
Faculty of Engineering

Implementing Concurrency Abstractions
for Programming Multi-Core Embedded
Systems in Scheme

Graduation thesis submitted in partial fulfillment of the
requirements for the degree of Master of Engineering: Applied Computer Science

Ruben Vandamme

Promotor: Prof. Dr. Wolfgang De Meuter
Advisors: Dr. Coen De Roover

Christophe Scholliers

2010

Faculteit Ingenieurswetenschappen

Implementing Concurrency Abstractions
for Programming Multi-Core Embedded
Systems in Scheme

Eindwerk ingediend voor het behalen van de
graad van Master in de Ingenieurswetenschappen: Toegepaste Computerwetenschappen

Ruben Vandamme

Promotor: Prof. Dr. Wolfgang De Meuter
Begeleiders: Dr. Coen De Roover

Christophe Scholliers

2010

Acknowledgements
This thesis would not have been possible without the support of various

people.

First, I would like to thank Professor Wolfgang De Meuter for promoting
this thesis. In particular I would like to thank my advisors Christophe and
Coen for their extensive and essential support throughout the year. Without
their effort, this thesis would not have been what it is today.

I thank my parents for making all this possible and for supporting me
during my education at the Vrije Universiteit Brussel and during previous
educations. And I cannot forget to thank Jennifer for her indispensable
support during this undertaking.

1

Abstract

This dissertation presents a study of the limitations and problems related to
the prevalent way embedded systems handle signals from the outside world.
Such signals are frequently handled using either polling or interrupts. Polling
software will continually check whether a signal needs handling. In interrupt-
driven embedded systems, on the other hand, the CPU will generate an
asynchronous signal when an event from the outside arrives. This signal will
allow the software to react to this event. We show that both approaches have
their disadvantages. The interrupt-driven approach can moreover introduce
bugs that are subtle and difficult to fix in embedded software.

We study a new event-driven architecture and programming style developed
by the XMOS company. The architecture’s hardware support for multi-
threading enables an event-driven style for programming embedded systems
which does not suffer from the drawbacks associated with the use of polling
and interrupts. To accomplish this, the thread support is implemented in
hardware. Each thread has a dedicated set of registers and is assigned a
guaranteed amount of CPU cycles.

Next we describe how we ported a Scheme interpreter to this new architec-
ture. We exploit the multi-threaded nature of this architecture by running
multiple interpreters in parallel, concretely one interpreter on each core. In
addition, we extend each interpreter with abstractions to manage this con-
currency and to exploit features specific of the XMOS hardware. Such ab-
stractions include sending messages between interpreters over channels. Con-
cretely, our effort enables an event-driven style for programming multi-core
embedded systems in Scheme. We will illustrate the superiority of this ap-
proach over polling and interrupt-driven approaches through a realistic case
study.

2

Contents

1 Introduction 12

1.1 Interrupt-driven embedded systems 13

1.2 Event-driven embedded systems 14

1.3 High-level event-driven programming in Scheme 15

2 State of embedded software engineering 16

2.1 Using interrupts in embedded software 17

2.2 Problems associated with interrupts 17

2.3 Case study: pulse width modulation with wireless XBee control 22

2.3.1 Hardware setup . 23

2.3.2 Software . 24

2.4 Conclusion . 29

3 Event-driven embedded software 30

3.1 Threads and events . 31

3.2 Event-driven XMOS hardware 32

3.2.1 The XCore architecture 32

3.2.2 Thread execution speed 33

3.2.3 The memory model . 34

3

3.2.4 Communicating between threads 35

3.3 Conclusion . 36

4 Programming XMOS hardware using XC 37

4.1 Executing functions in parallel 37

4.2 Communicating between threads 38

4.3 Performing input and output using ports 40

4.4 Timing operations . 43

4.5 Handling multiple events at once 45

4.6 Case study revisited: a low-level event-driven implementation
in XC . 47

4.6.1 Hardware setup . 49

4.6.2 UART communication 50

4.6.3 Pulse Width Modulation 55

4.6.4 Distributing threads over cores 59

4.7 Conclusion . 60

5 High-level event-driven programming in Scheme 61

5.1 Selecting a suitable Scheme system 61

5.1.1 Implementation constraints 62

5.1.2 Comparing different interpreters 63

5.2 Exploiting the XMOS concurrency model in Scheme 64

5.3 Bit Scheme . 66

5.4 XMOS Bit Scheme: bytecode interpreter 68

5.5 XMOS Bit Scheme: bytecode instruction set 69

5.6 XMOS Bit Scheme: distributing bytecode across cores 69

4

5.6.1 First compilation phase 69

5.6.2 Second compiler phase 71

5.6.3 Mapping bytecode to specific cores 73

5.7 XMOS Bit Scheme: primitives for IO 74

5.8 XMOS Bit Scheme: time-related primitives 76

5.9 XMOS Bit Scheme: message passing primitives 77

5.10 XMOS Bit Scheme: handling multiple events at once 78

5.11 XMOS Bit Scheme: 32-bit integer support 81

5.11.1 Representation of integers 81

5.11.2 Using timers . 82

5.11.3 Floats and unsigned integers 83

5.12 Case study revisited: a high-level event-driven implementation
in Scheme . 83

5.13 Discussion . 91

5.14 Conclusion . 92

6 Conclusion 93

6.1 Contributions . 94

6.2 Limitations and future work 94

7 Samenvatting 97

7.1 Interrupt gebaseerde ingebedde systemen 98

7.2 Event gebaseerde ingebedde systemen 99

7.3 High-level event gebaseerd programmeren in Scheme 100

5

List of Figures

2.1 Stack depth [23] . 19

2.2 Time spent in an interrupt [23] 21

2.3 Pulse Width Modulation (PWM) 22

2.4 Hardware setup . 23

2.5 Incorrectly connected buttons 24

2.6 Pull down and pull up circuits 24

2.7 Case study hardware setup . 25

3.1 XS-G4 chip schematic . 33

3.2 XCore architecture . 34

3.3 Guaranteed minimum MIPS per thread 35

4.1 Port to pin mapping for the XC-1A [12]. 42

4.2 PWM timing . 44

4.3 Buffer structure . 46

4.4 Closeup of the LEDs . 48

4.5 Showing a color with 60% red and 40 % green 48

4.6 Structure of the case study application 49

4.7 Hardware setup . 50

4.8 Schematic hardware setup . 50

6

4.9 RS-232 signal levels . 51

4.10 Delay between bits during serial communication 52

4.11 LED configuration on the XC-1A [12] 57

5.1 Virtual memory architecture 66

5.2 Interpreter architecture . 68

5.3 Channels between the interpreters 68

5.4 Compilation of a Bit Scheme application into a binary for
XMOS devices . 71

5.5 Compilation of a parallel Scheme program into bytecode . . . 72

5.6 Mapping of the code on the different cores 73

5.7 Extending integer range . 82

5.8 LED setup . 90

7

List of Tables

4.1 IO functions . 41

4.2 Mapping a 32-bit variable onto ports and pins (on core zero) . 43

5.1 Size of different small Scheme implementations[5] 62

5.2 Scheme interpreters . 64

5.3 Added primitives . 70

5.4 Overview of IO primitives . 75

5.5 time-related primitives . 77

5.6 Communication primitives . 77

5.7 Reading in the serial bits . 88

5.8 Baudrates supported by the XBee module 90

8

Listings

2.1 Setup . 25

2.2 Handling the RS-232 input . 26

2.3 Increase interrupt handler . 27

2.4 Decrease interrupt handler . 28

2.5 Main function . 29

4.1 Executing functions in parallel 38

4.2 Executing functions in parallel on a specified core 38

4.3 Communicating between concurrently running threads. 39

4.4 Performing IO operations . 41

4.5 PWM using timers . 44

4.6 Select statement . 46

4.7 Buffer implementation . 47

4.8 UART transmitter . 53

4.9 UART receiver . 54

4.10 Pulse Width Modulation . 56

4.11 Control logic . 58

4.12 Application structure . 59

5.1 Compiler invocation . 71

9

5.2 Assigning bytecode to core zero 74

5.3 Reading from a port . 76

5.4 Writing to a port . 76

5.5 Writing to a port . 77

5.6 Communicating between threads 78

5.7 The select statement in assembler [18] 79

5.8 Scheme select . 81

5.9 Program structure . 84

5.10 Application logic . 86

5.11 Sending a byte over the UART 87

5.12 Getting a byte from the UART 88

5.13 Pulse Width Modulation . 91

10

Glossary

8N1 RS232 data format (8 databits, No parity bit, 1 stopbit).

Baudrate communication speed of a serial port.

CSP Communicating Sequential Processes.

MIPS Million instructions per second.

PWM Pulse Width Modulation.

RS-232 serial port communication standard.

RX Receiver.

TX Transmitter.

XBee Zigbee compatible device.

XCore A computing unit inside an XMOS chip.

ZigBee low-power wireless communication standard.

11

Chapter 1

Introduction

Embedded software is increasingly becoming important. Digital watches,
microwaves, cars, et cetera, all contain embedded systems. More than 98 %
of the processors used today [25], are used in embedded systems. Software
running on a PC or server differs significantly from embedded software. Typ-
ically, such a system consists of hardware and software that are tailored to
one specific task. Next to application logic, embedded software also has to
cater to interactions with the physical world. Such interactions include read-
ing sensors, turning a motor or light on, communicating with other systems,
et cetera. Certain protocols and peripheral hardware have strict timing con-
straints, where the system needs to respond within a fixed amount of time.
When an embedded system has to handle various of those timing-sensitive
interactions concurrently, programming and debugging gets even more com-
plex.

Most microchips and accompanying embedded software is interrupt-driven.
An interrupt is an asynchronous signals that indicates to the CPU that its
attention is needed. In that case, the CPU will stop whatever it was doing
and execute the appropriate interrupt handler. Afterwards the CPU con-
tinues executing the task it was executing before the interrupt. While this
approach is widely used to ensure quick responses on various interactions,
it has several drawbacks [23][22]. We will discuss these drawbacks before
introducing event-driven architectures which comprise a completely differ-
ent approach to embedded systems. We will illustrate each approach with a
representative case study.

12

Chapter 1 Introduction

1.1 Interrupt-driven embedded systems

On chips, interrupts are often used to handle interactions from the outside.
On interrupt-driven systems, these interrupts will stop the application code
and save the current execution state onto the stack. After having executed
the appropriate interrupt handler, the previous execution state is restored.
Systems that use polling continuously check whether a condition is true.
Compared to systems that use polling, interrupt-driven systems can achieve
a reduction in latency and overhead. If this check isn’t performed often
enough, latency can become an issue. However, frequent polling might in-
troduce an overhead. Reduced power consumption is another advantage of
interrupt-driven systems. The CPU can sleep until it is interrupted. In less
powerful chips, dedicated hardware is often used to do certain time and re-
source consuming IO tasks like serial communication. Interrupts are used to
synchronize the dedicated hardware with the chip that runs the application
code. The dedicated hardware can, for instance, signal that it received data
from the serial port.

As outside signals can occur at any time, interrupts can be fired at any time
too. This can introduce various problems which are hard to find because they
occur only rarely under specific conditions. Among others, a stack overflow
can occur when many interrupts arrive at the same time causing excessive
stack usage by the various interrupt handlers [23][22]. In the case of an
excessive number of interrupts, the main application can also be starved from
CPU time [23]. Also each interrupt causes the application to halt, which
complicates meeting real-time constraints. Existing approaches to prevent
these problems usually try to empirically determine the system resources
that are needed to handle all possible combinations of interrupts [23]. These
approaches however, are not perfect and can complicate the development
and debugging. In this dissertation, we will illustrate the above problems by
means of a case study, showing the above-mentioned problems. Concretely we
will create a case study illustrating the problems associated with polling and
interrupt based software. In this case study we will implement an application
performing pulse width modulation (PWM) on a LED. Two of these devices
are connected via a wireless XBee module, synchronizing their PWM.

13

Chapter 1 Introduction

1.2 Event-driven embedded systems

Due to increasingly powerful chips, it is becoming possible to use software
for tasks that used to be implemented in hardware, such as serial commu-
nication. This approach is advocated by the XMOS company1. Their chips
comprise an event-driven architecture. A thread, implemented directly in the
hardware, will subscribe to an event and perform the corresponding computa-
tions when that event occurs. Events can be triggered by changes in timers,
communication or input and output operations. Threads have no shared
memory, but communicate through message passing. When a thread wants
to handle an event, it subscribes to the event and suspends itself until the
event happens. By suspending itself, the thread allows other threads to run.
Power consumption can also be reduced when fewer threads are running. In
the XMOS architecture, threads each have their dedicated set of registers and
each get a guaranteed amount of CPU cycles [16]. As each event is handled
in an independent thread, timing constraints will always be met.

In traditional desktop software, spreading a program across multiple threads
requires splitting up the application in parts that can run concurrently. How-
ever, most embedded software is already inherently concurrent as it has
to handle application logic as well as various interactions with the outside
world. Therefore, it is quite natural to map embedded software onto multiple
threads, as enabled by the XMOS architecture.

On a single core chip, it is possible to mimic the parallel execution of mul-
tiple threads. For instance occam-π allows to write multi-threaded programs
in a similar way as on the XMOS chips. Because occam-π runs on interrupt-
driven platforms, this approach cannot give the same guarantees concern-
ing timing and executing speed as the XMOS architecture. The scheduled
threads can still be interrupted by outside events. This makes it impossible
to determine with certainty when a calculation will be finished. As threads
run interleaved, it is difficult to meet real-time constraints.

Another approach is the use of an operating system such as TinyOS [11].
This operating system allows the scheduling of tasks. In this dissertation,
we will revisit the case study to illustrate the problems solved by the XMOS
architecture and compare the event-based version with the interrupt-based
version.

1http://www.xmos.com

14

Chapter 1 Introduction

1.3 High-level event-driven programming in

Scheme

Currently the XMOS chips can only be programmed in low-level program-
ming language derived from C. In this dissertation, we will therefore inves-
tigate whether the XMOS architecture can be programmed in the high-level
programming language Scheme and whether using Scheme on this architec-
ture simplifies the developer’s task even more.

We ported the bytecode interpreter Bit Scheme to the XMOS platform.
As this interpreter is very small, it fits in the available memory, while leav-
ing enough space for the bytecode of the application and the application’s
runtime memory requirements. Bit Scheme comes with a compiler that trans-
lates the Scheme source code into bytecode. The bytecode interpreter fea-
tures a real-time garbage collector, an important benefit in the embedded
domain. In this context, real-time means that the garbage collector is guar-
anteed to complete its task within a fixed amount of time [5]. This is espe-
cially useful when timing constraints need to be met. In addition to porting
the Bit Scheme interpreter to the XMOS platform, we also extended this
interpreter to XMOS specific hardware features. To support the multi-core
embedded system, we run four Scheme interpreters in parallel. We added
new primitives to the Scheme interpreter in order to allow the interpreters
to communicate via message passing. The Bit Scheme interpreter is also
extended with XMOS specific IO abstractions. We will illustrate the advan-
tages of this high-level approach in a case study.

15

Chapter 2

State of embedded software
engineering

Embedded software is different from traditional software that runs on a PC
or a server, in that it has to interact with the outside world. These inter-
actions can be reading sensors, handling communication with other systems,
handling user input, doing periodic tasks, et cetera. Currently almost all
embedded systems either actively poll the outside world for changes or are
notified of changes through interrupts.

Although prevalent, both approaches have significant disadvantages. When
polling for events, the software constantly checks for changes in the outside
world that need to be reacted to. If that check is not performed often, it
will increase the latency between the event occurring and it being reacted
to. This latency can be reduced by checking more frequently. However, this
also means that the software will often check in vain whether an event has
occurred. A computational overhead is therefore incurred.

In order to prevent having to poll constantly, so-called interrupts comprise
a frequently used alternative to polling. The hardware interrupts the normal
execution of the software to signal the occurrence of an event. This starts
an interrupt handler which will handle the event accordingly. Interrupts al-
low reducing any latency in detecting the occurrence of an event without
the computational overhead associated with polling for this event more fre-
quently.

16

Chapter 2 State of embedded software engineering

2.1 Using interrupts in embedded software

As mentioned before, being notified of outside events through interrupts re-
duces latency and overhead compared to software that uses polling. Apart
from that, using interrupts can also significantly reduce power consumption.
Especially battery powered devices can take advantage of this, for example
sensor network nodes [23]. These would drain their batteries in a few days if
the processor was constantly polling for changes in sensor readings. However
by idling until a timer has fired, the lifespan of the batteries can be extended
to several months. This will allow the processor to be in a power saving mode
for an extended period of time. Only the timer that will signal the interrupt
has to be powered.

In less powerful chips, dedicated hardware is often used to do certain time
and resource consuming IO tasks, such as serial communication. This takes
the task and thus the computing load away from the processor to a specialized
piece of hardware. That way, the main application can continue executing.
This concept introduces a limited amount of parallelism as the IO tasks runs
in parallel to the main application. Interrupts are used by the dedicated
hardware to, for example notify the main application that data was received
from the serial port. The Atmel ATMEGA 168, for example, has three
interrupts related to UART communication [3]. These interrupts signal that
the receiver or the transmitter is ready or that the register to send data is
empty.

2.2 Problems associated with interrupts

Interrupts are widely used in a variety of platforms and have multiple ad-
vantages over polling-based implementations. However, interrupts have some
drawbacks of their own.

Processor-dependent problems

First of all, interrupts are more or less tied to a certain platform [23]. While
the concept of interrupts is widely used, almost each platform or CPU fea-
tures a different implementation. Porting software to a different interrupt-
based architecture is therefore not trivial. Among others, the way an inter-
rupt is entered and exited differs per platform. Certain chips save their entire

17

Chapter 2 State of embedded software engineering

execution context before entering an interrupt (being the program counter
and all registers). Others only save the program counter. In the latter case,
the programmer needs to manually save the registers on the stack. Some
compilers also relieve the programmer from this task, having the program-
mer indicate that a function is an interrupt handler through pragmas. In
that case the compiler will add the necessary code to save the environment
on the stack before executing the actual interrupt handler.

Secondly, most instructions cannot be interrupted. This means that the
processor can only enter an interrupt “between” two instructions of the main
application code. On reduced instruction set chips (RISC) this is usually
no problem, because instructions are short. However, in complex instruction
set chips (CISC), some instructions take a long time to execute. This can
increase the interrupt latencies, which can be problematic for certain real-
time applications. To alleviate this problem, certain embedded compilers try
to keep these instructions out of the binaries to prevent this problem.

Stack overflow

A program’s call stack grows and shrinks during program execution. The
stack should never grow too large, because in that case adjacent memory
may get corrupted causing unwanted behaviour and/or crashes. Therefore
these stack overflows should be prevented at all cost.

However, in embedded systems memory comes at a premium. This is be-
cause more memory will obviously increase the economic cost of the device.
From an economic standpoint the available memory should therefore be used
as well as possible. However, to prevent a stack overflow from occurring,
there needs to be enough memory to let the stack grow to handle every pos-
sible situation. Clearly, in the ideal case the memory should be just large
enough to handle the biggest stack size, but no more.

One approach used to determine the needed stack size is based on em-
pirical data [23]. This data is collected during simulated or actual tests of
the system. On a simulator, the maximum stack size can be recorded di-
rectly. Determining the maximum stack size on a physical system can be
accomplished by initializing the entire memory to a known value and after
a program run checking how big the stack became. However, it is almost
certain that during testing some code paths will be missed, resulting in an
observed memory requirement that is smaller than the actual need of the
system.

18

Chapter 2 State of embedded software engineering

Another approach to determining the needed stack size is through analysis
[23] [24]. During this analysis, instructions that affect the stack size (like
push and pop operations, function calls, et cetera) are combined with the
program flow. That way the maximum stack size can be determined. It is
clear that this is a much more reliable approach than the testing-based one.
Analysis takes much effort too, unless good tools are available to automate
this. However, it is perfectly possible that after the analysis, the conclusion
is that the memory needed to be safe is infinite. This can for example be the
case with reentrant interrupts when interrupts are flowing in at a higher pace
than the processor can execute the interrupt handlers. Reentrant interrupts
handlers can be executed even when its previous call has not yet finished.
This effectively means that the same interrupt handler can be executing
multiple times at the same time.

worst depth seen in testing ≤
true worst depth ≤
analytic worst depth

Figure 2.1: Stack depth [23]

The actual worst depth stack size will always be between the one mea-
sured during testing and the one computed through analysis, as depicted in
Figure 2.1. The lower boundary (being testing) can be increased by doing
more extensive testing. The upper boundary, on the other hand, can be
lowered by checking for relationships between interrupts that for example
cannot physically appear together. This is not without danger. Such rela-
tionships between interrupts are usually based on assumptions derived from
the specifications of the system. These specifications can state that under
normal operation two specified interrupts cannot happen together. However,
it is possible that the system may get in a state outside its specifications.
When certain assumptions are made about the occurrence of interrupts, un-
expected situations can result in a crash. When combined with the fact that
embedded systems may perform (life)critical tasks, it is desirable that the
software can cope with these unusual situations.

Combining an analysis-based method and a testing-based to determine the
needed stack size method should result in an embedded system that is “stack
safe”. This means that it is impossible for a stack to become too large and
to overflow into memory used for other purposes. Clearly the ideal system

19

Chapter 2 State of embedded software engineering

should just contain enough memory to be stack safe, although in practice an
extra margin is used.

Interrupt overload

Interrupt overload happens when an embedded system has to handle so many
interrupts, that the main application is starved from CPU cycles. This flow
of interrupts is generally caused by an external device generating an un-
expectedly high number of interrupts. This can for example be due to a
malfunction of this device. Another example is a robot speeding downhill.
In that case its sensors will generate more interrupts than when it would
ride on a flat surface at full speed. Clearly in this case, the specification of
maximum achievable speed of the robot is not a reliable measurement for the
real maximum speed.

High interrupt loads do not necessarily mean that an interrupt overload
occurs, as the system should be designed to handle that specific load. It
is only in the case of unexpectedly high interrupt loads that this problem
might occur. The moment when the interrupt overload starts depends on
the number of interrupts, the CPU speed and on the length of the interrupt
handlers. Due to these different factors the maximum amount of interrupts
can vary greatly between different systems and situations.

Because embedded systems interface with the physical world, it is often
difficult to determine what the maximum number of interrupts is that a
system will receive. It is clear that this number can be higher than what
is mentioned in the system’s specifications. Simple examples are button
presses, where so-called “button bounce” may cause a frequency of interrupts
of over 1 kHz when the button makes contact [23]. Also malfunctions of the
peripherals on the system board can cause an unexpectedly high number of
interrupts. A simple loose wire can already create a 500 Hz signal [23].

The maximum amount of time spent in an interrupt handler is quite easy
to compute with the formula in Figure 2.2.

It is clear that limiting the time spent in interrupts by keeping interrupt
handlers small is a good idea. Also bounding the arrival rate is clear to
reduce the total time spent in interrupt. However, as mentioned before,
assumptions about the maximum interrupt arrival rate need to be carefully
considered. Another method to reduce the maximum rate is by using smarter
peripherals, for example a serial port which does not generate an interrupt

20

Chapter 2 State of embedded software engineering

maximum time spent in interrupt handler

∗maximum interrupt arrival rate

= total time spent in an interrupt

Figure 2.2: Time spent in an interrupt [23]

for every byte it receives. It is also possible to switch to polling when a
high rate of interrupts is detected. The overhead associated with polling
is caused by checking in vain for events. Certain network chips will switch
from interrupts to polling when many packets arrive for an extended period
of time [23].

Another method which can be applied is called Restricted Interrupt Dis-
cipline (RID) [22]. RID is application code that uses the enable bits of the
hardware to enable and disable interrupts as they are needed, which is fairly
straightforward. This reduces the changes of unexpected interrupts being
fired. It consists of two steps. First the developer needs to initialize the
hardware properly in order to disable all requested interrupts. Requested in-
terrupts are interrupts which are caused implicitly by the programmer. This
is, for example, an interrupt signalling that serial data was successfully sent.
Therefore, the interrupt in question should only be enabled when the ap-
plication sends serial data. Spontaneous (non-requested interrupts) can be
enabled as soon as the application is ready to handle them.

Testing

Finally, interrupts can be the source of serious software errors. However,
errors like the aforementioned stack overflow might only appear under very
specific conditions. This is because interrupt based software usually contains
a very large number of executable paths [22]. This means that certain bugs
can be very rare and therefore hard to detect during testing. Interrupts add
fine-grained concurrency to embedded applications [22]. This can introduce
various race conditions, which are difficult to find. These problems may
sound familiar to people developing multi-threaded programs. Also because
the number of executable paths increases significantly when introducing in-
terrupts in software, it becomes difficult to reason about the software and its
execution. Many embedded systems serve a safety critical role or have to run

21

Chapter 2 State of embedded software engineering

without human intervention for an extended period of time, consequentially
bugs should be detected during testing.

2.3 Case study: pulse width modulation with

wireless XBee control

The following case study illustrates the problems associated with interrupt-
based software. It implements a pulse width modulation on a board shown
on Figure 2.7.

Pulse width modulation is a technique to create an analog voltage between
0 volt and Vcc volt. This is achieved by quickly enabling and disabling a
digital output (which can only output 0 or Vcc volt). By varying the duty
cycle of the output, one can emulate an analog voltage in the supported range.
PWM has various applications. One of them is dimming LEDs, instead of
using a variable resistor to vary the current through the LED and thus the
light intensity. When using PWM, the LEDs are quickly turned on and off,
giving the human eye the impression that the LED is dimmed. This task is
highly periodic as frequencies of 100Hz and more are recommended to drive
LEDs.

PWM can be implemented in software too, however by using dedicated
hardware, the application can continue without having to be interrupted 100
times per second to toggle the output of the pin.

t=0 t=1 t=2 t=3 t=4 t=5

0% Duty Cycle

25% Duty Cycle

50% Duty Cycle

75% Duty Cycle

100% Duty Cycle

Figure 2.3: Pulse Width Modulation (PWM)

22

Chapter 2 State of embedded software engineering

2.3.1 Hardware setup

Two of the boards shown in Figure 2.4 are connected using a wireless module
called XBee to synchronize their PWM values. Data is sent back and forth
between the XBee module and the micro-controller using serial communica-
tion over RS-232 UART. The RS-232 protocol uses three wires: one to send
data (tx), one to receive data (rx) and a common ground (gnd). Every bit
is sent one by one over a wire, hence the name serial communication. The
detailed principles are explained in Section 4.6.2.

Figure 2.4: Hardware setup

To modify the PWM value, two buttons are used, as shown on Figure 2.4.
When connecting a button to a chip one cannot simply connect it as displayed
in Figure 2.5. In this case, when the switch S is open, the pin of the chip
will be floating, meaning that this pin is not connect to either ground or Vcc.
This means that it will get an undefined logic level, giving erroneous input
to the chip.

To prevent this problem, the pin needs to be connected to either ground
or Vcc at all time. Therefore an extra resistor is added as illustrated in
Figure 2.6. In case (a), a pull down resistor will pull the voltage Vi to
Ground when switch S is open. While the second case (b), a pull up resistor,
Vi will pull the output voltage to the Vcc level when the switch is open. The
resistor used needs to have a big resistance to ensure that when closing the

23

Chapter 2 State of embedded software engineering

Vi

S

Vcc

(a) Connected to Vcc

S

Vi

Vcc

(b) Connected to Gnd

Figure 2.5: Incorrectly connected buttons

switch S, the voltage remains at the desired logical level. Typically for a
Vcc of 5V a resistor of over 1000 Ω is used. When the button is closed, the
resistor will work as a voltage divider.

R

Vi

S

Vcc

(a) Pull down

S

Vi

R

Vcc

(b) Pull up

Figure 2.6: Pull down and pull up circuits

The needed peripheral electronics for this case study is shown in Figure 2.7.
It consists of two buttons with pull down resistors connected to pins 2 and
3. Pin 9 is connected to the LED. The current through the LED is limited
by a 220 Ω resistor.

2.3.2 Software

First the hardware needs to be initialized. This is implemented in the setup

function shown in Listing 2.1. The serial output is initialized at a speed
(or baudrate) of 9600 bps. Next the pin connected to the LED is defined
as output and gets its default value. The function analogWrite will write
the PWM value. This function interprets 0 as always off and 255 as always

24

Chapter 2 State of embedded software engineering

10kΩ

pin 2

S1

Vcc

S2

pin 3 pin 9

10kΩ 220Ω

Figure 2.7: Case study hardware setup

on. It configures the hardware accordingly and then returns. The hardware
PWM module will then perform its task independently. Finally, the function
increase and decrease are set up as interrupt handlers for the buttons.
These external interrupts referenced with numbers 0 and 1 even if they are
connected to pins 2 and 3 (pins 0 and 1 are used for the XBee UART com-
munication). When a button is pressed, the appropriate interrupt handler is
called. The interrupt handlers will only be called when a button is pressed,
due to the extra RISING parameter. Due to this parameter an interrupt will
only be caused by a rising edge. A rising edge is the moment when the
voltage on a wire changes from 0 volt to Vcc.

Listing 2.1: Setup

1 i n t l ed = 9 ;
2 i n t pwm = 7 ;
3
4 void setup () {
5 S e r i a l . begin (9600) ;
6
7 pinMode (led , OUTPUT) ;
8 analogWrite (led , pwm∗16) ;
9

10 a t ta ch In t e r rup t (0 , i n c r ea s e , RISING) ;
11 a t ta ch In t e r rup t (1 , decrease , RISING) ;
12 }

When the setup is finished, the main loop shown in Listing 2.2 is entered,
which handles the RS-232 input by polling for available data. If there is data
available, it is used to update the PWM value. This update is performed by

25

Chapter 2 State of embedded software engineering

the analogWrite function which will update the PWM pulse set on the pin.
The duty cycle is set by varying the second argument from 0 to 255. This
function will emulate setting an analog voltage on the pin, which is generated
by pulse width modulation by the chip’s hardware.

Listing 2.2: Handling the RS-232 input

1 i n t l ed = 9 ;
2 i n t pwm = 7 ;
3
4 void loop ()
5 {
6 i f (S e r i a l . a v a i l a b l e () > 0)
7 {
8 pwm = (S e r i a l . read () %16) ;
9 analogWrite (led , pwm∗16) ;

10 }
11 }

The buttons are handled by using two interrupts shown in Listings 2.3
and 2.4. When a button is pressed, the appropriate handler is called. In that
handler, we will sample the current time to perform a so-called debounce-
operation. This is needed because when a button is pressed, it will not
immediately have a firm contact, but bounce for a brief moment between
open and closed. This will effectively generate multiple key presses, therefore
it’s our task to filter these unwanted interrupts out. If the button hasn’t been
pushed for half a second, this means that we can interpret the button push
as legitimate. In that case the new PWM value will be calculated and sent
via serial and the XBee module to the other board.

26

Chapter 2 State of embedded software engineering

Listing 2.3: Increase interrupt handler

1 i n t l ed = 9 ;
2 i n t pwm = 7 ;
3
4 void i n c r e a s e ()
5 {
6 s t a t i c unsigned long l a s t = 0 ;
7 unsigned long cur rent = m i l l i s () ;
8
9 i f (cur r ent − l a s t < 500) re turn ;

10
11 l a s t = cur rent ;
12
13 i f (pwm < 15)
14 {
15 pwm++;
16 analogWrite (led , pwm∗16) ;
17 S e r i a l . wr i t e (pwm) ;
18 }
19 }

The decrease interrupt handler shown in Listing 2.4 is very similar to the
increase one, containing debounce code followed by code modifying of the
LED PWM.

27

Chapter 2 State of embedded software engineering

Listing 2.4: Decrease interrupt handler

1 i n t l ed = 9 ;
2 i n t pwm = 7 ;
3
4 void dec r ea s e ()
5 {
6 s t a t i c unsigned long l a s t = 0 ;
7 unsigned long cur rent = m i l l i s () ;
8
9 i f (cur r ent − l a s t < 500) re turn ;

10
11 l a s t = cur rent ;
12
13 i f (pwm > 0)
14 {
15 pwm−−;
16 analogWrite (led , pwm∗16) ;
17 S e r i a l . wr i t e (pwm) ;
18 }
19 }

The main function shown in Listing 2.5 is called by the boot loader when
the Atmel chip is powered on. It will first initialize and set up the hardware
and next enter the main loop. The include WProgram.h contains the functions
used to modify the hardware. They contain the low level implementation.

When the main loop is running it polls continuously for incoming data
from the UART. However, at any time this code can be interrupted by an
interrupt generated by a button press. The accompanying interrupt handlers
can modify the PWM value. This variable is effectively shared memory
between the main loop and the handlers, therefore at any time this value
can be changed, introducing unwanted changes of this variable in the main
loop. It is possible to stop this problem by protecting it using extra code
which turns the interrupts question off during the critical sections. Clearly
more interrupts will add much more possible code paths. Consequentially, in
complex embedded software, problems as the one shown above can be much
harder to detect.

28

Chapter 2 State of embedded software engineering

Listing 2.5: Main function

1 #inc lude ”WProgram . h”
2 i n t l ed = 9 ;
3 i n t pwm = 7 ;
4
5 void setup () ;
6 void loop () ;
7 void i n c r e a s e () ;
8 void dec r ea s e () ;
9

10 i n t main (void)
11 {
12 i n i t () ;
13
14 setup () ;
15
16 f o r (; ;)
17 loop () ;
18
19 re turn 0 ;
20 }

2.4 Conclusion

Interrupts are widely used in todays embedded software. They offer various
advantages over polling, like improved power efficiency and more efficient
usage of resources. However, they also are the source of various hard to fix
problems. These problems often occur only under very special circumstances.
Therefore they are particularly hard to find and solve during testing. In a
case study we gave an example on how interrupts can introduce bugs in very
subtle ways.

29

Chapter 3

Event-driven embedded
software

Due to chips becoming increasingly powerful, it has become feasible to use
software for tasks that used to be implemented in hardware. This is an
approach advocated by the XMOS company. The event-driven architecture
eliminates the need to use interrupts to handle events from the outside world.
A thread runs its application code until it has to wait for one or more events.
The thread will suspend itself until the event occurs. Once the event has
occurred, the thread continues executing.

The multi-core XMOS chip supports 32 threads in hardware which each
get a guaranteed minimum amount of CPU cycles. Because these cycles
are guaranteed for each thread, it allows writing embedded software with
more predictable timing behaviour. The execution of a function will never
be delayed due to factors like interrupts. Because the hardware supports
multiple threads and thanks to the event-driven architecture, threads can
handle their own IO instead of having to rely on interrupts for this. Because
all of this is supported by the specifically designed hardware, the chip offers
high performance, but can also conserve power if programmed properly.

However, the concept of a chip specifically designed for parallel comput-
ing is not new. In the 1980s, the company Inmos produced a chip called
the Transputer [1]. The architecture and the accompanying programming
language Occam are based upon CSP, which is also the case for the XMOS
chips.

30

Chapter 3 Event-driven embedded software

3.1 Threads and events

Applications written for XMOS chips are almost always split over multiple
threads. The computing power of these chips can only be exploited fully
when using threads.

These threads are directly supported by the XMOS chips. However, only a
limited number of threads is supported. The amount of threads that can run
on the chip used in this dissertation, the XS1-G4, is limited to 32. By limiting
the number of threads, it is possible to have a dedicated set of registers for
each of them. This allows to quickly switch between threads as the states of
the thread being paused and the one being loaded don’t have to be stored
in and fetched from RAM memory respectively. Each thread is assigned a
guaranteed amount of CPU cycles. This increases the predictability of the
program’s execution time. When a core is executing n threads, each thread
can execute its next instruction at most n clock cycles in the future [15].
Timing constraints will therefore always be met. Events that arrive while
handling another event, will be handled by a separate thread.

The XMOS programming model does not allow threads to share memory.
Two threads can communicate by means of exchanging messages. Concretely,
these messages are passed over channels. A channel has exactly two channel
ends, connecting exactly two threads. These two threads can bidirectionally
communicate over the channel. Communication over this channel is blocking.
Therefore, the two communicating functions must reside in separate threads,
which run in parallel. If not, the program will stall.

Threads on different cores and different chips have different physical mem-
ory. If two threads run on the same core, communication can, in theory,
happen through shared memory rather than message passing. Although not
recommended, it is therefore possible to disable the compiler’s disjointness
checks of variables. These disjointness checks are carried out by the compiler
to ensure, that no variables are shared between threads. Disabling these en-
ables multi-threaded programming using the shared memory paradigm. A
third, even more low-level, way of communication is via registers.

Channels don’t have a specified direction in which the communication
should happen. This means that two threads can communicate back and
forth over the same channel. But communication is blocking, consequen-
tially threads need to be sending and receiving data in the correct order. If
the two threads communicating over the same channel try to send or receive
at the same time, a deadlock will occur.

31

Chapter 3 Event-driven embedded software

Aside from multi-threading, the XMOS chip also offers hardware support
for event-driven architectures of embedded systems. Event-driven entails
that a thread subscribes to an event and performs the corresponding com-
putations when that event occurs. Events can be time-related (e.g. the
completion of a millisecond count), communication-related (e.g the recep-
tion of data from another thread) or input/output related (e.g. the pushing
on a button). When a thread waits for an event to occur, it is suspended.
By suspending itself, it allows other threads to be executed or to reduce the
power consumption of the chip in case there are no other threads to run.

3.2 Event-driven XMOS hardware

The event-driven and multi-threaded XMOS programming model requires
specifically designed hardware. The XMOS XS1-G4 chip used in this disser-
tation combines 4 processing cores into one piece of silicium, as depicted on
Figure 3.1. These cores are also called XCores. Each of these XCores runs
at 400 MHz and has its own dedicated memory and IO. A maximum of 8
threads can run in parallel on each core. As illustrated by Figure 3.1, the
XCores are connected using an interconnect or switch which allows threads
on different cores to communicate.

Apart from the 4-core chip used in this dissertation, there are other ver-
sions available too containing 1 or 2 cores. Both these chips also exists in a
faster 500 MHz version, which gives a 25 % speed increase over the standard
versions which run at 400 MHz. Trading in parallelism for a faster sequential
execution of the individual threads.

3.2.1 The XCore architecture

Processor

Each chip designed and manufactured by XMOS contains one or more XCores.
As mentioned before, each XCore can run a maximum of 8 threads. These
threads are supported in hardware and are executed interleaved. Due to the
round robin scheduler, threads appear to execute in parallel. Figure 3.2 il-
lustrates that an XCore has a dedicated set of registers for each of these 8
threads. Each XCore is equipped with 64 kilobytes of RAM memory, which

32

Chapter 3 Event-driven embedded software

Figure 3.1: XS-G4 chip schematic

is shared among all threads running on that core. This memory is not only
used during run-time, but also contains the code for the application itself.

Input and output

Each XCore is connected with up to 64 pins to perform IO. These can be
configured either for input or for output purposes. For IO the notion of ports
is used. A single port can represent from one up to 32 pins.

Communication

Each XCore features support for XLink channel ends. These allow threads to
communicate, even if they reside on a different XCore or even on a different
chip.

3.2.2 Thread execution speed

As each XCore on the XS1-G4 chip, runs at a clockspeed of 400 MHz by
default, a maximum of 400 million instructions per second (MIPS) can by
executed. For the XS1-G4, which contains four XCores, this totals to a max-
imum of 1600 MIPS for the entire chip. The CPU is RISC based (Reduced
Instruction Set Computer), therefore most instructions execute in a single
clock tick.

33

Chapter 3 Event-driven embedded software

Figure 3.2: XCore architecture

Each thread gets an equal guaranteed minimum amount of processor cycles.
However, as illustrated by Figure 3.3, the maximum performance for a thread
will only be attained when running four or less threads on a single core. In
that case, each thread will be executed at 100 MIPS. When an application
needs more threads than those four, the guaranteed minimum CPU time that
will be granted to each thread will decrease accordingly. When the maximum
of 8 threads per XCore is running, each of them will get 50 MIPS.

The numbers mentioned above are the strict minimum, the exact amount
of CPU time each thread gets varies depending on the actual application and
thread size. When one thread is suspended (i.e. is waiting for an event to
happen), extra CPU cycles become available for the other threads, enjoying
an increase in their execution speed.

3.2.3 The memory model

Each core is equipped with its own individual memory. The amount of mem-
ory available on a core is limited: only 64 kilobytes of memory. In a four-core
chip this results in a total of 256 kilobytes of memory. This memory has to
host the entire application code, but also the stack and the heap at run-
time. As this memory cannot be shared between threads on different cores,
the memory requirements of a single core application cannot exceed 64 kilo-
bytes. To use all 256 kilobytes of memory, the application needs to consist

34

Chapter 3 Event-driven embedded software

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Threads on an XCore

M
IP

S
p

er
th

re
ad

Figure 3.3: Guaranteed minimum MIPS per thread

of at least four threads and each thread has to run on a different core. These
threads cannot use shared memory to communicate, all communication hap-
pens via message passing. To assist the programmer with fitting a program
in this memory, the mapper of the XMOS toolchain can create a report with
the memory requirements on each core.

Apart from the RAM there is a small piece of ROM on the chip. This ROM
is 8 kilobytes large and contains the startup code for the chip. It can also
be used for security purposes as the code inside this ROM can no longer be
changed after it is programmed.

3.2.4 Communicating between threads

The XS1-G4 chip contains four of the above-mentioned XCores. As each
core has its own memory, shared memory cannot be used for communication
between threads on different cores. These cores are connected using an in-
terconnect which allow threads to communicate using message passing. It is
also possible to connect multiple chips using the “XLinks”.

35

Chapter 3 Event-driven embedded software

To communicate with other XMOS chips, each chip is equipped with four of
these links. They allow to connect multiple chips in a chain or in a hypercube.
A chain can be made by connecting multiple XK-1 development kits [13] while
the hypercube is used inside the high performance XK-XMP-64 development
kit [14].

As the distance between two communicating threads increases, the commu-
nication delay increases accordingly. Communicating between threads on a
single XCore takes only a single CPU cycle. This results in a speed of 1Gbps.
This increases to 3 clock cycles when communicating between threads resid-
ing on different XCores, but still on the same chip. Communicating between
two chips takes at least 20 cycles. Just like the execution speed of the threads,
the communication delay is fully deterministic.

3.3 Conclusion

To enable event-driven programming of embedded software, the XMOS com-
pany has designed a multi-core and multi-threaded chip. Because there is the
possibility of running up to 32 threads in parallel, the concept of interrupts
is no longer needed. This clearly also keeps out the problems associated with
them. Threads are supported directly in hardware and because every thread
gets a minimum number of CPU cycles, this architecture can reliably meet
timing constraints, as there are no interrupts that can unexpectedly stall the
application.

In order to program this new concurrent architecture, a different approach
to embedded programming is needed. Applications need to be split up
in threads, however embedded software maps quite naturally into multiple
threads. These thread communicate via message passing.

36

Chapter 4

Programming XMOS hardware
using XC

To program its chips, XMOS designed a language called XC which is very
similar to ANSI C. It contains extra constructs to support the chip’s special
features which we described in the previous chapter. In contrast to C, XC
does not support pointers. However, XC does support passing arguments
to functions by reference. To allow returning multiple arguments from a
function (which is usually implemented with a pointer in C) XC supports
multiple return values.

The XC programming language is based upon Communicating Sequential
Processes [9]. Parallelism and IO operations are a fundamental part of CSP.
This is also the case for XC, where IO operations are a fundamental part of
XC [9]

XC programs are compiled and debugged using a modified version of the
GNU toolchain.

4.1 Executing functions in parallel

The par statement executes two or more functions in parallel. Each of these
functions will be executed in a separate thread. In the case of Listing 4.1,
all threads will be started on the same core. In a strict sense, these threads
won’t therefore run in parallel, but interleaved.

37

Chapter 4 Programming XMOS hardware using XC

Listing 4.1: Executing functions in parallel

1 par{
2 func t i on1 () ;
3 func t i on2 () ;
4 }

As illustrated in Listing 4.2, the programmer can specify a core on which
the thread has to be executed. This is especially important when a thread is
doing IO because not all IO pins are available on a core. This is illustrated
by Figure 4.1. IO should therefore be performed on the core where the IO
pins are available. Threads that communicate a lot with each other can
also be assigned to the same core out of performance considerations (cfr Sec-
tion 3.2.4). This results in the smallest communication overhead. When a
program consists of more than four threads that do heavy calculations, it is
recommended to divide them over different cores. This will yield better over-
all performance. When running more than four threads on the same core,
each of them will receive a maximum of 80 MIPS, instead of the maximum
of 100 MIPS (cfr Section 3.2.2).

Listing 4.2: Executing functions in parallel on a specified core

1 par{
2 on s tdco r e [0] : f unc t i on1 () ;
3 on s tdco r e [1] : f unc t i on2 () ;
4 }

4.2 Communicating between threads

When threads need to communicate, they do so by passing messages over a
channel. Each channel has exactly two channel ends. The mapping between
channels and channel ends is performed by the XC compiler. As communi-
cation is blocking, the two functions communicating need to be inside a par

statement, in order to be executed in in parallel. If not, the program would
stall when the functions try to communicate.

Listing 4.3 illustrates two threads that communicate over a channel. The
first thread sends the number 7 over a channel called c. The “<:” operator

38

Chapter 4 Programming XMOS hardware using XC

is the equivalent to the CSP exclamation mark. This thread will now block
until the value is read from the other end of the channel. The second thread
tries to read a value from the same channel and blocks until it’s available.
The “:>” operator is equivalent to the question mark operator in CSP.

Listing 4.3: Communicating between concurrently running threads.

1 chan c ;
2
3 void thread1 (chanend c1)
4 {
5 c1 <: 7 ;
6 }
7
8 void thread2 (chanend c2)
9 {

10 i n t v ;
11 c2 :> v ;
12 }
13
14 par
15 {
16 thread1 (c) ;
17 thread2 (c) ;
18 }

Channels are not directional. This means that two threads can communi-
cate back and forth over the same channel. However, as communication is
blocking, threads need to be sending and receiving data in the correct order.
If two threads try to send or receive at the same time over the same channel,
a deadlock will occur.

The data types of input and output variables must comply with the stan-
dard C rules for assignments. The programmer is in charge of casting incom-
patible data types.

If two threads run on the same core, they can, in theory, communicate
through shared memory. However, to preserve the CSP principles, XC always
uses the message passing.

In addition to channels, XC also offers streaming channels which have a
buffer. When reading from and sending over a streaming channel, threads

39

Chapter 4 Programming XMOS hardware using XC

won’t always block. The sending thread will only block when the buffer is
full, while the receiving one will block when that same buffer is empty.

4.3 Performing input and output using ports

Ports (or more specifically the pins they represent) are used to connect to
peripheral hardware. A port can represent 1, 2, 4, 8, 16 or 32 pins. This is
called the width of the port.

Listing 4.4 depicts a small example performing IO. It will activate LEDs
on the development board and subsequently read which buttons are pressed.
Two header files are included: the standard C IO library and an XC-specific
file which defines the port names used on the development board. Referencing
these names, lines 4-6 define two output ports and one input port. Port
PORT CLOCKLED SELG refers to a single pin, while the other two represent
multiple pins (cfr Figure 4.1). The operations listed in Table 4.1 are now
used to do the actual IO on lines 12-17. Line 16 uses an extra check pinsneq

on the input port. This will cause the thread to wait until the value of the
port is not equal to 15. When the value of the port is no longer 15, the new
value is returned.

40

Chapter 4 Programming XMOS hardware using XC

XC Description

port <: value; Immediately write to a port.
port :> int value; Immediately read from a port.
port when pinseq (data) :> int output Read from port when the value

on the pins equals data.
port when pinsneq (data) :> int output Read from port when the value

on the pins differs from data.

Table 4.1: IO functions

Listing 4.4: Performing IO operations

1 #inc lude <s t d i o . h>
2 #inc lude <plat form . h>
3
4 out port c l ed0 = PORT CLOCKLED 0;
5 out port c l edg = PORT CLOCKLED SELG;
6 in port button = PORT BUTTON;
7
8 i n t main ()
9 {

10 i n t b1 , b2 ;
11
12 c l edg <: 1 ;
13 c l ed0 <: 0x70 ;
14
15 button :> b1 ;
16 button when pinsneq (15) :> b2 ;
17 p r i n t f (”%d %d\n” , b1 , b2) ;
18 re turn 0 ;
19 }

The mapping between ports and hardware is different for each XMOS (de-
velopment) board. The mapping for the XC-1A development kit is displayed
in Figure 4.1. This figure also illustrates that not all peripheral hardware is
accessible form all cores. Most of this hardware is connected to core (or pro-
cessor) zero. The development board’s buttons (BUTTON [A-D]) and their
accompanying LEDs (BUTTONLED [A-D]) are, for instance, only accessible
from core zero.

41

Chapter 4 Programming XMOS hardware using XC

Figure 4.1: Port to pin mapping for the XC-1A [12].

Full and detailed information about the mapping between pins and ports
for the XC-1A development kit can be found in [12]. Table 4.2 clarifies how
a 32-bit value is mapped onto port BUTTONLED when written by a thread on
core zero. Only the four least significant bits of the 32-bit value map to the
port. The 28 most significant bits are not used. This is because the port
represents four pins, as can be derived from Figure 4.1.

42

Chapter 4 Programming XMOS hardware using XC

Data bits b31 − b4 b3 b2 b1 b0

Port
not mapped

BUTTONLED
(PORT 4C)

P4C3 P4C2 P4C1 P4C0
LEDs D C B A
Pins X0D21 X0D20 X0D15 X0D14

Table 4.2: Mapping a 32-bit variable onto ports and pins (on core zero)

It is not possible to immediately address a single pin on a port representing
multiple pins. However, the programmer can use the current value of a port
and apply a bitmask to it to change a single pin.

4.4 Timing operations

As discussed in Chapter 1 timing is often crucial in embedded software. In
serial communication, for instance, the bits need to be put on the line at
the exact time defined by the baudrate. Pulse width modulation (PWM), is
switching a digital output on and off very often to emulate an analog voltage
is another example. In a proper PWM implementation the output needs to
be toggled at a frequency of least 100 Hz, making it a highly periodic task.
XC offers timers to time operations, for example to pause between bits in
serial communication. Timers contain a 32-bit value which is (by default)
incremented every clock tick of the processor.

Listing 4.5 depicts a simple PWM implementation which will dim the
board’s LEDs by enabling them only 10 percent of the time. This program
will first read the current time into an integer with the name time. After
this small setup, the loop doing the actual PWM is entered on line 15. The
LEDs are switched on by sending 0x70 to the correct port and turned back
off by sending zero. Between switching on and off, there is each time a small
delay introduced using the timer.

As the thread runs at 100 MHz, the timer is incremented each 10 ns. This
implies that to have a PWM frequency of about 100 Hz, we need a total
delay of 1 000 000 clockcycles as illustrated in Figure 4.2. This delay is split
in a 1 to 9 ratio between respectively off and on. As the current time is saved
into an integer, it is simple to calculate when the next switch of the LEDs

43

Chapter 4 Programming XMOS hardware using XC

needs to happen. The timerafter function will cause an event when the
time given as its argument has passed.

clockticks per second

PWM frequency ∗ PWM steps
= delay in clockticks

100 ∗ 106

100 ∗ 10
= 100 000 clockticks

Figure 4.2: PWM timing

Listing 4.5: PWM using timers

1 #inc lude <plat form . h>
2 #d e f i n e CYCLE 100000
3
4 out port c l ed0 = PORT CLOCKLED 0;
5 out port c l edg = PORT CLOCKLED SELG;
6
7 i n t main ()
8 {
9 i n t time ;

10 t imer tmr ;
11
12 c l edg <: 1 ;
13 tmr :> time ;
14
15 whi le (1)
16 {
17 c l ed0 <: 0x70 ;
18 time += 1 ∗ CYCLE;
19 tmr when t i m e r a f t e r (time) :> void ;
20
21 c l ed0 <: 0 ;
22 time += 9 ∗ CYCLE;
23 tmr when t i m e r a f t e r (time) :> void ;
24 }
25 re turn 0 ;
26 }

44

Chapter 4 Programming XMOS hardware using XC

4.5 Handling multiple events at once

All communication and certain port input operations are blocking. This
means that a thread can only check for one event at a time. In order to over-
come this limitation, there is the XC select statement that allows checking
for multiple events at once in a single thread. This select statement is
illustrated in Listing 4.6

Syntactically the XC select is similar to the C switch statement. Instead
of checking the value of a single variable, select allows reacting to events
originating from multiple resources. These resources can be ports, channels
or timers.

When exactly one event has occurred, the associated action will be exe-
cuted. When more than one event has occurred, only one action will be
executed. The select statement is often used inside an endless loop. Dur-
ing each iteration, a different action will be executed. If no events have
occured, the thread will block until one of the events occurs. The select

statement can end with a “default case”, which will be executed when not a
single event has occured. Clearly, this also implies that the thread will not
be suspended when no events are ready.

Listing 4.6 lists a select statement with three cases. The first waits
for data to become available on the channel with a channel end named
inputchanend. This data is written to the variable c after which the state-
ment’s body is executed. The second case waits for a value different from 15
showing up on the port called buttons. The last case will become applicable
when the timer tmr has passed the value of variable t.

Each case statement has to end with break or return. Therefore, contrary
to the C switch statement, it is not possible to have one case statement
continue into the next one.

45

Chapter 4 Programming XMOS hardware using XC

Listing 4.6: Select statement

1 unsigned c , x ;
2
3 s e l e c t
4 {
5 case inputchanend :> c :
6 . . .
7 break ;
8 case buttons when pinsneq (15) :> x :
9 . . .

10 break ;
11 case tmr when t i m e r a f t e r (t) :> void :
12 . . .
13 break ;
14 d e f a u l t :
15 . . .
16 break ;
17 }

It is not possible to use output operations in case statements (a limitation
originating from CSP). This could be useful when a thread wants to send
data via a channel to another thread. For example when implementing a
buffer in a thread with one channel for incoming data and one for outgoing
data. However, it is possible to work around this limitation, by having the
receiving thread send a ready signal to the buffer (as shown by Figure 4.3).
As this ready signal is input, it can be used as a case statement which will
perform the output operation.

Producer

Buffer

Consumer

Data IN
Data OUT

Ready

Figure 4.3: Buffer structure

46

Chapter 4 Programming XMOS hardware using XC

An implementation of this buffer is shown in Listing 4.7. The buffer can
store twelve integers. This implementation uses an extra guard in the case
statements. Using a guard, the channel is only read from when the expression
before the “=>” evaluates to true.

Listing 4.7: Buffer implementation

1 void boundedbuffer (chanend producer , chanend consumer){
2 i n t moreSignal ;
3 i n t b u f f e r [1 2] ;
4 i n t inp = 0 ;
5 i n t outp = 0 ;
6
7 whi l e (1) {
8 s e l e c t {
9 case inp<outp+12 => producer :> b u f f e r [inp % 1 2] :

10 inp++;
11 break ;
12 case outp<inp => consumer:>moreSignal :
13 consumer <: b u f f e r [outp % 1 2] ;
14 outp++;
15 break ;
16 }
17 }
18 }

4.6 Case study revisited: a low-level event-

driven implementation in XC

We will revisit the case study introduced in the Chapter 2. Concretely we
ported it to the XMOS platform and hence moved from an interrupt-driven
to an event-driven architecture. Some adaptations are needed as the two
hardware platforms are vastly different.

We implemented a program through which users can adjust the color of the
LEDs on two XC-1A development boards. The colors of the LEDs range from
red over yellow to green. Each development board has four buttons through
which the colors of the LEDs can be changed. The colors are synchronized

47

Chapter 4 Programming XMOS hardware using XC

between the two boards. This synchronization is done wirelessly via XBee
modules.

The program on each board contains both its own color and the one shown
on the other board. These values are kept synchronized. When the user
presses one of the buttons to change the LEDs color, the new values are sent
to the other board.

Figure 4.4: Closeup of the LEDs

As shown in closeup on Figure 4.4, the XC-1A development board red-green
LEDs (twelve in total). Each of these red-greed LEDs actually contains two
separate LEDs, one for each color. By switching between the red and green
LEDs quickly we can fool the human eye to believe that it sees a single color.
Figure 4.5 depicts an example where the red led is on for 60 % of the time,
while the green one is on for 40 %. This cycle should run at a frequency of
about 100 Hz. This frequency will ensure that a human observer will not
notice any flickering caused by the rapid switching.

... G G R R R R R R G G G G R R R ...

Figure 4.5: Showing a color with 60% red and 40 % green

The application is split up in four threads as depicted in Figure 4.6. Two
of these threads are responsible for the UART communication, concretely
the receiver (UART RX) and the transmitter (UART TX). A third performs
the pulse width modulation of the LEDs The fourth contains the application
logic and handles the user input from the buttons.

48

Chapter 4 Programming XMOS hardware using XC

Core 0
Control logic

Core 1
UART RX

Core 2
UART TX

Core 0
LED PWM

Figure 4.6: Structure of the case study application

4.6.1 Hardware setup

Figure 4.7 displays the hardware setup used for this case study. The wiring
of this setup is schematically displayed on Figure 4.8. It connects the XMOS
XC-1A development board on the left with an XBee ZigBee receiver on the
right. The former is used to power the latter with its built in 5 volt power
supply. However, the XBee module itself works on 3.3 volt [10]. Therefore,
an Arduino XBee shield is used as it contains the needed hardware [20] to
do the voltage conversion for both the power supply and the signal levels.

The wires used to communicate with the XBee module are connected to
PORT 1A on both cores one and two. Figure 4.1 displays that this port is
connected to the pin called XnD0. This particular pin is mapped to the
X1PortA and X2PortA headers respectively on cores one and two. More
information about the exact location of these connections on the development
board can be found in its documentation [12].

For debugging purposes an XBee module can be connected to a PC, using
another ArduinoXBee shield. This XBee sheeld is plugged into an Arduino
board which has its ATMEL CPU removed. The microcontroller-less Arduino
board contains an FTDI chip which performs the RS-232-to-USB conversion.
On a PC with correctly installed drivers, the XBee module will then show
up as a serial device. After configuring a 9600 baudrate and the 8N1 data
format, any serial terminal emulator can be used to send data wirelessly to
the XMOS board.

49

Chapter 4 Programming XMOS hardware using XC

Figure 4.7: Hardware setup

X1PortA (RX) Shield TX

X2PortA (TX) Shield RX

XMOS 5V Shield Vcc

XMOS Gnd Shield Gnd

Figure 4.8: Schematic hardware setup

4.6.2 UART communication

As the XMOS hardware can be used to implement functionality that is usu-
ally implemented in hardware, we implement the serial communication over
UART in software instead of using the dedicated hardware implementation.
This means that we will implement a low level, meaning that each bit will
be sent over the wire manually. There are many different standards and
variations of how to do serial communication. In this case study, the 3-wire
RS-232 protocol is used. As the name suggests, it uses 3 wires: two for
carrying data (one for each direction) and a wire to have a common ground

50

Chapter 4 Programming XMOS hardware using XC

between the communicating devices. The ground is needed in order that
both devices have the same reference to measure the 0 volt and 5 volt levels.
There is no error checking or flow control, meaning that its implementation
can be kept relatively simple.

There are various speeds and formats to send data. The transmission speed
(also called baudrate) varies between 300 and 115200 bits per second. In this
case study, we will use a baudrate of 9600. There are various formats, but
the one which will be used sends 8 data bits at a time end ends it with a stop
bit. As previously mentioned, there is no error checking on the transmission
in this example, although a parity bit could be supported to allow basic error
detection. The used format is usually abbreviated to “8N1”: 8 data bits, no
parity, one stop bit. The format and the speed need to be configured correctly
by the programmer. If that person fails to do so, the output will be incorrect
due to reading the data at the wrong moment and/or misinterpreting of the
received bitstream.

As visualized by Figure 4.9, a wire used for transmission is by default at
0 volt. A transmission is announced by a logical zero as start bit (which
is represented using 5 volt). After that, the data is put on the line — the
least significant bit first. The levels used to send the data are inverted. A
logical one is represented by 0 volt, while 5 volt represents a logical zero.
A transmission is terminated by a stop bit, which consists of a logical one,
putting the line back at 0 volt.

t=
0

t=
1

t=
2

t=
3

t=
4

t=
5

t=
6

t=
7

t=
8

t=
9

t=
10

Idle

Start

LSB

1 1 0 1 0 0 1

MSB

0 Stop

Idle
0V

5V

Figure 4.9: RS-232 signal levels

51

Chapter 4 Programming XMOS hardware using XC

Because the communicating devices cannot negotiate about the speed dur-
ing the transmission, timing is essential to perform a correct transmission
of the data. When a sender puts the start bit on the line it is crucial that
the right data is placed correctly on the line at the correct moment. On the
receiver side, the receiving software will listen for a rising edge on the line.
This rising edge is the transition from the default 0 volt to the 5 volt of the
start bit. The receiver will subsequently need to read the signal of the line
at the appropriate time. In addition, it will need to ensure that the mea-
surement is only performed when the signal on the line is stable1. Therefore,
the level is measured with a small offset compared to the moment the sender
put the signal on the line. This offset is usually half the bit time. UART
communication clearly requires strict timing. Because the XMOS chip gives
each thread a guaranteed amount of CPU cycles, we are sure that timing
constraints will always be met. The same implementation on an interrupt
driven chip cannot do that, as the UART code can be interrupted at any
moment.

Listing 4.8 depicts the code implementing the UART transmitter. The
statement on line 11 causes the thread to wait until it receives a byte to be
sent from the channel end. To calculate the time between bits, the current
time needs to be stored. This time is used as a base to calculate when each
next bit needs to be put on the line. Figure 4.10 illustrates how such a delay
between bits is calculated. The timer is incremented with each clock tick and
the processor runs at 100 MHz and a baudrate of 9600 is used.

clockticks per second

baudrate
=

100 ∗ 106

9600

Figure 4.10: Delay between bits during serial communication

The code on line 15 starts the transmission by putting the start bit on the
line. After this bit, we wait a brief moment. Lines 20 to 24 put the eight
data bits on the line, with the same delay between them. The transmission
is completed by putting a logical one on the line. The length of the wait
depends on the baudrate used during communication and is essential to have
successful communication.

1A line is stable when the voltage on it will not change during sampling, ensuring that
a correct value is read.

52

Chapter 4 Programming XMOS hardware using XC

Listing 4.8: UART transmitter

1 #d e f i n e BIT RATE 9600
2 #d e f i n e BIT TIME 100000000 / BIT RATE
3
4 on s tdco r e [2] : out port TXD = XS1 PORT 1A ;
5
6 void t r an smi t t e r (chanend transmit) {
7 unsigned byte , time ;
8 t imer t ;
9

10 // I n i t i a l stop l e v e l
11 TXD <: 1 ;
12
13 whi le (1) {
14 /∗ get next byte to transmit ∗/
15 transmit :> byte ;
16 t :> time ;
17
18 /∗ output s t a r t b i t ∗/
19 TXD <: 0 ;
20 time += BIT TIME ;
21 t when t i m e r a f t e r (time) :> void ;
22
23 /∗ output data b i t s ∗/
24 f o r (i n t i =0; i <8; i ++) {
25 TXD <: >> byte ;
26 time += BIT TIME ;
27 t when t i m e r a f t e r (time) :> void ;
28 }
29
30 /∗ output stop b i t ∗/
31 TXD <: 1 ;
32 time += BIT TIME ;
33 t when t i m e r a f t e r (time) :> void ;
34 }
35 }

The receiver code, which is illustrated in Listing 4.9, exhibits a lot of simi-
larities with the transmitter. It will wait for a start bit to be put on the line.
Next, each subsequent bit is put on the line after a time BIT TIME. However,

53

Chapter 4 Programming XMOS hardware using XC

an extra delay of half the bit time is added. This will ensure that the bit
sampled in the middle of the time is on the line. At that moment, the voltage
level is stable ensuring a correct sampling. After the start bit, eight data bits
will be sampled. Finally, a stop bit is sampled, but not saved. Now the data
is sent to another thread via the channel connected to the “received” channel
end.

Listing 4.9: UART receiver

1 on s tdco r e [1] : in port RXD = XS1 PORT 1A ;
2
3 void r e c e i v e r (chanend r e c e i v e d) {
4 unsigned byte , time ;
5 unsigned l e v e l T e s t ;
6 t imer t ;
7
8 whi l e (1) {
9 /∗ wait f o r negat ive edge o f s t a r t b i t ∗/

10 RXD when pinseq (1) :> void ;
11 RXD when pinseq (0) :> void ;
12
13 /∗ move time in to cent r e o f b i t ∗/
14 t :> time ;
15 time += BIT TIME /2 ;
16 t when t i m e r a f t e r (time) :> void ;
17
18 /∗ Ensure s t a r t b i t wasn ’ t a g l i t c h ∗/
19 RXD :> l e v e l T e s t ;
20 i f (l e v e l T e s t == 0) {
21
22 /∗ input data b i t s ∗/
23 f o r (i n t i =0; i <8; i ++) {
24 time += BIT TIME ;
25 t when t i m e r a f t e r (time) :> void ;
26 RXD :> >> byte ;
27 }
28
29 /∗ input stop b i t ∗/
30 time += BIT TIME ;
31 t when t i m e r a f t e r (time) :> void ;
32 RXD :> l e v e l T e s t ;
33

54

Chapter 4 Programming XMOS hardware using XC

34 /∗ Send rx data i f stop b i t v a l i d ∗/
35 i f (l e v e l T e s t == 1) {
36 byte = byte >> 24 ;
37 r e c e i v e d <: byte ;
38 }
39 }
40 }
41 }

4.6.3 Pulse Width Modulation

The third thread, displayed in Listing 4.10, implements the pulse width mod-
ulation.

First, an initialization is performed. It initializes a default PWM value, the
timer and it enables all LEDs by sending a value of 0x70 to the appropriate
port. Next, an endless loop is entered. This loop contains a select statement
which will either read an incoming value from the channel or perform a PWM
operation. To perform the PWM, either the red or green LEDs (via the cledR
and cledG) are selected at the appropriate moment to give the impression
of different colors.

55

Chapter 4 Programming XMOS hardware using XC

Listing 4.10: Pulse Width Modulation

1 #d e f i n e FLASH PERIOD 100000
2 #d e f i n e PWMMAX 15
3 #d e f i n e PWM START 7
4
5 out port c l ed0 = PORT CLOCKLED 0;
6 out port cledG = PORT CLOCKLED SELG;
7 out port cledR = PORT CLOCKLED SELR;
8
9 void l ed (chanend pwm) {

10 i n t red = PWM START;
11
12 t imer tmr ;
13 unsigned t ;
14 tmr :> t ;
15
16 unsigned ledGreen = 0x1 ;
17 c l ed0 <: 0x70 ;
18
19 whi le (1)
20 {
21 s e l e c t
22 {
23 case pwm :> red :
24 break ;
25 case tmr when t i m e r a f t e r (t) :> void :
26 t += FLASH PERIOD∗(ledGreen ?(PWMMAX−red) : red) ;
27 cledG <: ledGreen ;
28 cledR <: ! ledGreen ;
29 ledGreen = ! ledGreen ;
30 break ;
31 }
32 }
33 }

Because of the particular hardware layout of the XC-1A development board,
we also need to do LED multiplexing2. Clearly there needs to be a method

2Multiplexing is used to share a resource over multiple devices (in this case a pin which
is connected to two LEDs). This reduces the required number of pins from 24 to 14, as
depicted on Figure 4.11

56

Chapter 4 Programming XMOS hardware using XC

to select the required device too, which in this case is two extra lines. As
depicted in Figure 4.11, both the red and green LEDs are connected to the
same ports. However, using the CLOCKLED SELR and CLOCKLED SELG one can
select which banks of LEDs the circuit needs to be closed of by connecting
them to ground.

Figure 4.11: LED configuration on the XC-1A [12]

A fourth thread, listed in Listing 4.11, handles the user input using buttons
and the incoming data from the serial port. It contains a select statement
which is executed continuously. This select either handles a button press or
incoming serial data. In the former case, the new PWM values are calculated,
which are subsequently sent to the other device. Next, we wait until the
button is released and pause for a while. In the latter case, the received
PWM values are used to update the current values.

57

Chapter 4 Programming XMOS hardware using XC

Listing 4.11: Control logic

1 #d e f i n e CORE FREQ 100000000
2 #d e f i n e BUTTON TIME CORE FREQ / 4
3
4 i n t hand l e p r e s s (unsigned buttons , unsigned s h i f t ,

unsigned pwm value) {
5 buttons = (buttons >> s h i f t) & 3 ;
6 i f (buttons == 3) re turn pwm value ;
7 i f (buttons & 1)
8 i f (pwm value < PWMMAX) pwm value++;
9 e l s e

10 i f (pwm value > 0) pwm value−−;
11 re turn pwm value ;
12 }
13 void button (chanend pwm, chanend commands , chanend

response) {
14 t imer tmr ;
15 unsigned t , va lue ;
16 unsigned local pwm = PWM START;
17 unsigned remote pwm = PWM START;
18
19 whi le (1) {
20 s e l e c t {
21 case buttons when pinsneq (15) :> value :
22 local pwm = hand l e p r e s s (value , 0 , local pwm) ;
23 remote pwm = hand l e p r e s s (value , 2 , remote pwm) ;
24
25 pwm <: local pwm ;
26 response <: (i n t) (remote pwm + (local pwm << 4)) ;
27
28 buttons when pinseq (15) :> void ;
29 tmr :> t ;
30 t += BUTTON TIME;
31 tmr when t i m e r a f t e r (t) :> void ;
32 break ;
33 case commands :> value :
34 remote pwm = (value >> 4) & 0xF ;
35 local pwm = value & 0xF ;
36 pwm <: local pwm ;
37 break ;
38 } } }

58

Chapter 4 Programming XMOS hardware using XC

4.6.4 Distributing threads over cores

The individual components discussed above need to work together to create
a properly functioning program. Each of the above-mentioned functions is
started in their own thread and run in parallel. These threads occupy three
of the four cores of the XMOS chip. They communicate using three channels
(as illustrated by the schema in Figure 4.6).

Listing 4.12: Application structure

1 i n t main ()
2 {
3 chan rx , tx , pwm;
4
5 par
6 {
7 // UART RX thread
8 on s tdco r e [1] : r e c e i v e r (rx) ;
9 // UART TX thread

10 on s tdco r e [2] : t r an sm i t t e r (tx) ;
11 // PWM thread
12 on s tdco r e [0] : l ed (pwm) ;
13 // Button handler and c o n t r o l l o g i c
14 on s tdco r e [0] : button (pwm, rx , tx) ;
15 }
16 re turn 0 ;
17 }

This case study illustrates how to program the multi-core and event-driven
XMOS architecture. Embedded applications map quite naturally to the
multi-core architecture, as there are multiple tasks to be executed in par-
allel. Thanks to the guaranteed amount of CPU cycles each thread gets, we
can be certain that our timing constraints will be met at all times. This is
especially important when performing serial communication, as it requires
strict timing.

Compared to the interrupt-driven implementation of the same program
discussed in Section 2.3, this code is easier to understand. It does not contain
hidden code paths due to the interrupts and cannot contain issues due to
shared variables between the interrupts and the main application logic.

59

Chapter 4 Programming XMOS hardware using XC

4.7 Conclusion

To program its chips, the XMOS company has designed a programming lan-
guage called XC. XC is similar to ANSII C but contains the needed extra
syntax to create event-driven software. It is possible to start parallel threads
using the par statement. These parallel threads can communicate via mes-
sage passing using channels. To perform input and output, XMOS uses the
concept of ports. These ports represent one or more physical pins. Events
can also be added to ports, allowing a thread to suspend until a certain value
is available on the port. Timers allow to time operations.

In the case study we show how to program the XMOS chip. The result-
ing source code is easier to read and understand than its interrupt-driven
counterpart. Due to the chip’s guarantees concerning the execution speed of
threads, the application will always meet its timing constraints.

60

Chapter 5

High-level event-driven
programming in Scheme

In this chapter, we port the high-level programming language Scheme to
the XMOS architecture and extend the language with abstractions for the
concurrency model of XMOS. Programming embedded systems in Scheme
has the advantage of not having to work in low-level languages such as C
and XC which simplifies the work of the programmer as he or she does
not has to think about issues concerning, memory management, et cetera.
Concretely, we will port and extend an existing Scheme interpreter to the
XMOS platform. Next, we extend this interpreter to be able to use features
specific to the XMOS hardware. These features include evaluating functions
in different threads and a message passing mechanism between threads.

5.1 Selecting a suitable Scheme system

As previously discussed, the 400 MHz XS1-G4 chip used provides consid-
erable processing power. However, it is severely limited by the amount of
memory, on each core only 64 kilobytes. As listed in Table 5.1, the size
of most minimalistic Scheme interpreters exceed the available 64 kilobytes,
consequentially we had to look into different techniques.

61

Chapter 5 High-level event-driven programming in Scheme

Implementation Size of interpreter
fools 1.3.2 288 KB

minischeme 0.85 95 KB
scm 4e1 368 KB
siod 3.0 166 KB

bit (interpreter, with full library) 72 KB
bit (interpreter only) 22 KB

Table 5.1: Size of different small Scheme implementations[5]

5.1.1 Implementation constraints

Small memory footprint As mentioned before, the memory footprint of
the interpreter has to be very small, as each core is equipped with
only 64 kilobytes of memory. In this 64 kilobytes we need to fit the
interpreter itself and leave enough space for the runtime memory re-
quirements.

Evaluated or byte code based architecture In evaluated interpreters,
the Scheme code is entirely evaluated on the chip, at runtime. This
means that the interpreter has no prior knowledge about the function-
ality used by the Scheme application. Consequentially, all primitives
and functions need to be present in memory at all time. This can be-
come troublesome considering the limited memory. When the Scheme
code would be directly interpreted on the chip, all functions the ap-
plication could possibly call need to be available in memory. This
significantly increases the needed memory.

Another approach is by using a bytecode based interpreter. As the com-
piler knows which functions from the library will be used by the Scheme
application, he can leave out the functions which are not required by
the application. This significantly reduces the memory footprint com-
pared to evaluation based interpreters. However, the extra compilation
step to bytecode makes developing applications more tedious.

Byte code interpreters can offer more functionality in a low memory
footprint than evaluation based interpreters. This is due to the byte-
code compilation phase which can remove the functions not used by
the Scheme application.

62

Chapter 5 High-level event-driven programming in Scheme

Uses pointers As XC doesn’t support pointers, it is recommended to use
an interpreter which doesn’t use pointers either. Consequently the
interpreter can be extended with XC specific code more easily.

Real-time garbage collector The XMOS hardware guarantees the exe-
cution speed of threads and therefore also the applications being in-
terpreted. However, when a garbage collector can stop the application
code for an arbitrary period, this guarantee becomes useless. Therefore,
we need a garbage collector can preserve the execution speed guarantees
of the XMOS architecture.

RAM and ROM Many chips used in the embedded domain use ROM
memory to store the program. The RAM memory is only used for
the runtime memory. However, this is not the case for the XMOS chips
where the application and the runtime requirements are located in the
same memory.

Already used in embedded domain It is an advantage that an inter-
preter already has been used in the embedded domain. As its func-
tionality is more likely to be targeted to this domain.

5.1.2 Comparing different interpreters

We compared different interpreters to find the most suitable one. We took
into account the criteria discussed in Section 5.1.1. The most important
and restricting criteria, is the limited amount of memory available. Most
interpreters require an order of magnitude more RAM than what is provided
by the XMOS chip (cfr Table 5.1). Table 5.2 shows an overview of interpreters
which show interesting characteristics making them suitable to be ported to
the XMOS chip.

Ypsilon is a Scheme interpreter which claims having a
mostly concurrent garbage collection”, which is optimized for the multi-core
CPU system [7]. However, the interpreter is badly documented and is an
order of magnitude too large for our target device.

MiniScheme is an evaluating interpreter. Its functionality is rather limited
and is quite large to fit in the available memory. However, by removing more
functions, it might fit into the XMOS chip’s memory. Its garbage collector
cannot offer timing guarantees, which is highly desirable for this project.

63

Chapter 5 High-level event-driven programming in Scheme

M
em

or
y

(K
B

)

B
y
te

C
o
d
e

P
oi

n
te

rs

R
T

G
C

E
m

b
ed

d
ed

R
A

M
-R

O
M

Bit Scheme 22 • • • • − [5]
MiniScheme 95 − • − − − [17][19][5]
PIC Bit 23 • • − • • [4]
PICO Bit 17.5 • • − • • [26]
Ypsilon 1600 − • • − − [7]

Table 5.2: Scheme interpreters

Bit Scheme, PIC Bit and PICO Bit are three very similar byte code based
Scheme interpreters. However only Bit Scheme contains a real-time garbage
collector and isn’t specifically designed for systems equipped with ROM mem-
ory. This makes Bit Scheme the most suitable interpreter to port to the
XMOS chip.

Both \;skēm\1 and Pico2 were also considered, however, they were too large
to fit in the memory available on the XMOS chip.

5.2 Exploiting the XMOS concurrency model

in Scheme

There are multiple approaches that can be chosen to exploit the concurrency
made available by the multi-threaded architecture of the XMOS chip.

A possibility is to run multiple independent interpreters in parallel. Prefer-
ably distributed over all available cores. This gives access to all IO pins and
all available memory.

It also is possible to create one virtual memory space by combining the
memory of all four cores into one. This would result in a memory of 256 KB.

1http://soft.vub.ac.be/soft/skem
2http://pico.vub.ac.be/

64

Chapter 5 High-level event-driven programming in Scheme

As shown on Figure 5.1, all interpreters would be running concurrently on the
same core. However, as illustrated on Figure 4.1, an IO pin is only accessible
on one core. This means that when all threads are running on one core, only
a fourth of the IO pins would be accessible. To solve this limitation, we could
implement dedicated IO threads on each core. That way the interpreters can
reach all pins from a single core by sending messages to the IO thread on
the appropriate core. Because of the architecture of the XMOS chip, we can
run up to four threads concurrently on a single core without losing execution
performance (cfr Figure 3.3). Running more than four threads on a single
XCore would result in a performance decrease, compared to what the chip
is actually capable of when the threads are distributed over all four cores.
Another issue we would face is the increased latency when accessing memory
on a different core than where the interpreter is running. Each memory
access needs to be encapsulated in a message which is then passed over the
interconnect to the other core. That core will then reply with the content
of the requested memory address. It is clear that this will add a significant
overhead.

Another possible approach is to run a concurrent garbage collector. For
threads on the same core, we can use shared memory to run a concur-
rent garbage collector. This, however, breaks the basic principles of the
XMOS programming model which is based on threads communicating solely
by means of message passing.

A different method is by using the Scheme thread model which is based on
shared memory and can spawn threads during runtime [21]. However that
doesn’t map properly on the XMOS hardware where threads communicate
with each other by means of message passing. Also, on XMOS chips, threads
are implemented in hardware and the maximum number of threads that can
run concurrently is limited. Finally, these threads are mapped on the cores
during compile time.

Termite Scheme is a Scheme variant developed for distributed computing
[8]. It is based on message passing between processes which run on physically
separated systems. This is very similar to the XMOS approach where threads
have their own memory, although it is only physically separate when threads
are running on separate cores. In Termite Scheme the processes exchange
messages over an unreliable network. This is not entirely the same inside the
XMOS chip, where the interconnect between the cores is considered reliable.
XMOS thread are not lightweight as opposed to the Termite processes. The
XMOS chip only supports a limited number of threads, while Termite Scheme
programs can consist of hundreds of processes. Both XMOS and Termite use

65

Chapter 5 High-level event-driven programming in Scheme

Interpreters

Virtual
Memory

Input
Output

Core 0

Virtual
Memory
Thread

Input
Output
Thread

Core 2

Virtual
Memory
Thread

Input
Output
Thread

Core 1

Virtual
Memory
Thread

Input
Output
Thread

Core 3

Figure 5.1: Virtual memory architecture

message passing, however, they don’t behave the same. In XMOS chips,
both sending and receiving messages is blocking, while in Termite sending
is asynchronous and receiving is blocking. This clearly has to do with the
fact that in Termite Scheme sending messages is unreliable, consequentially
a message sent may never arrive at its destination.

5.3 Bit Scheme

After evaluating the criteria against existing Scheme implementations, Bit
Scheme was found to be the most suitable Scheme interpreter to serve as a
basis for a port to the XMOS architecture.

66

Chapter 5 High-level event-driven programming in Scheme

Clearly the interpretation of the bytecode comes with a performance over-
head compared to running compiled applications written C and XC. After
porting and modifying the Bit interpreter to run on the XMOS, the inter-
preter itself takes about 24 kilobytes of memory per core, as displayed in 5.1.
This does not include any bytecode, nor runtime memory requirements.

This Scheme interpreter is byte-code based which implements R4RS [2].
Bit Scheme was originally written for the Motorola 68HC11 [5], but was also
ported to PIC microcontrollers, two radically different architectures [4]. It is
bytecode based, which allows it to be very small. Its bytecode instruction set
is also created with memory saving in mind, allowing to make the bytecode
even smaller. This is also due to the lack of runtime checks, Bit Scheme
assumes that the bytecode it runs is error-free. This lack of runtime checks
however can complicate debugging as the interpreter does not give error
messages, it just crashes. Due to the very low memory requirements, it fits
in the tiny memory of the XMOS chip, while leaving enough space for the
bytecode and the runtime memory.

Bit Scheme also contains a real-time garbage collector. In this context
real-time means that the garbage collector is guaranteed to return within
a fixed amount of time.[5] This is especially useful when timing constraints
need to be met. This is often the case in embedded software. It comes
with a compiler, implemented in Scheme, that translates the Scheme source
code into bytecode specific for the Bit interpreter. We ported the Bit Scheme
interpreter to the XMOS platform and extended to support functions specific
to the XMOS hardware. Extending the interpreter is needed to be able to use
all the available cores on the XMOS chip and to be able to create event-driven
applications.

To exploit the parallelism provided by the XMOS chip, we chose to run
one bytecode interpreter per core. This allows to use the entire available
memory. Each core has only access to a port of the ports for doing IO,
therefore this approach also allows to use all IO possibilities available on the
chip. The message passing is now only needed when threads explicitly need
to communicate.

In this project the number of threads was limited to one per core. In theory,
one could perfectly run more than one interpreter on a core. However, the
available memory space is already very small and it would further divide
it between the interpreters on that core. This would only allow very small
programs on each interpreter.

67

Chapter 5 High-level event-driven programming in Scheme

5.4 XMOS Bit Scheme: bytecode interpreter

The bytecode interpreter of XMOS Bit Scheme uses the layered architecture
depicted in Figure 5.2. We have placed the original bytecode interpreter be-
tween 2 layers of XC code. This layered architecture is necessary because XC
does not support pointers, which are extensively used in the interpreter. As
a result XC code cannot be used within the implementation of the bytecode
interpreter. However, the linker in the XMOS toolchain can link object files
compiled from XC on the one hand and C source code on the other hand
together into one file. This entails that XC and C (and also pointers) can be
used together in an application — just not together in the same source file.

XC bindings (XC)
Bytecode interpreter (C)

Initialization (XC)

Figure 5.2: Interpreter architecture

As Bit Scheme is implemented in ANSI C, it compiles fine using the XMOS
toolchain. However, by default it doesn’t use any of the features concerning
events and parallelism that are available in the hardware. To be able to
use all the functions of the XMOS chips, the bytecode interpreter needs
to be adapted and extended. The four cores each need to get the correct
piece of bytecode. We will discuss our solution to this problem in the next
section. In addition, we implement communication primitives that allow
message passing between the interpreters. This newly added functionality
will be implemented in the layers above and beneath the bytecode interpreter.

Core 0
OO

��

ee

%%JJJJJJJJJ

oo // Core 1

Core 2

yy

99ttttttttt

Core 3

��

OO

//oo

Figure 5.3: Channels between the interpreters

The lowest layer is ran when the XMOS chip powers on and is called “Ini-
tialization”. We have implemented this component in XC. It starts an in-
terpreter on each core and sets up the necessary channels to allow the in-
terpreters on the different cores to communicate with each other. Channels

68

Chapter 5 High-level event-driven programming in Scheme

allow bidirectional communication, therefore only one channel is needed to
connect two interpreters. As illustrated by Figure 5.3, we create a static
network of point-to-point channel between the four interpreters. Each inter-
preter has 3 channels, over which it can communicate directly with the other
interpreters. Each of these channels is defined at compile time.

The top layer, “XC bindings” contains the implementation of the primi-
tives we added. These primitives provide IO, timing and message passing
functionality to the interpreter.

5.5 XMOS Bit Scheme: bytecode instruction

set

XMOS Bit Scheme features several new primitives that expose the function-
ality of the underlying XMOS hardware. We implemented these primitives
in the “XC bindings” layer. Table 5.3 shows an overview. The primitives will
be described in detail in Sections 5.7 and 5.8. These primitives are imple-
mented by extending the compiler to have these primitives compiled to new
bytecode instructions. Clearly, the bytecode interpreter needed the appropri-
ate modifications to support these new instructions. Bytecode instructions
27 till 34 expect one argument, while the instructions in the range from 49
to 55 expect two arguments. As a result of these modifications, programs
written in the original Bit interpreter are not bytecode-compatible with this
version.

5.6 XMOS Bit Scheme: distributing byte-

code across cores

5.6.1 First compilation phase

The compilation process consists of 2 distinct phases. In the first one, the
Scheme program is compiled to bytecode. During the second phase the re-
sulting bytecode is compiled together with the bytecode interpreter into an
executable to run on the XMOS chip. This phase is performed by the Bit
Scheme compiler, which itself is written in Scheme. We have modified this
compiler to support the XMOS platform. As displayed in Listing 5.1, the

69

Chapter 5 High-level event-driven programming in Scheme

Function name Bytecode Arguments Description

get time 5 none returns current time
after 27 time pause thread until time
pin 28 port read value from port
pon 29 port enable port
poff 30 port disable port
pconf in 31 port configure port as input
cin 32 core receive data from core core
select cin 33 port used by select statement
select after 34 time used by select statement
pout 49 port, value write value to port
peq 50 port, value pause thread until port port

equals value value
pne 51 port, value pause thread while port port

equals value value
pconf out 52 port, value configure port as output,

with value as default value
cout 53 core, value send data to core core
select peq 54 port, value used by select statement
select pne 55 port, value used by select statement

Table 5.3: Added primitives

70

Chapter 5 High-level event-driven programming in Scheme

Scheme
scm file

Bytecode
C file

Binary

Interpreter
C & XC files

Step 1 // Step 2 //

Step 2

77oooooooooooooo

Figure 5.4: Compilation of a Bit Scheme application into a binary for XMOS
devices

compiler expects to be invoked with two arguments, the first being the source
Scheme file, the second the name of the output file.

Listing 5.1: Compiler invocation

1 (byte−compi le ” input . scm” ” output . c ”)

During this compilation from Scheme to bytecode, parallel Scheme pro-
grams are divided into independent pieces of bytecode. Each piece will be
assigned to an interpreter. The par statement itself is only used by the
Scheme compiler. It is not translated into a bytecode equivalent. Distinct
bytecode will be generated for each core, as illustrated by Figure 5.5. This
is needed because each core has its own individual memory and because one
interpreter is installed on each core. Therefore no bytecode can be shared
between interpreters.

5.6.2 Second compiler phase

The result of the first compilation phase is a single C file. This C file con-
tains the bytecode, the constants and the global variables for each core. In
the second compilation phase, the C file containing the bytecode for the
scheme program is compiled together with the source code for the bytecode
interpreter. This is carried out using the compiler and linker of the XMOS
toolchain. The result is a monolithic binary file containing all bytecode for
all cores together with the interpreter.

71

Chapter 5 High-level event-driven programming in Scheme

Scheme
(par

(core CORE 0 ...)
(core CORE 1 ...)
(core CORE 2 ...)
(core CORE 3 ...))

 ''

 ��

BC0
int bytecode len 0 = 3278;

unsigned char bytecode 0[] =
{4, 106, 8, 107, 51, 4, 88, 8,...}

...

BC1
int bytecode len 1 = 2655;

unsigned char bytecode 1[] =
{4, 99, 8, 100, 51, 4, 81, 8,...}

...

BC2
int bytecode len 2 = 2655;

unsigned char bytecode 2[] =
{4, 99, 8, 100, 51, 4, 81, 8,...}

...

BC3
int bytecode len 3 = 1304;

unsigned char bytecode 3[] =
{4, 59, 8, 60, 51, 4, 41, 8,...}

...

Figure 5.5: Compilation of a parallel Scheme program into bytecode

72

Chapter 5 High-level event-driven programming in Scheme

BC0 BC1
BC2 BC3
Interpreter

�� "")) ++

Core 0
BC0

Interpreter

Core 1
BC1

Interpreter

Core 2
BC2

Interpreter

Core 3
BC3

Interpreter

Figure 5.6: Mapping of the code on the different cores

5.6.3 Mapping bytecode to specific cores

Next, the XMOS mapper will map the appropriate code to the appropriate
cores. It performs an analysis to remove code that will not be reached on
a certain core. Concretely, this will result in four chunks of binary each
containing bytecode for a core plus the interpreter (cfr Figure 5.6).

Of course the XMOS mapper will need some clear instructions about which
code should end up on which core. To this end, we use the code shown in
Listing 5.2. It relies on a get core id() function which returns the ID of the
core on which the code runs. This gives the mapper a clear indication that
a piece of bytecode can only be accessed on exactly one core. As a result
bytecode which will be executed on a different core than the current one,
will be stripped away. This is highly desirable as each core only has 64 kb
at its disposal to run the program and store its bytecode in addition to the
interpreter. The interpreter itself takes about 24 kb of memory. This leaves
about 40 kb for the bytecode and the runtime memory. Clearly the available
runtime memory is highly dependent on the size of the applications bytecode.

When four cores/threads used, the code from Listing 5.2 needs to be re-
peated four times. Note that in the actual code, we implemented this func-
tionality as a C preprocessor macro.

73

Chapter 5 High-level event-driven programming in Scheme

Listing 5.2: Assigning bytecode to core zero

1 i f (g e t c o r e i d () == 0)
2 {
3 extern i n t by t e code l en 0 ;
4 extern unsigned char bytecode 0 [] ;
5 extern i n t c o n s t d e s c l e n 0 ;
6 extern unsigned char c o n s t d e s c 0 [] ;
7 extern i n t nb scm globs 0 ;
8 extern i n t scm globs 0 [] ;
9

10 bytecode l en = &bytecode l en 0 ;
11 bytecode = &bytecode 0 [0] ;
12 c o n s t d e s c l e n = &c o n s t d e s c l e n 0 ;
13 con s t de s c = &c o n s t d e s c 0 [0] ;
14 nb scm globs = &nb scm globs 0 ;
15 scm globs = &scm globs 0 [0] ;
16 }

5.7 XMOS Bit Scheme: primitives for IO

We extended the original Bit scheme with several XMOS specific primitives.
Table 5.3 lists these primitives together with the bytecode instructions they
are compiled into. We will first discuss the primitives that concern IO oper-
ations involving the physical pins on the XMOS chip. These are summarized
in Table 5.4 together with their XC equivalent. As discussed in Section 3.2
ports can either be a pin or a group of up to 32 pins. We will refer to these
ports using Scheme numbers. The numbers used are resource identifiers,
these are the low level identification for a port. They can be found inside the
header files used by the XMOS toolchain.

pin and pout immediately read from, respectively write to a port without
performing checks.

peq and pne wait until the value on a port equals to (peq) or differs from
certain value (pne). Once this has happened, the new value is returned.
The waiting is performed by the hardware, which means that the thread
will not have to check the value manually. However, there is no pos-

74

Chapter 5 High-level event-driven programming in Scheme

Scheme XC equivalent Description

(pout port value) port <: value Write to a port.
(pin port) port :>int value Read from a port.
(peq port value) p when pinseq(v):>w Wait until the value on

the port equals to v, then
write it to w.

(pne port value) p when pinsneq(v):>w Wait until the value on
the port differs from v,
then write it to w.

(pon port) set port use on(p) Enables a port for usage.
(poff port) set port use on(p) Disables a port.

(pconf out port value) configure out port
(p, clk, v)

Configure a port as out-
put, with the provide
value as default.

(pconf in port) configure in port
(p, clk)

Configure a port as in-
put.

Table 5.4: Overview of IO primitives

sibility for the garbage collector to run while the thread is waiting in
hardware.

pon and poff turn a port on or off. This needs to happen before the port
is used or configured. Otherwise, the port remains in a high impedance
state [16]. Note that this action is not required in XC. The XC compiler
knows which ports are used, and enables them at compile time. When
using ports from Scheme, the used ports are not know by the XMOS
compiler. As they are “hidden” in the bytecode corresponding to the
Scheme program.

pconf in and pconf out These primitives are used to configure a port ei-
ther as input or output. Again, this is not required in XC.

Listing 5.3 displays a typical example of configuring a port. A variable
PORT 1A is defined containing a number. This number is the low-level resource
identifier of the port we want to use. Next, the port needs to be initialized
using the primitive pon. Finally, the port is configured as input by calling
pconf in. Once the port has been configured, it is ready for use and can be
read from using the pin primitive.

75

Chapter 5 High-level event-driven programming in Scheme

Writing to ports is very similar as illustrated in Listing 5.4. First a variable
representing the port by its resource identifier is defined, which is then used
to initialize the port. To configure a port as output, an extra parameter is
required. This parameter is the default value put on the pin(s). Once the
port has been configured, it can be written to using the pout primitive.

Listing 5.3: Reading from a port

1 (d e f i n e PORT 1A 66048)
2 (pon PORT 1A)
3 (pcon f i n PORT 1A)
4 (pin PORT 1A)

Listing 5.4: Writing to a port

1 (d e f i n e PORT CLOCKLED 525056)
2 (pon PORT CLOCKLED)
3 (pconf out PORT CLOCKLED 0)
4 (pout PORT CLOCKLED 15)

5.8 XMOS Bit Scheme: time-related primi-

tives

In order to add the notion of time in applications, we added two primitives
shown in Table 5.5. The primitive timer evaluates to the current time, which
is represented using a number. This number is increased every clock tick. In
order to suspend a thread for a certain period, the after primitive is used.

Listing 5.5 illustrates how these primitives are used together in order to
suspend a thread for 5 seconds. It samples the current time. This value is
used to calculate the appropriate delay based on the clock speed of 100 MHz.
The resulting value is used as an argument for the after primitive, which
suspends the thread.

76

Chapter 5 High-level event-driven programming in Scheme

Scheme XC Description

(timer) timer :>int time Return the current time.
(after time) timer when timerafer (time) :>void Suspend thread until timer

has past time.

Table 5.5: time-related primitives

Scheme XC Description

(cin core) channel :>value Read data from a channel.
Returns the received value.

(cout core value) channel <: value Write data to a channel.

Table 5.6: Communication primitives

Listing 5.5: Writing to a port

1 (d e f i n e now (t imer))
2 (d e f i n e c l o ck 100000000)
3 (d e f i n e de lay (∗ 5 c l o ck))
4 (a f t e r de lay)
5 (d i sp l ay ”5 seconds l a t e r ”)

5.9 XMOS Bit Scheme: message passing prim-

itives

XMOS threads communicate through message passing. Because there is one
Scheme interpreter running on each core, we opted to use the core ID to iden-
tify the destination/origin of a communication operation. Each interpreter
has three channels, one to each of the other interpreters (cfr Figure 5.3). De-
pending on the destination core, the interpreter selects the correct channel to
complete the operation. Because channels are bidirectional, only one channel
is needed between two cores.

There are two primitives that concern communication between interpreters
as depicted in Table 5.6. Both these primitives are blocking. When sending
data to a certain interpreter, that thread will block until the data is read
from the channel by the receiving interpreter. The core argument is a number

77

Chapter 5 High-level event-driven programming in Scheme

between 0 and 3, identifying each core. Sending data from an interpreter to
itself is not supported as communication is blocking.

Listing 5.6 illustrates how to use the communication primitives between two
interpreters. The interpreter running on core zero sends and integer to core
one. It will block until the data is received on core one. On that destination
core, the thread waits until data arrives from core zero. When the data is
received, a variable is defined with the received integer.

Listing 5.6: Communicating between threads

1 (par
2 (core CORE 0
3 (cout CORE 1 80))
4 (core CORE 1
5 (d e f i n e input (c in CORE 0))))

Our current implementation is limited to primitive types such as integers
and characters can be sent to another interpreter. These values are not mod-
ified during transmission and are represented as integers internally. Com-
pound data structures such as lists are currently not supported by the XMOS
Bit Scheme interpreter itself. However, we have created a proof-of-concept
implementation in Scheme which supports sending trees and lists to other
cores. In order to do so the trees are traversed in a depth first way, in order to
send each item individually over the channel. On the receiving core, similar
code will reconstruct the original data structure for the data it receives. It is
clear that the time to send a data structure across a channel is proportional
to its size.

5.10 XMOS Bit Scheme: handling multiple

events at once

As discussed in Section 4.5, an XC thread has to use the XC select statement
to check for multiple events at the same time. The aforementioned pne, peq
and cin primitives cannot be used as these are blocking.

In XC, the select statement is compiled to assembler. This requires that all
case statements need to be known at compile-time, which makes it impossible

78

Chapter 5 High-level event-driven programming in Scheme

to use the XC select statement to implement its Scheme equivalent. What
is needed is what could be called a “dynamic select” statement, which is
configurable at run-time. That way the interpreter can check for multiple
inputs and perform the needed configuration at run-time. We identified two
ways to implement a dynamic select statement. One is by implementing it
directly in assembler. Another way is by programming it in Scheme. Both
approaches have their advantages and disadvantages.

Assembler It is possible to program a dynamic select in assembler. The XC
compiler supports inline assembler, meaning it is possible to embed the
needed assembler instructions directly into XC source files. That way
assembler code can be called using XC functions. We need to manually
register the events we want to wait for as illustrated by Listing 5.7.

Listing 5.7: The select statement in assembler [18]

1 c l r e
2 s e t c r e s [r0] , COND EQ
3 setd r e s [r0] , 1
4 eeu r e s [r0]
5 s e tv r e s [r0] , case0
6 s e t c r e s [r1] , COND AFTER
7 setd r e s [r1] , r2
8 se tv r e s [r1] , case1
9 eeu r e s [r1]

10 waiteu

First, the clre instruction clears all existing events for this thread.
Then each event we want to listen for, needs to be registered. This
is implemented using the eeu instruction. Next, a vector is registered
which points to the code handling this event. This is accomplished
using the setv opcode. After all events are set, the waiteu instruction
will cause the thread to pause until one of the events fires [18]. This
needs to be implemented at the lowest possible level, by directly using
the correct instruction. This approach is hard and time-consuming
to debug and test. But when implemented, it uses the built-in event
mechanisms of the XMOS hardware. This approach will therefore yield
the highest performance and/or the lowest power usage.

79

Chapter 5 High-level event-driven programming in Scheme

Scheme A totally different possibility is to implement the same functional-
ity in Scheme. Only for checking the events, a call to an XC function
is needed. This is the approach taken in our implementation. A down-
side of this approach is that it requires additional primitives in the
Scheme interpreter. This approach still needs extra functions in the in-
terpreter because all functions mentioned above regarding input, timing
and communication are blocking. They can therefore not be used to
do the checks, as this would block the interpreter, which is the oppo-
site of the desired behaviour. We therefore added four extra primitives
select pne, select peq, select after and select cin. These allow
to do the “port not equal”, “port equal”, “time after” and “channel in-
put” operations in a non-blocking way. Internally, they are embedded
in an XC select statement. If the channel contains data waiting, this
will be returned. If not, the default case will return a zero. Note that
the default return value (zero) will not be confused with a zero in the
interpreter, as the latter are identified with a bitflag.

1 i n t x c s e l e c t c i n (chanend c)
2 {
3 s e l e c t
4 {
5 case c :> i n t i :
6 re turn i ;
7 d e f a u l t :
8 re turn 0 ;
9 }

10 }

Clearly a high level implementation is not as hard as an assembler one.
However, this approach in Scheme has some disadvantages. It is not possible
to block until one of multiple events occurs. This is the behaviour of the
select statement in XC, when it does not contain a “default case”. Because it
does not block, this implementation in Scheme cannot use all the hardware’s
features to maximize execution speed and minimize power consumption.

We decided to choose the high level Scheme implementation. The imple-
mentation in assembler would take much more effort, with very little added
value for our case study.

To do this implementation, we modified the Bit Scheme compiler to recog-
nize the select statement. The XC select statement has a lot of similarities

80

Chapter 5 High-level event-driven programming in Scheme

Listing 5.8: Scheme select

1 (s e l e c t
2 ((s e l e c t p n e buttons 15)
3 (lambda (buttonsva lue)
4 (d i sp l ay buttonsva lue)))
5 ((s e l e c t p e q port1A 1)
6 (lambda (value)
7 (d i sp l ay value)))
8 ((s e l e c t c i n 1)
9 d i sp l ay)

10 (e l s e (d i sp l ay ” d e f a u l t ”)))

with the C/C++ switch statement. We chose to let the select statement
be syntactically similar to the cond primitive.

Listing 5.8 illustrates a usage example of this select statement. Each case
statement contains a lambda as body. This function is executed when the
test evaluates to true. Contrary to a Scheme conditional, tests can return
a value, for example when reading data from a channel. This value is then
passed as an argument to the function.

5.11 XMOS Bit Scheme: 32-bit integer sup-

port

Bit scheme was originally written for 16 bit microcontrollers, which causes
some problems when using Bit Scheme on a 32-bit chip, like the XMOS
XS1-G4. In particular, the integers caused some problems.

5.11.1 Representation of integers

Integers in the original interpreter uses only 16 bit of the 32 bits supported
by the XMOS hardware. As shown in Figure 5.7, in the bytecode generated
by the original Bit Scheme compiler, there are four bytecodes to indicate
integers. The first two represent integers larger than -255 and smaller than
255. These can be represented using a single byte. The next two are used

81

Chapter 5 High-level event-driven programming in Scheme

| |

|
4 bytes

|
2 bytes

|
1 byte

|
1 byte

|
2 bytes

|
4 bytes

|

−4294967295 −65535 −255 0 255 65535 4294967295

original range

Figure 5.7: Extending integer range

to extend this range to 16 bit. This means a range starting from -65535 to
65535, which still doesn’t use the XMOS hardware properly.

We added a third instruction which allows to use the full 32 bit range, as
depicted in Figure 5.7. We chose not to extend the range of the integers by
modifying the semantics of the existing bytecodes. This way, we can keep the
bytecode small as smaller integers still only use the bytes needed to represent
them. Moreover our approach limits the possibility of introducing bugs due
to the extended range. The interpreter can retain its original assumptions
about the bytecode representation of integers.

The Bit Scheme interpreter uses a one-bit flag to mark data stored in RAM
as integers. This means that of the original 16 bits representing an integer,
only 15 can effectively be used to store data. In our XMOS Bit Scheme
interpreter this means that only 31 bits can be used. Consequentially, while
the byte code allows representing the full range 32 bit integers, they cannot
be stored entirely in RAM memory. This causes some problems described in
the next section.

5.11.2 Using timers

Even when extending the range for representing integers to 32 bits, not all
problems are solved. As there is the one-bit flag, only 31 bits can effectively
be used. This is no problem for purely arithmetic operations. However, it
poses problems when using the timers in XMOS as timers use the full 32-bit
range. It is not possible to configure the maximum possible timer value. We
circumvent this problem by using the current time to determine which value
is the lost most significant bit. We assume that the desired time, is the one

82

Chapter 5 High-level event-driven programming in Scheme

closest to the current time and fill in the missing information appropriately.
That way, 32-bit timers can be used in XMOS Bit Scheme.

5.11.3 Floats and unsigned integers

Bit Scheme does not support floating point numbers because its original
hardware platform has no support for that. This might seem like a big
shortcoming. However, it doesn’t pose a problem, as all the IO used in
the case study is digital. Floating points are only needed for analog IO.
Therefore, the need for floating point support is limited in this case.

There is no support for unsigned integers in XMOS Bit Scheme too. These
are heavily used by XC to read from and write to ports. For example when
driving some LEDs, using unsigned integers for them makes the most sense.
However, when using the full available 31-bit range, we will need to have a
negative number — due to the two-complement — to drive the LED con-
nected to the most significant bit. This neither is a big handicap of the
interpreter.

5.12 Case study revisited: a high-level event-

driven implementation in Scheme

In this section, we reimplement the case study from the previous chapter
(cfr Section 4.6) in XMOS Bit Scheme. It is very similar to the previous
case studies in Chapters 2 and 4 where we connect two board performing
PWM via wireless over XBee. On these two boards we will perform PWM
operations which can be altered by the user via the four buttons on the de-
velopment board. The program starts four threads as shown in Listing 5.9.
One thread contains the application logic and handles the button presses.
Thread one and two handle the UART communication (RX and TX respec-
tively). The third thread performs the pulse width modulation of the LEDs
required for the core. The placement of the threads is slightly different from
the case study in the previous chapter. Because of the hardware layout, the
PWM thread needs to be on core zero. This is due to the CLOCKLED SELR

and CLOCKLED SELG ports residing on core zero. However, because only one
thread can run on each core, the internal LEDs cannot be used. Therefore,
equivalent hardware is connected to core three, which circumvents this prob-
lem. Another possible solution was to merge the code of both threads into

83

Chapter 5 High-level event-driven programming in Scheme

one, more complex, thread. However this would defeat the purpose of the
multi-threaded architecture.

Listing 5.9: Program structure

1 (par
2 (core CORE 0
3 ; Appl i ca t ion l o g i c and button handl ing
4 (d e f i n e (l o g i c) . . .)
5 (l o g i c))
6 (core CORE 1
7 ; UART RX
8 (d e f i n e (uart rx) . . .)
9 (uart rx))

10 (core CORE 2
11 ; UART TX
12 (d e f i n e (uart tx) . . .)
13 (uart tx))
14 (core CORE 3
15 ; LED PWM
16 (d e f i n e (pwm) . . .)
17 (pwm)))

Core zero contains the thread with the application logic and which han-
dles the button presses. This code is displayed in Listing 5.10. First, the
default PWM values are initialized, together with the delay needed after a
button is pressed. Next, the hardware, more in particular, the port con-
nected to the buttons is initialized. The last element to define is a function
called handle press which handles the button and modifies the PWM value
appropriately.

Next is the main loop of this thread. It contains a select statement which
either handles a button press or incoming data from core one (which contains
the UART RX code). The of the former case is executed when the value on
the buttons port is not 15. The value 15 originates from the four buttons
which are connected with a pull up resistor (cfr Section 2.3.1). When the user
pushes a button, the appropriate bit will be a logic zero, effectively changing
the value on the port. When this happens, the handle press function will
update the PWM values accordingly. After this is finished, the local value is
sent to the thread running on core three, where the code resides to shown it
on the LEDs. Next, the remote value and the local value are combined into

84

Chapter 5 High-level event-driven programming in Scheme

a single byte and then fed to core two which will send it via serial port to
the other board.

The above-mentioned select statement also handles data input from core
one. The thread running on this core handles incoming serial data. When
data arrives, the PWM values are updated. Finally the local value is used
to update the shown color.

Listing 5.11 contains the code for reading a byte from the serial port. It
based on the low level XC implementation discussed in Section 4.6.2. First
the port used to send the data over, being port 1A, needs to be initialized
(lines 2-4). The delay used during transmission is also calculated based on
the baudrate of 1200.

Next is the main loop of this thread, which first waits for data to arrive
from thread zero. When data arrives that needs to be sent, first a start bit
is put on the line in the form of a zero. Then we add a delay depending on
the baud rate. After this delay, each data bit is sent, starting with the least
significant bit (lines 14-21). When all eight data bits are sent, the transfer is
finished with a stop bit.

Reading data from the serial port obviously has a fair share of resemblances
with the sending code. To read a data byte, we first wait until the start bit
is put onto the RXD pin as displayed in Listing 5.12. After the start bit is
received, the current time is sampled and saved. To ensure that the bit is
sampled when its signal is stable, half of the bit time is added. Next, each
bit is sampled with bit time time in between. Because XMOS Bit Scheme
does not support bit shift operations, a small calculation is performed that
emulates a right bit shift. Each newly read bit is put at the position of the
most significant bit and then shifted to the right using a division by two.
This is illustrated by Table 5.7. As the least significant bit is sent first, all
bits will be at the appropriate position after the entire data byte has been
read. After all data bits are read, we wait for the stop bit and then send the
data over the channel to core zero.

85

Chapter 5 High-level event-driven programming in Scheme

Listing 5.10: Application logic

1 (d e f i n e (l o g i c)
2 (d e f i n e remote pwm 7)
3 (d e f i n e local pwm 7)
4 (d e f i n e button t ime (/ 100000000 4))
5
6 (d e f i n e buttons 262912)
7 (pon buttons)
8 (pcon f i n buttons)
9

10 (d e f i n e (hand l e p r e s s buttons s h i f t pwm value)
11 (s e t ! buttons (modulo (/ buttons (expt 2 s h i f t))

4))
12 (cond
13 ((= buttons 3)
14 pwm value)
15 ((= (modulo buttons 2) 1)
16 (i f (< pwm value 15) (+ pwm value 1)

pwm value))
17 ((i f (> pwm value 0) (− pwm value 1) pwm value)

)))
18
19 (l e t loop ()
20 (s e l e c t
21 ((s e l e c t p n e buttons 15)
22 (lambda (value)
23 (s e t ! local pwm (hand l e p r e s s va lue 0

local pwm))
24 (s e t ! remote pwm (hand l e p r e s s va lue 2

remote pwm))
25 (cout 3 local pwm)
26 (cout 2 (+ remote pwm (∗ local pwm 16)))
27 (peq buttons 15)
28 (a f t e r (+ (t imer) button t ime))))
29 ((s e l e c t c i n 1)
30 (lambda (value)
31 (s e t ! remote pwm (modulo (/ va lue 16) 16))
32 (s e t ! local pwm (modulo value 16))
33 (cout 3 local pwm))))
34 (loop)))

86

Chapter 5 High-level event-driven programming in Scheme

Listing 5.11: Sending a byte over the UART

1 (d e f i n e (uart rx)
2 (d e f i n e TXD 66048) ; 1A
3 (pon TXD)
4 (pconf out TXD 1)
5
6 (d e f i n e b i t r a t e 1200)
7 (d e f i n e b i t t i m e (/ 100000000 b i t r a t e))
8
9 (l e t loop ((va lue (c in 0)))

10 (l e t ((time (t imer)))
11 (pout TXD 0)
12 (s e t ! time (+ time b i t t i m e))
13 (a f t e r time)
14 (l e t data loop ((pos 0))
15 (i f (< pos 8)
16 (begin
17 (pout TXD value)
18 (s e t ! va lue (/ va lue 2))
19 (s e t ! time (+ time b i t t i m e))
20 (a f t e r time)
21 (data loop (+ pos 1)))))
22 (pout TXD 1)
23 (s e t ! time (+ time b i t t i m e))
24 (a f t e r time))
25 (loop (c in 0))))

87

Chapter 5 High-level event-driven programming in Scheme

0 b0000 0000
1 b1b000 0000
2 b2b1b00 0000
3 b3b2b1b0 0000
4 b4b3b2b1 b0000
5 b5b4b3b2 b1b000
6 b6b5b4b3 b2b1b00
7 b7b6b5b4 b3b2b1b0

Table 5.7: Reading in the serial bits

Listing 5.12: Getting a byte from the UART

1 (d e f i n e (uart tx)
2 (d e f i n e TXD 66048) ; 1A
3 (pon TXD)
4 (pconf out TXD 1)
5
6 (d e f i n e b i t r a t e 1200)
7 (d e f i n e b i t t i m e (/ 100000000 b i t r a t e))
8
9 (l e t loop ((va lue (c in 0)))

10 (l e t ((time (t imer)))
11 (pout TXD 0)
12 (s e t ! time (+ time b i t t i m e))
13 (a f t e r time)
14 (l e t data loop ((pos 0))
15 (i f (< pos 8)
16 (begin
17 (pout TXD value)
18 (s e t ! va lue (/ va lue 2))
19 (s e t ! time (+ time b i t t i m e))
20 (a f t e r time)
21 (data loop (+ pos 1)))))
22 (pout TXD 1)
23 (s e t ! time (+ time b i t t i m e))
24 (a f t e r time))
25 (loop (c in 0))))

88

Chapter 5 High-level event-driven programming in Scheme

Configuring the XBee modules

To use the XBee modules with XMOS Bit Scheme, they need to be recon-
figured. The interpreter can’t output data at a baudrate of 9600, which is
the standard baudrate of the XBee modules. Because the interpreter is too
slow to output the bits at that speed, the module is reconfigured to run at a
speed 1200 bits per second.

To do so, the module needs to be in configuration mode. This can be
achieved by sending +++ to the module. Before doing so, there needs to a
one second delay before and after which no data is sent to the module. This
prevents data from being misinterpreted.

When the module is in configuration modus, it will reply with OK, followed
by a carriage return. We can now send commands to reconfigure the module.
This is done using AT commands. These consists of AT, followed by a two
letter command describing the desired command. To set the baudrate, the
command is ATBD. The XBee module supports various baud rates as shown
in table 5.8.

In order to configure the needed 1200 baudrate, we send the command
ATBD0, followed by a carriage return. To check that the settings are applied
correctly, the command ATBD can be sent without an argument. This will
return the current setting, which should be zero in this case.

To make the current settings permanent, we can write them to the non-
volatile memory by issueing the ATWR command. After this, the configuration
mode can be left using the ATCN command. If this is not done manually, the
module will automatically leave the configuration mode after a few seconds.

Pulse Width Modulation

The PWM code runs on core three. Therefore, we cannot use the LEDs on
the development board, as these are only accessible from core zero (cfr Fig-
ure 4.1). Instead pins PORT 1A and PORT 1B are used to perform the PWM
by using some extra hardware. This hardware consists of a red-green LED in
combination with a current limiting resistor. As depicted on Figure 5.8, the
LED internally consists of two separate LEDs, one in each direction. When
PORT 1A outputs a logical one (having voltage of 5 volt) and PORT 1B is at a
logical zero (effectively being connected to ground), the red LED will light
up. When the outputs are switched, it effectively changes the direction of the

89

Chapter 5 High-level event-driven programming in Scheme

Baudrate AT
1200 0
2400 1
4800 2
9600 3

19200 4
38400 5
57600 6

115200 7

Table 5.8: Baudrates supported by the XBee module

current, and enables the green LED. Clearly by switching between these two
states rapidly using pulse width modulation, we can create various shades.

PORT 1A
220Ω

Red

Green

PORT 1B

Figure 5.8: LED setup

This modulation is shown in Listing 5.13. On lines 2 to 8, the ports PORT 1A

and PORT 1B are defined using their resource identifier, next they are initial-
ized. After defining an initial PWM value on line 10, the main loop is entered.
This loop contains a select statement which either updates the PWM value
using incoming data from the application logic core zero or will perform the
PWM. The latter PWM case, either enables the red or green led according
to the time-interval defined by the pwm variable.

90

Chapter 5 High-level event-driven programming in Scheme

Listing 5.13: Pulse Width Modulation

1 (d e f i n e (pwm)
2 (d e f i n e redp lus 66048) ; 1A
3 (pon redp lus)
4 (pconf out redp lus 1)
5
6 (d e f i n e greenp lus 65536) ; 1B
7 (pon greenp lus)
8 (pconf out greenp lus 0)
9

10 (d e f i n e pwm 7)
11
12 (l e t loop ((cur r ent 15))
13 (s e l e c t
14 ((s e l e c t c i n 0)
15 (lambda (value) (s e t ! pwm value)))
16 (e l s e
17 (pout greenp lus (i f (< cur r ent pwm) 1 0)
18 (pout redp lus (i f (< cur r ent pwm) 0 1)))))
19 (loop (i f (> cur r ent 0) (− cur r ent 1) 15))))

5.13 Discussion

The XMOS Bit Scheme implementation allows to write embedded software
in a high-level language. This improves the clearness of the application even
more over its XC equivalent. However there are some trade-offs. The execu-
tion speed of Scheme application is much lower than their XC counterparts.
The UART code can serve as an example. The Scheme implementation
works up to a speed of 1200 bps, while the native XC implementation can
reach much higher speeds. But due to the real-time garbage collector in Bit
Scheme, the performance is predictable. Consequentially, transmission will
not fail due to unexpected garbage collection.

Bit Scheme also lacks typical bit level operations which are frequently used
in embedded operations. These need to be converted to arithmetic operations
which are less convenient. The added XMOS related primitives integrate
very well with the existing Scheme primitives, therefore using the hardware
features is very straightforward.

91

Chapter 5 High-level event-driven programming in Scheme

The XMOS compiler does not know which ports are accessed by the byte-
code, consequentially the programmer needs to do that manually, which is
inconvenient as it’s not needed when writing plain XC applications. Also the
lack of runtime error handling makes debugging XMOS Bit Scheme applica-
tions a tedious job.

The XMOS Bit Scheme implementation only supports four threads. In
the case study two of the four available threads are already occupied by
code to perform the serial communication. This could be circumvented by
implementing serial communication as a separate threat in immediately XC
and make its functionality available as a primitive in XMOS Bit Scheme.
This would also allow serial communication at much higher speeds. Clearly,
it would be possible to implement other communication protocols and/or
abstraction layers for peripheral hardware.

5.14 Conclusion

In this chapter, we have shown how to port the Bit Scheme interpreter to the
XMOS hardware and how to extend it to use the architecture specific fea-
tures. This way, programmers can develop event-driven and multi-threaded
embedded applications in Scheme. We have exported hardware functional-
ity into XMOS Bit Scheme primitives. That way Scheme applications can
immediately access the chip’s hardware functionality. The programmer can
work in a high-level language, therefore he or she can work without having
to worry about memory management. The interpreter works reasonably fast
while it fits inside the very limited available memory. We have also reimple-
mented the case study from the previous chapters. The implementation is
easier to understand, but there is a significant speed penalty which became
apparent when implementing the UART code. However, real-time nature of
the garbage collector ensures that no unexpected delays happen due to the
garbage collection process.

92

Chapter 6

Conclusion

Embedded software becomes increasingly important and is all around us in
a variety of systems. As embedded software has to interact with the physi-
cal world, it differs significantly from PC or server application software [6].
Most microchips and the accompanying embedded software is based on the
concept of interrupts. These asynchronous signals indicate to the CPU that
its attention is needed. The CPU can then execute the appropriate handler
and afterwards it continues executing. However as discussed in Chapter 2,
this approach has several drawbacks.

The chip designed by the XMOS company contains an event-driven and
multi-threaded architecture. In this architecture, no interrupts are used,
consequentially it does not inherit the drawbacks of interrupt driven soft-
ware. The architecture supports multiple threads in hardware. Concretely,
each thread has its dedicated set of registers and gets a guaranteed amount
of CPU cycles [16]. A thread can communicate with other threads through
message passing and can subscribe to events. These events implement a sim-
ilar functionality as interrupts. When a thread subscribes to an event, it
is suspended until the event occurs. That way, other threads can run or,
when few threads are running, power can be conserved. As most embed-
ded software is inherently concurrent, the mapping of embedded software on
multiple threads is more natural than on traditional desktop software. The
concurrency is introduced due to the various interactions from the outside
world that need to be handled in combination with the application logic.

93

Chapter 6 Conclusion

6.1 Contributions

In this dissertation, we have ported a Scheme interpreter to a new platform.
The interpreter of choice is “Bit Scheme”. This bytecode based interpreter
is very small, which is needed to fit in the tiny memory of the XMOS chips.
The interpreter is entirely designed for a small memory footprint, however, it
does not cut down on features. The bytecode interpreter is equipped with a
real-time garbage collector. In this context, real-time means that the garbage
collector will return in a predefined amount of time. This is especially useful
in embedded software which usually contains time critical functions.

In addition to porting the Bit Scheme interpreter, we also extended Scheme
with several primitives that allow using the XMOS specific hardware features.
As a result, the XMOS hardware can now be programmed in Scheme. In or-
der to support the concurrent programming on the four cores of the XMOS
hardware, each having a separate memory, we opted for an architecture in
which each core runs an independent bytecode interpreter. Therefore, during
Scheme compilation, the program is split up in separate pieces of bytecode,
which get downloaded to a specific core. This ensures that the small amount
of available memory is used as good as possible. To allow the different inter-
preters to communicate, message passing primitives were added. While Bit
Scheme is entirely optimized for size and not for speed, its execution is very
reliable in terms of timing. This is due to the real-time garbage collector and
the guarantees the XMOS hardware gives in terms of execution speed. To
demonstrate the feasibility of programming embedded systems using event-
driven and multi-threaded Scheme programs, we performed a case study for
which the timing of the interactions with the physical world is critical. Con-
cretely it involved UART communication and pulse width modulation, both
are usually implemented in hardware.

6.2 Limitations and future work

Passing complex data structures across channels

We have made a proof-of-concept to send complex data structures such as
trees and lists across channels. However, sending closures is currently not
possible. In order to do so, the needed bytecode would need to be sent
to the destination core. However the XMOS Bit Scheme compiler removes

94

Chapter 6 Conclusion

unneeded functionality from each core. As a consequence, a closure sent
to another core might call functionality which has been stripped from that
core’s bytecode during compile time.

Unsigned and floating point numbers

Support for unsigned and floating point numbers is missing in Bit Scheme
itself. Especially floating point numbers are useful when dealing with analog
input and output.

More thread flexibility

Our current implementation allows one thread per core. This is only a frac-
tion of the available eight per core. However, when increasing the number
of threads, one will encounter memory issues. Each thread needs a fixed
chunk of memory to be allocated. In case we allow running more than one
interpreter per core, the available memory will further need to split up.

When increasing the number of threads one will also need another model
to allocate the available channels to communicate between threads. The
current all-to-all model will run out of channels quickly, therefore the Bit
Scheme compiler would need to detect which threads communicate. The
channels could be allocated during the second compilation phase.

Optimize the interpreter

In future work, we intend to implement a select statement at assembler level
(cfr Section 5.10). This would allow to better use the possibilities of the
hardware than the current Scheme implementation. Doing so would both
increase the execution performance and the power efficiency of applications
written in Scheme.

Introduce parallelism in the interpreter

Clearly the current implementation of Bit Scheme is not the most efficient
one, further optimizations could be made here. For example, performing the
garbage collection in a separate thread.

95

Chapter 6 Conclusion

Improve development cycle

The lack of runtime error checking allows Bit Scheme to be very small. While
this saves memory, it is a big strain on the developer and is clearly very trou-
blesome during debugging, as the programmer does not get useful information
about software crashes. This could be worked around by creating an emu-
lation environment which allows applications to be developed and debugged
on a desktop. That way, the developer is provided with useful debugging
information during development. At the same time, the runtime memory
requirements are not increased by error checking code.

Create a library with all ports and their names in

This would simplify the programmers task, as it would no longer be needed
to look up the correct integer identifying a certain resource. Preferably, this
library could be (re)generated automatically, as the resource identifiers are
different for each device.

96

Chapter 7

Samenvatting

Embedded software wordt steeds belangrijker. Digitale horloges, microgolf-
ovens, auto’s bevatten allemaal ingebedde software. In de meeste gevallen is
een embedded systeem opgebouwd uit hardware en software die ontwikkeld
zijn voor een specifieke taak. Meer dan 98 % van de processoren [25] worden
tegenwoordig gebruikt in ingebedde systemen. Ingebedde software verschilt
echter significant van software die ontwikkeld is voor PC of voor servers.
Naast applicatielogica moet ingebedde software ook interacties met de fysieke
wereld afhandelen. Deze interacties zijn ondermeer sensors uitlezen, een mo-
tor of een licht aansturen, communiceren met andere systemen, enzovoort.
Bepaalde protocollen en hardware die door de chip worden aangestuurd
vereisen een strikte timing. In dit geval dient het systeem te reageren binnen
een bepaald tijdsinterval. Indien een ingebed systeem meerdere van deze ti-
jdskritische interacties concurrent dient af te handelen, worden de zaken nog
complexer.

De meeste microchips en bijhorende ingebedde software zijn gebaseerd op
interrupts. Een interrupt is een asynchroon signaal dat aan de CPU sig-
nalleert dat zijn aandacht vereist is. In dat geval zal de CPU stoppen met
de taak die momenteel wordt uitgevoerd en de geassocieerde interrupt han-
dler uitvoeren. Nadien zal de CPU verder gaan met het uitvoeren van de
taak die werd onderbroken toen de interrupt zich voordeed. Deze interrupt
gebaseerde aanpak is wijdverspreid en veelvuldig gebruikt om een chip snel
te laten reageren op verschillende signalen van buitenaf. Nochtans zijn er
verschillende nadelen aan verbonden aan de interrupt gebaseerde aanpak
[23][22]. We zullen deze nadelen bespreken. Hierna behandelen we event-
gebaseerde architecturen die een compleet andere aanpakken hebben naar

97

Chapter 7 Samenvatting

ingebedded systemen en software toe. Elke aanpak zal besproken worden
door middel van een representatieve case study.

7.1 Interrupt gebaseerde ingebedde systemen

Op chips worden interrupts vaak gebruikt om signalen van buitenaf af te
handelen. In interrupt gebaseerde systemen zullen deze interrupts de appli-
catiecode stoppen en wordt de inhoud van de verschillende registers door de
chip op de stack bewaard. Na het uitvoeren van de passende interrupt han-
dler, worden deze registers terug gevuld met hun oorspronkelijke waarde om
de uitvoer van de applicatie code verder te kunnen zetten. Indien we inter-
rupt gebaseerde systemen vergelijken met systemen die gebruik maken van
polling, dan zullen de eerstgenoemde een vermindering van de vertraging en
de overhead kunnen bewerkstelligen. Systemen die polling gebruiken dienen
voortdurend een bepaalde conditie te controleren. Indien deze controle niet
frequent genoeg wordt uitgevoerd kan de vertraging tussen het event en het
afhandelen ervan problematisch worden. Echter, indien veelvuldig gepolld
wordt, kan dit een significante overhead met zich meebrengen. Interrupt-
gebaseerde software kan ook gebruikt worden om het energieverbruik van het
ingebedde systeem te verlagen. In dat geval kan de CPU in een energiebe-
sparende slaapstand gebracht worden tot een interrupt zich voordoet. In
minder krachtige chips, wordt specifieke hardware vaak gebruikt om bepaalde
tijds- en rekenintensieve IO taken uit te voeren zoals bijvoorbeeld seriële com-
municatie. Interrupts worden dan gebruikt voor de synchronisatie tussen
deze specifieke hardware en de chip die de applicatiecode uitvoert. Deze
hardware kan bijvoorbeeld signaleren dat er data ontvangen is van de seriële
poort.

Signalen van buitenaf kunnen op elk moment voorkomen, dus geldt het-
zelfde voor interrupts. Dit kan een bron zijn van verschillende moeilijk
opspoorbare problemen aangezien ze enkel voorkomen onder specifieke en
zeldzame condities. Ondermeer kan er een stack overflow voorkomen wan-
neer er te veel interrupts op hetzelfde moment aankomen in de chip. Dit
veroorzaakt excessief gebruik van de stack door de verschillende interrupt
handlers. Indien er een uitzonderlijk hoog aantal interrupts voorkomt, kan
de hoofdapplicatie ook toegang tot CPU-tijd worden ontzegd. Bovendien
veroorzaakt iedere interrupt een onderbreking van de applicatie, wat het vol-
doen aan real-time voorwaarden kan bemoeilijken. Bestaande methodes om
deze problemen te voorkomen proberen meestal empirisch de benodigde sys-

98

Chapter 7 Samenvatting

teembronnen te bepalen die nodig zijn om alle mogelijke combinaties van
interrupts aan te kunnen. Deze methodes zijn echter niet perfect en kunnen
de zaken complex maken. In deze verhandeling zullen we de bovenstaande
problemen illustreren door middel van een case study die de hierboven aange-
haalde problemen weergeeft. Concreet zullen we een case study maken die de
problemen illustreert verbonden met het gebruik van polling en interrupts in
ingebedde software. In deze case studies implementeren we een applicatie die
pulse width modulatie (PWM) uitvoert op een LED. Twee van deze appa-
raten zullen draadloos verbonden worden door middel van een XBee module,
waardoor ze hun PWM waarde kunnen synchroniseren.

7.2 Event gebaseerde ingebedde systemen

Door de steeds krachtiger wordende chips is het mogelijk geworden om soft-
ware te gebruiken voor taken die voordien werden gëımplementeerd in hard-
ware zoals seriële communicatie. Deze aanpak wordt aangeprezen door het
bedrijf XMOS. Hun chips bevatten een event gebaseerde architectuur. Een
thread, die direct in hardware is gëımplementeerd, zal een event onderschrij-
ven en de bijhorende berekeningen uitvoeren als dit event zich voordoet.
Events kunnen voorkomen door wijzigingen in timers, communicatie of gere-
lateerd zijn met in- en uitvoer operaties. Threads hebben geen gedeeld
geheugen, maar kunnen communiceren door middel van het uitwisselen van
berichten. Indien een thread een event wil afhandelen zal het na het onder-
schrijven ervan zichzelf pauzeren tot het event in kwestie zich voordoet. Door
zichzelf te pauzeren geeft een thread andere threads de kans om uitgevoerd te
worden. Indien weinig threads worden uitgevoerd, wordt het energieverbruik
verminderd. In de XMOS architectuur heeft elke thread een eigen set van
registers en krijgt elke thread een gegarandeerde hoeveelheid CPU-tijd [16].
Dit betekent dat tijdskritische voorwaarden steeds gehaald zullen worden,
ongeacht de events die door andere threads worden behandeld.

In traditionele desktop software is het vaak nodig om een applicatie op
te splitsen in delen die concurrent kunnen draaien zodoende de uitvoer in
meerdere threads mogelijk te maken. Echter, dit is niet het geval voor in-
gebedde software. De meeste ingebedde software is immers inherent concur-
rent aangezien het applicatiecode bevat naast code die de interacties met de
buitenwereld behandeld. Dit resulteert in relatief natuurlijke verdeling van
ingebedded software over verschillende threads, zoals voor applicaties op de
XMOS architectuur aangewezen is.

99

Chapter 7 Samenvatting

Op een chip met slechts één core is het mogelijk om parallelle uitvoer
van meerdere threads te emuleren. Dit is bijvoorbeeld gëımplementeerd
in occam-π dat toelaat multi-threaded programma’s te ontwikkelen op een
gelijkaardige manier als voor XMOS chips. Echter, applicaties ontwikkeld
in occam-π worden uitgevoerd op interrupt gebaseerde platformen. Dit kan
door bijvoorbeeld een scheduler te implementeren die elke thread voorziet van
een bepaalde hoeveelheid CPU-tijd. Echter, deze aanpak kan geen garanties
bieden in verband met tijdskritische voorwaarden en uitvoeringssnelheid, iets
wat wel het geval is voor de XMOS architectuur. Een thread die gescheduled
is kan immers nog steeds onderbroken worden door events van buitenaf. Dit
maakt het onmogelijk om met zekerheid te bepalen wanneer een berekening
zal beëındigd zijn. Aangezien threads interleaved worden uitgevoerd kan het
bovendien moeilijk zijn om real-time voorwaarden na te komen.

Een andere mogelijke aanpak is deze van het besturingssyteem TinyOS [11].
Dit besturingssysteem laat het schedulen van taken (tasks) toe.

Tenslotte zullen we de eerder vermeldde case study herzien om aan te to-
nen welke problemen door de XMOS architectuur worden opgelost en om
de event-gebaseerde architectuur te vergelijken met een interrupt-gebaseerde
architectuur.

7.3 High-level event gebaseerd programmeren

in Scheme

Momenteel kunnen XMOS chips enkel worden geprogrammeerd in een low-
level programmeertaal afgeleid van C. In deze verhandeling zullen we daarom
onderzoeken of de XMOS architectuur ook kan geprogrammeerd worden door
middel van de high-level programmeertaal Scheme en of het gebruik van
Scheme op deze architectuur de taak van de ontwikkelaar nog meer vereen-
voudigt.

We hebben de bytecode gebaseerde interpreter Bit Scheme geport naar het
XMOS platform. Deze interpreter is zeer klein en past dus in het geheugen
op de chip, terwijl er genoeg plaats over is voor de bytecode van de Scheme
applicatie en het benodigde runtime geheugen van de applicatie. Bit Scheme
heeft met een bijbehorende compiler die Scheme broncode kan vertalen naar
bytecode. De bytecode interpreter bevat bovendien een real-time garbage col-
lector. Dit is een belangrijk voordeel in het domein van ingebedde systemen.

100

Chapter 7 Samenvatting

In deze context betekent real-time dat de garbage collector zijn taak zeker
zal afronden binnen een vast tijdsinterval [5]. Dit is uitermate handig als er
aan tijdskritische voorwaarden moet worden voldaan. Naast het porten van
de Bit Scheme interpreter naar het XMOS platform, hebben we ook de in-
terpreter en compiler uitgebreid met specifieke mogelijkheden van de XMOS
hardware te kunnen gebruiken. Om multi-core ingebedde systemen te on-
dersteunen, voeren we vier Scheme interpreters uit in parallel. We hebben
ook nieuwe primitieven toegevoegd aan deze Scheme interpreter zodoende
dat de interpreters kunnen communiceren door middel van het uitwisselen
van berichten. De Bit Scheme interpreter is ook uitgebreid met XMOS speci-
fieke IO abstracties. Tenslotte illustreren we de voordelen van deze high-level
aanpak in een case study.

101

Bibliography

[1] Alison Carling. Parallel Processing - Occam and the Transputer. Sigma
Press, Water Lane, Wilmslow, England, 1988.

[2] William D. Clinger and Jonathan Rees. The revised4 report on
the algorithmic language scheme. http://www.cs.indiana.edu/scheme-
repository/R4RS/r4rs toc.html, November 1991.

[3] Atmel Corporation. Atmel atmega48/88/168 avr mi-
crocontroller datasheet. http://www.atmel.com/dyn/-
resources/prod documents/doc2545.pdf, 2009.

[4] Danny Dubé and Marc Feeley. Picbit: A scheme system for the pic
microcontroller. In Proceedings of the Fourth Workshop on Scheme
and Functional Programming, pages 7–15, Boston, Massachusetts, USA,
November 2003.

[5] Danny Dubé and Feeley Marc. Bit: A very compact scheme system for
microcontrollers. Higher-Order and Symbolic Computation, 18(3-4):271–
298, 2005.

[6] Lee Edward A. Embedded software. Advances in Computers, 56:56–97,
Augustus 2002.

[7] Yoshikatsu Fujitax and LittleWing Company Limited. Ypsilon — the
implementation of r6rs scheme programming language for real-time ap-
plications. http://code.google.com/p/ypsilon/, December 2008.

[8] Guillaume Germain, Marc Feeley, and Stefan Monnier. Concurrency
oriented programming in termite scheme. In Proceedings of the 2006
ACM SIGPLAN workshop on Erlang, Portland, Oregon, USA, Septem-
ber 2006.

[9] Charles Antony Richard Hoare. Communicating sequential processes.
Communications of the ACM, 21:666–677, 1985.

102

[10] Digi International. Xbee and xbee-pro zigbee datasheet.
http://www.digi.com/products/wireless/zigbee-mesh/xbee-zb-
module.jsp#docs, 2010.

[11] Philip Levis and David Gay. TinyOS Programming. Cambridge Univer-
sity Press, The Edinburgh Building, Cambridge, 2009.

[12] XMOS Ltd. Xc-1a hardware manual.
http://www.xmos.com/published/xc-1a-hardware-
manual?ver=xc1ahw.pdf, 2009.

[13] XMOS Ltd. Xk-1 hardware manual.
http://www.xmos.com/published/xk-1-hardware-
manual?ver=xk1hw.pdf, 2009.

[14] XMOS Ltd. Xk-xmp-64 hardware manual.
http://www.xmos.com/published/xmp-64-hardware-manual?ver=xk-
xmp-64-hardware.pdf, 2009.

[15] XMOS Ltd. Xmos technology whitepaper.
http://www.xmos.com/published/xmos-technology-
whitepaper?ver=xmos-technology-whitepaper.pdf, 2010.

[16] David May and XMOS Ltd. The xmos xs1 architec-
ture. http://www.xmos.com/published/xmos-xs1-architecture-
0?ver=xs1 en.pdf, 2009.

[17] Atsushi Moriwaki and Akira Kida. Minischeme version
0.85k4 sourcecode. ftp://ftp.cs.indiana.edu/pub/scheme-
repository/imp/minischeme.tar.gz, 1994.

[18] Richard Osborne. Targeting xcore resources
from llvm. http://llvm.org/devmtg/2009-
10/Osborne TargetingXCoreResources.pdf, 2009.

[19] MiniScheme Project. Minischeme sourcecode.
http://sourceforge.net/projects/minischeme/, 2010.

[20] The Arduino project. Arduino xbee shield schematics.
http://www.arduino.cc/en/uploads/Main/XbeeShieldSchematic.pdf,
2007.

[21] Racket and PLT Scheme. Reference guide, chapter 10: Concurrency.
http://docs.racket-lang.org/reference/concurrency.html?q=thread,
2010.

103

[22] John Regehr. Random testing of interrupt-driven software. In EMSOFT
’05: Proceedings of the 5th ACM international conference on Embedded
software, pages 290–298, Jersey City, New Jersey, USA, September 2005.

[23] John Regehr. Safe and structured use of interrupts in real-time and
embedded software. In Handbook of Real-Time and Embedded Systems,
chapter 16. Chapman & Hall/CRC, 2007.

[24] John Regehr, Alastair Reid, and Kirk Webb. Eliminating stack overflow
by abstract interpretation. ACM Transactions on Embedded Computing
Systems (TECS), 4(4):751–778, November 2005.

[25] Erwin Schoitsch. Embedded systems - introduction. European Research
Consortium for Informatics and Mathematics News, (52):10–11, Jan-
uary 2003.

[26] Vincent St-Amour and Marc Feeley. Picobit: A compact scheme system
for microcontrollers. In Implementation and Application of Functional
Languages, pages 1–11, Seton Hall University, South Orange, New Jer-
sey, USA, September 2009.

104

