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Overview

 Relation to “Software evolution and AOP”
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 Conclusion

Research idea :
Mining for croscutting concerns
using Formal Concept Analysis
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Software Evolution and
Aspect-Oriented Programming
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Formal Concept Analysis (FCA)

 Starts from
– a set of elements
– a set of properties of those elements

 Determines concepts
– Maximal groups of elements and properties
– Group:

• Every element of the concept has those properties
• Every property of the concept holds for those elements

– Maximal
• No other element (outside the concept) has those same properties
• No other property (outside the concept) is shared by all elements
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object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Elements and Properties
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Concept Lattice
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Mining for crosscutting concerns
with formal concept analysis
 First Step

– Use substrings of class, method & parameter names to group
related source code elements

– Relies on coding conventions
– Assumes that elements corresponding to a same concern will

have a similar name
 Next step

– Use generic parse trees to group source code that implements
similar behaviour

– Looks for recurring patterns in the source code
– Similar to clone detection, but more advanced
– Assumes that elements corresponding to a same concern will

have similar code
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Substring Concepts

 Elements : classes, methods, parameters
 Properties : substrings of classes, methods, …
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Parse tree Concepts

 Elements : methods
 Properties : generic parse tree elements
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Overall approach

1. Generate elements & properties for FCA algorithm
 Pre-filter irrelevant ones

2. Concept Analysis
 Find relevant groupings of elements in source code

3. Filtering
 Remove irrelevant concepts (false positives, noise, useless, …)

4. Classification
 Classify results according to relevance for user

5. Analyse unclassified concepts
 Manually analyse concepts that were not classified automatically

6. Completion of concepts
 Some concepts are relevant

but need to be completed to represent reality correctly
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Our Conceptual Code Mining Tool
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The substring experiment
1. Generate elements & properties
 We want to group elements that share a substring
 Problem :

– “Having a substring in common” is binary
– FCA properties are unary

• Does an element satisfy the property or not?

 Solution :
– Every substring corresponds to an FCA property

• Does an element have this substring in its name?

– Generate relevant substrings
• Based on where uppercases occur in an element’s name

– QuotedCodeConstant → { quoted, code, constant }

• Filter substrings that produce too much noise
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The substring experiment
2. Concept Analysis - a concept (1)
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…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:
inEnv: myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWith: inEnv:
myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

The substring experiment
2. Concept Analysis - a concept (2)
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The substring experiment
2. Concept Analysis - some numbers

 Remarks :
– Without filtering
–  properties  <  elements  is a good sign
– Time to compute = a few seconds
– Lots of noise and some false positives

• Better filtering & classification needed
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The substring experiment
3. Filtering
 Irrelevant substrings are already filtered

– with little meaning : “do”, “with”, “for”, “from”, “the”, “ifTrue”, …
– too small (< 3 chars)
– ignore plurals, uppercase and colons

 More filtering needed
– Drop top & bottom concept when empty
– Drop concepts with only one element
– Recombine substrings belonging together
– Require some minimal coverage of element name by properties
– Concepts higher in the lattice (more properties) may be more relevant
– Avoid redundancy in discovered concepts

• Make better use of the lattice structure (Now it is “flattened”)

 Ongoing work
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The substring experiment
4. Classification
 In single class

– Accessors
– Chained messages
– Delegating methods
– Similar signatures

 Too few elements
 In same hierarchy

– Polymorphic methods
– Substring shared by method

name & parameter name
– Similar signatures
– Similar class names

 Croscutting
– Polymorphic methods
– Substring shared by method

name & parameter name
– Similar signatures
– Similar class names

 Substring shared by method
name & class name

 Substring shared by class
name & parameter name

 Unclassified

  These seem most
relevant when mining

for concerns
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 Programming idioms
– Accessor methods (accessors)
– Polymorphism (hierarchy methods)

 Design patterns (hierarchy methods)
– Visitor,  Abstract Factory,

Observer
 Features

– “Unification” (hierarchy methods)
– Crosscutting class-related behaviour

(class name in keyword & class name in parameter)
– “Bindings”, “Horn clauses”, “resolution” (unclassified)

 Code duplication
(methods in single class & crosscutting methods)

The substring experiment
Discovered aspectual views (Soul)

An aspectual view is
a set of source code entities,

such as classes, methods
and parameters, that are
structurally related and
often crosscut the entire

source code.
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Conclusion

 Current status
– Substring experiment already performed, but needs refinement

• Mainly more advanced filtering

– Parse tree experiment seems promising complement / extension
to already existing experiment

– Enough to detect aspects?

 Future work
– Work out parse tree experiment
– Check it on a real aspect program : are the weaved aspects

discovered by the approach?


