
Conceptual Code Mining

Dr. Tom Tourwé
SEN / CWI

Pr. Kim Mens
INGI / UCL

Monday, May 3rd 2004

(work in progress)

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 3

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 5

Overview

 Relation to “Software evolution and AOP”
 A crash course in formal concept analysis
 Mining for croscutting concerns with FCA
 Overall approach
 The substring experiment in detail
 The parsetree experiment
 Conclusion

Research idea :
Mining for croscutting concerns
using Formal Concept Analysis

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 8

Software Evolution and
Aspect-Oriented Programming

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 9

Overview

 Relation to “Software evolution and AOP”
 A crash course in formal concept analysis
 Mining for croscutting concerns with FCA
 Overall approach
 The substring experiment in detail
 The parsetree experiment
 Conclusion

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 10

Formal Concept Analysis (FCA)

 Starts from
– a set of elements
– a set of properties of those elements

 Determines concepts
– Maximal groups of elements and properties
– Group:

• Every element of the concept has those properties
• Every property of the concept holds for those elements

– Maximal
• No other element (outside the concept) has those same properties
• No other property (outside the concept) is shared by all elements

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 11

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Elements and Properties

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 12

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 13

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 14

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 15

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 16

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 17

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 18

object-
oriented functional logic static

typing
dynamic
typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 19

Concept Lattice

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 21

Overview

 Relation to “Software evolution and AOP”
 A crash course in formal concept analysis
 Mining for croscutting concerns with FCA
 Overall approach
 The substring experiment in detail
 The parsetree experiment
 Conclusion

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 22

Mining for crosscutting concerns
with formal concept analysis
 First Step

– Use substrings of class, method & parameter names to group
related source code elements

– Relies on coding conventions
– Assumes that elements corresponding to a same concern will

have a similar name
 Next step

– Use generic parse trees to group source code that implements
similar behaviour

– Looks for recurring patterns in the source code
– Similar to clone detection, but more advanced
– Assumes that elements corresponding to a same concern will

have similar code

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 23

Substring Concepts

 Elements : classes, methods, parameters
 Properties : substrings of classes, methods, …

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 24

Parse tree Concepts

 Elements : methods
 Properties : generic parse tree elements

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 25

Overview

 Relation to “Software evolution and AOP”
 A crash course in formal concept analysis
 Mining for croscutting concerns with FCA
 Overall approach
 The substring experiment in detail
 The parsetree experiment
 Conclusion

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 26

Overall approach

1. Generate elements & properties for FCA algorithm
 Pre-filter irrelevant ones

2. Concept Analysis
 Find relevant groupings of elements in source code

3. Filtering
 Remove irrelevant concepts (false positives, noise, useless, …)

4. Classification
 Classify results according to relevance for user

5. Analyse unclassified concepts
 Manually analyse concepts that were not classified automatically

6. Completion of concepts
 Some concepts are relevant

but need to be completed to represent reality correctly

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 27

Our Conceptual Code Mining Tool

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 28

Overview

 Relation to “Software evolution and AOP”
 A crash course in formal concept analysis
 Mining for croscutting concerns with FCA
 Overall approach
 The substring experiment in detail
 The parsetree experiment
 Conclusion

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 29

The substring experiment
1. Generate elements & properties
 We want to group elements that share a substring
 Problem :

– “Having a substring in common” is binary
– FCA properties are unary

• Does an element satisfy the property or not?

 Solution :
– Every substring corresponds to an FCA property

• Does an element have this substring in its name?

– Generate relevant substrings
• Based on where uppercases occur in an element’s name

– QuotedCodeConstant → { quoted, code, constant }

• Filter substrings that produce too much noise

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 30

The substring experiment
2. Concept Analysis - a concept (1)

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 31

…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:
inEnv: myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWith: inEnv:
myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

The substring experiment
2. Concept Analysis - a concept (2)

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 32

…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:
inEnv: myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWith: inEnv:
myIndex: hisIndex: inSource:

X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

The substring experiment
2. Concept Analysis - a concept (2)

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 33

The substring experiment
2. Concept Analysis - some numbers

 Remarks :
– Without filtering
–  properties  <  elements  is a good sign
– Time to compute = a few seconds
– Lots of noise and some false positives

• Better filtering & classification needed

347

699

196

593

#combined
concepts

656

1502

500

1197

#raw
concepts

7

37

5

29

time
(sec)

238750CA tool

4781370CodeCrawler

262512StarBrowser

4391469Soul

#properties#elementsCase study

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 35

The substring experiment
3. Filtering
 Irrelevant substrings are already filtered

– with little meaning : “do”, “with”, “for”, “from”, “the”, “ifTrue”, …
– too small (< 3 chars)
– ignore plurals, uppercase and colons

 More filtering needed
– Drop top & bottom concept when empty
– Drop concepts with only one element
– Recombine substrings belonging together
– Require some minimal coverage of element name by properties
– Concepts higher in the lattice (more properties) may be more relevant
– Avoid redundancy in discovered concepts

• Make better use of the lattice structure (Now it is “flattened”)

 Ongoing work

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 36

The substring experiment
4. Classification
 In single class

– Accessors
– Chained messages
– Delegating methods
– Similar signatures

 Too few elements
 In same hierarchy

– Polymorphic methods
– Substring shared by method

name & parameter name
– Similar signatures
– Similar class names

 Croscutting
– Polymorphic methods
– Substring shared by method

name & parameter name
– Similar signatures
– Similar class names

 Substring shared by method
name & class name

 Substring shared by class
name & parameter name

 Unclassified

 These seem most
relevant when mining

for concerns

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 39

 Programming idioms
– Accessor methods (accessors)
– Polymorphism (hierarchy methods)

 Design patterns (hierarchy methods)
– Visitor, Abstract Factory,

Observer
 Features

– “Unification” (hierarchy methods)
– Crosscutting class-related behaviour

(class name in keyword & class name in parameter)
– “Bindings”, “Horn clauses”, “resolution” (unclassified)

 Code duplication
(methods in single class & crosscutting methods)

The substring experiment
Discovered aspectual views (Soul)

An aspectual view is
a set of source code entities,

such as classes, methods
and parameters, that are
structurally related and
often crosscut the entire

source code.

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 42

Overview

 Relation to “Software evolution and AOP”
 A crash course in formal concept analysis
 Mining for croscutting concerns with FCA
 Overall approach
 The substring experiment in detail
 The parsetree experiment
 Conclusion

May 3rd 2004 Symposium on "Software Evolution and Aspect Oriented Programming", Ghent, Belgium. 43

Conclusion

 Current status
– Substring experiment already performed, but needs refinement

• Mainly more advanced filtering

– Parse tree experiment seems promising complement / extension
to already existing experiment

– Enough to detect aspects?

 Future work
– Work out parse tree experiment
– Check it on a real aspect program : are the weaved aspects

discovered by the approach?

