Declarative specification and calculation

in view of software evolution®

Raymond T. Boute
INTEC, Ghent University, Belgium
boute@intec.rug.ac.be

Abstract

Software is always in evolution, not only as an engi-
neering discipline, but also during system life cycles.
Specification plays a central role in guiding this process
in all phases from design, via use and maintenance, to
future prospects. As opposed to program-like descrip-
tions, a declarative approach yields more generality,
compactness and insensitivity to paradigmatic, imple-
mentation and other changes.

The crucial characteristics of a formalism are not
only its expressive qualities but, even more importantly,
the support it provides for symbolic reasoning (property
derivation, verification). Substantial leverage is ob-
tained by starting from concepts that have proven their
value in a wide variety of mathematics.

Whereas most formalisms in computing stem from
formal logic, we present an approach that is rooted in
classical applied (engineering) mathematics, yet cap-
tures and even generalizes the most important concepts
normally associated with theoretical computer science.

For historical reasons, we start with the problem
area in which our approach originated, namely unifying
discrete and continuous mathematical models in sys-
tems engineering, with signal flow systems as a running
example. This has led to a collection of generic func-
tionals, originally meant to derive realizations from ab-
stract specifications, but whose generalization, with par-
ticular attention to the domains of the result functions,
captures a wider range, computing included.

These functionals also support an elegant functional
formulation of predicate logic, with convenient algebraic
laws for calculational reasoning in point-wise and point-
free style, and handling type information in a pivotal
way. We have found this calculus directly applicable
in all investigated areas, Tanging from mathematical
analysis to software engineering. Such wide coverage
ensures the ability to cope with evolution in software
and paradigms over a long time period.

*Prepared for the 2002/01/18 meeting of the FWO Research
Network “Foundations of Software Evolution”.

0 Motivation and overview

Software systems and the paradigms underlying their
design are incessantly evolving. Guiding this process
requires a level of abstraction that transcends incidental
aspects such as implementation details, programming
language particularities, and the software engineering
paradigm of the day.

Superficially, modern software engineering tools seem
to reduce systems design to menu selection and mouse
clicking. However, all but the simplest systems also
need (a) specifications that are concise (sufficiently ab-
stract, no extraneous detail), precise (complete, unam-
biguous), and clear, especially for humans; (b) methods
for symbolic reasoning about issues such as the rela-
tion between specification and realization, and the ex-
traction of properties of interest. The need for these
elements also extends to the tools themselves!

Program-like code is often advertised as a form of
specification. However, this is illusory, since code is
algorithmic, containing particularities necessary for ex-
ecutability, but irrelevant at the abstract level inher-
ent in the concept of specification. Documentation
is expected to be more compact, human-centric and
problem-oriented than the system it describes. More
importantly, program code (at any level) is very ill-
suited for reasoning about the specified systems.

Obviously the language of mathematics, being de-
signed for human use and reasoning, is far superior for
the stated purpose. In hardware design, electronics and
other classical engineering disciplines, this is the basic
formalism. Therefore it is unfortunate that languages
such as VHDL, intended to cope with the long-term
evolutionary nature of complex hardware systems, are
patterned after programming languages, clearly moti-
vated by communication with computers rather than
among humans. The idea that, for instance, hardware
engineers are to “think algorithmically’ is clearly retro-
grade, and all the more ironic since, in the very area of
programming, much effort is devoted to shifting away
from the traditional imperative paradigm.

Functional and logical programming languages offer
a distinctly higher degree of abstraction, yet are only an
intermediate step. Indeed, they still fall short of being
properly declarative [9, 12], meaning: suitable for spec-
ification and reasoning, free from operational concerns
imposed by the language or the implementation.

The formalisms of mathematics provide a good start-
ing point for declarativity, but form a very heteroge-
neous mixture of very well-designed parts in algebra
and analysis (due to Descartes and Leibniz) to very
ad hoc designs in discrete mathematics, logic and com-
puter science, rare exceptions being the calculational
style advocated by Dijkstra [4], Gries [7] and others.

As observed by Reynolds [13], In designing a pro-
gramming language, the central problem is to organize
a variety of concepts in a way which exhibits uniformity
and generality. Substantial leverage can be gained in
attacking this problem if the concepts can be defined
concisely within a framework which has already proven
its ability to impose uniformity and generality upon a
wide variety of mathematics. This quote is all the more
pertinent to declarative languages.

The results reported here stem from concerns that
are not directly related to software and programming,
but rather to the design of a formalism® aimed at uni-
fying the continuous and discrete mathematical models
in applied mathematics and engineering, in particular
communications and automatic control, with each other
and with the discrete concepts in computing science.

Since one of the purposes of this meeting is to make
members of the software evolution community more fa-
miliar with each others’ research interests, we reflect the
historical development by taking the original problem
area as a running example, namely the transformation
of specifications into signal flow realizations.

At first, this may seem a rather concrete and special-
ized topic, but it turns out to require all features of a
general-purpose declarative formalism, as becomes soon
apparent to anyone with a taste for abstraction. More-
over, the same concepts yield an elegant functional for-
mulation of predicate logic, which in turn is perhaps the
most generally applicable formalism throughout math-
ematics and software engineering [11].

Therefore, we start with signal flow systems (Sec. 1),
using certain operators that will appear familiar from
classical applied mathematics, and augmenting them
with a few new ones to support transformations that are
awkward or impossible to express in other formalisms.
The operators are generalized to generic functionals
(Sec. 2), whose generic character stems from the spe-

OBy formalism we do not mean just a language or notation
but also, and even primarily, a system of formal calculation and
reasoning in a precise and convenient way by humans.

cial attention given to the domains of the functions,
and also provides the basis for reformulating predicate
logic in a functional framework that includes types and
supports calculational reasoning (Sec. 3).

1 Functionals for transformation

1.0 Functional Mathematics

Functional Mathematics is the principle of (re)defining
mathematical objects, whenever feasible, as functions.
This has proved most useful especially where it is not
(vet) commonplace. Apart from the conceptual virtue
of uniformity, a major advantage is that a collection of
general-purpose operators over functions (generic func-
tionals) becomes widely shared by objects of otherwise
disparate types (intrinsic polymorphism). This also jus-
tifies investing considerable effort in designing them ju-
diciously, especially w.r.t. types, as shown later.

Here we present an extended example, namely the de-
finition of sequences (including tuples, lists etc.), which
has wide ramifications since it constitutes either a com-
mon ground or a serious gap between discrete and “con-
tinuous” mathematics, depending on whether or not se-
quences are defined as first-class functions.

We define all these structures as functions, in the
sense that (a,b)0 = a and (a,b)1 = b etc. Whereas
this step is intuitively trivial, browsing through the lit-
erature [6, 10, 14, 16] reveals that these objects are
handled more often than not as entirely or subtly dis-
tinct from functions, and even in the few exceptions, the
functional characteristics are left mostly unexploited.

For instance, one rarely (if ever) finds inverses of se-
quences as in (a,b,c,d)” ¢ = 2, or composition, as in
(07375’7)0(2’3’ 1) = 57773 a‘nd fo(x7y) = fx7fy7 or
transposition, as in (f,g)’z = fz,gz, which will be
seen to be universally useful once discovered.

Moreover, in most formal treatments, lists are defined
recursively via a prefixing operator (say, cons), and not
as functions, for instance: [] is a list and, if x is a list,
so is consax. Indexing is then achieved via a sepa-
rate operator, defined recursively on the structure, as in
ind (consax)0 = a and ind (cons ax) (n+1) = ind z n.

Our functional definition takes indexing as the basis,
and hence covers infinite sequences as well (their do-
main is N). Pairs like z,y in f (z,y) are no exception.
This makes every function ‘of several arguments’ essen-
tially a functional of one argument, which is a function
and thereby shares in all generic functionals. Note that
this view does not invalidate any of the traditional cal-
culation rules, it only adds more powerful ones.

A side remark: more generally, such conservational
properties explain why Funmath [3], a formalism based

on functional mathematics and used in this paper, so
much resembles the usual mathematical conventions,
except where the extra possibilites are exploited.

Henceforth, tuples and sequences are functions with
domain {k:N| k < n} for n:N or n:= oo, written On.
Operators for tuples and sequences, like # (length), ++
(concatenation), >— (prefixing), o (shift) are defined as
functionals, e.g., (a>—2)n=(n=0)?at z(n—1) and
ocxzn =z (n+1). Conditional expressions of the form
¢?bt a can be seen as syntactic sugar for (a,b) c.

In this discussion, we singled out sequences because
of their central role in our main testing ground, namely
unifying discrete systems (whose inputs and outputs
are sequences) with their analog counterparts, where
signals are modelled as functions to begin with.

1.1 Point-free formulations

As a running example, we consider signal flow systems,
namely assemblies of interconnected components whose
dynamical behavior is modelled by functionals mapping
input signals to output signals. We are interested in de-
riving signal flow systems realizing specified functions.

The simplest basic blocks used initially are memo-
ryless devices realizing arithmetic operations and, as
memory devices, latches for the discrete case and in-
tegrators for the the continuous case. We model the
arithmetic blocks as “abstract operational amplifiers”
for instantaneous values, and make this explicit by ex-
pressing, for instance, the sum of two signals x and y
as ¢ + y, with (z ¥ y)t = xt 4+ yt. In control and
communications theory, no hat () is used, writing just
(r +y)t =zt + yt by overloading +. We will see it
pays off making ~ explicit as a fully-fledged functional,
called direct extension, and generalized later.

For our examples, it suffices considering the synchro-
nous and discrete case, and the time variable will usu-
ally be written n (of type N). A latch is one-cell device
storing values between two subsequent clock cycles and
parametrized by an initial condition. It is polymorphic
with respect to the value stored. Its behaviour D can
be expressed formally for any initial condition a and
input sequence z as Dozn=(n=0)7atz(n—1) or,
without the time variable n, as D, x = a > .

In Fig. 0, (a) and (b) represent these blocks as they
appear in typical textbooks on communications or auto-
matic control, and (c) and (d) as they appear on screen
in a graphical language like LabVIEW [2], designed for
instrumentation purposes.

For structurally describing an assembly of compo-
nents, we do not want a variable representing time in
our expressions, since time is not a structural feature.
If a signal representing time is needed, it is generated

Figure 0: Typical basic building blocks

by a time base (a ramp generator in an oscilloscope, a
counter in a digital system), which is structural.

Given a behavioural specification as a mapping
from input to output signals, transformational design
amounts to eliminating the time variable (and possibly
further transformation) to obtain an expression whose
form also has a structural interpretation [3].

In a more general mathematical context, the cor-
responding objective is calculating with functions al-
geraically without referring to points in their domain,
which is called a point-free formulation. The function-
als to support this will be introduced as we proceed.

1.2 A transformation example

Consider the following recursive specification. Assum-
ing set A and a: A and g: A — A given, we define

def f: N> Awith fn=(n=0)7atg(f(n—-1)) (0)

This equation be transformed calculationally as follows

fn= (Def. f) (n=0)?atg(f(n—-1))
= (Def. o) (n=0)7at(gof)(n—-1)
= (Def. D) D,(gof)n
= (Def. =) Da(g f)n
= (Def. o) (Dgog) fn, (1)

hence f = (D,07) f by function extensionality. Ob-
serve how function composition, i.e., (fog)z = f (gx)
(ignoring types for now) moves n into the argument
position to facilitate later elimination. We introduced
=, defined by g x = gox, to provide direct exten-
sion for one-argument functions. The last step in (1)
makes the expression interpretable structurally, since
function composition structurally amounts to cascad-
ing, as shown in Fig. 1(a) for hog. An expected alge-
braic property is hog = h 03.

Here we should mention that, since tuples are func-
tions, f o (a,b) = f a, f b, yielding a quite different func-
tional interpretation, as shown in Fig. 1(b) assuming z
is a pair. Of course, all these interpretations correspond
to the same abstract functional.

(a) hog (b

Figure 1: Structural interpretations of composition

A realization of the fixpoint equation f = (Dg0g) f
is shown in Fig. 2(a) as a “textbook” block diagram and
in Fig. 2(b) as a LabVIEW on-screen wiring diagram.

f

1 g Da

A 4

n—{x]
o—{T >0

|
[i] — .

Figure 2: Signal flow realization of specification (0)

Since f is an infinite sequence, the length of the sub-
sequence f., to be generated by a working system as
in Fig. 2(b) is specified by an extra parameter n:N>1.

Of course, the transformation of equation (0) into
the diagram of Fig. 2(a) is so simple that it could have
been done ‘on sight’, but the point is that the auxiliary
operators make it possible to formalize every little step
of the process: without them, there is no handle, and
one could only give a ‘proof by inspection’.

Many situations require swapping the arguments of
a higher-order function. A typical case is the transfor-
mation of a family! f of n signals into a single signal
fT with n-tuples as values satisfying fTti = fit at
time ¢ for all ¢ in On, as illustrated in Fig. 3(a). This
also subsumes the zip operator familiar from functional
programming [1], viz. zip[[a,b,c],[a’,b’,c’]] =
[[a,a’],[b,b’], [c,c’]], taking lists as functions.

We call this operator 7 transposition, since it is a gen-
eralization of the well-known matrix concept to higher-
order functions: for any family f of functions (not nec-
essarily with discrete domain), we define fT'yx = f z v,
again temporarily ignoring types.

Note that, tuples being functions, (f,g)’z = fz, g,
yielding the structural interpretation of Fig. 3(b).

In a very real sense, composition and transposition
are each other’s dual, e.g., in the (untyped) lambda

1In our functional framework, family is synonym with func-
tion, phrases like “a family of functions” being more appropriate
than “a function-valued function”.

f o o o o o o fO fOx

sata IR T

Figure 3: Structural interpretations of transposition

calculus, provided z is not free in M,
Mo(Az.N) =X z.MN and (A\z.N)'M =X\z.NM.

Together, comosition and transposition provide a gen-
eralization of direct extension (seen thus far only for
functions with one and two arguments, counted the ‘old’
way) to functions with a tuple of any length for its ar-
gument. For any infix operator x,

(F*fw=faoxfo=0)(fzf)
=) (£)72) = (R (£, /)"

(hints omitted) and hence f % f' = (%) o (f, f)T. This
makes it reasonable to define the generalized direct ex-
tension operator = by

Ggh=goh” (2)

for any function g whose argument is a function and
any family h of functions.

Of course, much more can be said about transfor-
mations, but we have collected enough representative
functionals, and we shall now make them generic.

2 Making the functionals generic

2.0 Conventions for functions

The notion of function is familiar, but since conventions
in the literature are not uniform, we make ours explicit.
A function is taken as a concept in its own right without
identifying it with its set-theoretic representation via
pairs. By definition, a function f is fully specified by
its domain D f and its mapping, associating with every
element z in D f a (unique) image f x.

Parentheses are used only for emphasis or for over-
ruling precedence or affix conventions, never as part of
some operator. Hence they are optional in f(x) and
in (a,b,c). Prefix operators have precedence over infix
operators, so parentheses are optional in (fz) + 1 or
f(z) + 1, but necessary in f (x 4+ 1). For higher order
functions, we write f z y as a shorthand for (f z)y.

We also allow partial application: the application of
an infix operator x to only one argument denotes a func-
tion on the other argument, viz., (ax) b = axb = (xb) a.

Functions are equal iff their domains and mappings
match. Formally, this amounts to Leibniz’s principle

f=9g=Df=DgA(zeDfNDg= fz=gz) (3)
and function extensionality: using a fresh dummy z,
q=Df=DgAN(zeDfNDg= fr=gx) (@)
a=f=g '
As long as we have not yet elaborated quantifiers, we
often specify a function f via a pair of axioms:
e a domain axiom of theformz € D f = xz € X Ap,
e a mapping axiom of the foom x € D f = gy,
where z is a variable, X a set expression, p, and g .
propositions, where the subscripts are comments used
(just once) to specify which of f and x may occur free.

An example is the constant function specifier ®, de-
fined for any set X and any e by the pair of axioms

D(X®e)=X and z€X=(X"e)z=c. (5)

Why such a trivial example? We define predicates as
functions taking only values 0 and 1. Our quantifiers
are predicates over predicates: for any predicate P,
VP =P=DP*land 3P = P # DP*0 (see later).

If ¢ has the explicit form fx = e,, the function can
be denoted by an abstraction x: X Ap.e, where Ap is
optional. More formally, the axioms for x: X Ap.e are:

deD(xz:XAp.e) =
deD(x:XAp.e) =

de X Np§
(z: X Ap.eyd=¢€5 (6)

(for any d), where p% denotes p with d properly sub-
stituted for any free occurrence of x. For instance,
n:Z.2 - n doubles every natural number, and (5) can
be written X ®*e = z: X . e (choosing z not free in e).
The function range operator R is axiomatized by
ye€Rf = Jx:Df.y = fx, and the familiar — for
function typesby fe X Y =D f=XARfCY.

2.1 Design criteria and method

The operators of interest are (generic) functionals, i.e,
functions over functions. In functional mathematics,
they are shared by many more kinds of objects than
usual, and hence deserve judicious design to eliminate
all unnecessary restrictions on their arguments.

For instance, the traditional definitions of fog re-
quire that Rg C D f, in which case D(fog) = Dg.
Similarly, the common inverse f~ requires f to be injec-
tive (not considering the variant where inverse images
are subsets rather than elements of D f).

In our design, we do not impose restrictions on the
argument functions, but refine the domain of the result
functions. These generalizations are conservative, i.e.,
if the traditional restriction is satisfied, our generalized
operator coincides with the traditional one.

2.2 Some important generic functionals

All our functionals pertain to continuous as well as dis-
crete mathematics, but most examples will be discrete.
The main transformation between the point-wise and
point-free styles is the equality f = z:D f. fx, ob-
tained from (3), (4), (6). For instance, P=2:DP.Px
and hence, again using (3), VP = Vz:DP.Pux.
The filtering operator (]) generalizes this as follows:

fiP = x:DfNnDPAPzx.fz (7

for any function f and any predicate P. We often use
fp as shorthand for f | P, as in f.,. This operator is
also defined for sets by z € Sp = x € S A Pz, giving
convenient abbreviations like R>q a formal basis.

The composition operator (o) generalizes the famil-
iar function composition: for any functions f and g,

z€D(foyg) =
reD(fog) =

re€DgANgxeDf
(fog)z=f(gx) (8)

The conservational nature of this generalization is illus-
trated by the fact that, if the traditional requirement
R g C D f is satisfied, then D (fog) =Dg.

Since sequences are functions, (0,3,5,7)0(2,3,1) =
5,7,3 and (0,3,5,7)0(2,3,5) = 5,7, but note also that
(0,3,5,7)0(5,3,1) = (7,3) o (—1) (not a sequence).

Similarly, since fo (z,y) = fz, fy (z and y in D f),
our o subsumes the map operator @ from functional
programming, viz., f @ [x, y] = [f x, f y].

The direct extension operator (—) is similarly de-
signed such that, for any (infix) operator x and any
functions f and g, the domain of f % g contains exactly
those values x for which the expression fx x gx does
not contain any out-of-domain applications:

ze€D(fxg) = zeDfNDgA(fz,gx) €D(¥)
z€D(f*g) = (frgla=faxgua (9)

For the transposition operator (—7) with fTyx =
fxy, the simplest argument type is A— (B —C)
(given sets A, B, C). The image f of f: A— (B —C)
has type B — (A — C) and property (f7)T = f. Note:
one usually writes A — B — C for A— (B —C).

We want the argument of 7 to be any function fam-
ily. In a liberal design, D f¥' = z2:D f.D (f) or, in
point-free style, D fI' = |J (D o f). Elaboration is left
as an exercise, since this is not our preference. Indeed
recall from (2) that defining g h = goh” to general-
ize (9) requires intersection, not union. This decision
results in defining f7 for any family f of functions by

Df" = N@:Df.D(fx))
yeDfl = zeDf= flyz=fzy (10)

or, in compact form, f =y: (Do f).z:Df.fxy.

3 Functional predicate calculus

3.0 Axioms

Recall that a predicate is a boolean-valued function.
Here, the choice between false and true or 0 and 1 as
boolean values is secondary. In a wider context (not
discussed here) choosing 0 and 1 has many advantages.

We define the quantifiers V and 3 to be predicates
over predicates. Informally, V P means that P is the
constant 1-valued predicate, and 3 P means that P is
not the constant 0-valued predicate. Hence the axioms

VP = (P=DP*1) and 3P = (P #DP*0). (11)

These definitions are conceptually indeed as simple as
they seem. Yet, they give rise to literally dozens of cal-
culation rules, as is necessary in any predicate calculus
for practical use [7]. This is typical for rich algebraic
structures, often apparent even in basic mathematics.

3.1 Elastic operators and ramifications

Our quantifiers are examples of so-called elastic opera-
tors. These are functionals replacing the various kinds
of ad hoc abstractors from common mathematics, e.g.,
n .
Vo: X Diem mllj}[}} .
Elastic operators together with function abstraction (6)
yield readily recognizable expressions such as

Ve:X. Pz > i:m.n.z; lim((z:R.fz)a

or, for less casual readers, point-free forms such as

VP M=

lim fa

Expressions like Vaz:R.z2 > 0 obtain their familiar
form and meaning, but also with a novel decomposition,
e.g.,intoVand z:R.x2 > 0, each being a function and,
more importantly, additional calculation rules.

Perhaps most representative for the additional rules
provided by the functional view is the smooth transition
between point-free and point-wise expressions.

The fundamental importance of formulations of
mathematical theories without variables is widely
recognized in the more abstract branches [15]. How-
ever, as seen in Sec. 1, eliminating variables is also
useful and sometimes even necessary in practical appli-
cations, which impose the extra requirement that one
should not be confined to only one of these styles.

Our approach made it possible to reformulate predi-
cate calculus as a calculus of functions which, to work-
ing mathematicians and engineers, is more familiar and
calculation-friendly than the often ad hoc conventions
in logic textbooks. The point-free style also conveys an
elegant algebraic flavor to the calculation rules.

3.2 Derived calculation rules

Here we give a small sample of rules, sufficient to illus-
trate how the rest of them can be derived as an exercise.

A first batch are simple rules derived directly from
the axioms (11) and function equality (3 and 4).

e V(X*1) =1and 3(X*0) =0
e Ve =1land dJe =0
e For any non-constant P: VP = 0and 3P =1

Here ¢ is the empty function or predicate with De = {).
Illustrative of the algebraic equational style are the
following theorems.

e Duality: V(= P) = (F3)P

e Meeting: VP AV Q = V(P A Q). The converse is
conditional: DP =D Q = V(P A Q) = YPAVQ.

A typical calculational proof for duality is

V(= P)

— (Det.V(11),D(SP)=DP) =P=DP°"1
= SP=Q=P==0Q) P==(DP*1)
= (e€cDg=7g(X®e)=X"*(ge)) P=DP°*(—1)

= (=1 =0, def. 3 (11)) - (3P)
= (zeD@f)=79fz=9(fx))

Using Feyen’s convention, justifications are given be-
tween (). All are properties of generic functionals rather
than quantification, and are left as simple exercises.
Other properties of constant predicates reveal the
role of types; they are uncommon in logic textbooks

V(X®0)=X=0 and F(X°1) = X#£(
or, combined with the earlier properties,
V(X®2z) =2VvVX =0 and I (X°z) = a2AX#0

A general way to obtain many of properties of this kind
are case analysis (a.) and Shannon expansion (b., c.).

a. VP§ A\VPY = VP
b. VP = (WAYPY)V (~v AV PY)
c. VP = (v=VP)AN(—v=>VE)

assuming v is a boolean variable in P. Similarly for 3.
Important consequenses are semidistributivity rules:

eV(xAP)= (xAVP)VDP =0

eV(z=>P)=z=VP

eV(PSz)=3P=z
where — is the (right) half direct extension operator
23 f = (Df*n)Rf (12)
A second batch are the following metatheorems,
whose counterparts appear in logical textbooks as the

axiom and inference rule for quantification, but here are
again consequences of (11), (3) and (4).

e Instantiation: VP =z € DP = Pz

o Generalization: =z €DP = Px - ¢q=VP

This is the basis for proving all the properties usually
appearing in logic textbooks, as well as the following
important rules for practical applications, viz., trading

VPr =V(R=P) and 3Pg = 3(RAP) (13)

A third batch is just meant to show the corre-
spondence between the preceding point-free formula-
tions and their conventional counterparts, and a few
new ones. Let P, Q be predicates, let R: X Y — B
for some X and Y.

Empty rule Ve=1

I-point rule V(z—vy) =1y

Mergerule P©Q=VY(PUQ)=VYPAVQ
Distribution DP=DQ =Y(PAQ)=YPAVQ

Transposition ¥V (V o R) = ¥V (V o RT)
Composition VP =V (Po f) provided DP CR f
Trading V(PlQ) =V (Q=P)

We find the familiar 7', o and ™. Other generic function-
als used are the function merge with x € D(fUg) =
€ DfUDgA(z € DfFNDg = fz = gx) and
x € D(fUg) = (fUgx = (x € Df)?fz t gu.
Also, the function compatibility relation © is defined
by f@g = V(f=g).

Observe the algebraic (operator calculus-like) flavor
of the various rules. Similar rules exist for 3.

Replacing predicates by abstractions with B-valued
expressions, we can transform the various laws into
their (perhaps) more familiar-looking traditional coun-
terparts. We assume that p, ¢ and r are boolean ex-
pressions, and that certain conditions on types and free
occurrences are satisfied (left as exercises).

Empty rule V(z:0.p)=1

1-point rule V(iz: X .z=y=p) =yecXApj
Domain split V(z:XUY .p)

(if compat.) =V(z: X.p)AV(z:Y .p)
Distribution ¥V (z:X.pAgq)

=V(z:X.p)AV(z: X .q)
V(z: X .Vy:Y.p)

=V(y:Y.Vz:X.p)
V(z:X.p) =V (y:Y.p%,)
V(z:XAp.q) =V(z:X.p=q)

Dummy swap

Dummy chng
Trading

3.3 Example: refined function typing

Predicate calculus is perhaps the most generally ap-
plicable formalism throughout pure and applied math-
ematics, especially software engineering [11]. A collec-
tion of examples that is sufficiently complete to be rep-
resentative is clearly far beyond the scope of this paper.
Therefore we restrict this discussion to showing how
the predicate calculus wraps up a few issues that were
mentioned in passing, but could not be properly han-
dled at that time, especially about the function range.
Using { } as a fully equivalent alternative for R gives
expressions like {a,b,c} and {n:Z.2 - n} their usual
meaning. With z: X | p as shorthand z: X Ap.z, this
also yields On = {k:N | k < n}. Note that we never
overload { } as a singleton set operator?, since doing so
would violate Leibniz’s principle, which is the hallmark
of any well-designed formalism. Here it requires that
x = a,b= {r} = {a,b}, which holds in our formalism.
From the axiom

yeERf = Fx:Df.y=fz (14)

we can derive y € {z:X | p} = y € X Apj, which
turns out to be the most often used form in practice.

We illustrate the various forms by the definition of f~
for any f (not only injective f). We take D f~ to con-
tain just the points corresponding to unique elements
in D f. To formalize this, we introduce the bijectivity
domain and the bijectivity range:

Bdomf = {z:Df|Va:Df.fx=fa'=x=2"}
Branf = {z:Bdomf.fx}. (15)
Finally we define the generic function inverse —— by

Df =Branf A Vaz:Bdomf.f (fz)==xz. (16)

This concludes this illustration.

Let us now refine the range as an element for function
specification in general. Most common function types
have the form X — Y, with uniform range.

Finer typing is provided by an operator designed to
formalize the concept of tolerance for functions. En-
gineering in the analog domain assumes certain toler-
ances on components. To extend this to functions, we
introduce a tolerance function T that specifies, for every
value z in its domain, the set T = of allowable values.
More precisely, a function f meets the tolerance T iff

Df=DT N 2€DfnDT = faxecTux.

The principle is illustrated pictorially in Fig. 4, us-
ing the example that provided the original motivation,
namely a radio frequency filter characteristic.

2For singletons we use the singleton set injector ¢ (with axiom
T €1y = x = y), which is preferable for other reasons [5] as well.

A .
Gain
Tx

fz

>
>

= > Frequency

Figure 4: The function approximation paradigm

So we define an operator X: for any family T of sets,

feXT =Df=DTAVz:DfNDT.faxecTz(17)

Observe that, from the analogy with function equality:
f=9 =

it is easy to show f =g = f € X (tog), ie., our
approximation operator also covers the exact case. We
call X the generalized functional Cartesian product.
It expresses the dependency of the result type on the
domain value. If X T # (), then X~ (XT)=T.

An instructive exercise is elaborating X (A, B) for
sets A and B (since tuples are functions). This yields
X (A, B) = A x B, the common Cartesian product de-
fined by (a,b) € AXxB =a€ AANbe B. If A+# () and
B # 0, then X (AxB)0=Aand X (AxB)1=B.

Similarly, letting T:=a:A.B with a free in B,
X(@:A.B)={f:A—-Ua:A.B|Va:A.fa € B},
known as a dependent type [8].

We write A>a— B, as a suggestive shorthand for
Xa:A.Bg, as in AT 52— A#*~1 which nicely char-
acterizes the type of the aforementioned o-operator.
This shorthand is especially useful in chained depen-
dencies, e.g., Asa— B, 35b— Cgp.

Df=DgAVax:DfNnDg.fx=guz,

4 Conclusion

It has been shown how mathematical concepts and op-
erators arising from a seemingly specialized area of en-
gineering (signal flow realizations) can be made generic
and thereby extend their applicability to a much wider
area of engineering and mathematics.

Here we have illustrated this by an algebraic and
functional formulation of predicate calculus, providing
a convenient formalism for specification and reasoning
about software systems of an evolutionary nature.

References

[1] Richard Bird, Introduction to Functional Program-
ming using Haskell. Prentice Hall, London (1998)

[2] Robert H. Bishop, Learning with LabVIEW. Addison
Wesley Longman (1999)

[3] Raymond T. Boute, “Fundamentals of Hardware De-
scription Languages and Declarative Languages”, in:
J. P. Mermet, ed., Fundamentals and Standards in
Hardware Description Languages, pp. 3-38, Kluwer
Academic Publishers (1993)

[4] Edsger W. Dijkstra and Carel S. Scholten, Predicate
Calculus and Program Semantics. Springer-Verlag,
Berlin (1990)

[5] T. E. Forster, Set Theory with a Universal Set. Claren-
don Press, Oxford (1992)

[6] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M.
Mislove and D. S. Scott, A Compendium of Discrete
Lattices. Springer-Verlag, Berlin (1980)

[7] David Gries, Fred B. Schneider, A Logical Approach
to Discrete Math. Springer-Verlag, Berlin (1995)

[8] Keith Hanna and Neil Daeche and Gareth Howells,
“Implementation of the Veritas design logic”, in: Vic-
toria Stavridou and Tom F. Melham and Raymond T.
Boute, eds., Theorem Provers in Circuit Design, pp.
77-84. North Holland, Amsterdam (1992)

[9] Valerie Illingworth and Edward L. Glaser and I. C.
Pyle, Oxford Dictionary of Computing, 3rd.. Oxford
University Press (1991).

[10] Serge Lang, Undergraduate Analysis. Springer-Verlag,
Berlin (1983).

[11] David L. Parnas, “Predicate Logic for Software Engi-
neering”, IEEE Trans. SWE 19, 9, pp. 856-862 (Sept.
1993)

[12] Peter Rechenberg, “Programming Languages as
Thought Models”, Structured Programming, 11, pp.
105-111 (1990)

[13] John C. Reynolds, “Using Category Theory to Design
Implicit Conversions and Generic Operators”, in: Neil
D. Jones, Semantics-Directed Compiler Generation,
pp- 261-288, LNCS 94, Springer-Verlag, Berlin (1980)

[14] Richard A. Roberts and Clifford T. Mullis, Digital Sig-
nal Processing. Addison-Wesley Publishing Company
(1987)

[15] Alfred Tarski and Steven Givant, A Formalization of
Set Theory Without Variables. Colloquium Publica-
tions, Vol. 41. American Mathematical Society (1987)

[16] Wolfgang Wechler, Universal Algebra for Computer
Scientists. Springer-Verlag, Berlin (1987)

