
 Supporting Software Maintenance and Evolution
 with Intentional source-code Views1

 Kim Mens and Bernard Poll

 Département d’Ingénierie Informatique, Université catholique de Louvain
 Place Sainte-Barbe 2, B-1348 Louvain-la-Neuve, Belgium

 E-mail: {Kim.Mens@, poll@student.}info.ucl.ac.be

Abstract. We propose the abstraction of intentional source-code views to codify essential information,
about the architecture and implementation of a software system, that an engineer needs to better
understand, maintain and evolve the system. We report on some experiments that investigate the
usefulness of intentional source-code views in a variety of software maintenance, evolution and
reengineering tasks, and present the results of these experiments in a pattern-like format.

1. Introduction

“A program that is used in a real world environment necessarily must change or become less useful in that
environment.” [Leh84]

Software systems are constantly being enhanced and adapted to accommodate to changes in their environment.
Several studies have proven software maintenance and evolution to account for a large part of the total software
life cycle cost, making software maintainability a major commercial and economic factor to deal with in the
development of a software system.

Our research hypothesis is that many software maintenance and evolution problems are directly or indirectly
caused by a documentation problem. Software documentation most often does not capture all information a
software engineer needs to understand, maintain or evolve a software system: important implementation choices
that were made; the original programmers’ intentions; how the code maps to higher-level architectural
descriptions; interactions between methods, classes and modules; specifications of each piece of code; and so on.

A lot of this information remains hidden in the engineers’ minds. Some of it may be recovered by analysing the
code and its comments, but often it cannot be retrieved at all. In addition, browsing the code to understand its
underlying intentions or to reverse engineer its effective architecture is a non-trivial and time consuming process
and generally produces an incomplete mental picture of the software only. When evolving the software, such an
incomplete understanding of a software system can lead an engineer to unnecessarily increase its complexity, or
to introduce undesired and erroneous inconsistencies.

In [MMW02a] we introduced the abstraction of intentional source-code views as a way to ”increase our ability
to understand, modularise and browse the source code by grouping together source-code entities that address
the same concern.” We claim that this abstraction can be used to capture much of the information about a
software system’s architecture and implementation that an engineer needs to better maintain and evolve a
software system. This is mainly because the views are defined intentionally, i.e. as a logic query on the source
code, rather than by explicitly enumerating all source-code entities involved. As such, an intentional source-code
view’s description typically does not need to be changed when the source code evolves. In addition, extensional
consistency of such views, i.e. the fact that two alternative intentional descriptions of the same view should
always produce exactly the same extension set, is proposed as a way of maintaining source code consistency.

We conducted some preliminary experiments to investigate how intentional source-code views can codify
information that is essential to software maintainers and evolvers and to document, in a pattern-like format, how
they can use this information in a variety of software maintenance, evolution and reengineering tasks. We will
present two evolution-related usage patterns: enforcing coding conventions and checking design consistency.

This research is a step towards developing a technique and tool that, without drastically changing the way in
which software engineers work, can:

- help engineers understand a software’s architecture;
- contribute to keep an up-to-date software documentation;
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- improve developers’ and maintainers’ efficiency;
- help engineers take implementation choices;
- help engineers to conform to an established architecture;
- avoid an evolving software’s architecture to become unnecessarily complex;
- help developers and maintainers following coding conventions and standards.

2. Intentional Views

Before continuing, we explain the essence of the intentional view model. For more details, see [MMW02a,
MPG03].

An intentional source-code view is a set of related (static2) program entities (such as classes, instance
variables, methods, method statements) that is specified by one or more alternative intentional
descriptions (one of which is the ‘default’ intentional description). Each intentional description is an
executable specification of the contained elements in the view. Such a description reflects the
commonalities of the contained elements in the view, and as such, codifies a certain intention that is
common to all these elements. We require that all alternative descriptions of a given view are
‘extensionally consistent’, in other words, after computation they should yield the same set of elements.

The above definition highlights some key elements that turn intentional views into more than mere ‘sets’ of
program entities:

Intentional. The sets are not defined by enumeration but are computed from a specification. This is useful when
the software is evolved as the sets are ‘updated’ automatically: it suffices to recompute the specification.
Intentional descriptions are also more understandable and concise.

Declarative. Preferably, to make them easier to read and understand, the executable specifications should be
written in a declarative language. This is important as they codify essential knowledge on the programmers’
assumptions and intentions.

Alternative descriptions. Some descriptions are more intuitive; others are more efficient to compute. As such it
is useful to specify both. Also, sometimes there are different natural ways in which to codify a view,
depending on the perspective taken.

Extensional consistency. The consistency constraint between different alternative descriptions allows us to
assess the correctness of the view definition, as well as the consistency of the actual source code (e.g.,
consistent usage of certain conventions and assumptions in the source code).

Deviations. Although not mentioned in the definition, for each alternative we can specify positive and negative
‘deviations’, i.e. elements that do not satisfy the specification of the alternative but that should be included,
and elements that do satisfy the specification but should not be included. These deviations indicate
‘exceptions to the general rule’ made by programmers. They also help in defining intentional views
incrementally: you can start out with a rough rule that has some exceptions and refine it later to make it
more precise.

Relations. By relating intentional views we codify high-level structural knowledge about the source code.

Negative information. By using logic negation in our intentional descriptions we can codify negative
information too (all program entities that do not have a certain desired property), which is often very
powerful.

Intentional views can help an evolver because they allow him to ensure that the code — either before or after an
evolution step — has a certain structure or satisfies certain conventions. “Negative” views of all program entities
that do not have a certain desired structure or do not satisfy a certain convention, are also useful for evolution
purposes, as they group all entities that need to be modified (so that they do have the desired structure or satisfy
the desired convention).

To help a software engineer define intentional views, we implemented a prototype tool called the Intentional
View Browser [MPG03]. This tool supports the declaration of intentional views on top of the VisualWorks
Smalltalk development environment. The Intentional View Browser also verifies extensional consistency.

3. Logic metaprogramming

The computational medium in which we specify our intentional source-code views is SOUL [MMW02b], a
Prolog-like logic programming language. But SOUL is more than a mere logic programming language: it is a
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metaprogramming language, which enables logic reasoning about an underlying base language.3 In our case, this
base language is the object-oriented programming language Smalltalk. In fact, SOUL was implemented entirely
in Smalltalk, which made it quite easy to make it reason about Smalltalk (thanks to Smalltalk’s strong reflective
capabilities).

As a concrete example of an intentional source-code view (and of the capacity of SOUL to reason about its own
underlying Smalltalk implementation), consider the definition of a view soulLogicTestMethods. When
implementing the SOUL logic libraries, we followed a kind of unit testing approach where every logic predicate
was tested separately. The view soulLogicTestMethods groups all methods that implement tests for SOUL logic
predicates.

For readability purposes, we edited the logic declarations of our intentional views somewhat so that they
resemble Prolog syntax more closely (except that Soul logic variables start with a question mark); we do assume
that the reader is somewhat familiar with Prolog syntax.

view(soulLogicTestMethods,[extractedFromClasses,withSamePrefix]).

viewComment(soulLogicTestMethods,'This intentional view contains all methods that implement tests for logic
predicates.').

default(soulLogicTestMethods,withSamePrefix).

The above facts declare an intentional view soulLogicTestMethods with two alternatives extractedFromClasses
and withSamePrefix, of which the latter is considered the default alternative. The alternative
extractedFromClasses codifies the intention that a method is a logic test method if it belongs to a class that
implements tests for logic predicates (which is verified by an auxiliary predicate soulLogicTestClass). An
exception is made for private methods, which are only auxiliary methods that are used by the actual logic test
methods.

intention(soulLogicTestMethods,extractedFromClasses,?MethodDefinition) :-
soulLogicTestClass(?Class),
classImplements(?Class,?MethodName),
not(privateMethod(?Class,?MethodName)),
methodDefinition(?Class,?MethodName,?MethodDefinition).

Now suppose that an auxiliary method exists that was not put in the private protocol, where it belongs. In that
case, we can still exclude it to keep the alternative intentional descriptions consistent. Of course, this is a
temporary fix and we should require the developer in charge to fix the error as soon as possible. E.g.,

exclude(soulLogicTestMethods,extractedFromClasses,?MethodDefinition) :-
methodDefinition(Soul.SoulTests.ErrorHandlingTest,inspectorClassUsedFor:,
                ?MethodDefinition).

The other alternative withSamePrefix codifies the intention that all methods that implement tests for logic
predicates have the same prefix4 'test' and belong to a subclass of a class LogicTests:

intention(soulLogicTestMethods,withSamePrefix,?MethodDefinition) :-
hierarchy(Soul.SoulTests.LogicTests,?Class),
classImplements(?Class,?MethodName),
startsWith(?MethodName,test),
methodDefinition(?Class,?MethodName,?MethodDefinition).

4. Potential usage patterns

Rather than just enumerating the results of our experiments, we decided to present them in a pattern-like format,
thus broadening their scope of usability. The pattern style allows us to abstract away from the particular logic
metaprogramming approach we used to codify various design issues. Being purpose-oriented, this kind of
presentation enables an engineer to quickly identify what results he could reuse to aid in solving a relevant
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maintenance or evolution problem he is faced with. Each of our potential usage patterns consists of a name, a
purpose indicating what task the intentional view was used for, a rationale explaining why this task is a relevant
one, a solution describing how exactly we can use intentional views to help in achieving that task and a concrete
example of such a solution.

We prefer to talk about our usage patterns as “potential” patterns because, as most of our patterns have just been
discovered, they are still immature in the sense that we have not yet been able to check their validity on other
case studies. We have also not yet elaborated other important aspects of these patterns such as possible
alternative solutions, when (not) to apply the pattern and relationships among patterns. Although not elaborated
upon in this paper, we are also planning to define a pattern language describing how these usage patterns coexist
and interact. Such a pattern language can help an engineer to identify the set of patterns that address his concerns
and to find out how to combine them to aid him in his software maintenance and evolution tasks.

We are currently using intentional views to maintain and evolve two applications. At this stage, we have defined
six potential usage patterns, that each solve a relevant maintenance problem. Due to space limitations, we only
show two of them, illustrated by a single example each. For more examples and patterns, see [MPG03].

Usage pattern 1: Enforcing coding conventions

Purpose. Verify the consistent use of certain coding conventions throughout the system.

Rationale. Programmers (and Smalltalk programmers in particular) use lots of coding conventions and ‘best
practice patterns’ to codify their intentions [Bec97]. Unfortunately, consistent usage of such conventions and
patterns strongly depends on the programmers’ discipline, as it is difficult to verify that the conventions are
actually respected throughout the software system (and remain respected after having evolved the software).

Example. Suppose we want to enforce the convention that every mutator method assigns a value to the
corresponding instance variable. We can do this by defining an intentional view mutatorMethods with two
alternatives. The extensional consistency constraint between the two alternatives takes care of the rest.

The first alternative codifies the Smalltalk naming convention that mutator methods always have the name of the
instance variable that they modify, followed by a colon5.

intention(mutatorMethods,byName,?M) :-
   mutatorMethod(?M,?).

mutatorMethod(?M,?V) :-
   instVar(?C,?V),
   equals(?N,{?V:}),
   classImplementsMethodNamed(?C,?N,?M).

The second alternative refines the first one with an extra clause which states that the method ?M actually assigns
some value to the variable ?V. The predicate methodWithAssignment will traverse the entire method parse tree
of the mutator method to search for such an assignment.

intention(mutatorMethods,byBody,?M) :-
   mutatorMethod(?M,?V),
   methodWithAssignment(?M,?V,?).

Extensional consistency of these two alternatives implies that all methods that follow the naming convention of
mutator methods will actually assign the appropriate variable as well.

Solution. The extensional consistency constraint between the different alternative descriptions of an intentional
view can be used to implicitly express an essential convention or assumption in the source code.

Enforcing such a convention will make the software cleaner and easier to understand, and thus easier to evolve.
We can also use the extensional consistency constraint for evolution purposes. When the constraint is not
satisfied, this implies that some entities do satisfy one alternative intentional description but not another. For
example, it may be the case that we have a method with a mutator name, but which does not assign any value, or
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vice versa. Once we have discovered these faulty entities, it is easy to modify them so that the extensional
consistency constraint will be satisfied.

Usage pattern 2: Checking Design Consistency

Purpose. Verify consistency of the system's source code with a higher-level design diagram.

Rationale. Without a means of ensuring that the source code of a software system is, and remains, consistent
with a higher-level design diagram, the design diagram soon becomes outdated and looses its relevance as high-
level documentation of the source code.

Solution. To verify whether every class in, for example, a UML class diagram corresponds to one in the source
code and vice versa, we declare one intentional view with two alternative definitions. The first alternative groups
all classes that have been defined in the diagram6, the other groups all existing classes in (the relevant part of)
the implementation. Inconsistencies may arise either when adding a class to the source code without updating the
diagram or when evolving the diagram without updating the code. These inconsistencies will be detected
automatically when verifying extensional consistency of the intentional view. The same applies for methods,
instance variables and class variables. Due to space limitations, we only show the view defined for classes. Note
that the inImplementation alternative is based on the convention that all classes of the diagram are implemented
in the same namespace, but can be adapted easily when another convention would be used.

view(classesOfDiagram,[inDiagram,inImplementation]).

intention(classesOfDiagram,inDiagram,?ClassName) :-
umlClass(Diagram,?ClassName,?,?,?).

intention(classesOfDiagram,inImplementation,?ClassName) :-
namespaceForDiagram(?Namespace,Diagram),
classNameInNamespace(?,?ClassName,?Namespace).

Example. We recently built a small proof-of-concept application for computing the invoices of a mobile phone
operator. The source code for that application was partially generated from a UML class diagram description.
The above solution allowed us to verify easily when the design diagram was out of sync with the implementation
and when either (part of) the code needed to be regenerated, or the diagram needed to be updated.

Again this pattern can be used for evolution purposes, to modify the source code and/or diagram so that they
become consistent (in case the existential consistency check would fail).

5. Discussion

In spite of the high declarative and intuitive nature of intentional views, one might argue that it still requires an
above-average engineer to define intentional views. Therefore, we are currently investigating how to facilitate or
automate the task of defining intentional views. This is also a crucial issue in order for the technique of
intentional source-code views to be scalable and applicable in the context of large industrial software.

One possibility is to offer a simpler, decidable, but maybe less expressive, language in which to define the
intentional views (as opposed to using a full-fledged logic programming language). Another way is to add tool
support that offers some predefined templates for the most common kinds of intentional views, which only need
to be parameterized with some concrete details. A third solution is to offer a tool that helps us in semi-
automatically extracting intentional views from the source code or from an enumerated set of elements (or
“extensional view”). For example, some of our colleagues are investigating the use of inductive logic reasoning
to derive the logic rules describing an intentional view from a set of examples contained in an extensional view
[TBKG03]. Of course, the question then remains how to come up with these extensional views. We are currently
conducting some experiments to use the technique of conceptual analysis to automatically extract interesting
extensional views from source code.

6. Related Work

Existing software engineering tools and formalisms provide only small, restricted sets of decomposition and
composition mechanisms, that typically support only a single, “dominant” means of separating the concerns of
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importance in a software system. Tarr et al. [TOHJ99] propose Hyperslices and Hypermodules as a new
paradigm for modeling and implementing software artifacts in a way that keeps separate all concerns of
importance. In their approach, a program is defined in an N-dimensional space where each dimension is a
different concern. e.g. objects, functionalities, properties. Each hyperslice defines a decomposition (a
modularization) of the program according to one of its dimensions, considering methods as primitive, indivisible
units.

The work on intentional source-code views is clearly similar in spirit to Tarr et al’s technique of multi-
dimensional separation of concerns [Men02], as it also acknowledges that it is essential to be able to separate the
different concerns of importance. However, the abstraction of intentional source-code views is not targeted at
modeling and implementing software systems but rather at understanding, maintaining and evolving software
systems. In addition, as opposed to Tarr et al. we do not propose a new paradigm, but propose our approach as a
technique that aids software engineers in their maintenance and evolution tasks, without drastically changing the
way in which they work.

The same remark can be made about the relationship between Intentional Programming [CE2000, Chapter 11]
and the work on intentional source-code views.

7. Conclusion

Evolving and maintaining software requires adequate documentation of its implementation. However, due to the
software’s constant evolution, this documentation is often absent, incomplete, or not synchronized with the
implementation. We proposed intentional source-code views as an “active” documentation technique to alleviate
this problem: intentional source-code views are defined as a logic query on the program and are thus defined
intentionally rather than enumerating the collection of source-code entities involved. In this way, intentional
source-code views provide support for software evolution: when the source code changes the intentional source-
code views remain.

Although creating such views is not a trivial task, the support they may offer to future software maintainers may
very well be worth the initial investment. Because the different ways in which intentional views may aid
software maintainers and evolvers are documented in the form of usage patterns, an engineer will be able to
quickly identify what particular pattern is useful for the particular maintenance or evolution task at hand. Two
examples of how intentional source-code views can be used to support software evolution were presented:
enforcing coding conventions and checking design consistency.

8. References

[Leh84] M. M. Lehman. Program evolution. Information Processing & Management, 20(1-2):19-36, 1984.

[Bec97] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools and
Applications. Addison-Wesley, 2000.

[DDM03] Serge Demeyer, Stéphane Ducasse and Kim mens (editors). WOOR’03 – Proceedings of the 4th

International Workshop on Object-Oriented Reengineering 2003. Published as Technical Report
2003-07 by the Department of Mathematics & Computer Science, Universiteit Antwerpen.

[Men02] Kim Mens. Multiple Cross-Cutting Architectural Views. Position paper submitted to the Second
Workshop on Multi-Dimensional Separation of Concerns in Software Engineering (ICSE 2000).

[MMW02a] Kim Mens, Tom Mens, Michel Wermelinger. Maintaining software through intentional source-
code views, In Proceedings of SEKE 2002, pp. 289–296. ACM, 2002.

[MMW02b] Kim Mens, Isabel Michiels, Roel Wuyts. Supporting software development through declaratively
codified programming patterns. Journal on Expert Systems with Applications, 23(4):405–431.
Elsevier, November 2002.

[MPG03] Kim Mens, Bernard Poll, Sebastián González. Using intentional source-code views to aid software
maintenance. In Proceedings of ICSM 2003. IEEE, 2003. (To be published.)

[TBKG03] Tom Tourwé, Johan Brichau, Andy Kellens and Kris Gijbels. Induced intentional software views.
Paper submitted to ESUG’03.

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sutton Jr. N degrees of
separation: Multi-dimensional separation of concerns. In Proceedings of ICSE 1999, pages
107–119, 1999.


