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Abstract 
Many organizations are now pursuing software architecture as a way to control their 
software development and evolution costs and challenges . A software architecture 
describes a system’s structure and global properties and thus determines not only 
how the system should be constructed but also guides its evolution. An important 
challenge is to be able to evaluate the “goodness” of a proposed architecture. I 
suggest stab ility or resilience as a primary criterion for evaluating an architecture. The 
stability of an architecture is a measure of how well it accommodates the evolution of 
the system without requiring changes to the architecture. As opposed to traditional 
predictive approaches to architecture evaluation, I suggest retrospective analysis for 
evaluating architectural stability by examining the amount of change applied in 
successive releases of a software product. I review the results of a case study of 
twenty releases of a telecommunication software system containing a few million lines 
of code to show how retrospective analysis may be performed. 
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1. Introduction 

 After many years of research on software architecture, interest in software 
architecture seemed to suddenly explode in the latter half of the 1990s. Both industry 
and academic interest in software architecture has been intense, as witnessed by the 
many books, conferences and workshops on software architecture. Some of the recent 
milestone publications are the paper by Perry and Wolf [Perry92] that proposed a 
systematic framework for the s tudy of software architecture, Sh aw and Garlan 
[Shaw96] that tried to present software architecture as a systematic discipline, 
Kruchten[Kruchten96] that proposed a model of software architecture that enlarged 
the view of software architecture from dealing only with static structure to consisting 
of four different aspects. 
Prior to these works, Parnas had laid the foundations of software architecture in a 
number of seminal papers. The problems he addressed in these papers in the 1970s 
and 1980s took two decades to be recognized as real problems by the software 
industry. Parnas not only identified the key problems, he also developed a set of 
related architectural concepts for addressing these problems. These concepts are still 
fundamental for understanding and solving the problems of software construction. I 



   

will review some of these concepts here because they form the underpinnings of any 
work on software architecture, including this one. 
The most fundamental of these ideas was the principle of “information hiding” 
[Parnas72]. This principle gives the designer a concrete method for decomposing a 
design into modules. The modularization is on the basis of design decisions. Each 
module protects, or encapsulates, or “hides” an important  design decision. The 
motivation behind the method is that if important design decisions are encapsulated in 
separate modules, then changing a design decision in the future will affect only the 
associated module and not require changes that are scattered throughout the 
software. The same motivation is behind the development of object-oriented 
development, but information hiding is a more fundamental and basic notion. 
The problem of change is a key challenge to software engineering. The ideas of 
“design for change” and “anticipation of changes” [Parnas79] were the motivations 
for Parnas’s  work and information hiding was a concrete design method to implement 
them. Parnas also proposed a set of relations and structures as a basis for designing 
and documenting a system’s architecture. The “uses” relation [Parnas74] describes a 
relationship among modules of a system. A module M1 uses module M2 if a working 
copy of M2 must be present for module M1 to satisfy its specification. This 
fundamental relationship supports the design of software stru ctures that are 
organized as a hierarchy of modules. One important implication of such a design is 
that it makes it possible to define working subsets of the hierarchy. This means that 
we can not only build the software incrementally, but also that we can build 
potentially useful subsets of the software.  
The subsettable software designs and information hiding lead almost naturally to the 
idea of a family of designs. In [Parnas76], Parnas describes the reasons for designing 
families of programs rather than single programs and gives a concrete approach for 
doing it. The idea is to clearly identify the design decisions that are common to family 
members and those that distinguish among family members. Naturally, design 
decisions can be hidden by appropriate modules and we can build the right family 
member by using the module that captures the right decision. The idea of program 
families was inspired by the IBM System 360 architecture, which indeed billed itself as 
a family architecture. The architecture was shared by all the members of the family. 
Particular “realizations” of the architecture exhibited different properties, primarily in 
terms of performance. Today, the concept of program families is pursued under the 
topic of software product families or product-line architectures. 

2. Architecture and Evolution 

Despite the concern with “change” and accommodating changes, most of the early 
definitions of software engineering focus explicitly on construction and only 
implicitly, if at all, with the phenomenon of software “evolution.” By and large, 
software processes and design techniques concentrate on construction. Yet we know 
from experience that evolution is a key problem in software engineering and exacts 
huge costs. Anecdotal evidence even hints that companies spend more resources on 
maintenance (i.e. evolving their software) than on initial development. Probably the 



   

earliest work to deal explicitly with software evolution is that of Lehman[Lehman80, 
Lehman85]. Even Parnas finally got to deal explicitly with the issue of evolution in his 
paper on software aging [Parnas94], where he posits a set of hypotheses and insights 
on why software needs to evolve and how we can deal with the challenges. Recently, 
Bennett and Rajlich[Bennet00] proposed a software development process that 
considers the evolution and retirement of software as explicit phases in the software 
lifecycle.  
We can argue that, as Parnas foresaw in his early work on “change,” evolution is the 
underlying, if implicit, motivation for much of the recent software development 
research. For example, product-line architectures are a systematic approach to 
controlling software evolution. They try to anticipate the major evolutionary 
milestones in the development of the product, capture the properties that remain 
constant through the evolution and document the variability points from which 
different family members may be created. The approach gives a structure to the 
product’s evolution and possibly rules out some unplanned evolutions, if the 
architecture is respected.  Incremental software processes, such as the unified 
process, are also ways to structure the software’s evolution through prescribed steps. 
The assumption is that evolution is helped by the feedback gained from releases of 
the early increments. 

3. The Role of Software Architecture 

 There are many definitions for software architecture. Definitions usually concentrate 
on structural properties and the kinds of decisions that an architect must make. A 
common view is that architectural decisions are those that have to be made before 
concurrent work on the system can be started. That is, the architectural decisions 
span the system components and determine their overall relationships and 
constraints. Once these decisions have been made, work on the individual 
components may proceed relatively independently. The architectural decisions 
determine many of the significant properties of the system and are difficult to change 
because they span the whole system.  Therefore, one of the major implications of a 
software architecture is to render particular kinds of changes easy or difficult, thus 
constraining the software’s evolution possibilities. Despite the importance of 
evolution, and the impact of the software architecture on evolution, it is surprising 
that most definitions of software architecture do not explicitly mention evolution. In 
fact, it can be argued that the primary goal of a software architecture is to guide the 
evolution of the system, the construction of the first release of the system being only 
the first of many milestones in this evolution. 

4. Architecture Evaluation and Assessment 

Because of the key role that architecture plays in the life of a system, it is important to 
evaluate or assess a system’s architecture. Reviews and inspections are accepted 
evaluation methods in software engineering. In such an evaluation, we have to decide 
what factors we are evaluating and what the goals of the evaluation are. Depending 
on the definition of software architecture and its goals, it is possible to define an 



   

evaluation procedure. Typically, such an evaluation is qualitative and is itself difficult 
to evaluate.  
A representative architecture evaluation method is the Architecture Tradeoff Analysis 
Method (ATAM), developed at the Software Engineering Institute  [Kazman99]. 
ATAM tries to help elicit the goals of the architecture and then evaluates the 
architecture against those goals. The procedure is said to take 3 or 4 calendar days. It 
is aimed at evaluating how well the architecture meets its quality goals such as 
performance, reliability, security, and modifiability. 
We call such kinds of evaluations predictive. They try to anticipate how well an 
architecture will perform in the future. While useful, predictive evaluations suffer from 
inherent uncertainty. How do we know what to assess? Even if we did know, how do 
we assess it? How sure can we be of the results?  
A way to answer these questions is to apply retrospective evaluation. I will describe 
retrospective evaluation here in the context of evolution. First, we start  with the 
assumption that the software architecture’s primary goal is to guide the system’s 
evolution. Retrospective evaluation looks at successive releases of the product to 
analyze how smoothly the evolution took place. Intuitively, we want to see if the 
system’s architectural decisions  remained intact throughout the evolution of the 
system, that is, through successive releases of the software. We call this intuitive idea 
“architectural stability.” 
There are many ways we can perform such an analysis but all rely on comparing 
properties from one release of the software to the next. This implies that some 
architectural information must be kept for each release. For example, we might compare 
the uses relation in successive releases. If the relation remains substantially 
unchanged, we can conclude that it was a stable (or robust) architecture that 
supported evolution well. There are virtually any number of quantitative measures we 
can make depending on what aspect of the architecture we are interested in 
evaluating. 
Retrospective analysis can have many uses. First, we can empirically evaluate the 
software architecture’s stability. Second, we can calibrate our predictive evaluation 
results. Third, we can use the res ults of the analysis to predict  trends in the system’s 
evolution. Such predictions can be invaluable for planning the future development of 
the system. For example, a manager may use previous evolution data of the system to 
anticipate the resources needed for the next release of the system, or to identify the 
components most likely to require attention, or to identify the components needing 
restructuring or replacement, or, finally, to decide if it is time to retire the system 
entirely. In the next section, we describe a case study that shows some simple 
examples of retrospective analyses. 

5. Case Study 

We have applied three different kinds of retrospective analyses to twenty releases of 
a large telecommunication software system. In the first, we compared simple measures 
such as module  size, number of modules changed, and the number of modules added 
in the different releases. In the second, we tried to detect coupling among modules by 



   

discovering which modules tend to change in the same releases, and in the third, we 
used color visualization to “map out” the system’s evolution. In this section, we give 
an overview of these experiments. The details may be found in [Gall97, Gall98, Gall99]. 
The telecommunication system under study consists of over ten million lines of code. 
The system is organized into subsystems, each subsystem consists of modules, and 
each modules consists of programs. We had access to a database that contained 
information about the system but not the code itself.  The size of components is 
recorded as the number of subcomponents it contains. For example, the size of a 
module is the number of programs it contains.  

5.1 The first analysis: Simple metrics  

In the first set of analyses, we simply plotted various basic size-related metrics 
according to releases. For example, Fig. 1 shows the growth in the number of programs 
in the system. It shows a steady but stabilizing growth of the system. It appears to 
show a stable system, possibly approaching a dormant state, getting ripe for 
retirement. 
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Fig. 1 Growth of the system in size 

Fig. 2 shows the number of added programs. Here we see that a decreasing number of 
programs are added at each release, with a curiously higher number in every other 
release. This phenomenon could be due to the way the releases were planned. The 
manager of the project should be able to interpret the result and decide whether it was 
expected. In any case, the fact that the number of additions is decreasing also points 
to a stabilization of the system. 
Fig. 3 plots two related numbers: the percentage of programs added and the 
percentage of programs changed in each release. The figure seems to indicate that in 
one release “many” programs are added and in the next “many” are changed. We 
don’t know if there is any correlation between the programs added and those changed 



   

in the next release. But the figure certainly invites many questions that should be of 
interest to the manager. 
Finally, in Fig. 4 we show the growth in size of three different modules. We see that 
two of the modules are relativ ely stable while the third is growing significantly. This 
figure indicates that it is not enough to study the data only at the system level. It is 
possible that undesirable phenomena at a lower level, in this case at the module level, 
mask each other out at the system level. Certainly the growth of Module A compared 
to the other modules should ring an alarm bell to the manager. 
These figures show how simple metrics plotted along the releases of a system can 
reveal interesting phenomena about the evolution of the system. Unusual and 
anomalous evolutions of components can be easily spotted. Any deviations from 
expectations should be investigated.     
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Fig. 2. No. of added programs per release 
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Fig. 3 . No. of changed and added programs per release 



   

sizes of modules in Subsystem C
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Fig. 4. Growth of size of modules in one subsystem 

5.2 The second analysis: Hidden module coupling 

In the second experiment, we tried to uncover potential (hidden) dependencies among 
modules or programs of the system. The idea was to discover if there are certain 
modules that always change during the same release. For example, Table 1 shows two 
particular programs that are changed in nine releases together. In the two other 
releases, one is changed but not the other. We developed a number of analysis 
techniques for discovering and correlating “change sequences”. If two modules are 
always changed in the same sequences of releases, it is likely that they share some 
possibly hidden dependencies. The longer the sequence, the higher is the likelihood 
of cross-dependencies. Such analysis can be easily performed and can reveal a great 
deal about the architecture. In fact, the goal of the architecture is to minimize such 
dependencies so that change and evolution is isolated in different modules. If 
changes are required in many modules, the architecture suffers from lack of stability. 
 

SUB2=<1 2 3 4 6 7 9 10 14> 
A.aa.111 1 2 3 4 6 7 9 10 14 17 19 
B.ba.222 1 2 3 4 6 7 9 10 14 16 18 

Table 1. Coupling among subsystems A and B 

5.3 The third analysis: Color visualization 

In this study our goal was to make the results of retrospective study more apparent 
and easy to grasp. We used visualization techniques to summarize the large amount of 
data that could be plotted and displayed. In particular, we explored the use of color in 
such visualizations. Due to the need for color, the reader is urged to look at an on-line 
version of this paper to view the figures in color. We use color percentage bars to 
display a history of a release. For example, Fig. 5 represents a module by a bar in each 
release. The bar contains different colors. The colors represent different version 
numbers of programs in the module. For example, in the first release, when all 
programs are at version 1, the bar is a single color. By comparing the bars for different 



   

releases, the eye can quickly observe the amount of changes from one release to the 
next. Large variations in color indicate a release that is undergoing lots of change, 
possibly indicating an unstable architecture. Fig. 6 shows the change maps for 
modules A through H of the system. Such maps can be used to quickly identify 
problematic modules. The color maps for different modules may be quickly compared 
to get a sense of how module evolutions relate to each other. Such maps could be 
used as a “fingerprint” of a module to show its evolution. It is possible to spot 
different types of evolution and modules that share certain patterns of evolution. A 
predictive evaluation of the architecture, if effective, should be able to anticipate the 
kind of fingerprint a module should produce during its evolution.  

 

Fig. 5. Visualizing evolution with percentage bars 

6. Retrospective analysis 

The case studies of the previous section show a glimpse of how retrospective 
analysis may be applied and exploited. The information from retrospective analysis 
may be used for forward engineering as well, primarily by using the information from 
the past to predict the requirements of the future, for example, in answering questions 
such as how much code changes the next release will entail and how much it will cost.  
The tools we have used  are simple and require very little information to be kept for 
each release of the software. Yet, such data is not commonly maintained, analyzed, or 
exploited. The key point is that the tools must maintain data across releases to enable 
the reasoning and analysis about the software’s evolution. This means that software 
reengineering tools must be enhanced to deal with releases explicitly to be able to 



   

support retrospective evolution analysis. Because of the huge amount of data 
involved, visualization techniques seem to be useful.  
An example tool that can be used for evolution analysis is the Evolution Matrix 
[Lanza01] which visualizes the evolution of classes in an object-oriented system. The 
evolution of various metrics about a class may be displayed. Size and color are used 
to represent the metrics. The evolution analysis applied to a large number of classes 
has led to classifying different types of classes based on their evolution patterns. 
Lanza [Lanza01] has observed classes that he categorizes as  supernova (suddenly 
explodes in size), pulsar (grows and shrinks repeatedly),  white dwarf (shrinks in size), 
red giant (continues being very large), and idle (does not change). Such a tool can be 
a powerful aid in retrospective analysis. For example, a large number of idle classes 
would indicate a stable architecture. (Clearly, idle classes could also indicate dead 
code so analysis had to be done carefully.)     

7. Summary and conclusions 

We have argued that a primary goal of a software architecture is to guide the 
evolution of a software product. To evaluate how well a software architecture 
achieves this goal, we can analyze the architecture for adherence to certain rules that 
we believe support evolution. But there is more that we can do. Using appropriate 
analysis tools, we can try to evaluate an architecture’s “stability” or “resilience” by 
observing the actual evolution of the associated software product. We call this kind 
of analysis “retrospective” because it looks back on the software product’s releases. 
We have shown the results of some simple tools that can help in retrospective 
analysis. These tools combine simple metrics and visualization to summarize in a 
compact form the evolution patterns of a system, thus enabling the engineer or 
manager to check the reality against the expected results. 
In principle, predictive analysis and retrospective analysis should be combined. 
Perfect predictive evaluations would re nder retrospective analysis unnecessary. If we 
are not sure of perfection, however, retrospective analysis is necessary to validate our 
predictions and detect deviations from plans.  
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Fig. 6. Evolution of modules A through H in terms of programs 
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