl.True) (p3.True))

RULE MEMORY: (1) IF ol and o2
THEN set(pl,True) and set(p2,False)
(2) IF o3 '
THEN set(p2,True) and set(pl,False)

-REFLECTIVE RULE MEMORY: (3) IF error-flag-l
THEN set(data-elm(o2),False) and
set(rule-to-be-fired(2),True)
(4) IF satisfied(l) and
satisfied(2)
THEN set(error-flag-1,True)

Fig. 11. A reflective production rule program.

The computation is in an impasse, because both rule (1) and rule (2) match
the current working-memory. The system will try to solve this impasse by
initiating a reflective production rule program. The goal of this reflective
program is

rule-to-be-fired(?rule) = True

The program in figure 11 incorporates domain-dependent reflective rules
which might help to solve this impasse. For example the reflective rule

IF satisfied(l) and satisfied(2)
THEN set(error-flag-1,True)

says that, when both rule 1 and rule 2 can be fired, this is a special event
in the object-level inference process (note that rule 1 and 2 propose contrad-
ictory actions). Consequently, the data-element error-flag-1 has to be set
true. This will enable rule 3 to fire, which modifies the status of the
object-level inference process (think of rule 3 as an error-handling pro-
cedure).

When the domain-dependent and independent reflective rules have succeeded
in solving the reflective subgoal of the above example, the reflective compu-
tation will have affected the object computation by determining which of the

-171 -

CHAPTER III Examples of Reflective Architectures

two competing rules will be applied and by modifying the status of the
working-memory.

We again take a closer look at the successive states of the interpreter in this
example. The interpreter incorporates a stack of contexts, corresponding to
the reflective levels that have been activated. The computation halts when
this stack is empty. The interpreter always works on the top-level cg__ntéxt.
One context of the interpreter is characterised by: '

(i) The level of rule firing. The lowest level represents the object-
computation, level 1 reflective computation, level 2 reflective-reflective
computation, and so on.

(ii) An unordered collection of production rules.

(ili) An unordered collection of domain-specific reflective production
rules.

(iv) The goal of the computation.
- (v) The current state of the working-memory.
(vi) The rules that match the current state of the working-memory.

i(vii) The rule to be fired to generate the next state.

Computation consists of firing the rules of the context on the working
memory of the context until the goal of the context is fulfilled. When a
final state is found (one that achieves the goal), the upper context of the
stack is popped, thereby communicating some results to the context below.
Suppose the above program is being run and that the state of the interpreter
at a certain point is as follows:

-T2 -

CHAPTER III Examples of Reflective Architectures

LEVEL: O
RULE MEMORY: (1) IF ol and o2
THEN set(pl,True) and set(p2,False)
(2) IF o3
THEN set(p2,True) and set(pl,False)
DOMAIN REFLECTIVE RULE MEMORY: (3) IF error-flag-1l
THEN set(data-elm(o2),False) and
set(rule-to-be-fired(2),True)
(4) IF satisfied(l) and
satisfied(2)
THEN set(error-flag-1,True)
GOAL: ((pl.True)(p3.True))
WORKING-MEMORY: ((ol.True)(o02.True)(o3.True)(pl.)(p2.)(p3.)...)
SATISFIED RULES: (1) (2)
RULE-TO-BE-FIRED: ?

The above context represents an impasse because the inference engine can
only fire one rule at a time and more that one rule is satisfied. The infer-
ence engine tries to solve this impasse by stating the goal

(rule-to-be-fired(?rule).True)

in a reflective context;

LEVEL: 1
RULE MEMORY: (3) IF error-flag-1
THEN set(data-elm(o02),False) and
set(rule-to-be-fired(2),True)
(4) IF satisfied(l) and
satisfied(2)
THEN set(error-flag-1,True)

. domain independent meta rules ... E.g.:

(N) IF satisfied(?rule) and
mentions-in-premise(?rule,goal) and
satisfied(?another-rule) and
not{mentions-in-premise(?another-rule,goal))

THEN prefer(?rule,?another-rule)

DOMAIN REFLECTIVE RULE MEMORY: ... empty ...

GOAL: ((rule-to-be-fired(?rule).True))

WORKING-MEMORY: ((satisfied(1).True)(satisfied(2).True)
(goal((pl.True)(p3.True)).True)
(?rule.)(?another-rule.)
(rule(l).True)(rule(2).True)(error-flag-1.)...)

SATISFIED RULES: (4) ...

RULE-TO-BE-FIRED: (4)

Note that this reflective context represents in its working-memory aspects of

- 73 -

CHAPTER III ' Examples of Reflective Architectures

the computation at the level below. In this context, rule 4 is fired, because
it matches the data in the current state of the memory and has priority over
domain-independent reflective rules such as rule (N). Rule 4 sets a memory
element (in italics);

LEVEL: 1
RULE MEMORY: (3) IF error-flag-1
THEN set(data-elm(o2),False) and .
set(rule-to-be-fired(2),True)
(4) IF satisfied(l) and
satisfied(2)
THEN set(error-flag-1,True)

.. domain independent meta rules ... E.g.:

(N) IF satisfied(?rule) and
mentions-in-premise(?rule,goal) and
satisfied(?another-rule) and
not(mentions-in-premise(?another-rule,goal))

THEN prefer(?rule,?another-rule)

DOMAIN REFLECTIVE RULE MEMORY: ... empty ...

GOAL: ((rule-to-be-fired(?rule).True))

WORKING-MEMORY: ((satisfied(1l).True)(satisfied(2).True)
(goal((pl.True)(p3.True)).True)
(?rule.)(?another-rule.)
(rule(l).True)(rule(2).True) (error-flag-1.True)...)

SATISFIED RULES: (3) ...

RULE-TO-BE-FIRED: (3)

This enables rule 3 to fire, which modifies the representation of the
working-memory and rule-to-be-fired of the lower level:

- 74 -

CHAPTER III Examples of Reflective Architectures

LEVEL: 1
"RULE MEMORY: (3) IF error-flag-1 \
THEN set(data-elm(o02),False) and
set(rule-to-be-fired(2),True)
(4) IF satisfied(l) and
satisfied(2)
THEN set(error-flag-1l,True)

... domain independent meta rules ... E.g.: -

(N) IF satisfied(?rule) and
mentions-in-premise(?rule,goal) and
satisfied(?another-rule) and _
not(mentions-in-premise(?another-rule,goal))

THEN prefer(?rule,?another-rule)

DOMAIN REFLECTIVE RULE MEMORY: ... empty ...

GOAL: ((rule-to-be-fired(?rule).True))

WORKING-MEMORY: ((satisfied(l).True)(satisfied(2).True)
(goal((pl.True)(p3.True)).True)
(?rule.rule(2))(?another-rule.)
(rule(l).True)(rule(2).True)(error-flag-1.True)
(rule-to-be-fired(2).True)(data-elm(ol).False)...)

SATISFIED RULES: ...

RULE-TO-BE-FIRED: ...

The reflective compution is halted, since the goal of this context is achieved
(?rule is bound to rule(2)). The current context is popped from the stack,
but its data are reflected in the context below (in italics):

LEVEL: 0
RULE MEMORY: (1) IF ol and 02
THEN set(pl,True) and set(p2,False)
(2) IF o3
THEN set(p2,True) and set(pl,False)
DOMAIN REFLECTIVE RULE MEMORY: (3) If error-flag-l
THEN set(data-elm(o02),False) and
set(rule-to-be-fired(2),True)
(4) IF satisfied(l) and
satisfied(2)
THEN set(error-flag-1,True)
GOAL: ((pl.True)(p3.True))
WORKING-MEMORY: ((ol.True)(o2.False)(03.True)(pl.)(p3.)(p2.)...)
SATISFIED RULES: (1) (2)
RULE~TO-BE-FIRED: (2)

The object-level computation continues with the activation of rule (2).

This example illustrates the reflective architecture incorporated in systems
like SOAR or TEIRESIAS. Programs in rule-based systems are sets of

-5 -

CHAPTER I - Examples of Reflective Architectures

rules. Note that in our example reflection is controlled implicitly as
opposed to being controlled explicitly as in the procedural and the logic
example discussed before. Whenever an impasse occurs in the interpreta-
tion of a program, the interpreter sets up a reflective computation, which
tries to solve this impasse. The interpretér also handles the causal connec-
tion between the object and reflective computation.

The moment the interpreter creates a context of computation, it represents
the current state of computation of the level below in the working-memory
of this new context. Consequently, domain independent and user-defined
reflective rules manipulate this representation until they succeed in achieving
the goal of the reflective computation. Once the goal is achieved, the
reflective context is thrown away and the values of its wofking—memory ele-
ments are installed as the actual values of the objects of the context below.

5. The Power of a Reflective Language

An important advantage of languages with a reflective architecture over
languages that provide reflective facilities, is that in the former the possibili-
"ties for reflection are open—ended. For example, although rriany LISP
dialects provide reflective functions (e.g. catch and throw, condition signall-
ers and handlers, call-current-continuation), there is an important difference
between the reflective functionality provided by these languages and that
provided by 3-LISP.

Programs in 3-LISP might define their own, local interpreter by means of a
reflective function. The set of reflective functions that can be used is open-
ended: reflective functions can be constructed just like object-level functions.
They are constructed out of the same primitive functions of the language.
However, they manipulate causally connected representations of the environ-
ment, stack and code of a function.

In a regular LISP, the run-time enviromment, continuation and code of the
computation can also more or less be made accessible. Reflective constructs
such as boundp, makunbound, catch and throw (cf. MacLISP), and call-cc
- (cf. SCHEME), - (return code of current outermost expression), provide a
handle on the current status of the interpretation.” However, continuations

- 76 -

CHAPTER III Examples of Reflective Architectures

and environments are not represented as explicit first-order LISP objects.

One can for example not create or manipulate continuations in a regular
LISP the way one does in 3-LISP. In 3-LISP the continuation of the inter-
preter is a first-order data object. The continuation is represented by a
lambda-expression which can be manipulated by reflective functions. In a
regular LISP, continuations cannot be dismantled. Continuations are only
accessible by a limited number of special reflective functions.

A 3-LISP implementation of the condition signallers and condition handlers
of Zetal.ISP discussed in chapter II would look as in figure 12. The
reflective function condition-bind evaluates its argument “body” in an
extended environment, in which some condition-handlers are bound. The
reflective function signal-condition calls the handler of the condition that is
signalled. The rest of the object-computation is abandoned (it might possibly
be reactivated explicitly in the handler).

(define-REFLECT condition-bind
(list-of-condition-name-handler-pairs body &optional env cont)
(eval body (append list-of-condition-handler-pairs env) cont)))

(define-REFLECT signal-condition (condition-name args &optional env cont)
(funcall (binding condition-name env)
args))

Fig. 12. Implementing conditions in a LISP with a reflective architecture.

The 3-LISP implementation of this exception handler is explicit, elegant and
modifiable. It is also possible to define in 3-LISP the catch and throw func-
tions of MacLISP, or to implement the fexpr functions of MacLISP, or
even to invent exception-handling constructs which cannot be realised by
any of the reflective facilities provided by the current LISP dialects.

Since the possibilities for reflection are open-ended in a reflective architec-
ture, one should be careful in the design of this power (cf. dangers of
reflection discussed in chapter II). Several solutions can be adopted. An
architecture might for example only support weaker forms of reflection (cf.

-77 -

CHAPTER 111 Examples of Reflective *Architectures

chapter V). Or it might promote the positive uses of reflection, e.g. by
means of librarics of typical reflective computations. Nevertheless, such a
language would still have important advantages over regular languages. The
whole issue of reflection remains perspicudus, as opposed to being handled
‘in an ad hoc way. The particular style of programming which supports the
separation and expliciteness of reflective computation is still preserved.

6. Conclusions

This chapter-discussed a procedural, rule-based and logic-based example of
a language with a reflective architecture. * The examples were adapted from
‘existing implementations. '

-These examples demonstrate that reflective architectures provide more
“elegant and more flexible facilities for reflection than an ad hoc selection of
reflective constructs. Most importantly, they put forward reflection as a
new paradigm for building and studying computational systems.

Chapter IV abstract the examples of this chapter to a general structure. It
discusses the technical problems that have to be faced when building a
reflective architecture and discusses techniques to solve these.

NOTES

[1] Actually 3-LISP is much more complex and has many more interesting ideas in it than
what is illustrated here. The 3-LISP example is oversimplified in order to strenghten its
illustrative pbwer. The interested reader may find out about these other ideas in
(Smith,1982), (Smith and Des Rivieres,1984) and (Des Rivieres and Smith,1984).

[2] The notion of an "impasse™ in the inference process was introduced by SOAR (Laird,
Rosenbloom -and Newell,1984). The SOAR interpreter recognises four specific types of
impasses which trigger reflection: a tie, a conflict, a no-change and a rejection. These
- ‘really represent states in which the inference process' gets stuck. It might be a linle inap-
- proriate to import this term to discuss reflection in TEIRESIAS. - The events that trigger
reflective computation in TEIRESIAS are the search for a goal and the making.of a con-
clusion. These events not really represent a problem situation for the inference prbcéss.

_178 -

CHAPTER IV

How To Build a Reflective Architecture

1. Introduction

Based on the examples in chapters II and III, we can see the general struc-
ture of a language with a reflective architecture. A language with a
reflective architecture is a language in which computational systems are able
to access and manipulate causally connected representations of themselves
during computation. In order to build such a language, three problems have
to be faced:

(i) the self-representation of the system,
(ii) programming reflective computation,
(iii) the causal connection link.

This chapter discusses each of these problems in detail and presents tech-
niques to solve them.

2. The Self-Representation of a System

2.1. Imtroduction

First, the interpreter of the language has to be able to construct an explicit
representation of a system and its current status. We have called this the
self-representation of a system (cf. chapter I). It is on the basis of its self-
representation that a system is able to reflect, i.e. to reason about itself and
support actions upon itself.

-79 -

CHAPTER IV How To Build a Reflective Architecture

The 3-LISP interpreter, for example, is able to construct an explicit
representation of the process that is evaluating a piece of program. This
self-representation consists of

(i) the code of the program,

(ii) an explicit representation of the program of the interpretation pro-
cess (i.e. a circular interpreter), and

(iii) an explicit representation of the data of the interpretation process:
two lisp-variables called "env” and “cont”, respectively bound to the
current environment (list of bindings) and current continuation of the
interpretation.

By accessing these variables, a function is able to reason about itself and to
modify its own behavior during its computation.

The interpreter of languages such as F.O.L. and META-PROLOG provides
every theory with a meta-theory it can access. The meté-theory of a theory
incorporates
(i) an explicit representation of the interpreter. (The circular F.O.L.
interpreter is represented by the theory called META which is included
in the meta-theory of every theory.)

(ii) an explicit representation of the object-level theory (i.e. of the facts
and clauses that it contains).

So a language with a reflective architecture has to be able to build a
representation of any system the interpreter is running. This problem has
two subproblems. First, the language has to be able to generate information
about a system and its current state of computation. And second, the
language has to be able to construct an explicit representation of this infor-
mation, such that it becomes accessible (i.e. becomes data) to the system
itself. The next two sections study these problems.

2.2. The Meta-theory of the Language

'A language with a reflective architecture has to be able to generate informa-
- tion about a system and its current state of computation. A computational
system is defined by means of a program consisting of sentences.

- 80 -

CHAPTER 1V How To Build a Reflective Architecture

Consequently, the language-interpreter has to ground the self-representation
of a system X on the sentences that make up the program of X. Further,
the computation of X is also determined by the run-time environment in
which its sentences are interpreted, such as the status of the data and the
history of the computation that preceeded.

So the self-representation of a system can be realised by incorporatiné in the
interpreter a mechanism to generate information about a sentence used in a
particular environment of computation. The implementation of this mechan-
ism implies that the interpreter incorporates information about the meaning
of the “generic” sentences of the language. Because this represents the
information a language with a ieflective architecture incorporates abocui

itself, we call this the meta-theory of the language.

For example, assume we are building a variant of the language PROLOG
which has a reflective architecture. When in a PROLOG program, a sen-
tence like

man(X) :- father(X,Y). (i)

occurs, the language-interpreter we are building has to be able to generate
some information about this piece of program. This means that the inter-
preter has to incorporate information about the meaning of the generic sen-
tence

X 1= Y (ii)

in order to be able to build an explicit self-representation of the specific
instantiation (i). The information about (ii) for example states that (ii) can
be used in a proof: if you want to prove that X is true, you can do this by
proving that Y is true. We can encode this piece of meta-theory of the
language in a “provable” predicate (see figure 13). The provable predicate
of a logic-based language with a reflective architecture represents the
language’s meta-theory, or the theory it has about its sentences.!

-8l -

CHAPTER 1V How To Build a Reflective Architecture

provable(true).
provable(A,B) :- provable(A),provable(B).
provable(X) :- clause(X,Y),provable(Y).

Fig. 13. The provable predicate embodies the meta-theory of
a logic-based language with a reflective architecture.

The first clause states information about sentences (here called terms) of the
format

true

It specifies that these terms (actually there is only one) are always proved.
The second clause tells something about the generic term

A,8

where A and B are terms again. It states that such a term can be proved by
proving terms A and B independently. The third clause tells something
about the generic term

X :- Y
where X and Y are terms. It states that such a term can be used to prove

the term X, by proving the term Y.

This meta-theory can be used to generate information about a particular
PROLOG program. E.g. we can generate information about the clause (i)
above. By unification of the variables in the generic terms of the provable
predicate to actual terms we can deduce |

provable(man(X)) :- provable(father(X,Y)).

which says that the term

man(X)

can be proved by proving the term

father(X,Y)

-8 -

CHAPTER 1V How To Build a Reflective Architecture

For languages other than first order logic, specifying a meta-theory for the
language is the main problem encountered when introducing a reflective
architecture. Therefore, few non first order logic languages with a reflective
architecture have been built. Finding a meta-theory for LISP was also the
most difficult part in Smith’s effort to build 3-LISP. Smith first had to
straighten the semantics of LISP, such that the meaning of programs could
be uniquely determined from the meaning of their (sub-)sentences (for regu-
lar LISP this poses problems because of quote). Only after that was he able
to introduce a reflective architecture.

2.3. The Reference Mechanism

A language with a reflective architecture not only has to be able to generate
information about a system it is running, but it also has to be able to con-
struct a representation containing this information such that it becomes
accessible. Three aspects are important here.

First, it is crucial that the self-representation is encoded in the format of
normal data handled by the system. Only this way can a computational sys-
tem actually manipulate the data representing itself, the way it manipulates
object-data. This means that the language has to be able to view sentences
in the language both as code to be executed and as data for reflective com-
putation.

Second, although object data and reflective data should have the same for-
mat, it must still be possible to syntactically distinguish between an
occurence of a sentence E as a normal sentence and an occurence of sen-
tence E as the subject of a reflective sentence. Failure to respect this dis-
tinction produces paradoxes and confusion. For example the English
language sentence

He said I'll do the job.
has a different meaning than the sentence

He said "I'll do the job”.

We need clear markers between object-level and reflective level sentences.
Most of the time, this problem is solved by quoting sentences in the

- 83 -

CHAPTER IV : How To Build a Reflective Architecture

language when they occur as the subject of a reflective sentence.

And third, the interpreter not only needs to incorporate a quoting mechan-
ism for making reflective sentences (or sentences in which one specific other
sentence is named), but it actually has to incorporate a reference mechanism
for making reflective representations. The interpreter cannot always quote
the sentence a reflective sentence is about. This means that the architecture
has to provide an abstraction mechanism for using variables that range over
sentences.

This means that we need a mechanism for making sentences which convey
information about other sentences without actually naming them. A refer-
ence mechanism is realised by (i) providing a mechanism for making
representations of sentences in the syntax of the language, and (ii) incor-
porating a method for retrieving the referents of these representations, i.e.
all the sentences of the system a reflective representation applies to, in the
interpreter of the language.?

E.g. in a PROLOG with a reflective architecture, the language provides a
way to construct sentences in which parts of the sentence are a representa-
tion of other sentences. During computation, the interpreter tries to match
these reflective representations with actual sentences, in order to find the
sentences for which this reflective sentence actﬁally applies. The term

clause(X,Y)

is an example of a PROLOG reflective representation. The language inter-
preter matches the variables X and Y in this term with all pairs of terms
(A,B), which fulfill the constraint that the sentence

A :- B.
is part of the program. This interpreter is said to provide a format-directed

reference mechanism. The referents of a reflective representation are
retrieved on the basis of the syntactical format of the sentences.

The TEIRESIAS system incorporates an alternative reference mechanism,
called content-directed invocation (Davis,1982). The reflective rules of
TEIRESIAS refer to rules by describing them and effect this description by

_84 -

CHAPTER IV How To Build a Reflective Architecture

direct examination of the content of other rules. Consider the following
reflective rule
IF 1) there are rules which do not mention the current goal in
their premise

2) there are rules which mention the current goal in their premise .
THEN it is definite that the former should be used before the latter .

The sets of rules this rule refers to is computed at run-time. The reflective
rule examines at run-time (when it is executed) the source-code of all the

rules of the rule-base to separate those that mention the current goal in their
premise from those that do not mention the current goal in their premise.

The F.O.L. system (Weyhrauch,1980) presents yet another reference
mechanism, called semantic attachment. In F.O.L. the linguistic structures
that make up a (meta-)theory are attached to their "simulation structures”
(i.e. referents) in the theory. The F.O.L. programmer has to specify expli-
citly which terms in the meta-representations refer to which object-level
aspects. For example, the individual terms of a meta-theory are attached to
the terms of the theory they represent, and the inference rules of a meta-
theory (the theory META) are attached to the actual implementation of the
inference mechanism of the F.O.L. system. For example, one can specify
that the (meta-) term

»innocent(R,S)

is semantically attached to all terms that match
innocent(R,$S)

in the theory. By default the predicate

provable

is attached to the implementation of the proof procedure of F.O.L. (which
is a LISP program).

-85 -

CHAPTER 1V How To Build a Reflective Architecture

3. Programming Reflective Computation

3.1. Introduction

The second problem in the construction of a reflective architecture is called
the problem of programming reflective computation. A system should be
able to access and modify its self-representation, such that it can “reason
about and act upon its own computation. It must be possible to condition-
ally halt the object-computation and shift to a reflective level in order to
access and manipulate the representation of that computation, and vice
versa, to conditionally halt reflective computation and shift back to the
affected object-level computation. Two aspects play a role here:

(i) what triggers a shift of levels,
(ii) what kind of computation is pursued after a shift of levels.
These two problems are discussed below.

3.2. Level-Shifting Triggers

Several mechanisms for triggering a shift of levels exist. The trigger to go
from object-computation to reflective computation is in most languages
different from the trigger to go from reflective computation back to object-
level computation.

Reflective computation is in most languages, e.g. FOL (Weyhrauch,1980)
and 3-LISP (Smith,1980), explicitly controlled (or triggered) by the systems
themselves. A programmer has the possibility to specify special commands
in a program which, when interpreted, bring the computational activity of a
system to a reflective level. E.g. in 3-LISP, a system shifts control to the
reflective computation when a reflective function is called.

SOAR (Laird, Rosenbloom and Newell,1984) presents a mechanism for
implicit reflection. Reflective computation is triggered by an impasse during
problem solving. When the computation cannot proceed, the SOAR inter-
preter sets up reflective computation which will try to resolve the impasse.
The system TEIRESIAS, on the contrary, systematically reflects before try-
ing to achieve a new goal.

- 86 -

CHAPTER 1V How To Build a Reflective Architecture

There also exist several mechanisms to return from the reflective computa-
tion to the object-computation again. In some languages, e.g. in F.O.L. or
TEIRESIAS, a system returns to the object-computation once the reflective
computation is done. In other languages, e.g. in SOAR, the object-
computation is resumed the moment the impasse is dissolved. A reflective
function in 3-LISP explicitly prescribes when the object-computation should
be continued.

3.3. Computation after a Level Shift

A reflective architecture not only provides triggers for shifting between
object-computation and reflective computation, but it also determines what
kind of computation is pursued after a level-shift happened.

Several designs can be adopted for going from the object-computation to
reflective computation. 3-LISP programs prescribe the computation that has
to take place after a shift to the reflective level. A 3-LISP program
prescribes the reflective computation that has to take place just like it pres-
cibes the object-computation that has to take place. It simply calls a
reflective function, which is defined like an object-level function (except for
the key-word “reflect”).

Other languages implement a notion of default reflective computation which
can be extended or overridden for a specific computational system. E.g.
TEIRESIAS incorporates two types of reflective code (cf. chapter II)3

(i) domain independent code (i.e. the default reflective code),
(ii) domain dependent code (i.e. explicitly provided code).
'TEIRESIAS incorporates default reflective rules such as the rule

IF 1) there are rules which do not mention the current goal in
their premise,
2) there are rules which mention the current goal in their premise,

THEN it is definite that the former should be done before the latter.

A particular system may modify or extend this default reflective code. For
example, a system can interfere with this reflective rule, by stating the
domain-dependent reflective rule

- 87 -

CHAPTER IV _ How To Build a Reflective Architecture

IF there is a rule which mentions peril danger in its conclusions and
which mentions in its premise a previous organism which may be
the same as the current organism

THEN it is definitely (1.0) a useful rule

TEIRESIAS is built such that user-supplied reflective rules have priority
over default reflective rules. .

Another way the default reflective computation can be modified, is by stat-
ing reflective rules about the default reflective rules. The following example
illustrates such a reflective rule '
IF there is a rule which mentions in its conclusion the
definite utility of a rule, and

which mentions in its premise the current goal
THEN this rule is definitely useless.

Different designs can also be adopted when returning from the reflective
computaﬁon to the object-computation. In most architectures the object-
computation is continued taking into account the current status of the self-
representation existing at the reflective level. E.g. in TEIRESIAS or
SOAR, the_ object-computation that is continued is determined by the status
of the self-representation. 3-LISP presents an exception to this rule. If a
reflective function of 3-LISP has to reactivate the object-level computation,
it not only has to say that this should happen, but it also has to say how
this should happen. Going down happens by applying the continuation of the
lower-level computation or by calling the evaluator explicitly.

4. The Causal Connection Requirement

4.1. Introduction

The third and final problem to be faced in the construction of a reflective
architecture is the causal connection requirement (Smith,1982). The self-
representation of the system that is manipulated at the reflective level has to
be connected to the system itself in such a way that when the reflective
computation is resumed, the object-level computation continues with a pro-
gram and a run-time environment that is affected by the changes made to
the self-representation. Vice versa, the self-representation of a system

- 88 -

CHAPTER 1V How To Build a Reflective Architecture

always has to be connected with the actual state of the system, such that
whenever something changes to the state of the system, this change is
reflected in the self-representation of the system.

For example, if a 3-LISP function decides to consult its self-representation,
this representation has to be accurate. Figure 14 shows a function foo that
consults its self-representation to check whether the variable "bar” is bound.
At that moment it is important that the variable “env” in the reflective func-
tion "boundp” is bound to the environment of the moment the function
boundp was called. '

(define-REFLECT boundp (symbol &optional env cont)
(funcall cont
(not (null
(mapcan
’(lambda (one-binding)
(if (eq (car one-binding) symbol)
(list T))
env)))))

(define-SIMPLE foo (...)

(if (boundp bar) ...)
o)

Fig. 14. The importance of upward causal connection.

Vice versa, if during reflective computation the self-representation is
changed, then the actual computation that is continued after reflection should
be in accord with the new self-representation. Figure 15 illustrates a func-
tion foo that calls a reflective function which halts the computation (it does
not reactivate the object-computation) This modification actually affects the
computation of the function foo: the forms (i) in the program of foo are not
evaluated, and foo returns as result the string “halted”.

-89 -

CHAPTER IV How To Build a Reflective Architecture

(define-REFLECT halt (&optional env cont)
"halted”)

(define-SIMPLE foo (...)
(prog (...)

(halt)

} %

Fig. 15. The ifnportance of downward causal connection.

))

In general, when designing the causal connection system of a reflective
architecture two problems have to be solved. First some monitoring
mechanism has to be developed. The purpose of the monitoring mechanism
is to check whether some changes occur to either the system or its self-
representation.

The second problem to be solved is the development of a mechanism in the
interpreter which is activated when such a change occurs. We call this the
representation maintaining mechanism of the reflective architecture. The
representation maintaining mechanism is some sort of consistency mainte-
nance mechanism. Its purpose is to realise the effects a change to either the
system or its self-representation should cause in the other one. So actually
this mechanism takes care that the reflective representations discussed in
section 2.3 are maintained. It ‘maintains the reference-links between the
reflective representations and the system.

4.2. Examples

The easiest and most common technique to solve the causal connection
problem is to make the language operational by means of a meta-circular
interpreter. A meta-circular interpreter is

(i) an explicit representation of the interpreter in the language itself,

(ii) which is also actually used to run the language.

- 90 -

CHAPTER 1V How To Build a Reflective Architecture

The idea is that if we want to give systems a representation of aspects of
their own execution process, the easiest solution is to make the execution
process itself a computational system in the language. So the explicit
representation of a system (in terms of an explicit representation of its
interpretation) is actually used to run the system. A necessary condition for
a meta-circular representation is that the language provides one common for-
mat for programs in the language and data, or more precisely, that pro-
grams can be viewed as data-structures of the language.

The consistency between the self-representation and the system itself is
automatically guaranteed because the self-representation is actually used to
implement the system. So an interesting consequence of a meta-circular
interpreter is that there is not really a representation mechanism needed
(because there are not two distinct representations). There only exists one
representation which is both used to implement the system and to reason
about the system.

Computation in a language with a meta-circular interpfeter can be viewed as
an infinite tower of systems all computing about the level below
(Smith,1982). The lowest level does computation about the actual problem

domain. The other levels manipulate causally connected representations of
the level below.

The 3-LISP interpreter, for example, is (virtually) an infinitely stretching
tower of read-eval-print loops. A production rule system with a meta-
circular interpreter is (virtually) an infinite hierarchy of problem-spaces,
where the goal in each problem-space is to help forward the computation of
its super-space. Similarly, every theory in a logic programming language
with a meta-circular interpreter would (virtually) have its meta-theory.

- 9] -

CHAPTER 1V How To Build a Reflective Architecture

computing about
\

META-CIRCULAR-INTERPRETER 2

computing about

Vv

META-CIRCULAR INTERPRETER 1

computing about

OBJECT-SYSTEM

computing about

EXTERNAL DOMAIN

Fig. 16. Computation in a language with a meta-circular interpreter
virtually happens at an infinitely stretching number of levels.

It is technically possible to implement this infinity because a specific applica-
tion only uses a finite number of levels, which means that one only needs to
construct the number of meta-circular interpreters that are actually used.
However, a necessary condition to let a language actually operate by means
of a meta-circular interpreter is that there exists a second interpreter written
in another language which is able to interpret the meta-circular one (in
order not to fall into a loop of meta-circular interpreters interpreting meta-
circular interpreters). Two interpreters are necessary, but also sufficient:
we can generate metal! interpreter-levels by recursively using the meta-
circular interpreter.

An efficient technique that can be used to implement a meta-circular inter-
preter is discussed in (Des Rivieres and Smith,1984). We will refer to this
technique as reification. Reification consists of reifying (or making explicit
and thus available) the data-structures of the interpreter to the program that
is running whenever it asks for it (explicit copies of the real ones), and
reinstalling these data-structures in the object-computation when the
reflective computation has finished (installing the copies into the real

_92 -

CHAPTER IV How To Build a Reflective Architecture

interpreter again). This technique guarantees that at all times only the
number of interpreter-levels that is actually needed exists.

It is realised by incorporating in the second interpreter (the real one) a
mechanism that is able to dynamically create and delete circular interpreta-
tion levels. First the second interpreter has to be modified such that it is
able to recognise reflective code in the program that it is interpreting';.hThe
interpreter starts with one level.

REAL INTERPRETER

interpreting

OBJECT-SYSTEM

Fig. 17. Initial status of a meta-circular interpretation.

Whenever the interpreter identifies some reflective code in the code of the
object-system program, the interpreter has to create an explicit interpreter-
level. It has to initialise this meta-circular-interpreter with (explicit) copies
of its own status (e.g. its continuation, current-expression, env). After that
it has to reinitialise its own status. The new program that it has to interpret
is the reflective code. The new values of the continuation and environment
of the second interpreter vary in different designs. The reflective code will
now be interpreted by the second interpreter, while the object-code is inter-
preted by the meta-circular interpreter.

- 93 -

CHAPTER IV How To Build a Reflective Architecture

REAL INTERPRETER

interpreting
\'4
REFLECTIVE CODE

interpreting

v

OBJECT-SYSTEM

Fig. 18. The number of levels is expanded by the presence of
reflective code.

This expansion of levels is performed whenever it is needed. For example,
when during interpretation (by the second interpreter) of the reflective code,
again reflective code is encountered (i.e. this is actually reflective? code), a
third interpreter-level will be created in a similar way. The number of lev-
els is schrunk whenever the second interpreter has finished the interpretation
of the code of the level below. At that moment the second interpreter
adopts the status of the top-most meta-circular interpreter and throws the
latter one away.

F.O.L. adopts another technique. The causal connection downward is in
F.O.L. implemented by means of the reflection principles discussed in
chapter II. For example, the reflection principle

(In meta-T) theorem(W)

(In T) W

takes care that new theorems deduced in the meta-theory, are exported to
(or asserted in) the object-level theory. The semantic attachment technique
(discussed previously in this chapter) handles the causal connection upward.
The meta-theory always has an accurate representation of its object-theory
because the meta-theoretical terms are attached to the aspects of the object-
theory they represent.

- 94 -

CHAPTER IV How To Build a Reflective Architecture

5. Reflective Languages

When the interpreter of a language with a reflective architecture is meta-
circular, we can also view this interpreter as a program in the language.
This means that this system can also be given a reflective behavior. When
the interpreter for language L is also a reflective system in L, we speak of
a reflective language. When the language itself reflects this should have a
global impact upon the computation of all systems implemented in the
language. In order to make reflection by the language possible the following
three constraints have to be fulfilled:

(i) the language has to run by means of a meta-circular interpreter
(which means that there is also a second interpreter simulating a tower
of default-interpreters), and

(ii) this meta-circular interpreter has to be accessible and modifiable in
a global way (instead of only being modifiable from within the
interpretation of one program), and

(iii) the meta-circular interpreter and the second interpreter not only
have to cause the same behavior, but they should also be causally con-
nected to each other.

Actually, (iii) states that the second interpreter of the language has to be
sensitive for a change to the global meta-circular interpreter, such that
whenever reflection modifies something to the meta-circular interpreter, the
whole behavior of the language changes accordingly. The technique that is
usually applied to bottom out the recursion of a meta-circular interpreter is
that only reflective programs are interpreted by the meta-circular interpreter,
while non-reflective code is immediately interpreted by the second inter-
preter. Consequently, a technique that can be used to bottom out the recur-
sion in a reflective language is that there is one extra interpretation step for
all programs in the language: non reflective programs need two steps instead
of one, reflective programs need three steps instead of two.

A reflective language represents an even more powerful tool than a language
with a reflective architecture. Examples of things which can be realised in
a reflective language are:

- 0§ -

CHAPTER IV How To Build a Reflective Architecture

- To change the semantics of the syntax of the language during compu-
tation. For example, a reflective logic programming language could
change the meaning of the implication sign such that the interpretation
of all programs in the language is affected.

- To improve the control aspect of the interpreter of the language dur-
ing computation. For example, a reflective rule-based language could
“learn” strategies to interpret rule-based programs in a more effective
way.

Although most languages with a reflective architecture are implemented by
means of a meta-circular interpreter, it is not clear from the literature
whether these languages are also actually reflective languages. From what is
documented, we conclude that the languages cited until now (3-LISP,
F.O.L., METAPROLOG, TEIRESIAS) are not reflective languages. What
is missing in the architecture of these languages is the requirement (iii). The
meta-circular interpreter and the second interpreter are not causally con-
nected to each other. Therefore, we call the language 3-KRS, discussed in
chapter VI of this dissertation, the first operational reflective language.

6. The Cost of a Reflective Architecture

Including a reflective architecture in a language involves three costs:
(1) The cost of setting up the reflective architecture,
(i1) The cost while interpreting the language,

(iii) The cost of reflective computation.

The initial cost of a language with a reflective architecture is the cost of
designing and implementing the reflective architecture. This cost is prob-
ably high at the moment. However, it will become less relevant as reflection
becomes better understood and techniques for building reflective systems
become established. Note that designing a new language may be facilitated
by a reflective architecture. (Smith,1982) shows how the kernel of the LISP
language can be substantially reduced by adopting a reflective language.
Several functions (such as “defmacro”) no longer have to be primitive func-
tions of the language.

- 96 -

CHAPTER 1V How To Build a Reflective Architecture

As regards the runtime costs, languages with a reflective architecture are not
necessarily inefficient languages. The self-representation of a system that is
running has to be maintained. However, it only needs to be constructed
when needed, i.e. when it is actually used in reflective computation. This
means that when the reflective facilities of the language are not exploited by
a system, the run-time cost of a reflective architecture is almost equal to
that of a non-reflective architecture. The only additional computation is a
test that checks at the appropriate moments whether a system wants to make
use of the reflective level or not.

The cost of reflective computation has two components: (i) the effort of the
programmer and (ii) the effort of the machine. Programming in a reflective
architecture does not necessarily require too much (system-specific)
knowledge. The self-representation provided in current reflective architec-
tures is designed to suit the interpreter that has to realise it (and its causal
connection). However, programming reflective systems could be substan-
tially facilitated by self-representations that are designed to suit the program-
mer that has to use it. Another way programming reflective systems can be
improved is by providing the programmer with libraries of commonly used
reflective computations from which he can pick a specific type of reflective
computation whenever needed.

The other component in the cost of reflective computation is the effort the
interpreter has to make when a system makes use of its reflective abilities.
Computing at run-time the object-level computation that has to be performed
is of course more costly than having a fixed scheme of computation. This
difference in cost is similar to the difference between evaluating code and
executing compiled code.

A solution here might be that, either reflective computation is exceptional,
or, when it is not exceptional, it becomes compiled into the actual inter-
preter of the language. Some reseachers have been looking for techniques
to compile reflection. For example, (Genesereth and Smith,1981) describes
an attempt to recognise deterministic reflective behavior and replace it with
algorithmic code. (Van Harmelen,1986) gives a survey of possible tech-
niques to improve the efficiency of meta-level architectures and reflective
architectures.

.97 .

CHAPTER IV How To Build a Reflective Architecture

7. Conclusions

Three problems have to be solved when building a language with a
reflective architecture:

(1) The problem of the self-representation of a system implies that the
interpreter of the language has to be able to generate a represpgt_ation
of a system and its state of computation.

(ii) The problem of the programming reflective computation implies
that the architecture has to define the conditions under which a shift
between object-level computation and reflective computation happens.

(iii) The problem of the causal connection link implies that the self-
representation of the system that is manipulated at the reflective level
has to be causally connected to the system itself.

This chapter analysed these problems and presented techniques to solve
them. The next chapter studies the relation between the specific techniques
that is chosen and the possibilities for reflection that result.

NOTES

1] The meta-theory of a language is in almost all of the existing reflective architectures
embodied in a meta-circular interpreter.

[2] These problems are reflected in Smith’s first and second factor. (Smith,1982) argues
that when talking about a specific reflective architecture, one should always specify an
account of the following two factors for a sentence in the language

(i) the first factor also called functional role or procedural consequence or immediate
effect is what a sentence returns (what results from a computation, inference, deduc-
tion, or message passing, i.e. the computer science notion of interpretation) and

(ii) the second factor also called significance or content, is what sentences are about
(model theory, designation, logic’s notion of interpretation)

Point (ii) is important to know the referent of a self-representation. (i) is important to
know which aspects of the referent a self-representation represents (see chapter VI).

[3] It is therefore that some authors distinguish three levels of information in a computa-
tional system which is embedded in a reflective architecture:

(i) representations of things in the outside world,
(ii) representations about those representations, and

(iii) representations about representations in general.

- 98 -

CHAPTERV

Design Issues

1. Introduction

The previous chapter elaborated on the construction of a reflective architec-
ture. Not all reflective architectures that are built provide equal possibilities
for reflection. The reflective facilities of a language with a reflective archi-
tecture depend upon the design choices that were made in order to solve the
three problems discussed in the previous chapter:

(i) what representation a system has of itself,

(i1)) how the reflective computation of the system is programmed, i.e.
under what conditions a system will manipulate its self-representation
and what manipulations it will perform,

(iii) the causal connection link that exists between the system and its
self-representation.

This chapter discusses how reflective architectures may vary along these
three dimensions. It does not advocate particular design choices, but argues
that a choice along one dimension has to be made with a particular kind of
reflective facility in mind. The three dimensions define a space of alterna-
tive designs reflective architectures can explore. However, the reflective
architectures that have already been built, are grouped in a few areas of this

space. 1

- 99 -

CHAPTER V Design Issues

2. Theory Relativity of a Reflective Architecture

2.1. Introduction

Languages with a reflective architecture give systems the ability to reflect by
providing them at run-time with a causally connected self-representation they
can access and manipulate. This self-representation determines what compu-
tation the system is able to perform about itself and what modifications it is
able to make to itself.

A specific self-representation defines a terminology the system can use to
specify reflective computation. It fixes the set of terms a system can use to
specify reasoning about and acting upon itself. Because this terminology is
directly determined by the meta-theory of the language, a reflective architec-
ture is said to be theory relative (Smith,1982)2.

2.2. The Terminology of the Meta-Theory

Every representation defines a certain terminology to talk about the
entity(ies) it represents. For example, the position of a robot-arm can be
represented by a triple of coordinates. This representation makes it possible
to ask for the x-coordinate of the arm, or to state that the x-coordinate of
the arm has a certain value. However, since this representation does not
represent whether the hand of the robot-arm is open or closed, it cannot be
refered to. It is not possible to ask whether the hand is open, nor can it be
stated that it is open.

The same holds for the self-representations of a reflective architecture. A
self-representation defines a terminology to refer to aspects of the computa-
tional system it represents. Since a self-representation is built on the basis
of the meta-theory of the reflective architecture, the terminology of the self-
representation is the terminology of the meta-theory. The terminology
introduced by the meta-theory of a reflective architecture varies a lot. For
example, an explicit representation of the operational aspect of systems in
LISP might range from

- 100 -

CHAPTER V

Design Issues

(define meta-circular-interpreter-1 (expr &optional env cont)
(eval expr env cont))

to a more extended version

(define meta-circular-interpreter-2 (expr &optional (env ()))

(cond

((null expr) NIL)

((numberp expr) expr)

((eq expr T) expr)

({symbolp expr)(binding expr env))
((eq (car expr) ’quote) (cadr expr))
((primitive-function-p (car expr))

(apply (car expr)

(make-list-of-evaluated-args (cdr expr) env)))
(T (eval (definition-of (car expr))

(lexical-make-env

(definition-args-of (car expr))
(cdr expr)

env)))))

or to one that makes explicit all machine actions (from Sussman,1982)

(defpc meta-circular-interpreter-3

(save env)

(save unev)

(save argl)

(save fun)

(save' retpc)

(goto eval-dispatch)

(defpc pop-return
(restore retpc)
(restore fun)
(restore argl)
(restore unev)
(restore env)

(goto (fetch retpe))

- 101 -

CHAPTER V Design Issues

(defpc eval-dispatch
(cond ((self-evaluating? (fetch exp))

(assign val (fetch exp))’

(goto pop-return))

((quoted? (fetch exp))

(assign val (text-of-quotation (fetch exp)))
(goto pop-return))

((variable? (fetch exp))

(assign val -

(get-variable-value (fetch exp)
(fetch env)))

(goto pop-return))
((lambda? (fetch exp))

(assign val

(make-procedure (fetch exp)
(fetch env)))

(goto pop-return))

((conditional? (fetch exp))

(assign unev (clauses (fetch exp)))

(goto evcond-pred))
((no-operands? (fetch exp))

(assign exp (operator (fetch exp)))

(assign retpc apply-no-args)

(goto meta-circular-interpreter-3))
((appliciation? (fetch exp))

(assign unev (operands (fetch exp)))

(assign exp (operator (fetch exp)))

(assign retpc eval-args)

(goto meta-circular-interpreter-3))
(t (error "unknown expression type -- eval”))))

The terminology introduced by meta-circular-interpreter-1 is rather limited.
It makes it possible to refer to four aspects of the interpretation of a LISP
program: the evaluator program, the program itself; the environment and
the continuation. A system which has this interpreter as representation of
itself, may for example refer to its own environment, or it may act upon its
own interpretation, as in

(define variant-on-meta-circular-interpreter-1 (expr &optional env cont)

(do-something-with-the-result
(eval (do-something-with-the-input expr))

env)
cont)))

This is a variant on the interpreter, which will do something before and
after the (default) evaluation of an expression. The self-representation of
meta—circular—interpreter—1 only makes it possible for a system to reason
about and act upon the LISP-evaluator as a whole. It does not make it

- 102 -

CHAPTER V Design Issues

possible to analyse how the evaluator works, or to modify internal aspects
of the evaluator.

On the other hand, meta-circular-interpreter-2 already introduces a more
sophisticated terminology to refer to the operational aspect of a computa-
tional system in LISP. This self-representation makes explicit some of the
internal aspects of the LISP-evaluator. It makes it for example possible for
a system to ask questions about the evaluation of an expression of a particu-
lar syntactical type. It also allows more fine grained modifications to the
LISP-evaluator, such as

(define variant-on-meta-circular-interpreter-2 (expr &optional (env ()))
(cond
"((null expr) NIL)
((numberp expr) expr)
((eq expr T) expr)
((symbolp expr)(binding expr env))
((eq (car expr) ’quote) (cadr expr))
((primitive-function-p (car expr))
(apply (car expr)
(make-list-of-evaluated-args (cdr expr) env)))
(T (eval (definition-of (car expr))
(dynamic-make-env
(definition-args-of (car expr))
(cdr expr)
env)))))

This variant modifies the interpreter such that it has dynamical scoping. In
the original interpreter a function-definition was interpreted in the environ-
ment containing only the bindings made by the arguments of the function-
call. The function lexical-make-env used in the original interpreter was
defined as follows
(define lexical-make-env (definition-args formula-args old-env)
(cond ((null definition-args) nil)
(T (add-binding (car definition-args)
(eval (car formula-args) old-env)
(lexical-make-env (cdr definition-args)

(cdr formula-args)
old-env)))))

In the variant interpreter, function-definitions are evaluated in the environ- -
ment at the moment they are called, extended with the bindings made by the
arguments of the function-call. The function dynamic-make-env adopted in
this variant interpretef is defined as

- 103 -

CHAPTER V Design Issues

(define dynamic-make-env (definition-args formula-args old-env)
(cond ({null definition-args) old-env)
(T (add-binding (car definition-args)
(eval (car formula-args) old-env)
(dynamic-make-env (cdr definition-args)
(cdr formula-args)
old-env)))))

Note that this variation cannot be made by means of meta-circular-
interpreter-1. However, meta-circular-interpreter-2 does not make explicit
the continuation of the evaluation (which is implicit in the recursion) as
meta-circular-interpreter-1 does. Consequently, some variations on meta-
circular-interpreter-1 will not be expressible in the terminology introduced
by meta-circular-interpreter-2.

Meta-circular-interpreter-3, on the other hand, presents a self-representation
of the operational aspect of systems in terms of machine concepts such as
registers and memory-adresses. This makes it for example suited for analys-
ing and modifying the time and space requirements of systems. However, it
leaves implicit other aspects of the interpreter, such as its recursive
behavior.

2.3. A Space of Variations

2.3.1. Introduction

The terminology of the meta-theory of a reflective architecture defines the
aspects along which a system may analyse and modify itself. It determines a
space of variations on itself a system is able to construct.3 Although this
space is infinite, it is always bounded. It is always possible to think of a
variation that cannot be expressed in the finite terminology.4

The meta-theory a language has of itself (and consequently the self-
representation a system has of itself) is neverfcomplete. It is an inherent
property of representations that they necessarily contain less information
than the thing they represent. Consequently there are always aspects or rela-
tions of the system which are implicit in the self-representation and which
can thus not be modified. Consequently, when designing a reflective archi-
tecture, the problem is to choose the optimal self-representation for the kind

- 104 -

CHAPTER V _ ' Design Issues

of computation the language aims to support.

One of the most important questions that has to be considered when trying
to choose a particular meta-theory is what aspect(s) of itself a computational
system should be able to reflect upon. First there are aspects which can be
extracted from the sentences that make up the program of the system (the -
default self-representation (cf. chapter IV)). Four such aspects can be
identified: the syntax, semantics, deduction (or computation) and operation.
In addition, the programmer may make arbitrary aspects of systems explicit.
He may even make information explicit which is not implicitly present in
the data, program or execution of the system, e.g. who created the system.

The following sections discuss the first four aspects. They show that meta-
theories making explicit different combinations of these aspects result into
entirely different facilities for reflection. The discussion is illustrated with
examples from a logic language, but the same aspects can be identified for
other languages as well. The next chapter will do it for an object-oriented
language.

2.32. Syntax

Computational systems have a syntactical aspect. A language imposes a
particular format upon programs and data. For example, the format of
LISP are S-expressions, the format of logic are clauses and the format of
rule-based systems are rules. The meta-theory of the reflective architecture
may formalise this syntactical aspect of systems. Systems then have the pos-
sibility to reason about or manipulate the object-level syntax of the language
from within the language itself. A reflective system can for example extend
the syntax of sentences at the object-level by stating at the reflective level

legal-sentence(”P <=> Q.”).

From that moment on, it is possible to use this new syntactic construct
(although there is not yet a meaning associated with it).

- 105 -

CHAPTER V Design Issues

2.3.3. Denotation

Computational systems have a denotational aspect (also called semantical
- aspect). A language has rules to relate the syntactical structures in the pro-
gram of a system to objects and rélations in a problem domain. The deno-
tational semantics of a programming language formalises these rules by con-
structing functions that map programming constructs to their denotations.
The meta-theory of a reflective architecture may incorporate this denota-
tional aspect of the language.

This requires that the language has some notion of denotation, i.e. of dere-
ferencing of syntactic structures and creating structures with specific
referents. However, this is not the case for extensional logic programming
languages (where all inference happens by applying deduction rules).
Nevertheless, we can imagine a logic-based language in which reflective sys-
tems can affect the denotation of syntactical structures at the object-level by
stating facts such as

equal-denotation(Patricia,Pattie).

which states that structures Patricia and Pattie have the same denotation.
This would of course require that the interpreter actually uses such co-
denotational structures interchangeably during deduction (e.g. in
unification).

2.3.4. Deduction/Computation

Computational systems have a deductive aspect or a computational aspect.
Usually the answers to questions are not explicitly i'epresented in the data of
a system, but must be deduced (in a declarative language), or computed (in
a procedural language). Note that it is important that the denotational and
deductive/computational aspect of a language are consistent.

The deductive aspect of a system can be subdivided in the.inference theory
and the control aspect. The inference theory of a declarative language
defines the allowable inferences that can be made (i.e. the allowable changes
to the data of the system, given the program of the system). The meta-
theory may formalise this inference aspect of the language. Systems then are

- 106 -

CHAPTER V : Design Issues

able to prove properties about their own inference theory (e.g. monotoni-
city, provability) or to extend it, as in (in italics)

provable(P) :- theorem(P).

provable(and(P,Q)) :- provable(P), provable(Q).

provable(P) :- clause(P,Q), provable(Q).

clause(P,q) :- theorem(”F <=> §.”).
clause(q,P) :- theorem(”F <=> Q.”).

The new syntax construct created in section 2.3.2. can thus also be used in
programs, as in

even(X) <=> divisible(X,two).

The inference theory of a declarative language defines the possible infer-
ences made by a computational system, but does not say which ones should
actually be made. This is the role of the control aspect of the language.
There can be a sequential execution of the program, a goal-oriented execu-
tion of the program, a data-driven execution of the program, etc. The
meta-theory of a reflective architecture may formalise this control aspect.
Systems then have the possibility to reason about and experiment with
different control strategies. For example,

goal(P) :- not(theorem(P)), clause(P,Q), goal(Q).

In a procedural programming languages the control and deductive aspects of
a computation system cannot be disconnected. Programs specify at the same
time what computation should happen and when it should happen. The
term computational aspect is here used to refer to both aspects at the same
time. If the meta-theory of a procedural language formalises this computa-
tional aspect, reflective systems are able to reason about an act upon their
computation and its flow. Some LISP examples of functions doing exactly
this were presented in chapter I, II and III.

2.3.5. Operation

Computational systems have an operational aspect. To actually realise a
computational system it must be emulated by a computational medium.
Most languages are emulated by an interpreter, written in another language

- 107 -

CHAPTER V Design Issues

~(which is also emulated, for example, by machine-language). The meta-
theory may formalise this operational aspect of the language. Systems then
have the possibility to reason about how they are being executed.

For example, when the language is PROLOG and this PROLOG is inter-
preted by means of an interpreter written in PROLOG, then the meta-theory
could incorporate a causally-connected representation of how this interpreter
works. Systems can then reason about and act upon the PROLOG compu-
tation that is being performed while processing them. They can for exam-
ple reason about their own performance or modify their own interpreter or
extend the environment of their execution, etc.

3. Variations on Programming Reflective Computation

3.1. Introduction

When designing a reflective architecture, the second design choice to be
made is how the reflective computation will be programmed, i.e. what the
conditions are under which a system will manipulate its self-representation
and what kind of reflective computation the system will perform when these
conditions are fulfilled. Are there specific points in the interpretation of the
system where the self-representation is examined? Does the system itself
specify when it wants to reflect? Is the reflective computation continously
active? Does the system or does the architecture decide what kind of
reflective computation is pursued? Is there a notion of default reflective
computation? How does the computation proceed after reflective computa-
tion?

Actually the decision to be made here is what the “interface” between
object-computation and reflective computation looks like. Again there is a
range of possible solutions, representing a second dimension along which
reflective architectures vary. In order to make a choice along this dimen-
sion, the fundamental question to be asked is what the role of reflective
computation is in the overall model of computation adopted by the language.

If reflective computation is a fundamental component of the model of com-
putation of the language, i.e. if the well-functioning of the object-

- 108 -

CHAPTER V . Design Issues

computation requires reflective computation, then the interface should be
constructed such that systems systematically or constantly reflect. We say
that such languages have an architecture for implicit reflection.

If reflection only serves to facilitate exceptional functionalities on the
object-computation, i.e. if a system also runs without reflective computation,
the interface should be designed such that reflective computation only-takes
place when the program of a system explicitly prescribes it. We say that
such a language has an architecture for explicit reflection. It is possible that
an architecture supports at the same time implicit reflection and explicit
reflection.

3.2. Implicit Reflection

In an architecture for implicit reflection, reflective computation plays a cru-
cial role. The reflective computation is systematically activated by the inter-
preter of the language. This means that there are “holes” in the normal
interpretation process that remain to be filled by reflective computation. -

If the interpretation process consists of the execution of tasks aj .. ap, there
exist one or more i, for which the action aj is not defined in the normal
interpreter (called “second interpreter” in chapter IV) . l.e. some a; are
necessarily a piece of reflective computation defined by the program- of the
system that is interpreted.

Since reflective computation is a crucial component of the interpretation of a
system, the program of every system has to prescribe this reflective compu-
tation. Therefore the technique of default reflective computation is adopted
in an architecture for implicit reflection. If the program of a system does
not prescribe the reflective computation that should happen for the action aj,
the architecture executes a default reflective program.

TEIRESIAS (Davis,1982) is an example of a language with an architecture
for implicit reflection. TEIRESIAS systematically reflects everytime a new
goal has to be pursued by the interpreter. The purpose of this reflective
computation is to compute the domain-dependent strategy to be used for the
exploration of the search space for the goal. The default reflective

- 109 -

CHAPTER V Design Issues

computation that is adopted will use some general criteria to favor a specific
strategy (cf. chapter II).

SOAR (Laird,Rosenbloom and Newell,1986) is another example of an archi-
tecture for implicit reflection. Although SOAR is also a rule-based system,
the reflective computation in SOAR plays a different role in the interpreter.
A computational system in SOAR reflects when the object-computation gets
stuck in an impasse. The goal of the reflective computation that is activated
- at that moment, is to resolve the impasse. As soon as this is achieved, the
reflective level is abandoned and the object-level computation is continued.
Again default reflective programs to resolve particular impasses exist.

3.3. Explicit Reflection

In architectures for explicit reflection, reflective computation does not hap-
pen automatically. Reflection only takes place when the program of a system
explicitly prescribes it. Computation normally takes place at the object-
level. Whenever the program prescribes reflective computation, the system
enters a break to temporarily do something at the reflective level.

Most languages who were initially designed without a reflective architecture,
provide an architecture for explicit reflection. The reflective computation is
not a crucial component of the interpretation process. Reflection serves more
to support programming environment issues such as maintenance,
modification, debugging, documentation, and use of computational systems.

3-LISP is an example of an architecture for explicit reflection. Reflective
computation occurs in 3-LISP whenever a reflective lambda-expression is
evaluated. A computational system in 3-LISP may not perform any
reflective computation at all. Another example of an architecture for explicit
reflection is F.O.L. The F.O.L. interpreter only jumps to a reflective level
when the programmer explicitly states this.

- 110 -

CHAPTER V Design Issues

4. Type of Causal Connection

4.1. Introduction

The third design choice to be made in the construction of a reflective archi-
tecture is how the causal connection requirement will be fulfilled. In order
to establish a causal connection link between the self-representation and the
aspects of the system it represents, a monitoring mechanism and a represen-
tation maintenance system has to be developed. The monitoring mechanism
does not pose substantial design or implementation questions. The represen-
tion maintenance system, on the other hand, certainly represents one of the
most difficult problems to be solved in the construction of a reflective archi-
tecture. Only a few solutions, of which none is very satisfactory, have
been proposed until now.

The solutions that can be adopted fall into two classes called declarative
reflection and procedural reflection. In both classes computational systems
exhibit the behavior dictated by their self-representation. However, in the
former this happens by means of an implementation link, while in the latter
it happens by means of a specification link.

4.2. Procedural Reflection

In an architecture for procedural reflection, the causal connection relation
between a system and its self-representation is realised by means of an
implementation link. The causal connection between system and self-
representation is guaranteed because the self-representation of a system is
also used to implement it. So there is not really a representation mainte-
nance problem. There only exists one representation which is both used to
implement the system and to reason about the system.

The problem with this causal connection scheme is that a self-representation
has to serve two purposes. Since it serves as the data for reflective compu-
tation, it has to be designed such that it provides a good basis to reason
about the system. But at the same time it is used to implement the system,
which means that it has to be effective and efficient.

- 111 -

CHAPTER V Design Issues

Consequently substantial constraints are imposed on the format and the con-
tents of a self-representation. It necessarily exists of a complete procedural
representation of the operational aspects of a system, i.e. it necessarily is a
meta-circular interpreter of the language. E.g. in 3-LISP, the self-
representation necessarily consists of a function representing ‘the evaluation
procedure. It is not possible to represent the evaluator in terms of the
input-output relations that it maintains, because the self-representation also
has to be able to execute a system.

So, in an architecture for procedural reflection a self-representation can only
be a straightforward representation of the entities of the interpretation pro-
cess (such as the environment, the stack, and the interpretation-program).
We will call these representations reifications of the entities in the imple-
mentation process. Reifications do not present the most interesting founda-
tion for reflective computation that can be imagined (cf. issue of theory
relativity discussed in section 2).

Examples of architectures for procedural reflection are 3-LISP and META-
PROLOG.

4.3. Declarative Reflection

In an architecture for procedural reflection the computation of a system can
only be controlled by giving a complete procedure for the implementation of
the system. The motivation for research on architectures for declarative
reflection is to build systems which accept explicit assertions about their
object-computation and are able to continue their computation such that it
fulfils these assertions.” These assertions could for example say that the
computation of the system has to fulfill some time or space criteria. In these
architectures the self-representation does not have to be a complete pro-
cedural representation of the system, it is more a collection of constraints
the status and behavior of the system have to fulfill.

In an architecture for declarative reflection, the causal connection relation
between the system and its self-representation is realised by means of a
specification relation. The architecture has a notion of meta-representations,
i.e. of representations denoting other representations. It provides means to

- 112 -

CHAPTER V Design Issues

create meta-representations, and to retrieve the referents of meta-
representations. Further, the reflective architecture also incorporates a
mechanism to maintain a meta-representational link. Whenever a meta-
representation or its referent changes, the other one is updated such that the
representational link is maintained.

The causal connection requirement is more difficult to realise here: it has to
be guaranteed that the explicit representation of the system and its implicitly
obtained behavior are consistent with each-other. This means that in this
case, the interpreter itself has do decide how the system can comply with its
self-representation. So, in some sense the interpreter has to be more intelli-
gent. It has to find ways to translate the declarative representations about the
system into the interpretation-process (the procedural representation) that is
implementing the system.

An architecture for declarative reflection can be viewed as an architecture
incorporating . representations in two different formalisms of one and the
same systtm. During computation the most appropriate representation is
chosen. The implicit representation serves the implementation of the sys-
tem, while the explicit representation serves the reasoning and acting upon
the system.

Although architectures for declarative reflection are more difficult to imple-
ment than architectures for procedural reflection, they present a more
interesting foundation for reflective computation. This is due to the fact that
the self-representation of such an architecture only serves to describe the
system, without being used as the foundation of its implementation. At this
moment, a fullfledged architecture for declarative reflection has not yet been
realised. There is even debate whether the problem is actually a solvable
one (Des Rivieres,1986). Nevertheless, some important attempts are worth
mentioning.

The goal of research on partial programs (Genesereth,1987) is to allow the
specification of explicit constraints upon the object-level computation, which
by means of the reflective architecture would be taken into account in the
actual object-computation. The idea is that while doing computation about
the external domain, the system can receive advice about the object-

- 113 -

CHAPTER V Design Issuks

computation and can continue the object-level computation in line with this
advice.

The GOLUX system (Hayes,1974) presents another attempt to build an
architecture for declarative reflection. - The reflective level of a GOLUX
éystem describes (i.e. contains assertions about) the desired behavior’ of the
object-level. The system must obey these assertions, although the assertions
do not uniquely define the behavior of the system (i.e. systems are non-
deterministic).

Actually the distinction between declarative reflection and procedural
reflection should more be viewed as a continuum. A language like F.O.L.
(Weyhrauch, 1980) is situated somewere in the middle: F.O.L. guarantees
the accuracy of the self-representation by a technique called semantic attach-
ment. The force of the self-representation is guaranteed by a technique
called reflection principles. It shows to be far less trivial to prove that the
combination of these two techniques actually also succeeds in maintaining
the consistency between the self-representation and the system.

4.4. Read-Only Reflective Representations

Another problem with the causal connection requirement is that often the
complete downward causal connection of a self-representation cannot be
realised. In many cases it is impossible to translate a modification to the
reflective representation into the status and behavior of the system itself.
For example, it is interesting to represent at the reflective level that

not(fact(X))

but how should this representation be enforced on the object-level? What if
x is a fact at the object-level or what if x is later asserted?

Another argument against complete downward causal connection of the self-
representation is that it is often not what the programmer of a reflective sys-
tem wants. A programmer often wants to give systems a “read-only”
reflective representation of certain aspects of themselves. Such representa-
tions make it possible for a system to reason about aspects of itself, without
allowing it to act upon those aspects.

- 114 -

CHAPTER V Design Issues

A possible solution to this problem is to introduce the notion of read-only
reflective representations in the architecture. Consequently, the classification
of the reflective representations contained in a self-representation as “read-
only” reflective representations or as completely causally connected
representations presents another design problem that has to be solved.5

5. The Problem of Reflective Overlap

When designing the meta-theory of a reflective architecture, one should be
careful not to fall into the pit of reflective overlap. The problem of
reflective overlap occurs when an aspect of a system that has been made
explicit includes, or is included by, some aspect of the system that remains
implicit (Smith,1986). It is the issue of reflective overlap that may cause the
paradoxical situations that are sometimes associated with reflection.

For example, consider a reflective architecture which makes explicit the
stack of the interpretation process running a system. The problem is that
reflective computation also uses the run-time stack. So although the stack is
made explicit, it at the same time includes an implicit aspect of the compu-
tation. It is therefore impossible to realise reflection in this case with only
one representation of the run-time stack. Necessarily, there will have to be
two representations: (i) the one that is actually used and (ii) the one that is
explicitly represented and manipulated. Three representations of the stack
will be necessary if we also want to make the stack of the reflective compu-
tation explicit.

The problem of reflective overlap introduces limits on the combination of
choices that can be made in the design of the architecture. Whether the
problem of reflective overlap will exist or not depends on the combination
of meta-theory, level-interfacing mechanism and the causal connection tech-
nique.

The problem of reflective overlap is related to the undecidability results in
meta-mathematics (Godel) (Russell). These results state that there are limits
to how far a formal system can formalise aspects of itself. Reflective over-
lap states that there are limits to how far a computational system can have
an explicit and modifiable self-representation of itself. An example which

- 115 -

CHAPTER V Design Issues

illustrates the problem is the well-known liar-paradox, of which the sentence

false(this-sentence). (i)

is a variant. This sentence is paradoxical, because its truth-value which is
made explicit, also remains implicitly affected by the sentence itself.

In order to avoid reflective overlap it has to be checked whether in none of
the states in which a system can get, reflective computation is performed
which
(i) accesses an explicit representation X, and through that same compu-
tation

(ii) implicitly affects the aspect represented by X in such a way that the
computation has become obsolete.

For example, the sentence (i) states a reflective fact about itself. But, this
statement implicitly affects the sentence (i) (i.e. its truth-value) in such a
way that the statement has become obsolete.

The problem of reflective overlap and its relation to meta-mathematics
promises to be a fascinating future research topic.

6. A Classification of Existing Reflective Architectures

The previous sections discussed a three-dimensional design space formed by
(i) the choice of meta-theories, (ii) the choice of means to program
reflection and (iii) the choice of causal-connection mechanisms. If we situ-
ate the reflective architectures that have been built in this space only small
areas seem to have been explored.

A first area is formed by reflective architectures in which the meta-theory
makes explicit the operational aspect of systems. The terminology introduced
by the meta-theory includes terms such as environments, interpreters,
stacks, and continuations. Consequently, it does not provide a very interest-
ing basis for reflective computation. Reflective computation is typically pro-
grammed explicitly in these architectures.

- 116 -

CHAPTER V Design Issues

Computation in this class of architectures primarily happens at the object-
level. The reflective level is more viewed as an extra facility, which is used
in exceptional situations. The causal connection link of these architectures
is realised by using the self-representation to actually implement the system.
The larger part of the reflective architectures that have been built falls into
this class. Examples are 3-LISP (Smith & Des Rivieres) and META-
PROLOG (Bowen & Kowalski). '

A second class of architectures that can be identified is concerned with the
control aspect of systems. The meta-theory of these architectures makes
explicit how deduction is controlled. Reflective computation is in these
architectures activated implicitly. The reflective computation actually imple-
ments the control decisions that have to be made during interpretation of a
system. This means that the causal connection requirement in these
languages is again realised by an implementation relation. Examples of this
class of architectures are SOAR and TEIRESIAS.

All of the reflective architectures that have been realised until now are pro-
cedural. A third class of reflective architectures, which is still under con-
struction at the moment, attempts to realise declarative reflection. The
meta-theory of these architectures (partially) makes explicit the semantic,
and/or deductive aspects of systems. The reflective computation of a system
is in these architectures implicitly programmed. Examples of attempts to
build such architectures are MRS and GOLUX.

7. Conclusions

This chapter discussed issues in the design of a reflective architecture. It
presented a three-dimensional space of designs that can be explored by
reflective architectures. The emphasis of this discussion was on the relation
between a particular design choice that is made and the possibilities for
reflection this results in.

The first dimension of this space represents the meta-theories that can be
adopted in a reflective architecture. The choice that has to be made here is
extremely important because the reflective facilities of an architecture are
theory-relative. The different aspects of a computational system the meta-

- 117 -

CHAPTER V Design Issues

theory can make explicit are: the syntactic aspect, the semantic aspect, the
deductive aspect, the control aspect and the operational aspect. Meta-theories
based on different combinations of those aspects result in entirely different
reflective facilities. | '

The second dimension of the design space represents the different mechan-
isms that can be adopted for programming reflective computation. ’ Agam
there is a range of designs imaginable here. Nevertheless the alternative
designs were classified into those that support implicit reflection, those that
support explicit reflection, and those that support both.

The third dimension of the design space represents the causal connection
mechanism that can be adopted in a reflective architecture. On the basis of
this dimension, designs for reflective architectures are classified into archi-
tectures for procedural reflection, in which the causal connection link is
realised by an implementation relation, and architectures for declarative
reflection, in which the causal connection link is realised by a specification
relation. The former are easier to implement, but the latter result into more
intresting reflective facilities.

Most reflective architectures that have been built fall into a few ”cliche”
areas of the design space. It would be an interesting future research topic
to study in how far it is possible to build systems that deviate from those
typical designs.

The next chapter illustrates the ideas presented in this chapter and the
former one with a concrete example. It reports on an experiment that was
performed in order to get a deeper understanding of the design and con-
struction of reflective architectures.

NOTES

[1] (Smith,1987) defines a different three dimensional space that can be explored by
reflective systems. Although this classification is based on different criteria, the outcome of
the classification is the same: the existing architecture are also grouped in one small area
of the three-dimensional space.

[2] Eventually, a reflective architecture could give computational systems multiple represen-
tations of themselves, suited for different reflective purpose. However, this would raise the

- 118 -

CHAPTER V _ Design Issues

complexity of building and using a reflective architecture substantially.

{31 The “expressibility” of reflective sentences does not only depend on the meta-theory of
the architecture. The meta-theory defines the names that can be used in reflective sen-
tences. However, the syntax of the language defines the format these sentences may have.

[4] Des Rivieres (1986) discusses an example of such a space of reflective computations.
He studies the power of a reflective architecture in which systems can talk about their pro-
gram, environment and continuation.

[5] Note that architectures for declarative reflection might also present a solution to the
problems of reflection discussed in chapter II, section 6. In this type of architecture more
responsability over the control of reflective computation (and how it affects the object-
computation) is given to the language-interpreter. Consequently this interpreter could be
built such that it prevents negative impacts of the reflective computation on the overall
computation.

{6] We do not follow B. Smith here, who demands that the causal connection between sys-
tem and self-representation is maximal in both directions. This implies that (i) the self-
representation should be able to engender the normal object-level. I.e. that the reflective
deliberations can serve as one way of doing what is reflected about. And (ii) that the seif-
representation can always be translated in the behavior and status of the system itself. We
believe that these strong requirements unneccessarily restrict reflective architectures to the
least interesting class of architectures, namely architectures for procedural reflection.

- 119 -

CHAPTER VI

Implementing a Reflective Architecture

1. Introduction

This chapter reports on an experiment that was performed in building a
reflective architecture. The purpose of the chapter is to illustrate the objects
introduced in the previous chapters with a concrete example. The various
steps that were taken in the implementation are treated at length.

Several valuable efforts to build reflective architectures in procedural
languages, logic programming languages and production rule systems can be
identified. Less work has been done on object-oriented languages (cf. sec-
tion 7.2), although object-oriented languages are increasingly used as foun-
dation for knowledge representation languages (cfr. KEE, LOOPS). It was
therefore decided to do the experiment for an object-oriented language.

The experiment shows that it is feasible to build a reflective architecture in
an object-oriented language and that there are even specific advantages to
object-oriented reflection. These advantages are a result of the modularity,
encapsulation and abstraction facilities provided by object-oriented
languages.

A second decision was made to do the experiment for an existing language.
This ensures that the extra effort that has to be made to provide the
language with a reflective architecture stands out clearly. The language
KRS (Steels,1985) was chosen because (i) the know-how and implementa-
tion are available in our laboratory, (ii)) KRS is designed not only as a

- 120 -

CHAPTER VI Implementing a Reflective Architecture

programming language but also as a knowledge representation language,
which opens a way to experiment with reflection for artificial intelligence
programming (Maes,1986a) and (iii) KRS incorporates some advanced
features such as lazy construction and consistency maintenance, which facili-
tate the construction of a reflective architecture (cf. next sections). '

This chapter describes how the design and implementation of KRS -were
modified in order to produce a reflective variant of KRS, called 3-KRS.
However, the discussion is presented in a way that makes it transferable to
any object-oriented language. At the end of the chapter the 3-KRS experi-
ment is compared with existing object-oriented languages as well as with
existing reflective architectures.

Chapter IV defined three steps that have to be taken when introducing a
reflective architecture in a language. Before undertaking these steps, sen-
tences in the language, such as messages or object-definitions, have to be
data-structures of the language, so that it becomes possible to perform com-
putation about them. This problem is solved in 3-KRS by introducing
objects representing the syntactical constructs of the language and modifying
the interpreter such that it translates the specific sentences it parses into
instances of those objects. Once this is realised, a computational system
consists of both data-objects and program-objects.

The first step is to build the self-representation of a computational system.
A computational system in 3-KRS is given an object-oriented self-
representation. Every object in the system has a one-to-one relation to a
meta-object. The meta-object of an object X represents the explicit informa-
tion about X (e.g. about its behavior and its implementation). The object X
itself, on the other hand, groups the information about the entity of the
domain it represents. Consequently, objects also serve as the unit of
reflective computation.

The second step is the realisation of means to program reflective computa-
tion. An object in 3-KRS manipulates its meta-object in two cases. An
object reflects in an implicit way whenever the interpreter does something
with the object (e.g. the object is asked to handle a message). An object
reflects in an explicit way whenever code in the object explicitly prescribes

- 121 -

CHAPTER VI - Implementing a Reflective Architecture

a manipulation of the meta-object.

The third step in the construction of a reflective architecture is the realisa-
tion of the causal connection link between an object and its meta-object. The
solution adopted in 3-KRS is that a meta-object represents a meta-circular
interpreter for its object: it implements the whole computation of its object.
Meta-objects actually run the interpretation of the 3-KRS language.in a
meta-circular way. Consequently, a meta-object not only has the possibility
to reason about its object, but it can actually act upon its object at run-time.

The next section briefly introduces the KRS language in order to allow a
more technical account of these four steps. A more detailed description of
the design of KRS can be found in (Steels,1986). (Van Marcke,1987)
describes its implementation.

2. Brief Introduction to KRS

2.1. Data-Structures

A typical object-oriented language supplies building blocks, called objects,
for constructing computational systems. An object has a set of slots. A slot
relates the object to another object in the language or to an object in the
underlying implementation language. This other object is called the filler of
the slot. Sometimes the filler of a slot is indirectly defined. The definition of
a slot is a LISP-form that has to be evaluated to find the filler.

A snapshot represents the internal structure of an object at a specific
moment in time. Figure 1 presents snapshots of the objects Current-Year,
Person and John. '

- 122 -

CHAPTER VI Implementing a Reflective Architecture

{Current-Year> = <{Number 1986>

<Person> =
Type: <0Object>
Birth-Year: <Number-#3216>
Age: {(>> (Minus (>> Birth-Year)) of Current-Year)}
Name: <String-#1876>
Younger-Than (?Another-Person): {(>> (Lessp (D> Age))
Age of ?Another-Person)} ~

<John> =

Type: <Person>

Birth-Year: <Number 1961> °

Mother: KMary>

Father: <Object-#6789> =

Type: <Person>

Mean-Age-Of-Parents: {(// (+ (>> Age Mother)
(>> Age Father))
2)) '
Best-Friend: {(>> Mother)}

Fig. 1. Snapshots of objects.

Objects are represented in a snapshot by triangular brackets. For example
<Current-Year>, <Number 1986> and <Object-#6789> are all objects.
~ An object may be followed by a description of the object. Such a descrip-
tion exists of "=" followed either by another object or by the slots of the
object. The figure above contains descriptions of the objects <Current-
Year>, <Person>, <John> and <Object-#6789>.

"A slot is represented by its name, followed by a semicolon, followed by
either the filler of the slot, or the definition of the slot (when enclosed by
curly brackets). In the latter case, the definition of the slot has to be
evaluated to find the filler. For example, the filler of the slot Best-friend
for object John is the object that results from the evaluation of the LISP-
form

(>> Mother)

Slots may have arguments. The slot Younger-Than, for example, takes as
argument another person object. Arguments are preceeded by a question-
mark. In order to find the filler of such a slot, the definition of the slot has

- 123 -

CHAPTER VI o Implementing a Reflective Architecture

to be evaluated with the arguments bound. For example, it is possible to
find the filler of the Younger-Than slot for ?Another-Person bound to the
object <George>. '

Some objects in the language represent a LISP-structure. These objects
have a print-name that has two parts. For example, ‘_‘<Nu'mber 1986> is an
object of type Number whose contents is the LISP-number 1986. Similarly

<Form (+ 2 4)>

is an object of type Form and with contents the LISP-form (+ 2 4). These
objects have slots that support primitive functions on the LISP structure,
such as Minus, Plus, Eval, etc. ‘

The objects of a computational system and the slot-links that exist between
them define a directed graph, called the object-graph. The nodes of this
graph represent objects, the arcs represents slots, and the labels on arcs
represent the names of slots. Figure 2 presents such an object-graph. Note
that the fillers that are not yet computed are not represented.

124 -

CHAPTER VI

<Object> <Number-#3216>

Type
Birth-Year
Age
__i"

<Persan>
Name
\$-<5tr1ng-na75>

A \
Yqunger-Than(?Another-Person)

{Mary> Type
Type
Mother
<John> g <Object-#6789>
Father
Best-friend
Mean-Age-0f -Parents
Birth-Year

<Number- 1961>

Fig. 2. The object-graph of a computational system.

2.2. Programs and Computation

Introduction

Computation consists of the exploration and manipulation of the object-
graph. The object-language makes it possible to specify such computation.
The object-language consists of functions for creating new objects and send-
ing messages to objects!. Following a tradition in Al language design,
these functions are implemented as LISP-functions.

when an object-language sentence is evaluated.

- 125 -

Implementing a Reflective Architecture

Computation happens

CHAPTER VI Implementing a Reflective Architecture

2.2.2. Sending a Message

By calling the function ”>>", a message can be sent. The object the mes-
sage is sent to, returns the filler of the slot asked in the message. It also
possible to ask for a slot of the filler of a slot, and so on. Some examples,
given the definitions of figure 1, where ”->” means "returns”,

(>> Type of Person) -> <Object>

(>> Mother of John) -> <Mary>

(>> Type Father of John) -> <Person>

(>> of Current-Year) -> <Current-Year>

(>> (Younger-Than (>> of George)) of John) -> <True>
(>> Best-Friend of John) -> <Mary>

The evaluation of the last two messages implicated the evaluation of other
messages, namely the messages constituting the definition of the Younger-
Than slot and of the Best-Friend slot

The object-language is lexically scoped. By default (i.e. when their is no
"of <object>” part in the message) a message is sent to the object
described by the outermost sentence in which the message is defined. We
call this object the scope of the message. For example, the message

(>> Mother)

occuring in the sentence

(a Person
(Best-Friend (>> Mother)))

will, when evaluated, be sent to the object that is created by the outermost
sentence (in some languages this is called the ”Self”, i.e. (>> Mother) is
like (>> Mother of Self)). Consequently, "(>>)" returns the object
defined by the outermost sentence in which this empty message is defined
("return self” or (>> of Self)). Note that the snapshot in which a message
occurs does not necessarily represent the scope of the message. If this is the
case, we will make the scope of the message explicit in the snapshot.

2.2.3. Creating an Object

The functions “a/an” and “defobject” create a new anonymous object and a
new named object respectively. For example

- 126 -

CHAPTER VI Implementing a Reflective Architecture

(a Person) -> <Person-#6789>
(defobject John (a Person)) -> <John>
(a Person
(Birth-Year (a Number))
(Younger-Than (?Another-Person)
(>> (Lessp (>> Age)) Age of ?Another-Person))) -> <Person-#2876>

Staight' brackets are used to create objects representing LISP structures.
For example ’

[Symbol Agel -> <Symbol Age>

[Number 10] -> <Number 10>

[List (3 5)] -> <List (3 5)>
[Form (+ 3 9)1 -> <Form (+ 3 9)>

Note that this language makes no distinction between "class objects” and
"terminal-instance objects” (in contrast with languages such as
SMALLTALK and LOOPS). Every object can serve as the "prototype” for
the creation of a new object. For example, the object John could fill the
Type slot of the object George.

2.3. Inheritance

Objects inherit information from their type. KRS incorporates a single
inheritance hierarchy with at the top the object with name Object. An object
inherits the slots it does not redefine by (lexically) copying these slots from
its type. For example, the object John in figure 1 will answer messages as
if it was defined as

<John> =

Type: <Person>
Birth-Year: <Number 1961>
Mother: <Mary>
Father: <Object-#6789> =

Type: <Person>
Best-Friend: {(>> Mother)}
Mean-Age-Difference-With-Parents: {(// (+ (>> Age Mother)

(>> Age Father))
2)}
Age: {(>> (Minus (>> Birth-Year)) of Current-Year)}
Name: <String-#1876>
Younger-Than (?Another-Person): {(>> (Lessp (>> Age))
Age of ?Another-Person)}

The slots in italics are (virtually) copied from the object Person. Conse-
quently

- 127 -

CHAPTER VI Implementing a Reflective Architecture

(>> Name of John) -> <String-#1876>>
(>> Age of John) -> <Number 25>

Note that the former filler only partially defines the name of object John.
The name of John is a string, however the contents of this string is not
known yet.

3. Representing Programs as Objects

In order to make it possible to consider programs as data of reflective com-
putation, programs have to be data-structures of the language. This prob-
lem is solved in 3-KRS by representing programs as objects. Whenever the
3-KRS interpreter parses an object-language sentence or a LISP-form, it
turns it into an object. For example, when at some point the sentence

(>> Mother of John)

is used, the 3-KRS interpreter creates an object to represent it (Message-
#2351 in figure 3).

<Message-#2351> =
Type: <Message>
Slot-List: <List (Mother)>
Target: <John>
Eval: {(<Form (krs:process-message (>> Slot-List)
(>> Target))>}

Fig. 3. Programs are objects in 3-KRS.

We call such an object a program-object. The object Message-#2351 has
slots representing the Type, Slot-List, and Target of the message. It also
has a slot with name Eval which represents the result of evaluating the mes-
sage. Note that the forms that do not belong to the object-language, e.g. -
the LISP-form

(krs:process-message (>> Slot-List)
(>> Target))

are turned into objects of type Form.

- 128 -

CHAPTER VI Implementing a Reflective Architecture

From this moment on, all definitions of slots will be turned into objects
before being evaluated (because definitions are object-language sentences or
LISP-forms). Consequently, we have to modify the rule for getting the
filler of a slot by means of its definition. The new rule is that the filler of
a slot is equal to the result of sending the message Eval to the object
representing the definition. For example, asking for the filler of the Eval
slot of Message-#2351 will result in sending the message Eval to the object

<Form (krs:process-message (>> Slot-List)
(>> Target))>

When an object representing a LISP structure gets an Eval message, it
returns the evaluation of the LISP structure that it contains. So in the
example, the form

(krs:process-message (>> Slot-List)
(>> Target))

is evaluated. Krs:process-message is a function of the underlying implemen-
tati_on of 3-KRS, which is used to process a message. It returns

<Mary>

The mechanism for making objects of programs is implemented by introduc-
ing an object for every function of the object-language. This set includes the
objects Message, Object-Definition, and Instance-Creation shown below.

- 129 -

CHAPTER VI Implementing a Reflective Architecture

{Message> = s
Type: <Program-Object>
Slot-List: <List-#2987>
Target: <Object-#7658>
Eval: {<Form (krs:process-message (>> Slot-List) (>> Target))>}

<Object-Definition> = .
Type: <Program-Object> -
New-0Object-Name: <Symbol-#6545>
Slot-Description-List: <List-#3568>)
Eval: {<Form (krs:create-object-with-Name (>> New-Object-Name)
(>> Slot-Description-List))>}

<Instance-Creation)> =
Type: <Program-Object>
New-Instance-Type: <Object-#8787>
Slot-Description-List: <List-#8768>
Eval: {<Form (krs:create-instance-of (>> New-Instance-Type)
(>> Slot-Description-List))>}

Fig. 4. The syntactical constructs of the object-language are represented
as objects.

Ad read-time, an extra parsing step translates every object-language sentence
_into a program-object of one of these types. Consequently, the object John
presented in figure 1, will now look as follows

<John> =
Type: <Person>
- Birth-Year: <Number 1961>
Mother: <Mary>
Father: <0bject-#6789> =
Type: <Person>
-Mean-Age-Difference-With-Parents: {<Form (// (+ (>> Age Mother)
(>> Age Father))
2)>}
Best-Friend: {<Message-#7878> =
Type: <Message>
Slot-List: <List (Mother)>
Target: <John>
Eval: {<Form (krs:process-message
(>> Slot-List Best-Friend) (i)
(>> Target Best-Friend))>}>}

Note that from now on a snapshot (representing the internal structure of an
object) looks different. All sentences that occur in the description of an
object have internally become represented as program-objects. In order to

- 130 -

CHAPTER VI Implementing a Reflective Architecture

make the new snapshots more compact, the notation

<Message (>> Mother of John)>

is used as a shorthand for the message-object with target the object John
and the Slot-List the list (Mother). Similar shorthands are also used for
instances of the objects Instance-Creation and Object-Definition. -

However, if all programs would be transformed into objects this would
cause an infinite behavior. The creation of a message-object would for
example cause an infinite loop, because the Eval slot of a message would
always involve the creation of other message-objects. To avoid this, forms
within the contents of a Form object are no longer expanded into objects.
For example, the two messages in (i) are not turned into message-objects
before being evaluated.

When the object John is asked for the filler of his Best-Friend slot, as in

(>> Best-Friend of John)
this results in the sending of the message

(>> Eval)

to the object <Message-#7878> (because of the definition-filler rule), which
results in the sending of the message

(>> Eval)
to the object

<Form (krs:process-message (>> Slot-List Best-Friend)
(>> Target Best-Friend))> (i)

which returns the evaluation of the embedded LISP form, which is

<Mary>

We are now ready to consider the various issues involved in building a
reflective architecture. '

- 131 -

CHAPTER VI Implementing a Reflective Architecture

4. The Self-Representation of an Object-Oriented System

4.1. Introduction

The first problem to be handled when building a reflective architecture was
called the problem of the self-representation of a computational system (cf.
chapter IV). The interpreter of the language has to be able to build an
explicit representation of any computational system it is running. A compu-
tational system in an object-oriented language consists of an object-graph of
objects (program-objects and data-objects) that send messages to each other.
3-KRS gives such a computational system an object-oriented self-
representation.

Every object in the object-graph has a slot with name Meta which links the
object to a representation of itself, called the meta-object of the object.
There is a one-to-one relationship between objects and meta-objects. A
meta-object has a slot with name Referent which is again filled by the object
it is a representation of.

Print-Method
Make-Instance-Method

Referent Get-Filler—Methoq:_
{Johnd>a= w<{Meta-0Object-#5689> 7

Meta [4
Name
Y. Meta Referent

Fig. 5. An object and its meta-object.

The meta-object of an object groups all the information about the object that
is made explicit. It has information about its syntactical form, its semantics,
its computation and its implementation. It contains for example the
Methods to make an instance of the object, to print the object and to let the
object handle a message. It also stores information such as the name of the

- 132 -

CHAPTER VI Implementing a Reflective Architecture

object, documentation about the object, etc.

Every object in the object-graph has a meta-object. Thus also meta-objects
and meta-objects of meta-objects, and so on. This unbounded list of meta-
objects is only implementable if meta-objects are created in a lazy way, i.e.
only when they are actually needed (when they have to answer a message).
The 3-KRS interpreter incorporates such a lazy-construction mechanism
(Van Marcke,1987).

4.2. The Meta-Theory

4.2.1. Introduction

The meta-theory of an object-oriented reflective architecture is represented
in the object-graph. Every object-oriented language has a set of primitive
objects. The primitive objects of a language are those objects that are
created by the interpreter of an object-oriented language when a session with
the language is started. The set of primitive objects for example includes the
objects Object, Slot, Number, etc. In an object-oriented language where
programs are also objects, the set of primitive objects also includes the
program-objects, such as Message, Object-Definition and Instance-Creation.

The meta-theory of an object-oriented language is represented in the meta-
objects of those primitive objects. Any object that is created is necessarily a
specialisation of one of those primitive objects. Consequently, the contents
of the meta-object of the new object is automatically determined through
inheritance (unless the object overrides the slot Meta, as discussed in section
6).

- 133 -

CHAPTER VI Implementing a Reflective Architecture

Meta
<Object> = 7 (Meta-Object>
o
Referent
Type Type Type
<Number> vee <Program-0bject> T
Meta Type Type Type
<Number-Meta> Message Object-Definition
Meta Meta
<Message-Meta> <Object-Definition-Meta>

Fig. 5. The meta-theory of 3-KRS is embodied in the primitive
objects of the language.

We call the meta-objects of the primitive objects the primitive meta-objects
of the reflective architecture.

4.2.2. The Default Meta-Object

The object with name “Object” is the topnode of the inheritance-hierarchy.
Any object in the object-graph is a specialisation of the object Object. Con-
sequently, the meta-object of the object Object is the default meta-object that
is created for an object. The meta of Object is the object with name Meta-
Object.

<Object> =
Meta: <Meta-Object> =
Referent: {<Message (>>)>}

Fig. 6. The most general object with its meta-object.

134 -

CHAPTER VI Implementing a Reflective Architecture

Meta-Object represents the meta-theory the language incorporates about
objects in general. It includes all the information about objects the
reflective architecture makes explicit. Chapter V has analysed a language in
terms of a syntactical aspect, a denotational aspect, a
computational/deductional aspect and an operational aspect. The Meta-Object
of an object-oriented language may formalise these four aspects of objects in
the language.

As an example, figure 7 illustrates the structure of the object Meta-Object of
3-KRS. Meta-Object-#4568 is the instance of the default meta-object that is
created for the object George.

<George> =
Type: <Person>
Birth-Year: <Number 1955>
Meta: <Meta-Object-#4568>

<Meta-Object-#4568> =
Type: <Meta-Object>
Referent: <George)>
Name: {<Instance-Creation

(a Symbol
(Contents [Form (krs:find-object-name
(>> Referent))1))>} (i)
Slots: {<Instance-Creation
(a List
(Contents [Form (krs:get-slots-of
(>> Referent))]))>} (1)

Get-Filler-Method (?Slot-Name):
<Form (krs:get-filler-of (>> Referent)
?7Slot-Name)> (ii)
Inherit-Slot-Method (?Slot-Name):
<Form (krs:inherit-slot (>> Referent)
?Slot-Name)> (i1)
Add-Slots-Method (?Slot-Description-List):
<Form (krs:make-slots (>> Referent)

?Slot-description-List)> (iii)
Make-Instance-Method: <Form (krs:make-instance (>> Referent))> (iii)
Print-Method: <Form (krs:object-print-self (>> Referent))> (iii)

Fig. 7. The default meta-object of a 3-KRS object.

- 135 -

CHAPTER VI Implementing a Reflective Architecture

A Meta-Object holds information about the syntactical aspect of the object it
is about (called its referent hereafter) (see (i)). It has a slot representing the
name of its referent (or the identification-number of the referent for
anonymous objects), and a slot representing the list of slot-names of its
referent. So, for the above example

(>> Name Meta of George) -> <Symbol George>
(>> Slots Meta of George) -> <List (Birth-Year Type Meta)>

Note that getting the filler of these slots involves descending in the LISP
implementation of the 3-KRS language. So these slots actually represent
reifications of structures in the underlying LISP implementation. For exam-
ple, the function

krs:find-object-name

is a function that retrieves the association for the property "Name” in the
LISP association-list that internally represents an object.

The 3-KRS Meta-Object incorporates explicit information about the compu-
tational aspect of an object (see (ii)). An object does computation when it is
asked for the filler of a slot. The Meta-Object represents the computation of
an object. The slots with name Inherit-Slot-Method and Get-Filler-Method
are filled with the procedures the object uses to inherit a slot and to get the
filler of a slot respectively. These procedures are again a reification of the
procedures used by the underlying LISP implementation for these tasks.
For the above example

(>> (Get-Filler-Method [Symbol Birth-Year]) Meta of George)
-> <Form (krs:get-filler-of
(>> Referent of Meta-Object-#4568)
[Symbol Birth-Year])>
(>> Eval (Get-Filler-Method [Symbol Birth-Year]) Meta of George)
-> <Number 1955>
(>> (Inherit-Slot-Method [Symbol Age]) Meta of George)
-> <Form (krs:inherit-slot
(>> Referent of Meta-Object-#4568)
[Symbol Agel)>
(>> Eval (Inherit-Slot-Method [Symbol Age]) Meta of George)
-> <Number 25>

- 136 -

CHAPTER VI Implementing a Reflective Architecture

Finally the 3-KRS Meta-Object represents the operational aspect of its
referent (see (iii)). It incorporates explicit representations of the things the
interpreter does with an object. The Meta-Object has slots that represent the
procedures to add slots to the referent, to make an instance of the referent,
to print the referent, etc.

The operational slots were chosen on the basis of an in-depth analysis of the
LISP implementation of 3-KRS. The 3-KRS interpreter was reorganised so
that its structure reflected the basic actions an interpreter does with an
object. Afterwards these actions were reified in the slots of the Meta-Object.
For the above example

(>> (Add-Slots-Method [List ((Birth-Year [Number 1966])
(Brother (>> of John)))]) Meta of George)
-> <Form (krs:make-slots (>> Referent of Meta-Object-#4568)
[List ((Birth-Year [Number 1966])
(Brother (>> of John)))1)>
(>> Eval (Add-Slots-Method [List ((Birth-Year [Number 1966])
(Brother (>> of John)))1)
Meta of George)
-> <George> =
Type: <Person>
Birth-Year: <Number 1966>
Meta: <Meta-Object-#4568>
Brother: <John>
(>> Make-Instance-Method Meta of George)
-> <Form (krs:make-instance
(>> Referent of Meta-Object-#4568))>
(>> Eval Make-Instance-Method Meta of George)
-> <George-#7890>
(>> Print-Method Meta of George)
-> <Form (krs:object-print-self
(>> Referent of Meta-Object-#4568))>
(>> Eval Print-Method Meta of George)
-> <George>

4.2.3. The Meta-Objects of Program-Objects

The Meta-Object object represents the information about an object that is
made explicit in an object-oriented reflective architecture. About certain
types of objects, more interpreter-information can be made explicit. In par-
ticular, the language-interpreter embodies more information about the deno-
tational aspect of program-objects. It incorporates information about how
the evaluation of a program-object should be computed. This information

- 137 -

CHAPTER VI Implementing a Reflective Architecture

may be made explicit in the meta-object of program-objects.

The 3-KRS interpreter, for example, attributes more specialised meta-objects
to program-objects. The meta-object of a program-object has one extra slot
with name “Eval-Method”. This slot represents the procedure that is used
for evaluating the program-object. The filler of this slot can be used to-
compute the evaluation of the program-object. As an example, figure 8
presents the meta-object that is constructed for message-objects.

<{Message> =
Type: <Program-0bject>
Slot-List: <List-#2987>
Target: <0Object-#7658>
Meta: <Message-Meta>
Eval: {<Form (krs:process-message (>> Slot-List)
(>> Target))>}

<{Message-Meta> =
Referent: <{Message)>
Type: <Meta-Object>
Eval-Method:
<If-#6789> =
Condition: <Message (>> Emptyp Slot-List Referent)>
Then-Part: <Message (>> Target Referent)>
Else-Part: <Message-#6704> =
Type: <Message>
Target:
{<Form (krs:get-filler-of
(>> Target Referent)
(>> Last Slot-List Referent))>}
Slot-List: {<Message
(>> But-Last Slot-List Referent)>}

Fig. 8. The meta-object of a message-object.

The meta-object of the object Message is the object Message-Meta. The
Message-Meta object inherits from the Meta-Object object and adds a slot
with name Eval-Method. This slot is filled with a program to compute the
evaluation of a message. When this program is evaluated, it returns the tar-
get of the message if the slot-list of the message is empty. For example, it
will return the object George if the referent is the message

- 138 -

CHAPTER VI Implementing a Reflective Architecture

(>> of George)

If the slot-list of the message is a non-empty list (name].. namep), it asks
the target of the message for the filler of namep and sends the resulting
object the message with slot-list (name] .. namep-]). For example, it will
return the result of the message -

(>> Type)

sent to <Number 1955>, when the referent is the message

(>> Type Birth-Year of George>

When a particular message-object is created by the interpreter, for example

{Message-#2351> =
Type: <Message>
Meta-Object: <Message-Meta-#6745> =
Referent: <Message-#2351>
Type: <Message-Meta>
Path: <List (Birth-Year)>
Target: <George>

this message-object by inheritance receives a Message-Meta object as its
meta-object. This meta-object inherits the Eval-Method slot from the
Message-Meta object. Consequently

(>> Eval-Method Meta of Message-#2351) -> <If-#2312>
(>> Eval Eval-Method Meta of Message-#2351) -> <Number 1955>

which is equal to the result returned by

(>> Eval of Message-#2351)

Similarly specialised meta-objects were defined for the other program-objects
of 3-KRS. Together these meta-objects embody the meta-theory 3-KRS
makes explicit about programs.

4.3. The Reference Mechanism

The self-representation mechanism discussed above adopts a very straightfor-
ward reference mechanism. The reflective representations that are relevant
to a specific object are grouped in one meta-object, and there exists a bi-

- 139 -

CHAPTER VI Implementing a Reflective Architecture

directional link between the object and its meta-object. The referent of a
reflective representation is explicitly mentioned in the reflective representa-
tion and the reflective representation of an object are explicitly mentioned in
that object.

However, because of inheritance, it is not necessary to specify for every
object what meta-object has to be created. The inheritance mechanism of an
object-oriented language makes it possible to create reflective representations
that are relevant to a whole set of objects, instead of just one. In particular,
a specific meta-object is relevant to all the specialisations of its referent,
unless these specialisations override the slot with name Meta.

Note that this reference mechanism is more elegant than the reference
mechanisms of the languages discussed in chapter IV and chapter V.
Because these reference mechanisms are rather weak, the meta-theory of
those languages consists of one program representing the meta-circular inter-
preter. For example, in 3-LISP the complete meta-theory of the language is
represented in one meta-circular version of the evaluator. The link between
a particular syntactical construct and its denotational aspect is not made
explicit. Consequently, every sentence in the language receives the same
self-representation, being this meta-circular interpreter. Although this self-
representation makes explicit the operational aspect of the sentence (what it
returns after evaluation), it does not make explicit the denotational aspect of
the sentence (how its evaluation is defined).

The meta-theory of 3-KRS is distributed over the objects that represent the
constructs of the language. 3-KRS makes explicit what part of the meta-
circular interpreter represents the interpretation of a particular syntactical
construct. In addition, 3-KRS makes explicit the denotational aspect of a
particular syntactical construct of 3-KRS. This means that in 3-KRS systems
are able to do reflective computation about the denotational aspect of a par-
ticular sentence as well as about its operational aspect.

- 140 -

CHAPTER VI Implementing a Reflective Architecture

5. The Causal Connection Requirement

5.1. Introduction

Before discussing the problem of programming object-oriented reflective
computation, we first discuss the third problem that has to be solved when
building a reflective architecture. This problem states that there should be a
causal connection link between a computational system and its self-
representation. Consequently meta-objects and their objects should be related
to each other such that a change to one, is reflected in the other. 3-KRS
has an architecture for procedural reflection. The causal connection prob-
lem is solved by a meta-circular interpreter (cf chapter IV).

For an object-oriented self-representation, this means that the meta-object of
an object should actually be used to implement the object. Consequently,
whenever something is changed in the meta-object, the behavior of the
object itself will automatically comply with these modifications. Vice versa
every change (from the outside) to the object will necessarily happen
through the meta-object, so that the meta-object always contains an updated
representation of the object. So the meta-circular interpreter guarantees the
causal connection between an object and its meta-object in both directions.

The meta-circularity of the 3-KRS interpreter is realised in 3-KRS by mak-
ing a number of small modifications to the primitive program-objects and to
the LISP-implementation of the language.

5.2. Meta-Circularity of Program-Objects

Section 4.2.3. discussed how an explicit representation of the denotational
aspect of a syntactical construct is embedded in the meta-object of the
program-object that represents this syntactical construct. Some modifications
have to be made to ensure that this representation is also actually used by
the system when evaluating the program-object. Figure 9 shows the
modifications that were necessary:

- 141 -

CHAPTER VI Implementing a Reflective Architecture

<Program-Object> = ;;Previous Definition
Type: <Object>
Meta: <Meta-Object-#4376>

<Program-0Object> = ;;Modified Definition
Type: <0Object>
Meta: <Meta-Object-#4376>
Eval: {<Form (>> Eval Eval-Method Meta)>} R

{Message> = ; ;Previous Definition
Type: <Program-0bject>
Slot-List: <List-#2987>
Target: <Object-#7658>
Meta: <Message-Meta>
Eval: {<Form (krs:process-message (>> Slot-List)
(>> Target))>}

<{Message> = s sModified Definition
Type: <Program-0bject>
Slot-List: <List-#2987>
Target: <0Object-#7658>
Meta: <Message-Meta>

Fig. 9. Making the interpreter meta-circular - part 1.

The evaluation of program-objects will now happen in a meta-circular way.
For example, when the object <Message-#8787> is asked for the filler of
its Eval slot, as in

(>> Eval of Message-#8787)

this slot will be inherited from the object Program-Object. Consequently,
the evaluation of the méssage is reduced to the sending of the message Eval
to

<Form (>> Eval Eval-Method Meta of Message-#8787)>

which results in the evaluation of

(>> Eval Eval-Method Meta of Message-#8787)

The evaluation of this message happens by the LISP implementation because
a Form-object returns the LISP-evaluation of the form that it contains when
an Eval message is sent to it. The Message-Meta object (as defined earlier)
looks as follows

S 142 -

CHAPTER VI Implementing a Reflective Architecture

<Message-Meta> =
Referent: <Message>
Type: <Meta-Object>
Eval-Method:
KIf-#6789> =
Condition: <Message (>> Emptyp Slot-List Referent)> *
Then-Part: <Message (>> Target Referent)>
Else-Part: <Message-#6704> =
Type: <Message>
Target:
{<Form (krs:get-filler-of
(>> Target Referent)
(>> Last Slot-List Referent))>}
Slot-List: {<Message
(>> But-Last Slot-List Referent)>}

The Eval-Method will be equal to the object If-#6789.

So the evaluation of a message-object is handled explicitly by its meta-
object. Note however that sending the message Eval to the Eval-Method
slot of the Message-Meta object involves the evaluation of new message-
objects (see *). A second (implicit) evaluation scheme is needed in order to
guarantee the finiteness of this explicit scheme.

To avoid infinite regress the Eval-Method of the primitive meta-objects is
emulated by the LISP-implementation of 3-KRS. The Eval-Method slot of
the meta-object of a message is only used when it deviates from the default.
So actually the Program-Object is defined as in figure 10. If the program-
object has a special meta-object, the evaluation of the program-object is
delegated to this meta-object. If the program-object has a copy of one of the
primitive meta-objects, its evaluation is handled by a function of the LISP-
implementation. This function exactly causes the same behavior as the
Eval-Method of a primitive meta-object.

- 143 -

CHAPTER VI Implementing a Reflective Architecture

<Program-Object> =
Type: <Object>
Meta: <Meta-Object-#4376>
Eval: {<Form (if (special-meta-object-p (>>))
(>> Eval Eval-Method Meta)
(krs:process-sentence (>>)))>}

Fig. 10. Making the interpreter meta-circular - part 1 revisited.

5.3. Meta-Circularity of Objects

The previous section discussed the modifications that have to be made in
order to guarantee the causal connection of the Eval-Method of the Meta of
a program-object. Similar modifications have to be made in order to
guarantee the causal connection of the slots defined by Meta-Object (cf.
figure 7). The interpretation of an object should involve using the slots of
its meta-object instead of the implicit implementation. As an example,
figure 11 highlights the change this implies upon the LISP-implementation of
the 3-KRS language for the Get-Filler-Method. The function krs:get-filler-of
is used in the LISP-implementation to compute the filler of a slot.

(defun krs:get-filler-of (object slot-name)
(eval ‘(>> Eval (Get-Filler-Method [Symbol ,slot-namel)
Meta of ,(find-object-name abject)))

Fig. 11. Making the interpreter meta-circular - part 2.

This modification ensures that the meta-objects of 3-KRS objects are also
actually used during the interpretation of the language. Consequently, the
interpretation also becomes object-oriented. Whenever something has to
happen with an object, this will be asked to the meta-object of the object.
For example, whenever a message

(>> Birth-Year of George)

has to be evaluated, this will result in the evaluation of

- 144 -

CHAPTER VI Implementing a Reflective Architecture

(>> Eval (Get-Filler-Method [Symbol Birth-Year]) Meta of George)

This example illustrated how the explicit representation of the behavior and
implementation of objects is causally connected to their actual behavior and
implementation by means of an object-oriented, meta-circular interpreter.
However, we again need a second interpreter to make this interpretation
scheme actually work. The above example clearly indicates the infinite
behavior of the meta-circular interpreter. In order to get the filler of a slot
for an object, we have to ask the meta-object of this object for the filler of
the Get-Filler-Method slot, consequently we have to ask the meta-object of
the meta-object how to get the filler of a slot of the meta-object, and so on.

The technique that is used to avoid this infinite regress is the same as the
one used for program-objects: the slots of primitive meta-objects are emu-
lated by the LISP-implementation of 3-KRS. When an object has (a copy
of) a primitive meta-object, the object will be handled by the LISP imple-
mentation of 3-KRS: the LISP-implementation will compute how the object
responds to a message, how an instance of the object is created, how the
object is evaluated, etc. The meta-object of an object is only used to inter-
pret the object when this meta-object deviates from the basic meta-objects,
e.g. when the meta-object specifies another form of inheritance or another
way to create instances for the object. So actually the modifications made to
the LISP-implementation look as in figure 12.

(defun krs:get-filler-of (object slot-name)
(if (special-meta-object-p object)
(eval ‘(>> Eval (Get-Filler-Method [Symbol ,slot-name])
Meta of ,(find-object-name object)))
(krs:default-get-filler-of object slot-name)))

(defun krs:default-get-filler-of (object slot-name)

. ;;the LISP-implementation of krs:get-filler-of
)

Fig. 12. Making the Interpreter meta-circular - part 2 revisited.

- 145 -

CHAPTER VI Implementing a Reflective Architecture

Some conditionals were added which take care that, if the object has a spe-
cial meta-object, the interpretation of the object is explicitly handled instead
of implicitly. Similar modifications to the LISP-implementation have to be
made for the other slots of the Meta-Object object. Consequently, the
interpretation of the object created by

(defobject George -

(a Person
(Birth-Year [Number 19771)))

is handled by the LISP implementation of 3-KRS. On the other hand, the
interpretation of the object created by

(defobject Bill
(a Person
(Meta (a Meta-Qbject
(Get-Filler-Method (7Slot-Name)
[Form (>> (>> Contents of 7Slot-Name) of Gearge)l)))))

is handled by its meta-object.

To summarise how the meta-circular interpretation of 3-KRS works, con-
sider the message

(>> Birth-Year of Bill)

The moment this message is parsed, the interpreter turns it into an object

<{Message-#7890> =
Type: <Message>
Meta: <{Message-Meta-#3454>
Target: <Bill>
Slot-List: <List (Birth-Year)>

When the message has to be evaluated at some point, the following compu-
tation will take place, where ”=>%" stands for "reduces-after-some-steps-

”,

to”:
(>> Eval) sent to <Message-#7890>

= ; ;because this Message inherits the Eval slot from
;;the object Program-Object we get:
(>> Eval) sent to <Form (if (special-meta-object-p (>>))
(>> Eval Eval-Method Meta)
(krs:process-sentence (>>)))>
;3in which the scope is <Message-#7890>,

- 146 -

CHAPTER VI Implementing a Reflective Architecture

=>* ; ;because sending Eval to a Form returns the
;;LISP evaluation of the embedded form, this results in the
;;evaluation of:
(if (special-meta-object-p (>>))
(>> Eval Eval-Method Meta)
(krs:process-sentence (>>)))
;3in which the scope is <Message-#7890>

*

=> ; sbecause the meta of <Message-#78%90> is a copy of the
; ;Meta-Object object, i.e not special, we get the evaluation of:
(krs:process-sentence (>>))

;3in which the scope is <Message-#7890>

=¥ ; ;because the evaluation of this function-call results
;;in a call of krs:get-filler, we get the evaluation of
(krs:get-filler-of object slot-name)
;3with object bound to <Bill> and slot-name bound to Birth-Year

;;because of the definition of the function krs:get-filler, we get:
(if (special-meta-object-p object)
(eval ‘(>> Eval (Get-Filler-Method [Symbol ,slot-name])
Meta of ,(find-object-name object)))
(krs:default-get-filler-of object slot-name))
;;with object bound to <Bill> and slot-name bound to Birth-Year

:)*

; ;because the meta-object of <Bill> is <Meta-Object-#2314>,
;;which is special, we get the evaluation of:

(eval “(>> Eval (Get-Filler-Method [Symbol ,slot-name])

Meta of ,(find-object-name object)))

;;with object bound to <Bill> and slot-name bound to Birth-Year

=¥ ;;this results in the evaluation of the message
(>> Eval (Get-Filler-Method [Symbol Birth-Year]) Meta of Bill)

=>* ; ;because the meta-object of <Bill> is <Meta-Object-#2314>,
;iwe get:
(>> Eval (Get-Filler-Method [Symbol Birth-Year])) sent to <Meta-Object-#2314>

=>* ; ;because of the definition of the Get-Filler-Method
;;0f <Meta-Object-#2314>, we get:
(>> Eval) sent to <Form (>> (>> Contents of [Symbol Birth-Year]) of George)>

=>* ; ;because the evaluation of a Form object is the
;;evaluation of the LISP form that it contains we get the
;;evaluation of:

(>> (>> Contents of [Symbol Birth-Year]) of George)

=>* ; ;which results in the evaluation of
(>> Birth-Year of George)

=>* ; ;the same process starts over for the object George
;;instead of the object Bill, but because George has
;;a default-meta-object, this results in the
;;evaluation of

- 147 -

CHAPTER VI Implementing a Reflective Architecture

(krs:default-get-filler-of <George> <Symbol Birth-Year>)

=>* ;swhich represents the way the LISP-implementation gets the
;;filler of a slot for an object, it returns:
<Number 1955>

Note finally that the language has to incorporate a form of consistency
maintenance in order to make the causal connection mechanism discussed
above work. More specifically, the interpreter has to take care that refer-
ences in the language always refer to the latest version of an object. This
overcomes the situation in which a meta-object redefines its object during
reflection, and returns to the inconsistent version of the object (the old ver-
sion which triggered the reflective computation) afterwards. KRS has such a
form of consistency maintenance (Van Marcke,1986).

6. Programming Object-Oriented Reflection

6.1. Introduction

The second problem in the construction of a reflective architecture was
called the problem of programming reflective computation. A reflective
architecture has to provide conditions in which an object switches from
object-computation to reflective computation and vice versa. 3-KRS has an
architecture which supports implicit and explicit reflective computation (cf.
chapter V).

An important advantage of 3-KRS over already built languages is that the
reflective computation of an object may be coupled to the flow of the
object-cdmputation (as in 3-LISP), or uncoupled from it (as in SOAR). An
object may prescribe implicit (uncoupled) reflective computation by means
of a meta-object that deviates from the primitive meta-objects. When an
object has a deviating meta-object, its interpretation will be handled by this
meta-object instead of the LISP implementation of the language. On the
other hand, an object may also explicitly prescribe (coupled) reflective com-
putation. The code in an object may contain pieces of reflective code, i.e.
sentences that prescribe the manipulation of a meta-object.

- 148 -

CHAPTER VI Implementing a Reflective Architecture

The architecture of object-oriented reflection provides a sophisticated control
of the granularity of reflective computation. Local reflective computation
can be obtained by making reflective individual instances. E.g. a reflective
object john, or a reflective particular message. More general reflective com-
putation can be obtained by making reflective abstract objects (which serve
as the type of other objects). E.g. one can make all person pbjects
reflective, by making the prototype person object reflective. Or one can
make (almost) all messages in the system behave in a special way, by mak-
ing the prototype message object reflective. Note that in a language like 3-
LISP this is not the case. 3-LISP for example does not provide the possibil-
ity to specify reflective behavior for a class of expressions.

6.2. Implicit Reflection

6.2.1. Local Implicit Reflection

Every object in a computational system has the possibility to perform impli-
cit reflective computation. The computation of an object will make a level-
shift whenever the interpreter has to perform an action on the object and the
object has a meta-object deviating from the primitive meta-objects.

The slots of a deviating meta-object prescribe in an explicit way how the
interpreter action should be performed instead, i.e. what reflective compu-
tation should be performed at that point in the interpretation. So, for each
slot in the meta-object that implements a part of the interpreter, it is possi-
ble to program reflective computation for the object. The slots of the meta-
object are the hooks in the interpreter where reflective computation can be
triggered.

Most of the time a special meta-object is created as a specialisation of an
existing meta-object, as illustrated in figure 13.

- 149 -

CHAPTER VI Implementing a Reflective Architecture

<The-Current-Date> <List-#3423> =

Contents: {<Form (get-time)>}

<The-Current-User> <Symbol-#8909> =

Contents: {<Form (user-id)>}

<Annotating-Meta> =
Type: <Meta-Object> = oo
Make-Instance-Method:
<Form
(let ((?the-instance
(>> Eval Default-Make-Instance-Method))
(?the-current-date (>> of The-Current-Date))
(?the-current-user (>> of The-Current-User)))
(>> Eval
(Add-Slots-Method
[List ((When-Created ?the-current-date)
(Author ?the-current-user))])
Meta Meta of ?the-instance)
(>> Eval
(Add-Slots-Method
{List ((Most-Recently-Created
?the-instance))]))
?the-instance)>

Fig. 13. A deviating meta-object - 1.

Annotating-Meta inherits from the Meta-Object object. It overrides the
Make-Instance slot such that the instances of its referent are documented at
the time of their creation. Actually it creates an instance using the default
method to create instances, and then performs some other actions. Since this
procedure is often used when defining meta-objects, every meta-object in the
3-KRS system also stores the default interpretation methods in the slots with
names Default-Add-Slots-Method, Default-Make-Instance-Method, and so on.
When we now define
(defobject Dossier

(Meta (an Annotating-Meta
(Referent (>>))))

and we create an instance of Dossier, as in

(defobject My-Dossier
(a Dossier))

- 150 -

CHAPTER VI Implementing a Reflective Architecture

the filler of the slot Make-Instance-Method of the meta-object of Dossier
will be evaluated, since the meta-object of Dossier deviates from the primi-
tive meta-objects. In the Make-Instance-Method, the Dossier object itself
(because a meta-object has a link to its object) and an explicit representation
of its behavior and implementation (in terms of the other slots of the meta-
object) are accessible to reason about or to make modifications. E.g.-the
object can be questioned about its current state, this state can be modified,
extra slots for the object can be created, or its future behavior can be
modified.

The meta-object in the example above modifies the state of the referent by
defining a slot Most-Recently-Created for its referent. It also adds some
slots to the meta-object of the new instance. Consequently, the object Dos-
sier and its new instance My-Dossier will have the following structure,
where the italics highlight the modifications made by reflective computation
<Dossier> =
Type: <Object>

Meta: <Annotating-Meta-#4323>
Most-Recently-Created: <My-Dossier>

<My-Dossier> =
Type: <Dossier>
Meta: <Annotating-Meta-#3487> =
Type: <Annotating-Meta>
Referent: {(>>)}
Author: <Symbol Pattie>
When-Created: <List (8 4 86)>

Note that the slots Author and When-Created in the Meta of My-dossier are
read-only reflective representations in the sense that the causal connection to
the aspects they represent is not guaranteed by the KRS-system. This will
be the case for all extra slots created for a meta-object.

The object My-Dossier has inherited the deviating meta-object. Instances of
My-Dossier will also be created with this special method. If we want to
prevent inheritance of a deviating meta-object, we have to override the
meta-object of the instance with the default meta-object. For example

- 151 -

CHAPTER VI Implementing a Reflective Architecture

(defobject Your-Dossier
(a Dossier
(Meta (a Meta-Object
(Referent (>>))))))

Similarly deviating meta-objects can be constructed for program-objécts.
'Figure 14 illustrates a deviating message-meta-object. In particular, this
deviating meta-object takes care that tracing information is printed during
evaluation of the message. '

{Tracing-Message-Meta> =
Type: <Message-Meta>
Eval-Method:
<If-#6789> =
Condition: <Message (>> Emptyp Slot-List Referent)>
Then-Part: <Message (>> Target Referent)>
Else-Part:
{Action-Sequence-#2654> =
Actions:
<{List
(<Message (>> Println of
[String "Getting the filler of slot ”])>
{Message (>> Print of (>> Last Slot-List Referent))>
<Message (>> Print of [String " for the object”])>
<Message (>> Eval Print-Method Meta Target Referent)>
- {Message-#6704> =
Type: <{Message>
Meta: <Tracing-Message-Meta>
Target: {<Form (krs:get-filler-of
(>> Target Referent)
(>> Last Slot-List Referent))>}
Slot-List:
{<{Message (>> But-Last Slot-List Referent)>}>

Fig. 14. A deviating meta-object - 2.

When we now create a message that has this deviating meta-object, as in

(defobject My-Message
(a Message
(Meta (a Tracing-Message-Meta))
(Target George)
(Slot-List [List (Type Birth-Year)]l)))

and we ask this message for the filler of its Eval slot, the following

- 152 -

CHAPTER VI Implementing a Reflective Architecture

information will be printed

Getting the filler of slot Birth-Year for the object <George>
Getting the filler of slot Type for the object <Number 1955>

finally the result

<Number> -

is returned.

6.2.2. Default Implicit Reflection

The default reflective computation that is performed by an object is deter-
mined by the meta-objects of the primitive objects. 3-KRS not only incor-
porates a reflective architecture, but it is also a reflective language. The
primitive objects represent the global interpreter of the language, and these
objects are accessible and modifiable in a causally connected way. Conse-
quently, the default reflective computation of 3-KRS can be modified
dynamically.

If we redefine the meta-object of a primitive object, all objects in the system
will be interpreted by this special interpreter. For example, if the object
Object is redefined as

(defobject Object

(Meta (an Annotating-Meta
(Meta (a Meta-Object)))))

all new objects of the system will be created with two extra slots in their
meta-object. However, in order to guarantee the causal connection and
finiteness of the interpretation, the new meta-object of Object has to get the
object Meta-Object as its meta-object (actually, there has to be an n such
that the meta of Object is the Meta-Object object, i.e. the meta-object
corresponding to the LISP implementation of the language). Which means
that a default-meta-object will still be handled by the LISP implementation.
Every object (except for default-meta-objects) will now be considered as
having a special meta-object: the meta-object of an object is now (by
default) a copy of the modified meta-object of Object.

- 153 -

CHAPTER VI Implementing a Reflective Architecture

This implies that every action in the system requires an extra level of
interpretation. Objects with a default meta-object will require two interpreter
steps: (i) one explicit step to interpret the object by means of the default
meta-object and (ii) one implicit step to interpret the default meta-object of
the object. Objects with a user-defined meta-object will now require three
levels of interpretation: (i) one explicit step to interpret the object by -means
of its deviating meta-object, (ii) one explicit step to interpret the deviating
meta-object with the default meta-object and (iii) one implicit step to inter-
pret the default meta-object. Consequently, such global changes will affect
the performance of the system substantially.

Similar global effects on the interpretation of programs can be obtained by
modifying the meta-objects of the primitive program-objects. For example,
if we redefine the Message object to be
{Message> =
Type: <Program-Object>
Slot-List: <List-#2987>

Target: <Object-#7658>
Meta: <Tracing-Message-Meta-Bis>

all message-objects will print tracing information when they are asked for
the filler of the Eval slot. Again, simply giving the object Message the
Tracing-Meta-Object defined above, would not work. In order to guarantee
the causal connection and finiteness, the message-objects that are created in
the Eval-Method of the object Tracing-Message-Meta have to be created
with the Message-Meta object (the one corresponding to the LISP imple-
mentation) as their meta-object.

6.3. Explicit Reflection

An object may also explicitly prescribe the reflective computation that it
wants to perform. The code in an object will at run-time cause reflective
computation if it specifies computation about a meta-object which has as
referent the object again. For example, the object-level code may include a
message sent to a specific meta-object. The object Person in figure 15
shows an example. A Person object has an Annotating-Meta, which stores
the time the Person object was created. In the Age slot, an explicit refer-
ence to the Meta of Person occurs: the When-Created slot of the Meta is

- 154 -

CHAPTER VI Implementing a Reflective Architecture

used to compute the Age.

(defconcept Person
(Meta (an Annotating-Meta))
(Birth-Year (a Number))
(Age (>> (Minus (>> Birth-Year))
Year When-Created Meta)))

Fig 15. Explicit reflection.

The same granularity of reflective computation exists for explicit reflection.
It is possible to specify explicit reflection for individual data-objects and
program-objects as well as for the primitive objects of the language.

7. Related Work

7.1. Introduction

This section compares the 3-KRS experiment described above with related
work. A first subsection stresses the contributions of 3-KRS to the state of
the art in object-oriented languages. A second subsection situates the 3-KRS
experiment in the context of the existing reflective architectures discussed
earlier in this work.

7.2. Comparison with Existing Object-Oriented Languages

7.2.1. Introduction

When studying the existing literature on object-oriented languages, no
object-oriented language incorporating a reflective architecture can be
identified. However, this section shows that the introduction of reflective
architectures is a logical step in the evolution of object-oriented languages.2

The notion of an object-oriented programming style evolved around 1970
with the development of the language SIMULA (Dahl & Nygaard,1966).
SIMULA introduced two basic ideas of object-oriented programming, being:

- 155 -

CHAPTER VI Implementing a Reflective Architecture

(i) the notion of object, which is an entity combining data and program
in that it has an internal local state and associated computation,

(ii) the notion of the class of an object, which determines the internal
structure and the type of computation of the object. Classes are organ-
ised in a subclass hierarchy through which they may inherit informa-
tion. T
The important contribution of this new style was the new form of modular-
ity it introduced in programming. A third basic idea of object-oriented pro-
gramming which enforced this new form of modularity even more, was
introduced by SMALLTALK-72 (Kay,1972):

(ii}) computation in an object-oriented language comes from message-
passing, i.e. instead of calling a procedure to perform an action on an
object one sends the object a message. The selector of the message
specifies the kind of action. Objects respond to messages using their
internal data and programs.

Although the first object-oriented languages did not yet incorporate facilities
for reflective computation, it must be said that the concept of reflection fits
most naturally in the spirit of object-oriented languages. The important
ideas behind object-oriented languages are abstraction and encapsulation.
Many aspects of a computational system can be made local to objects. An
object has a protocol for communicating with the world. It also has internal
data, programs and computation which make that it can fulfill a certain
computational role. However, these internal aspects are not accessible or
visible to the outside, which means that an object can be free to realise its
role in whatever way it wants to. Thus, an object could not only perform
computation about its domain, but also about how it could realise this
(object-) computation. The next section shows that designers of object-
oriented languages have actually also felt the need to provide such facilities.

7.2.2. The Need for Reflective Facilities

Soon after object-oriented languages came into existence, the need for cer-
tain reflective facilities was felt. Two strong motivations existed. A first
motivation was the need for specialised interpreters. It seemed to be very

- 156 -

CHAPTER VI Implementing a Reflective Architecture

difficult to find an agreement on the fundamental principles of object-
oriented programming. As it turns out the programming language commun-
_ity is still now actively experimenting in order to find the "basic” features
an object-oriented language should support (Stefik and Bobrow, 1986): is a
distinction between classes and instances necessary? what form of inheri-
tance should be provided? what do messages look like? etc. -

It became clear that a specific design for an object-oriented language suited
some applications, but was inappropriate for others. Reflective facilities
present a solution to this problem. A language with reflective facilities is
open-ended: reflection makes it possible to make (local) specialised inter-
preters of the language, from within the language itself. For example,
objects could be given an explicit, modifiable representation of how they are
printed, or of the way they create instances. If these explicit self-
representations are actually also causally connected (i.e. if the behavior of
the object is always in compliance with them) it becomes possible for an
object to modify these aspects of its behavior. One object could modify the
way it is printed, another object could adopt a different procedure for mak-
ing instances, etc.

A second motivation was inspired by the development of frame-based
languages, which introduces the idea to encapsulate domain-data with all
sorts of reflective data and procedures (Roberts and Goldstein,1977) (Min-
sky,1974). An object would thus not only represent information about the
thing in the domain it represents, but also about (the implementation and
interpretation of) the object itself: when is it created? by whom is it
created? what constraints does it have to fulfill? etc. This reflective infor-
mation seemed to be useful for a range of purposes:

- it helps the user cope with the complexity of a large system by pro-
viding documentation, history, and explanation facilities,

- it keeps track of relations among representations, such as consisten-
cies, dependencies and constraints,

- it-encapsulates the value of the data-item with a default-value, a form
to compute it, etc,

- it guards the status and behavior of the data-item and activate specific
procedures when specific events happen (e.g. the value becomes

- 157 -

CHAPTER VI Implementing a Reflective Architecture

instantiated or changed).

7.2.3. The Evolution Towards a Reflective Architecture

Object-oriented languages have responded to this need by providing
reflection in ad hoc ways. Reflective facilities were mixed in the_object-
level structures. In languages such as SMALLTALK-72 (Kay,1972) and
FLAVORS (Weinreb and Moon,1981), an object not only contains informa-
tion about the entity that is represented by the object, but also about the
representation itself, i.e. about the object and its behavior. For example,
in SMALLTALK, the class Person may contain a method to compute the
age of a person as well as a method telling how a Person object should be
printed. Also in FLAVORS, every flavor is given a set of methods which
represeiit the reflective facilities a flavor can make usage of (cfr. figure 16).

:DESCRIBE (message): ()

GET-HANDLER-FOR: (OBJECT OPERATION)

MAKE-INSTANCE: (FLAVOR-NAME &REST INIT-OPTIONS)

+OPERATION-HANDLED-P (message): (OPERATION)

SYS:PRINT-SELF (message :PRINT-SELF): (OBJECT STREAM PRINT-DEPTH SLASHIFY-P)
+SEND-IF-HANDLES (message): (MESSAGE &REST ARGS)

:WHICH-OPERATIONS (message): ()

Fig. 16. The structure of the vanilla-flavor.

There are two problems with this way of providing reflective facilities. One
is that these languages always support only a fixed set of reflective facilities.
Adding a new facility means changing the interpreter itself. For example, if
we want to add a reflective facility which makes it possible to specify how
an object should be edited, we have to modify the language-interpreter such
that it actually uses this explicit edit-method whenever the object has to be
edited.

A second problem with these languages is that they mix object-level and
reflective level, which may possibly lead to obscurities. For example, if we
represent the concept of a book by means of an object, it may no longer be
clear wether the slot with name ”Author” represents the author of the book

- 158 -

CHAPTER VI Implementing a Reflective Architecture

(i.e. domain data) or the author of the object (i.e. reflective data).

One step towards a cleaner handling of reflective facilities was set by the
introduction of meta-classes by SMALLTALK-80 (Goldberg and Robson,
1983). In SMALLTALK-72 classes are not yet objects. The internal struc-
ture and message-passing behavior of an object can be specified in its class,
but the structure and behavior of a class cannot be specified. The idea
behind this development in SMALLTALK-80 (which was later also adopted
in LOOPS (Bobrow and Stefik,1981)) is that it should also be possible to
specify the internal structure and computation of a class. Consequently,
meta-classes were introduced: a meta-class specifies the structure and com-
putation of a class.

Meta-classes already made one improvement towards the disctinction
between object-information and reflective information: a meta-class only
specifies system-internal information about its class (because there are no
domain-data which correspond to this level). However, the confusing situa-
tion at the class-level still remained: a class in SMALLTALK-80 still mixes
information about the domain and information about the implementation.

Actually one disadvantage of the introduction of meta-classes is that they
introduce . some confusion because the relation class/meta-class and
instance/class does not run in parallel (although it is presented as if they
do). As a study by T. O’Shea (O’Shea,1986) reveals, users of
SMALLTALK are often confused with meta-classes. We suggest that this
confusion might well arise because of the undisciplined split between system
information and domain information. A class in SMALLTALK is sometimes
viewed as an object being an instance of a meta-class (i.e. as something
containing reflective information), at other times it is viewed as a class con-
taining information about the domain (i.e. representing an abstraction).

Another step towards the origin of reflective architectures was taken by the
development object-oriented languages such as PLASMA (Smith and Hewitt,
1975), ACTORS (Lieberman,1981), RLL (Greiner,1980) and OBJVLISP
(Briot and Cointe,1986). These languages try to bring more uniformity in
object-oriented programming by representing everything in terms of objects.
They all contribute to the uniformity of the different notions existing in

- 159 -

CHAPTER VI Implementing a Reflective Architecture

object-oriented languages by representing everything in terms of objects:
class, instance, meta-class, instance-variable, method, message, environment
and continuation of a message. This increased uniformity makes it possible
to treat more aspects of object-oriented systems as data for reflective com-
putation.

In general, it can be said that the evolution of object-oriented languages
tended towards a broader use of reflective facilities. In the beginning
reflective facilities were only used in minor ways. A class would for exam-
ple only represent the reflective information telling what its instances were.
However, as object-oriented languages evolved, the self-representations
became richer and applied in a broader way (from instances only, to
classes, to meta-classes, to messages, etc).

However none of the existing languages has ever actually recognised
reflection as the primary programming concept developers of object-oriented
languages were (unconsciously) looking for. The languages mentioned above
only support a finite set of reflective facilities, often designed and imple-
mented in an ad hoc way. The next section discusses in what ways an
object-oriented language with a reflective architecture differs from these
languages.

7.2.4. Distinct Properties of 3-KRS

The important innovation of the 3-KRS language is that it fulfills the follow-
ing crucial properties of an object-oriented reflective architecture:

1. A first property is that it presents the first object-oriented language adopt-
ing a disciplined split between object-level and reflective level. Every object
in the language is given a meta-object. A meta-object also has a pointer to
its object. The structures contained in an object exclusively represent infor-
mation about the domain entity that is represented by the object. The struc-
tures contained in the meta-object of the object hold all the reflective infor-
mation that is available about the object. Note that the meta-relation is not
collapsed with the instance-relation (as it is in SMALLTALK-80 or
LOOPS). The object John has a type-link to the Person object as well as a
meta-link to its meta-object.4

- 160 -

"CHAPTER VI Implementing a Reflective Architecture

Note also that although there is a one-to-one relation between objects and
‘meta-objects (which might suggest to combine them into one object), it is
important that object and meta-object are also physically separated (which is
again not true for the meta-classes of SMALLTALK). This way a standard
message protocol can be developed between an object and its meta-object.
This protocol makes it possible to create abstractions of the behavior of an
object, and to temporarily attach such a special behavior to an object (cf.
next chapter).

2. A second property is that the self-representation of an object-oriented
system is uniform. Every entity in a 3-KRS system is an object: instances,
classes, slots, methods, meta-objects, messages, etc. Consequently every
aspect of a 3-KRS system can be reflected upon. All these objects have
meta-objects which represent the self-representation corresponding to that
object.

3. A third property is that 3-KRS provides a complete self-representation.
The meta-objects contain all the information about objects that is available in
the 3-KRS language. Actually, the contents of meta-objects was constructed
on the basis of the real interpreter. The interpreter was divided in blocks
which represent how a specific aspect of a certain type of object is imple-
mented. All of these blocks were afterwards reified (i.e. made explicit) in
the form of objects.

4. A fourth property is that the self-representation of a 3-KRS system is
consistent. The self-representation is actually used to implement the system.
The explicit representation of the interpreter that is embedded in the meta-
objects is used to implement the system. Whenever some implementation
action has to be performed on an object, e.g. an instance of the object has
to be created or the object has to answer a message, or a message-object
has to be evaluated, the meta-object of the object is requested to perform
the action.

5. A last property is that the self-representation can also at run-time be
modified, and these modification actually have an impact on the run-time
computation. The self-representation of the system is explicit, i.e. it consists
of objects. Thus, any computation may access this self-representation and

- 161 -

CHAPTER VI Implementing a Reflective Architecture

make modifications to it. These modifications will because of the consistency
of the self-representation result in actual modifications of the behavior of the
system.

7.3. Comparison with Existing Reflective Architectures

Procedure-based, logic-based and rule-based languages incorporating a
reflective architecture can be identified. Chapter III showed how procedural
examples (variants of LISP) such as 3-LISP (Smith,1982) and BROWN
(Friedman & Wand,1984) introduced the concept of a reflective function,
which is just like any other function, except that it specifies computation
about the current ongoing computation. Reflective functions should be
- viewed as local (temporary) functions running at the level of the interpreter:
they manipulate data representing the code, the environment and the con-
tinuation of the current object-level computation.

FOL (Weyhrauch,1980) and META-PROLOG (Bowen,1986) were presented
as two examples of logic-based languages with a reflective architecture.
These languages adopt the concept of a meta-theory. A meta-theory again
differs from other theories (or logic programs) in that it is about the deduc-
tion of another theory, instead of about the external problem domain.
Examples of predicates used in a meta-theory are ”provable(Theory,Goal)”,
”clause(Left-hand,Right-hand)”, etc.

We illustrated reflective architectures in rule-based languages by means of
TEIRESIAS (Davis,1982) and SOAR (Laird, Rosenbloom & Newell,1986).
These languages incorporate the notion of meta-rules, which are just like
normal rules, except that they specify computation about the ongoing com-
putation. The data-memory these rules operate upon contains elements such
as “there-is-an-impasse-in-the-inference-process”, ”there-exists-a-rule-about-
the-current-goal”, ”all-rules-mentioning-the-current-goal-have-been-fired”,
etc.

The 3-KRS experiment does for the object-oriented paradigm what the
former languages did for the procedure, logic and rule-based paradigm
respectively (cf. figure 17). Just like these languages, 3-KRS introduced a
new concept (or programming-construct) being the notion of a meta-object.

- 162 -

CHAPTER VI Implementing a Reflective Architecture

Again meta-objects are just like the other objects of the language, except
that they represent information about the computation performed by other
objects and that they are also taken into account by the interpreter of the
language when running a system.

SURVEY OF EXISTING REFLECTIVE ARCHITECTURES -

procedure-based logic-based rule-based object-based
.1.} code,env,cont goal,clauses,etc. rules,goal,state | state & behavior
circular int. circular int. circular int. of objects &

circular int.

2.| reflective | reflective reflective reflective
functions theories rules objects

3.] meta-circular sem. attach, meta-circular meta-circular
interpreter refl. princ. interpreter interpreter

1. stands for the issue of self-representation
2. stands for the issue of how reflective computation is programmed
3. stands for the issue of causal connection

Fig. 17. A comparison of some existing reflective architectures.

Another common issue is the way the causal connection requirement is han-
dled. Just like the main part of the languages discussed in section 5, 3-
KRS represents an architecture for procedural reflection. 3-KRS is run by a
meta-circular interpreter (cf. chapter IV): the self-representation that is given
to a system is an explicit representation of the implementation of the sys-
tem. Consequently this self-representation also represents the system in
terms of the concepts inherent in the interpretation of the language. For an
object-oriented language these are: handling messages, creating instances,
etc.

8. Conclusions

The purpose of this chapter was to illustrate the concepts introduced in
chapter IV and V with a concrete example, being the implementation of the

- 163 -

CHAPTER VI Implementing a Reflective Architecture

reflective architecture of the object-oriented language 3-KRS. The basic unit
of information in 3-KRS is the “object”. Data as well as programs are
represented as objects in 3-KRS. An object groups information about the
entity it represents. Every object in 3-KRS has a meta-object. The meta-
object of an object groups information about the implementation and
interpretation of the object.

Objects by inheritance get a default meta-object. The default meta-object
describes the standard implementation and interptetation of a 3-KRS obiject.
It is a reification of the LISP implementation and interpretation of an object.
An object can be given a special behavior by assigning to it a meta-object
explicitly. The 3-KRS interpreter is meta-circular and object-oriented. The
meta-object of an object is consulted whenever the interpreter has to per-
form some action on the object and the object has a deviating meta-object.

By means of this architecture every object has the possibility to show a
reflective behavior. Reflective behavior can be obtained by giving an object
a deviating meta-object or by accessing a meta-object from within the com-
putation of an object. The slots of the meta-object of an object specify in
an explicit way how the object behaves. At this level, the object itself and
an explicit self-representation of its behavior are accessible to reason about
or to make modifications.

- This experiment represents the first reflective architecture in an object-
oriented language. The existing object-oriented languages only support lim-
ited, ad-hoc reflective facilities, which leads to limitations and unclear
“designs, and consequently to problems in programming. However, over the
years object-oriented languages have evolved towards designs providing
-more and more reflective facilities. So this experiment can be said to
present the next logical step in this evolution.

The next chapter views the 3-KRS architecture from the programmers’ point
of view. It is shown that the architecture built, although far from trivial in
implementation, actually provides a very elegant programming environment.
Examples demonstrate how this architecture should be used and what tasks
it facilitates..

- 164 -

CHAPTER VI Implementing a Reflective Architecture

NOTES

(1] Some object-oriented languages only provide a syntax for sending messages. An object
is in these languages created by sending the message “"New” to the type-object.

(2] It may be that the survey of object-oriented languages presented here is not complete.
There are hundreds of existing object-oriented languages, mostly with very limited distribu-
tion and publication. We have selected the most well-known languages or those languages
whose reflective facilities have been reported in the literature. -

[3] None of the languages discussed above fulfills the entire list, although they might fulfill
one or more of the properties.

[4] However the "meta” slot of an object is also inherited. When the object John does not
override the “meta” slot, it will when needed make a copy of the meta-object of Person.

- 165 -

- CHAPTER VII

Programming in a Reflective Architecture

1. Introduction

The previous chapter illustrated the implementation of a reflective architec-
ture for the language 3-KRS. This chapter uses the same language to illus-
trate what programming in a reflective architecture is like. Chapter I and II
argued that reflective architectures are designed for a specific style of pro-
gramming. The purpose of this chapter is to present a concrete demonstra-
tion of this style using 3-KRS.

Although the implementation of 3-KRS is far from trivial, from the
programmer’s point of view the language has a simple and elegant design.
The basic unit of information in the system is the object. An object groups
information about the entity in the domain it represents. Every object in 3-
KRS has a meta-object. The meta-object of an object groups information
about the implementation and interpretation of the object. An object may at
any point interrupt its object-computation, reflect on itself (as represented in
its meta-object) and modify its future behavior.

Reflective computation may be guided by the object itself or by the inter-
preter. An object may cause reflective computation by specifying reflective
code, i.e. code that mentions a meta-object. The interpreter causes
reflective computation for an object, whenever the interpreter has to perform
an operation on the object and the object has a special meta-object. At that
moment the interpretation of the object is delegated to this special meta-
object.

- 166 -

CHAPTER VII Programming in a Reflective Architecture

This reflective architecture supports the modular construction of reflective
programs. The abstraction and encapsulation facilities inherent to object-
oriented languages make it possible to program object-computation (objects)
and reflective computation (meta-objects) independently of each other.
There is a standard message protocol between an object and its meta-object
which guarantees that the two modules will also be able to work with each

other.

This makes it possible to temporarily associate a certain reflective computa-
tion with an object without having to change the object itself, which is for
example very useful for debugging or tracing purposes. Another advantage
is that libraries of reflective computation can be constructed. These libraries
would consist of meta-objects representing a default-handling behavior, or a
stepping and a tracing behavior, etc (cf. next section).

3-KRS has an architecture that supports the four uses of reflection discussed
in chapter II. Since in 3-KRS data as well as programs are objects in the
language, it supports not only reflection about data, but also reflection about
programs. Further, 3-KRS is a reflective language, which makes it possible
to obtain a general reflective behavior for all the data and programs of an
application.

Note that 3-KRS represents the first language to unify reflection about data
and about programs in one architecture. Most languages only support one
of those. For example, 3-LISP only allows reflection about programs
(reflective lambda expressions). In 3-LISP it is for example not possible to
specify that a certain variable should have a reflective behavior.

Languages like SMALLTALK or COMMON-LOOPS on the other hand,
only support reflection about data. Reflective behavior can only be obtained
(and in limited ways) for the meta-classes of the system. Other languages
do support both types of reflection but by means of different mechanisms.
For example, TEIRESIAS supports several mechanisms for reflection:
meta-rules (reflection about rules), schemata (reflection about data-objects)
and templates (reflection about functions). However, these different mechan-
ism are not integrated by a uniform design.

- 167 -

CHAPTER VII Programming in a Reflective Architecture

2. The 3-KRS Environment

Figure 36 shows the actual interface that is used when programming in KRS
or in 3-KRS (Van Marcke,1987). 3-KRS incorporates a first version of a
library of special-purpose meta-objects. The pane with label "tree 1” gives
an overview of this library. It represents the inheritance hierarchy of all
(named) meta-objects that are created. This hierarchy includes meta-objects
for default-reasoning, sophisticated inheritance, frames, sophisticated print-
ing, tracing, stepping, etc. Nevertheless, the development of a thought-out
library of commonly needed meta-objects remains a topic for further
research.

The meta-objects provided by the library are usable with very little effort or
specific knowledge. It is possible to pick one “ready-made” meta-object and
inspect its structure or definition. The bitmap shows how the object
Default-Handler was “picked-up” and "put-down” in an editor pane. The
result is that the definition of of the Default-Handler meta-object is shown.
Default-Handler is an abstraction which can be instantiated every time an
object with a default-reasoning behavior is needed.

The pane with label "lisp 1” shows how an instance of Default-Handler is
created to give the object Bird a default-behavior. The only slot of the
instance that remains to be filled is Defaults, which has to be a list of asso-
ciations between slot-names and their default-fillers. When an instance of
Bird is created, as in

(defobject Tweety
(a Bird))

and the message

(>> Can-Fly of Tweety)

is sent, the result will be the object

<True>

- 168 -

CHAPTER VII Programming in a Reflective Architecture

DeCache
Center

Display HMULTIPLE-INHERITANCE-META
Setect HMONITOR-META

Switches

Scrollt -
SorollV" HORALL-METH

Scroil> ISTREAM-META
Seroll<

eSSl e 108 ECT mm
cet.

Concept~na

FDOCUMENTATION-META
FLbE T -
FINNOTATING-META
HRAME-META

{DEFOBJECT DEFAULT~HANDLER
(R META-0BJECT
(DEFRULTS (A LIST-OF-PRIRS))
(GET-FILLER-METHOD (?SLOT-NAME)
(A LET
(BINDINGS ((?RESULT (>> (DEFAULT~GET-FILLER-METHOD ?SLOT~NAME)))))
(BODY
(AN IF
(CONDITION (>> UNKNOWN-P OF ?RESULT))
(THEN-PART
(>> FIRST OF
(A FILTER~AND-MAP
(FILTER-OVER (>> DEFAULTS))
(FILTER-WHEN (>> (EQ ?SLOT-NAME) CAR OF ?ONE-ELEMENT))
(MAP-ACTION (>> CADR OF ?0NE-ELEMENT)))))
(ELSE-PRART (>> OF ?RESULT))))))))

ZWEL (KRS Electric Shift-lock)

(CAN-FLY (>> OF UNKNOWN))
(METR
(R DEFAULT-HANDLER

(DEFOBJECT BIRD
(DEFAULTS [LIST (([SYMBOL CAN-FLY]l (>> OF TRUE)) I

lisp1.
krs system1. |

Fig. 36. The actual 3-KRS environment.

- 169 -

CHAPTER VI . . . Programmiing in a Reflective Architecture

3. Demonstration of the Use of Meta-Objects

3.1. An example Computational System

In order to demonstrate what programming in 3-KRS is like we have chosen
an existing computational system. The example is a simplified version of the
causal reasoning syétem described in (Van de Velde,l986). The purpose of
the system is to make a diagnosis about a broken mechanical device. This
section introduces the object-level code of the system. The next sections dis-
cuss how several interesting reflective computations can be attached to it.

The mechanical device is represented by means of a causal network. The
nodes of this network can be mapped to pfopeﬁies of the device. They
represent whether a certain property is Normal or Abnormal. For example,
if the network represents the motor of a car, then the nodes in the network
~ represent properties such as "Engine-Starts”, "Cable-1=0K”, ete. The arcs
in the network represent causal links between nodes. If there exists an arc
from node A to node B, this means that if node A is Abnormal, node B is
also Abnormal. Figure 37 shows an example causal network (no values for
the nodes are known yet).

- 170 -

CHAPTER VII Programming in a Reflective Architecture

[Engine=Starts]
\R e

i Starter Plua-L=F = -
Transmition=0K| A I g- lre;J , ug 2=Fires]

o 7K/
e
[Starter=Turning| [Cable-1=0K| [Cable-2=0K]

Ignition-Coil=
d Delivers-Pouer
ILights=Can-Burn| y
{giarter=Pouer941 //// Ignition-Coil=
Powered

N

P

Batterg=Charged| [Hode Parklng]]Contact Points=0K

Fig. 37. A causal network.

This application introduces the objects of an Arc, a Node and a Diagnosis.
An Arc has a slot From-Node and a slot To-Node, which are both filled by
some node.

<Arc> =

From-Node: <Node-#6478>
To-Node: <Node-#8754>

An example of an arc from figure 37 is

<Arc-#9856> =
From-Node: <Starter=Turning>
To-Node: <Engine=Starts>

A node has a value. The value of a node can be Normal, Abnormal or
Unknown. For some nodes the value is observable. If this is the case, we
can ask the programmer for the value of the node by means of a pop-up

menu. The slot Causes is filled by the set of nodes which are (direct) causes
of the node. This set is computed by means of a Filter-and-Map object

- 171 -

CHAPTER VII Programming in a Reflective Architecture

(See (Jonckers,1987) for a more extensive description of the computational
abstractions used in these examples).
<Node> =
Value: {<If-#2121> =
Condition: <Message (>> Observable-P)>
Then-Part: <Message (>> Ask-Observed-Value)>
Else-Part: <Message (>> of Unknown)> -
Observable-P: <False)
Ask-0Observed-Value:
{<Query-Menu> =
Query-String: <Fstring ”"%Is S normal or abnormal ? (N//A) *

(>> Contents Label)>
Alternatives:
<List (([String ”Normal”] Normal [String ”Normal”)
([String ”Abnormal”] Abnormal [String "Abnormal”}))>}
Causes:
{<Filter-And-Map-#4321> =
‘ Filter-Over: {<Message (>> Forall of Arc)>}
Filter-when: <Message (>> (Eq (>>)) To-Node of ?0ne-Element))>
Map-Action: <Message (>> From-Node of ?0ne-Element)>}

When an Eval message is sent to a Filter-and-Map object, it selects those
elements of the set in the slot Filter-Over that fulfill the predicate in the slot
Filter-When. Afterwards, it maps the function in the slot Map-Action over
the resulting set. The variable ?One-Element can be used to refer to one
element of the set in Filter-Over. The predicate of this specific instantiation
of Filter-And-Map states that the To-Node of an arc has to be equal to this
node. The Map-Action function takes the From-Node of the arcs selected.
For the above example, the message

(>> causes of Ignition-Coil=zPowered)
will return

<Set (<Battery-Charged><Mode=Parking><Contact-Points=0K>)>

The object Diagnosis represents the diagnosis of a problem-node N. It has
a slot Result which is filled by the defective nodes which cause the value of
N. This set is computed by (i) making a diagnosis for every non-Normal
cause of N, (ii) merging the resulting sets of defects in the slot Defects, (iii)
adding the problem-node itself to the slot Defects in case it is abnormal and
the set of Defects is still empty, and (iii) returning the set Defects.

- 172 -

CHAPTER VII Programming in a Reflective Architecture

<Diagnosis> =
Problem-Node: <Node-#4343>
Result:
{<Action-Sequence-#2987> =
Actions:
<lList
(<Message (>> (Merge-with (>> Diagnosis-For-Causes)) Defecta)>
<If-#7980> = -
Condition:
<{Message (>> (and (>> Empty Defects)
(>> Abnormal-P Value Problem-Node)))>
Then-Part: <Message (>> (Add (>> Problem-Node)) Defects)>

<{Message (>> Defects)>)>}

Diagnosis-For-Causes:
{<Filter-And-Map-Append-#3487> =

Filter-Over: {<Message (>> Causes Problem-Node)>}

Filter-when: <Message (>> Not Normal-P Value of ?0One-Element)>

Map-Action: <Message (>> Result of (a Diagnosis

(Problem-Node ?0ne-Element)))>}

Defects: <Set-#2121>

The slot Diagnosis-for-Causes is defined by means of a Filter-And-Map-
Append object. This object first selects the causes of the Problem-Node
whose value is non-Normal, and then applies the message

(>> Result of (a Diagnosis
(Problem-Node ?0ne-Element))

to each element of the resulting set. It appends the sets that result from this
map-action. So finally the definition of Diagnosis-For-Causes returns the set
of defects of all non-Normal causes of the problem-node.

If the causal-network looks as in figure 38, where A stands for Abnormal,
U for Unknown and N for Normal, then

(>> Result of (a Diagnose
(Problem-Node (>> of Engine=Starts))))

returns

<Set (Mode=Parking Cable-2=0K)>

- 173 -

CHAPTER VII Programming in a Reflective Architecture

[Engine=Starts|A

o

“Starter |y [Plug-1=Fires|u [Plug-2=Fires|U
Transmition=0K
[Starter=Turning]U [Cable-1=0K]Y Cable-2=0K|A

Ignition-Coil= 7

d De!ivers-Pouer
[Lights=Can-BurnJU J
Etarter=Pouered]U Ignition-Coil=}y
\ Pouered

N

N

[Battery=Charged|N [Node=Parkingjr [Contact-Points=0K IN

Fig. 38. The network to be diagnosed.

The following sections show how reflective computation can be introduced
in this example computational system. The applications of meta-objects that
are illustrated include:

(i) implementing local variations on the 3-KRS language,
(ii) implementing frames,
(iii) tracing,

(iv) improving the objéct-computation.

3.2. Variations on the Language

Although object-oriented languages have a long history, there is still no
agreement on the fundamental principles of object-oriented programming.
As it turns out the programming language community is still actively experi-
menting in order to find the “basic” features an object-oriented language
should support (Stefik and Bobrow,1986): is a distinction between classes

- 174 -

CHAPTER VII Programming in a Reflective Architecture °

and instances necessary? what form of inheritance should be provided? how
what messages look like? and what about message activation? etc.

A major advantage of a language with a reflective architecture is that it is
open-ended, i.e. that it can be adapted to user-specific needs. But even
more, a reflective architecture makes it possible to dynamically build and
change interpreters from within the language itself. It allows for example
to extend the language with meaningful constructs without stepping outside
the interpreter.

This section presents a simple example of a language variation for the
causal reasoning application. The KRS lé.nguage is designed such that the set
of instances of a particular object is nowhere represented. It is not possible
in the KRS language to ask for all objects of a specific type. Sometimes, it
is of interset however to store this information. This is for example the case
in the causal reasoning application. In the algorithm is is necessary to
apply a Filter-And-Map over all instances of the Arc object (in italics)

<Node> =

Causes:
{<Filter-And-Map-#4321> =
Filter-Over: {<Message (>> Forall of Arc)>}
Filter-When: <Message (>> (Eq (>>))
To-Node of ?0One-Element))>
Map-Action: <Message (>> From-Node of ?0One-Element)>}

Rather than changing the basis instantiation mechanism of KRS, we can
introduce a special-meta-object. The meta-object that was created for this
‘purpose is presented in figure 39. Forall-Meta is a specialisation of Meta-
Object that overrides the slot Make-Instance-Method, such that whenever an
instance of the Referent has to be created, some special actions are taken.

The new make-instance-method first creates an instance using the default
method. Then the slot First-Instance-P is asked for its filler. The definition
of this slot specifies that a slot with name "Forall” has to be created for the
Referent in case it does not exist already. The slot Forall is meant to be
filled by the set of instances of the Referent. After that, the new instance is
‘added to the Forall slot of the Referent, and finally the new instance is
returned.

- 175 -

CHAPTER VII Programming in a Reflective Architecture

<Forall-Meta> =
Type: <Meta-Object>
Make-Instance-Method:
<Let-#9876> =
Bindings: <List ((?The-Instance
(>> Eval Default-Make-Instance-Method)))>
Body:
<Action-Sequence-#2789> =
Actions:
<List (<Message (>> First-Instance-P)
<Message (>> (Add ?The-Instance)
Forall Referent)>
<Message (>> of ?The-Instance)>)>

First-Instance-P:
{<If-#6578> =
Condition: <Message (>> Not (Member {Symbol Foralll) Slots)>
Then-Part: <Message
(>> Eval (Add-Slots [List ((Forall (a Set)))1))>}

Fig. 39. A variation on the default implementationvof objects.

The meta of the Arc object inherits from this Forall-Meta object.

<Are> =
From-Node: <Node-#6478>
To-Node: <Node-#8754>
Meta: <Forall-Meta-#6543>

Consequently, whenever an instance of Arc has to be created, for example,
when evaluating the sentence
(an Arc

(From-Node (>> of Plug-l=Fires))
(To-Node (>> of Engine=Starts)))

this will be handled by the meta-object of Arc, i.e. the slot Make-Instance-
Method of Forall-Meta-#6543 will be evaluated. This method will take care
that the slot Forall of the object Arc is updated (or possibly created, if this
is the first instance). Finally the new instance is returned

<Arc-#2987>

So, when the message

(>> Forall of Arc)

- 176 -

CHAPTER VII Programming in a Reflective Architecture

is now sent, the set that is returned will contain the instance Arc-#2987.
Note that the meta-object that we have created can immediately be used in
other applications, as for example by

(defobject Person

(Meta (a Forall-Meta
(Referent (>>)))))

which creates a new object Person and gives it a Forall-Meta, or by

(>> (change-to (a Forall-Meta
(Referent (>>))) *
Meta of Person)

which alters the meta-object of the existing object Person. These make it
possible to send messages such as

(>> Cardinality Forall of Person)

which returns the number of Person objects that have been created in the
system (for * it only returns those instances that have been created after *
was evaluated).

3.3. Frames

Chapter II discussed the notion of a ”frame”, which was introduced by the
knowledge representation language tradition in order to facilitate the acquisi-
tion, maintenance and communication of knowledge structures. It showed
that in most knowledge representation languages a data-item is a complex
unit, called a frame. A frame not only contains a value, but also all sorts of
reflective data and procedures about the value.

Until now the concept of a frame lacked a theoretical foundation. Most
languages support a fixed set of facilities in a frame. Adding a new facility
means changing the interpreter itself. For example, if we want to add a
reflective facility to frames which makes it possible to specify how the
frame should be printed, we have to modify the language-interpreter such
that it actually uses this explicit print-method whenever the frame has to be
printed.

- 177 -

CHAPTER VII Programming in a Reflective Architecture

In addition they mix object-level and reflective level, which may possibly
lead to obscurities. For example, if we represent the concept of a book by
means of a frame, it may no longer be clear wether the slot with name
”Author” represents the author of the book (i.e. object data) or the author
of the frame (i.e. reflective data).

In a reflective architecture, frames are viewed as an instance of reflection.
Reflective knowledge and domain knowledge are in 3-KRS separated. The
meta-object of an object contains all the refllective data and procedures for
an object. A meta-object also “guards” and "steers” the object’s computa-
tion.

Meta-objects can be used to implement frames in an explicit way. The
library currently available in 3-KRS provides several frame-like meta-
objects. We briefly discuss here the Monitor-Meta, the Stream-Meta, the
Documentation-Meta and the Frame-Meta.

The Monitor-Meta can be used to trigger some computation when an object
is created, touched, or changed. It also makes it possible to specify a con-
straint that will be checked everytime the object is modified. There is a slot
If-Constraint-Fails which contains a progfam-object that is sent an Eval mes-
sage when the evaluation of Constraint returned False, and a slot After-
Constraint-Fails which tells whether the current computation should be pro-
ceeded or aborted after the constraint violation.

Figure 40 illustrates the Monitor-Meta. The fillers of slots represent the
default-values that are used. Monitor-Meta overrides the Get-Filler-Method,
the Inherit-Slot-Method and the Add-Slots-Method of the default meta-object.
Basically, the new definitions add some actions before and after the default
methods. These actions guarantee that the extra slots (e.g. Constraint, If-
Created, etc.) are taken into account at the appropriate moments in the
interpretation of an object.

- 178 -

CHAPTER VII Programming in a Reflective Architecture

{Monitor-Meta> =
Type: <Meta-Object>
Constraint: <{Message (>> of True)>
If-Constraint-Fails: <Form ()>
After-Constraint-Fails: <Abort>
If-Created: <Form ()>
If-Changed: <Form ()>
If-Touched: <Form ()>
Get-Filler-Method(?Slot-Name): ...
Inherit-Slot-Method(?Slot-Name): ...
Add-Slots-Method(?Slot-Description-List): ...

Fig. 40. The Monitor-Meta.

The Stream-Meta makes it possible to specify what should happen when
information is missing in an object. It provides facilities for deﬁhing the
missing information, such as a default, a form to compute it and a rule-set
to compute it. These different sources are explored in a given order when
the information is absent. Figure 41 illustrates this meta-object. Stream-Meta
overrides the Get-Filler-Method of the Meta-Object. It adds some actions
- which will compute the filler of a slot (using Default, Rules and To-
Compute) in case the slot is empty.

<Stream-Meta> =
Type: <Meta-Object>
Default: <Unknown>
Rules: <Rule-Set-#2376> =
Rules: <List ()>
To-Compute: <Form ()>
Preference-List: <List (To-Compute Rules Default)>)
What-With-Result: <No-Store>
Get-Filler-Method(?Slot-Name): ...

Fig. 41. The Stream-Meta.

The Documentation-Meta records all sorts of reflective data about an object.
It stores a documentation-string, when the object was created, by whom it
was created, whether the object is modifiable or not, whether it is showable
or not, etc. Figure 42 illustrates the Documentation-Meta. Documentation-

- 179 -

CHAPTER VII Programming in a Reflective Architecture

Meta overrides the slots Make-Instance-Method, Add-Slots-Method and
Print-Method of the Meta-Object. The new definitions of these slots take
care that slots such as When-Created and Author are filled, and that fillers
of Showable and Modifiable are taken into account.

<Documentation-Meta> =
Type: <Meta-Object>
Documentation: <String "No documentation”>
When-Created: <List-#5498>
Author: <Object-#9876>
Showable: <Yes>
Modifiable: <Yes>
Make-Instance-Method: ...
Add-Slots-Method(?Slot-Description-List): ...
Print-Method: ...

Fig. 42. The Documentation-Meta.

The Frame-Meta is a combination of the Monitor-Meta, the Stream-Meta
and the Documentation-Meta. The next example illustrates how the Frame-
Meta can be used in the causal reasoning application. Suppose we want to
record more information about the object Arc. This can be realised by giv-
ing the object Arc an instance of the Frame-Meta object. This specific
instance overrides the slots Constraint, If-Constraint-Fails and Documenta-
tion. It also overrides the Make-Instance-Method such that instances are
created the way a Forall-Meta creates them. Note that the special meta-
object will be inherited by the instances of Arc (that do not override the
Meta slot).

- 180 -

CHAPTER VII Programming in a Reflective Architecture

(defconcept Arc
(Frome-Node (a Node))
(To-Node (a Node))
(Meta
(a Frame-Meta
(Referent (>>)))))
(Constraint (>> Result of
(a Circularity-Check -
(Start-Node (>> From-Node Referent)))
(If-Constraint-Fails
(>> Print of [FString ”There is a circularity in the
network for arc “A”
(>> Referent)]))
(Documentation [String "An arc represents a causality
relation between two nodes of
a causal network”])
(Make-Instance-Method (>> Make-Instance-Method
(a Forall-Meta
(Referent (>> Referent))))))))

The slot Constraint contains a message that will be sent everytime an Arc
object is created or modified. This message checks whether the new Arc
does not make the causal network circular. If it does, i.e. if there is a
causality-path from the From-Node of the arc to the From-Node again, the
filler of Constraint will be True. Consequently, the If-Constraint-Fails slot
will be sent a message. This will cause the string

"There is a circularity in the network
for arc <Arc-#9870>”

to be printed. After that the computation will be aborted (because the inher-
ited slot After-Constraint-Fails has filler Abort).

Note that because of the special meta-object, an Arc object will be much
richer. A typical Arc object will look as follows

<Arc-#9856> =

From-Node: <Cable-1=0K>

To-Node: <Plug-1=Fires>

Meta: <Frame-Meta-#9870> =
Type: <Frame-Meta-#9807>
Referent: <{Arc-#9856>
When-Created: <List (05 18 86)>
Author: <Walter>

where

- 181 -

CHAPTER VII Programming in a Reflective Architecture

<Frame-Meta-#9807>

represents the meta-object of the object Arc.

Implementing frames by means of special meta-objects has many advantages
over the classical frame-based languages:

- It provides a more modular solution, because the reflective informa-
tion is separated from the domain-information of an object.

- It also provides a much more efficient solution. Objects that do not
need a frame do not have this overhead in structure and computation.
Classical frame-based languages store this extra information and per-
form this extra computation for every object of the language.

- The structure of a frame and frame-based reasoning is explicitly
implemented, i.e. the semantics of a frame (i.e. an object which has
as meta a Frame-Meta), become explicit and inspectable.

- Frames and frame-based reasoning are not only inspectable but also
modifiable. It is possible to create new frame-style meta-objects from
within the language itself. Other frame-based languages only provide a
fixed design for frames.

- It is possible to specify procedural attachment for every operation
that is performed on an object by the interpreter, printing, updating,
retrieving, etc. Even more, it is not only possible to specify certain
actions before and after an interpreter operation, but it is also possible
to analyse and modify these operations.

3.4. Tracing

The reflective architecture of 3-KRS provides a modular solution for imple-
menting reflective computation such as stepping and tracing of programs.
One can temporarily associate a meta-object with a program such that dur-
ing its evaluation various tracing or stepping utilities are performed. Note
that the object itself remains unchanged, only its meta-object is temporarily
specialised to a meta-object adapted to stepping or tracing.

Figure 43 presents the Tracer-Meta object. This object is designed to be
temporarily attached to a program-object. The Old-Meta slot has to be filled

- 182 -

CHAPTER VII Programming in a Reflective Architecture

with the previous meta-object of the program-object. Tracer-Meta inherits
from Program-Meta and overrides the Eval-Method. It adds some actions
before and after the evaluation of the program-object, (the evaluationitself is
still handled by the previous meta-object). These actions will take care that,
“when the program-object is sent an Eval message, some information is
printed before and after the evaluation. .

<Tracer-Meta> =
Type: <Program-Meta>
0ld-Meta: <Program-Meta-#3761>
Referent: <Program-Object-#8745>
Eval-Method:
<Action-Sequence-#7654> =
Actions:
<List
(<Message (>> Print of
[String "Starting the evaluation of: ”])
<Message (>> Snapshot Referent)>
{Let-#8760> =
Bindings:
<List ((?result (>> Eval Eval-Method 0Old-Meta)))>
Body:
<Action-Sequence-#5454> =
Actions:
<List (<Message (>> Print of
[String "The result is: "])>
<Message (>> Snapshot of ?result)>
<Message (>> of ?result)>)>

Fig. 43. A meta-object for tracing programs.

A Tracer-Meta object can be temporarily attached to any program-object.
Figure 44 presents two slots that were added to the Program-Object object
in order to facilitates this. When a Trace message is sent to an object its
meta-object is modified to a Tracer-Meta object. The slot Old-Meta of this
Tracer-Meta object is filled with the previous meta-object. When an
Untrace message is sent to a program-object, its Meta is set to its original
meta-object again.

- 183 -

CHAPTER VII Programming in a Reflective Architecture

<Program-Object> =

Trace: <Message (>> (Change-To (a Tracer-Meta
(0ld-Meta (>> Meta))))
Meta)>
Untrace: <Message (>> (Change-To (>> 0ld-Meta Meta))
Meta)>

Fig. 44. The Trace and Untrace slot of a program-object.

These slots facilitate switching the tracing of a program on and off. For
example, if we want to trace the definition of the slot Result of a Diagnosis
object, this can be realised by sending the message

(>> Trace Definition Result of Diagnosis)

This message takes care that the definition of the slot Result gets a special

meta-object (in italics)
<Diagnosis> =
Result:
{<Action-Sequence-#2987> =
Meta: <Tracer-Meta-#8765> =
0ld-Meta: <Action-Sequence-Meta-#8333>
Actions:
<List
(<Message (>> (Merge-with (>> Diagnosis-For-Causes))
Defects)>
<If-#7980> =
Condition:
<Message
(> (and (>> Empty Defects)
(>> Abnormal-P Value Problem-Node)))>
Then-Part: <Message (>> (Add (>> Problem-Node))

Defects)>
<Message (>> Defects)>)>}

Note that Action-Sequence-Meta-#8333 is the original meta-object of the
Definition of Result. When the slot Result is asked for its filler, as in

(>> Result of (a Diagnosis
(Problem-Node (>> of Engine=Starts))))

the definition of Result is evaluated. Because this definition has a special
meta-object, the slot Eval-Method of <Tracer-Meta-#8765> will handle the

- 184 -

CHAPTER VII Programming in a Reflective Architecture

evaluation. Consequently information will be printed before the result is
returned. If the tracing has to be switched off, this can be done by sending
the message

(>> Untrace Definition Result of Diagnosis)

which will reinstall the old meta-object. -

3.5. Improving the Object-Computation

Learning behavior is by nature reflective. It requires a system to be able to
reason and act upon its own object-computation. Learning can therefore
most naturally be analysed and implemented by means of a reflective archi-
tecture. Figure 45 shows how simple learning capabilities are integrated in
the causal reasoning application. The illustrated learning technique is a
simpified version of the techniques adopted in second generation expert sys-
tems (Steels and Van de Velde,1986).

The object Diagnose modifies its computation by means of reflective compu-
tation. Actually it learns heuristics which alter its future search. Every time
a Diagnosis object is asked for the filler of its Result slot, it will first try
whether the heuristics that it already learned (represented by the set in
Experienced-Defects) through its experience can explain the problem. If not,
it will explore the complete search space (as it did before) and add the
result of the diagnosis to the set of Experienced-Defects.

- 185 -

CHAPTER VII Programming in a Reflective Architecture

<Meta-For-Diagnosis> =
Type: <Meta-Object>
Referent: <Diagnosis>
Get-Filler-Method(?Slot-Name):
<If-#8760> =
Condition: <Message (>> (Eq [Symbol Result]) of ?Slot-Name)>
Then-Part:
{Let-#5454> =
Bindings:
<List ((?Successful-Heuristics (>> Shallow-Reasoning)))>
Body:
<If-#9980> =
Condition: <Message (>> Not Empty
of ?Successful-Heuristics)>
Then-Part: <{Message (>> of ?Successful-Heuristics)>
Else-Part: <Message (>> Deep-Reasoning-And-Learning)>
Else-Part: <{Message (>> Eval Default-Get-Filler-Method)>
Deep-Reasoning-and-Learning:
{<Let-#7656> =
Bindings:
<List ((?New-Diagnose
(>> Eval (Default-Get-Filler-Method ?Slot-Name))))>
Body: <Action-Sequence-#8787> =
Actions:
<List (<Message (>> (Add ?New-Diagnose)
Experienced-Defects)>
{Message (>> of ?New-Diagnose)>)>
Experienced-Defects: <Set-#9800>
Shallow-Reasoning:
{<Filter-#9998> =
Filter-Over: {<Message (>> Experienced-Defects)>}
Filter-with: <Variable ?0ne-Node-Set>
Filter-when:
<Message
(>> Not (Member-P (>> of Normal)) of
<Mapping-#7776> =
Map-Over: {<Message (>> of ?0ne-Node-Set)>}
Map-With: <Variable ?0ne-Node>
Map-Action: <Message (>> Value of ?0ne-Node)>)>}

Fig. 45. Implementing learning in a reflective architecture.

The slot Experienced-Defects represents the set of sets of defective nodes
which have already been identified as the cause of the problem in the past.
The slot Shallow-Reasoning checks whether any of the Experienced-Defects
already learned also applies to the current situation of the network. It
returns those sets of nodes in Experienced-Defects for which all member-

- 186 -

CHAPTER VII Programming in a Reflective Architecture

‘nodes are Abnormal. It computes this result by means of a Filter, which
selects those sets in Experienced-Defects for which all their element-nodes
are not Normal (which means that they are abnormal because they are.
observable). '

The slot Deep-Reasoning-And-Learning searches the filler of the slot Result
in the default way. This means that when Deep-Reasoning-And-Learning is
asked for its filler, the search that is prescribed by the Result slot of Diag-
nosis will be performed. The Result slot returns the set of defects that
causes the problem. This set is added to the slot Experienced-Defects after-
wards.

Finally the slot Get-Filler-Method specifies that (i) first the slot Shallow-
Reasoning has to be asked for its filler, (ii) is the resulting set (of sets) is
not empty, this means that the defects that cause the problem were already
encountered a previous time. Get-filler-method returns this set of defects
without having used the definition of the slot Result. (iii) If the set of suc-
cessful Experienced-Defects is empty, i.e. if none of the already learned
Experienced-Defects applies to the current situation of the network, the slot
Deep-Reasoning-And-Learning is asked for its filler. Finally, the other slots
of the object Diagnosis will be handled in the default way.

When we attach this special meta-object to the object Diagnosis, as in

(defslot Meta of Diagnosis
Meta-For-Diagnosis)
all Diagnosis objects will show a reflective behavior. Consider for example
the object
<Diagnosis-For-Broken-Engine> =
Type: <Diagnosis>
Problem-Node: <Engine=Starts>
Meta: <{Meta-For-Diagnosis-#6545>
When this object is a first time asked for the filler of the Result slot, it will
search the causal network for the defects that caused the node
Engine= Starts to be Abnormal. Suppose it returns the set

<Set (<Cable-2z0K>)>

- 187 -

CHAPTER VII Programming in a Reflective Architecture

the next time Diagnosis-For-Broken-Engine is asked for its Result slot, it
will first check whether it is not again the same Defect which caused the
problem. If yes, the Result is immediately returned (without any causal rea-
soning happening). If not, the network is searched for the defects that this
time caused the problem and these defects are added to the set -of
Experienced-Defects. -

4. Conclusions

This chapter illustrated what programming in a reflective object-oriented
language is like. It demonstrated the particular style of modular program-
ming that is supported by reflective architectures. It argued that object-
oriented reflection makes it possible to build abstractions of reflective
behavior, which can be attached to an object whenever needed. The resuit-
ing programming environment is easy to use, flexible and efficient (as far as
the reflective facilities are not exploited on a too broad scale). More exam-
ples of programming in 3-KRS can be found in (Maes,1986a),.
(Maes, 1986b) and (Maes,1987).

- 188 -

Overall Conclusion

Computational reflection is a new approach for introducing modularity in
programs. This work has made two original contributions towards a better
understanding and utilisation of this approach. The more general contribu-
tion is that it has brought some perspective to various issues in computa-
tional reflection. A definition of computational reflection was presented, the
importance of computational reflection was discussed and the design and
construction of architectures that support reflection was studied. Illustrations
were drawn from different sorts of languages including procedural, logic-
based and rule-based languages.

The more specific contribution is that it has presented the first effort to
introduce reflection in an object-oriented language. The implementation of a
concrete reflective architecture was worked out and the programming style
made possible by this architecture was extensively illustrated. The examples
showed that a lot of programming problems that were previously handled on
an ad hoc basis, can in an architecture for computational reflection be
solved more elegantly.

The conclusions that can be made are that:
- Reflection can be defined in a clear and technical way.

- Reflection occurs frequently in real world programming, particularly
in knowledge based systems.

- A reflective architecture provides better support for programming
reflective computation.

- The following are the critical issues in constructing a reflective archi-
tecture: the self-representation, programming reflective computation and

- 189 -

Overall Conclusion

the causal connection requirement.

- A reflective architecture is necessarily limited. The limitations, but
also the capabilities, are determined by choices on these critical issues.

- A reflective object-oriented architecture can be realised and has
specific advantages (e.g. grainsize, generality). '

- The major advantage of a reflective architecture is that it allows the
modular programming of reflective computation.

This work is only the beginning of a more systematic exploration of compu-
tational reflection. Some of the remaining open problems that can now be
tackled are:

- Developing representations of computational systems which are
interesting from a reflective point of view.

- How to avoid negative uses of reflection.
- Questions of efficiency.

- Building architectures which explore new areas in the design space of
reflective architectures.

- The issue of reflective overlap and its relation to the self-referential
paradoxes.

- Building libraries of reflective abstractions.

- Using reflection for building programming environments and program
explanation facilities.

We hope this work will inspire the reader to reflect upon these issues.

- 190 -

Bibliography

Aiello L. and Levi G. (1984) "The uses of Metaknowledge in AI Systems”.
In: Proceedings of The European Conference on Artificial Intelligence,
ECAI 84. Pisa, Italy.

Abelson H. and Sussman G. (1985) "Structure and Interpretation of Com-
puter Programs”. MIT-Press. Cambridge, Massachusetts.

Attardi G. and Simi M. (1984) “Meta-language and Reasoning across
Viewpoints”. In: Proceedings of The European Conference on
Artificial Intelligence, ECAI 84. Pisa, Italy.

Barr A. (1977) “Meta-knowledge and Cognition”. In: Proceedings of The
International Joint Conference on Artificial Intelligence, LICAI 77.
Cambridge, Massachusetts.

Batali J. (1982) ”Computational Introspection”. Massachusetts Institute of
Technology. Artificial Intelligence Laboratory. AI-MEMO 701. Cam-
bridge, Massachusetts.

Bobrow D. and Stefik M. (1983) "The LOOPS manual”. Technical Report
KB-VLSI-81-13. Knowledge Systems Area, Xerox Parc, Palo Alto,
California.

Bobrow D., Kahn K., Kiczales G., Masinter L., Stefik M. and Zdybel F.
(1986) "COMMONLOOPS Merging COMMON LISP and Object-
Oriented Programming”. In: Proceedings the Conference on Object-
Oriented Programming, Systems, Languages and Applications,
OOPSLA 86. Portland, Oregon. |

Bobrow D. and Winograd T. (1977) “Experience with KRL-0, one Cycle of
a Knowledge Representation Language”. In: Proceedings of The Inter-
national Joint Conference on Artificial Intelligence, IJICAI 77. Cam-
bridge, Massachusetts. ’

- 191 -

Bibliography

Bowen K. (1986) "Meta-level Techniques in Logic Programming”. In:
Proceedings of the International Conference on Artificial Intelligence
and its Applications. Singapore.

Bowen K. and Kowalski R. (1982) ”“Amalgamating Language and Meta-
language in Logic Programming”. In: Logic Programming. Eds: Clark

K. and Tarnlund S. Academic Press.

Breuker J. and Wielinga B. (1986) "Models of Expertise”. In: Proceedings
of The European Conference on Artificial Intelligence, ECAI 86.
Brighton, Great-Britain. '

Briot J.P. and Cointe P. (1986) "The ObjVLisp Model: Definition of a Uni-
form Reflexive and Extensible Object-Oriented Language”. In: Proceed-
ings of the European Conference on Artificial Intelligence, ECAI 86.
Brighton, Great Britain.

Brownstow L., Farell R., Kant E. and Martin N. (1985) "Programming
Expert System in OPS5”. Addison Wesley, Reading, Massachusetts. -

Bundy A., Byrd L., Luger G., Mellish C., Milne R., and Palmer M.
(1979) ”Solving Mechanics Problems Using Meta-Level Inference”. In:
Proceedings of The International Joint Conference on Artificial Intelli-
gence, IJCAI 79. Tokyo, Japan.

Clancey W. (1983) "The Epistemology of a Rule-Based Expert System - A
Framework for Explanation” In: Artificial Intelligence Journal. Volume
7, Number 3. North Holland. Amsterdam. The Netherlands.

Clancey W. (1986) "From Guidon to Neomycin and Heracles in Twenty
Short Lessons”. In: AI magazine. Volume VII, Number 3.

Clayton B. (1985) "ART: Programming Primer”. Inference Corporation,
Los Angeles.

Dahl O. and Nygaard K. (1966) SIMULA - An Algol-Based Simulation
Language”. In: Communications of the ACM. 9: 671-678.

Davis R. and Buchanan (1977) "Meta-level: Overview and Applications”.
In: Proceedings of The International Joint Conference on Artificial
Intelligence, IICAI 77. Cambridge, Massachusetts.

Davis R. and Buchanan (1984) ~Meta-level Knowledge”. In: Rule-Based
Expert Systems. Eds: Buchanan B. G. and Shortliffile E. H. Addison
Wesley.

- 192 -

Bibliography

Davis R. (1980) "Meta-rules: Reasoning about Control”. In: Artificial Intel-
ligence Journal. Volume 15, Number 3. North Holland. Amsterdam.
The Netherlands.

Davis R. (1980) “Content Reference: Reasoning about Rules”. In: Artificial
Intelligence Journal. Volume 15, Number 3. North Holland. Amster-
dam. The Netherlands. -

Davis R. (1982) In: "Knowledge-Based Systems in Artificial Intelligence”.
Davis R. and Lenat D. Mc Graw-Hill, New York.

Des Rivieres J. and Smith B. C. (1984) "The implementation of Procedur-
ally Reflective Languages”. XEROX Intelligent Systems Laboratory,
ISL-4. Xerox Parc, Palo Alto, California.

Des Rivieres J. (1987) “Control-Related Facilities in LISP. In: Meta-level
Architectures and Reflection. Eds: Pattie Maes and Daniele Nardi.
North-Holland, Amsterdam, August 1987.

Doyle J. (1980) "A Model for Deliberation, Action and Introspection”.
Massachusetts Institute of Technology. Artificial Intelligence Labora-
tory. Technical Report 581. Cambridge, Massachusetts.

Ferber J. (1986) “Reflections in Object-Oriented Programming”. In:
Proceedings of the International Workshop on Expert Systems and
Their Applications, 1986. Avignon, France.

Friedman D. and Wand M. (1984) ”Reification: Reflection without meta-
physics”. In: Communications of the ACM. Volume 8.

Gallaire H. and Lasserre C. (1982) "A Control Meta-Language for Logic
Programming”. In: Logic Programming. Eds: Clark K. and Tarnlund
S. Academic Press.

Genesereth M. (1983) "An Overview of Meta-Level Architecture”. In:
Proceedings of the National Conference on Artificial Intelligence,
AAALS3. |

Genesereth M., Greiner R. and Smith P (1980) "MRS Manual”. Stanford
Heuristic Programming Project. Memo HPP-80-24, Stanford Univer-
sity, Stanford, California.

Genesereth M. (1987) “Prescriptive Introspection”. In: Meta-Level Archi-
tectures and Reflection. Eds: P. Maes and D. Nardi. North-Holland,
Amsterdam, August 1987.

- 193 -

Bibliography

Genesereth M. and Smith D. (1981) "Meta-level Architecture”. Stanford
Heuristic Programming Project, Memo HPP-81-6. Stanford University,
Stanford, California. '

Goldberg A. and Kay A. (1976) "SMALLTALK-72 Instruction Manual”.
Technical Report SSL-76-6. Xerox Parc, Palo Alto, California.)

Goldberg A. and Robson D. (1983) ”Smalltalk-80: The Language and its
Implementation”. Addison-Wesley. Reading, Massachusetts.

Greiner R. (1980) "RLL-1: A Representation Language Language”. Stan-
ford Heuristic Programming Project. HPP-80-9. Stanford University,
Stanford, California.

Halpern J. (1986) Ed. "Theoretical Aspects of Reasoning about Knowledge.
Proceedings of the 1986 Conference. Morgan Kaufmann.

Hayes P. (1974) "The Language GOLUX”. University of Essex Report.
Essex, Great-Britain.

Hayes-Roth et al. (1983) Eds. "Building Expert Systems”. Addison Wesley.

Hofstadter D. (1981) ”Meta-magical Themas”. In: Scientific American.
Number 244, 3.

Hunter G. (1973) "Metalogic: An introduction to the Metatheory of Stan-
dard First Order Logic”. University of California Press, Berkeley.
IntelliCorp TM. (1985) "KEE TM. Software Development System. User’s
Manual”. SEE Version 2.0. (Symbolics, LMI, Explorer), IntelliCorp.

Jansweijer W., Elshout J. and Wielinga B. (1986) "The Expertise of Novice
Problem Solvers”. In: Proceedings of The European Conference on
Artificial Intelligence, ECAI 1986. Brighton. Great-Britain.

Jonckers V. (1987) "A Framework for Modeling Programming
Knowledge”. Ph.D. Thesis. VUB AI-LAB. Brussels, Belgium.

Konolige K. (1985) A computational Theory of Belief Introspection”. In:
Proceedings of the International Joint Conference on Artificial Intelli-
gence, IICAI 85. Los Angeles, California.

Laird J., Rosenbloom P. and Newell A. (1984) "Towards Chunking as a

General Learning Mechanism”. In: Proceedings of the National
Conference on Atrtificial Intelligence, AAAI 84. Austin, Texas.

- 194 -

Bibliography

Laird J., Rosenbloom P. and Newell A. (1986) "Chunking in SOAR: The
Anatomy of a General Learning Mechanism”. In: Machine Intelligence.
Volume 1. Number 1. Kluwer Academic Publishers.

Lieberman H. (1981) "A Preview of ACT1”. Massachusetts Institute of
Technology. Laboratory for Artificial Intelligence. AI-MEMO 625.
Cambridge, Massachusetts.

Maes P. (1986a) "Introspection in Knowledge Representation”. Proceedings
of the European Conference on Artificial Intelligence, ECAI 86. Brigh-
ton, Great-Britain.

Maes P. (1986b) “Reflection in an Object-Oriented Language”. Proceedings
of the SPL-Insight workshop. Edinburgh, August 1986.

Maes P. (1987) "Object-Oriented Reflection” In: Meta-Level Architectures
and Reflection. Eds: P. Maes and D. Nardi. North-Holland, Amster-
dam, August 1987.

Maes P. and Nardi D. (1987) "Meta-Level Architectures and Reflection”.
North-Holland, Amsterdam, August 1987.

Minsky M. (1974) "A Framework for Representing Knowledge”. Mas-
sachusetts Institute of Technology, Artificial Intelligence Laboratory.
AI-MEMO 306. Cambridge, Massachusetts.

Mitchell T. (1983) "Learning and Problem Solving” In: Proceedings of The
International Joint Conference on Artificial Intelligence, LICAI 83,
Karlsruhe. West Germany.

Moore R. (1977) "Reasoning about Knowledge and Action”. Proceedings of
The International Joint Conference on Artificial Intelligence, IJCAI 77.

Nardi D. (1986) ”Evaluation and Reflection in F.O.L.” In: Meta-level
Architectures and Reflection. Eds: P. Maes and D. Nardi. North-
Holland, Amsterdam, August 1987.

O’Shea T. (1986) "Why Object-Oriented programming Systems Are Hard to
Learn”. In: Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA 86.
Portland, Oregon.

Perlis D. (1985) ~Languages with Self-Reference 1: Foundations”. In:
Atrtificial Intelligence Journal Volume 25, Number 3. North Holland.
Amsterdam. The Netherlands.

- 195 -

Bibliography

Perlis D. (1987) "Overview of Meta in Logic” In: Meta-level Architectures
and Reflection. Eds: P. Maes and D. Nardi. North-Holland, Amster-
dam, August 1987.

Roberts and Goldstein (1977) "The FRL Primer”. Massachusetts Institute
of Technology, Artificial Intelligence Laboratory. AI-MEMO 408.
Cambridge, Massachusetts. :

Shapiro E. (1983) "Algorithm Debugging”. MIT Press. Cambridge, Mas-
sachusetts.

Silver B. (1986) ”Meta-level inference.” North Holland Publishing.
Amsterdam, The Netherlands.

Smith B. (1986) “Varieties of Self-Reference” In: Theoretical Aspects of
Reasoning about Knowledge. Proceedings of the 1986 Conference.
Ed: Halpern J. Morgan Kaufmann.

Smith B. (1982) “Reflection and Semantics in a Procedural Language”.
Massachusetts Institute of Technology. Laboratory for Computer Sci-
ence. Technical Report 272. Cambridge, Massachusetts.

Smith B. and Des Rivieres J. (1984) “Interim 3-LISP Reference Manual”.
XEROX Intelligent Systems Laboratory ISL-1. Xerox Parc, Palo Alto,
California.

Smith B. and Hewitt C. (1975) "A PLASMA Primer (draft)”. Mas-
sachusetts Institute of Technology. Artificial Intelligence Laboratory.
Cainbridge, Massachusetts.

Steele G. and Sussman G. (1978) "The Art of the Interpreter”. Mas-
sachusetts Institute of Technology, Artificial Intelligence Laboratory.
AI-MEMO 453. Cambridge, Massachusetts.

Steele G. (1984) "Common-LISP: the Language”. Digital Press.

Steels L. (1986) "The KRS Concept System”. Vrije Universiteit Brussel.
Artificial Intelligence Laboratory. Technical Report 86-1. Brussels, Bel-
gium.

Steels L. (1986b) "The Explicit Representation of Meaning”. In: Meta-level
Architectures and Reflection. Eds: P. Maes and D. Nardi. North-
Holland, Amsterdam, August 1987.

- 196 -

Bibliography

Steels L. and Van de Velde W. (1985) "Learning in Second Generation
Expert Systems”. In: Knowledge Based Problem Solving. Ed: Kowalic.
Prentice Hall, New Jersey. |

Stefik M. and Bobrow D. (1986) "Object-Oriented Programming: Themes
and Variations”. In: Al magazine. Volume 6, Number 4.

Stefik M. "Planning and Meta-planning (MOLGEN: Part 2)". In: Artificial
Intelligence Journal. Volume 16, Number 2. North Holland. Amster-
dam. The Netherlands.

Sterling L. (1984) “Logical Levels of Problem Solving”. In: Proceedings
of the Second International Logic Programming Conference. Uppsala.
Sweden.

Sussman G. (1982) "Implementing LISP”. In: Functional Programming and
its Applications, an Advanced Course. Eds: J. Darlington, P. Hender-
son and D.A. Turner. Cambridge University Press, London.

Van de Velde W. (1986) "Learning Heuristics in Second Generation Expert
Systems”. In: Proceedings of the International Workshop on Expert
Systems and Their Applications, 1986. Avignon, France.

Van Harmelen F. (1986) "Improving the Efficiency of Meta-level Reason-
ing”. Proposal for a Ph.D. thesis. July 1986. Edinburgh University.

Van Marcke K. (1986) A Parallel Algorithm for Consistency Maintenance
in Knowledge Representation”. In: Proceedings of the European
Conference on Artificial Intelligence, ECAI 86. Brighton, Great-
Britain.

Van Marcke K. (1987) “Thesis Proposal”. Vrije Universiteit Brussel.
Artificial Intelligence Laboratory. Internal Report. Brussels, Belgium. |

Van Melle W. (1980) “System Aids in Constructing Consultation Pro-
grams”. UMI Research Press, Ann Harbor, Michigan.

Wand M. and Friedman D. (1986) "The Mistery of the Tower Revealed: A
Non-Reflective Description of the Reflective Tower”. In: Proceedings
of the 1986 ACM Conference on LISP and Functional Programming.
Cambridge, Massachusetts.

Weinreb D. and Moon D. (1981) "Lisp Machine Manual”. Symbolics Inc.
Cambridge, Massachusetts.

- 197 -

Bibliography

Weyhrauch R. (1980) '”Prolegomena to a Theory of Mechanized Formal
Reasoning”. In: Artificial Intelligence Journal. Volume 13, Number
1,2. North Holland. Amsterdam. The Netherlands.

- 198 -

