
Graph Rewriting Techniques for
Modeling AOP Semantics-

influence on software evolution

Alon Amsel @ EVA
03/05/2004

Alon Amsel 2

Presentation Overview

 Motivation
 Model Overview

 Base program representation
 Advice
 Pointcuts
 Weaving

 Evolution
 Aspect-oriented refactoring
 Pointcut evolution

Alon Amsel 3

Motivation

 Need of Formal Models
 Understandability
 Comprehensivity
 Predictability
 Clean semantics
 AOP supporting tools

 Support for refactorings
 Verification

 ∏/ λ - calculus are fine but …
 Advantages of visual languages [Heckel,Engels]

Alon Amsel 4

Overview of the Model

 Dynamic Program Representation
 Based on Graph (Rewriting) semantics for

Object Orientation [Grogono,…]
 GR-based advice
 GR based pointcut matching
 GR based weaving [Aßmann]

Alon Amsel 5

Graph Rewriting in a nutshell

::=Rule:

Left Hand Side Right Hand Side

match

Alon Amsel 6

Object Orientation &
Graph Representation

do
5

char‘f’

int

void

type

arg
arg nxt

obj

target

attr

act
target

Method
calls

inttype

type

type

Alon Amsel 7

Object Orientation and GRS
(continued)

Methods = rewriting rules
 Program is specified by a set of graph
rewriting rules

Alon Amsel 8

Advice: Spectative Aspects

 Before and After in Pairs
 Each specifies a rule
 Aspect Node
 Connect to call node
 Aspect View :

 call node
 Aspect node
 Aspect data
 Edges connecting them

[Katz]

Alon Amsel 9

Advice: Invasive/Modifying Aspects

 Aspect View : direct neighbors of Aspect
Node + edges

 Connect aspect node to all objects it
interacts directly with

Alon Amsel 10

Before Advice

call aspect call aspect::=

Subrule of every preliminary rule

Usually only precondition checking

Alon Amsel 11

After Advice (Updating Rule)

call aspect

Subgraph of Left Hand Side of every updating rule

Includes around advice
To be composed with base program

Alon Amsel 12

So far…

 Base Program
 Set of rewriting rules

 Aspects
 Set of (pairs of) rewriting rules

 What next?
 Which rules to combine
 How to combine them

Alon Amsel 13

Pointcuts

 Pointcuts are specified graphically
 Each pointcut graph has same structure

as in BP-rules
 Wildcards allowed
 Pair of pointcut graphs specify pointcut

rule

Alon Amsel 14

Pointcut Matching

 Pattern matching
 Pointcuts match rules, not graphs!
 After the matching:

 Aspect Node connects to corresponding call
nodes

 Rules are now ready to be instrumented

Alon Amsel 15

Example pointcut rule

args(int,..,real)

arg
arg

arg ::=

int ? real

nxt nxt
nxt

This pointcut graph
 matches every RHS graph

Alon Amsel 16

Expressiveness of Pointcut Rules

 AspectJ’s pointcuts
 call (method name & return type)
 within,args,target
 execution not fully defined yet
 -> low level statically determinable pointcuts

Alon Amsel 17

Dynamic Pointcut Matching?

MatchCflow Pattern

Rule Application!

Alon Amsel 18

Dynamic Pointcut Matching?

 Rule Application part of larger
configuration graph

 Rule definitions have to be bypassed

Alon Amsel 19

Weaving = Synchronous Composition
of Rewriting Rules

 Base Program
 Advice
 Overlap => all rules to be applied

simultaneously
 Gluing Rules over an Interface
 Weaving more aspects: in turn on top of BP

Alon Amsel 20

Weaving Example

a b c b
::=

a b d c b e
::=

Base Program

After Advice

Woven Result

e
::=

d

Alon Amsel 21

Interface: spectative aspects
closer look

interfaceL

BPViewL

AViewL

GViewL

interfaceR

BPViewR

GViewR

AViewR

::=

::=

::=

::=

Alon Amsel 22

Model Implementation

 Graph Rewriting Tool ATOM3 [de Lara]
 A Tool for Multiformalism Meta-Modeling
 +Intended for simulation of dynamical systems
 +Allows definition of own diagrams, metamodels and

transformations
 -Not very stable (version 2.2)
 -Python programming language

 Still buggy implementation
 No Aspect Code Generation yet

Alon Amsel 23

Aspect-Oriented Refactoring:
two topics in software
evolution
 Extracting code into an aspect /

improving the aspect structure
 Modifying code into which aspects are

woven
 Satisfactory pointcut declaration

Alon Amsel 24

Extract Method Call Example

m1

::=

m3
::=

int

int

m2

int

m2

int asp
::=

aspm2

int int

Alon Amsel 25

Are Pointcut Graphs Satisfactory?

 Refactoring -> do pointcuts still include
the desired join points?

 Depending on how well they are used
 +expressive and intuitive
 Pull-up method AspectJ problem

Alon Amsel 26

Pull-up method Problem
[Barzilay]

B
void f()

B

A
void f()

AspectJ Pointcut: call(void B.f())

A

::=

[Van Eetvelde]

Alon Amsel 27

References

 Aβmann, Ludwig: Aspect weaving by graph rewriting
 Barzilay et al: Call and execution semantics in AspectJ
 Grogono: Graph semantics for OOP
 Heckel,Engels: Graph Transformation and Visual

Modeling Techniques
 Katz: Aspects and Superimposition
 Van Eetvelde,Janssens: A Hierarchical Program

Representation for Refactoring

