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Abstract

Automatic parallelization is an attractive option in light of the current proliferation of multicore hard-

ware. This dissertation presents a brute-force technique for the automatic parallelization of sequen-

tial, higher-order Scheme programs containing side-effects. We will attempt to parallelize binding

expressions inside nested let expressions by introducing a parallel let variant let||. To determine

whether this is safe, we use dependency analysis. To facilitate the transformation to a parallel program,

we can construct and transform a dependency graph.

If we want to determine dependencies between expressions in programs, we must analyze that

program. Program analysis can be realized using abstract interpretation, because it provides a frame-

work that allows us to collect information about a program without actually running it. The results

produced by abstract interpretation are necessarily approximations because we are dealing with unde-

cidable problems. Nevertheless our analyses are conservative and the results reflect all the possibilities

that can arise at runtime.

In order to approximate dependencies that may arise when expressions invoke procedures in a

higher-order program, we use the interprocedural dependence analysis by Might and Prabhu [19]to

approximate dependencies that may arise when expressions invoke procedures in a higher-order pro-

gram. The result of that analysis is an abstract resource dependency graph relating addresses and

invocations. This information, together with the dependency information that is lexically apparent

from the source code, allows us to determine whether it is safe to parallelize expressions in a program.

Our approach is brute-force in the sense that static analysis answers the safety question concerning

parallelization, but we never investigate whether it is useful. We parallelize at every opportunity. To

validate this approach and to see how it performs in practice, we ran several automatically parallelized

benchmarks on parallel hardware. The evaluator we developed and use is Streme. It features paral-

lelization primitives with intentional semantics. Our experimental results show that some programs

with high levels of recursion indeed get a performance boost, while others do not or receive a perfor-

mance penalty. The most promising future work comprises adding heuristics to guide the process of

automatic parallelization.



ii

To my unborn (let ((f (lambda (x h) (if (zero? x) (h x) (lambda (f) (assoc

f ’((0 . son) (3 . daughter)))))))) (cdr (f 0 (f 3 #f))))1

1I promised to keep this to myself. Reader discretion advised.
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Chapter 1

Introduction

1.1 Thesis

Parallelization of Scheme programs using static analysis is feasible and allows certain sequential pro-

grams to run faster on multicore systems.

1.2 Motivation

In 1965 Moore observed that in the previous years the number of components on a chip doubled about

every 12 months. He also predicted that this trend would continue for at least ten years to come. In

1975 he revised his prediction and stated that complexity would double every 24 months [4]. Because

his second prediction is still accurate even today, it has henceforth become known as Moore’s Law. Chip

manufacturers use it as a benchmark for their products and use the values it predicts as a roadmap for

future efforts, and as such Moore’s Law has become a kind of self-fulfilling prophecy.

Moore’s Law has since been generalized to stating that hardware performance doubles about every

24 months as well. Proebsting’s Law, on the other hand, makes the less optimistic observation that

compilers double performance only every 18 years [24]. This means that the speedup over time gained

by smarter compilers is negligible in comparison to the speedups caused by improved underlying

hardware. It also means that there is still ample room for improvement as far as compiler optimizations

are concerned. We believe that the recent trend of multicore desktop systems provides an opportunity

for compilers to regain some of that lost ground.

In order to keep up with Moore’s predictions, manufacturers of consumer-hardware chips have

relentlessly been increasing CPU clock speeds. They did so well into the 21st century, until it became

impractical to keep this up any further because of chip designs pushing against physical size and heat

limits. Therefore, commercial manufacturers recently have turned to steadily increasing the number

of processing cores inside a CPU to increase overall performance instead.

This kind of parallelism is not new. The first multiprocessor architectures date back to the 1960s.

What is new, however, is the realization that parallelism is essential for continued progress in high-

performance computing [8].

1



CHAPTER 1. INTRODUCTION 2

1.3 Problem

Increasing the clock speed virtually guarantees the speedup of the majority of sequential applications

and programs. Increasing the number of cores to increase performance however usually comes at a

price: programs in question must take advantage of the fact that they will run on parallel hardware.

We are now faced with two questions:

1. How should we go about writing new programs, knowing that they will be executed on parallel

hardware?

2. What should we do with existing programs, of which the vast majority are sequential, so that

they can benefit from running on multiple cores?

Starting with the first question, it may seem attractive to augment a programming language to allow

for programmer directed or manual parallelism. This however leads us to a series of new questions

[11]. In this dissertation we use Scheme as our programming language. Scheme is a small, elegant

but yet expressive language. If people choose Scheme for one or more of these reasons, why should we

lower the abstraction level of Scheme and complicate its simple semantics for the sake of parallelism?

What are the specific annotations for parallelism we will add, and which aspects of parallelism will they

capture? Can an average programmer uncover more parallelism and organize the computation more

effectively than a compiler? Another argument against manual parallelization is the firm consensus

that has grown on the fact that, especially in traditional imperative object-oriented languages, manual

parallelization is tedious and error-prone [16].

Looking at the second question: who will rewrite all the existing sequential programs, if paralleliza-

tion is to be done manually? There exists an immense body of sequential code, written over several

decades in languages that do not necessarily support high-level parallelism.

Answering our two initial questions with “manual parallelization” therefore leads us to identify a

series of problems from which we can conclude that manual parallelization it is not necessarily the

easy option, and it is certainly not the only option.

1.4 Solution

Another approach would be to use automatic parallelization, where an optimizing compiler is the

answer for effective programming of a parallel computer. This is the option this dissertation explores.

Scheme as a language is an ideal candidate for this non-trivial undertaking because of its simplicity.

We avoid cluttering up the Scheme itself with parallelization directives, retaining its simple semantics.

We describe a method of transforming a sequential Scheme program into a parallel program while

preserving its original semantics.

Automatic parallelization is difficult. Correctly applied manual parallelization often gives better

results in specific cases than automatic parallelization does. The goal of this dissertation is not to

prove otherwise, but to investigate how far we can get by using brute-force automatic parallelization,

backed by static analysis.
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While some of the results in this dissertation are still rudimentary and leave much room for im-

provement, we nevertheless hope that they represent a base on which further experiments can be

conducted.

1.5 Overview

This dissertation describes an approach for the brute-force parallelization of sequential Scheme pro-

grams by using static analysis. More specifically, we look for nested let expressions and see if the

expressions they bind can be evaluated in parallel (§2.2). If so, we can introduce a parallel let

variant let||.

In order to guarantee the preservation of the sequential semantics of the input program, we must

decide whether it is safe to parallelize expressions (§2.3). This depends on whether the expressions

are dependent on each other or not. Therefore, we perform dependence analysis on all expressions

appearing inside a structure of nested lets (§2.4).

The result can be represented by a dependency graph that expresses dependencies between differ-

ent expressions (§2.5). Simple transformations that move the focus from dependency to evaluation

order allow us to uncover and exploit opportunities for parallelization (§2.6). Our approach will be

brute-force in the sense that we parallelize at every opportunity without asking if it is beneficial to

introduce parallelism (§2.7).

Some types of dependence are lexically apparent and hence quite trivial in a reasonably simple

language as Scheme, while others are not. Especially when procedure invocations in a higher-order

setting are involved, interprocedural dependencies that are not always evident may arise and must be

tracked.

The interprocedural dependence analysis we will use is based on stack reachability (§5.4.2). The

underlying principle is that a procedure that calls another procedure is also dependent on the resources

of its callee (§5.4.1). For the analysis to work, it needs to examine the call stack at the time when

resources are read and written during evaluation.

If we want to obtain necessary but non-trivial information like possible runtime stack configurations

from a program, it is no option to simply run that program (it may not terminate or depend on user

input) or to try and predict information from the source code alone (the problems in general are

undecidable). We can solve this problem by using the theory and techniques of abstract interpretation

(§4.2). Hence it is abstract interpretation that powers the interprocedural dependence analysis.

If we want to parallelize expressions occurring inside nested let expressions, it is desirable to have

as many of them as possible in the input program. To achieve this we employ a normal form, called

ANF, that introduces many nested lets when converting to it (Chapter 3). ANF also simplifies abstract

interpretation and therefore is used as the input language for the interprocedural dependence analysis

as well.

To validate the approach and to test how brute-force automatic parallelization backed by static

analysis performs, we describe several experiments and their outcome (Chapter 7). We use Streme as

a Scheme evaluator to carry out these experiments. It implements low-level parallel constructs with

intentional semantics, putting the evaluator instead of the programmer in charge of how much paral-
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lelism a program will exhibit at runtime (§6.2). Parallelism in Streme is achieved using a work-stealing

strategy (§6.3). Streme is an implementation of each and every idea described in this dissertation.

1.6 Contributions

The main contribution of this dissertation is the description and validation of and end-to-end frame-

work consisting of static analysis and program transformation tools to implement safe brute-force

parallelization at compile-time of sequential, higher-order Scheme programs in the presence of assign-

ment through set! and side-effecting procedures (primitive or otherwise).

• We demonstrate that it is feasible to automatically introduce parallelism in sequential higher-

order programs, with static analysis guaranteeing the preservation of the original semantics.

• We describe a detailed approach of how to analyze different types of dependencies inside a

structure of nested let expressions, how to extract binding order constraints from those depen-

dencies, and how to use these ordering constraints to generate parallel code.

• We implemented the interprocedural dependence analysis developed by Might and Prabhu [19]

with minor modifications and extensions. Furthermore, we incorporated several techniques that

optimize the analysis for speed without losing too much precision to become unuseful in practice.

• We developed a Scheme interpreter that is an implementation of all ideas and techniques pre-

sented in this dissertation.

– The frontend is composed of a modular pipeline of analysis and transformation tools that

can be modified and extended at will.

– The backend consists of an evaluator that has parallelization primitives with intentional

semantics, needed for our brute-force method of parallelization.

• We tested our dependency analysis, including the interprocedural analysis of Might and Prabhu,

on several benchmarks using our Scheme interpreter, to validate our parallelization approach,

check the validity of the analysis involved, and to verify its performance on real programs.



Chapter 2

Parallelization of Scheme Programs

2.1 Introduction

In this chapter we present our approach for parallelizing Scheme programs. The basic idea is simple:

we look for nested let expressions and verify if it is possible to evaluate the expressions inside their

bindings in parallel. We need to ensure that parallel evaluation of the binding expressions cannot alter

the semantics of the program. To verify this we need to check for dependencies. Some dependencies

are immediately apparent from the source code. Others require a more thorough analysis of the

program.

2.2 Parallelization of nested let expressions

The approach we take to parallelize Scheme programs will consist of rewriting nested let expressions

that may appear in programs. A let expression contains a list of zero or more bindings and a body.

Bindings are of the form (u, e) where u is a variable and e the binding expression. When the let body

is evaluated, the variables will be visible and bound to the value of their binding expressions.

Nested let expressions are a sequence of let expressions with one binding, chained through their

bodies. The chain ends with the innermost let that does not have a let expression with one binding

as its body. An example of a structure of nested lets with 3 bindings is

(let ((a e1))

(let ((b e2))

(let ((c e3))

ebody))

In Scheme, nested lets can be conveniently expressed using let*. The above expression is equivalent

with

(let* ((a e1)

(b e2)

(c e3))

ebody))

5
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Assume that we have a let|| form that has identical semantics as an ordinary let except that

it may evaluate its binding expressions in parallel. Basically, we want to know whether it is safe to

rewrite

(let ((a e1))

(let ((b e2))

ebody))

as

(let|| ((a e1)

(b e2))

ebody)

If, after analysis, we have determined that it is possible to introduce let||, we have effectively

parallelized (part of) our program.

More binding expressions in a nested let increase the opportunities for parallelization. Therefore,

and also to allow for more uniform treatment, it is in our advantage if we bind the body expression of

the innermost let to a variable, and use a reference to that variable to serve as the return value for

the entire nested let. In examples we will use body as identifier for this purpose, which we assume

to be unique. In practice this means that when confronted with expression

(let ((a e1))

(let ((b e2))

ebody))

we will actually rewrite this to

(let ((a e1))

(let ((b e2))

(let ((body ebody))

body)))

with the innermost binding being the body binding and the result expression the body reference. To

distinguish between body as a binding variable and as a reference, we will denote the reference as

=body.

2.3 Dependence Analysis

We will use dependence analysis to decide whether it is safe to parallelize binding expressions appear-

ing inside nested let expressions. The key principle in answering this question is dependence.

Definition 2.1. (Dependence) Expression e2 is dependent on expression e1 if e1 must be evaluated

before e2 to guarantee the intended semantics of a program in which these expressions occur.

We can categorize dependencies into two classes: control dependencies and data dependencies.
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Control dependencies

Expression e2 is control-dependent on expression e1 if the result of evaluating e1 determines whether

e2 will be evaluated or not. For example, in the expression

(if (not (zero? x))

(f (/ y x)))

the function f will only be called if the condition (zero? x) does not hold. Therefore there is a

control dependency from (f (/ y x)) upon (not (zero? x)). Control-dependent expressions

cannot be reordered without changing the meaning of a program.

Data dependencies

Expression e2 is data-dependent on expression e1 when e2 accesses or modifies a resource that is ac-

cessed or modified by e1. In the context of this dissertation a resource will be a variable pointing to a

fixed address containing a value that is modifiable. In the source code and in our dependency analysis

we refer to a variable and its address by an identifier. We assume all identifiers are unique in the

programs we analyze.

Let R(e) return the set of variables read by expression e and W (e) the set of addresses written by e.

We can examine the following cases for expressions e1 and e2, where e2 is sequentially executed after

e2:

• If R(e1)∩R(e2) 6= ∅, then e1 and e2 share an address they read. This read/read data dependency

is sometimes called an input dependency and is harmless in the sense that e1 and e2 can be

reordered without changing the meaning of the program in which they appear. For example, in

the following expression

(let ((a 1))

(display a)

(set! x (* a a)))

it does not matter whether the call to display comes before the assignment to x or after. In

the remainder of this dissertation, when we state that two expressions are (data) dependent, we

exclude this type of “dependency”.

• If W (e1) ∩ R(e2) 6= ∅, then e2 reads an address that is written by e1. This write/read is called a

true dependency or a flow dependency. It means that e2 must always be evaluated after e1 and so

the expressions cannot be reordered. In the expression

(let ()

(set! a 1)

(set! b (+ a 1)))

the assignment to a must always occur before the assignment to b, so the assignment is truly

dependent on the binding.
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• If R(e1) ∩W (e2) 6= ∅, then e2 writes an address that is read by e1. This read/write dependency

is generally called an anti-dependency and is illustrated in the following expression, where the

assignment to a is anti-dependent on the assignment to b .

(let ((a 1))

(set! b (+ a 1))

(set! a 2))

The assignments cannot be reordered without changing the meaning of the program.

• Finally, when W (e1)∩W (e2) 6= ∅, then e1 and e2 share an address they write to. This write/write

dependency is called an output dependency and again e1 and e2 cannot be reordered. In the

expression

(let ()

(set! a 1)

(display a)

(set! a 2))

the second assignment to a is output-dependent on the first assignment, and interchanging the

assignments would alter the displayed value.

In short, expressions e1 and e2 cannot be reordered if

{W (e1) ∩ {R(e2) ∪W (e2)}} ∪ {W (e2) ∩ {R(e1) ∪W (e1)}} 6= ∅

Implication for parallelization

So far we have identified different conditions which make it impossible to reorder expressions while

preserving program semantics. The implication for parallelization follows naturally: two expressions

that cannot be reordered can also not be executed in parallel. This is because parallelization possi-

bly destroys the fixed sequential, non-overlapping evaluation order. Parallelization can preserve the

sequential evaluation order of two expressions, but it can also reverse it. Besides reordering, paral-

lelization can (and aims to) arrange for the evaluation of expressions to overlap, something which

cannot occur during sequential evaluation.

Therefore, if a dependency exists between expressions e1 and e2, they cannot safely be evaluated

in parallel. If e2 does not depend on e1, then evaluating these expressions in parallel cannot change

the meaning of a program and hence it is safe to do so.

Dependence analysis with bindings

We already saw some examples of dependencies in Scheme programs in the previous section. The

examples use a “classic” imperative setting, using assignment through set! to write to addresses.

Scheme promotes a functional style of programming, including binding of variables (often instead

of assigning) through let and its variations. We defined dependence in terms of expressions and a

binding is technically not a Scheme expression. However, one can transform
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(let ((a 1))

(f a))

into

(let ((a undefined))

(set! a 1)

(f a))

where the let-binding serves more as an allocation of the address for variable a than a binding. By

thinking of bindings as an allocation immediately followed by an assignment we can incorporate bind-

ings in our dependence analysis without any additional difficulty.

2.4 Dependencies between nested let bindings

The precondition for successfully transforming programs by using a rewrite rule introducing let|| is

that there are no dependencies that prohibit us from doing so. To determine these dependencies we

have to consider both control dependencies and data dependencies. In our approach however we will

not handle control dependencies. In the expression

(let* ((a (if econd econs ealt))

(body ebody))

body)

we disregard the control dependencies from econs and ealt upon econd since we will not attempt to

remove the if expression through any kind of transformation. This of course does not exclude the

possibility of rewriting any nested lets that may appear inside if expressions.

Besides control dependencies we also have to look at data dependencies, and for this we assume

that we have functions R(e) and W (e) at our disposal to determine the addresses that are read and

written by binding expressions.

To avoid clutter and to simplify presentation, we often refer to bindings by their identifier only. We

can do so because we assume variables have unique identifiers. Therefore, we can denote a depen-

dency from binding (u2, e2) upon (u1, e1) as u1 → u2. We also extend our read and write functions to

accommodate for bindings. For binding (u, e) we have RB(u) = R(e) and WB(u) = W (e). Note that

by convention function WB only returns the addresses written by the binding expression, and never

the binding variable itself.

Suppose (u1, e1) and (u2, e2) are two bindings inside a let*, and (u2, e2) is in the scope of (u1, e1).

We can say that binding (u2, e2) is data-dependent on binding (u1, e1), or u1 → u2, when one or both

of the following conditions are met.

1. u1 ∈ {RB(u2) ∪ WB(u2)}, that is, e2 reads and/or writes u1 so we are dealing with either a

flow or an output dependency (or both). We will refer to this type of dependency as a scoping
dependency. For example, in the nested structure

(let ((a 1))

(let ((b (+ a 1)))

(let ((body (* a b)))
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body)))

the expression bound to b reads variable a. Consequently, the binding for b is scope-dependent

on the binding for a and b → a. Furthermore, the body binding is scope-dependent on both a

and b, so a→ body and b→ body. Scoping dependencies always target internal variables, bound

in an enclosing let that is part of structure of nested lets being analyzed.

2. e2 is dependent on e1, and all types of data dependencies are possible. In the program fragment

(define z #f)

(let*

((x (if z 1 0))

(y (set! z #t))

. . .)

RB(x) = {z} and WB(y) = {z} with variable z defined outside the nested let expressions.

Hence, the binding for y is dependent on the binding for x or x→ y. If we have

(let*

((z #f)

(x (if z 1 0))

(y (set! z #t))

. . .)

then the binding for y still is dependent on the binding for x, but now both these bindings are

also scope-dependent on the binding for z, so we add dependencies x→ z and y→ z.

Scoping dependencies explain why the visibility of variables bound by let|| must necessary follow

the same rules as that of a let and not let*. If e2 accesses or modifies u1, the scoping dependency

that arises prohibits evaluating e1 and e2 in parallel. Hence it makes no sense to have let*-visibility

for let|| even if we are using let|| to parallelize a series of nested lets.

Lambda expressions and procedure application complicate dependency matters further. We can

make the following observations:

1. When binding a closure, we have to consider only the scoping dependencies appearing inside the

lambda expression involved.

2. When binding the result of an invocation, we have to consider all dependencies appearing inside

the lambda expression involved.

To illustrate the first observation, if we bind a closure we also have to look inside its lambda expression

to determine scope dependencies. The fact that RB(incz) = WB(incz) = {z} and z→ incz in

(let*

((z #f)

(incz (lambda () (set! z 1) z)))

. . .)
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may seem counter-intuitive when considering that the body of the lambda is not evaluated when incz

is bound to a closure. But when reasoning in terms of lexical scoping and order, it is clear that z must

be in scope and initialized before the closure is ever applied, so the bindings for z and incz cannot

be reordered. When the dependency between two bindings is not a scoping dependency, as in

(lambda (z)

(let*

((incz (lambda () (set! z 1) z))

(squarez (lambda () (* z z))))

. . .))

then the reordering of the bindings for incz and squarez becomes permitted. Illustrating our second

observation, we now bind the result of invoking incz and squarez as depicted below.

(lambda (z)

(let*

((incz (lambda () (set! z 1) z))

(squarez (lambda () (* z z)))

(newz (incz))

(zsquared (squarez)))

. . .))

We can still reorder the binding of the closures, but we cannot reorder the invocations because now

we have to consider the dependencies between the bodies of the two lambda expressions as well. In

this particular case we are confronted with a write/read dependency and as a consequence we have

newz → zsquared. These type of dependencies that arise when procedures are invoked are called

interprocedural dependencies. They are the most difficult dependencies to track, since they are not

always lexically evident at the call sites (§).

Besides control and data dependencies, there is one more form of dependency we have to take into

account. In the expression

(let*

((z 42)

(x (display z))

(body (* z z))

body)

we want the call to display to be finished before the body reference =body is returned, even though

it does not contribute to the end result of the nested let. Still, to preserve the semantics of sequential

evaluation we require x → = body. In general, if there is a binding (u, e) and there exists no other

binding that is dependent on (u, e), we make the body reference dependent on (u, e). This guarantees

that once the body reference is returned, all evaluations are terminated, as is always the case for a se-

quential evaluation of a let. In practice however, binding expressions in lets that do not (indirectly)

contribute to the return value of the let but are evaluated for side-effects only (deliberate or not), are

rare.
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Figure 2.1 fib function and its binding dependency graph

(letrec
((fib (lambda (n)

(let ((p0 (< n 2)))
(if p0

n
(let ((p1 (- n 2)))
(let ((p2 (fib p1)))
(let ((p3 (- n 1)))
(let ((p4 (fib p3)))
(+ p2 p4))))))))))

(fib 40))

p1

p2

body

=body

p3

p4

2.5 Binding dependency graph construction

We can use dependency information to construct a binding dependency graph that models the evalua-

tion constraints imposed by the dependences between bindings appearing in our nested let expressions.

This binding dependence graph is a directed, acyclic graph (DAG) where the nodes represent bindings,

except for one unique node that represents the body reference

We will represent binding nodes using oval shapes. The body node is depicted in a rectangular

shape and its identifier is prefixed with the symbol = to emphasize the fact that it is the return value.

An edge from binding u1 to u2 in the dependency graph signifies that the binding of u2 depends on

u1, or u1 → u2 in short. An edge from binding u to the body node signifies that the body depends on

u, either because of a scoping dependency or to guarantee that once the body reference is returned all

evaluations are terminated. Because of this it is guaranteed that the body node will be the only sink

node.

Example 2.2. (Binding dependency graph) In Figure 2.1 a double-recursive Fibonacci function is

shown alongside its binding dependency graph. The bindings for p1, p2, p3 and p4 are readily

identified in the source code, and body in our example is bound to (+ p2 p4). The binding for p0

does not feature in the graph since it is only involved in control dependencies. Variable n is not in the

graph either, because it is not bound inside the nested lets we are analyzing. We have RB(p2) = {p1}
so that p1 → p2, RB(p4) = {p3} so that p3 → p4, and RB(body) = {p2, p4} so that p2 → body and

p4→ body.

From Example 2.2 it is clear that a binding dependency graph can have multiple source nodes

(nodes for bindings p1 and p3) but only one sink that contains the body reference =body. The exam-

ple is also quite trivial, since the only dependencies that occur are bindings that read previously bound

variables. The function fib does not read or write anything outside its lexical scope. When a proce-

dure does access or modifies external resources, interprocedural dependencies complicate matters as

Example 2.3 demonstrates.

Example 2.3. (Binding dependency graph with interprocedural dependency) In Figure 2.2 variable z

plays the role of a common resource used in procedures writez and readz. The most interesting

dependency is p3 → p4 since it expresses an interprocedural dependency resulting from the two
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Figure 2.2 Nested lets with an interprocedural dependency and corresponding binding dependency
graph

(let*
((z 0)
(writez (lambda ()

(set! z 123)))
(readz (lambda () z))
(p3 (writez))
(p4 (readz)))

(cons p3 p4))

z

writez

readzp3

p4

body

=body

Figure 2.3 Parallelization opportunity in dependency graph

(let ((a e1))
(let ((b e2)
(let ((c e3))
(let ((d e4))

. . .))))

⇓
(let ((a e1))

(let|| ((b e2)
(c e3))

(let ((d e4))
. . .)))

a

b c

d

procedure applications. The calls (writez) and (readz) cannot be reordered because procedure

writez writes to z and procedure readz reads from z.

2.6 Identifying parallelism

If we have a binding dependency graph for a series of nested lets bindings, it becomes possible to

identify opportunities for parallelism. The key idea is shown in Figure 2.3. Top-left we have a nested

let with 4 bindings and a possible dependency graph for it on the right. There is a branch from

binding a to bindings b and c. Since bindings b and c are independent, e2 and e3 can be evaluated in

parallel when the evaluation of e1 has finished. When the evaluation of both e2 and e3 is finished, e4
can be evaluated. The code resulting from this graph is shown below the input program. The branch

in the graph effectively has become a let|| in the output program.

Dependence imposes ordering constraints, but the dependency graphs we have constructed so far

are not always as straightforward to parallelize as the one in Figure 2.3, and therefore are not the most

suitable representation for deciding an optimal binding order with respect to parallelization.
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Figure 2.4 Pruning in dependency graph

(let*
((x 42)
(y (* x x))

(+ x y))

x

y

body

=body
=⇒

x

y

body

=body

We can apply simple graph transformations like pruning and grouping to go from a binding depen-
dency graph, explicitly representing all dependencies between bindings, towards a binding order graph

that indicates the order in which binding can take place. The binding order graph can be viewed as a

task dependency graph in which a task consists of binding one or more values of binding expressions

to their variable.

Nodes are an ordered collection of bindings, except for the body node that is an ordered collection

of bindings but can also contain the body reference =body. An edge (u1, . . . , un)→ (un+1, . . . , um) in

a binding order graph signifies that bindings u1, . . . , un must be evaluated before un+1, . . . , um.

2.6.1 Pruning

Figure 2.4 shows a small program and its initial dependency graph. If we are interested in the order

of binding, we can prune edge x → z because it is superfluous. If we have x → y → body, then the

evaluation of body must always come after y. Pruning increases the opportunities for grouping, which

we discuss next.

2.6.2 Grouping

If we want to make opportunities for parallelization more evident in our binding order graph, then we

may also group operations. We will group operations from which we know that they must always be

evaluated in a particular sequential order.

Figure 2.5 shows the fib function again. Grouping is accomplished by taking connected paths of

nodes with exactly one entry point and one exit point. Grouping therefore is equivalent to basic block

creation in traditional control flow diagrams. In the case of the Fibonacci function, the paths p1→ p2

and p3→ p4 can be grouped, as well as the body binding and its reference =body.

The fact that grouping makes parallelism more coarse-grained is not merely an additional bene-

fit, but essential if we want to avoid unnecessary synchronization points during parallel evaluation,

resulting in excessive overhead. Therefore we strive to make groups as large as possible.

To see why pruning must occur before grouping, consider the binding order graph after pruning

and grouping in Figure 2.6. The program in this figure the same as in Figure 2.4, and it is the removal

of edge x → z that allows us to group all bindings in one node. If a binding dependency graph

can be reduced to a single node in this fashion, this effectively means that the nested lets are not
parallelizable.
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Figure 2.5 Grouping in dependency graph

(letrec
((fib (lambda (n)

(let ((p0 (< n 2)))
(if p0

n
(let ((p1 (- n 2)))
(let ((p2 (fib p1)))
(let ((p3 (- n 1)))
(let ((p4 (fib p3)))
(+ p2 p4))))))))))

(fib 40))

p1

p2

body

=body

p3

p4

⇓
p1, p2

body, =body

p3, p4

Figure 2.6 Graph after pruning and compacting

(let*
((x 42)
(y (* x x))

(+ x y))

x, y, body, =body

Figure 2.7 Topological sorting with node labels indicating node level

5

4 44

3 2

22

1

2.7 Generating code

Once we have exhaustively applied pruning and grouping, the resulting binding order graph is in a

form that allows straightforward conversion into Scheme code. To determine the final binding order,

we divide the graph in layers by applying a topological sort. In a topological sort, every node is assigned

a rank or level, and all nodes of the same level form a binding layer. The level of a node is equal to the

number of nodes in the longest path possible from that node to the sink node. The sink node trivially

has level 1. Figure 2.7 shows an example of a topological sort. Note that we need an unique sink node

to make topological sorting possible. Our approach with the unique body node that is made dependent

on all other binding nodes that would otherwise be sink nodes to guarantee termination of binding

expression evaluation, assures this.
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Figure 2.8 Binding order graph and code generated from the graph

z

writez, p3 readz

p4, body, =body

(let* ((z 0))
(let ((writez undefined))
(let|| ((p3 (begin

(set! writez (lambda ()
(set! z 123)))

(writez)))
(readz (lambda () z)))

(let* ((p4 (readz))
(body (cons p3 p4)))

body))))

Binding nodes together with the topological sort order determines the global order in which binding

can take place. These are the key insights.

1. All bindings inside a single binding node must be evaluated sequentially (because of the way we

defined the grouping operation).

2. A group of bindings contained inside a single binding node can be evaluated in parallel with other

groups of bindings inside the same binding layer.

Talking in terms of code generation, binding nodes with the same level will be translated into Scheme

code using let||.

To illustrate this, consider the program from Example 2.3 again with its binding order graph,

depicted in Figure 2.8. Topological ordering gives us the following binding layers:

• Level 3: bindings z

• Level 2: binding group (writez, p3), binding readz

• Level 1: binding group (p4, body) with body reference

Level 2 contains multiple nodes, and therefore binding group (writez, p3) and binding readz can be

evaluated in parallel. Level 1 and level 3 only contain a single binding node, so there is nothing to

evaluate in parallel, and the bindings inside these nodes are evaluated sequentially.

Because binding group (writez, p3) appears as a branch inside let||, but a binding only declares

one variable, p3 will be used as variable for the let|| binding. The declaration of other the binding,

writez, is lifted outside the let|| to an immediately enclosing let.

2.8 Conclusion

In this chapter we outlined our approach for parallelizing sequential Scheme programs. We will at-

tempt to parallelize binding expressions inside nested let expressions by introducing their parallel

variant let||. To determine whether this is safe, we use dependency analysis. Any independent pair

of expressions can be reordered, and hence can be parallelized. To facilitate the transformation from

nested lets to a let||, we can construct a binding dependency graph with bindings as nodes and
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edges indicating dependencies. We transform this graph into binding order graph by pruning edges

and grouping nodes. Making ordering constraints explicit, the binding order graph is suitable structure

for generating parallel code.

In this chapter we made several assumptions that we still need to address.

• We assumed that we have functions R(e) and W (e) at our disposal, returning the set of addresses

read and written, respectively, by an expression. Chapter 5 shows how we can obtain these

functions, even in the presence of side-effecting higher-order procedures.

• Our target for parallelization is a structure of nested let expressions. We presented the Fi-

bonacci function several times as an example, written using nested lets. It is doubtful however

that input programs will be presented to an evaluator (exclusively) in this style. We need a

transformation that introduces nested lets and increases our targets for parallelization. Such a

transformation is presented in Chapter 3.



Chapter 3

Administrative Normal Form

3.1 Introduction

Static analysis, program transformation and code generation is often performed on a transformed ver-

sion of a program instead of the original source code, called intermediary forms, to facilitate the work

that needs to be done. Two of the most widely known and used intermediary forms are continuation-

passing style (CPS) [30] and administrative normal form (ANF) [10].

In this dissertation we will use ANF as intermediary form. We will define ANF and give some

examples, and mention the fact that ANF helps in realizing our approach as explained in Chapter 2.

Other advantages of ANF however, only come into play in later chapters so we cannot provide the full

details here yet. Therefore, inevitably, this short chapter contains many forward references. As such,

the reader may find it useful to consider this chapter as a reference (especially Figure 3.2) and consult

back here while reading later chapters.

3.2 Definition

ANF conversion simplifies expressions in the sense that it breaks them down into simpler subexpres-

sions until no further simplification is possible and the code effectively has become a normal form.

The principle mechanism of simplification is that every intermediate result is named using a let.

For example, the expression

(/ (+ (sqrt (- (* b b) (* 4 a c)))) (* 2 a))

is broken down into

(let ((_p0 (* b b)))

(let ((_p1 (* 4 a c)))

(let ((_p2 (- _p0 _p1)))

(let ((_p3 (sqrt _p2)))

(let ((_p4 (+ _p3)))

(let ((_p5 (* 2 a)))

(/ _p4 _p5)))))))

18
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Figure 3.1 Example of a recursive factorial function in ANF

(define (fact n)
(let

((t1 (zero? n)))
(if t1

1
(let

((t2 (- n 1)))
(let
((t3 (fact t2)))
(* n t3))))))

where variables with prefix _p are unique variables introduced during the conversion process. The

result of ANF conversion is that every function call is either let-bound or is a tail call. All operands in

function calls are trivial expressions.

Conversion also reaches inside conditional expressions, declarations mutations and procedure bod-

ies. The expression

(if (f x) (g (* y1 y2)) (+ z1 z2))

becomes

(let ((_p0 (f x)))

(if _p0

(let ((_p1 (* y1 y2)))

(g _p1))

(+ z1 z2)))

in ANF. Note that expression (+ z1 z2) appears unaltered in the ANF version because it is a tail call.

Figure 3.1 shows an example of a recursive factorial program expressed in ANF.

Finally, the ANF language used in this dissertation is presented in Figure 3.2.

3.3 Motivation

We choose ANF over CPS or any other intermediary form because ANF has some nice properties that

fit well into our approach.

1. It has the property of introducing many nested lets.

2. It will make subsequent interprocedural analysis considerably less complex.

3. ANF preserves the direct-style behavior of the original.

Because our target for parallelization are nested lets that occur inside a Scheme program, it is clear

that the first point makes ANF a natural choice as intermediary form to base our automatic paralleliza-

tion on.

The second point will become evident when we describe the actual interprocedural analysis needed

to safely evaluate binding expressions occurring inside nested lets in parallel. The argument can
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Figure 3.2 Administrative normal form with recursive functions, mutable variables and conditional.

u ∈ Var = set of identifiers

q ∈ Quo = set of literals

p ∈ Prim = set of primitives

lam ∈ Lam ::= (λ(u1 . . . un) ebody)

proc ∈ Proc = Lam + Prim

f, x ∈ Arg = Var + Quo + Proc

e ∈ Exp ::= x

| (f x1 . . . xn)

| (let ((u x)) ebody)

| (let ((u (f x1 . . . xn))) ebody)

| (letrec ((u lam)) ebody)

| (set! u x)

| (if xcond econs ealt)

be made however without knowing any details of the analysis, except that it involves some form of

interpretation (§4.3) of Scheme programs. Looking at procedure application as the prime example,

ANF ensures that all operands are trivial or atomic expressions (Definition 5.11) that can be evaluated

in finite time without side effects. This means that an interpreter does not need to “step into” the

operands to evaluate them by recursively calling a full evaluate on them. Instead, an interpreter can

use a simpler atomic-evaluate procedure and map it over the operands, simplifying the semantics

as we will see in §5.4.6.

The third and last point has expresses the fact that we want to retain the original direct-style

behavior of an input program. For our purposes, we can directly oppose direct-style to continuation-

passing style. CPS programs are characterized by the absence of return flow. However, the basic

principle that we will use for determining interprocedural dependencies depends on a control flow

that can be captured by a traditional call stack (§5.4.1). Therefore it is important that ANF is a direct-

style language.

3.4 Conclusion

Administrative normal form brings many advantages when used in our approach. Converting to ANF

essentially consists of breaking down expressions into their subexpressions and naming those subex-

pressions by introducing let expressions. As such, converting to ANF increases the number of targets

that we can attempt to parallelize with our approach described in Chapter 2. It also simplifies subse-

quent program analysis, and by preserving the direct-style behavior of programs it does not invalidate

the analysis we present in Chapter 5.



Chapter 4

Static Analysis

4.1 Introduction

In order to implement our approach as described in Chapter 2, we need to be able to determine the

addresses read and written by expressions in a program during evaluation. In the examples given in

that chapter this was always quite trivial, but there are more difficult cases that we must solve.

• We want to know what values an expression may evaluate to (value flow) and which procedures

can be applied at call sites (control flow). Consider for example expression (f x). The actual

procedure that is invoked depends on variable f. But the value of f may depend on a proce-

dure invocation itself. Traditional first-order flow analysis techniques for imperative Algol-class

languages do not work for Scheme because the operator in a function call can be any kind of

expression that evaluates to a procedure [29].

• When confronted with a procedure invocation such as (f x), we have to look at the resulting

interprocedural dependencies. We want to know what addresses are read and written at a call site.

Syntactically different occurrences of expression (f x) can yield different dependencies during

invocation. One occurrence of such an expression in a program can access or modify different

resources over time if it is evaluated more than once [19].

There are several options we can try to obtain answers to the above questions.

• We could simply run the program and keep track of relevant information, but we may find that it

does not terminate, that it terminates with an error, or that the outcome is different for different

user inputs.

• We could also look at the source code, but then we are up against the halting problem. We cannot

decide whether the program will terminate or run forever, not even when given a specific input.

We can not even decide whether it possesses any non-trivial property whatsoever. The concrete

semantics of a program – the set of all possible behaviors of that program when executed for all

possible input data – are in general not computable[6].

Clearly both undertakings are problematic. The rest of this chapter is devoted to the theory and

techniques to find a way around these obstacles.

21
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4.2 Abstract Interpretation

Abstract interpretation offers a solution to the problem of uncomputable run-time properties. Although

the concrete semantics of a non-trivial program are not computable with finite resources, abstract in-

terpretation nevertheless offers a framework for getting useful answers to non-trivial questions about

programs. These answers will be necessarily be approximations due to the undecidability of the ques-

tions asked.

Abstract interpretation as a formal method for the analysis of programs was pioneered by Cousot

and Cousot [5].

4.2.1 Abstractions and concretizations

Abstraction is the single most important tool of a programmer, and therefore every programming

language essentially is a collection of abstraction mechanisms at the disposal of the programmer. Ab-

straction allows one to focus on one part of a problem while abstracting away other details.

Value abstractions are often encountered in computing [26]. For example, if x v y denotes that

y is less precise than x, then 〈2〉 v 〈2, 5〉 v 〈0..9〉 v înt are all abstractions of the number 2. An

abstract value “names” or represents one or more concrete values. We denote abstract values with

angle brackets that delimit a set of concrete values, e.g. 〈2, 5〉, or as a name with a “hat”, e.g. înt.

The concretization function γ maps an abstract value to the set of concrete values it represents.

For example, γ(〈2, 5〉) = {2, 5} and γ(înt) = {. . . ,−1, 0, 1, . . . }. Conversely, the abstraction func-

tion α maps a set of concrete values to an abstract value that offers the most precise approxima-
tion. If again〈2〉, 〈2, 5〉, 〈0 . . . 9〉, and înt are the available abstract values, then α({2}) = 〈2〉 and

α({1, 2, 3, 42}) = înt.

When dealing with approximations, the abstraction mapping α introduces imprecision. This is a

consequence of the fact that we are trying to compress infinitely many concrete values into a finite set

of abstract values. For example, we can have α({2, 5, 6}) = 〈0 . . . 9〉 but γ(〈0 . . . 9〉) = {0, 1, . . . , 9}, so

that (γ ◦ α)({2, 5, 6}) 6= {2, 5, 6}. Because {2, 5, 6} ⊆ {0, 1, . . . , 9} we say that α is sound. While (γ ◦ α)

is inexact, it is easy to verify that the inverse (α ◦ γ) never loses precision.

More formally, if for a set of concrete values X, with P(X) denoting the power set of X, and its

abstract counterpart X̂ we have:

∀c ∈ P(X), a ∈ X̂ : c ⊆ γ(a) ⇐⇒ α(c) v a

then the abstraction is sound. The above relation between X and X̂ is called a Galois connection.

4.2.2 Lattices

Our example of abstracting the number 2 used a very simple ordered set of abstract values. We now

give a mathematical characterization of the sets involved in abstract interpretation [27, 26].

In general, if v is a binary relation over a set X for which the following holds

• ∀x ∈ X : x v x (reflexivity)

• ∀x, y ∈ X : x v y ∧ y v x⇒ x = y (antisymmetry)
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Figure 4.1 Two examples of complete lattices

all

notpos notneg

neg zero pos

none

any

even odd

none

(a) (b)

• ∀x, y, z ∈ X : x v y ∧ y v z ⇒ x v z (transitivity)

then (X,v) is called a partial order, and X is a partially ordered set.
If Y ⊆ X, then x ∈ X is an upper bound for Y , written Y v x if ∀y ∈ Y : y v x. Similarly, x ∈ X is

a lower bound for Y , written x v Y , if ∀y ∈ Y : x v y. A least upper bound, written tY , is defined by:

Y v tY ∧ ∀x ∈ X : Y v x =⇒ tY v x

Similarly a greatest lower bound, written uY , is defined by:

uY v Y ∧ ∀x ∈ X : x v Y =⇒ x v uY

In a partial order we have x v y or y v x if x and y are comparable, else x and y are incomparable.

If we make the stronger assumption that any two elements of a partially ordered set have both a unique

least upper bound (supremum) and a unique greatest lower bound (infimum), we obtain a lattice. If

(X,v) is a lattice and every Y ⊆ X has a least upper bound and a greatest lower bound, then X is

a complete lattice. A complete lattice must have a unique largest element called “top”, denoted > and

defined as > = tX, and a least elements called “bottom”, denoted ⊥ and defined as ⊥ = uX. It

follows that for all x ∈ X we have ⊥ v x and x v >.

Example 4.1. (Lattice) Figure 4.1 shows two examples of complete lattices [26]. Both are possible

abstractions of (P(Z),⊆), which is a complete lattice itself. In Figure 4.1 a the top element is all

and the bottom element is none. The least upperbound of {notpos, notneg} is zero. The least upper

bound of {zero, notpos, notneg} is all.

Abstractions are not limited to values but also extend to operations. Suppose we have a concrete

operation f defined on concrete domain X. f̂ is a sound abstraction of f if the following holds [7]:

∀x ∈ X : f(x) v γ(f̂(α(x)))

or, equivalently,

∀x̂ ∈ X̂ : α(f(γ(x̂))) v f̂(x̂)

Example 4.2. (Sign abstraction) A widely used example is the abstraction of integers to their sign

[5, 21]. The concrete values are the integers Z, while the abstract values are in the power set of signs
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Ẑ =P({−, 0,+}). For every z ∈ Z we have

α(z) =


〈−〉 z < 0

〈0〉 z = 0

〈+〉 z > 0

The addition operator + : Z× Z→ Z abstracts naturally to ⊕ : Ẑ× Ẑ→ Ẑ following the rule of signs,

so that for example:

〈0〉 ⊕ 〈0,+〉 = 〈0,+〉

〈+〉 ⊕ 〈+〉 = 〈+〉

〈+〉 ⊕ 〈−〉 = 〈−, 0,+〉

〈+,−〉 ⊕ 〈0〉 = 〈−,+〉

The abstract execution of 4 + (−4) yields 〈−, 0,+〉, while concretely evaluating 4 + (−4) and then ab-

stracting would yield α(4+(−4)) = 〈0〉, showing that abstract interpretation strictly over-approximated.

Furthermore, {4 + (−4)} = {0} ⊆ {−, 0,+} = γ(〈+〉 ⊕ 〈−〉) supports the fact that ⊕ is a sound ab-

straction of +.

4.3 Static analysis via abstract interpretation

Historically, much effort has already been directed towards predicting the run-time behavior of pro-

grams without actually running those programs. The source code of a program, as opposed to a run of

the program it expresses, is static and does not depend on external input. Hence it can be analyzed in

finite time with finite resources, although we must settle for approximations when computing run-time

properties if we want to ensure termination of our algorithms.

Abstract interpretation is a good match for static analysis, because it provides a theory to develop

static analyses that are correct and provide meaningful results about the run-time behavior of pro-

grams.

In the context of this dissertation we want static analysis to conservatively approximate the ad-

dresses read and written when procedures are invoked to determine interprocedural dependencies.

Conservative means erring on the safe side in order to remain faithful to the original semantics. If

during evaluation a resource is accessed or modified while applying a procedure, the analysis must

reflect this possibility, but the analysis may be imprecise in the sense that it overestimates the set of

resources read or written at a specific call site.

4.3.1 Techniques

Static analysis via abstract interpretation in this dissertation is performed on an abstract domain that

mimics the concrete domain. The general strategy is as follows:

• We define the concrete semantics for Scheme that allows us to compute R(e) and W (e).

• We define the abstract semantics that correlates with the concrete semantics.
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• We construct an algorithm to finitely and efficiently compute approximations of the abstract

semantics.

The concrete semantics will be modeled by an infinite-state machine that captures the concrete se-

mantics of Scheme. Next we approximate this state machine with a finite-state machine to obtain an

abstract interpreter that determines one or more properties of programs that it is capable of running.

The abstract interpretations used for value flow and dependence analyses we will encounter are of

the collecting type. The goal is to derive information from source code that is both specific enough to

permit certain optimizations like parallelization and general enough to be valid in every state in which

the program may be executed [12].

The abstract interpreter continually transforms abstract machine states into possible successor

states, generating a graph of all potentially reachable states. When a fixpoint is reached (i.e. all

successor states are already in the graph), the interpreter crawls the graph of machine states (starting

from the initial state) collecting the results we are interested in. We build such an abstract interpreter

in §5.4.

In statically typed languages, the abstractions used often follows the structure of the types. But

in the absence of static types, like in a dynamically typed language as Scheme, abstract domains are

defined in terms of program points [22]. Depending on the analysis, a program point can be any

combination of procedure application points, procedure entry and exit points, lambda expressions,

etc. Usually program points are labeled to more easily denote and distinguish different program point

instances throughout a program.

4.3.2 Performance of analysis

Abstract interpretation is a (carefully) designed exchange: in order to calculate some properties of a

program in a reasonable amount of time (speed of the analysis), we are willing to make a trade-off in

terms of lower precision and power to be able to do so. From this we can define the three axes across

which the performance of an analysis can be ranked [21]:

• Speed refers to the running time of an analysis. Although speed is important for a real-world

implementation, this will not be our major concern in this dissertation. Of course, every analysis

must terminate.

• Precision refers to how tight an analysis constrains a set of answers to the set of actually possible

answers. Both “yes” and “no” are more precise as “maybe”, and 〈λ42〉 is more precise than “the

set of all lambdas in a program”.

• Power refers to the class of questions which an analysis can answer. For example: an analysis

that can answer must-alias questions is more powerful than a may-alias analysis.

4.4 Conclusion

If we want to determine dependencies between expressions in all but the most trivial of programs, we

must be able to analyze that program in a reasonable (finite) amount of time. Program analysis can be
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realized using abstract interpretation to ensure termination of our algorithms. Abstract interpretation

provides a framework that allows us to collect information about a program before actually running

it, on which we can base the results of our analysis. These results are approximations but nevertheless

reflect all the possibilities that can arise during program evaluation.

Armed with the technique of abstract interpretation, we can now give a detailed description of the

actual analysis that allows us to detect the more difficult types of dependencies present in higher-order

Scheme programs. This is the task we set ourselves in Chapter 5.



Chapter 5

Interprocedural Dependence Analysis

5.1 Introduction

In order to perform dependency analysis we need to know which addresses are read and written by

expressions that use values through aliasing or invoke procedures. This requires the conservative

approximation of the value and control flow of a program to determine which procedures are invoked

at specific call sites at specific points during evaluation. Additionally, at each of these call sites we

want to conservatively bound the addresses read and written by the procedure that is invoked.

Might and Prabhu developed an abstract interpretation of ANF that is capable of computing the

required information. The result is context-sensitive interprocedural dependence analysis (IPDA) for

higher-order programs [19].

5.2 Abstract resource dependence graphs

The most important output of IPDA is the abstract resource dependence graph1. The abstract resource

dependence graph relates abstract resources (representing a set of concrete resources) with abstract

procedure invocations. Abstract resources in the context of this dissertation will be addresses of vari-

ables. We will depict addresses in square nodes. An abstract procedure invocation is a procedure plus

an abstract calling context. The context serves to discriminate between different invocations of the

same procedure.

An edge from an abstract resource to an abstract invocation means that, during the execution of

that procedure in the given context, the resource may be read. An edge from an abstract invocation to

an abstract resource indicates the possibility that, during the execution of that procedure in the given

context, the resource may be written.

Constructing the graph in this fashion allows us to uncover four types of interprocedural dependen-

cies between two abstract invocations. These are exactly the types of dependencies we encountered in

§2.3.

• read/read dependency: two invocations can be reached from the same abstract resource.

1Whenever we mention “dependence graph” in this chapter, we mean “abstract resource dependence graph” (not to be
confused with the dependency graphs from Chapter 2).

27
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Figure 5.1 Nested lets with corresponding abstract resource dependency graph (middle) and binding
dependency graph (right)

(let*
((z 0)
(writez (lambda12 ()

(set! z 123)))
(readz (lambda16 () z))

(p3 (writez20))

(p4 (readz24)))

(cons29 p3 p4))

(cons, (cons p3 p4))

(z, ())

(lam16, (readz))

(lam12, (writez))

(readz, ()) (writez, ())(p3, (20)) (p4, (24))

z

writez

readzp3

p4

body

=body

• read/write dependency: there is a path from the second invocation to the first invocation.

• write/read dependency: there is a path from the first invocation to the second invocation.

• write/write dependency: two invocations reach the same abstract resource.

Example 5.1. (Abstract resource dependence graph) Figure 5.1 shows the same program from Exam-

ple 2.3 on page 12, together with its abstract resource graph and binding dependency graph. The edge

(λ12, (writez)) → (z, ()) in the abstract resource graph indicates that procedure λ12 writes variable z

when invoked at call site 20. The edge (z, ())→ (λ16, (readz)) indicates that procedure λ16 reads vari-

able z when invoked at call site 24. Because there is a path from (λ12, (writez)) to (λ16, (readz)) via

(z, ()), this means that there effectively is an interprocedural write/read dependency between the invo-

cations (writez) and (readz). This results in the dependency p2→ p3 in the binding dependency

graph.

Similarly to what we observed in §2.3, read/read dependencies can be considered harmless in the

setting because no synchronization is needed between two procedure invocations that exhibit this type

of dependency. The other three dependences between invocations are not safe to parallelize without

synchronization: the order of the invocations must be preserved to guarantee that the semantics of the

program are unaltered when the invocations are allowed to run in parallel.

5.3 Context sensitivity

Different resources can be read or written when the same procedure is invoked at different application

sites. IPDA can be made context-sensitive, allowing us to separately track dependences for the same

procedure when invoked at different call sites.

The abstract resource graph in Figure 5.1 already attaches a calling context to each procedure. In

that example however we do not really benefit from this information because there is no ambiguity

even without the additional calling contexts. Example 5.2 shows how context-sensitivity can improve

the analysis.
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Figure 5.2 Context-sensitive dependence analysis.

(define a #f)
(define b #f)

(define (write-a) (set! a #t))
(define (write-b) (set! b #t))

(define (unthunk f) (f))

(unthunk write-a)
(unthunk write-b)

Example 5.2. (Context-sensitive dependence analysis) In the example in Figure 5.2, taken from [19],

the first call to unthunk is write-dependent on a and the second call is write-dependent on b. It is

only by including context information that the dependence analysis is able to realize that the two calls

to unthunk are not dependent on each other. In a context-insensitive setting both calls of unthunk

would be seen as having a write dependency on both a and b.

5.4 Computing the analysis

5.4.1 Harrison’s Principle

Might and Prabhu’s interprocedural analysis was inspired by Harrison’s dependence principle, in which

procedure strings are the central semantic concept. Procedure strings capture the control flow of proce-

dure applications by chaining the activation and deactivation of procedures throughout the execution

of a program. Putting this into notation, every application of a procedure is registered as a downward

movement using superscript d. Control moves upwards when a procedure returns, indicated by a su-

perscript u. Suppose a program contains three procedures λα, λβ , and λγ . A possible procedure string

after six interprocedural movements could be p6 = αdβdβuαdγdαd, meaning that there have been

three applications of λα, and one of λβ and λγ each. λβ is no longer active in p6. We can observe facts

like these more clearly by canceling all matching activations and deactivations from a procedure string.

In our case the pair βdβu cancels out, yielding the balanced procedure string Net(p6) = αdαdγdαd.

Using subtraction, py − px denotes the activity that occurred between two states of a program

where px and py were captured. If px corresponds with the birth date of a resource, and py with the

use (reading or writing) of a resource, then Net(py − px) gives all the procedures that are live on the

stack and hence have a dependency on that resource. This last observation forms the basis of Harrison’s

interprocedural dependence analysis, which leads us to the definition of the following principle.

Definition 5.3. (Harrison’s Dependence Principle) Assuming that a program obeys the traditional call

stack behavior, when a resource is read or written, all of the procedures which have frames live on the

stack have a dependence on that resource.

What exactly do we mean by “traditional call stack behavior”? Harrison identified tail-call optimiza-

tion and escaping continuations as problematic for his approach. Any calling sequence that cannot be
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Figure 5.3 Interprocedural dependency using stack reachability.

(define z 0)
(define (f) (g))
(define (g) (h))
(define (h) (set! z 123))

(f)

modeled using a standard stack mechanism must be disallowed because it destroys the analysis. This

means that first-class escaping continuations that restore previously popped stack frames, as can be

introduced by call/cc, must be disallowed. We will tackle the problem of tail-call optimization by

using continuation marks (§5.4.4).

Harrison’s procedure strings are in the realm of the concrete semantics of a program. Because

they form an infinite set, they are not useful for analysis. The abstract interpretation of procedure

strings are called stack configurations in Harrison’s analysis, and they form a sound approximation of

procedure strings at compile time.

5.4.2 Stack reachability

To make use of Harrison’s dependence principle, we need to be able to inspect all the possible stack

configurations that may arise at runtime while resources are read or written. To see how we can go

about extracting interprocedural dependence information from these stack configurations, it might be

useful to rephrase Harrison’s dependence principle in terms of procedures instead of resources (still

assuming proper call stack behavior).

Definition 5.4. (Interprocedural dependence via stack reachability) A procedure depends on all the

resources it reads/writes directly and transitively on all of the resources read/written by its callees.

In order to safely inspect stack configurations when resources are read and written, we will build a

finite-state abstract machine. From this abstract interpretation we can then conservatively bound the

resources read and written by each procedure.

Example 5.5. The procedure h in the program in Figure 5.3 assigns the variable z. When this assign-

ment occurs, frames for procedures f, g, and h are live on the stack. Hence f, g, and h all have a write

dependency on variable z.

We still need to tidy up some loose ends concerning the traditional call-stack behavior that must be

obeyed for the analysis to work.

• In the presence of proper tail-call optimization, tail calls do not push frames on the stack, inval-

idating the approach. Just as in the concrete case, abstract interpretations of tail-call-optimized

semantics more efficiently use the stack resulting in higher precision [18]. Therefore it is worth-

while to preserve this property in the analysis. To solve the problem of tail-call optimization,
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continuation marks are used. Continuation marks are annotations attached to frames (continua-

tions) on the stack, ensuring that the necessary information on callers and calling contexts can

still be recorded.

• Any calling sequence that cannot be modeled using a standard stack mechanism must be disal-

lowed. This means that first-class escaping continuations that restore previously popped stack

frames, as can be introduced by call/cc, are disallowed2.

We will explore the idea of continuation marks further when we develop IPDA in the next few sections.

5.4.3 State machine

We implement the abstract analysis as an abstract state machine that models the concrete semantics of

Scheme programs. It does not, however, accept the full Scheme language as input. Instead, ANF with

the addition of a single imperative form set! is used as the input language for the analysis (Figure 3.2

on page 20). The reason ANF is a suitable intermediate form is because we want to abstractly model the

stack to capture the control flow of the original source program, which is preserved when converting

to ANF.

Our abstract state machine is an abstraction of a concrete state machine that is an interpreter

for ANF. Because the concrete and the abstract semantics are structurally similar, we will present the
abstract semantics because the abstract interpretation actually drives our analysis. We will note any

important differences between the concrete and the abstract that might exist as we go along. We also

will not provide the abstraction mappings from the concrete to the abstract domains (mapping α from

§4.2). They are straightforward and should not pose any particular problem in understanding how the

analysis works.

5.4.4 State space

Figures 5.4 and 5.5 show the concrete and abstract state spaces for the semantics. We will now discuss

the entities of these domains that make up the states, while giving examples to better illustrate the

concepts used.

In what follows, the notation f [x → y] means “the function f , except when applied to x yields

value y”. Abstract values can be joined through the join operator t: 〈u1, . . . , un〉 t 〈v1, . . . , vn〉 =

〈{{u1, . . . , un} ∪ {v1, . . . , vn}}〉.

Timestamps

Every state contains a timestamp that serves the same purpose as contours in k-CFA; that is, they

introduce a notion of contexts in the analysis between which we can distinguish.

In the concrete domain we have an infinite of set of times Time that increases monotonically during

interpretation (take for example Time = N). In the abstract case we have compress this infinite set

2In principle we could handle some more advanced mechanisms like non-local exits through call/cc since stack behavior
remains predictable (non-local exits pop more than just the top frame off the stack) but this would require extra discipline by
the programmer or extra checks by the compiler whenever call/cc appears in a program. Therefore it is better if we disallow
call/cc and other similar constructs that can be expressed through call/cc (like try/catch/throw for example) altogether.
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Figure 5.4 Concrete state space.
ς ∈ State = EvalHead+ EvalTail +ApplyFun+ApplyKont

EvalHead = Exp×Benv × Store×Kont× Time
EvalTail = Exp×Benv × Store×RetPoint× Time
ApplyFun = Clo× V al∗ × Store×RetPoint× Time
ApplyKont = Kont× V al × Store× Time

β ∈ Benv = Var→ Addr
σ ∈ Store = Addr → V al

a ∈ Addr = Bind+RetPoint
b ∈ Bind = Var × Time

v ∈ V al = Quo + Prim + Clo+Kont
χ ∈ Clo = Lam×Benv
κ ∈ Kont = Var × Exp×Benv ×RetPoint×Mark

rp ∈ RetPoint = a set of addresses for continuations
m ∈ Mark = a set of stack-frame annotations
t ∈ Time = an infinite set of times

Figure 5.5 Abstract state space.

ς̂ ∈ Ŝtate = ̂EvalHead+ ̂EvalTail + ̂ApplyFun+ ̂ApplyKont
̂EvalHead = Exp× B̂env × Ŝtore× K̂ont× T̂ ime
̂EvalTail = Exp× B̂env × Ŝtore× ̂RetPoint× T̂ ime
̂ApplyFun = Ĉlo× V̂ al

∗
× Ŝtore× ̂RetPoint× T̂ ime

̂ApplyKont = K̂ont× V̂ al × Ŝtore× T̂ ime

β̂ ∈ B̂env = Var→ Âddr

σ̂ ∈ Ŝtore = Âddr → V̂ al

â ∈ Âddr = B̂ind+ ̂RetPoint
b̂ ∈ B̂ind = Var × T̂ ime

v̂ ∈ V̂ al = P(Quo + Prim + Ĉlo+ K̂ont)

χ̂ ∈ Ĉlo = Lam× B̂env
κ̂ ∈ K̂ont = Var × Exp× B̂env × ̂RetPoint× M̂ark

r̂p ∈ ̂RetPoint = Lam× T̂ ime
m̂ ∈ M̂ark = Proc× App

t̂ ∈ T̂ ime = list of k last call sites
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Figure 5.6 Program with an infinite number of bindings to x

(letrec ((f (lambda (x)
(f (+ x 1))))

(f 0))

Figure 5.7 Double-recursive Fibonacci function in ANF

(letrec ((fib (lambda (n)
(let ((#p0 (<35 n 2)))

(if #p0
n
(let ((#p1 (-41 n 1)))
(let ((#p2 (fib46 #p1)))
(let ((#p3 (-52 n 2)))
(let ((#p4 (fib57 #p3)))
(+63 #p2 #p4))))))))))

(fib78 2))

into a finite set T̂ ime. Elements from T̂ ime represent a bounded amount of evaluation history. The

typical example for the construction of a set of abstract times are the contours of k-CFA. Every time the

abstract interpreter encounters an application site, we cons the label of the application onto a list and

keep at most the first k elements. In the remainder of the analysis this will be the way we construct

abstract timestamps.

Bindings

Bindings play the role of pointers or addresses. In order to work with multiple bindings of the same

variable, a binding is the name of the variable coupled to a timestamp. The role of the timestamp is to

provide a source of freshness when allocating bindings. The variable-time pair (u, t̂) means “variable

u bound at time t̂”.

Example 5.6. (Concrete bindings) In the program in Figure 5.6 there are an infinite number of con-

crete bindings to x, each made at a different time and each associated with a different value.

Since both the set of abstract times and the number of applications in a given program are finite, it

is possible that multiple concrete bindings of the same variable map onto the same abstract binding.

We assume variable collision cannot occur due to two or more variables having the same name.

The analysis expects unique variable names, for example through α-conversion.

Example 5.7. (Abstract bindings) Suppose we have a double-recursive Fibonacci function with appli-

cation sites labeled as in Figure 5.7. In our analysis we are tracking the bindings of variable n using

the k most recent call sites as abstract time. It is obvious that when n as formal parameter gets bound

for the first time, the abstract time will be () for k = 0 and (78) for all other values of k.

When we take k = 4 for example, some of the possible timestamps for bindings of n are (78),

(46, 41, 35, 78), (46, 41, 35, 46), (57, 52, 35, 46), (46, 41, 35, 46), (46, 41, 35, 57), (57, 52, 63, 35), and (57, 52, 63, 63).
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Figure 5.8 A closure captures the binding environment at the time of its creation.

(let ((x (f20 3)))
(lambda42 (n) (+ x n)))

Every timestamp allows us to trace a path through the code to see how the interpreter arrived at the

binding site of n.

Binding-factored environment

Variables are mapped to values in two stages. First, a variable maps onto a binding through a binding
environment β̂. Next, a binding maps to a value through the store σ̂. A variable lookup effectively is

the composition of these two functions and the value of variable u is given by σ̂(β̂(u)).

Mapping variables to values in this fashion allows us to reason at the level of individual bindings

and expresses the fact that during interpretation multiple bindings to the same variable can be simul-

taneously live. This simplifies the semantics of mutation in the analysis considerably, and at the same

time avoids the need for machinery for dealing with recursion directly.

When using a binding-factored environment – as opposed to an unfactored environment where a

variable points directly to its value – the part of the store that contains bindings acts as the heap and

bindings as addresses in that heap. We can define a function ŝucc : Ŝtate→ T̂ ime that, given a state,

computes the next time. In the case of 0-CFA, the set T̂ imes is a singleton {()}.
Given a store σ̂ for which σ̂(â) = û and a mapping â → v̂ we would like to add, we can update σ̂

in two ways:

• We can join the existing values at address â with v̂: the resulting store is σ̂′ = σ̂ t [â → v̂] and

σ̂′(â) = û t v̂. We call this type of update simply a join or a weak update.

• We can replace the existing values at address â with v̂: the resulting store is σ̂′ = σ̂[â → v̂] and

σ̂′(â) = v̂. This type of update is called a strong update, or an update via shadowing.

In case σ̂(â) = ∅ to begin with, the type of update for adding mapping â → v̂ is immaterial and the

result identical.

Closures

A closure is a pair of a lambda expression and a binding environment that is captured at the time of

its creation. Closures are created when lambdas are evaluated.

Example 5.8. (Closures) The result after abstract execution of the program in Figure 5.8 is the abstract

closure χ̂ = (λ42, [x→ (x, (20))]).

Return points

Return points are addresses in the store that point to continuations. The portion of the store that holds

return points can be considered as the stack. Because return points are needed when applications are

involved, we encode abstract return points as lambda expressions. Example 5.9 shows how this works.
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Figure 5.9 Creation of continuations for let expressions.

(let24 ((f (lambda17 (n) . . .)))
(let22 ((g (f 3)))

(h g)))

Just as was the case with bindings, we control the polyvariance of the stack by adding the abstract

timestamp at which the return point was created.

Continuations

A continuation receives a value and assigns it to the variable it contains. It also consists of an expres-

sion to evaluate, the binding environment in which to evaluate the expression, and a pointer to the

continuation beneath it. Lastly, it also contains a mark that will hold annotations. We will explain

marks and annotations in more detail later on.

The analysis does not use procedure strings to model the stack, as was the case in Harrison’s

analysis. Instead an “actual” stack is modeled in the store by chaining continuations through return

points. Walking a stack of continuations is crucial if we want to apply Harrison’s principle.

Due to the nature of ANF, the only place where our interpreter has to “remember” something is

when it has evaluate a let-expression that involves binding an application. It has to remember that

after evaluating the body of the procedure that is invoked it has to continue with the body of the let.

For this purpose a continuation is set up with the name of the let-bound variable and the body of the

let as the expression. The interpreter then proceeds to evaluate the let-bound application with the

freshly created continuation as a return point.

There is one special continuation, called the halt continuation, that signifies the end of a program

execution. We will denote the halt continuation as κ̂0, and the return point pointing to the halt

continuation as r̂p0. The value that the halt continuation receives is the result of the program. It has

no meaningful “next” expression. The halt continuation is also the initial continuation supplied to the

interpreter at the start of evaluation.

Example 5.9. (Abstract continuations) There are two let expressions in the program of Figure 5.9: an

outer let expression binding a lambda and an inner let expression binding the result of an application.

When the outer let is evaluated by our abstract interpreter, the lambda expression is evaluated

to the closure χ̂17 = (λ17, []) and bound to f. The inner let binds the result of an application, so a

continuation κ̂22 = (g, (h g), [f → (f, ())], r̂p0, []) is created, as well as a return point r̂p22 = (λ17, ())

pointing to χ̂17. λ17is used for r̂p22 because f evaluates to closure χ̂17 which contains this lambda

expression.

Continuation marks

Continuation marks are annotations attached to stack frames and serve to record procedure activations

in the presence of tail-call optimization. Every time a continuation acts as a return point, it is marked

with the current procedure. Using marks on continuations, it is clear that every procedure activation

will be recorded, even if no new continuation is created for tail-called procedures. In fact, tail-called
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procedures share the same continuation (or continuations in the abstract case) in our tail-call opti-

mized semantics.

Tail positions allowing applications in our ANF language (Figure 3.2) are the body of a lambda,

let, and letrec, and the consequent and alternate expression of an if. Non-tail application sites

are only allowed when they are let-bound, i.e. when the application appears as a value inside a let

expression. As we have seen, in the latter case the interpreter will create a fresh continuation to

continue with the body of the let after procedure invocation.

Example 5.10. (Continuation marks) In the program in Figure 5.1, three continuations are creat-

ed/used during interpretation: κ̂0 (halt), κ̂20 when evaluating (writez) and κ̂24 when evaluating

(readz).

We will now show how marks are attached to continuations in the relevant evaluation states. For

clarity, and because there is no ambiguity, we will not include contexts for bindings and marks. When

evaluating (set! ...) in procedure writez, the stack is κ̂20 → κ̂0 and κ̂20 is marked with λ12.

When evaluating z in procedure readz, the stack is κ̂24 → κ̂0 and κ̂24 is marked with λ16. Finally, no

new continuation is created for evaluating (cons p1 p2) and κ̂0 is marked with cons.

Just as we made stack and heap allocations (return points and bindings) context-sensitive by cou-

pling them with timestamps that reflect the k latest call sites, we can make the analysis context-

sensitive with respect to dependences by enriching our context marks with the application site that

gives rise to the mark itself. More clearly, if procedure proc flows to application a = (f x1 . . . xn), then

the corresponding mark will be (proc, a).

5.4.5 Atomic expression evaluator

Our interpreter will make use of an atomic expression evaluator when evaluating variable references,

literals, primitives and lambda expressions. These entities are exactly what we consider to be atomic
expressions, leading to the following definition.

Definition 5.11. (Atomic expression) An atomic expression is one whose evaluation must terminate

(i.e. it yields a value immediately) and which produces no side effects.

In our semantics we can now introduce an atomic evaluator function ε̂ : Arg× B̂env× Ŝtore→ V̂ al

which is defined as follows: 

ε̂(λ, β̂, σ̂) = (λ, β̂) (closure)

ε̂(u, β̂, σ̂) = σ̂(β̂(u)) (value lookup)

ε̂(q, β̂, σ̂) = q (constant)

ε̂(p, β̂, σ̂) = p (primitive)

One of the major advantages of using ANF as an intermediary form during analysis really shows

when looking at how atomic expressions help simplify the operation of the interpreter. When dealing

with function application for example, ANF ensures that all operands are atomic expressions, greatly

simplifying the semantics. When confronted with an application site with some list of arguments, the
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interpreter can simply map the atomic evaluator function over the arguments, before actually applying

the operator. Compare this to a “regular” interpreter, where the evaluation of non-trivial arguments

requires pushing the stack by calling the (full) evaluator function recursively over the list of arguments.

The same advantages of atomic expressions are encountered when the interpreter has to deal with

conditions of if-expressions, values inside set! statements and letrec-bindings, and the values that can

be bound in let expressions that are either applications with atomic arguments or atomic expressions

themselves.

5.4.6 State transitions

Our state machine features four types of states: two evaluation states and two application states. Every

state performs some specific task. The evaluation states take care of evaluating expressions. The

application states apply functions and continuations. Every concrete state gives rise to a single successor

state and is deterministic. An abstract state can spawn multiple successor state and is non-deterministic.
It is easy to see why the abstract state machine is necessarily non-deterministic: our abstract in-

terpreter deals with abstract values. Abstract values representing multiple concrete values are bound,

passed to and returned from procedures, and so on. Also, when we lookup procedures or continu-

ations in the store, multiple concrete entities may be returned that must be applied. An additional

consequence is that when evaluating a conditional, the abstract interpreter may choose to follow mul-

tiple branches when it has not enough information to decide upon following a specific branch (e.g.

when the condition of an if expression evaluates to abstract value 〈#t,#f〉).

We will now discuss the behavior of the four abstract states and note most of the differences with

the concrete states.

EvalTail

̂EvalTail evaluates expressions that are in tail position. Due to the nature of our input language,

the possible tail positions are the bodies of lambda expressions and let expressions. The behavior

of (x, β̂, σ̂, r̂p, t̂) ∈ ̂EvalTail can be broken down in different cases that follow the syntactic type of

expression x.

• For a lambda expression, reference or a literal, we perform an atomic evaluation of x to obtain

value v̂ = ε̂(x, β̂, σ̂). Next, we look up the continuations in the store associated with the current

return point: σ̂(r̂p) = 〈κ̂1, . . . , κ̂n〉. For each continuation κ̂ in that list, we create a successor

state (κ̂, v̂, σ̂, t̂) ∈ ̂ApplyKont. (In the concrete case, there would only be one continuation

associated with rp, and hence only one successor state.)

• In case of a tail call, we are dealing with an application eapp = (f x1 . . . xn). First we update

the timestamp using the tag n associated with eapp: t̂′ = first k elements of (n + t̂). Next

we atomically evaluate operator and operands. If the values for the operands are v̂srands =

ε̂(〈x1, . . . , xn〉 , β̂, σ̂), then for every value v̂rator ∈ ε̂(f, β̂, σ̂) we distinguish two subcases:

– if v̂rator = (lam, β̂χ) ∈ Ĉlo then we mark every continuation in the list σ̂(r̂p) with (lam, eapp),

and we add (v̂rator, v̂srands, σ, rp, t
′) ∈ ̂ApplyFun to the list of successor states,
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– else v̂rator ∈ Prim, we evaluate the primitive passing arguments v̂srands yielding value v̂app,

and for every continuation κ̂ ∈σ̂(r̂p) we mark κ̂with (v̂rator, eapp) and we add (κ̂, v̂app, σ̂, t̂
′) ∈

̂ApplyKont to the list of successor states.

(In the concrete case we only have one evaluated operator and one continuation for return point

rp.)

• If we encounter a binding mutation through (set! u x) then we obtain address â = β̂(u) and

value v̂ = ε̂(x, β̂, σ̂). Next, we update the store at address â with v̂: σ̂′ = σ̂ t [â→ v̂]. We return

(?, β̂, σ̂′, r̂p, t̂) ∈ ̂EvalTail as successor state, where ? stands for an unspecified value. (In the

concrete case we would not use joining to update the store, but simply overwrite the existing

value in σ associated with a to obtain σ′.)

• For a let expression (let ((u eapp)) ebody) binding application eapp = (f x1 . . . xn), we create

continuation κ̂ = (u, ebody, β̂, r̂p) that will evaluate the body of our let after assigning the result

of eapp to u. The successor state is (eapp, β̂, σ̂, κ̂, t̂) ∈ ̂EvalHead.

• For a non-application binding let expression (let ((u x)) ebody) we atomically evaluate x to ob-

tain value v̂ = ε̂(u, β̂, σ̂). Then we extend the binding environment β̂ with binding b̂ = (u, t̂)

so that β̂′ = β̂[u → b̂], while allocating value v̂ on the heap at address b̂: σ̂′ = σ̂ t [b̂ → v̂]. As

successor state we have (ebody, β̂
′, σ̂′, r̂p, t̂) ∈ ̂EvalTail. (The concrete interpreter would not use

a join to update store σ but would simply overwrite any existing value at address b.)

• If we have a recursive function u expressed as (letrec ((u lam)) ebody) then we first create a

new binding environment in which u points to binding b̂ = (u, t̂): β̂′ = β̂[u → b̂]. We use β̂′ to

atomically evaluate lam so that we get value v̂ = ε̂(lam, β̂′, σ̂). We extend store σ̂ to allocate

value v̂ at address b̂ obtaining σ̂′ = σ̂ t [b̂ → v̂]. Finally, our successor state (ebody, β̂
′, σ̂′, r̂p, t̂) ∈

̂EvalTail will evaluate the body of our letrec.

• Our last case deals with a conditional expression of the form (if xcond econs ealt). If v̂ =

ε̂(x, β̂, σ̂), the result of atomically evaluating the condition, then we distinguish amongst the

following subcases:

– v̂ = 〈#f〉: the successor state is (ealt, β̂, σ̂, r̂p, t̂) ∈ ̂EvalTail,

– #f /∈ v̂ and v̂ 6= ∅: the successor state is (econs, β̂, σ̂, r̂p, t̂) ∈ ̂EvalTail

– else we return the two successor states from the above cases.

(In the concrete case, we will have either v = #t or v = #f and only the two first subcases

above with a single successor state are applicable.)

EvalHead

̂EvalHead evaluates expressions that are in non-tail position. Due to the nature of our input language

and the construction of our state machine, the only possible non-tail position we need to consider are

application sites that are let-bound.
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Suppose (eapp, β̂, σ̂, κ̂, t̂) ∈ ̂EvalHead and eapp = (f x1 . . . xn). As was the case with tail-calls, we

update the timestamp to obtain t̂′ = prefix(n+ t̂, k) using the tag n associated with eapp and we atomi-

cally evaluate operator and operands. If the values for the operands are v̂srands = ε̂(〈x1, . . . , xn〉 , β̂, σ̂),

then for every value v̂rator ∈ ε̂(f, β̂, σ̂) we distinguish two cases:

• if v̂rator = (lam, β̂χ) ∈ Ĉlo then we mark every continuation in the list σ̂(r̂p) with (lam, eapp).

We allocate return point r̂p = (lam, t̂) on the stack by inserting it in our store σ̂′ = σ̂[r̂p → 〈κ̂〉].
We can now add (v̂rator, v̂srands, σ̂

′, r̂p, t̂′) ∈ ̂ApplyFun to the list of successor states,

• else v̂rator ∈ Prim, we evaluate the primitive passing v̂srands as arguments, yielding value v̂app.

For every continuation κ̂ ∈σ̂(r̂p) we mark κ̂ with (v̂rator, eapp) and we add (κ̂, v̂app, σ̂, t̂
′) ∈

̂ApplyKont to the list of successor states.

ApplyFun

ApplyFun applies a lambda to some (possibly empty) list of arguments and then moves on to evaluate

the body of that lambda.

Suppose that (χ̂, v̂srands, σ̂, r̂p, t̂) ∈ ̂ApplyFun with closure χ̂ = (lam, β̂lam) and lambda expression

lam = (λ(u1 . . . un) ebody). Starting with β̂′ = β̂ and σ̂′ = σ̂, we allocate every argument v̂i ∈ v̂srands
on the heap by creating a binding b̂ = (ui, t̂), extending the binding environment β̂′ = β̂′[ui → b̂] and

inserting v̂i into the store σ̂′ = σ̂′ t [b̂ → v̂i]. (In the concrete case we do not insert into the store

using a join, but by overwriting existing values that may exist at the addresses of the arguments.) The

successor state is (ebody, β̂
′, σ̂′, r̂p, t̂) ∈ ̂EvalTail.

ApplyKont

ApplyKont assigns a value to a name and continues evaluation at a return point. The halt continuation

is treated specially and effectively halts the interpreter in the concrete case, and terminates a branch

of exploration in the abstract case.

Suppose that (κ̂, v̂, σ̂, t̂) ∈ ̂ApplyKont with continuation κ̂ = (u, e, β̂κ, r̂p, m̂). The behavior then is

to extend binding environment β̂κ so that identifier u points to binding b̂ = (u, t̂): β̂′ = β̂κ[u→ b̂]. We

also insert value v̂ into the store so that σ̂′ = σ̂ t [b̂ → v̂] and we return (e, β̂′, σ̂′, r̂p, t̂) ∈ ̂EvalTail as

the successor state. (In the concrete case we do not insert value v into the store using a join, but by

overwriting any existing value at address b.)

5.4.7 State exploration

We have now discussed the behavior of all the states involved, and have in fact defined a concrete

semantic transition function (⇒) : State → State and abstract semantic relation ( ) : Ŝtate × Ŝtate
in a case-by-case fashion. What is still missing is a starting point. If we want to analyze program e, we

need to inject it into the state space and we do so by using injector function Î : Exp → Ŝtate. We can

define Î as Î(e) = (e, β̂0, σ̂0, ˆrp0, t̂0) ∈ ̂EvalTail, where β̂0 and σ̂0 are the empty binding environment

and store respectively, ˆrp0 is the return point for κ̂0 (the halt continuation), and t̂0 = () is the initial

timestamp.
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From an initial state we then trace out the set of all visitable states. A naive exploration algorithm

would keep a work set and a set of seen states. It operates by taking a state from the work set. If this

state is already encountered (i.e. it is a member of the set of seen states) the algorithm continues with

the next state from the work set. Else the state is added to the set of seen states and its successors are

computed and added to the work set. The algorithm terminates when the work set is empty. The set

of seen states V̂ = {ς̂|Î(e) ∗ ς̂} is then the set of states visited by the interpreter. In the abstract case

we have

The above algorithm is naive because it is not realistic to implement state exploration as described

above for any but the smallest input programs. There are improvements we can make to get faster and

better results out of the analysis (§5.5).

5.4.8 Computing data dependence

When we have a set of explored states V̂ we can proceed to the actual extraction of information to

create our dependency graph that relates abstract procedures to abstract resources. Abstract proce-

dures are the marks collected by continuations that form the call stack, i.e. they are of the form

m̂ = Proc×App. Abstract resources are sets of mutable concrete resources, in our case sets of mutable

heap addresses (bindings for mutable variables) of the form b̂ = Var × T̂ ime.
Note that we are dealing with two different types of contexts here:

• the context-sensitivity of the heap determined by the last k call sites,

• the context-sensitivity of dependences determined by the actual call site.

As Might and Prabhu remark in [19], the choice of making abstract procedures context-sensitive can

be made independent of the choice of making abstract resources context-sensitive. Thus it is possible

to have a context-sensitive dependence analysis while still having a context-insensitive abstract inter-

preter for example. In the same paper the authors also discuss some alternatives on how to make the

dependence analysis context-sensitive. One could also synchronize the context-sensitivity of abstract

procedures with the context-sensitivity of the stack for example, so that M̂ark = P(Lam× ̂RetPoint).
Another option could be to synchronize it with the context-sensitivity of the heap, resulting in M̂ark =

P(Lam× T̂ ime).
To actually compute our dependence graph we inspect the stack configuration of every visited

state ς̂ ∈ V̂. The state stack can then be traversed to aggregate the continuation marks. Analyzing

these continuation marks together with the read and write dependencies per abstract state yields the

dependence graph.

First of all we need the following ingredients dealing with the stack configuration per state.

• We need a function ŜR : Ŝtate→ P(Ĉont) that, given a state ς̂ returns all its root continuations.

For ς̂ ∈ ̂EvalTail or ς̂ ∈ ̂ApplyFun with store σ̂ς̂ and return point r̂p, the root continuations are

those in the store pointed to by address r̂p:

ŜR(ς̂) = σ̂ς̂(r̂p)
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For ς̂ ∈ ̂EvalHead or ς̂ ∈ ̂ApplyKont with continuation κ̂ we simply take

ŜR(ς̂) = 〈κ̂〉

• Starting from a set of root continuations we can “walk the stack” for any given state by exploiting

pointers between continuations created during abstract interpretation. For a state ς̂ with store

σ̂ς̂ the adjacency relation on continuations (→ς̂) ⊆ K̂ont× K̂ont is given by

κ̂ = (u, e, β̂, r̂p, m̂)→ς̂ κ̂
′ ⇐⇒ κ̂′ ∈ σ̂ς̂(r̂p)

• We can then construct a reachability function Ŝ∗ : Ŝtate → P(Ĉont) to find all the continua-

tions reachable in a particular state by taking the transitive closure of →ς̂ applied to the root

continuations of that state:

Ŝ∗(ς̂) = {κ̂|κ̂ς̂ →∗ς̂ κ̂ ∧ κ̂ς̂ ∈ ŜR(ς̂)}

• Now that we can traverse all continuations reachable in a state ς̂, we can collect all the marks

attached to those continuations as we go along, using the aggregate mark function M̂ : Ŝtate→
P(M̂ark), defined as

M̂(ς̂) =
⋃
m̂κ̂

κ̂∈Ŝ∗(ς̂)

We also need support for determining read and write dependencies per state.

• Let Â : B̂env → Exp∗ → P(Âddr) be the function that yields the addresses immediately read by

expressions. Then for a variable u we have

Â(β̂) 〈u〉 = {β̂(u)}

and for all other expressions e /∈ Var

Â(β̂) 〈e〉 = ∅

By extension we also define

Â(β̂) 〈〉 = ∅

and

Â(β̂) 〈e1, . . . , en〉 = Â(β̂)(e1) ∪ · · · ∪ Â(β̂)(en)

• For an evaluation state ς̂ with expression eς̂ and binding environment β̂ς̂ , we can compute the

set of abstract addresses read by that state. We do so by constructing a function R̂ : Ŝtate →
P(Âddr) that we define following the type of expression.

– If eς̂ = x ∈ Arg then R̂(ς̂) = Â(β̂ς̂) 〈x〉, i.e. only if x is a variable an address is read. For

literals, primitives and lambdas, R̂(ς̂) = ∅.

– For a function application eς̂ = (f x1 . . . xn), we have R̂(ς̂) = Â(β̂ς̂) 〈f, x1, . . . , xn〉.

– In case of a let expression eς̂ = (let ((u evalue)) ebody), we return the expressions immedi-

ately read by the value expression only, so R̂(ς̂) = Â(β̂ς̂) 〈evalue〉.
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– When defining a recursive function through eς̂ = (letrec ((u lam)) ebody), no variables are

directly read and R̂(ς̂) = ∅.

– For a variable mutation eς̂ = (set! u x), we have R̂(ς̂) = Â(β̂ς̂) 〈x〉.

– For a conditional expression eς̂ = (if xcond econs ealt), we return the expressions immedi-

ately read by the condition only, so R̂(ς̂) = Â(β̂ς̂) 〈xcond〉.

• In a similar manner we define a function Ŵ : Ŝtate → P(Âddr) that computes the addresses

written by an evaluation state ς̂ with expression eς̂ and binding environment β̂ς̂ .

– For a variable mutation eς̂ = (set! u x), we have Ŵ(ς̂) = Â(β̂ς̂) 〈u〉 = {β̂ς̂(u)}.

– For certain primitive procedures, including set-car!, set-cdr! and vector-set!, one

of the operands (the first in the three primitives mentioned) represents an address that will

be written. E.g. for eς̂ = (set− car! u x) we have Ŵ(ς̂) = {u}.

– For all other inputs Ŵ(ς̂) = ∅.

Combining stack configurations and read/write dependencies per state, we can create the abstract

resource dependence graph.

• For every state ς̂ ∈ V̂ we determine M̂(ς̂), R̂(ς̂) and Ŵ(ς̂).

– For every mark m̂ς̂ in M̂(ς̂) we add a vertex to the graph representing an abstract procedure

invocation.

* For every address r̂ς̂ in R̂(ς̂) we add a vertex representing the address read and add an

edge r̂ς̂ → m̂ς̂ to the graph.

* For every address ŵς̂ in Ŵ(ς̂) we add a vertex representing the address written and add

an edge m̂ς̂ → r̂ς̂ to the graph.

Example 5.12. (Abstract resource dependence graph) We continue Example 5.10 on page 36, which

demonstrated how some (context-insensitive) marks are attached to three continuations needed during

abstract interpretation. We assume that κ̂0 was marked with cons. Also, κ̂20 was marked with λ12 and

κ̂24 with λ16. Suppose state exploration has terminated. We must now walk the stack of each state and

aggregate marks. We look at three evaluation states in which our marks are involved.

• In the ̂EvalTail state ς̂1 for (set! z 123) (body of writez) with stack κ̂20 → κ̂0, marks λ12 and

cons are collected. We have R̂(ς̂1) = ∅ and Ŵ(ς̂1) = {z}. Hence, both these procedures will have

a write dependency on resource z.

• In the ̂EvalTail state ς̂2 for z (body of readz) with stack κ̂24 → κ̂0, marks λ16 and cons are

collected. Here R̂(ς̂2) = {z} and Ŵ(ς̂2) = ∅. Therefore, both these procedures will have a read

dependency on resource z.

• Finally, in the ̂EvalTail state ς̂3 for (cons p1 p2) with stack κ̂0, mark cons is collected and given

a read dependency on resources p1 and p2 because R̂(ς̂3) = {p1, p2} and Ŵ(ς̂3) = ∅. As a result,

the expression (cons p1 p2) has both a write and read dependency on resource z.
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The complete resulting abstract resource dependence graph was given in Figure 5.1 on page 28, and

it includes the dependencies we resolved in Example 5.12 above.

5.4.9 Computing value flow

Besides an abstract resource dependency graph, IPDA can also compute a monovariant aggregate

store that maps identifiers onto the possible values they represent during program execution. Closures

are given special treatment and are stripped of their binding environment, leaving only the lambda

expression. Possibly the most useful information we can obtain through the aggregate store is that

for every identifier in operator position we can determine the set of procedures that flow to a specific

application site.

To compute the monovariant aggregate store, we first traverse all explored states and join together

all state stores to obtain the (possibly polyvariant) aggregate store

σ̂V̂ =
⊔
ς̂∈V̂

σ̂ς̂

Joining stores is conceptually simple. If σ̂1 t σ̂2 t · · · t σ̂n = σ̂, then for all addresses â: σ̂(â) =

σ̂1(â) t σ̂2(â) t · · · t σ̂n(â).

The monovariant aggregate store µ : Var → V̂ al
∗

is a store that maps identifiers to values. We

populate it by selecting all bindings from the aggregate store σ̂V̂ by stripping all context information

from bindings, yielding variables. We then aggregate all possible values per variable.

5.5 Optimizing the implementation of the analysis

If the analysis would be implemented exactly as it was presented in previous sections, it would be

quite inefficient. There are however some clever optimizations we can apply to mitigate much of the

memory and space consumption required by naive implementations.

Without going into formal details, we describe two techniques. The reader may want to consult the

cited references for a more in-depth treatment.

5.5.1 Widening

Keeping a list of states and checking if a state already exists for every newly created state is very

inefficient. In order to improve the speed of the analysis, we can implement per-context widening [18].

It is based on the fact that expressions, binding environment, return points and continuations, etc. can

be efficiently compared using equality. This is not necessarily true for stores, which may contain many

entries and monotonically grow in size. If we use only one store per context, we can greatly speed up

analysis time.

For example, the context of the ̂EvalTail state is (e, β̂, r̂p, t̂), i.e. everything but the store. Similarly,

we can define contexts for the three other states. Using a hash table we can then map every context

onto a single store, instead of maintaining a big list of states with each state containing its proper

store. To obtain the state store, we now have to look it up using the state context.
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5.5.2 Abstract garbage collection

It is in the nature of our abstract machine to frequently re-use abstract addresses for allocation, even

though there are free addresses available. As a consequence multiple abstract values are forced to

reside at the same slot in the store. By performing abstract garbage collection we can limit this kind of

merging, thereby increasing the precision of the analysis [20].

Abstract garbage collection can also be called narrowing, since it is the opposite of widening.

Abstract garbage collection is similar to its concrete counterpart. For a certain state we can calculate

the addresses that are referenced by that state, called the root addresses. Using those roots we can

transitively determine which addresses are reachable. Addresses that are not reachable can be removed

from the store. The result is a store that is more precise than before garbage collection occurred.

Abstract garbage collection is important to increase the precision of the analysis. Abstract garbage

collection is also an interesting case to illustrate how abstractions must remain sound: if we perform

abstract garbage collection, we must perform concrete garbage collection as well, otherwise there

would exist concrete values that have no abstract counterpart. This violates the guarantee offered by

our abstractions that every possible concrete value that may exist has an abstract counterpart.

5.5.3 Abstract Counting

Abstract counting makes use of the simple observation that an abstract address that is allocated exactly
once can only have one concrete counterpart. So while abstract addresses can represent multiple

concrete addresses, using abstract counting we can determine when they correspond to their concrete

counterpart.

Abstract counting is done at the level of the store. The store keeps track of the number of allocations

of addresses, assigning each address a cardinality. In order to provide the right precision to implement

abstract counting, the cardinality is an element of the set {0, 1,∞}.
Abstract counting is useful when we update the value at a certain abstract address. If the cardinality

of that address is 1, then it is sound to consider any update to be a strong update, effectively replacing

the previous value with the new one. If, on the other hand, the cardinality is ∞, then we have to fall

back to a weak update or a join, because the abstract address possibly represents multiple concrete

addresses. This diminishes the precision of the analysis.

Equal abstract addresses with cardinality 1 also implies equality for the corresponding concrete

addresses, meaning that they must alias. From this point of view, abstract counting can increase the

power of an analysis.

Note that the verb “counting” here only applies to the number of allocations of addresses, not to

the number of concrete values represented by the abstract value that an abstract address points to.

The number of distinct abstract addresses used for a variable depends on a combination of factors.

• The underlying program of course determines where and when variables get bound. It is clear

that binding variables inside a loop can only increase the chance that abstract addresses will be

reused, their cardinality becoming∞.
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Figure 5.10 Abstract counting: Single binding of variable z.

(let*
((z 0)
(writez (lambda () (set! z (+ z 1)))))

(writez)
z)

Figure 5.11 Abstract counting: multiple bindings of variable n.

(letrec
((f (lambda (n)

(if (zero? n)
0
(f %36% (- n 1))))))

(f %45% 100))

• The precision of the primitive operations and special forms like if can influence the times that

the abstract interpreter enters blocks of code that bind variables, and therefore also indirectly

influences the chances of rebinding an existing abstract address.

• The sensitivity of the value-flow analysis (k) influences the polyvariance of the abstract ad-

dresses. The higher k is, the more opportunities there are for creating fresh abstract addresses

(with cardinality 1) during interpretation.

• Abstract garbage collection can be considered as an operation that sets the cardinality of un-

used addresses to 0. Although abstract garbage collection is orthogonal to abstract counting, it

increases the usefulness of the latter.

Example 5.13. In the program depicted in Figure 5.10, value-flow analysis would compute the set of

possible answers of this program as {0, 1}. It is clear however that the address for z is only bound once

during execution. Therefore the analysis can decide that the update of z through set! is in fact a

strong update, overwriting any previous value in the store. Hence the computed result of this program

will be simply {1}, making the analysis more precise when abstract counting is applied.

Example 5.14. The program in Figure 5.11 implements a countdown loop. Suppose that k = 1 and the

precision of primitive operations zero? and - is sufficiently high (i.e. the return value is an abstract

value representing one concrete value during the following discussion). We can trace the successive

bindings for formal parameter n as the interpreter enters the body of f follows. After applying f at

call site 45 there will be only one allocation of binding (n, 45) with value 〈100〉 so its cardinality is and

remains 1. After applying f at call site 36 a first time, (n, 36) is allocated with cardinality 1 value 〈99〉.
The interpreter at least evaluates call site 36 once more and binding (n, 36) is reallocated, but this time

its cardinality becomes∞ and its value is weakly updated to 〈99, 98〉.
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5.6 Conclusion

We presented the analysis by Might and Prabhu to approximate dependencies that may arise when ex-

pressions invoke procedures in a higher-order program [19]. The analysis is developed using abstract

interpretation as a framework. It uses an abstract state machine that allows inspection of stack con-

figurations per state. By determining the addresses read and written per state and applying Harrison’s

principle, we can construct an abstract resource dependency graph relating addresses and procedure

invocations. This information, together with the dependency analysis from Chapter 2 allows us to

conservatively determine all dependencies between all expressions in a program.



Chapter 6

Implementation

6.1 Introduction

All the ideas and techniques presented in this dissertation are implemented in a Java project called

Streme. The name Streme refers to Scheme (the language) and "stream" (because it uses a queue-

based work-stealing algorithm in its evaluator).

The code can be found at http://code.google.com/p/streme.

6.2 Parallel constructs

Streme implements an evaluator that understands a subset of R5RS Scheme with several additional

parallel constructs. The basic construct for expressing parallelism is the special form future and its

companion procedure touch.

• (future e) allows the evaluator to evaluate expression e immediately or at some unspecified

point in the future, and possibly in parallel with the rest of the program. It may return a future
value (also called a promise) representing the future computation, or it may also return the value

of e.

• (touch f) awaits the termination of the future computation represented by f and returns that

computation’s value, or if f is not a future value then it returns the value of f.

From these descriptions it is clear that future and touch have intentional semantics [9] in Streme.

This means that future is not simply fork or spawn for example, where evaluation is uncondition-

ally started in another thread and touch plays the role of a join that returns a value. future/touch

is not delay/force either, computing the value of an expression at the point where it is needed. And

both future and touch are not the identity function id, the function that immediately returns its

evaluated operand. In fact, future and touch can be all three of the previous, at the discretion of

the evaluator. We will refer to these semantics as fork, delay and id semantics respectively.

In practice, Streme will only apply fork or id semantics. It is clear that an evaluator providing

future/touch will strive for parallelism using fork semantics wherever it decides it is appropriate.

Inappropriate situations could include those in which there are already too many futures running (i.e.

47
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Figure 6.1 fib function with future and touch.

(define (fib n)
(if (< n 2)

n
(let ((f (future (fib (- n 2)))))
(+ (fib (- n 1)) (touch f)))))

soft or hard limits), or when the overhead of executing a future in a separate thread is not deemed

worth the overhead (by employing heuristics or profiling). Id semantics then serves as a fallback.

Streme currently only imposes a configurable limit on the number of concurrently running future

computations, by default based on the number of processing cores.

It is imperative that future and touch act as true annotations. It should be possible to eliminate

all occurrences of future and touch from a program without changing the behavior of that program.

Consider for example an evaluator that always assigns id semantics to future and touch, thereby

evaluating future expressions immediately.

(define (id x) x)

(define future id)

(define touch id)

Because the above definitions are sound it becomes clear that removing future and touch should

never have any observable impact. In the presence of side-effects, we can only guarantee this if (the

addition of) future expressions correctly takes dependencies into account ($2.2).

Example 6.1. (Future/touch) Figure 6.1 shows a definition of the Fibonacci function using future

and touch. In this particular example it is important that the call (fib (- n 1)) appears before

(touch f). If not, we could start a future computation for which we immediately wait for the result

to be returned, yielding sequential evaluation.

future and touch can be used to define higher-level parallel syntactic constructs. This is the case

for Streme’s parallel let form let||. For example, the expression

(let|| ((a e1)

(b e2))

ebody)

is rewritten into

(let ((fa (future e1))

(fb (future e2)))

(let ((a (touch fa))

(b (touch fb)))

ebody)
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6.3 Architecture

The architecture of Streme follows a typical pipeline design, consisting of various analyzers, compilers

and transformers that are chained together to form an evaluator. The stages can be subdivided into a

front-end, middle-end and back-end. The middle-end defines abstract syntax tree (AST), together with

infrastructure to analyze and transform ASTs. This is where static analyzers and parallel rewriters can

be plugged in to do the actual parallelization of programs.

Parser

The parser returns Scheme data like numbers, symbols, and lists that represents the input program.

The fact that we can use Scheme data to represent Scheme programs is called homoiconicity, and it

remains true even if the underlying implementation language is Java. The parser also expands some

syntactic sugar such as apostrophes to a quote form: ’abc becomes (quote abc).

MacroExpander

The macro expander rewrites derived syntax like let||, or, cond, case, do, etc. into more essential

syntax. The main advantage is that it simplifies further stages of the compiler. They do not need to

know how to handle all the derived forms, but only a core syntax. For example, the expression

(case x

((a b) (quote number))

((c) (quote pair))

(else (quote help)))

will be first rewritten by expanding case to a cond as follows

(let ((_t0 x))

(cond ((memv _t0 (quote (a b))) (quote number))

((memv _t0 (quote (c))) (quote pair))

(else (quote help))))

Then the cond is expanded into an if expression

(let ((_t0 x))

(if (memv _t0 (quote (a b)))

(quote number)

(if (memv _t0 (quote (c)))

(quote pair)

(quote help))))

Finally, the let expressions can be desugared into lambda expressions and function application if

desired. However, in our approach for parallelization we want to keep let expressions intact. There

is also a flag for keeping letrecs from being rewritten into more basic syntax. The macro-expander

expands into the following syntax:if, begin, define, future, lambda, quoted, set!, and op-

tionally let and letrec.
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Data2AstCompiler

This compiler takes Scheme data and transforms it into an abstract syntax tree (AST). The following

node types are defined in the AST:

• Application

• Begin

• Binding (used in different let forms)

• Define

• Future

• If

• Lambda

• Let (used for let, let*, letrec, let||)

• Quoted

• Ref

• SetVar

• Var

AlphaConverter

Alpha conversion introduces unique identifiers for every variable name in a program. This makes it

easier to reason about code and introduce changes. Alpha conversion uses a renaming strategy that is

also used by other stages that need to introduce unique names.

AnfConverter

The AnfConverter converts an AST into a specific form described in Figure 3.2 on page 20.

IpdaAnalyzer

Interprocedural dependency analyzer, implemented as an abstract interpreter that takes ANF input

and adds several elements like bindings, binding environments, return points, closures, stores, contin-

uations and marks. It builds the abstract resource dependency graph (§5.4.8).

It implements all of the tricks that we discussed in §5.5: it features per-context widening, abstract

counting and abstract garbage collection.

BruteForceParallelizer

Implements the approach outlined in Chapter 2. Takes the results from the IpdaAnalyzer for interpro-

cedural dependencies, and adds logic for dealing with all other types of dependencies.
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Simplifier

Performs some "peephole" optimizations on the level of the AST. For example, (begin e) is substi-

tuted by the single expression e just as (let ((u e)) u) is replaced by e

CoreSchemeRewriter

The CoreSchemeRewriter is the equivalent of the MacroExpander, but on the level of the AST. It

rewrites the AST to CoreScheme, which comprises the following syntax: if, begin, define, future,

lambda, quoted, set!.

Ast2ExpCompiler

Compiles CoreScheme AST into expressions that know how to evaluate themselves [3]. Self-evaluating

expressions are essentially Java objects that define an evaluate method. The evaluate method is called

passing an evaluation context that provides access to information and services needed during evalua-

tion.

There are currently two types of expression classes, each with its own compiler:

1. EXP-S: uses the JVM stack for evaluation.

2. EXP-C: continuation-passing evaluator.

EXP-S

Expression classes that use the JVM stack for evaluation and procedure application. The signature of

the evaluate and apply methods are

class Exp

{

Object eval(StremeContext context, Env env);

}

class Procedure

{

Object applyN(StremeContext context, Object[] operands, Env env);

}

and the expression ExpApp2, which applies two operands to an operator, is implemented as

class ExpApp2 extends Exp

{

private Exp operator;

private Exp operand1;

private Exp operand2;

public Object eval(final StremeContext context, final Env env)

{
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Procedure eoperator = (Procedure) operator.eval(context, env);

Object eoperand1 = operand1.eval(context, env);

Object eoperand2 = operand2.eval(context, env);

return eoperator.apply2(context, eoperand1, eoperand2, env);

}

}

In future expressions, implemented by ExpFut, the context is accessed to submit a task repre-

senting the evaluation of the future expression. This task can be executed asynchronously. Tasks are

submitted as Runnables

public interface Runnable

{

void run();

}

The maximum number of futures submitted in the implementation below is limited to n− 1, where n

is the number of threads available as reported by the context.

public class ExpFut extends Exp

{

private static AtomicInteger futures = new AtomicInteger(0);

private Exp value;

public Object eval(final StremeContext context, final Env env)

{

if (numberOfFutures.get() > context.numberOfThreads() - 2)

{

// evaluate immediately and return result return

value.eval(context, env);

}

else // room for a future

{

numberOfFutures.incrementAndGet();

final Future future = new Future();

context.execute(new Runnable() // submit for asynchronous execution

{

// asynchronously called

public void run()

{

future.set(value.eval(context, env));

numberOfFutures.decrementAndGet();

}

});

return future;

}

}

}
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A future itself is simply an object allowing for a synchronized hand-off of a value (the evaluated

future expression).

public class Future

{

private boolean done;

private Object value;

public synchronized Object get() throws InterruptedException

{

while (!done)

{

wait();

}

return value;

}

public synchronized void set(Object value)

{

this.value = value;

done = true; notifyAll();

}

}

The touch procedure checks if its argument is a future. If so, it will try to retrieve the value from the

future, blocking until it becomes available. To implement intentional semantics, touch will simply

return any non-future argument it receives as its value.

class Touch extends Procedure

{

public Object apply1(StremeContext context, Object operand, Env env)

{

if (operand instanceof Future)

{

Future future = (Future) operand;

return future.get(); // blocking call

}

else // operand not a future value

{

return operand;

}

}

}

This evaluator is not properly tail-recursive, and it has no support for implementing (and does not

implement) call-with-current-continuation.
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EXP-C

A second evaluator that exclusively uses continuations for evaluation. Signatures for the eval and

apply method are

class Exp

{

void eval(StremeContext context, Env env, Cont cont);

}

class Procedure

{

void applyN(StremeContext<Exp> context, Object[] operands, Env env, Cont cont);

}

Expressions pass a value to the continuation instead of returning it using the JVM stack.

interface Cont

{

void call(Object val);

}

Expression ExpApp2 in continuation-passing style exhibits the typical waterfall pattern by chaining

continuations and becomes

public class ExpApp2 extends Exp

{

private Exp operator;

private Exp operand1;

private Exp operand2;

public void eval(final StremeContext context, final Env env, final Cont cont)

{

operator.eval(context, env, new RunnableCont(context)

{

protected void executeContinuation(final Object eoperator)

{

operand1.eval(context, env, new RunnableCont(context)

{

protected void executeContinuation(final Object eoperand1)

{

operand2.eval(context, env, new RunnableCont(context)

{

protected void executeContinuation(Object eoperand2)

{

((Procedure) eoperator).apply2(context, eoperand1, eoperand2, env, cont);

}

});
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}

});

}

});

}

}

A RunnableCont is an implementation of a continuation that uses the context to submit itself as task.

public abstract class RunnableCont extends Cont implements Runnable

{

private StremeContext context;

private Object value;

// asynchronously called

public final void run()

{

executeContinuation(value);

}

// implements the rest of the computation this continuation represents

protected abstract void executeContinuation(Object value);

public void call(Object value)

{

this.value = value; // the value with which this continuation is called

context.execute(this); // submit for asynchronous execution

}

}

In fact, in the EXP-C evaluator every continuation acts as a future.

Work-stealing

For both evaluators a context must be implemented that provides the possibility of asynchronously

executing tasks, submitted as Runnables.

public interface StremeContext<T>

{

GlobalEnv globalEnv();

Object read(Reader reader);

T compile(Object source);

void execute(Runnable runnable);

int numberOfThreads();

}

For this purpose a ThreadPoolExecutor is used, implementing a work-stealing strategy to realize

parallelism in Streme. Tasks (futures and/or continuations) are submitted onto a work queue. A



CHAPTER 6. IMPLEMENTATION 56

pooled worker thread that is idle “steals” a task from the work queue and executes it. During execution,

the task can put one or more tasks back onto the queue.

6.4 Conclusion

We described some details of our Scheme interpreter, called Streme. The front- and middle-end of

Streme has a modular architecture and consists of a pipeline of program analysis and transformation

tools. For the backend two evaluators were implemented: one uses the JVM stack during evaluation

and the other is written in continuation-passing style. Both evaluators implement the basic paralleliza-

tion constructs future and touch with intentional semantics.

Streme was developed so it could be used for our experiments (Chapter 7).



Chapter 7

Experiments and validation

7.1 Introduction

In order to validate the static analysis we carried out experiments by parallelizing and running several

Scheme benchmarks. The experiments were performed with the EXP-S evaluator using the JVM stack

as backend. The fact that continuations as tasks are far more fine-grained than futures caused unpre-

dictable overhead in the EXP-C evaluator and most of the benefits gained from parallel execution were

lost.

Every benchmark used k = 1 as setting for the interprocedural analysis.

The experiments were carried out on a Sun Java 1.6.0 Runtime Environment with HotSpot 64-bit

Server JVM running an Intel machine with 8 Xeon processors. Every benchmark was run with 1 up to

16 threads, the number of cores reported by the Java runtime.

Running the benchmarks without a properly tail-recursive Scheme implementation required a big-

ger JVM stack size than the default. One experiment required 64 MB of stack size (per thread). There-

fore, the JVM was started with the following arguments: -Xmx1024M -Xss64M. All the benchmarks

run and terminate properly with increased stack size, yielding correct values. To verify correctness, we

used Racket in R5RS mode [23].

In the performance graphs we plot out the running time of the automatically parallelized benchmark

(in ANF style) against the number of threads. In principle we should make a comparison with the

running time of the sequential ANF version of the benchmark. The difference however between the

running time of the sequential ANF version versus that of the parallelized benchmark running on one

thread was small for all benchmarks. This is because the Streme evaluator falls back to id semantics for

both future and touch. Nevertheless the sequential ANF timings are included in the global overview

presented in Table 7.1 on page 65.

7.2 Benchmark experiments

7.2.1 fib

Description The function for calculating the n-th Fibonacci number is one of the best known func-

tions and benchmarks. We have already encountered it before in in ANF style. For the benchmark we

57
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Figure 7.1 Computational tree for Fibonacci function

(fib n)

(fib (- n 1)) (fib (- n 2))

(fib (- n 2)) (fib (- n 3)) (fib (- n 3)) (fib (- n 4))

... ... ... ...

Figure 7.2 fib function in ANF style, with binding dependency graph and binding order graph

(letrec ((_fib0
(lambda (_n1)
(let ((_p2 (< _n1 2)))
(if _p2

_n1
(let ((_p3 (- _n1 2)))
(let ((_p4 (_fib0 _p3)))
(let ((_p5 (- _n1 1)))
(let ((_p6 (_fib0 _p5)))
(+ _p4 _p6))))))))))

(_fib0 40))

_p3

_p4

_body8

=_body8

_p5

_p6 _p3, _p4

_body8, =_body8

_p5, _p6

use the “standard” direct-style tree-recursive version of the function with (< n 2) as condition for

termination, and we perform 4 iterations.

(letrec ((fib (lambda (n)

(if (< n 2)

n

(+ (fib (- n 2)) (fib (- n 1)))))))

(fib 40))

If we look at the tree of computations generated by the fib function (Figure 7.1), in which every

non-leaf node depends on its children, we can deduce two things [31]:

1. Considering the number of times the same expression is evaluated, the double-recursive version

of fib is not the most efficient way of calculating Fibonacci numbers.

2. There is always more work on the left side of the tree, although larger values for n makes this

difference relatively smaller higher up in the tree, resulting in only a slight imbalance. This

should be a favorable condition for successful parallel evaluation.

Dependency analysis Figure 7.2 shows the actual ANF version of the fib function that is generated

and used during analysis, together with the binding dependency graph and binding order graph for

the nested lets. The opportunity for parallelization is clearly present in the graphs (§2.2).
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Figure 7.3 Performance of fib benchmark, 4 iterations

Parallelization The automatically parallelized version of the fib function is as follows.

(letrec ((_fib0

(lambda (_n1)

(let ((_p2 (< _n1 2)))

(if _p2

_n1

(let ((_p3 undefined)

(_p5 undefined))

(let|| ((_p4 (begin (set! _p3 (- _n1 2)) (_fib0 _p3)))

(_p6 (begin (set! _p5 (- _n1 1)) (_fib0 _p5))))

(+ _p4 _p6))))))))

(_fib0 40))

It contains no surprises. There is one let|| that calculates children (fib (- n 1)) and (fib (-

n 2)) to obtain a value for (fib n).

Performance The performance of the fib benchmark is as could be expected. The biggest gain in

performance comes when going from one to two evaluation threads. After that, the execution time

still generally drops with the addition of threads, until the graph flattens out at six threads.

7.2.2 tak

Description The tak function, named after Ikuo Takeuchi, is also a well-known Gabriel benchmark

involving recursion. The version we use is not the original one, but the version of McCarthy returning

z when (not (< y x)) [32]. We do 4 iterations of this benchmark.

(letrec ((tak (lambda (x y z)

(if (not (< y x))

z

(tak (tak (- x 1) y z)

(tak (- y 1) z x)
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Figure 7.4 tak function in ANF style, with binding dependency graph and binding order graph

(letrec
((_tak0

(lambda (_x1 _y2 _z3)
(let ((_p4 (< _y2 _x1)))
(let ((_p5 (not _p4)))
(if _p5

_z3
(let ((_p6 (- _x1 1)))
(let ((_p7 (_tak0 _p6 _y2 _z3)))
(let ((_p8 (- _y2 1)))
(let ((_p9 (_tak0 _p8 _z3 _x1)))
(let ((_p10 (- _z3 1)))
(let ((_p11 (_tak0 _p10 _x1 _y2)))
(_tak0 _p7 _p9 _p11)))))))))))))

(_tak0 40 30 20))

_p6, _p7

_body14, =_body14

_p8, _p9 _p10, _p11

(tak (- z 1) x y))))))

(tak 40 30 20))

Dependency analysis Figure 7.4 shows the ANF version of the tak function. Also shown are the

binding graphs for the nested lets inside the if expression, which constitute the only parallelization

opportunity.

Parallelization After dependency analysis and program transformation, the result is a parallel tak

function containing a let|| with three branches.

(letrec ((_tak0

(lambda (_x1 _y2 _z3)

(let ((_p4 (< _y2 _x1)))

(let ((_p5 (not _p4)))

(if _p5

_z3

(let ((_p6 undefined) (_p8 undefined) (_p10 undefined))

(let|| ((_p7 (begin (set! _p6 (- _x1 1)) (_tak0 _p6 _y2 _z3)))

(_p9 (begin (set! _p8 (- _y2 1)) (_tak0 _p8 _z3 _x1)))

(_p11 (begin (set! _p10 (- _z3 1)) (_tak0 _p10 _x1 _y2))))

(_tak0 _p7 _p9 _p11)))))))))

(_tak0 40 30 20))

Performance The performance graph of tak bears resemblance to the performance graph of fib.

However, fib easily breaks the −50% evaluation time barrier at 5 threads, while tak scratches −50%

at around 10 threads. Still, the tak benchmark confirms that fib is not a fluke, and that high levels

of recursion can offer good results with our method of automatic parallelization.
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Figure 7.5 Performance of tak benchmark, 4 iterations

Figure 7.6 Binding order graph for nboyer
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Figure 7.7 Performance of nboyer benchmark, 4 iterations

7.2.3 nboyer

Description nboyer is an updated version of the boyer Gabriel benchmark, and principally tests

lists, vectors and garbage collection [2, 25]. It is representative of real AI applications because it

performs Prolog-like rule-directed rewriting. As such it is a logic programming benchmark and in

comparison to fib and tak certainly not a micro-benchmark. We use n=3, resulting in 5375678

rewrites occurring, and we repeat the benchmark 4 times. The program is too big to be included here

– we refer the reader to [25].

Dependency analysis The binding order graph for nboyer (Figure 7.6) is not very different from

its binding dependency graph.
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Performance The performance graph for nboyer (Figure 7.7) is quite unexciting and the only sound

conclusion we can draw is that brute-force parallelization has no significant effect on the running time

of this benchmark. Clearly, our parallelization approach is not suited for every type of program. The

positive news is that in case we do not have a speedup, our automatic parallelization method does not

necessarily cripple performance either, as this benchmark illustrates.

7.2.4 quicksort

Description quicksort is an efficient sorting algorithm developed by C. A. R. Hoare in 1960. We

use a straightforward implementation shown below [17] to sort a fixed list *random-list-40000*
of 40000 generated pseudo-random integers in the range 0 . . . (217 − 1). For the benchmark timing we

measure how long it takes to sort this list 10 times.

(define pivot (lambda (l)

(cond ((null? l) ’done)

((null? (cdr l)) ’done)

((<= (car l) (cadr l)) (pivot (cdr l)))

(else (car l)))))

(define partition (lambda (piv l p1 p2)

(if (null? l)

(list p1 p2)

(if (< (car l) piv)

(partition piv (cdr l) (cons (car l) p1) p2)

(partition piv (cdr l) p1 (cons (car l) p2))))))

(define (quicksort l)

(let ((piv (pivot l)))

(if (equal? piv ’done)

l

(let ((parts (partition piv l ’() ’())))

(append (quicksort (car parts))

(quicksort (cadr parts)))))))

(quicksort *random-list-40000*)

Dependency analysis After dependency analysis, no less than four opportunities for parallelization

are discovered. Three of them are trivial however, including only applications of car, cdr, and cons,

like for example (after ANF conversion)

(let|| ((_p21 (cdr _l6))

(_p23 (begin (set! _p22 (car _l6)) (cons _p22 _p17))))

. . .)

The most promising parallelization is that of the recursive calls to quicksort.
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Figure 7.8 Performance of quicksort benchmark after brute-force automatic parallelization, 10 it-
erations

Figure 7.9 Performance of manually parallelized quicksort benchmark, 10 iterations

(let|| ((_p29 (begin (set! _p28 (car _parts10)) (_quicksort0 _p28)))

(_p31 (begin (set! _p30 (cadr _parts10)) (_quicksort0 _p30))))

. . .)

Performance Clearly the brute-force automatic parallelization has a detrimental effect on the run-

ning time (Figure 7.8), even though quicksort employs a divide-and-conquer strategy which should

make it a good candidate for receiving a boost in speed when running on multiple cores. Manual
parallelization of the input program by (only) parallelizing the recursive calls to quicksort yields

the performance graph in Figure 7.9, showing that the runtime of Streme is not the bottleneck.

We can draw the following conclusion from this benchmark: without heuristics guiding the paral-

lelization (certainly) and without more aggressive optimization of the ANF code (possibly) any gain

in performance can be offset by overhead introduced by the code transformations as a result of brute-

force parallelization.
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Figure 7.10 Performance of nqueens benchmark, 10 iterations

7.2.5 nqueens

Description The n-queens problem is a combinatorial problem in which it is required to place n

queens on an n × n chessboard so that no two queens attack each other. In our test suite, we take

n = 10 and we perform 10 iterations of the benchmark. The code for nqueens is shown below.

(define (nqueens n)

(define (_1-to n)

(let loop ((i n) (l ’()))

(if (= i 0) l (loop (- i 1) (cons i l)))))

(define (my-try x y z)

(if (null? x)

(if (null? y) 1 0)

(+ (if (ok? (car x) 1 z)

(my-try (append (cdr x) y) ’() (cons (car x) z))

0)

(my-try (cdr x) (cons (car x) y) z))))

(define (ok? row dist placed)

(if (null? placed)

#t

(and (not (= (car placed) (+ row dist)))

(not (= (car placed) (- row dist)))

(ok? row (+ dist 1) (cdr placed)))))

(my-try (_1-to n) ’() ’()))

(nqueens 10)

Dependency analysis After analysis, three opportunities for parallelization are discovered. Similarly

to quicksort however, the work performed in the branches of the three let|| is minimal.
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name iter analysis f/t ast anf ×1 ×2 ×4 ×8

fib 4 101 2/2 174313 666681 645807 -33.99% -44.35% -51.6%
tak 4 170 3/3 68466 239765 211236 -32.44% -29.58% -38.71%

nboyer 4 10104 87/87 61987 180108 159960 -0.68% -1.15% -2.55%
quicksort 10 20016 10/10 4052 14220 15286 +7.22% +103.17% +270.09%
nqueens 10 94 6/6 2792 11296 11088 +1651% +1991% +2230%

Table 7.1: Overview of all the benchmarks

Performance The performance degradation of the automatically parallelized version of nqueens

shows worse degradation than that of quicksort. In this case, there is no straightforward man-

ual parallelization possible, so contrary to quicksort simple heuristics will not solve the problem.

Although our brute-force approach to parallelization does not necessarily cripple the performance of

parallel execution (see nboyer), it potentially does.

7.2.6 Overview

Table 7.1 presents an overview of all the benchmarks that were ran, together with some key data.

Below is a description of each column in the table.

name name of the benchmark

iter number of iterations

performance performance graph of the runtime of the automatically parallelized program on one up

to sixteen threads

analysis analysis time (dependency analysis + parallelization), in ms

f/t number of future/touch in parallel ANF

ast running time of original input program (before transformation), in ms

anf running time of input program after ANF conversion, in ms

×1 running time of automatically parallelized program on one thread, in ms

×2 percentual speedup of automatically parallelized program running on two threads versus

running on one thread

×4 percentual speedup of automatically parallelized program running on four threads versus

running on one thread

×8 percentual speedup of automatically parallelized program running on eight threads ver-

sus running on one thread
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7.3 Conclusion

It is difficult to draw firm conclusions after running only a limited number of benchmarks. There are

however several observations we can make.

• A parallel speedup is possible when double recursion or even higher levels of recursion are

present (for example fib, tak, manual quicksort).

• A parallel execution speedup is not guaranteed when double recursion or higher is present (e.g.

brute-force quicksort). There are too many factors that can influence the outcome, and can

do so in a negative way. The absence of heuristics may result in parallelizing trivial pieces of

code, negating the possible performance gains that can be realized.

• Our brute-force method is not generally applicable. More general benchmarks and programs

will not benefit from it. This does not come as a surprise however, although it has proved to be

more difficult than expected to find “real-life” benchmarks that get a boost in performance after

automatic parallelization.

Further analysis of the results is needed to determine where improvements can be made. This has not

really been done (§8.2) but, given the circumstances in which the experiments were conducted, may

prove to be difficult.

• We execute experiments on a Java Virtual Machine that manages its own runtime system. It

features a JIT compiler, performs garbage collection, etc. all of which may influence the results

in unpredictable ways.

• The underlying hardware also uses various tricks – for example throttling CPU frequencies – and

it is difficult to assess how this can affect the results.

• We use a java.util.ThreadPoolExecutor to implement work-stealing. It is however a

general-purpose implementation of a thread pool with no real support for advanced work-

stealing strategies or monitoring thereof. In order to detect performance bottlenecks in this

setup, we must be able to pinpoint and quantify parallel idleness and overhead [31].

• We did not take a close look at how the interprocedural analysis (Chapter 5) influenced the

results. For small programs, the analysis can be done on sight, but for non-trivial programs ex-

amining the results of the analysis can be a difficult task. Additionally, all benchmarks were more

or less “typical” Scheme programs, and interprocedural dependencies were not the determining

factor and often completely absent. Of course, proving the absence of this type of dependencies

remains crucial in our approach.
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Conclusion

This dissertation defended the thesis that automatic parallelization of Scheme programs using static

analysis is feasible and allows certain sequential programs to run faster on multicore systems.

The first part of the thesis, concerning the use of static analysis for automatic parallelization, has

certainly been developed in quite some detail (Chapters 2 and 5). All the ideas and techniques were

implemented and produced consistent results (Chapter 6), showing that it is indeed possible to use

static analysis to parallelize sequential programs.

We only had very limited success in supporting the second part of the thesis, concerning the

speedup of automatically parallelized programs (Chapter 7). Few benchmarks, mostly the small ones,

actually profited from evaluation in Streme on parallel hardware.

8.1 Related Work

8.1.1 Early compilers

In this section we briefly discuss some of the first Scheme compilers that performed optimizations

through analysis.

Rabbit

In 1978 Steele wrote his master dissertation on the Rabbit compiler [30]. It was a Scheme compiler

that demonstrated the usefulness of converting to continuation passing style (CPS) as an intermediate

representation for analyzing and compiling functional programs.

Optimization in Rabbit was limited and is performed before CPS conversion. Rabbit does constant

expression folding, simple if rewriting, and implements some rewriting rules that together make up

a form of β-conversion. These rules check for side-effects and employ heuristics to decide whether

they are applicable. The inverse of β-conversion, the elimination of common subexpressions, is not

attempted by the compiler.

Rabbit performs some checks to determine whether lambda expressions are treated as data and

therefore must actually be closed over their free variables. The compiler also does some simple escap-

ing analysis to determine whether closures may be stack-allocated or must be heap-allocated.

67
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The treatment of side-effects introduced by set!, set-car!, set-cdr!, cons and input/output

operations are treated as special cases during analysis. Especially set! posed the biggest challenges

in Rabbit, and some optimizations are simply disallowed in the presence of it1.

Steele remarks that when writing his dissertation there was no literature available on the subject of

optimizing compilers for higher-order languages, and speculates that this was because most optimizing

compilers at the time had been for Algol-like languages which do not handle higher-order functions.

Orbit

Orbit was an optimizing compiler similar in spirit to Rabbit [1]. Just like Rabbit it uses CPS conver-

sion as an intermediate representation, but Orbit attempts to optimize more aggressively. It featured

interprocedural escape analysis to identify first-class functions that are guaranteed not to out-live their

lexically enclosing environment, enabling functions and their environments to be stack-allocated where

possible.

Orbit applies program analysis and simplification, including partial evaluation, entirely on the CPS

intermediate form instead of the source code.

Because set! in Rabbit was considered awkward during analysis, Orbit featured a technique

called assignment conversion to make sure that assigned variables always denote values, even in the

presence of the general assignment operator set!. This way, β-substitution can still be performed

freely in program transformations.

Parcel

Parcel was a Scheme compiler that performs interprocedural dependence analysis and program restruc-

turing with the aim to automatically parallelize Scheme programs [11]. Parcel’s dependence analysis

is accomplished by abstract interpretation that tracks the lifetime of and side-effects upon mutable

objects like variables and cons-cells. Fine-grained parallelism was already available at the time that

Parcel was developed, e.g. in the form of Fortran compilers that where capable of vectorizing loops.

In addition, Parcel also extracted coarse-grained (or high-level) parallelism from programs, thereby

striving to execute lengthy blocks of code concurrently.

Parcel did not use CPS conversion, but was equipped with a complex intermediate form similar

to three-address code. Parcel allows variable mutation through set! but cons-cells are treated as

immutable or are rewritten as closures, which is essentially the opposite of assignment conversion

used by Orbit and some of its descendants.

Miprac

Miprac is an interprocedural parallelizing compiler for languages including Scheme, C and Fortran,

that addresses some of the shortcomings of Parcel [13, 14]. While Parcel had a more rigid intermediate

form specific to Scheme, Miprac operates upon an intermediate form named MIL that is both targetable

from a variety of languages, as well as being more easy to analyze and transform.

1For example, when Steele mentions that parameter substitution is not attempted in the presence of set!, he comments
that “set! is so seldom used in Scheme programs that this restriction makes very little difference”.
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MIL was specifically designed with parallelization in mind and it allows a straightforward represen-

tation of a variety of language constructs like pointers, type casting, aliasing, and first-class procedures

that are difficult to handle by parallelizers.

8.1.2 Control Flow Analysis

0CFA and k-CFA

Independently from Harrison, Shivers developed a method for performing control flow analysis in

mostly functional languages like Scheme using abstract interpretation [28]. The idea of Shivers was

that the flow analysis should serve as a tool to be used by optimizing compilers, bringing the per-

formance of the code they produce on par with compilers for traditional languages like Fortran and

C.

∆CFA

Shivers’ PhD dissertation made the term “control-flow analysis” in the context of higher-order lan-

guages almost synonymous with k-CFA. He formally proved the correctness of several of the developed

techniques, except for one idea he called “reflow analysis”, in which he discussed the need of a more

precise treatment of environments during analysis. The problem is that lambda terms do not flow to

application sites but closures do, thereby introducing the environment as an extra component to deal

with.

Might explored this idea further with Shivers in his PhD dissertation by using frame strings in the

setting of k-CFA, resulting in ∆CFA [18]. While procedure strings allow reasoning about dependencies

by tracking stack changes between the birth and the usage of resources, frame strings enable reasoning

about environmental changes between the births of two environments.

8.1.3 Recent parallel Schemes

Schemik

Schemik is a data-parallel dialect of Scheme also inspired by Common LISP [15]. It uses a stack-based

evaluator that is a deterministic pushdown automaton consisting of an execution stack for operations

and a result stack for data. One of the operations for the execution stack is FEVAL (“fork eval”) that will

start the evaluation of an expression in an independent evaluator with its own pair of stacks. Schemik

is capable of handling side effects introduced by set! and primitives like set-car!.

Contrary to our approach, Schemik does not employ a brute-force strategy and selects the expres-

sions to parallelize based on the number of transitions it takes to be evaluated.

The nqueens benchmark runs faster in parallel using Schemik, although it does not scale as well

as the fib benchmark.

Racket

Just as Streme, Racket Scheme [23] provides future and touch as a means to implement parallelism.

The notion of “safe” parallelism is different from that described in the context of this dissertation
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and different to the implementation in Streme. Safety in Racket is a property inherently tied to the

system implementation. Using floating point arithmetic can cause the interpreter to suspend a future

computation. As the Racket documentation points out, this and other “unsafe” operations are far from

apparent at the level of a Racket program.

8.2 Future work

After examination of the results of the benchmarks, there are many opportunities to improve upon the

current approach.

• First and foremost, an effort can be made to make the brute-force approach less brute-force by

adding heuristics to guide the parallelization process. This should avoid the kind of situations

that we encountered with the quicksort benchmark. The idea would be to (partially) answer

the question of whether it is beneficial to parallelize certain expressions. Parallelizing a single

car and a cons should be avoided for example. Through experimentation it can be deduced

which heuristic(s) works best, and in the best case scenario generally applicable heuristics can

mend the current approach to yield good results even on quicksort.

• We test the relative speedup of the ANF version of programs. When compare the fastest time of

the ANF version (on any number of threads), it is still slower than running the unmodified input

program on one thread. ANF representation therefore is a double-edged sword in our approach.

It makes analysis and rewriting more simple, and it should facilitate generating optimized code

because it is closer to the machine (by explicitly breaking down expressions into simpler subex-

pressions), but with the high-level expression evaluators EXP-C and EXP-S the overhead of ANF

incurs a performance penalty that can not be undone by parallel evaluation. Therefore we can

think of two follow-up scenarios:

– Either we exploit the fact that ANF code is closer to the machine and generate optimized

code from the parallel ANF, yielding more optimal parallel performance.

– Or we optimize the parallel ANF code more aggressively so that its negative impact on

execution time does not eclipse possible benefits of parallelization.

• The bloat from ANF when using high-level evaluators is not the only factor hindering perfor-

mance. We can generate parallel code from the binding order graph in a more optimized way as

well. For example, we assume that every “interior” node from a group of bindings inside a bind-

ing node must be visible outside that node. Therefore we create an enclosing let to declare the

variable, and inside our future expression we set! its value (§2.7). This is not always needed.

The point we try to make here is the same as the point we made for optimizing the resulting ANF

code: optimizing the generated code by further analysis can improve the general results.
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