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Introduction

• By using tools that become vital to the success of a project, its

history is being recorded insoftware trails:

– Configuration management systems (including version control

and defect management systems)

– Mailing lists

– ChangeLogs
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Evolution

• The initial objective of this research was to try to recover the
evolution of Evolution using its software trails

– It is theOutlook of the GNOME project

– Almost 4 years of development

– It is becoming one ofthe free mail clients

– Unlike many other OSS projects

∗ It started as agroup project, with its software requirements
drawn before the code was written

∗ It has been driven by one company: Ximian (recently bought
by Novell)
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Methodology

• Define a schema that represents and correlates software trails

• Gather the trails:

– Recover the trails and map them to the schema

– Trails are usually available as logs and history reports

• Extend the information:

– Combine the available information, creating new facts

– It might require some heuristics

• Analyze:

– Using query languages and visualization tools

– It is a time consuming task

4



Is this info useful?

• The most important question:can we trust this information?

• The answer:it depends

• Some projects establish clear guidelines –and follow them–on

how to use these tools.

– IBM uses a Configuration Management System that tracks

several trails

– Many free/Open Source software projects use a toolkit based

on CVS, Bugzilla, mailman, following a set of de-facto

standards
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Evolution Trails

• This papers uses info from

– ChangeLogs: “explain how earlier versions of software were
different from the current version.”

– CVS: Most popular version control system

∗ Keeps track of who modifies what, and when, supports
branching

∗ It does not support transaction-oriented operations

– Mailing lists

∗ For developers and for users

– Source code releases

• In several cases, it was necessary to reverse engineer theirformats
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The Challenge of Extending the Trails

• It is difficult to correlateraw trails

• For example, identifying developers:

– CVS uses anid to record the developer

– The ChangeLog lists his/her preferred email address

– The mailing list might list his/her spam, or commonly used
address

– Some changes come from non-cvs developers and they are
recorded in the ChangeLogs

• Nonetheless, they provide a gold mine of information to follow the
evolution of a project
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Milestones of Evolution

Milestones Date

Coding of camel starts 1999-01-01

Evolution starts 1999-04-16

Ximian is established 1999-10-01

Version 0.0 2000-05-10

Version 1.0 2001-11-21

Version 1.1.1 2002-09-09

Version 1.2.0 2002-11-07

LinuxWorld “Best

Front Office Solution” award 2003-01-23

Version 1.3.1 2003-02-28

8



Size of the Distributions
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Size of the Distributions...
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How is the code base changing?
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And the developers?
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Change in code base vs. contributors activity
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How many contributors?
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Revisions per type of file

Extension Prop. Accum.
Number of files
in CVS

.c 0.41 0.41 1195

ChangeLog 0.22 0.62 43

.h 0.13 0.75 1063

.am 0.05 0.81 174

.po 0.04 0.85 71
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Most files are rarely changed
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Modules
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Evolution of the size of the modules

 0

 20

 40

 60

 80

 100

00/07 01/01 01/07 02/01 02/07 03/01

LO
C

S

Date

camel
calendar

mail
addressbook

shell
libical

widgets
Major releases

18



Changes are usually localized in a given
module
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Developers tend to concentrate in one module

Mod Developers Id Prop Acc
shell 17 ettore 0.65 0.65

danw 0.11 0.76
toshok 0.05 0.81
clahey 0.04 0.84
zucchi 0.03 0.87

mail 19 fejj 0.52 0.52
rodo 0.13 0.65
zucchi 0.12 0.77
ettore 0.07 0.83
danw 0.06 0.89

calendar 17 jpr 0.40 0.40
rodrigo 0.32 0.72
ettore 0.07 0.79
danw 0.06 0.85
damon 0.03 0.88
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Observations

• One software trail does not tell the whole story

• Schema evolution

• Informal structure in trail

• Information overload and the need for analysis and visualization

tools.

• Quality of software trails.
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Quality of Trails

• Some projects keep better trails than others.

• One hypothesis: it is a measure of:

– The number of developers,

– their dislocation,

– and the maturity of the project.
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Conclusions and Future Work

• Extracting and correlating software trails can tell a detailed story

of how a software project has evolved

• But it comes at a cost: too much information to analyze

• It is needed:

– Creating of standardized schemas

– More tools to recover and enhance the trails

– Heuristics to automatically discover “interesting” facts

– Metrics to quantify trails
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