
January 18, 2002 Kim.Mens@info.ucl.ac.be 1

Intentional
Software Classifications

Prof. Kim Mens (in collaboration with Tom Mens)

Département d’Ingénierie Informatique
Université catholique de Louvain



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 2

Contents

Some observations regarding software evolution
Some requirements for software models
Our approach
Software classifications
Intentional software classifications
Relations among classifications
Conclusion



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 3

Observation
Software evolution and maintenance are hard, due to

“Information overload”
• Difficult to understand and browse large software systems
• When something breaks upon evolution, it is difficult to find out 

what, where and why
Insufficient support for managing crosscutting concerns

• “Tyranny of the dominant decomposition”
“Intentions” of developers are not documented

• Difficult to understand relevant concerns, assumptions, intentions, 
conventions, constraints

• Remain hidden or implicit in implementation or heads of developers
• Should be codified explicitly, e.g., to detect potential evolution 

conflicts



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 4

Some requirements
Software models should

take multiple views on the software into account
provide support for crosscutting concerns
be codified explicitly

Motivate software engineer
Easy to use ⇒ keep models simple
Little overhead ⇒ easy to recover from implementation
Effort must pay off

Non-intrusive approach
integrated in the software development environment
no changes to software development process

Provide support for software evolution



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 5

Our approach
Model =

(Intentional) software classifications
Relations among classifications

Classifications may crosscut implementation structure
Classifications and relations

explicitly codify important concerns, assumptions, intentions 
and conventions …
… that can be verified upon evolution



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 6

Software classifications
A software classification

Is a set of software artefacts that address a same concern
One classification can contain many artefacts
Classifications may crosscut dominant implementation decomposition

A software artefact
Can be any kind of implementation entity: method, class, variable, …
One implementation entity can reside in multiple software classifications

Classifications can be defined
Extensionally = by explicit enumeration of its elements
Intentionally = by declaratively describing its elements
One classification can have multiple (mutually consistent) definitions

Can be
Predefined by language/environment ; Extracted by tools; User-defined



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 7

Examples of software classifications
“Logic predicates”:

All predefined logic predicates in 
QSOUL

Alternative definitions:
1) Everything stored in one of the 

subclasses of class QSOULRoot.
2) Everything in a class belonging to 

a category named QSoulLogic*
3) Explicit enumeration of all 

relevant classes

“Test suites”:
All methods for testing the QSoul
implementation and predicates

Alternative definitions:
1) Everything method implemented 

by a subclass of class
QSOULLogicTests.

2) Everything in a class belonging to 
a category named *Test

3) Explicit enumeration of all relevant 
classes

Case: QSoul2.3, a logic interpreter implemented in VW Smalltalk



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 8

Intentional software classifications
Are intentionally defined software classifications

Describe how to “compute” their elements
Declared as logic predicates over the implementation

• Expressive
• Readable 
• Concise

Can be used in multiple ways
Generative: which entities belong to classification?
Verificative: does entity belong to this classification?

Format:

classification(«NameOfClassification»,?Artifact) if
«Some condition»

Predicate for checking/generating classified artefactsPredicate for checking/generating classified artefacts

Generated or checked artefactGenerated or checked artefact



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 9

Example of an intentional software 
classification
Classification “Logic predicates”

First alternative:
classification(qsoulpredicates,?C) if

hierarchy([QSOULRoot],?C),
not(equals(?C,[QSOULRoot])).

Second alternative:
classification(qsoulpredicates,?Cl) if

category(?Cat),
startsWith(?Cat,['QSoulLogic']),
not(endsWith(?Cat,['Tests'])),
classInCategory(?Cl,?Cat).

“Logic predicates”:
All predefined logic predicates in QSOUL

Logic predicates



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 10

Multiple definitions
Multiple definitions of the same intentional 
classification are allowed
All definitions should have the same “extension”

i.e., describe the same set of elements
Alternative definitions thus codify important 
constraints on the elements of a classification
This information can be used to detect interesting 
evolution conflicts

When the alternatives are no longer consistent after evolution



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 11

Relations among classifications
Describe an important relationship among the elements of two 
(or more) software classifications
Declared as logic predicates over software classifications

Expressive
Readable 
Concise

Often simply as a predicate r over software artifacts and a set 
quantifier (∀ , ∃ ) to map it over the classifications

A r B ⇔ ∀ a ∈ A : ∃ b ∈ B : a r b
Can be used in multiple ways (verificative / generative)
Can be used to detect interesting evolution conflicts

When the relation no longer holds after evolution



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 12

Example of a relation among 
classifications

Every logic predicate has a 
corresponding test method

Naming convention : method name = 
predicate name prefixed with ‘test’

This relation codifies the important 
intention “the test suite is complete”
If this relation is no longer valid after 
evolution this can mean two things:

The test suite is no longer complete
The above naming convention has been 
breached

Logic predicates

Test suites
∃

∀

Contains
corresponding



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 13

Advantages of
Intentional Software Classifications

Advanced browsing & structuring of code
Implementation entities are grouped in conceptual modules that cross-cut 
implementation structure

Codify the intentions that are in software engineers’ heads
Exploiting classification to detect evolution conflicts

When alternative definitions of a classification are no longer consistent
When certain relations among classifications are no longer valid

Software classifications are an asset to software engineers
little overhead, effort pays off



January 18, 2002 FWO Research Network on “Formal Foundations of Software Evolution” 14

Intentional software classifications
as architectural abstractions

Rule Interpreter Clause Selection

Facts and R
ules

Selected Rule
Selected Data

U
pdates

D
ata

State Data

Outputs

Inputs Knowledge
Base

Working
Memory

Rule
Interpreter

Clause
Selector

Rule
Interpreter

Clause
Selector

asks∀ ∃


	IntentionalSoftware Classifications
	Contents
	Observation
	Some requirements
	Our approach
	Software classifications
	Examples of software classifications
	Intentional software classifications
	Example of an intentional software classification
	Multiple definitions
	Relations among classifications
	Example of a relation among classifications
	Advantages ofIntentional Software Classifications
	Intentional software classificationsas architectural abstractions

