
Graph Rewriting Techniques for
Modeling AOP Semantics-

influence on software evolution

Alon Amsel @ EVA
03/05/2004



Alon Amsel 2

Presentation Overview

 Motivation
 Model Overview

 Base program representation
 Advice
 Pointcuts
 Weaving

 Evolution
 Aspect-oriented refactoring
 Pointcut evolution
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Motivation

 Need of Formal Models
 Understandability
 Comprehensivity
 Predictability
 Clean semantics
 AOP supporting tools

 Support for refactorings
 Verification

  ∏/ λ - calculus are fine but …
 Advantages of visual languages [Heckel,Engels]
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Overview of the Model

 Dynamic Program Representation
 Based on Graph (Rewriting) semantics for

Object Orientation [Grogono,…]
 GR-based advice
 GR based pointcut matching
 GR based weaving [Aßmann]
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Graph Rewriting in a nutshell

::=Rule:

Left Hand Side Right Hand Side

match
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Object Orientation & 
Graph Representation

do
5

char‘f’

int

void

type

arg
arg nxt

obj

target

attr

act
target

Method 
calls

inttype

type

type



Alon Amsel 7

Object Orientation and GRS
(continued)

Methods = rewriting rules
 Program is specified by a set of graph
rewriting rules
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Advice: Spectative Aspects

 Before and After in Pairs
 Each specifies a rule
 Aspect Node
 Connect to call node
 Aspect View :

 call node
 Aspect node
 Aspect data
 Edges connecting them

[Katz]
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Advice: Invasive/Modifying Aspects

 Aspect View : direct neighbors of Aspect
Node + edges

 Connect aspect node to all objects it
interacts directly with
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Before Advice

call aspect call aspect::=

Subrule of every preliminary rule

Usually only precondition checking
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After Advice (Updating Rule)

call aspect

Subgraph of Left Hand Side of every updating rule

Includes around advice
To be composed with base program
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So far…

 Base Program
 Set of rewriting rules

 Aspects
 Set of (pairs of) rewriting rules

 What next?
 Which rules to combine
 How to combine them



Alon Amsel 13

Pointcuts

 Pointcuts are specified graphically
 Each pointcut graph has same structure

as in  BP-rules
 Wildcards allowed
 Pair of pointcut graphs specify pointcut

rule
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Pointcut Matching

 Pattern matching
 Pointcuts match rules, not graphs!
 After the matching:

 Aspect Node connects to corresponding call
nodes

 Rules are now ready to be instrumented
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Example pointcut rule

args(int,..,real)

arg
arg

arg ::=

int ? real

nxt nxt
nxt

This     pointcut      graph
 matches every RHS graph
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Expressiveness of Pointcut Rules

 AspectJ’s pointcuts
 call (method name & return type)
 within,args,target
 execution not fully defined yet
 -> low level statically determinable pointcuts
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Dynamic Pointcut Matching?

MatchCflow Pattern

Rule Application!
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Dynamic Pointcut Matching?

 Rule Application part of larger
configuration graph

 Rule definitions have to be bypassed
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Weaving = Synchronous Composition
of Rewriting Rules

 Base Program
 Advice
 Overlap => all rules to be applied

simultaneously
 Gluing Rules over an Interface
 Weaving more aspects: in turn on top of BP
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Weaving Example

a b c b
::=

a b d c b e
::=

Base Program

After Advice

Woven Result

e
::=

d
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Interface: spectative aspects
closer look

interfaceL

BPViewL

AViewL

GViewL

interfaceR

BPViewR

GViewR

AViewR

::=

::=

::=

::=
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Model Implementation

 Graph Rewriting Tool ATOM3 [de Lara]
 A Tool for Multiformalism Meta-Modeling
 +Intended for simulation of dynamical systems
 +Allows definition of own diagrams, metamodels and

transformations
 -Not very stable (version 2.2)
 -Python programming language

 Still buggy implementation
 No Aspect Code Generation yet
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Aspect-Oriented Refactoring:
two topics in software
evolution
 Extracting code into an aspect /

improving the aspect structure
 Modifying code into which aspects are

woven
 Satisfactory pointcut declaration



Alon Amsel 24

Extract Method Call Example

m1

::=

m3
::=

int

int

m2

int

m2

int asp
::=

aspm2

int int
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Are Pointcut Graphs Satisfactory?

 Refactoring -> do pointcuts still include
the desired join points?

 Depending on how well they are used
 +expressive and intuitive
 Pull-up method AspectJ problem
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Pull-up method Problem
[Barzilay]

B
void f()

B

A
void f()

AspectJ Pointcut: call(void B.f())

A

::=

[Van Eetvelde]
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