
1: introduction

Declarative
Programming

1

Coen De Roover - 2010

Acknowledgements

Th
es

e
sli

de
s

ar
e

ba
se

d
on

:

slides by Prof. Dirk Vermeir for the same course

slides by Prof. Peter Flach accompanying his book “Simply Logical”

slides on Computational Logic by the CLIP group

http://clip.dia.fi.upm.es/~logalg/

http://www.cs.bris.ac.uk/~flach/SL/slides/

http://tinf2.vub.ac.be/~dvermeir/courses/logic_programming/lp.pdf

2

3

course material

Practicalities

http://soft.vub.ac.be/~cderoove/
declarative_programming/

exam

oral test with
written preparation
about theory and

exercises

individual
programming

project

exercises

5 sessions
start 6th of October at IG

website

averaged, unless one ! 7

Declarative

Problem declaration

Problem solving strategy

4

gather sensor readings

route through network while adjusting
averages and count

power-efficiently and fault tolerantly

SELECT region,
 CNT(occupied),
 AVG(sound)
FROM sensors
GROUP BY region
HAVING AVG(sound) > 200
EPOCH DURATION 10s

Habitat Monitoring using Sensor Network

co
un

t n
um

be
r o

f

oc
cu

pi
ed

 n
es

ts
in

ea
ch

 lo
ud

re
gi

on
 o

f t
he

 is
la

nd

Ti
ny

D
B

5

positioning GUI widgets
<Shell>
 <Shell.layout>
 <FillLayout/>
 </Shell.layout>
 <Button text="Hello, world!">
 </Button>
</Shell>

XW
T

also ..

identifying XML elements
/bookstore/book[price>35.00]/title

/bookstore/book[position()<3]

count(//a[@href]

//img[not(@alt)]

XP
at

h

program transformations

Je
tb

ra
in

’s
 S

SR if($condition$){
 x = $expr1$;
}
else {
 x = $expr2$;
}
==>
x = $condition$? $expr1$: $expr2$;

6

7

General-purpose declarative programming:
logic formalizes human thought process

Aristotle likes cookies
Plato is a friend of anyone who likes cookies
Plato is therefore a friend of Aristotle

a1 : likes(aristotle, cookies)
a2 : ∀X likes(X, cookies) → friend(plato, X)
t1 :friend(plato,aristotle)
T[a1,a2] ⊢ t1

formally

classical logic

8

General-purpose declarative programming:
logic assertions as problem specification

 s
qu

ar
es

 o
f n

at
ur

al
 n

um
be

rs
 !

 to
 5

∀X (le(0,X)) ∧
∀X,Y (le(X,Y) → le(s(X),s(Y))

nat(0) ∧ nat(s(0)) ∧ nat(s(s(0))) ∧ . . .Peano
encoding

 natural
numbers

∀X (nat(X) → add(0, X, X)) ∧
∀X,Y,Z (add(X, Y, Z) → add(s(X), Y, s(Z)))

add

le

∀X (nat(X) → mult(0, X, 0)) ∧
∀X,Y,Z,W (mult(X,Y,W) ∧ add(W,Y,Z) → mult(s(X),Y,Z))

prod

∀X,Y (nat(X) ∧ nat(Y) ∧ mult(X,X,Y) → square(X,Y))squares

nat(0) ∧
∀X : nat(X) → nat(s(X)))

extensionally

intensionally

wanted ∀X wanted(X) ←
 (∃Y nat(Y) ∧ le(Y,s(s(s(s(s(0)))))) ∧ square(Y, X)))

9

General-purpose declarative programming:
proof procedure as problem solver

Assuming the existence of a mechanical proof procedure,
a new view of problem solving and computing is possible

[Greene in 60’s]

program proof
procedure once

1

nat(s(0)) ? <yes>

∃X add(s(0),s(s(0)),X) ? X = s(s(s(0)))

specify the problem by means
of logic assertions

2

query the proof procedure for
answers that follow from the

assertions

3

query answer

∃X wanted(X) ? X=0 ∨ X=s(0) ∨ X=s(s(s(s(0)))) ∨
X=s9(0) ∨ X=s16(0) ∨ X=s25(0)

10

General-purpose declarative programming:
logic and proof procedure

which logic

expressivity

logics of quantified truth

logics of qualified truth

p versus p(X)

which proof procedure

performance

are all provables true

soundness

completeness

concurrency, memoization ..

can all trues be proven
...

General-purpose declarative programming:
historical overview

60
A (very brief) History of Logic Programming (I)

• 60’s

! Greene: problem solving.

! Robinson: linear resolution.

• 70’s

! (early) Kowalski: procedural interpretation of Horn clause logic. Read:

A if B1 and B2 and · · · and Bn
as:

to solve (execute) A, solve (execute) B1 and B2 and,..., Bn

! (early) Colmerauer: specialized theorem prover (Fortran) embedding the procedural

interpretation: Prolog (Programmation et Logique).

! In the U.S.: “next-generation AI languages” of the time (i.e. planner) seen as inefficient and

difficult to control.

! (late) D.H.D. Warren develops DEC-10 Prolog compiler, almost completely written in Prolog.

Very efficient (same as LISP). Very useful control builtins.

22

A (very brief) History of Logic Programming (I)
• 60’s

! Greene: problem solving.! Robinson: linear resolution.
• 70’s

! (early) Kowalski: procedural interpretation of Horn clause logic. Read:

A if B
1 and B

2 and · · · and B
n as:

to solve (execute) A, solve (execute) B
1 and B

2 and,..., B
n

! (early) Colmerauer: specialized theorem prover (Fortran) embedding the procedural

interpretation: Prolog (Programmation et Logique).

! In the U.S.: “next-generation AI languages” of the time (i.e. planner) seen as inefficient and

difficult to control.! (late) D.H.D. Warren develops DEC-10 Prolog compiler, almost completely written in Prolog.

Very efficient (same as LISP). Very useful control builtins.

22

70

General-purpose declarative programming:
historical overview

12

A (very brief) History of Logic Programming (II)

• Late 80’s, 90’s

! Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth

Generation Project), US (MCC), Europe (ECRC, ESPRIT projects).

! Numerous commercial Prolog implementations, programming books, and a de facto standard,

the Edinburgh Prolog family.

! First parallel and concurrent logic programming systems.

! CLP – Constraint Logic Programming: Major extension – many new applications areas.

! 1995: ISO Prolog standard.

23

Currently

• Many commercial CLP systems with fielded applications.

• Extensions to full higher order, inclusion of functional programming, ...

• Highly optimizing compilers, automatic parallelism, automatic debugging.

• Concurrent constraint programming systems.

• Distributed systems.

• Object oriented dialects.

• Applications

! Natural language processing
! Scheduling/Optimization problems
! AI related problems
! (Multi) agent systems programming.
! Program analyzers
! ...

24

80-90
now

Representing
Knowledge

Bond!
Street!

Green!
Park!

Oxford!Circus!

Piccadilly!Circus!

Charing!
Cross!

Leicester!Square!

Tottenham!Court Road!

! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

relations among
underground stations
represented by predicates

connected(bond_street,oxford_circus,central)
...

nearby(bondstreet,oxford_circus)
...

ternary connected/3:

binary nearby/2:

predicate symbol argument terms

13

Representing Knowledge:
base information

connected(bond_street,oxford_circus,central).

connected(oxford_circus,tottenham_court_road,central).

connected(bond_street,green_park,jubilee).

connected(green_park,charing_cross,jubilee).

connected(green_park,piccadilly_circus,piccadilly).

connected(piccadilly_circus,leicester_square,piccadilly).

connected(green_park,oxford_circus,victoria).

connected(oxford_circus,piccadilly_circus,bakerloo).

connected(piccadilly_circus,charing_cross,bakerloo).

connected(tottenham_court_road,leicester_square,northern).

logic facts describe a
relation extensionally
(i.e., by enumeration)

logic predicate connected/3
implemented through logic facts

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

14

nearby(bond_street,oxford_circus).
nearby(oxford_circus,tottenham_court_road).
nearby(bond_street,tottenham_court_road).
...

Representing Knowledge:
derived information

“T
w

o
st

at
io

ns
 a

re
 n

ea
rb

y
if

th
ey

 a
re

 o
n

th
e

sa
m

e
lin

e
w

ith
 a

t m
os

t o
ne

ot

he
r

st
at

io
n

in
 b

et
w

ee
n”

nearby(X,Y) :- connected(X,Z,L), connected(Z,Y,L).

nearby(X,Y) :- connected(X,Y,L).
logic rules describe a
relation intensionally

conclusion of rule premises of rule

logic predicate nearby/2
implemented through logic rules

compare with an extensional description through logic facts:

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!variable X in rule 1 is independent

from variable X in rule 2

uppercase=variablelowercase=constant

15

Answering Queries:
base information

...
connected(green_park,piccadilly_circus,piccadilly)
connected(oxford_circus,piccadilly_circus,bakerloo)
...

matching query predicate against a compatible
logic fact yields a set of variable bindings

?- connected(W, picadilly_circus, L)query

logic variables as
argument terms

predicate
symbol

{ W = oxford_circus, L = bakerloo }answer

{ W = green_park, L = picadilly }answer
co

m
pa

tib
le

fa

ct
s

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

16

matching new predicate against a compatible logic fact
yields:

?- nearby(tottenham_court_road, W).

Answering Queries:
derived information

matching query predicate with the conclusion of a
compatible rule:

query

the original query can
therefore be answered by
answering:

?- connected(tottenham_court_road, W, L).

yields:

nearby(X,Y) :- connected(X,Y,L).

{ X = tottenham_court_road, Y=W }

{ W = leicester_square, L=northern}

premise of compatible rule

{ X = tottenham_court_road, Y = leicester_square }
final

answer

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

17

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

Answering a Query
= constructing a proof for a logic formula

?− nearby(tottenham_court_road,W)

?− connected(tottenham_court_road,W,L1)

nearby(X1,Y1) :- connected(X1,Y1,L1)

�

{ X1=tottenham_court_road, Y1=W }

logic rule (with variables
renamed for uniqueness)

connected(tottenham_court_road, leicester_square)

logic fact

{ W=leicester_square,L1=northern}

answer

18

Answering Queries:
involving recursive rules

reachable(X,Y) :- connected(X,Y,L).
reachable(X,Y) :- connected(X,Z,L), reachable(Z,Y).

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

:-reachable(bond_street,W) reachable(X1,Y1) :- connected(X1,Z1,L1),
 reachable(Z1,Y1).

connected(bond_street,oxford_circus,central).

{X1=bond_street, Y1=W}

:-connected(bond_street,Z1,L1),
 reachable(Z1,W)

{Z1=oxford_circus, L1=central}

:-reachable(oxford_circus,W) reachable(X2,Y2):-connected(X2,Z2,L2),
 reachable(Z2,Y2).

connected(oxford_circus,tottenham_court_road,central).

{X2=oxford_circus, Y2=W}

:-connected(oxford_circus,Z2,L2),
 reachable(Z2,W)

{Z2=tottenham_court_road, L2=central}

:-reachable(tottenham_court_road,W)
reachable(X3,Y3) :- connected(X3,Y3,L3).

connected(tottenham_court_road,leicester_square,northern)

{X3=tottenham_court_road, Y3=W}

:-connected(tottenham_court_road,W,L3)

{W=leicester_square, L3=northern}

�

different rule applications
different variables

le
ft-

m
os

t
co

nd
iti

on

ex
pa

nd
ed

 fi
rs

t

19

Prolog’s Proof Strategy:
resolution principle

to solve a query ?- Q1,..., Qn

find a compatible rule A :- B1,..., Bm such that A matches Q1
?- B1,..., Bm, Q2,..., Qn and solve

resolution principle

gives a procedural interpretation to formulas ! logic programs

Prolog =
programmation

en logique

we will investigate where the
procedural interpretation of a
logic program differs from the

declarative one

20

Prolog’s Proof Strategy:
based on proof by refutation

false :- nearby(tottenham_court_road,W)

 ?- nearby(tottenham_court_road,W)

assume the formula (query) is false
and deduce a contradiction

is answered by reducing

to a contradiction

the query

�“empty rule”:
premises are always true
conclusion is always false

in that case, the query is said “to succeed”

21

Prolog’s Proof Strategy:
searching for a proof

Prolog uses depth-first search to find a proof. When blocked or more answers
are requested, it backtracks to the last choice point. Of multiple conditions, the
left-most is tried first. Matching rules and facts are tried in the given order.

parent(C,P):- mother(C,P).
parent(C,P):- father(C,P).

father(coen,paul).
father(jolien,paul).
father(liesbeth,paul).

?− mother(C1,paul) ?− father(C1,paul)

�
� �

parent(C1,P1) :- father(C1,P1)

{C1=X, paul=P1}

parent(C1,P1) :- mother(C1,P1)

{C1=X, paul=P1}

choice
point

choice
points

?− parent(X,paul)

father(coen,paul)

fa
th
er
(l
ie
sb
et
h,
pa
ul
)

{C1=coen}

fat
her

(jo
lie

n,p
aul

)

blocked as there
are no matches

{C1
=jo

lie
n}

{C
1=
li
es
be
th
}

22

compound term

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

Representing Knowledge:
compound terms

route(tottenham_court_road, route(leicester_square, noroute))

functor term compound term

functor term term

route

tottenham_court_road route

leicester_square noroute

functors

23

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

Representing Knowledge:
compound terms

?- reachable(oxford_circus,charing_cross,R).

reachable(X,Y,noroute):- connected(X,Y,L).

reachable(X,Y,route(Z,R)):- connected(X,Z,L),
 reachable(Z,Y,R).

do not differ syntactically from predicates,
but can be used as their arguments

not evaluated in regular

 logic programming!!

{ R = route(tottenham_court_road,
 route(leicester_square,noroute)) }

answer

answer

{ R = route(piccadilly_circus,
 route(leicester_square,noroute))}

{ R = route(piccadilly_circus,noroute)}

answer

24

Representing Knowledge:
lists

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!.!

a!

b!

.!

.!

[]!c!

car | head cdr | tail

list functor

empty list

[a,b,c]

list notations

[a|[b|[c|[]]]]

[Head|Tail]
=.(Head,Tail)

[a|[b|[c]]]

.(a,.(b,.(c,[])))compound term notation

[a|[b,c]]

[a,b|[c]]

...

25

Representing Knowledge:
lists

 list([]).
 list([First|Rest]) :- list(Rest).

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

 evenlist([]).
 evenlist([First,Second|Rest]) :- evenlist(Rest).

 oddlist([One]).
 oddlist([First,Second|Rest]) :- oddlist(Rest).

arbitrary
length

even
length

odd
length

 oddList([First|Rest]):- evenlist(Rest).

26

Representing Knowledge:
lists

 reachable(X,Y,[]):- connected(X,Y,L).

 reachable(X,Y,[Z|R]):- connected(X,Z,L),
 reachable(Z,Y,R).

Bond!
Street!

Green!
Park!

Oxford!
Circus!

Piccadilly!
Circus!

Charing!
Cross!

Leicester!
Square!

Tottenham!
Court Road!

JUBILEE! BAKERLOO! NORTHERN!

CENTRAL!

PICCADILLY!

VICTORIA!

?- reachable(oxford_circus,charing_cross,R)

 { R= [tottenham_court_road, leicester_square] }

answer

answer

 { R =[piccadilly_circus, leicester_square] }

 { R =[piccadilly_circus] }

answer

?- reachable(X,charing_cross,[A,B,C,D])

from which X can we reach charing_cross via
4 successive intermediate stations A,B,C,D

27

Illustrative Logic Programs:
list membership

 member(X,[X|_]).
 member(X,[_|Tail]) :- member(X, Tail).

answers

anonymous variable:
use when you do not care about

the variable’s binding

?- member(X,[1,2,3])

{ X = 1 } { X = 2 }

answer

?- member(h(X),[f(1),g(2),h(3)])

{ X = 3 }

?- member(1,[])

query fails (the empty list has no members)

{ X = 3 }

28

Illustrative Logic Programs:
list concatenation

 append([],Ys,Ys).
 append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

?- append([a,b,c], [d,e,f], Result)

answer { Result = [a,b,c,d,e,f]}

?- append(Left, Right, [a,b,c])

answer { Left = [a,b,c,d,e,f], Right= []}

answer { Left = [a], Right= [b,c]}

answer { Left = [a,b], Right= [c]}

answer { Left = [a,b,c], Right= []}

po
ssi

ble
 be

ca
use

 of

the
 r

ela
tio

na
l n

atu
re

of

log
ic

pr
og

ra
mming

in
pu

t !
 o

ut
pu

t
ou

tp
ut

 !
 p

os
sib

le
 in

pu
ts

29

Illustrative Logic Programs:
basic relational algebra

 r_union_s(X1,...,Xn) :- r(X1,...,Xn).
 r_union_s(X1,...,Xn) :- s(X1,...,Xn).

union

 r_x_s(X1,...,Xm,Xm+1,...,Xm+n) :- r(X1,...,Xm),
 s(Xm+1,...,Xm+n).

cartesian product

 r13(X1,X3) :- r(X1,X2,X3).projection

 r1(X1,X2,X3) :- r(X1,X2,X3), smith_or_jones(X1).
 smith_or_jones(smith).
 smith_or_jones(jones).

selection

 r_meet_s(X1,...,Xn) :- r(X1,...,Xn), s(X1,...,Xn).intersection

r_join_X2_s(X1,X2,...,Xn,Y1,...Yn) :- r(X1,X2...,Xn),
 s(X2,Y1,...,Yn)

natural join

30

Illustrative Logic Programs:
deterministic finite automaton

initial(q0).
final(q1).

delta(q0,b,q1).
delta(q0,a,q2).
delta(q2,b,q0).[T

he
 A

rt
 o

f P
ro

lo
g,

 S
te

rli
ng

&
Sh

ap
iro

]

 accept(Xs) :- initial(Q), accept(Xs,Q).

 accept([],Q) :- final(Q).
 accept([X|Xs],Q) :- delta(Q,X,Q1), accept(Xs,Q1).

list of symbols Xs
accepted in state Q

transition from state Q to
state Q1 consuming X

q0 q1
b

q2

a

b

?- accept([a, b, a, b, b]).

answer {}

?- accept([a, b]).

query fails

accept/1 "

accept/2

?- accept(Xs).

answer { Xs = [b] }

answer

answer

...

{ Xs = [a,b,b] }

{ Xs = [a,b,a,b,b] }

ac
ce

pt
in

g
ge

ne
ra

tin
g

(ab)*b

31

Illustrative Logic Programs:
deterministic finite automaton

demo time

32

Illustrative Logic Programs:
non-deterministic finite automaton

for free
because of

backtracking over
choice points

initial(q0).
final(q1).

delta(q0,b,q1).
delta(q0,a,q2).
delta(q2,b,q0).
delta(q2,b,q1).

q0 q1
b

q2

a

b (ab)*(ab|b)

[h
ttp

:/
/w

w
w

.c
se

.b
uf

fa
lo

.e
du

/f
ac

ul
ty

/a
lp

ho
nc

e/
.O

ld
Pa

ge
s/

C
PS

C
31

2/
C

PS
C

31
2/

Le
ct

ur
e/

Le
ct

ur
eH

TM
L/

C
S3

12
_1

0.
ht

m
l#

11
]

?- accept([a,b]).

answer {}

?- accept([a,b,b]).

query fails

?- accept(Xs).

answer { Xs = [b] }

answer

answer

...

{ Xs = [a,b,b] }

{ Xs = [a,b,a,b,b] }
ac

ce
pt

in
g

ge
ne

ra
tin

g

b

note that [a,b] is accepted, but not generated ... more about
the limitations of the proof procedure later

33

Illustrative Logic Programs:
non-deterministic pushdown automaton

initial(q0).

final(q1).

delta(q0,X,S,q0,[X|S]).

delta(q0,X,S,q1,[X|S]).

delta(q0,X,S,q1,S).

delta(q1,X,[X|S],q1,S).

 accept(Xs) :- initial(Q), accept(Xs,Q,[]).

 accept([],Q,[]) :- final(Q).
 accept([X|Xs],Q,S) :- delta(Q,X,S,Q1,S1), accept(Xs,Q1,S1).

list used as stack

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
&

Sh
ap

iro
]

from state Q with stack S to state Q1
with stack S1 consuming X

X pushed
on stack

X popped off stack

variable X
substitutes for a

concrete symbol !!

input symbols are pushed

symbols are popped and compared with input

palindrome recognizer

transition for palindromes of even length: abba

transition for palindromes of odd length: madam

34

2: theoretical
backgrounds

Declarative
Programming

1

logic system

Logic Systems:
structure and meta-theoretical properties

syntax semantics proof theory

defines which
“sentences” are legal

in the logical language

gives a meaning to the sentences

usually truth-functional: what is
the truth value of a sentence

given the truth value of its words

specifies how to obtain
new sentences (theorems)

from assumed ones (axioms)
through inference rules

soundness

anything you can
prove is true

completeness

anything that is true
can be proven

ab
ou

t about

weakest form:
prove nothing

2

Logic Systems:
roadmap towards Prolog

cl
au

sa
l l

og
ic

propositional clausal logic

relational clausal logic

full clausal logic

definite clause logic

married;bachelor :- man,adult.

likes(peter,S):-student_of(S,peter).

loves(X,person_loved_by(X)).

no disjunction in head

lacks control constructs, arithmetic of full Prolog

statements that can
be true or false

statements concern
relations among objects from a

universe of discourse

compound terms
aggregate objects

Pure Prolog

3

Propositional Clausal Logic - Syntax:
clauses

 clause : head [:- body]
 head : [atom[;atom]*]
 body : atom[,atom]*
 atom : single word starting with lower case

optional

zero or more

:- if
; or
, and

married;bachelor:-man,adult.

“someone is married
or a bachelor if he is a

man and an adult”

4

Propositional Clausal Logic - Syntax:
negative and positive literals of a clause

H1;...;Hn :− B1,...,Bm

H1 ∨...∨ Hn ∨ ¬B1 ∨...∨ ¬Bm

clause

is equivalent to

positive literals negative literals

hence a clause can also be defined as a disjunction of
literals L1 ∨L2 ∨...∨Ln where each Li is a literal,
 i.e. Li = Ai or Li = ¬Ai , with Ai a proposition.

B ⇒ H

≡ ¬B ∨ H

5

Propositional Clausal Logic - Syntax:
logic program

woman;man :- human.
 human :- man.
 human :- woman.

 (human ⇒ (woman ∨ man))
∧(man ⇒ human)
∧(woman ⇒ human)

is equivalent to

finite set of clauses, each
terminated by a period

to be read
conjunctively

(¬human ∨ woman ∨ man)
∧(¬man ∨ human)
∧(¬woman ∨ human)

B ⇒ H

≡ ¬B ∨ H
6

Propositional Clausal Logic - Syntax:
special clauses

man :-. :- impossible.or

an empty head stands for falsean empty body stands for true

man.

true ⇒ man impossible ⇒ false

man ∧ ¬impossible

7

Propositional Clausal Logic - Semantics:
Herbrand base, interpretation and models

when represented by the
set of true propositions I:
subset of Herband base

i : BP → {true, false}

8

Herbrand base BP of a program P

Herbrand interpretation i of P

set of all atoms occurring in P

mapping from Herbrand base BP to the set of truth values

An interpretation is a model for a clause if the clause is true
under the interpretation.

An interpretation is a model for a program if it is a model for
each clause in the program.

 if either the head is true
or the body is false

H

B
H:-B

true
true

true

false
true

false

true
false

true

false false
true

Propositional Clausal Logic - Semantics:
example (1)

woman;man :- human.
human :- man.
human :- woman.

program P

23 possible Herbrand Interpretations

n={(woman,false),(man,false),(human,false)}
P=∅

Herbrand base BP

{woman,man,human}

I={woman}

L={man}

N={human}

J={woman, man}

O={woman, human}

M={man, human}

K={woman, man, human}

9

Propositional Clausal Logic - Semantics:
example (2)

woman;man :- human.
human :- man.
human :- woman.

program P

4 Herbrand interpretations are models for the program

P=∅

I={woman}

L={man}

N={human}

J={woman, man}

O={woman, human}

M={man, human}

K={woman, man, human}

 for all clauses: either one atom in head is
true or one atom in body is false

H1 ∨...∨ Hn ∨
¬B1 ∨...∨ ¬Bm

10

Propositional Clausal Logic - Semantics:
entailment

clause C is a logical consequence of program P
if every model of P is also a model of C

P ⊨ C

P entails C

woman.
woman;man :- human.
human :- man.
human :- woman.

program P

P ⊨ human

J = {woman,man,human}

I = {woman,human}

models of P

intuitively preferred: doesn’t
assume anything to be true that

doesn’t have to be true
11

Propositional Clausal Logic - Semantics:
minimal models

could define best model to be the minimal one

no subset is a
model itself

BUT
woman;man :- human.
human.

has 3 models of which 2 are minimal

K = {woman, human}
L = {man, human}
M = {woman,man,human}

A definite logic program has a
unique minimal model.

clauses have at most one
atom in the head

12

Propositional Clausal Logic - Proof Theory:
inference rules

how to check that P ⊧ C without computing all models for P
and checking that each is a model for C?

by applying inference rules, C can be derived from P: P ⊦ C
purely syntactic, not

concerned with semantics

has_wife:-man,married! married;bachelor:-man,adult!

has_wife;bachelor:-man,adult!

e.
g.

, r
es

ol
ut

io
n

happens to be a logical consequence of the
program consisting of both input clauses
13

Propositional Clausal Logic - Proof Theory:
 case analysis of resolution

¬m
an

 ∨
 ¬

ad
ul

t ∨
 m

ar
rie

d
∨

ba
ch

el
or

¬m
an

 ∨
 ¬
m
ar
rie

d
∨

ha
s_

w
ife either married, in order for second clause to be true as well:

or ¬married, in order for first clause to be true as well:

¬man ∨ has_wife

¬man ∨ ¬adult ∨ bachelor

therefore
¬man ∨ ¬adult ∨ bachelor ∨ ¬man ∨ has_wife

14

Propositional Clausal Logic - Proof Theory:
special cases of resolution

re
so

lu
tio

n E1 ∨ E2
¬E2 ∨ E3

 E1 ∨ E3

A
¬A ∨ B

B

A
A ⇒ B

B

modus ponens

modus tollens

¬A ∨ B
¬B

¬A

If it’s
raining it’s wet;

it’s not wet, so it’s
not raining

E1=¬AE2=B

E3 absent

A ⇒ B
¬B

¬A

E2
 ab

se
nt

E1
=A

E3
B

15

resolvent

Propositional Clausal Logic - Proof Theory:
successive applications of the resolution inference rule

square:-rectangle,equal_sides! rectangle:-parallelogram,right_angles!

square:-parallelogram,right_angles,equal_sides!

A proof or derivation of a clause C from a program P
is a sequence of clauses C0,...,Cn=C
such that ∀i0...n : either Ci ∈ P or Ci is the resolvent of Ci1 and Ci2 (i1 <i,i2 <i).

can be
used in further

resolutions

If there is a proof of C from P, we write P ⊦ C

16

Propositional Clausal Logic - Meta-theory:
resolution is sound for propositional clausal logic

if P ⊦ C then P ⊧ C

because every model of the two input clauses
is also a model for the resolvent

by case analysis on truth value of resolvent

17

Propositional Clausal Logic - Meta-theory:
resolution is incomplete

a :- a

however, resolution cannot establish P ⊦

the tautology

in
co

m
pl

et
e a :- a

hence any model for a program P is also a model of

is true under any interpretation

hence P ⊧ a :- a
a :- a

18

Propositional Clausal Logic - Meta-theory:
resolution is refutation-complete

P ⊧ C
⇔ each model of P is also a model of C

⇔ no model of P is a model of ¬C

⇔ P∪¬C has no model C = L1∨L2∨...∨Ln

¬C = ¬L1∧¬L2...∧¬Ln

 = {¬L1,¬L2...,¬Ln}
 = set of clauses itself

P∪¬C is inconsistent

en
ta

ilm
en

t
re

fo
rm

ul
at

ed

it can be shown that:

if Q is inconsistent then Q ⊦ �
if P ⊧ C then P∪¬C ⊦ �re

fu
ta

tio
n-

co
m

pl
et

e

empty clause false :- true
for which no model exists

it derives the empty clause
from any inconsistent set of

clauses

19

Propositional Clausal Logic - Meta-theory:
example proof by refutation using resolution

happy :- has_friends.
friendly :- happy.

friendly :- has_friends.⊧

happy :- has_friends.
friendly :- happy.
has_friends.
:- friendly.

�

=¬(friendly:-has_friends)
=¬(friendly∨¬has_friends)
=¬friendly∧has_friends

P∪¬C ⊦ �

P∪¬C

P C

20

Relational Clausal Logic - Syntax:
clauses

 constant : single word starting with lower case
 variable : single word starting with upper case
 term : constant | variable
 predicate : single word starting with lower case
 atom : predicate[(term[,term]*])]
 clause : head [:- body]
 head : [atom[;atom]*]
 body : atom[,atom]*

likes(peter,S) :- student_of(S,peter).
student_of(maria,peter).

“peter likes anybody who
is his student. maria is a

student of peter”

21

statements concern relations
among objects from a universe

of discourseadd constants, variables and
predicates to propositional logic

Relational Clausal Logic - Semantics:
Herbrand universe, base, interpretation

22

Herbrand base BP of a program P

Herbrand interpretation I of P

set of all ground atoms that can be constructed using predicates in
P and arguments in the Herbrand universe of P

subset of BP consisting of ground atoms that are true

Herbrand universe of a program P

set of all terms that are ground in P
{ peter, maria } term without variables

{ likes(peter,peter),likes(peter,maria),
 likes(maria,peter),likes(maria,maria),
 student_of(peter,peter), student_of(peter,maria),
 student_of(maria,peter), student_of(maria,maria) }

{ likes(peter,maria), student_of(maria,peter) }
is this a model?
need to consider

variable substitutions

Relational Clausal Logic - Semantics:
substitutions and ground clause instances

if σ={S/maria} then
(likes(peter,S):-student_of(S,peter))σ
=likes(peter,maria):-student_of(maria,peter)

A substitution is a mapping σ : Var → Trm.
For a clause C, the result of σ on C, denoted Cσ
is obtained by replacing all occurrences of X ∈ Var in C by σ(X).
Cσ is an instance of C.

Relational Clausal Logic - Semantics:
models

interpretation I is a model of a clause C
! I is a model of every ground instance of C.

interpretation I is a model of a program P
! I is a model of each clause C ∈ P.

ground instances of
relational clauses are like

propositional clauses

likes(peter,S) :- student_of(S,peter).
student_of(maria,peter).

P

{ likes(peter,maria), student_of(maria,peter) }I

I is a model for P
because it is a model of all ground instances of clauses in P:
likes(peter,peter) :- student_of(peter,peter).
likes(peter,maria) :- student_of(maria,peter).
student_of(maria,peter).

Relational Clausal Logic - Proof Theory:
naive version

derive the empty clause through propositional resolution from all ground instances of all clauses in P

instead of trying arbitrary substitutions before trying to apply resolution,
derive the required substitutions from the literal resolved upon

(positive in one clause and negative in the other)

naive because there are many
grounding substitutions, most of
which do not lead to a proof

as atoms can contain variables, do not require exactly the same atom
in both clauses ... rather a complementary pair of atoms that can be

made equal by substituting terms for variables

Relational Clausal Logic - Proof Theory:
unifier

A substitution σ is a unifier of two atoms a1 and a2
! a1σ = a2σ. If such a σ exists, a1 and a2 are called unifiable.

A substitution σ1 is more general than σ2 if σ2 = σ1θ for some
substitution θ.

A unifier θ of a1 and a2 is a most general unifier of a1 and a2
! it is more general than any other unifier of a1 and a2.

If two atoms are unifiable then they their mgu is unique up to renaming.

Relational Clausal Logic - Proof Theory:
unifier examples

p(X, b) and p(a, Y) are unifiable
with most general unifier {X/a,Y/b}

q(a) and q(b) are not unifiable

[h
ttp

:/
/u

se
rs

.in
fo

rm
at

ik
.u

ni
-h

al
le

.d
e/

~
br

as
s/

lp
03

/c
3_

pu
re

p.
pd

f]

q(X) and q(Y) are unifiable:

{X/Y} (or{Y/X}) is the most general unifier

{X/a, Y/a} is a less general unifier

Relational Clausal Logic - Proof Theory:
resolution using most general unifier

apply resolution on many clause-instances at once

if

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

then

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

Relational Clausal Logic - Proof Theory:
example of proof by refutation using resolution with mgu

likes(peter,S) :- student_of(S,peter).
student_of(S,T) :- follows(S,C), teaches(T,C).
teaches(peter,decprog).
follows(maria,decprog).

“is there anyone whom peter likes”? ! add “peter likes nobody” to P

:-likes(peter,N) likes(peter,S):-student_of(S,peter).

student_of(S,T) :- follows(S,C), teaches(T,C).

{S/N}

:-student_of(N,peter)

{S/N, T/peter}

:-follows(N,C),teaches(peter,C)
follows(maria,decprog).

teaches(peter,decprog).

{N/maria, C/decprog}

:-teaches(peter,decprog)

�

:- likes(peter,N)){N/maria} ∪ P ⊢ �

P

P ⊧ likes(peter,maria)hence

Relational Clausal Logic - Meta-theory:
soundness and completeness

P⊦C ⇒ P⊧C

so
un

d relational clausal logic is sound

P∪{C} inconsistent ⇒ P ∪ {C} ⊢ �
co

m
pl

et
e

relational clausal logic is refutation-complete

new formulation because
:- p(X).≡∀X·¬p(X)

while ¬(p(X).)≡¬(∀X·p(X))≡∃X·¬p(X)

Relational Clausal Logic - Meta-theory:
decidability

The question “P⊧C?” is decidable for
relational clausal logic.

Herbrand universe and base are finite

therefore also interpretations and models

could in principle enumerate all models of P and
check whether they are also a model of C

also for
propositional
clausal logic

Full Clausal Logic - Syntax:
clauses

 functor : single word starting with lower case
 variable : single word starting with upper case
 term : variable | functor[(term[,term]*)]
 predicate : single word starting with lower case
 atom : predicate[(term[,term]*])]
 clause : head [:- body]
 head : [atom[;atom]*]
 body : proposition[,proposition]*

plus(0,X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

“adding two Peano-
encoded naturals”

32

compound terms
aggregate objects

Add function symbols (functors), with
an arity; constants are 0-ary functors.

object

proposition

Full Clausal Logic - Semantics:
Herbrand universe, base, interpretation

33

analogous to
relational clausal logic

Herbrand base BP of a program P

Herbrand interpretation I of P

set of all ground atoms that can be constructed using predicates in
P and ground terms in the Herbrand universe of P

possibly infinite subset of BP consisting of ground atoms that are true

Herbrand universe of a program P

terms that can be constructed from the constants and functors
{ 0, s(0), s(s(0)), s(s(s(0))),... }

{ plus(0,0,0), plus(s(0),0,0),
 plus(0,s(0),0), plus(s(0),s(0),0),...}

{ plus(0,0,0), plus(s(0),0,s(0)),plus(0,s(0),s(0))} }

is this a model?

infinite!

Full Clausal Logic - Semantics:
infinite models are possible

34

according to first ground clause, plus(0,0,0) has to be in any model
but then the second clause requires the same of plus(s(0),0,s(0))
and the third clause of plus(s(s(0)),0,s(s(0))) ...

Herbrand universe is infinite,

therefore infinite number of
grounding substitutions

An interpretation is a model for a program if it is a model
for each ground instance of every clause in the program.

plus(0,0,0)
plus(s(0),0,s(0)):-plus(0,0,0)
plus(s(s(0)),0,s(s(0))):-plus(s(0),0,s(0))
...
plus(0,s(0),s(0))
plus(s(0),s(0),s(s(0))):-plus(0,s(0),s(s(0)))
plus(s(s(0)),s(0),s(s(s(0)))):-plus(s(0),s(0),s(s(0)))
...

all models of this program
are necessarily infinite

Full Clausal Logic - Proof Theory:
computing the most general unifier

35

analogous to relational
clausal logic, but have

to take compound
terms into acount when
computing the mgu of
complementary atoms

renaming variables so that the two atoms have none in common
ensuring that the atoms’ predicates and arity correspond
scanning the subterms from left to right to

find first pair of subterms where the two atoms differ;
if neither subterm is a variable, unification fails;
else substitute the other term for all occurrences of the variable
and remember the partial substitution;

repeat until no more differences found

atoms

plus(s(0),X,s(X)) plus(s(Y),s(0),s(s(Y)))and

have most general unifier

{Y/0, X/s(0))} yields unified atom
 plus(s(Y),s(0),s(s(Y)))

found by

s(Y) and s(0)

{Y/0}

Full Clausal Logic - Proof Theory:
computing the most general unifier using the
Martelli-Montanari algorithm

36

E

repeat
select s = t ∈ E
case s = t of
f (s1, . . . , sn) = f (t1, . . . , tn) (n ≥ 0) :

replace s = t by {s1 = t1, . . . , sn = tn}
f (s1, . . . , sm) = g(t1, . . . , tn) (f/m �= g/n) :

fail
X = X :

remove X = X from E
t = X (t �∈ Var) :

replace t = X by X = t
X = t (X ∈ Var ∧ X �= t ∧ X occurs more than once in E) :

if Xoccurs in t
then fail
else replace all occurrences of X in E (except in X = t) by t

esac
until no change

operates on a finite set of equations s=t

occur check

Clausal logic

examples

{f (X , g(Y)) = f (g(Z), Z)}
⇒ {X = g(Z), g(Y) = Z}
⇒ {X = g(Z), Z = g(Y)}
⇒ {X = g(g(Y)), Z = g(Y)}
⇒ {X/g(g(Y)), Z/g(Y)}

{f (X , g(X), b) = f (a, g(Z), Z)}
⇒ {X = a, g(X) = g(Z), b = Z}
⇒ {X = a, X = Z , b = Z}
⇒ {X = a, a = Z , b = Z}
⇒ {X = a, Z = a, b = Z}
⇒ {X = a, Z = a, b = a}
⇒ fail

52 / 259

resulting set = mgu

Clausal logic

examples

{f (X , g(Y)) = f (g(Z), Z)}
⇒ {X = g(Z), g(Y) = Z}
⇒ {X = g(Z), Z = g(Y)}
⇒ {X = g(g(Y)), Z = g(Y)}
⇒ {X/g(g(Y)), Z/g(Y)}

{f (X , g(X), b) = f (a, g(Z), Z)}
⇒ {X = a, g(X) = g(Z), b = Z}
⇒ {X = a, X = Z , b = Z}
⇒ {X = a, a = Z , b = Z}
⇒ {X = a, Z = a, b = Z}
⇒ {X = a, Z = a, b = a}
⇒ fail

52 / 259

Full Clausal Logic - Proof Theory:
importance of occur check

37

before substituting a term
for a variable, verify that the
variable does not occur in the

term; if so: fail

loves(X,person_loved_by(X)). :- loves(Y,Y).

without occur check, atoms to be resolved
upon unify under substitution

{Y/X, X/person_loved_by(X)}

program query

and therefore resolving to the empty clause

try to print answer:

BU
T X=person_loved_by(person_loved_by(person_loved_by(...)))

no semantics for
infinite terms as there
are no such terms in
the Herbrand base

moreover, not a logical consequence of the program omitting occur
check renders

resolution unsound

Full Clausal Logic - Proof Theory:
occur check

38

not performed in Prolog out of
performance considerations

(e.g. unify X with a list of 1000 elements)

Clausal logic

occur check

{l(Y , Y) = l(X , f (X))}
⇒ {Y = X , Y = f (X)}
⇒ {Y = X , X = f (X)}
⇒ fail

The last example illustrates the need for the “occur check” (which is
not done in most Prolog implementations)

53 / 259

Martelli-Montanari algorithm SWI-Prolog

?- l(Y,Y) = l(X,f(X)).
Y = f(**),
X = f(**).
?-

built-in unification
operator

?- unify_with_occurs_check(l(Y,Y),l(X,f(X))).
false.
?- in rare cases where the

occurs check is needed

Full Clausal Logic - Meta-theory:
soundness, completeness, decidability

39

P⊦C ⇒ P⊧Cso
un

d full clausal logic is sound

P∪{C} inconsistent ⇒ P ∪ {C} ⊢ �co
m

pl
et

e full clausal logic is refutation-complete

de
ci

da
bi

lit
y The question “P⊧C?” is only semi-decidable.

 there is no algorithm that will always answer the question (with

“yes” or “no”) in finite time; but there is an algorithm that, if P ⊧C,

will answer “yes” in finite time but this algorithm may loop if P⊭ C.

Clausal Logic:
overview

40

propositional relational full

Herbrand universe

Herbrand base

clause

Herbrand models

meta-theory

-
finite infinite

{p, q}

{a,f(a),f(f(a)),...}

{p(a,a), p(b,a),...}

{a,b}

{p(a,f(a)), p(f(a),
 p(f(f(a))),...}

p:-q p(X,Z):-
 q(X,Y),p(Y,Z)

p(X,f(X)):-
 q(X)

{}
{p}
{p,q}

{}
{p(a,a)}
{p(a,a),p(b,a),q(b,a)}
...

finite number of finite
models

{}
{p(a,f(a)),q(a)}
{p(f(a),f(f(a)),
 q(f(a))} ...

infinite number of finite
or infinite models

sound
refutation-complete

decidable

sound
refutation-complete

decidable

sound (occurs check)
refutation-complete

semi-decidable

Clausal Logic:
conversion to first-order predicate logic (1)

41

married;bachelor :- man,adult.
haswife :- married.

becomes (man∧adult ⇒ married∨bachelor) ∧

(married ⇒ haswife)

(¬man ∨ ¬adult ∨ married ∨ bachelor)
∧ (¬married ∨ haswife)

or

A ⇒ B ≡ ¬A ∨ B

¬(A ∧ B) ≡ ¬A ∨ ¬B

conjunctive normal
form: conjunction of
disjunction of literals

reachable(X,Y,route(Z,R)):- connected(X,Z,L), reachable(Z,Y,R).

becomes ∀X∀Y∀Z∀R∀L : ¬connected(X,Z,L) ∨
 ¬reachable(Z,Y,R) ∨
 reachable(X,Y,route(Z,R))

variables in clauses are
universally quantified

Every set of clauses can be rewritten as an equivalent
sentence in first-order predicate logic.

variables in a sentence cannot
range over predicates

Clausal Logic:
conversion to first-order predicate logic (2)

42

Every set of clauses can be rewritten as an equivalent
sentence in first-order predicate logic.

nonempty(X) :- contains(X,Y).

becomes

or

∀X∀Y: nonempty(X)∨¬contains(X,Y)

 ∀X: (nonempty(X)∨∀Y¬contains(X,Y))

 ∀X: nonempty(X)∨¬(∃Y:contains(X,Y))or

 ∀X: (∃Y:contains(X,Y))⇒ nonempty(X))or

variables that occur only in the body of a
clause are existentially qualified

Clausal Logic:
conversion from first-order predicate logic (1)

43

For each first order sentence, there exists
an “almost equivalent” set of clauses.

1 eliminate ⇒ using A ⇒ B ≡ ¬A ∨ B.

2 put into negation normal form: negation only occurs immediately before propositions

∀X[brick(X)⇒(∃Y[on(X,Y)∧¬pyramid(Y)]∧

 ¬∃Y[on(X,Y) ∧ on(Y,X)]∧
 ∀Y[¬brick(Y)⇒¬equal(X,Y)])]

∀X[¬brick(X)∨(∃Y[on(X,Y)∧¬pyramid(Y)]∧
 ¬∃Y[on(X,Y)∧on(Y,X)]∧
 ∀Y[¬(¬brick(Y))∨¬equal(X,Y)])]

∀X[¬brick(X)∨(∃Y[on(X,Y)∧¬pyramid(Y)]∧
 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Y[brick(Y)∨¬equal(X,Y)])]

¬(A∧B) ≡ ¬A∨¬B
 ¬(A∨B) ≡ ¬A∧¬B

 ¬(¬A) ≡ A
¬∀X [p(X)] ≡ ∃X [¬p(X)]
¬(∃X [p(X)] ≡ ∀X [¬p(X)]

Clausal Logic:
conversion from first-order predicate logic (2)

44

For each first order sentence, there exists
an “almost equivalent” set of clauses.

3 replace ∃ using Skolem functors (abstract names for objects, functor has to be new)

∀X[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧
 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Y[brick(Y)∨¬equal(X,Y)])]

∀X[¬brick(X)∨(∃Y[on(X,Y)∧¬pyramid(Y)]∧
 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Y[brick(Y)∨¬equal(X,Y)])]

∀X∃Y : loves(X,Y)
∀X:loves(X,person_loved_by(X))

replace existentially quantified variable by a compound term of
which the arguments are the universally quantified variables in

whose scope the existentially quantified variable occurs

∃X∀Y : loves(X,Y)
Skolem constants substitute for an

existentially quantified variable

which does not occur in the scope

of a universal quantifiermodel {lo
ves(paul,anna)}

can be converted to equivalent

 {loves(paul,person_loved_by(paul))}

Clausal Logic:
conversion from first-order predicate logic (3)

45

For each first order sentence, there exists
an “almost equivalent” set of clauses.

4 standardize all variables apart such that each quantifier has its own unique variable

∀X[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧
 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Z[brick(Z)∨¬equal(X,Z)])]

∀X[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧
 ∀Y[¬on(X,Y)∨¬on(Y,X)]∧
 ∀Y[brick(Y)∨¬equal(X,Y)])]

5 move ∀ to the front

∀X∀Y∀Z[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧
 [¬on(X,Y)∨¬on(Y,X)]∧
 [brick(Z)∨¬equal(X,Z)])]

Clausal Logic:
conversion from first-order predicate logic (4)

46

For each first order sentence, there exists
an “almost equivalent” set of clauses.

6 convert to conjunctive normal form using A∨(B∧C) ≡ (A∨B)∧(A∨C)

∀X∀Y∀Z[(¬brick(X)∨[on(X,sup(X))∧¬pyramid(sup(X))])∧
 (¬brick(X)∨[¬on(X,Y)∨¬on(Y,X)])∧
 (¬brick(X)∨[brick(Z)∨¬equal(X,Z)])]

∀X∀Y∀Z[¬brick(X)∨([on(X,sup(X))∧¬pyramid(sup(X))]∧
 [¬on(X,Y)∨¬on(Y,X)]∧
 [brick(Z)∨¬equal(X,Z)])]

∀X∀Y∀Z[((¬brick(X)∨on(X,sup(X)))∧(¬brick(X)∨¬pyramid(sup(X))))∧
 (¬brick(X)∨[¬on(X,Y)∨¬on(Y,X)])∧
 (¬brick(X)∨[brick(Z)∨¬equal(X,Z)])]

∀X∀Y∀Z[[¬brick(X)∨on(X,sup(X))]∧
 [¬brick(X)∨¬pyramid(sup(X))]∧
 [¬brick(X)∨¬on(X,Y)∨¬on(Y,X)]∧
 [¬brick(X)∨brick(Z)∨¬equal(X,Z)]]

A∨(B∨C) ≡ A∨B∨C

Clausal Logic:
conversion from first-order predicate logic (5)

47

For each first order sentence, there exists
an “almost equivalent” set of clauses.

7 split the conjuncts in clauses (a disjunction of literals)

∀X∀Y∀Z[[¬brick(X)∨on(X,sup(X))]∧
 [¬brick(X)∨¬pyramid(sup(X))]∧
 [¬brick(X)∨¬on(X,Y)∨¬on(Y,X)]∧
 [¬brick(X)∨brick(Z)∨¬equal(X,Z)]]

8 convert to clausal syntax (negative literals to body, positive ones to head)

∀X ¬brick(X)∨on(X,sup(X))
∀X ¬brick(X)∨¬pyramid(sup(X))
∀X∀Y ¬brick(X)∨¬on(X,Y)∨¬on(Y,X)
∀X∀Z ¬brick(X)∨brick(Z)∨¬equal(X,Z)

on(X,sup(X)) :- brick(X).
:- brick(X), pyramid(sup(X)).
:- brick(X), on(X,Y), on(Y,X).
brick(X) :- brick(Z), equal(X,Z).

Clausal Logic:
conversion from first-order predicate logic (6)

48

For each first order sentence, there exists
an “almost equivalent” set of clauses.

∀X: (∃Y:contains(X,Y))⇒ nonempty(X))

∀X: ¬(∃Y:contains(X,Y))∨nonempty(X))1 eliminate ⇒

2 put into negation normal form ∀X: (∀Y:¬contains(X,Y))∨nonempty(X))

3 replace ∃ using Skolem functors

4 standardize variables

5 move ∀ to the front ∀X∀Y: ¬contains(X,Y)∨nonempty(X)

6 convert to conjunctive normal form

7 split the conjuncts in clauses

8 convert to clausal syntax nonempty(X) :- contains(X,Y)

Definite Clause Logic:
motivation

married(X);bachelor(X) :- man(X), adult(X).
man(peter). adult(peter). man(paul).
:-married(maria). :-bachelor(maria). :-bachelor(paul).

49

man(peter)!

adult(peter)!married(peter);bachelor(peter):-adult(peter)!

married(peter);bachelor(peter)!

married(X);bachelor(X):-man(X),adult(X)! :-married(maria)!

:-bachelor(maria)!bachelor(maria):-man(maria),adult(maria)!

:-man(maria),adult(maria)!

in
de

fin
ite

pr
og

ra
m

lo
gi

ca
l c

on
se

qu
en

ce
s

th
at

 c
an

 b
e

de
riv

ed
 in

 tw
o

re
so

lu
tio

n
st

ep
s

married(X);bachelor(X):-man(X),adult(X)! man(paul)!

:-bachelor(paul)!married(paul);bachelor(paul):-adult(paul)!

married(paul):-adult(paul)!

clause is used
from right to left

clause is used
 from left to right

both literals from
head and body are

resolved away

how to use the clause depends on what you

want to prove, but this indeterminacy is a

source of inefficiency in refutation proofs

indefinite
conclusion

Definite Clause Logic:
syntax and proof procedure

50

A :- B1,...,Bn

full clausal logic clauses
are restricted: at most
one atom in the head

from right to left:
! procedural interpretation

“prove A by proving each of Bi“

rules out indefinite conclusions fixes direction to use clauses

for efficiency’s sake

Definite Clause Logic:
recovering lost expressivity

married(X); bachelor(X) :- man(X), adult(X).
man(john). adult(john).

51

can no longer express

which had two minimal models
{man(john),adult(john),married(john)}
{man(john),adult(john),bachelor(john)}
{man(john),adult(john),married(john),bachelor(john)}

characteristic
of indefinite clauses

ge
ne

ra
l c

la
us

es
pr

ob
le

m

first model is minimal model of general clause

married(X) :- man(X), adult(X), not bachelor(X).

second model is minimal model of general clause

bachelor(X) :- man(X), adult(X), not married(X).

to prove that
someone is a

bachelor, prove
that he is a man

and an adult, and
prove that he is not

a bachelor

definite clause
containing not

semantics and proof theory for the not
in a general clause will be discussed

later; Prolog actually provides a
special predicate not/1 which can only

be understood procedurally

3: logic programming
and Prolog

Declarative
Programming

1

to determine whether a is a logical consequence of the clause,
order of atoms in body is irrelevant

Sentences in definite clause logic:
procedural and declarative meaning

2

declarative meaning realized by model semantics

procedural meaning realized by proof theory

a :- b, c.

to prove a, prove b and then prove c
order of atoms may determine whether a can be derived
a :- b, c.

a :- c, b. to prove a, prove c and then prove b

imagine
c is false

and proof for b
is infinite

Sentences in definite clause logic:
procedural meaning enables programming

3

algorithm = logic + control

declarative knowledge:
the what of the problem

procedural knowledge:
how the inference rules are

applied to solve the problem

definite clause logic

SLD-resolution refutation

the clause obtained from a

resolution step (the resolvent) is

always resolved with a program

clause in the next (and not with

another resolvent)

SLD-resolution refutation:
turns resolution refutation into a proof procedure

SLDselection
rule

linear
resolution

definite
clauses

determines how to
select a literal to

resolve upon

and which clause
is used when
multiple are
applicable

refers to the shape of the
resulting proof trees

left-most

top-down

also: an unwieldy theorem prover in effective programming language

4

SLD-resolution refutation:
refutation proof trees based on SLD-resolution
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

Logic programming

sld refutation

grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

:−grandfather(a,X)

grandfather(C,D):−father(C,E),parent(E,D).

father(a,b).

:−mother(b,X).

parent(U,V):−mother(U,V).

:−parent(b,X).

:−father(a,E),parent(E,X).

{C/a,D/X}

{E/b}

{U/b,V/X}

{X/c}

goal (query)

derived goal

{X/c,C/a,D/c,E/b,U/b,V/c}

computed substitution

computed answer substitution

mother(b,c).

70 / 259

linear shape!

5

SLD-resolution refutation:
SLD-trees

Logic programming

SLD trees

:−grandfather(a,X)

:−parent(b,X)

:−father(b,X) :−mother(b,X)

blocked

:−father(a,E),parent(E,X)

Every � leaf corresponds to a successful refutation (a success
branch). A blocked leaf corresponds to a failed branch.
Prolog does a depth-first traversal of an SLD tree.
What if an SLD tree has infinite branches?

72 / 259

grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

every path from the query root to the
empty clause corresponds to a proof
tree (a successful refutation proof)

failure
branch

success
branch

alternative
resolution
steps are
shown

program clauses resolved
with are not shown, nor are

the resulting substitutions

Prolog traverses SLD-trees depth-first, backtracking from
a blocked node to the last choice point (also from a

success node when more answers are requested)

not the same as proof trees!

6

Problems with SLD-resolution refutation:
never reaching success branch because of infinite subtrees

sibling(X,Y) :- sibling(Y,X).
sibling(b,a).

Logic programming

infinite sld trees

sibling(X,Y) :- sibling(Y,X).
sibling(b,a).

:−sibling(a,X)

:−sibling(X,a)

...

:−sibling(a,X)

:−sibling(X,a)

sibling(a,b).
sibling(b,c).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).

:−sibling(a,X)

:−sibling(a,Z),sibling(Z,Y)

:−sibling(a,U),sibling(U,Z),
sibling(Z,Y)

:−sibling(a,Z),sibling(Z,Y)

...

...

:−sibling(b,Y)

73 / 259

had we re-ordered the clauses, we
would have reached a success branch

at the second choice point

rule of thumb: non-recursive clauses before recursive ones

 Prolog loops on this query; renders it incomplete!
only because of depth-first traversal and not because of resolution as all

answers are represented by success branches in the SLD-tree

incompleteness of Prolog is a design choice:
breadth-first traversal would require keeping

all resolvents on a level in memory instead of 1

7

Problems with SLD-resolution refutation:
Prolog loops on infinite SLD-trees
when no (more) answers can be found

sibling(a,b).
sibling(b,c).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).

Logic programming

infinite sld trees

sibling(X,Y) :- sibling(Y,X).
sibling(b,a).

:−sibling(a,X)

:−sibling(X,a)

...

:−sibling(a,X)

:−sibling(X,a)

sibling(a,b).
sibling(b,c).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).

:−sibling(a,X)

:−sibling(a,Z),sibling(Z,Y)

:−sibling(a,U),sibling(U,Z),
sibling(Z,Y)

:−sibling(a,Z),sibling(Z,Y)

...

...

:−sibling(b,Y)

73 / 259

infinite
tree

resolvents
grow

cannot be helped using
breadth-first traversal: is due

to semi-decidability of full
and definite clausal logic

8

Problems with SLD-resolution refutation:
illustrated on list generation

list([]).
list([H|T]):-list(T).

?-list(L).
L = [];
L = [A];
L = [A,B];
…

benign:
infinitely many lists of
arbitrary length are

generated

?-list(L)!

:-list(T1)!

:-list(T2)!

:-list(T3)!
•!
•!
•!

[]!

L = []!

[]!

L = [A]!

[]!

L = [A,B]!

Prolog would loop without finding

answers if clauses were reversed!

9

Problems with SLD-resolution refutation:
illustrated on list generation

:-plist(T1)!

:-plist(T1)!

[]!

L = [1,2]!
•!
•!
•!

[]!

L = [2]!

:-p(H1),plist(T1)!

:-plist(T1)!:-plist(T1)!

[]!

L = [2,1]!

[]!

L = [2,2]!
•!
•!
•!

•!
•!
•!

plist([]).
plist([H|T]):-p(H),plist(T).
p(1).
p(2).

?-plist(L).
L=[];
L=[1];
L=[1,1];
…

less benign:
only lists containing
1s are generated

?-plist(L)!

[]!
L = []!

:-p(H1),plist(T1)!

:-plist(T1)!

:-p(H1),plist(T1)!

:-plist(T1)!

[]!

L = [1,1]!
•!
•!
•!

explored by Prolog success branches that are never reached
10

SLD-resolution refutation:
implementing backtracking

11

when a failure branch is reached (non-empty resolvent
which cannot be reduced further), next alternative for

the last-chosen program clause has to be tried

amounts to going up one level
in SLD-tree and descending into

the next branch to the right

requires remembering previous resolvents for which not all
alternatives have been explored together with the last
program clause that has been explored at that point

backtracking=
popping resolvent from stack and

exploring next alternative

Pruning the search by means of cut:
cutting choice points

12

need to be remembered for all resolvents for which
not all alternatives have been explored

unnecessary alternatives will eventually be explored

parent(X,Y):-father(X,Y).
parent(X,Y):-mother(X,Y).
father(john,paul).
mother(mary,paul).

?-parent(john,C)!

:-mother(john,C)!:-father(john,C)!

[]!

parent(X,Y):-father(X,Y),!.
parent(X,Y):-mother(X,Y).
father(john,paul).
mother(mary,paul).

?-parent(john,C)!

:-mother(john,C)!:-father(john,C),!!

[]!

:-!!at this point, we know that
exploring the alternative

clause for parent/2 will fail

tells Prolog that this is the
only success branch

choice points on the
stack below and

including ?-parent
(john,C) are pruned

Pruning the search by means of cut:
operational semantics

13

“Once you’ve reached me, stick with all variable
substitutions you’ve found after you entered my clause”

Prolog won’t try alternatives for:

literals left to the cut

nor the clause in which the cut is found

A cut evaluates
to true.

Pruning the search by means of cut:
an example

14

p(X,Y):-q(X,Y).
p(X,Y):-r(X,Y).
q(X,Y):-s(X),!,t(Y).
r(c,d).
s(a).
s(b).
t(a).
t(b).

?-p(X,Y)!

:-r(X,Y)!:-q(X,Y)!

:-s(X),!,t(Y)! []!

:-!,t(Y)!

:-t(Y)!

[]! []!

:-!,t(Y)!

:-t(Y)!

[]! []!

no pruning above the
head of the clause
containing the cut

no pruning for literals
right to the cut

Are not yet on the stack

when cut is r
eached.

Pruning the search by means of cut:
different kinds of cut

15

green cut red cut

does not prune away
success branches

prunes success
branches

some logical
consequences of the

program are not returned

stresses that the conjuncts to
its left are deterministic and

therefore do not have
alternative solutions

has the declarative and
procedural meaning of
the program diverge

and that the clauses below with
the same head won’t result in

alternative solutions either

Pruning the search by means of cut:
red cuts

16

parent(X,Y):-father(X,Y),!.
parent(X,Y):-mother(X,Y).
father(john,paul).
father(john,peter).
mother(mary,paul).
mother(mary,peter).

same query,
 but John has

multiple children
in this program

?-parent(john,C)!

:-father(john,C),!!

[]!

:-!!

:-mother(john,C)!

[]!

:-!!
the cut is now red as a

success branch is pruned

parent(X,Y):-father(X,Y),!.
parent(X,Y):-mother(X,Y).
father(john,paul).
mother(mary,paul). same program,

but query
quantifies over
parents rather
than children

?-parent(P,paul)!

:-father(P,paul),!!

:-!!

[]!

:-mother(P,paul)!

[]!

the cut is only green when the
literal to its left is deterministic

{P/mary}

{C/peter}

Pruning the search by means of cut:
placement of cut

17

likes(peter,Y):-friendly(Y).
likes(T,S):-student_of(S,T).
student_of(maria,peter).
student_of(paul,peter).
friendly(maria).

?-likes(A,B)!

[]!
A=peter  
B=maria!

:-student_of(B,A)!

[]! []!
A=peter  
B=maria!

A=peter  
B=paul!

:-friendly(B)!

:-!,friendly(B)!

?-likes(A,B)!

:-student_of(B,A),!!:-friendly(B)!

[]!
A=peter  
B=maria!

[]!
A=peter  
B=maria!

:-!!

[]!
A=peter  
B=paul!

:-!!

likes(peter,Y):-!,friendly(Y). likes(T,S):-student_of(S,T),!.

Pruning the search by means of cut:
more dangers of cut

18

max(M,N,M) :- M>=N.
max(M,N,N) :- M=<N.

clauses are not mutually exclusive
two ways to solve query ?-max(3,3,5)

max(M,N,M) :- M>=N,!.
max(M,N,N). could use red cut to prune second way

problem:
?-max(5,3,3)

succeeds
only correct when

used in queries with
uninstantiated third

argumentBetter to use
>= and <

Negation as failure:
specific usage pattern of cut

19

p :- q,!,r.
p :- s.

cut is often used to
ensure clauses are
mutually exclusive

only tried when q fails

such uses are equivalent to the higher-level

p :- q,r.
p :- not_q,s.

not_q:-q,!,fail.
not_q.

where

cf. previous example

built-in predicate
always false

Prolog’s not/1 meta-predicate captures such uses:

not(Goal) :- Goal, ! fail.
not(Goal).

not(Goal) is proved by
failing to prove Goal

slight abuse of syntax
equivalent to call(Goal)

?-p!

:-q,!,r! :-s!

[]!

in modern Prologs:use \+ instead of not

Negation as failure:
SLD-tree where not(q) succeeds because q fails

20

p:-q,r.
p:-not(q),s.
s.

not(Goal):-Goal,!,fail.
not(Goal).

?-p!

:-not(q),s!:-q,r!

:-q,!,fail,s! :-s!

[]!

q evaluated
twice

version with ! was more
efficient, but uses of not/1
are easier to understand

Negation as failure:
SLD-tree where not(q) fails because q succeeds

21

p:-not(q),r.
p:-q.
q.
r.

not(Goal):-Goal,!,fail.
not(Goal).

?-p!

:-not(q),r!

:-q,!,fail,r!

[]!

:-r!

:-!,fail,r!

:-fail,r!

:-q!

[]!

branch corresponding to second
clause of not/1 is pruned

Negation as failure:
floundering occurs when argument is not ground

22

bachelor(X):-not(married(X)),
 man(X).
man(fred).
man(peter).
married(fred).

these are the bachelors
we were looking for!

?-bachelor(X)!

:-married(X),!,fail,man(X)!

:-!,fail,man(fred)!

:-fail,man(fred)!

:-not(married(X)),man(X)!

[]!

:-man(X)!

[]!

query has
no answers

unintentionally interpreted as
“X is a bachelor if nobody is

married and X is man”

not(Goal):-Goal,!,fail.
not(Goal).

Negation as failure:
avoiding floundering

23

correct implementation of SLDNF-resolution:
not(Goal) fails only if Goal has a refutation with an empty answer substitution

work-around: if Goal is ground, only
empty answer substitutions are possible

Prolog does not perform this check:
not(married(X)) failed because

married(X) succeeded with {X/fred}

bachelor(X):- man(X),
 not(married(X)).
man(fred).
man(peter).
married(fred).

grounds X

Negation as failure:
avoiding floundering

24

bachelor(X):- man(X),
 not(married(X)).
man(fred).
man(peter).
married(fred).

grounds X

?-bachelor(X)!

:-!,fail!

:-fail!

:-man(X),not(married(X))!

:-not(married(fred))! :-not(married(peter))!

:-married(fred),!,fail! []! :-married(peter),!,fail! []!

More uses of cut:
if-then-else

25

p:-q,r,s,!,t.
p:-q,r,u.
q.
r.
u.

q and r evaluated twice

such uses are equivalent to

p:-q,r,if_s_then_t_else_u.
if_s_then_t_else_u:-s,!,t.
if_s_then_t_else_u:-u.
q.
r.
u.

only evaluated when s is false
and both q and r are true

:-s,!,t!

?-p!

:-q,r,s,!,t!

[]!

:-r,s,!,t!

:-q,r,u!

:-r,u!

:-u!

?-p!

[]!

:-q,r,if_s_then_t_else_u!

:-s,!,t! :-u!

:-r,if_s_then_t_else_u!

:if_s_then_t_else_u!

More uses of cut:
if-then-else built-in

26

p :- q,r,if_then_else(S,T,U).
if_then_else(S,T,U):- S,!,T.
if_then_else(S,T,U):- U.

built-in as P->Q;R

diagnosis(Patient,Condition) :-
 temperature(Patient,T),
 (T=<37 -> blood_pressure(Patient,Condition)
 ; T>37, T<38 -> Condition=ok
 ; otherwise -> diagnose_fever(Patient,Condition)

nested if’s:
P->Q;(R->S;T)

always
evaluates to true

More uses of cut:
enabling tail recursion optimization

27

play(Board,Player):-
 lost(Board,Player).
play(Board,Player):-
 find_move(Board,Player,Move),
 make_move(Board,Move,NewBoard),
 next_player(Player,Next),!,
 play(NewBoard,Next).

:-play(starconfiguration,first).

pops choice points
from stack before

entering next
recursion

would otherwise maintain all previous
board configurations and all moves

such that they can be undone

most Prolog’s optimize tail recursion into iterative processes if
the literals before the recursive call are deterministic

Arithmetic in Prolog:
is/2

28

is(Result,Expression) succeeds if Expression can be evaluated as an
arithmetic expression and its resulting value unifies with Result

Peano-encoding of natural numbers is clumsy and inefficient

multiplication as repeated
addition using recursion

?-X is 5+7-3.
X = 9

?-9 is 5+7-3.
Yes

?-9 is X+7-3.
Error in arithmetic expression

must be
instantiated

?-X is 5*3+7/2.
X = 18.5

defined as an infix
operator

Arithmetic in Prolog:
is/2 versus =/2

29

succeeds if its arguments
can be unified

\=/2 when its arguments cannot be unified

?- X = 5+7-3
X = 5+7-3

?- 9 = 5+7-3
no

?- X = Y+3
X = _947+3
Y = _947

?- X = f(X)
X = f(f(f(f(f(f(f(f(f(f(f(f(f(f(f(..
error: term being written is too deep

-!

3!

7!

+!

5!

?-display(5+7-3).!
-(+(5,7),3)!

just a term

Prolog practices:
accumulators

30

length([],0).
length([H|T],N) :- length(T,N1), N is N1+1.

not tail-recursive

the resolvent collects as many
is/2 literals as there are

elements in the list before
doing any actual calculation

:-N is 2+1!
{M1->2}!

?-length([a,b,c],N)!

{H->a, T->[b,c], N1->N}!

:-length([b,c],M1),!
 N is M1+1!

length([H|T],N1):-length(T,M1),!
 N1 is M1+1!

:-length([c],M2),!
 M1 is M2+1,!
 N is M1+1!

{H->b, T->[c], N2->M1}!

length([H|T],N2):-length(T,M2),!
 N2 is M2+1!

:-length([],M3),!
 M2 is M3+1,!
 M1 is M2+1,!
 N is M1+1!

{H->c, T->[], N3->M2}!

length([H|T],N3):-length(T,M3),!
 N3 is M3+1!

:-M2 is 0+1,!
 M1 is M2+1,!
 N is M1+1!

{M3->0}!

length([],0)!

:-M1 is 1+1,!
 N is M1+1!

{M2->1}!

[]!
{N->3}!

.!

cannot simply place the recursive call
after the is/2 literal as the latter’s second

argument has to be instantiated

Prolog practices:
tail-recursive length/2 with accumulator

31

length(L,N) :- length_acc(L,0,N).
length_acc([],N,N).
length_acc([H|T],N0,N) :-
 N1 is N0+1,
 length_acc(T,N1,N).

read length_acc(L,M,N)
as N = M + length(L)

accumulator represents

length so far

?-length_acc([a,b,c],0,N)! length_acc([H|T],N10,N1):-N11 is N10+1,!
 length_acc(T,N11,N1)!

{H->a, T->[b,c], N10->0, N1->N}!

:-N11 is 0+1,!
 length_acc([b,c],N11,N)!

length_acc([H|T],N20,N2):-N21 is N20+1,!
 length_acc(T,N21,N2)!

:-N21 is 1+1,!
 length_acc([c],N21,N)!

{H->b, T->[c], N20->1, N2->N}!

:-length_acc([b,c],1,N)!

{N11->1}!

:-length_acc([c],2,N)!

{N21->2}!

length_acc([H|T],N30,N3):-N31 is N30+1,!
 length_acc(T,N31,N3)!

:-N31 is 2+1,!
 length_acc([],N31,N)!

{H->c, T->[], N30->2, N3->N}!

:-length_acc([],3,N)!

{N31->3}!

length_acc([],N,N)!

[]!

{N->3}!

Prolog practices:
tail-recursive reverse/2 with accumulator

naive_reverse([],[]).
naive_reverse([H|T],R) :-
 naive_reverse(T,R1),
 append(R1,[H],R).

append([],Y,Y).
append([H|T],Y,[H|Z]) :-
 append(T,Y,Z).

costly

 reverse(X,Y,Z)
⇔ Z=reverse(X)+Y

reverse(X,[],Z)⇔ Z=reverse(X)

⇔ Z=reverse([H|T])+Y

⇔ Z=reverse(T)+[H]+Y

⇔ Z=reverse(T)+[H|Y]

⇔ reverse(T,[H|Y],Z)

reverse([H|T],Y,Z)

reverse(X,Z) :- reverse(X,[],Z).

reverse([],Z,Z).
reverse([H|T],Y,Z) :-
 reverse(T,[H|Y],Z).

Prolog practices:
difference lists

33

represent a list by a term L1-L2.

[a,b,c][a,b,c,d]-[d]

[a,b,c][a,b,c,1,2]-[1,2]

[a,b,c|X]-X [a,b,c]

variable for minus list:
can be used as pointer to end of represented list

Prolog practices:
appending difference lists in constant time

34

one unification step rather than as
many resolution steps as there are
elements in the list appended to

append_dl(XPlus-XMinus,YPlus-YMinus,XPlus-YMinus) :- XMinus=YPlus.

?-append_dl([a,b|X]-X,[c,d|Y]-Y,Z).
X = [c,d|Y], Z = [a,b,c,d|Y]-Y

XPlus!

XMinus!

YPlus!

YMinus!

XPlus!
YMinus!

or

append_dl(XPlus-YPlus,YPlus-YMinus,XPlus-YMinus).

Prolog practices:
reversing difference lists

35

reverse(X,Z) :- reverse_dl(X,Z-[]).

reverse_dl([],Z-Z).
reverse_dl([H|T],Z-Y) :- reverse_dl(T,Z-[H|Y]).

reverse(X,Y,Z) ⇔ Z=reverse(X)+Y
⇔ reverse(X)=Z-Y

reverse([H|T],Y,Z) ⇔ Z=reverse([H|T])+Y

⇔ Z=reverse(T)+[H|Y]

⇔ reverse(T)=Z-[H|Y]

Second-order predicates:
map/3

36

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):-R(X,Y),map(R,Xs,Ys).
?-map(parent,[a,b,c],X)

map(R,[],[]).
map(R,[X|Xs],[Y|Ys]):- Goal =.. [R,X,Y],
 call(Goal),
 map(R,Xs,Ys).

or, when atoms with variable as
predicate symbol are not allowed:

Term=..List succeeds
if Term is a constant and List is the list [Term]
if Term is a compound term f(A1,..,An)
 and List is a list with head f and whose tail unifies with [A1,..,An]

univ operator =.. can be used

to construct terms:

?-Term=..[parent,X,peter]

Term=parent(X,peter)and decompose terms:

?-parent(maria,Y)=..List

List=[parent,maria,Y]

Second-order predicates:
findall/3

37

parent(john,peter).
parent(john,paul).
parent(john,mary).
parent(mick,davy).
parent(mick,dee).
parent(mick,dozy).

findall(Template,Goal,List) succeeds if List unifies with a list of the terms Template
is instantiated to successively on backtracking over Goal. If Goal has no

solutions, List has to unify with the empty list.

 ?-findall(C,parent(john,C),L).
 L = [peter,paul,mary]

?-findall(f(C),parent(john,C),L).
 L = [f(peter),f(paul),f(mary)]

 ?-findall(C,parent(P,C),L).
 L = [peter,paul,mary,davy,dee,dozy]

Second-order predicates:
bagof/3 and setof/3

38

parent(john,peter).
parent(john,paul).
parent(john,mary).
parent(mick,davy).
parent(mick,dee).
parent(mick,dozy).

?-findall(C,parent(P,C),L).
 L = [peter,paul,mary,davy,dee,dozy]

?-bagof(C,parent(P,C),L).
 P = john
 L = [peter,paul,mary];

 P = mick
 L = [davy,dee,dozy]

?-bagof(C,P^parent(P,C),L).
 L = [peter,paul,mary,davy,dee,dozy]

The construct Var^Goal
tells bagof/3 not to
bind Var in Goal.

differ from findall/3 if Goal contains free variables

setof/3 is same as bagof/3 without duplicate elements in List

findall/3 is same as bagof/3 with all free variables existentially quantified using ^

a parent and its
list of children

list of children for
which a parent exists

asserta(Clause)
 adds Clause at the beginning of the Prolog database.
assertz(Clause) and assert(Clause)
 adds Clause at the end of the Prolog database.
retract(Clause)
 removes first clause that unifies with Clause from the Prolog database.

Second-order predicates:
assert/1 and retract/1

39

retractall(Term):-
 retract(Term), fail.
retractall(Term):-
 retract((Term:- Body)), fail.
retractall(Term).

Backtracking over such literals

will not undo the modifications

to the database!

retract all clauses of which the head unifies with Term

failure-driven loop

Powerful: enable run-time program modification

Second-order predicates:
assert/1 and retract/1

40

sometimes used as global variables, “boolean” flags or to memoize:

fib(0,0).
fib(1,1).
fib(N,F) :-
 N > 1,
 N1 is N-1,
 N2 is N1-1,
 fib(N1,F1),
 fib(N2,F2),
 F is F1+F2.

Harmful: code hard to understand and debug, often slow

mfib(N, F):- memo_fib(N, F), !.
mfib(N, F):-
 N > 1,
 N1 is N-1,
 N2 is N1-1,
 mfib(N1,F1),
 mfib(N2,F2),
 F is F1+F2,
 assert(memo_fib(N, F)).

:- dynamic memo_fib/2.
memo_fib(0,0).
memo_fib(1,1).

most Prologs require
such a declaration for
clauses that are added
or removed from the
program at run-time

[S
lid

es
 o

n
C

om
pu

ta
tio

na
l L

og
ic

 fr
om

 C
LI

P
gr

ou
p]

if you’ve remembered an answer
for this goal before, return it

a more flexible form of call/1, which takes additional
arguments that will be added to the Goal that is called

Higher-order programming using call/N:
call(Goal,...)

41

call(p(X1,X2,X3))
call(p(X1,X2), X3)
call(p(X1), X2, X3)
call(p, X1, X2, X3)

all result in p(X1, X2, X3) being called

Supported by most Prolog systems in addition

to call/1

can often be used in places where you would

use univ operator =.. to construct the goal

[H
ig

he
r-o

rd
er

 lo
gi

c
pr

og
ra

m
m

in
g

in
 P

ro
lo

g,
 L

ee
 N

ai
sh

, 1
99

6]

Higher-order programming using call/N:
implementing map and friends

42

map(_F,[],[]).
map(F,[A0|As0],[A|As]) :-
 call(F,A0,A),
 map(F,As0,As).

foldr(F,B,[],B).
foldr(F,B,[A|As],R) :-
 foldr(F,B,As,R1),
 call(F,A,R1,R).

compose(F,G,X,FGX):-
 call(G,X,GX),
 call(F,GX,FGX).

filter(_P,[],[]).
filter(P,[A0|As0],As) :-
 (call(P, A0) ->
 As = [A0|As1]
 ;As = As1),
 filter(P, As0, As1)

[H
ig

he
r-o

rd
er

 lo
gi

c
pr

og
ra

m
m

in
g

in
 P

ro
lo

g,
 L

ee
 N

ai
sh

, 1
99

6]

Higher-order programming using call/N:
using map and friends (1)

43

?- filter(>(5),[3,4,5,6,7],As).
As=[3,4]

?- map(plus(1),[2,3,4],As).
As=[3,4,5]

?- map(between(1),[2,3],As).
As=[1,1]; As=[1,2]; As=[1,3];
As=[2,1]; As=[2,2]; As=[2,3]

?- map(plus(1),As,[3,4,5]).
As=[2,3,4]

?- map(plus(X),[2,3,4],[3,4,5]).
X=1

?- map(plus(X),[2,A,4],[3,4,B]).
X=1,A=3,B=5

called goal: >(5,X)

between(I,J,X) binds X to an integer
between I and J inclusive.

assuming that plus/3 is reversible
(e.g., Peano arithmetic)

relies on execution order in
which X is bound first

[H
ig

he
r-o

rd
er

 lo
gi

c
pr

og
ra

m
m

in
g

in
 P

ro
lo

g,
 L

ee
 N

ai
sh

, 1
99

6]

Higher-order programming using call/N:
using map and friends (2)

44

?- foldr(append,[],[[2],[3,4],[5]],As).
As=[2,3,4,5]

?- compose(map(plus(1)),foldr(append,[]),[[2],[3,4],[5]],As).
As=[3,4,5,6]

flatten defined in terms of foldr
using empty list and append

flattens first, then adds 1

?- map(plus, [2, 3, 4], As).
ERROR: map/3: Undefined procedure: plus/2
ERROR: However, there are definitions for:
ERROR: plus/3

plain Prolog lacks “currying” for higher-order programming: functional programming languages would return a list of functions that take the missing argument
conceptual difficulty: ok to curry a call(sum(2,3)) to a sum(2,3,Z) if there is also a definition for sum(X,Y)?

[H
ig

he
r-o

rd
er

 lo
gi

c
pr

og
ra

m
m

in
g

in
 P

ro
lo

g,
 L

ee
 N

ai
sh

, 1
99

6]
Inspecting terms:
var/1 and its use in practice

45

var(Term)
 succeeds when Term is an uninstantiated variable
 nonvar(Term) has opposite behavior

plus(X,Y,Z) :-
 nonvar(X),nonvar(Y),Z is X+Y.
plus(X,Y,Z) :-
 nonvar(X),nonvar(Z),Y is Z-X.
plus(X,Y,Z) :-
 nonvar(Y),nonvar(Z),X is Z-Y.

?- var(X).
true.
?- X=3,var(X).
false.

grandparent(X,Z) :-
 nonvar(X),parent(X,Y),parent(Y,Z).
grandparent(X,Z) :-
 nonvar(Z),parent(Y,Z), parent(X,Y).

ensuring relational
nature of predicates

directing search for
efficiency

Inspecting terms:
arg/3 and functor/3

46

ground(Term) :-
 nonvar(Term),constant(Term).
ground(Term) :-
 nonvar(Term),
 compound(Term),
 functor(Term,F,N),
 ground(N,Term).
ground(N,Term) :-
 N > 0,
 arg(N,Term,Arg),
 ground(Arg),
 Nl is N-l,
 ground(Nl,Term).
ground(O,Term).

arg(N,Term,Arg)
 succeeds when Arg is the Nth argument of Term
functor(Term,F,N)
 succeeds when the Term starts with the functor F of arity N

complement =..
operator

tests whether a term is ground (i.e.,
contains no uninstantiated variables)

common Prolog
practice: arity of

auxiliary and main
predicates differ

Extending Prolog:
term_expansion(+In,-Out)

47

called by Prolog for
each file it compiles

useful for generation code, e.g. :

student(Name,Id)

given compound term representation of data

want to use accessor predicates

student_name(student(Name, _), Name).
student_id(student(_, Id), Id).

instead of explicit unifications throughout the code

Student = student(Name,_)

to ensure independence of one particular representation of the data

clause or list of clauses that will be added to
the program instead of the In clause

[h
ttp

:/
/w

w
2.

cs
.m

u.
oz

.a
u/

25
5/

la
st

_s
em

es
te

r/
la

st
_s

em
es

te
r/

le
c/

su
bj

ec
t-p

ro
lo

g_
m

et
a.

pd
f]

Extending Prolog:
term_expansion(+In,-Out)

48

student_name(student(Name, _), Name).
student_id(student(_, Id), Id).

[h
ttp

:/
/w

w
2.
cs
.m

u.
oz

.a
u/

25
5/

la
st
_s
em

es
te
r/
la
st
_s
em

es
te
r/
le
c/
su
bj
ec

t-p
ro
lo
g_

m
et
a.
pd

f]

:- struct student(name,id).

:- op(1150, fx, (struct)).

term_expansion((:- struct Term), Clauses) :-
 functor(Term, Name, Arity),
 functor(Template, Name, Arity),
 gen_clauses(Arity, Name, Term, Template, Clauses).

declares struct as a prefix operator

create Template with same
functor and arity, but with
variable arguments rather

than constants

Extending Prolog:
term_expansion(+In,-Out)

49

[h
ttp

:/
/w

w
2.

cs
.m

u.
oz

.a
u/

25
5/

la
st

_s
em

es
te

r/
la

st
_s

em
es

te
r/

le
c/

su
bj

ec
t-p

ro
lo

g_
m

et
a.

pd
f]

gen_clauses(N, Name, Term, Template, Clauses) :-
 (N =:= 0 ->
 Clauses = []
 ;arg(N, Term, Argname),
 arg(N, Template, Arg),
 atom_codes(Argname, Argcodes),
 atom_codes(Name, Namecodes),
 append(Namecodes,[0’_|Argcodes],Codes),
 atom_codes(Pred, Codes),
 Clause =.. [Pred, Template, Arg],
 Clauses = [Clause|Clauses1],
 N1 is N - 1,
 gen_clauses(N1, Name, Term, Template, Clauses1)
).

trick to merge
recursive and
base clause

N-th argument
recursed upon

conversion from
atom to list of

character codes

?- X=0'_.X = 95.
?- char_code(X,95).X = '_'.

creates fact

When trying out, put gen_clauses/5
before term_expansion/2

Certain functors and predicate symbols
that be used in infix, prefix, or postfix
rather than term notation.

Extending Prolog:
operators

50

:- op(Precedence, Type, Name)

integer between 1 and 1200;
smaller integer binds stronger

a+b/c ≡ a+(b/c) ≡ +(a,/(b,c)) if / smaller than +

:- op(500,xfx,'has_color').
a has_color red.
b has_color blue.

?- b has_color C.
C = blue.
?- What has_color red.
What = a

prefix: fx, fy
infix: xfx, xfy,yfx

postfix: xf,yf
associative not right left

xfx xfy yfx

X op Y op Z / op(X,op(Y,Z)) op(op(X,Y),Z)

51

:- op(900,xfx,to).
hanoi(0,A,B,C,[]).
hanoi(N,A,B,C,Moves):-
 N1 is N-1,
 hanoi(N1,A,C,B,Moves1),
 hanoi(N1,B,A,C,Moves2),
 append(Moves1,[A to C|Moves2],Moves).

move disc #n from A to C

move n-1 discs from B to C.
 they will rest on disc #n

?- hanoi(3,left,middle,right,M)
M = [left to right,
 left to middle,
 right to middle,
 left to right,
 middle to left,
 middle to right,
 left to right]

Moves is the list of moves to
move N discs from peg A to

peg C, using peg B asan intermediary.
move n-1 c from A to B.

disc #n is left on A

Extending Prolog:
operators in towers of Hanoi

52

+’(a,’/’(b,c)) a+b/c

is(X, mod(34, 7)) X is 34 mod 7

<’(’+’(3,4),8) 3+4<8

’=’(X,f(Y)) X=f(Y)

’-’(3) -3

’:-’(p(X),q(Y)) p(X) :- q(Y)

’:-’(p(X),’,’(q(Y),r(Z))) p(X) :- q(Y),r(Z)

clauses are also Prolog terms!

[S
lid

es
 o

n
C

om
pu

ta
tio

na
l L

og
ic

 fr
om

 C
LI

P
gr

ou
p]

Extending Prolog:
built-in operators

Extending Prolog:
vanilla and canonical naf meta-interpreter

53

prove(Goal):-
 clause(Goal,Body),
 prove(Body).

prove((Goal1,Goal2)):-
 prove(Goal1),
 prove(Goal2).

prove(true).

prove(true):- !.

prove((A,B)):- !,
 prove(A),
 prove(B).

prove(not(Goal)):- !,
 not(prove(Goal)).

prove(A):-
 % not (A=true; A=(X,Y); A=not(G))
 clause(A,B),
 prove(B).

Are these meta-circular
interpreters?

Avoids problems where
clause/2 is called with a

conjunction or true.

Extending Prolog:
meta-level vs object-level in meta-interpreter

54

p(X):-q(X).
q(a).

clause(p(X),q(X)).
clause(q(a),true).

?-p(X).
X=a

?-prove(p(X)).
X=aMETA-

LEVEL

OBJECT-
LEVEL

KNOWLEDGE REASONING

Canonical meta-interpreter still
absorbs backtracking, unification

and variable environments
implicitly from the object-level.

prove(A):-
 clause(Head,Body),
 unify(A,Head,MGU,Result),
 apply(Body,MGU,NewBody),
 prove_var(NewBody).

Reified unification explicit at meta-level :

Prolog programming:
a methodology illustrated on partition/4

55

% partition(L,N,Littles,Bigs) <- Littles contains numbers
% in L smaller than N,
% Bigs contains the rest

1 Write down declarative specification

partition([],N,[],[]).
partition([Head|Tail],N,?Littles,?Bigs):-
 /* do something with Head */
 partition(Tail,N,Littles,Bigs).

2 Identify recursion and “output” arguments

what is the recursion argument?
what is the base case?

3 Write down implementation skeleton
Empty list is

partitioned into
two empty lists.

We recurse on
the “input”

argument list.

(might not work equally
well for everyone)

Prolog programming:
a methodology illustrated on partition/4

56

partition([],N,[],[]).
partition([Head|Tail],N,?Littles,?Bigs):-
 Head < N,
 partition(Tail,N,Littles,Bigs),
 ?Littles = [Head|Littles],?Bigs = Bigs.
partition([Head|Tail],N,?Littles,?Bigs):-
 Head >= N,
 partition(Tail,N,Littles,Bigs),
 ?Littles = Littles,?Bigs = [Head|Bigs].

4 Complete bodies of clauses

Head is smaller, has to
be added to Littles

has to be added to
Bigs otherwise

partition([],N,[],[]).
partition([Head|Tail],N,[Head|Littles],Bigs):-
 Head < N,
 partition(Tail,N,Littles,Bigs).
partition([Head|Tail],N,Littles,[Head|Bigs]):-
 Head >= N,
 partition(Tail,N,Littles,Bigs).

5 Fill in “output” arguments

Prolog programming:
a methodology illustrated on sort/2

57

% sort(L,S) <- S is a sorted permutation of list L

1 Write down declarative specification

sort([],[]).
sort([Head|Tail],?Sorted):-
 /* do something with Head */
 sort(Tail,Sorted).

2 Identify recursion and “output” arguments

3 Write down implementation skeleton

sort([],[]).
sort([Head|Tail],WholeSorted):-
 sort(Tail,Sorted),
 insert(Head,Sorted,WholeSorted).

4 Complete bodies of clauses

Auxiliary
predicate

Prolog programming:
a methodology illustrated on insert/3

58

% insert(X,In,Out) <- In is a sorted list, Out is In
% with X inserted in the proper place

1 Write down declarative specification

insert(X,[],?Inserted).
insert(X,[Head|Tail],?Inserted):-
 /* do something with Head */
 insert(X,Tail,Inserted).

2 Identify recursion and “output” arguments

3 Write down implementation skeleton

Prolog programming:
a methodology illustrated on insert/3

59

insert(X,[],?Inserted):-
 ?Inserted=[X].
insert(X,[Head|Tail],?Inserted):-
 X > Head,
 insert(X,Tail,Inserted),
 ?Inserted = [Head|Inserted].
insert(X,[Head|Tail],?Inserted):-
 X =< Head,
 ?Inserted = [X,Head|Tail].

4 Complete bodies of clauses

insert(X,[],[X]).
insert(X,[Head|Tail],[X,Head|Tail]):-
 X =< Head.
insert(X,[Head|Tail],[Head|Inserted]):-
 X > Head,
 insert(X,Tail,Inserted).

5 Fill in “output” arguments

More Prolog programming:
quicksort

60

quicksort([],[]).
quicksort([X|Xs],Sorted):-
 partition(Xs,X,Littles,Bigs),
 quicksort(Littles,SortedLittles),
 quicksort(Bigs,SortedBigs),
 append(SortedLittles,[X|SortedBigs],Sorted).

quicksort(Xs,Ys) :- qsort(Xs,Ys-[]).

qsort([],Ys-Ys).
qsort([X0|Xs],Ys-Zs) :-
 partition(Xs,X0,Ls,Bs),
 qsort(Bs,Ys2-Zs),
 qsort(Ls,Ys-[X0|Ys2]).w

ith
 d

iff
er

en
ce

 li
st

s:

Revisiting the Eliza classic in Prolog:
example conversation

61

„I am unhappy.“
„How long have you been unhappy?“
„Six months. Can you help me?“
„What makes you think I help you?“
„You remind me of my sister.“
„Can you tell me more about your sister?“
„I like teasing my sister.“
„Does anyone else in your family like teasing your sister?“
„No. Only me.“
„Please go on.“

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

Revisiting the Eliza classic in Prolog:
core “algorithm”

62 [T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

driven by stimulus-response patterns
I am <statement>.
How long have you been <statement>?

while the input is not „bye“
 choose a stimulus!response pair
 match the input to the stimulus
 generate the reply from the response and the match
 output the response

Revisiting the Eliza classic in Prolog:
dictionary lookup

63

lookup(Key,[(Key,Value)|Dict],Value).
lookup(Key,[(Key1,Value1)|Dict],Value) :-
 Key \= Key1,
 lookup(Key,Dict,Value).

as association list for arbitrary keys:

lookup2(Key,dict(Key,X,Left,Right),Value) :- !,
 X = Value.
lookup2(Key,dict(Key1,X,Left,Right),Value) :-
 Key < Key1,
 lookup2(Key,Left,Value).
lookup2(Key,dict(Key1,X,Left,Right),Value) :-
 Key > Key1,
 lookup2(Key,Right,Value).

as binary tree for integer keys:

will be used to
store matches

between stimulus
and input

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

Revisiting the Eliza classic in Prolog:
representing stimulus/response patterns

64

pattern([i,am,1],['How',long,have,you,been,1,?]).
pattern([1,you,2,me],['What',makes,you,think,'I',2,you,?]).
pattern([i,like,1],['Does',anyone,else,in,your,family,like,1,?]).
pattern([i,feel,1],['Do',you,often,feel,that,way,?]).
pattern([1,X,2],['Please',you,tell,me,more,about,X]) :-
 important(X).
pattern([1],['Please',go,on,'.']).

important(father).
important(mother).
important(sister).
important(brother).
important(son).
important(daughter).

conditional
pattern

numbered
place-holder

numbered
place-holder

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

Revisiting the Eliza classic in Prolog:
main loop

65

reply([]) :- nl.
reply([Head|Tail]) :- write(Head),write(' '),reply(Tail).

eliza :- read(Input),
 eliza(Input),
 !.
eliza([bye]) :-
 writeln(['Goodbye. I hope I have helped you']).
eliza(Input) :-
 pattern(Stimulus,Response),
 match(Stimulus,Table,Input),
 match(Response,Table,Output),
 reply(Output),
 read(Input1),
 !,
 eliza(Input1).

find a Stimulus

match it with the Input,
storing matches for place-

holders in Tablesubstitute
 place-holders in

Output

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

Revisiting the Eliza classic in Prolog:
actual matching

66

match([N|Pattern],Table,Target) :-
 integer(N),
 lookup(N,Table,LeftTarget),
 append(LeftTarget,RightTarget,Target),
 match(Pattern,Table,RightTarget).
match([Word|Pattern],Table,[Word|Target]) :-
 atom(Word),
 match(Pattern,Table,Target).
match([],Table,[]).

place-holder

word

?- lookup(a,D,V)
V=b
?- lookup(c,D,e)
no
?- lookup(e,D,f)
yes
% D = [(a,b),(c,d),(e,f)|X]

The incomplete

datastructure does not

have to be initialized!

suppose D = [(a,b),(c,d)|X] 4: blind and informed
search of state space,

proving as search process

Declarative
Programming

1

State space search:
blocks world

2

1 STATE SPACE 3

• Each configuration of the stacks can be seen as a state of the problem.
Alternatively, the state of the gripper can be considered, too.

• The edges of the graph represent the possible moves.

• The state of the blocksworld
can be represented by a cou-
ple of relations between the
objects of the world.

• Alternatively, it can be rep-
resented by list of stacks,
whereby each stack is a list
of block, the top most block
being the first element.
[[], [c, a], [b, d]]

1 STATE SPACE 2

1 State Space

• Representation of problems in form of sets of all possible states that a
system can assume, and rules that allow transitions between states.

• The task of searching for a solutions becomes searching for a path
between to nodes of a (directed) graph; from Start to Goal.

• Four components constitute the problem space
N = {N} set of all possible states
A = {A} set of all (legal) transition rules
S = {S} ⊂ {N} set of start states, one or more

GD = {G} ⊂ {N} set of goal states, one or more

1.1 Example: Blocksworld

• A simple world of blocks on a table. Blocks can be stacked on top of
each other, or be placed in the table. A robot gripper can pick one
block at a time if there is no other block on top of it.

• The objective is to restack the blocks from a start configuration to the
goal configuration.

• The best solution would take the least number of movements.

State space search:
8-puzzle

3

1 STATE SPACE 4

1.2 Example: 8-Puzzle

• The puzzle has eight square tiles that can be moved one square at a
time. I.e. only a tile adjacent to the gap can be moved.

• The objective is to rearrange the position of the tiles to a given pattern
in the least number of moves.

1.3 State-space representation in Prolog

• State-space can be represented by the relation

s(X, Y)

which is true if there is a legale move from node X to node Y. We say Y
is the successor of X.

• In addition, a cost for the transtion can be associated with moves:

s(X, Y, Cost)

• This relation can be represented in the program explicitly by a set of
facts, or by rules:

State space search:
graph representation

4

state space
solution

search algorithms

goal nodes and start nodes

cost associated with arcs between nodes

path from start to goal node

completeness: will a solution always be found if there is one?

optimal if cost over path is minimal

optimality: will highest-quality solution be found when there are several?

efficiency: runtime and memory requirements

state=node, state transition=arc

blind vs informed: does quality of partial solutions steer process?

State space search:
Prolog skeleton for search algorithms

5

search(Agenda,Goal):-
 next(Agenda,Goal,Rest),
 goal(Goal).

search(Agenda,Goal):-
 next(Agenda,Current,Rest),
 children(Current,Children),
 add(Children,Rest,NewAgenda),
 search(NewAgenda,Goal).

goal state for which
goal(Goal) succeeds

reached, but
untested states

succeeds if the goal
state Goal can be

reached from a state
on the Agenda

selects a candidate
state from the Agenda

expands the
current state

Simply Logical – Chapter 3 © Peter Flach, 2000

7

BFS vs DFS

!

"# $

!#% & !!'

!() (*

!

"# $

!#% & !!'

!() (*

!"#
$"#

State space search:
depth-first search

6

search_df([Goal|Rest],Goal):-
 goal(Goal).

search_df([Current|Rest],Goal):-
 children(Current,Children),
 append(Children,Rest,NewAgenda),
 search_df(NewAgenda,Goal).

children(Node,Children):-
 findall(C,arc(Node,C),Children).

next/3 implemented by taking
first element of list

arc(1,2). arc(1,8). arc(1,6).
arc(2,7). arc(2,12). arc(2,4).
arc(12,9). arc(12,15). arc(6,3).
arc(6,11). arc(11,0). arc(11,5).

add/3 implemented by
prepending children of first
element on agenda to the
remainder of the agenda

first-in, last-out
agenda treated as a stack

State space search:
depth-first search with paths

7

children([Node|RestOfPath],Children):-

 findall([Child,Node|RestOfPath],arc(Node,Child),Children).

only requires a change to children/3
ANDway search_df/2 is called

keep path to node on agenda,
rather than node

?- search_df([[initial_node]],PathToGoal).

Simply Logical – Chapter 3 © Peter Flach, 2000

7

BFS vs DFS

!

"# $

!#% & !!'

!() (*

!

"# $

!#% & !!'

!() (*

!"#
$"#

‘

State space search:
depth-first search with loop detection

8

search_df_loop([Goal|Rest],Visited,Goal):-
 goal(Goal).
search_df_loop([Current|Rest],Visited,Goal):-
 children(Current,Children),
 add_df(Children,Rest,Visited,NewAgenda),
 search_df_loop(NewAgenda,[Current|Visited],Goal).

keep list of
visited nodes

add_df([],Agenda,Visited,Agenda).
add_df([Child|Rest],OldAgenda,Visited,[Child|NewAgenda]):-
 not(element(Child,OldAgenda)),
 not(element(Child,Visited)),
 add_df(Rest,OldAgenda,Visited,NewAgenda).
add_df([Child|Rest],OldAgenda,Visited,NewAgenda):-
 element(Child,OldAgenda),
 add_df(Rest,OldAgenda,Visited,NewAgenda).
add_df([Child|Rest],OldAgenda,Visited,NewAgenda):-
 element(Child,Visited),
 add_df(Rest,OldAgenda,Visited,NewAgenda).

do not add a
child if it’s

already on the
agenda

do not add
already
visited

children

add current
node to list of
visited nodes

Simply Logical – Chapter 3 © Peter Flach, 2000

7

BFS vs DFS

!

"# $

!#% & !!'

!() (*

!

"# $

!#% & !!'

!() (*

!"#
$"#

‘’ State space search:
depth-first search using Prolog stack

9

search_df(Goal,Goal):-
 goal(Goal).
search_df(CurrentNode,Goal):-
 arc(CurrentNode,Child),
 search_df(Child,Goal).

Simply Logical – Chapter 3 © Peter Flach, 2000

7

BFS vs DFS

!

"# $

!#% & !!'

!() (*

!

"# $

!#% & !!'

!() (*

!"#
$"#

‘’’

search_bd(Depth,Goal,Goal):-
 goal(Goal).
search_bd(Depth, CurrentNode, Goal):-
 Depth>0,
 NewDepth is Depth-1,
 arc(CurrentNode, Child),
 search_bd(NewDepth, Child, Goal).

va
ni

lla
de

pt
h

bo
un

de
d

?- search_df(10,initial_node,Goal).

search_id(CurrentNode, Goal):-
 search_id(1,CurrentNode,Goal).
search_id(Depth,CurrentNode,Goal):-
 search_bd(Depth,CurrentNode,Goal).
search_id(Depth,CurrentNode,Goal):-
 NewDepth is Depth+1,
 search_id(NewDepth,CurrentNode,Goal)

ite
ra

tiv
e

de
ep

en
in

g

do not exceed depth
threshold while searching

use Prolog call
stack as agenda

‘‘’’
‘‘’’’

might loop on cycles

always halts, but no
solutions beyond threshold

increase depth bound
on each iteration

complete and solutions on, but
upper parts of search space

less memory

than bfs

not that bad for full trees: number of nodes at a single level is smaller than all nodes above it

State space search:
breadth-first search

10

search_bf([Goal|Rest],Goal):-
 goal(Goal).
search_bf([Current|Rest],Goal):-
 children(Current,Children),
 append(Rest,Children,NewAgenda),
 search_bf(NewAgenda,Goal).

children(Node,Children):-
 findall(C,arc(Node,C),Children).

next/3 implemented by taking
first element of list

add/3 implemented by
appending children of first
element on agenda to the
remainder of the agenda

first-in, first-out
agenda treated as a queue

Simply Logical – Chapter 3 © Peter Flach, 2000

7

BFS vs DFS

!

"# $

!#% & !!'

!() (*

!

"# $

!#% & !!'

!() (*

!"#
$"#State space search:

dfs vs bfs

11

breadth-first depth-first depth-limited iterative
deepening

time bd bm bl bd

space bd bm bl bd

shortest
solution path √ √

complete √ √ if l≥d √

l=depth-limit
b=branching factor of search space

d=depth of search space

m=depth of shortest path solution

spirals away from start node,
candidate paths to be remembered

grows exponentially with depth

might be second
child of root node

State space search:
water jugs problem

12

5L 8L 20L

4L in a jug

fill a jug from the pool

empty a jug into the pool

pour one jug into another until one poured
from is empty or the one poured into is full

op
er

at
io

ns goal

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

State space search:
implementing the search

13

solve_dfs(State,History,[]) :-
 final_state(State).
solve_dfs(State,History,[Move|Moves]) :-
 move(State,Move),
 update(State,Move,State1),
 legal(State1),
 not(member(State1,History)),
 solve_dfs(State1,[State1|History],Moves).

test_dfs(Problem,Moves) :-
 initial_state(Problem,State),
 solve_dfs(State,[State],Moves).

as a generic algorithm for
state space problems

multiple named
transitions out of a state

until now, we only
had unnamed arcs

visited states sequence of transitions to reach goal from current state [T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

State space search:
encoding water jugs problem

14

initial_state(jugs,jugs(0,0)).
final_state(jugs(4,V2)).
final_state(jugs(V1,4)).

move(jugs(V1,V2),fill(1)).
move(jugs(V1,V2),fill(2)).
move(jugs(V1,V2),empty(1)) :- V1>0.
move(jugs(V1,V2),empty(2)) :- V2>0.
move(jugs(V1,V2),transfer(2,1)).
move(jugs(V1,V2),transfer(1,2)).

starting and goal states

possible transitions out of a state

empty first jug (1), but only if
it still contains water (C1)

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

[T
he

 A
rt

 o
f P

ro
lo

g,
 S

te
rli

ng
 a

nd
 S

ha
pi

ro
]

State space search:
encoding water jugs problem

15

update(jugs(V1,V2),fill(1),jugs(C1,V2)) :-
 capacity(1,C1).
update(jugs(V1,V2),fill(2),jugs(V1,C2)) :-
 capacity(2,C2).
update(jugs(V1,V2),empty(1),jugs(0,V2)).
update(jugs(V1,V2),empty(2),jugs(V1,0)).
update(jugs(V1,V2),transfer(2,1),jugs(W1,W2)) :-
 capacity(1,C1),
 Liquid is V1 + V2,
 Excess is Liquid - C1,
 adjust(Liquid,Excess,W1,W2).
update(jugs(V1,V2),transfer(1,2),jugs(W1,W2)) :-
 capacity(2,C2),
 Liquid is V1 + V2,
 Excess is Liquid - C2,
 adjust(Liquid,Excess,W2,W1).

states a transition can lead to

the first jug will contain 0L
after emptying it

a jug can be filled up to
its capacity from the pool

the first jug can be poured
in the second

adjust(Liquid, Excess,Liquid,0) :- Excess =< 0.
adjust(Liquid,Excess,V,Excess) :-
 Excess > 0,
 V is Liquid - Excess.

capacity(j1,8).
capacity(j2,5).
legal(jugs(C1,C2)).

Proving as a search process:
df agenda-based meta-interpreter

16

prove(true):- !.
prove((A,B)):-
 !,
 clause(A,C),
 conj_append(C,B,D),
 prove(D).
prove(A):-
 clause(A,B),
 prove(B).

prove_df_a(Goal) :-
 prove_df_a([Goal]).
prove_df_a([true|Agenda]).
prove_df_a([(A,B)|Agenda]) :-
 !,
 findall(D,(clause(A,C),conj_append(C,B,D)),Children),
 append(Children,Agenda,NewAgenda),
 prove_df_a(NewAgenda).
prove_df_a([A|Agenda]) :-
 findall(B,clause(A,B),Children),
 append(Children,Agenda,NewAgenda),
 prove_df_a(NewAgenda).

conj_append(true,Ys,Ys).
conj_append(X,Ys,(X,Ys)):-
 not(X=true),
 not(X=(One,TheOther).
conj_append((X,Xs),Ys,(X,Zs)):-
 conj_append(Xs,Ys,Zs).

true: empty conjunctions

single term: singleton conjunction

swapping arguments of
append/3 turns this into a

breadth-first meta-interpreter!

de
pt

h-
fir

st

instead of
prove((A,B)) :-

prove(A),prove(B)

Proving as a search process:
bf agenda-based meta-interpreter

17

prove_bf(Goal):-
 prove_bf_a([a(Goal,Goal)],Goal).
prove_bf_a([a(true,Goal)|Agenda],Goal).
prove_bf_a([a((A,B),G)|Agenda],Goal):-!,
 findall(a(D,G),(clause(A,C),conj_append(C,B,D)),Children),
 append(Agenda,Children,NewAgenda),
prove_bf_a(NewAgenda,Goal).
prove_bf_a([a(A,G)|Agenda],Goal):-
 findall(a(B,G),clause(A,B),Children),
 append(Agenda,Children,NewAgenda),
 prove_bf_a(NewAgenda,Goal).

problem:
findall(Term,Goal,List)

creates new variables in
the instantiation of Term for
the unbound variables in

answers to Goal

foo(X) :- bar(X).

?- findall(Body,clause(foo(Z),Body),Bodies).
Bodies = [bar(_G336)].

This time with answer substitution.

trick:
store a(Literals,OriginalGoal) on agenda
where OriginalGoal is a copy of the Goal

Goal will be instantiated with the
correct answer substitutions

br
ea

dt
h-

fir
st

Proving as a search process:
forward vs backward chaining of if-then rules

18

backward chaining

what’s more efficient depends on structure of search
space (cf. discussion on practical uses of var)

forward chaining

search starts from where we want
to be towards where we are

from head to body from body to head

e.g. Prolog query answering e.g. model construction

search starts from where we
are to where we want to be

Proving as a search process:
forward chaining - bottom-up model construction

19

model(M):- model([],M).

model(M0,M):-
 is_violated(Head,M0),!,
 disj_element(L,Head),
 model([L|M0],M).
model(M,M).

is_violated(H,M) :-
 cl((H:-B)),
 satisfied_body(B,M),
 not(satisfied_head(H,M)).

model of clauses defined by cl/1

a violated clause:
body is true in the current model,

but the head not

add a literal from the head
of a violated clause to the

current model

no more
violated clauses

(note the !)

grounds literal
from head

grounds
literal from

body

Proving as a search process:
forward chaining - auxiliaries

20

sat
isf

ied
_bo

dy(
tru

e,M
).

sat
isf

ied
_bo

dy(
A,M

) :
-

 e
lem

ent
(A,

M).

sat
isf

ied
_bo

dy(
(A,

B),
M)

:-

 e
lem

ent
(A,

M),

 s
ati

sfi
ed_

bod
y(B

,M)
.

body is a

conjunction of lite
rals

satisfied_head(A,M):-
 element(A,M).
satisfied_head((A;B),M) :-
 element(A,M).
satisfied_head((A;B),M) :-
 satisfied_head(B,M).

, and ; are right-associative operators:a;b;c=;(a,;(b,c))

disj_element(X,X):-

 not(X=false),

 not(X=(One;TheOther)).

disj_element(X,(X;Ys)).

disj_element(X,(Y;Ys)):-

 disj_element(X,Ys).

false = empty disjunction

single disjunct

Proving as a search process:
forward chaining - example

21

cl((married(X);bachelor(X):-man(X),adult(X))).
cl((has_wife(X):-married(X),man(X))).
cl((man(paul):-true)).
cl((adult(paul):-true)).

?- model(M)
M = [has_wife(paul),married(paul),
 adult(paul),man(paul)];
M = [bachelor(paul),
 adult(paul),
 man(paul)]

two minimal models as there is a
disjunction in the head

?-model([],M)

:-is_violated(Head,[]),!,
disj_element(L,Head),
model([L],M).

:-model([adult(p),man(p)],M)

[]
M=[]

:-model([man(p)],M)

:-model([bachelor(p),
 adult(p),man(p)],M)

[]:-model([has_wife(p),married(p),
 adult(p),man(p)],M)

:-model([married(p),
 adult(p),man(p)],M)

[]

Proving as a search process:
forward chaining - range-restricted clauses

22

Our simple forward chainer cannot
construct a model for following clauses:

cl((man(X);woman(X):-true)).
cl((false:-man(maria))).
cl((false:-woman(peter))).

an unground man(X) will be added to
the model, which leads to the second

clause being violated ---which cannot be
solved as it has an empty head

works only for clauses for which grounding the body also grounds the head

add literal to first clause, to
enumerate possible values of X

cl((man(X);woman(X):-person(X))).
cl((person(maria):-true)).
cl((person(peter):-true)).
cl((false:-man(maria))).
cl((false:-woman(peter))).

?- model(M)
M = [man(peter),person(peter),woman(maria),person(maria)]

range-restricted clause:
all variables in head also occur in bodycan be ensured by adding predicates that

quantify over each variable’s domain

Proving as a search process:
forward chaining - subsets of infinite models

23

cl((append([],Y,Y):-list(Y))).
cl((append([X|Xs],Ys,[X|Zs]):-thing(X),append(Xs,Ys,Zs))).
cl((list([]):-true)).
cl((list([X|Y]):-thing(X),list(Y))).
cl((thing(a):-true)).
cl((thing(b):-true)).
cl((thing(c):-true)).

model_d(D,M):-
 model_d(D,[],M).

model_d(0,M,M).
model_d(D,M0,M):-
 D>0,
 D1 is D-1,
 findall(H,is_violated(H,M0),Heads),
 satisfy_clauses(Heads,M0,M1),
 model_d(D1,M1,M).

satisfy_clauses([],M,M).
satisfy_clauses([H|Hs],M0,M):-
 disj_element(L,H),
 satisfy_clauses(Hs,[L|M0],M).

depth-bounded
construction of submodel

range-restricted version of append/3

Informed search:
best-first search

24

search_best([Goal|RestAgenda],Goal):-
 goal(Goal).
search_best([CurrentNode|RestAgenda],Goal):-
 children(CurrentNode,Children),
 add_best(Children,RestAgenda,NewAgenda),
 search_best(NewAgenda,Goal).

add_best([],Agenda,Agenda).
add_best([Node|Nodes],Agenda,NewAgenda):-
 insert(Node,Agenda,TmpAgenda),
 add_best(Nodes,TmpAgenda,NewAgenda).

insert(Node,Agenda,NewAgenda):-
 eval(Node,Value),
 insert(Value,Node,Agenda,NewAgenda).
insert(Value,Node,[],[Node]).
insert(Value,Node,[FirstNode|RestOfAgenda],[Node,FirstNode|RestOfAgenda]):-
 eval(FirstNode, FirstNodeValue),
 Value < FirstNodeValue.
insert(Value,Node,[FirstNode|RestOfAgenda],[FirstNode|NewRestOfAgenda]):-
 eval(FirstNode,FirstNodeValue),
 Value >= FirstNodeValue,
 insert(Value,Node,RestOfAgenda,NewRestOfAgenda).

informed: use a heuristic estimate of
the distance from a node to a goal

given by predicate eval/2

best-first: children of node are
added according to heuristic

(lowest value first) Agenda
is sorted

add_best(A,B,C): C contains the
elements of A and B (B and C sorted

according to eval/2)

Informed search:
best-first search on a puzzle

25

Informed search

example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles
between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of
all the white tiles.

147 / 259

A tile may be moved to the empty spot if there are
at most 2 tiles between it and the empty spot.

Find a series of moves that bring all the black tiles
to the right of all the white tiles.

Cost of a move: 1 if no tiles were in between,
otherwise amount of tiles jumped over.

Informed search:
best-first search on a puzzle - encoding

26

get_tile(Position,N,Tile) :-
 get_tile(Position,1,N,Tile).

get_tile([Tile|Tiles],N,N,Tile).
get_tile([Tile|Tiles],N0,N,FoundTile) :-
 N1 is N0+1,
 get_tile(Tiles, N1, N, FoundTile).

replace([Tile|Tiles],1,ReplacementTile,[ReplacementTile|Tiles]).
replace([Tile|Tiles],N,ReplacementTile,[Tile|RestOfTiles]):-
 N>1,
 N1 is N-1,
 replace(Tiles,N1,ReplacementTile,RestOfTiles).

[b,b,b,e,w,w,w]

Informed search
example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles

between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of

all the white tiles.

147 / 259

Informed search

example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles
between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of
all the white tiles.

147 / 259

start_move(move(noparent,[b,b,b,e,w,w,w],0))
Moves:

Board:

Agenda
items:

move_value(Move, Value)

from to cost

heuristic evaluation of position reached by Move

Informed search:
best-first search on a puzzle - algorithm

27

Informed search
example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles

between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of

all the white tiles.

147 / 259

tiles(ListOfPositions, TotalCost):-
 start_move(StartMove),
 eval(StartMove, Value),
 tiles([move_value(StartMove, Value)], FinalMove,[], VisitedMoves),
 order_moves(FinalMove, VisitedMoves,[], ListOfPositions,0, TotalCost).

best-first search accumulating
path

acc for
VisitedMoves

acc for
TotalCost

acc for
ListOfPositions

print path backwards

from final move to

start move

tiles([move_value(LastMove,Value)|RestAgenda],LastMove,VisitedMoves,VisitedMoves):-
 goal(LastMove).
tiles([move_value(Move,Value)|RestAgenda],Goal,VisitedMoves, FinalVisitedMoves):-
 show_move(Move,Value),
 setof0(move_value(NextMove,NextValue),
 (next_move(Move,NextMove),eval(NextMove,NextValue)),
 Children),
 merge(Children,RestAgenda,NewAgenda),
 tiles(NewAgenda,Goal,[Move|VisitedMoves],FinalVisitedMoves).

tiles(Agenda, LastMove, V0, V): goal can be

reached from a move in Agenda where

LastMove is the last move leading to the goal,

and V is V0 + the set of moves tried.

finds sorted list of

children with their

evaluation

Informed search:
best-first search on a puzzle - encoding’

28

Informed search
example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles

between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of

all the white tiles.

147 / 259

next_move(move(Position,LastPosition,LastCost),
 move(LastPosition,NewPosition,Cost)) :-
 get_tile(LastPosition, Ne, e),
 get_tile(LastPosition, Nbw, BW),
 not(BW=e),
 Diff is abs(Ne-Nbw),
 Diff<4,
 replace(LastPosition,Ne,BW,IntermediatePosition),
 replace(IntermediatePosition,Nbw,e,NewPosition),
 (Diff=1 -> Cost=1
 ; otherwise -> Cost is Diff-1
).

NewPosition is reached
in one move from

LastPosition with cost Cost

goal(Move):-
 eval(Move,0).

eval(move(OldPosition,Position,C),Value):-
 bLeftOfw(Position,Value).

bLeftOfw(Pos,Val):-
 findall((Nb,Nw),
 (get_tile(Pos,Nb,b),get_tile(Pos,Nw,w), Nb<Nw),L),

 length(L,Val).
sum of the number of black tiles to

the left of each white tile

Informed search:
best-first search on a puzzle - auxiliaries

29

Informed search
example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles

between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of

all the white tiles.

147 / 259

order_moves(move(noparent,StartPosition,0),
 VisitedMoves,Positions,
 [StartPositionPositions],TotalCost,TotalCost).

order_moves(move(FromPosition,ToPosition,Cost),
 VisitedMoves,Positions,
 FinalPositions,TotalCost,FinalTotalCost):-
 element(PreviousMove, VisitedMoves),
 PreviousMove = move(PreviousPosition, FromPosition,CostOfPreviousMove),
 NewTotalCost is TotalCost + Cost,
 order_moves(PreviousMove,VisitedMoves,
 [ToPosition|Positions],FinalPositions,NewTotalCost,FinalTotalCost).

order_moves(FinalMove, VisitedMoves,Positions,FinalPositions,TotalCost,FinalTotalCost):
FinalPositions = Positions + connecting sequence of target positions from VisitedMoves ending in

FinalMove’s target position.
FinalTotalCost = TotalCost + total cost of moves added to Positions to obtain FinalPositions.

Informed search:
best-first search on a puzzle - example run

30

Informed search
example puzzle

A tile may be moved to the empty spot if there are at most 2 tiles

between it and the empty spot.
Find a series of moves that bring all the black tiles to the right of

all the white tiles.

147 / 259

?- tiles(M,C).
[b,b,b,e,w,w,w]-9
[b,b,b,w,e,w,w]-9
[b,b,e,w,b,w,w]-8
[b,b,w,w,b,e,w]-7
[b,b,w,w,b,w,e]-7
[b,b,w,w,e,w,b]-6
[b,e,w,w,b,w,b]-4
[b,w,e,w,b,w,b]-4
[e,w,b,w,b,w,b]-3
[w,w,b,e,b,w,b]-2
[w,w,b,w,b,e,b]-1

M =[[b,b,b,e,w,w,w],[b,b,b,w,e,w,w],
 [b,b,e,w,b,w,w],[b,b,w,w,b,e,w],
 [b,b,w,w,b,w,e],[b,b,w,w,e,w,b],
 [b,e,w,w,b,w,b],[b,w,e,w,b,w,b],
 [e,w,b,w,b,w,b],[w,w,b,e,b,w,b],
 [w,w,b,w,b,e,b],[w,w,e,w,b,b,b]]

C = 15

Simply Logical – Chapter 6 © Peter Flach, 2005

Comparing heuristics

!! ""##!!"" ##
bLeftOfwbLeftOfw

outOfPlaceoutOfPlace

99

99

88

77

77

66

44

44

33

22

11

00

00

11

22

44

55

66

88

99

1010

1212

1313

1515

1212

1010

99

77

77

44

44

33

22

00

00

11

33

44

66

88

99

1111

1212

1414

1818

1515

1313

1111

88

77

77

66

66

22

22

00

00

11

33

44

66

77

88

99

1010

1212

1313

1515

p.123

$$""##$$ ""

Informed search:
optimal best search

31

Best-first search is not complete by itself:
a heuristic might consistently
assign lower values to the nodes
on an infinite path

An A algorithm is a complete best-first search algorithm that aims

at minimizing the total cost along a path from start to goal.

f(n) = g(n) + h(n)

actual cost so far:
adds breadth-first flavor

estimate on further cost to reach goal:
if optimistic (underestimating the cost), an optimal path
will always be found. Such an algorithm is called A*.

h(n)=0 : degenerates to breadth-first

Declarative
Programming
5: natural language

processing using DCGs

Definite clause grammars:
context-free grammars in Prolog

2

one non-terminal on
left-hand side

sentence --> noun_phrase,verb_phrase.
noun_phrase --> proper_noun.
noun_phrase --> article,adjective,noun.
noun_phrase --> article,noun.
verb_phrase --> intransitive_verb.
verb_phrase --> transitive_verb,noun_phrase.
article --> [the].
adjective --> [lazy].
adjective --> [rapid].
proper_noun --> [achilles].
noun --> [turtle].
intransitive_verb --> [sleeps].
transitive_verb --> [beats].

non-terminal
defined by rule

produces syntactic
category

terminal: word in
language

sentences generated by grammar are lists of terminals:
the lazy turtle sleeps, Achilles beats the turtle, the rapid turtle beats Achilles

context-sensitive example:

noun,singular-->[turtle],singular.

singular,intransitive_verb-->[sleep]

Definite clause grammars:
parse trees for generated sentences

3

sentence

noun_phrase verb_phrase

article adjective noun transitive_verb noun_phrase

proper_noun

achillesbeatsturtlerapidthe

words of sentence
as leafs

syntactic categories
as leafs

Definite clause grammars:
top-down construction of parse trees

4

start with NT and repeatedly replace NTS on right-hand side of an
applicable rule until sentence is obtained as a list of terminals

sentence

noun_phrase,verb_phrase

article,adjective,noun,verb_phrase

[the],adjective,noun,verb_phrase

[the],[rapid],noun,verb_phrase

[the],[rapid],[turtle],verb_phrase

[the],[rapid],[turtle],transitive_verb,noun_phrase

[the],[rapid],[turtle],[beats],noun_phrase

[the],[rapid],[turtle],[beats],proper_noun

[the],[rapid],[turtle],[beats],[achilles]

sentence!--> noun_phrase,
 verb_phrase

noun_phrase!--> article,
 adjective,
 noun

article!--> [the]

adjective!--> [rapid]

noun!--> [turtle]

verb_phrase!--> transitive_verb,
 noun_phrase

transitive_verb!--> [beats]

noun_phrase!--> proper_noun

proper_noun!--> [achilles]

similar to SLD-resolution!

DCG rules and Prolog clauses:
equivalence

5

sentence

grammar rule

equivalent
Prolog clause

[the, rapid, turtle, beats, achilles]

sentence --> noun_phrase,
 verb_phrase

verb-->[sleeps]

sentence(S) :-
 noun_phrase(NP),
 verb_phrase(VP),
 append(NP,VP,S).

verb([sleeps]).

parsing ?- sentence([the,rapid,turtle,beats,achilles])

S is a sentence if some first part
belongs to the noun_phrase

category and some second part
to the verb_phrase category

DCG rules and Prolog clauses:
built-in equivalence without append/3

6

grammar rule

equivalent
Prolog clause

sentence --> noun_phrase,
 verb_phrase

sentence(L,L0) :-
 noun_phrase(L,L1),
 verb_phrase(L1,L0).

parsing ?- phrase(sentence, L)

L consists of a sentence
followed by L0

starting
non-terminal

built-in meta-predicate calling
sentence(L,[])

meta-level

object-level

DCG rules and Prolog clauses:
summary and expressivity

7

META-
LEVEL

OBJECT-
LEVEL

GRAMMAR PARSING

s --> np,vp

s(L,L0):-
! np(L,L1),
! vp(L1,L0)

?-phrase(s,L)

?-s(L,[])

non-terminals can have arguments
goals can be put into the rules

no need for deterministic grammars
a single formalism for specifying syntax, semantics

parsing and generating

Expressivity of DCG rules:
non-terminals with arguments - plurality

8

sentence --> noun_phrase(N),verb_phrase(N).
noun_phrase(N) --> article(N),noun(N).
verb_phrase(N) --> intransitive_verb(N).
article(singular) --> [a].
article(singular) --> [the].
article(plural) --> [the].
noun(singular) --> [turtle].
noun(plural) --> [turtles].
intransitive_verb(singular) --> [sleeps].
intransitive_verb(plural) --> [sleep].

phrase(sentence,[a,turtle,sleeps]). % yes
phrase(sentence,[the,turtles,sleep]). % yes
phrase(sentence,[the,turtles,sleeps]). % no

arguments unify to
express plurality

agreement

Expressivity of DCG rules:
non-terminals with arguments - parse trees

9

sentence(s(NP,VP)) --> noun_phrase(NP),verb_phrase(VP).
noun_phrase(np(N)) --> proper_noun(N).
noun_phrase(np(Art,Adj,N)) --> article(Art),adjective(Adj),
 noun(N).
noun_phrase(np(Art,N)) --> article(Art),noun(N).
verb_phrase(vp(IV)) --> intransitive_verb(IV).
verb_phrase(vp(TV,NP)) --> transitive_verb(TV),noun_phrase(NP).
article(art(the)) --> [the].
adjective(adj(lazy)) --> [lazy].
adjective(adj(rapid)) --> [rapid].
proper_noun(pn(achilles)) --> [achilles].
noun(n(turtle)) --> [turtle].
intransitive_verb(iv(sleeps)) --> [sleeps].
transitive_verb(tv(beats)) --> [beats].

?-phrase(sentence(T),[achilles,beats,the,lazy,turtle])

T = s(np(pn(achilles)),
 vp(tv(beats),
 np(art(the),
 adj(lazy),
 n(turtle))))

Expressivity of DCG rules:
goals in rule bodies

10

numeral(N) --> n1_999(N).
numeralN) --> n1_9(N1),[thousand],n1_999(N2),{N is N1*1000+N2}.
n1_999(N) --> n1_99(N).
n1_999(N) --> n1_9(N1),[hundred],n1_99(N2),{N is N1*100+N2}.
n1_99(N) --> n0_9(N).
n1_99(N) --> n10_19(N).
n1_99(N) --> n20_90(N).
n1_99(N) --> n20_90(N1),n1_9(N2),{N is N1+N2}.
n0_9(0) --> [].
n0_9(N) --> n1_9(N).
n1_9(1) --> [one].
n1_9(2) --> [two].
 …
n10_19(10) --> [ten].
n10_19(11) --> [eleven].
 …
n20_90(20) --> [twenty].
n20_90(30) --> [thirty].
 …

regular goal enclosed
by braces

X_Y(N) if N is a number in [X..Y].

?-phrase(numeral(2211),N).
N = [two,thousand,two,hundred,eleven]

n1_99(N,L,L0) :-
 n20_90(N1,L,L1),
 n1_9(N2,L1,L0),
 N is N1 + N2.

Interpretation of natural language:
syntax and semantics

11

sentence --> determiner, noun, verb_phrase
sentence --> proper_noun, verb_phrase
verb_phrase --> [is], property
property --> [a], noun
property --> [mortal]
determiner --> [every]
proper_noun --> [socrates]
noun --> [human]

sy
nt

ax
se

m
an

tic
s

[every, human, is, mortal]

mortal(X):- human(X) represents meaning of
sentence

interpret a sentence: assign a clause to it

Interpretation of natural language:
interpreting sentences as clauses (I)

12

proper_noun(socrates) -->
 [socrates]

the meaning of the
property ‘mortal’ is a
mapping from terms to
literals containing the
unary predicate mortal

property(X=>mortal(X)) --> [mortal].

?-phrase(sentence(C),[socrates,is,mortal]).
C = [(mortal(socrates):- true)]

operator X=>L: term X is mapped to literal L

verb_phrase(M) --> [is], property(M).
sentence([(L:-true)]) --> proper_noun(X),
 verb_phrase(X=>L).

the meaning of the
proper noun ‘Socrates’ is
the term socrates

the meaning of a phrase
(proper noun - verb) is a
clause with empty body
and of which the head is
obtained by applying the
meaning of the verb
phrase to the meaning of
the proper noun

singleton clause list, cf.
determiner ‘some’

Interpretation of natural language:
interpreting sentences as clauses (II)

13

sentence(C) --> determiner(M1,M2,C),
 noun(M1),
 verb_phrase(M2).
noun(X=>human(X)) --> [human].

the meaning of a
determined sentence with
determiner ‘every’ is a
clause with the same
variable in head and body

determiner(X=>B, X=>H, [(H:- B)]) --> [every].

?-phrase(sentence(C),[every,human,is,mortal])
C = [(mortal(X):- human(X))]

Interpretation of natural language:
interpreting sentences as clauses (III)

14

determiner(sk=>H1,sk=>H2,
 [(H1:-true),(H1:-true)] --> [some].

the meaning of a
determined sentence
with determiner ‘some’
are two clauses about
the same individual
(i.e., skolem constant)

?-phrase(sentence(C),[some,humans,are,mortal])
C = [(human(sk):-true),(mortal(sk):-true)]

Interpretation of natural language:
relational nature illustrated

15

?-phrase(sentence(C),S).
C = human(X):-human(X)
S = [every,human,is,a,human];
C = mortal(X):-human(X)
S = [every,human,is,mortal];
C = human(socrates):-true
S = [socrates,is,a,human];
C = mortal(socrates):-true
S = [socrates,is,mortal];

?-phrase(sentence(Cs),[D,human,is,mortal]).
D = every, Cs = [(mortal(X):-human(X))];
D = some, Cs = [(human(sk):-true),(mortal(sk):-true)]

Interpretation of natural language:
complete grammar with plurality agreement

16

:- op(600,xfy,’=>’).
sentence(C) --> determiner(N,M1,M2,C), noun(N,M1),
verb_phrase(N,M2).
sentence([(L:- true)]) --> proper_noun(N,X),
verb_phrase(N,X=>L).
verb_phrase(s,M) --> [is], property(s,M).
verb_phrase(p,M) --> [are], property(p,M).
property(N,X=>mortal(X)) --> [mortal].
property(s,M) --> noun(s,M).
property(p,M) --> noun(p,M).
determiner(s, X=>B , X=>H, [(H:- B)]) --> [every].
determiner(p, sk=>H1, sk=>H2, [(H1 :- true),(H2 :- true)]) -->[some].
proper_noun(s,socrates) --> [socrates].
noun(s,X=>human(X)) --> [human].
noun(p,X=>human(X)) --> [humans].
noun(s,X=>living_being(X)) --> [living],[being].
noun(p,X=>living_being(X)) --> [living],[beings].

Interpretation of natural language:
shell for building up and querying rule base

17

question(Q) --> [who], [is], property(s,X=>Q)
question(Q) --> [is], proper_noun(N,X), property(N,X=>Q)
question((Q1,Q2)) --> [are], [some], noun(p,sk=>Q1),
 property(p,sk=>Q2)gr

am
m

ar

fo
r

qu
er

ie
s

nl_shell(RB) :- get_input(Input), handle_input(Input,RB).

handle_input(stop,RB) :- !.
handle_input(show,RB) :- !, show_rules(RB), nl_shell(RB).
handle_input(Sentence,RB) :- phrase(sentence(Rule),Sentence),
 nl_shell([Rule|RB]).
handle_input(Question,RB) :- phrase(question(Query),Question),
 prove_rb(Query,RB),!
 transform(Query,Clauses),
 phrase(sentence(Clauses),Answer),
 show_answer(Answer),
 nl_shell(RB).
handle_input(Error,RB) :- show_answer(’no’), nl_shell(RB).

sh
el

l add new
rule

question that can be solved

transform instantiated query
(conjuncted literals) to list of clauses

with empty body
generate nl

Interpretation of natural language:
shell for building up and querying rule base - aux

18

show_rules([]).
show_rules([R|Rs]) :-
 phrase(sentence(R),Sentence),
 show_answer(Sentence),
 show_rules(Rs).
get_input(Input) :-
 write(’? ’),read(Input).
 show_answer(Answer) :-
 write(’! ’),write(Answer), nl.

convert rule to natural
language sentence

show_answer(Answer) :- write(‘!’),nl.

get_input(Input) :- write(‘?’),read(Input).

transform((A,B),[(A:-true)|Rest]):-!,
 transform(B,Rest).
transform(A,[(A:-true)]).

convert query to list of
clauses for which natural
language sentences can

be generated

Interpretation of natural language:
shell for building up and querying rule base - interpreter

19

prove(true,RB) :- !.
prove((A,B),RB) :- !,
 prove(A,RB),prove(B,RB).
prove(A,RB) :-
 find_clause((A:-B),RB),
 prove(B,RB).

find_clause(C,[R|Rs]) :-
 copy_element(C,R).
find_clause(C,[R|Rs]) :-
 find_clause(C,Rs).

copy_element(X,Ys) :- element(X1,Ys),
 copy_term(X1,X).

finds a clause in the rule base, but without
instantiating its variables (rule can be used
multiple times, rules can share variables)

handy when storing rule base in list

Interpretation of natural language:
shell for building up and querying rule base - example

20

? [every,human,is,mortal]
? [socrates,is,a,human]
? [who,is,mortal]
! [socrates,is,mortal]
? [some,living,beings,are,humans]
? [are,some,living,beings,mortal]
! [some,living,beings,are,mortal]

shell :- repeat, get_input(X), handle_input(X).
handle_input(stop) :- !.
handle_input(X) :- /* handle */, fail.

possible improvement: apply
idiom of failure-driven loop to

avoid memory issues

built-in repeat/1
succeeds indefinitely

causes backtracking to
repeat literal

Declarative
Programming

6: reasoning with incomplete information:
default reasoning, abduction

Reasoning with incomplete information:
overview

default
reasoning

reasoning that leads to conclusions that are plausible, but not
guaranteed to be true because not all information is available

abduction induction

assume normal state
of affairs, unless

there is evidence to
the contrary

choose between
several explanations

that explain an
observation

generalize a rule
from a number of

similar observations

Such reasoning is unsound. Deduction is sound, but only makes implicit information explicit.

“If something is a bird, it
flies.”

“I flipped the switch, but
the light doesn’t turn on.
The bulb mist be broken”

“The sky is full of dark
clouds. It will rain.”

2

Default reasoning:
Tweety is a bird. Normally, birds fly.
Therefore, Tweety flies.

3

bird(tweety).
flies(X) :- bird(X), normal(X).

has three models:

{bird(tweety)}
{bird(tweety), flies(tweety)}
{bird(tweety), flies(tweety), normal(tweety)}

bird(tweety) is the only logical conclusion of the program
because it occurs in every model.

If we want to conclude flies(tweety) through deduction, we have
to state normal(tweety) explicitly. Default reasoning assumes

something is normal, unless it is known to be abnormal.

Default reasoning:
A more natural formulation using abnormal/1

4

bird(tweety).
flies(X) ; abnormal(X) :- bird(X).

has two minimal models:

{bird(tweety), flies(tweety)}
{bird(tweety), abnormal(tweety)}

indefinite
clause

model 1 is model of the general clause:

flies(X):-bird(X), not(abnormal(X)).

model 2 is model of the general clause:
abnormal(X) :- bird(X), not(flies(X)). using negation as failure:

tweety flies if it cannot be
proven that he is abnormal

bird(tweety).
flies(X):-bird(X), not(abnormal(X)).
ostrich(tweety).
abnormal(X) :- ostrich(X).

tweety no longer flies, he is an ostrich: the
default rule (birds fly) is cancelled by the

more specific rule (ostriches)

5

Default reasoning:
non-monotonic form of reasoning

bird(tweety).

flies(X):-bird(X),not(
abnormal(X)).

bird(tweety).flies(X):-bird(X),not(abnormal(X)).

ostrich(tweety).abnormal(X) :- ostrich(X).

new information can
invalidate previous

conclusions:

Not the case for deductive reasoning,
which is monotonic in the following sense:

Th⊢p ⇒ Th∪{q}⊢p

Closure(Th) = {p | Th ⊢ p}
Th1 ⊆ Th2 ⇒ Closure(Th1) ⊆ Closure(Th2)

6

Default reasoning:
without not/1, using a meta-interpreter

problematic: e.g., floundering but also
because it has no clear declarative semantics

Distinguish regular rules (without exceptions)
from default rules (with exceptions.)

Only apply a default rule when it does not
lead to an inconsistency.

default((flies(X) :- bird(X))).
rule((not(flies(X)) :- penguin(X))).
rule((bird(X) :- penguin(X))).
rule((penguin(tweety) :- true)).
rule((bird(opus) :- true)).

7

Default reasoning:
using a meta-interpreter

explain(F,E):-
 explain(F,[],E).
explain(true,E,E) :- !.
explain((A,B),E0,E) :- !,
 explain(A,E0,E1),
 explain(B,E1,E).
explain(A,E0,E):-
 prove(A,E0,E).
explain(A,E0,[default((A:-B))|E]):-
 default((A:-B)),
 explain(B,E0,E),
 not(contradiction(A,E)).

E explains F: lists the
rules used to prove F

prove using regular rules

prove using default rules

contradiction(not(A),E) :- !,
 prove(A,E,_).
contradiction(A,E):-
 prove(not(A),E,_).

prove(true,E,E) :- !.
prove((A,B),E0,E) :- !,
 prove(A,E0,E1),
 prove(B,E1,E).
prove(A,E0,[rule((A:-B))|E]):-
 rule((A:-B)),
 prove(B,E0,E).

do not use a default to
prove A (or not(A)) if you
can prove not(A) (or A)

using regular rules
8

Default reasoning:
using a meta-interpreter, Opus example

?- explain(flies(X),E)
X=opus
E=[default((flies(opus) :- bird(opus))),
 rule((bird(opus) :- true))]

?- explain(not(flies(X)),E)
X=tweety
E=[rule((not(flies(tweety)) :- penguin(tweety))),
 rule((penguin(tweety) :- true))]

default((flies(X) :- bird(X))).
 rule((not(flies(X)) :- penguin(X))).
 rule((bird(X) :- penguin(X))).
 rule((penguin(tweety) :- true)).
 rule((bird(opus) :- true)).

default rule has
been cancelled

9

Default reasoning:
using a meta-interpreter, Dracula example

?-explain(flies(dracula),E)
E=[default((flies(dracula) :- bat(dracula))),
 rule((bat(dracula) :- true))]

default((not(flies(X)) :- mammal(X))).
default((flies(X) :- bat(X))).
default((not(flies(X)) :- dead(X))).
 rule((mammal(X) :- bat(X))).
 rule((bat(dracula) :- true)).
 rule((dead(dracula) :- true)).

?-explain(not(flies(dracula)),E)
E=[default((not(flies(dracula)) :- mammal(dracula)))
 rule((mammal(dracula) :- bat(dracula))),
 rule((bat(dracula) :- true))]
E=[default((not(flies(dracula)) :- dead(dracula)))
 rule((dead(dracula) :- true))]

dracula flies because
bats typically fly

dracula doesn’t fly
because mammals

typically don’t

dracula doesn’t fly
because dead things

typically don’t
10

Default reasoning:
using a revised meta-interpreter

default(mammals_dont_fly(X), (not(flies(X)):-mammal(X))).
default(bats_fly(X), (flies(X):-bat(X))).
default(dead_things_dont_fly(X), (not(flies(X)):-dead(X))).
 rule((mammal(X):-bat(X))).
 rule((bat(dracula):-true)).
 rule((dead(dracula):-true)).
 rule((not(mammals_dont_fly(X)):-bat(X))).
 rule((not(bats_fly(X)):-dead(X))).

need a way to cancel particular defaults in certain
situations: bats are flying mammals although the default
is that mammals do not fly

name associated with
default rule

11

Default reasoning:
using a revised meta-interpreter

default(mammals_dont_fly(X), (not(flies(X)):-mammal(X))).
default(bats_fly(X), (flies(X):-bat(X))).
default(dead_things_dont_fly(X), (not(flies(X)):-dead(X))).
 rule((mammal(X):-bat(X))).
 rule((bat(dracula):-true)).
 rule((dead(dracula):-true)).
 rule((not(mammals_dont_fly(X)):-bat(X))).
 rule((not(bats_fly(X)):-dead(X))).

need a way to cancel particular defaults in certain
situations: bats are flying mammals although the default
is that mammals do not fly

name associated with
default rule

rule cancels the
mammals_dont_fly default

12

Default reasoning:
using a revised meta-interpreter

explain(A,E0,[default(Name)|E]):-
 default(Name,(A:- B)),
 explain(B,E0,E),
 not(contradiction(Name,E)),
 not(contradiction(A,E)).

default rule is not cancelled in this
situation: e.g., do not use default

named bats_fly(X) if you can prove
not(bats_fly(X))

explanations keep
track of names rather

than default rules

?-explain(flies(dracula),E)
no
?-explain(not(flies(dracula)),E)
E=[default(dead_things_dont_fly(dracula)),
 rule((dead(dracula):- true))]

dracula can not fly after all

13

Default reasoning:
Dracula revisited

notflies(X):-mammal(X),not(flying_mammal(X)).
flies(X):-bat(X),not(nonflying_bat(X)).
notflies(X):-dead(X),not(flying_deadthing(X)).
mammal(X):-bat(X).
bat(dracula).
dead(dracula).
flying_mammal(X):-bat(X).
nonflying_bat(X):-dead(X).

default(mammals_dont_fly(X), (not(flies(X)):-mammal(X))).
default(bats_fly(X), (flies(X):-bat(X))).
default(dead_things_dont_fly(X), (not(flies(X)):-dead(X))).
 rule((mammal(X):-bat(X))).
 rule((bat(dracula):-true)).
 rule((dead(dracula):-true)).
 rule((not(mammals_dont_fly(X)):-bat(X))).
 rule((not(bats_fly(X)):-dead(X))).us

in
g

m
et

a-
in

te
rp

re
te

r
us

in
g

na
f

typical case is general
clause that negates

abnormality predicate

typical case is a clause
that is only applicable

when it does not lead to
inconsistencies;

applicability can be
restricted using clause

names

14

Abduction:
given a theory T and an observation O,
find an explanation E such that T∪E⊨O

likes(peter,S) :- student_of(S,peter).
likes(X,Y) :- friend(X,Y).

likes(peter,paul)

T

O

E1 {student_of(paul,peter)}

{friend(peter,paul)}E2

Default reasoning makes assumptions about what is false (e.g., tweety is not an abnormal bird), abduction can also make assumptions about what is true. {(likes(X,Y) :- friendly(Y)),
 friendly(paul)}

another possibility, but abductive explanations are
usually restricted to ground literals with predicates

that are undefined in the theory (abducibles)

15

Abduction:
abductive
meta-interpreter
abduce(O,E):-
 abduce(O,[],E).
abduce(true,E,E) :- !.
abduce((A,B),E0,E) :- !,
 abduce(A,E0,E1),
 abduce(B,E1,E).
abduce(A,E0,E):-
 clause(A,B),
 abduce(B,E0,E).
abduce(A,E,E):-
 element(A,E).
abduce(A,E,[A|E]):-
 not(element(A,E)),
 abducible(A).
abducible(A):-
 not(clause(A,B)).

Try to prove Observation from theory,
when a literal is encountered that
cannot be resolved (an abducible),
add it to the Explanation.

Theory ∪ Explanation ⊨ Observation

A already
assumed

A can be assumed if it
was not already assumed

and it is an abducible.

likes(peter,S) :- student_of(S,peter).
likes(X,Y) :- friend(X,Y).

?-abduce(likes(peter,paul),E)
E = [student_of(paul,peter)];
E = [friend(paul,peter)]

16

Abduction:
abductive meta-interpreter and negation

flies(X) :- bird(X), not(abnormal(X)).
abnormal(X) :- penguin(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?-abduce(flies(tweety),E)
E = [not(abnormal(tweety)),penguin(tweety)];
E = [not(abnormal(tweety)),sparrow(tweety)];

ge
ne

ra
l c

la
us

es

inconsistent with
theory as penguins

are abnormal

abnormal/1 not an
abducible

Since no clause is found for not(abnormal(tweety)), it is added to the explanation.

17

Abduction:
first attempt at abduction with negation

abducible(A):-
 A \= not(X),
 not(clause(A,B)).

abduce(not(A),E,E):-
 not(abduce(A,E,E)).

extend abduce/3 with negation as failure:

do not add negated literals to the explanation:

flies(X) :- bird(X), not(abnormal(X)).
abnormal(X) :- penguin(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?-abduce(flies(tweety),E)
E = [sparrow(tweety)]

18

Abduction:
first attempt at abduction with negation: FAILED

?- abduce(not(abnormal(tweety)),[],[])
true .

abduce(not(A),E,E):-
 not(abduce(A,E,E)).

flies1(X):- not(abnormal(X)),bird(X)
abnormal(X) :- penguin(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

any explanation of bird(tweety) will also be an
explanation of flies1(tweety):

the fact that abnormal(tweety) is to be considered false,
is not reflected in the explanation:

assumes the explanation
is already complete

reversed order
of literals

19

Abduction:
final abductive meta-interpreter: abduce/3

abduce(true,E,E) :- !.
abduce((A,B),E0,E) :- !,
 abduce(A,E0,E1),
 abduce(B,E1,E).
abduce(A,E0,E):-
 clause(A,B),
 abduce(B,E0,E).
abduce(A,E,E):-
 element(A,E).
abduce(A,E,[A|E]):-
 not(element(A,E)),
 abducible(A),
 not(abduce_not(A,E,E)).
abduce(not(A),E0,E):-
 not(element(A,E0)),
 abduce_not(A,E0,E).

A already
assumed

A can be assumed if
 it was not already,

it is abducible,
E doesn’t explain not(A)

only assume not(A) if A was not already assumed,
ensure not(A) is reflected in the explanation

abducible(A):-
 A \= not(X),
 not(clause(A,B)).

Abduction:
final abductive meta-interpreter: abduce_not/3

abduce_not((A,B),E0,E):-
 !,
 abduce_not(A,E0,E) ;
 abduce_not(B,E0,E).
abduce_not(A,E0,E):-
 setof(B,clause(A,B),L),
 abduce_not_list(L,E0,E).
abduce_not(A,E,E):-
 element(not(A),E).
abduce_not(A,E,[not(A)|E]):-
 not(element(not(A),E)),
 abducible(A),
 not(abduce(A,E,E)).
abduce_not(not(A),E0,E):-
 not(element(not(A),E0)),
 abduce(A,E0,E).

abduce_not_list([],E,E).
abduce_not_list([B|Bs],E0,E):-
 abduce_not(B,E0,E1),
 abduce_not_list(Bs,E1,E).

disjunction: a negation
conjunction can be explained by
explaining A or by explaining B

not(A) is explained by explaining
not(B) for every A:-B

not(A) already assumed

assume not(A) if not already so, A is abducible
and E does not already explain A

explain not(not(A)) by
explaining A

20

Abduction:
final abductive meta-interpreter: example
flies(X) :- bird(X),not(abnormal(X)).
flies1(X) :- not(abnormal(X)),bird(X).
abnormal(X) :- penguin(X).
abnormal(X) :- dead(X).
bird(X) :- penguin(X).
bird(X) :- sparrow(X).

?- abduce(flies(tweety),E).
E = [not(penguin(tweety)),
 not(dead(tweety)),
 sparrow(tweety)]

?- abduce(flies1(tweety),E).
E = [sparrow(tweety),
 not(penguin(tweety)),
 not(dead(tweety))]

now abduces as
expected

21

Abduction:
diagnostic reasoning

X!

Y!

Z!

S!

Sum!
xor1!

xor2!

C1!

C2!

Carry!

and1!

and2!

or1!

Theory: system descriptionObservation: input values, output valuesExplanation: diagnosis=hypothesis about which components are faulty
3-bit adder

usually what
has to be
carried on

from previous
computation

adder(X,Y,Z,Sum,Carry) :-
 xor(X,Y,S),
 xor(Z,S,Sum),
 and(X,Y,C1),and(Z,S,C2),
 or(C1,C2,Carry).

Theory describing normal operation

xor(0,0,0). and(0,0,0). or(0,0,0).
xor(0,1,1). and(0,1,0). or(0,1,1).
xor(1,0,1). and(1,0,0). or(1,0,1).
xor(1,1,0). and(1,1,1). or(1,1,1).

22

Abduction:
diagnostic reasoning - fault model

describes how
each component
can behave in a
faulty manner

fault(NameComponent=State)

can be nested:
subSystemName-
componentName

adder(N,X,Y,Z,Sum,Carry):-
 xorg(N-xor1,X,Y,S),
 xorg(N-xor2,Z,S,Sum),
 andg(N-and1,X,Y,C1),
 andg(N-and2,X,S,C2),
 org(N-or1,C1,C2,Carry).

xorg(N,X,Y,Z) :- xor(X,Y,Z).
xorg(N,0,0,1) :- fault(N=s1).
xorg(N,0,1,0) :- fault(N=s0).
xorg(N,1,0,0) :- fault(N=s0).
xorg(N,1,1,1) :- fault(N=s1).

xandg(N,X,Y,Z):- and(X,Y,Z).
xandg(N,0,0,1):- fault(N=s1).
xandg(N,0,1,1) :- fault(N=s1).
xandg(N,1,0,1):- fault(N=s1).
xandg(N,1,1,0) :- fault(N=s0).

org(N,X,Y,Z):- or(X,Y,Z).
org(N,0,0,1):- fault(N=s1).
org(N,0,1,0) :- fault(N=s0).
org(N,1,0,0):- fault(N=s0).
org(N,1,1,0) :- fault(N=s0).

correct behavior

faulty behavior

s0: output stuck at 0,
s1: output stuck at 1

23

Abduction:
diagnostic reasoning - diagnoses for faulty adder

diagnosis(Observation,Diagnosis):-
 abduce(Observation,Diagnosis).

?-diagnosis(adder(a,0,0,1,0,1),D).
D = [fault(a-or1=s1),fault(a-xor2=s0)];
D = [fault(a-and2=s1),fault(a-xor2=s0)];
D = [fault(a-and1=s1),fault(a-xor2=s0)];
D = [fault(a-and2=s1),fault(a-and1=s1),fault(a-xor2=s0)];
D = [fault(a-or1=s1),fault(a-and2=s0), fault(a-xor1=s1)];
D = [fault(a-and1=s1),fault(a-xor1=s1)];
D = [fault(a-and2=s0),fault(a-and1=s1), fault(a-xor1=s1)];
D = [fault(a-xor1=s1)]

obvious diagnosis: outputs
of adder are stuck

adder(N,X,Y,Z,Sum,Carry): both
Sum and Carry are wrong

most plausible as only one faulty
component accounts for entire fault

24

Declarative semantics for incomplete information:
completing incomplete programs

married(X); bachelor(X) :- man(X), adult(X).
man(john). adult(john).

can no longer express

which had two minimal models
{man(john),adult(john),married(john)}
{man(john),adult(john),bachelor(john)}
{man(john),adult(john),married(john),bachelor(john)}

characteristic
of indefinite clauses

ge
ne

ra
l c

la
us

es
pr

ob
le

m

first model is minimal model of general clause

married(X) :- man(X), adult(X), not bachelor(X).

second model is minimal model of general clause

bachelor(X) :- man(X), adult(X), not married(X).

to prove that
someone is a

bachelor, prove
that he is a man

and an adult, and
prove that he is not

a bachelor

definite clause
containing not

semantics and proof theory for
the not in a general clause will

be discussed later NOW

25

Declarative semantics for incomplete information:
completing incomplete programs

Transform an incomplete program into a complete one,
that captures the intended meaning of the original program.

A program P is “complete” if for every (ground) fact f,
either P ⊧ f or P ⊧ ¬f unique

minimal
model

closed world assumption predicate completion
po

ss
ib

le
 tr

an
sf

or
m

at
io

ns

ok for definite clauses
(without negation)

ok for general clauses
(with negation in body)

straightforward

may lead to inconsistencies if
the program is not stratified

26

Completing incomplete programs:
closed world assumption

everything that is not
known to be true,

must be false

do not say something is not true,
simply say nothing about it

motivation: in general, there are

more false statements that can be

made than true statements

27

Completing incomplete programs:
closed world assumption

everything that is not
known to be true,

must be false

28

CWA(P) = P ∪ {:-A|A∈BP ∧ P⊭A}

CWA-complement of a program P (i.e, CWA(P)-P):
explicitly assume that every ground atom A that

does not follow from P is false

the clause “false :-A” is only true under interpretations in which A
is false

Completing incomplete programs:
closed world assumption - example

29

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

P

likes(peter,paul)
student_of(paul,peter)

models

BP {likes(peter,peter),likes(peter,paul),
 likes(paul,peter),likes(paul,paul),
 student_of(peter,peter),student_of(peter,paul),
 student_of(paul,peter),student_of(paul,paul)}

{student_of(paul,peter),likes(peter,paul)}
{student_of(paul,peter),likes(peter,paul),likes(peter,peter)}
{student_of(paul,peter),likes(peter,paul),
 student_of(peter,peter),likes(peter,peter)}
...

in total: 3*2^4=48 models for such a simple program!

only the black atoms are relevant for determining whether an interpretation is a model of every ground instance of every clause

there are still 4 orange
atoms remaining which can

each be added (or not)
freely to the above

interpretations

P ⊧ A

Completing incomplete programs:
closed world assumption - example

30

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

P

likes(peter,paul)
student_of(paul,peter)

BP {likes(peter,peter),likes(peter,paul),
 likes(paul,peter),likes(paul,paul),
 student_of(peter,peter),student_of(peter,paul),
 student_of(paul,peter),student_of(paul,paul)}

P ⊧ A

CWA(P) likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).
:- student(paul,paul).
:- student(peter,paul).
:- student(peter,peter).
:- likes(paul,paul).
:- likes(paul,peter).
:- likes(peter,peter).

is a complete program:
every ground atom from BP

is assigned true or false
has only 1 model: {student_of(paul,peter),likes(peter,paul)}which is declared the intended model of the program (also obtained as the intersection of all models)

Completing incomplete programs:
closed world assumption - inconsistency

31

bird(tweety).
flies(X);abnormal(X) :- bird(X).

P

BP {bird(tweety),abnormal(tweety),flies(tweety)}

CWA(P) bird(tweety).
flies(X);abnormal(X) :- bird(X).
:-abnormal(tweety).
:-flies(tweety)

CWA(P) is inconsistent
no longer has a model because, in order for the second clause to be true under an interpretation, its head needs to be true given that its body is already true due to the first clause

when applied to indefinite
and general clauses

bird(tweety)P ⊧ A

models {bird(tweety),flies(tweety)}
{bird(tweety),abnormal(tweety)}
{bird(tweety),abnormal(tweety),flies(tweety)}

Completing incomplete programs:
predicate completion - idea

32

regard each clause as part of the
complete definition of a predicate

only clause defining likes/2:

likes(peter,S) :- student(S,peter).

∀X∀S likes(X,S)↔X =peter∧student(S,peter)

its completion:

in clausal form:

likes(peter,S) :- student(S,peter).
X=peter :- likes(X,S).
student(S,peter) :- likes(X,S)

turn implications (if) into
equivalences (iff) by completing

clauses (with their and-only-if part)

P

Comp(P)

Completing incomplete programs:
predicate completion - algorithm
likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

1 ensure each argument of each clause head is a distinct variable

likes(X,S) :- X=peter,student_of(S,peter).
student_of(X,Y) :- X=paul,Y=peter

add literals
Var=Term to body

2 if there are several clauses for a predicate,
combine them into a single formula

use disjunction in implication’s body if there are multiple clauses
for a predicate

∀X∀Y likes(X,Y)← X=peter∧student_of(Y,peter))

3 turn the implication into an equivalence

∀X∀Y likes(X,Y)↔ X=peter∧student_of(Y,peter))

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

4 convert to clausal form

∀X∀Y student_of(X,Y)← X=paul∧Y=peter

∀X∀Y student_of(X,Y) ↔ X=paul∧Y=peter

33

Completing incomplete programs:
predicate completion - algorithm

3 turn the implication into an equivalence

∀X∀Y likes(X,Y)↔ X=peter∧student_of(Y,peter))

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

4 convert to clausal form

∀X∀Y student_of(X,Y) ↔ X=paul∧Y=peter

likes(peter,S) :- student_of(S,peter).
student_of(paul,peter).

likes(peter,S):-student_of(S,peter).
X=peter:-likes(X,S).
student_of(S,peter):-likes(X,S).
student_of(paul,peter).
X=paul:-student_of(X,Y).
Y=peter:-student_of(X,Y).

34

has the single model
{student_of(paul,peter), likes(peter,paul)}

for definite clauses,
CWA(P) and Comp(P)

have same model

careful with variables in a body that do not occur in the head

Completing incomplete programs:
predicate completion - existential variables

3 turn the implication into an equivalence

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z), ancestor(Z,Y).

∀X∀Y∀Z ancestor(X,Y)←parent(X,Z)∧ancestor(Z,Y)

∀X∀Y ancestor(X,Y)↔ (parent(X,Y) ∨

 (∃Z parent(X,Z)∧ancestor(Z,Y))))

∀X∀Y ancestor(X,Y)← ∃Z parent(X,Z)∧ancestor(Z,Y))∀Z:q←p(Z)
∀Z:q ∨ ¬p(Z)
q ∨ ∀Z:¬p(Z)
q ∨∃Z:p(Z)

use second form because
all clauses must have the

same head

35

Completing incomplete programs:
predicate completion - existential variables

3 turn the implication into an equivalence

∀X∀Y ancestor(X,Y)↔ (parent(X,Y) ∨

 (∃Z parent(X,Z)∧ancestor(Z,Y))))

36

4 convert to clausal form

ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z),ancestor(Z,Y).
parent(X,Y);parent(X,pa(X,Y)):-ancestor(X,Y).
parent(X,Y);ancestor(pa(X,Y),Y):-ancestor(X,Y).

Skolem functor
∀X∃Y : loves(X,Y)

∀X:loves(X,person_loved_by(X))

Completing incomplete programs:
predicate completion - negation

37

bird(tweety).
flies(X):-bird(X),not(abnormal(X)).

1 ensure each argument of each clause head is a distinct variable

bird(X):-X=tweety.
flies(X):-bird(X),not(abnormal(X)).

2 if there are several clauses for a predicate,
combine them into a single formula

∀X bird(X) ← X=tweety.
∀X flies(X) ← bird(X)∧¬abnormal(X)

3 turn the implication into an equivalence

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

∀X bird(X) ↔ X=tweety.

∀X flies(X) ↔ bird(X)∧¬abnormal(X).

∀X ¬abnormal(X)

Completing incomplete programs:
predicate completion - negation

38

bird(tweety).
flies(X):-bird(X),not(abnormal(X)).

3 turn the implication into an equivalence

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

∀X bird(X) ↔ X=tweety.

∀X flies(X) ↔ bird(X)∧¬abnormal(X).

∀X ¬abnormal(X)

4 convert to clausal form

bird(tweety).
X=tweety:-bird(X).
flies(X);abnormal(X):-bird(X).
bird(X):-flies(X).
:-flies(X),abnormal(X).
:-abnormal(X).

has the single model
{bird(tweety),flies(tweety)}

Completing incomplete programs:
predicate completion - inconsistency

39

wise(X):-not(teacher(X)).
teacher(peter):-wise(peter).

3 turn the implication into an equivalence

if a predicate without
definition is used in a

body (e.g. p/1),
add ∀X ¬p(X)

∀X wise(X) ↔ ¬teacher(X)

∀X teacher(X) ↔ X = peter ∧ wise(peter)

4 convert to clausal form

wise(X);teacher(X).
:-wise(X),teacher(X).
teacher(peter):-wise(peter).
X=peter:-teacher(X).
wise(peter):-teacher(X).

inconsistent!

Comp(P) is
inconsistent for

certain unstratified P

Completing incomplete programs:
stratified programs

40

organize the program in layers (strata);
do not allow the programmer to negate a predicate
that is not yet completely defined (in a lower stratum)

A program P is stratified if its predicate symbols can be partitioned into disjoint
sets S0, . . . , Sn
such that for each clause p(...) ← L1,...,Lj where p ∈ Sk , any literal Lj is such that
 if Lj =q(...) then q∈S0∪...∪Sk
 if Lj =¬q(...)then q∈S0∪...∪Sk!1

if P is stratified then
Comp(P) is consistent

sufficient but not necessary: there are non-stratified P’s for which Comp(P) is consistent

Completing incomplete programs:
soundness result for SLDNF-resolution

41

P ⊦SLDNF q ⇒ Comp(P) ⊧ q

completeness result only holds for a subclass of programs Declarative
Programming

7: inductive reasoning

1

Inductive reasoning:
overview

infer general rules from
specific observations

2

Given

B: background theory (clauses of logic program)
P: positive examples (ground facts)
N: negative examples (ground facts)

Find a hypothesis H such that

H “covers” every positive example given B

∀ p ∈ P: B ∪ H ⊧ p

H does not “cover” any negative example given B

∀ n ∈ N: B ∪ H ⊭ n

Inductive reasoning:
relation to abduction

3

given a theory T and an observation O,
find an explanation E such that T∪E⊨O

in inductive reasoning, the hypothesis (what has
to be added to the logic program) is a set of clauses rather than a set of ground facts

Try to adapt the abductive meta-interpreter:
inducible/1 defines the set of possible hypothesis

induce(E,H) :-
 induce(E,[],H).
induce(true,H,H).
induce((A,B),H0,H) :-
 induce(A,H0,H1),
 induce(B,H1,H).
induce(A,H0,H) :-
 clause(A,B),
 induce(B,H0,H).

induce(A,H0,H) :-
 element((A:-B),H0),
 induce(B,H0,H).
induce(A,H0,[(A:-B)|H]) :
 inducible((A:-B)),
 not(element((A:-B),H0)),
 induce(B,H0,H).

clause already
assumed

assume clause if
it’s an inducible and

not yet assumed

Inductive reasoning:
relation to abduction

4

inducible((flies(X):-bird(X),has_feathers(X),has_beak(X))).
inducible((flies(X):-has_feathers(X),has_beak(X))).
inducible((flies(X):-bird(X),has_beak(X))).
inducible((flies(X):-bird(X),has_feathers(X))).
inducible((flies(X):-bird(X))).
inducible((flies(X):-has_feathers(X))).
inducible((flies(X):-has_beak(X))).
inducible((flies(X):-true)).

?-induce(flies(tweety),H).
H = [(flies(tweety):-bird(tweety),has_feathers(tweety))];
H = [(flies(tweety):-bird(tweety))];
H = [(flies(tweety):-has_feathers(tweety))];
H = [(flies(tweety):-true)];
No more solutions

enumeration of
possible hypotheses

bird(tweety).
has_feathers(tweety).
bird(polly).
has_beak(polly).

Listing all inducible hypothesis is impractical. Better to systematically search the
hypothesis space (typically large and possibly infinite when functors are involved).
Avoid overgeneralization by including negative examples in search process.

probably an overgeneralization

Inductive reasoning:
a hypothesis search involving successive
generalization and specialization steps of a current hypothesis

ground fact for the predicate of which a definition is to be induced that is
either true (+ example) or false (- example) under the intended interpretation

this negative example
precludes the previous

hypothesis’ second
argument from unifying with

the empty list

example action hypothesis

+ p(b,[b]) p(X,Y).add clause

 - p(x,[]) specialize p(X,[V|W]).

- p(x,[a,b]) specialize p(X,[X|W]).

+ p(b,[a,b]) add clause p(X,[X|W]).
p(X,[V|W]):-p(X,W).

5

Generalizing clauses:
ϴ-subsumption

6

A clause c1 θ-subsumes a clause c2
⇔ ∃ a substitution θ such that c1θ ⊆ c2

clauses are seen as sets
of disjuncted positive
(head) and negative

(body) literals

c1 is more general than c2

H1;...;Hn :! B1,...,BmH1 ∨...∨ Hn ∨ ¬B1 ∨...∨ ¬Bm

element(X,V) :- element(X,Z)

θ-subsumes

element(X,[Y|Z]) :- element(X,Z)

using θ = {V → [Y|Z]}

a(X) :- b(X)

θ-subsumes

a(X) :- b(X), c(X).

using θ = id

Generalizing clauses:
θ-subsumption versus ⊧

 clause c1 θ-subsumes c2 ⇒ c1 ⊧ c2

The reverse is not true:

H1 is at least as general as H2 given B ⇔
 H1 covers everything covered by H2 given B
 ∀ p ∈ P: B ∪ H2 ⊧ p ⇒ B ∪ H1 ⊧ p

 B ∪ H1 ⊧ H2

a(X) :- b(X). % c1
p(X) :- p(X). % c2

c1 ⊧ c2, but there is no substitution θ such that c1θ ⊆ c2

7

Generalizing clauses:
testing for ϴ-subsumption

8

theta_subsumes((H1:-B1),(H2:-B2)):-
 verify((ground((H2:-B2)),H1=H2,subset(B1,B2))).

verify(Goal) :-
 not(not(call(Goal))).

ground(Term):-
 numbervars(Term,0,N).

A clause c1 θ-subsumes a clause c2
⇔ ∃ a substitution θ such that c1θ ⊆ c2

no variables substituted by θ in c2:
testing for θ-subsumption amounts to testing for subset relation
(allowing unification) between a ground version of c2 and c1

prove Goal, but without
creating bindings

Generalizing clauses:
testing for ϴ-subsumption

9

?- theta_subsumes((element(X,V):- []),
 (element(X,V):- [element(X,Z)])).
yes.

?- theta_subsumes((element(X,a):- []),
 (element(X,V):- [])).
no.

A clause c1 θ-subsumes a clause c2
⇔ ∃ a substitution θ such that c1θ ⊆ c2

bodies are lists of atoms

Generalizing clauses:
generalizing 2 atoms

10

element(1,[1]).

A clause c1 θ-subsumes a clause c2 ⇔ ∃ a substitution θ such that c1θ ⊆ c2

element(z,[z,y,x]).

element(X,[X|Y]).

subsumes using

θ = {X/1, Y/[]} sub
sum

es
 us

ing

θ =
 {X

/z
, Y

/[y
,x]

}

happens to be the least general (or most specific) generalization
because all other atoms that θ-subsume a1 and a2 also θ-subsume a3:

a1 a2

a3

element(X,[Y|Z]).

element(X,Y).

only requires second argument to
be an arbitrary non-empty list

no restrictions on
either argument

first element of second argument (a non-
empty list) has to be the first argument

Generalizing clauses:
generalizing 2 atoms - set of first-order terms is a lattice

11

g(f(f(a)),X)g(f(X),f(a)) g(f(X),X)

g(f(X),Y)

g(f(f(a)),f(a))

t1 is more general than t2 ⇔ for some substitution θ: t1θ = t2

greatest lower bound of two terms (meet operation): unification

least upper bound of two terms (join operation): anti-unification

specialization = applying a substitution

generalization = applying an inverse substitution (terms to variables)

anti-unification

unification

Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under θ-subsumption

12

dual of unification
compare corresponding argument terms of two atoms,
replace by variable if they are different
replace subsequent occurrences of same term by same variable

?- anti_unify(2*2=2+2,2*3=3+3,T,[],S1,[],S2).
T = 2*X=X+X
S1 = [2 <- X]
S2 = [3 <- X]

θ-LGG of first two arguments
remaining arguments: inverse substitutions for

each term and their accumulators

will not compute proper inverse substitutions: not clear which

occurrences of 2 are mapped to X (all but the first)

BUT we are only interested in the θ-LGG

clearly, Prolog will generate a new anonymous
variable (e.g., _G123) rather than X

Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under θ-subsumption

13

:- op(600,xfx,’<-’).
anti_unify(Term1,Term2,Term) :-
 anti_unify(Term1,Term2,Term,[],S1,[],S2).
anti_unify(Term1,Term2,Term1,S1,S1,S2,S2) :-
 Term1 == Term2,
 !.
anti_unify(Term1,Term2,V,S1,S1,S2,S2) :-
 subs_lookup(S1,S2,Term1,Term2,V),
 !.
anti_unify(Term1,Term2,Term,S10,S1,S20,S2) :-
 nonvar(Term1),
 nonvar(Term2),
 functor(Term1,F,N),
 functor(Term2,F,N),
 !,
 functor(Term,F,N),
 anti_unify_args(N,Term1,Term2,Term,S10,S1,S20,S2).
anti_unify(Term1,Term2,V,S10,[Term1<-V|S10],S20,[Term2<-V|S20]).

same terms not the same terms, but each
has already been mapped to

the same variable V in the
respective inverse substitutions

equivalent compound
term is constructed if both
original compounds have

the same functor and arity
if all else fails, map
both terms to the

same variable

Generalizing clauses:
anti-unification computes the least-general
generalization of two atoms under θ-subsumption

14

anti_unify_args(0,Term1,Term2,Term,S1,S1,S2,S2).
anti_unify_args(N,Term1,Term2,Term,S10,S1,S20,S2):-
 N>0,
 N1 is N-1,
 arg(N,Term1,Arg1),
 arg(N,Term2,Arg2),
 arg(N,Term,ArgN),
 anti_unify(Arg1,Arg2,ArgN,S10,S11,S20,S21),
 anti_unify_args(N1,Term1,Term2,Term,S11,S1,S21,S2).

anti-unify first N
corresponding

arguments

subs_lookup([T1<-V|Subs1],[T2<-V|Subs2],Term1,Term2,V) :-
 T1 == Term1,
 T2 == Term2,
 !.
subs_lookup([S1|Subs1],[S2|Subs2],Term1,Term2,V):-
 subs_lookup(Subs1,Subs2,Term1,Term2,V).

Generalizing clauses:
set of (equivalence classes of) clauses is a lattice

15

C1 is more general than C2 ⇔ for some substitution θ: C1θ ⊆ C2

greatest lower bound of two clauses (meet operation): θ-MGS

least upper bound of two clauses (join operation): θ-LGG

specialization = applying a substitution and/or adding a literal

generalization = applying an inverse substitution and/or removing a literal

anti-unification and/or
removing literal

unification and/or
adding literal

m(X,Y)

m(X,[Y|Z])
m([X|Y],Z) m(X,Y):-m(Y,X)

m(X,[X|Z])

m(X,X)

m(X,[Y|Z]):-m(X,Z)

Generalizing clauses:
computing the θ least-general generalization

16

similar to, and depends on, anti-unification of atoms

but the body of a clause is (declaratively spoken) unordered

therefore have to compare all possible pairs of atoms (one from each body)

?- theta_lgg((element(c,[b,c]):-[element(c,[c])]),
 (element(d,[b,c,d]):-[element(d,[c,d]),element(d,[d])]),
 C).
C = element(X,[b,c|Y]):-[element(X,[c|Y]),element(X,[X])]

obtained by anti-unifying
original heads

obtained by anti-unifying
element(c,[c]) and
element(d,[c,d])

obtained by anti-unifying
element(c,[c]) and
element(d,[d])

Generalizing clauses:
computing the θ least-general generalization
theta_lgg((H1:-B1),(H2:-B2),(H:-B)):-
 anti_unify(H1,H2,H,[],S10,[],S20),
 theta_lgg_bodies(B1,B2,[],B,S10,S1,S20,S2).

anti-unify
heads

theta_lgg_bodies([],B2,B,B,S1,S1,S2,S2).
theta_lgg_bodies([Lit|B1],B2, B0,B, S10,S1, S20,S2):-
 theta_lgg_literal(Lit,B2, B0,B00, S10,S11, S20,S21),
 theta_lgg_bodies(B1,B2, B00,B, S11,S1, S21,S2).

theta_lgg_literal(Lit1,[], B,B, S1,S1, S2,S2).
theta_lgg_literal(Lit1,[Lit2|B2],B0,B,S10,S1,S20,S2):-
 same_predicate(Lit1,Lit2),
 anti_unify(Lit1,Lit2,Lit,S10,S11,S20,S21),
 theta_lgg_literal(Lit1,B2,[Lit|B0],B, S11, S1,S21,S2).
theta_lgg_literal(Lit1,[Lit2|B2],B0,B,S10,S1,S20,S2):-
 not(same_predicate(Lit1,Lit2)),
 theta_lgg_literal(Lit1,B2,B0,B,S10,S1,S20,S2).
same_predicate(Lit1,Lit2) :-
 functor(Lit1,P,N),
 functor(Lit2,P,N).

atom from
first body

atom from
second body

incompatible
pair

pair-wise anti-
unification of

atoms in bodies

17

Generalizing clauses:
computing the θ least-general generalization

?- theta_lgg((reverse([2,1],[3],[1,2,3]):-[reverse([1],[2,3],[1,2,3])]),
 (reverse([a],[],[a]):-[reverse([],[a],[a])]),
 C).
C = reverse([X|Y], Z, [U|V]) :- [reverse(Y, [X|Z], [U|V])]

rev([2,1],[3],[1,2,3]):-rev([1],[2,3],[1,2,3])

 X Y Z U V Y X Z U V

rev([a] ,[] ,[a]):-rev([] ,[a] ,[a])

18

Bottom-up induction:
specific-to-general search of the hypothesis space

relative least general generalization rlgg(e1,e2,M)
of two positive examples e1 and e2

relative to a partial model M is defined as:
rlgg(e1, e2, M) = lgg((e1 :- Conj(M)), (e2 :- Conj(M)))

conjunction of all positive
examples plus ground facts for

the background predicates

generalizes positive examples into a hypothesis
rather than specializing the most general hypothesis as long as it covers negative examples

19

Bottom-up induction:
relative least general generalization

append([1,2],[3,4],[1,2,3,4]).
append([a],[],[a]).
append([],[],[]).
append([2],[3,4],[2,3,4]).

M
e1
e2

?- theta_lgg((append([1,2],[3,4],[1,2,3,4]) :-
 [append([1,2],[3,4],[1,2,3,4]),
 append([a],[],[a]), append([],[],[]),
 append([2],[3,4],[2,3,4])]),
 (append([a],[],[a]):-
 [append([1,2],[3,4],[1,2,3,4]),
 append([a],[],[a]),append([],[],[]),
 append([2],[3,4],[2,3,4])]),
 C)

rlgg(e1,e2,M)

20

Bottom-up induction:
relative least general generalization - need for pruning

append([X|Y], Z, [X|U]) :- [
 append([2], [3, 4], [2, 3, 4]),
 append(Y, Z, U),
 append([V], Z, [V|Z]),
 append([K|L], [3, 4], [K, M, N|O]),
 append(L, P, Q),
 append([], [], []),
 append(R, [], R),
 append(S, P, T),
 append([A], P, [A|P]),
 append(B, [], B),
 append([a], [], [a]),
 append([C|L], P, [C|Q]),
 append([D|Y], [3, 4], [D, E, F|G]),
 append(H, Z, I),
 append([X|Y], Z, [X|U]),
 append([1, 2], [3, 4], [1, 2, 3, 4])
]

rlgg(e1,e2,M)

remaining ground facts from
M (e.g., examples) are

redundant: can be removed

introduces variables that do not
occur in the head: can assume that
hypothesis clauses are constrained

head of clause in body = tautology:
restrict ourselves to strictly

constrained hypothesis clauses
variables in body are proper
subset of variables in head21

Bottom-up induction:
relative least general generalization - algorithm

rlgg(E1,E2,M,(H:- B)):-
 anti_unify(E1,E2,H,[],S10,[],S20),
 varsin(H,V),
 rlgg_bodies(M,M,[],B,S10,S1,S20,S2,V).

22

to determine vars in
head (strictly

constrained restriction)

rlgg_bodies(B0,B1,BR0,BR,S10,S1,S20,S2,V): rlgg
all literals in B0 with all literals in B1, yielding BR (from

accumulator BR0) containing only vars in V

rlgg_bodies([],B2,B,B,S1,S1,S2,S2,V).
rlgg_bodies([L|B1],B2,B0,B,S10,S1,S20,S2,V):-
 rlgg_literal(L,B2,B0,B00,S10,S11,S20,S21,V),
 rlgg_bodies(B1,B2,B00,B,S11,S1,S21,S2,V).

Bottom-up induction:
relative least general generalization - algorithm

23

rlgg_literal(L1,[],B,B,S1,S1,S2,S2,V).
rlgg_literal(L1,[L2|B2],B0,B,S10,S1,S20,S2,V):-
 same_predicate(L1,L2),
 anti_unify(L1,L2,L,S10,S11,S20,S21),
 varsin(L,Vars),
 var_proper_subset(Vars,V),
 !,
 rlgg_literal(L1,B2,[L|B0],B,S11,S1,S21,S2,V).
rlgg_literal(L1,[L2|B2],B0,B,S10,S1,S20,S2,V):-
 rlgg_literal(L1,B2,B0,B,S10,S1,S20,S2,V).

strictly constrained (no new
variables, but proper subset)

otherwise, an
incompatible pair

of literals

Bottom-up induction:
relative least general generalization - algorithm

24

var_remove_one(X,[Y|Ys],Ys) :-
 X == Y.
var_remove_one(X,[Y|Ys],[Y|Zs) :-
 var_remove_one(X,Ys,Zs).

var_proper_subset([],Ys) :-
 Ys \= [].
var_proper_subset([X|Xs],Ys) :-
 var_remove_one(X,Ys,Zs),
 var_proper_subset(Xs,Zs).

varsin(Term,Vars):-
 varsin(Term,[],V),
 sort(V,Vars).
varsin(V,Vars,[V|Vars]):-
 var(V).
varsin(Term,V0,V):-
 functor(Term,F,N),
 varsin_args(N,Term,V0,V).

varsin_args(0,Term,Vars,Vars).
varsin_args(N,Term,V0,V):-
 N>0,
 N1 is N-1,
 arg(N,Term,ArgN),
 varsin(ArgN,V0,V1),
 varsin_args(N1,Term,V1,V).

Bottom-up induction:
relative least general generalization - algorithm

25

?- rlgg(append([1,2],[3,4],[1,2,3,4]),
 append([a],[],[a]),
 [append([1,2],[3,4],[1,2,3,4]),
 append([a],[],[a]),
 append([],[],[]),
 append([2],[3,4],[2,3,4])],
 (H:- B)).
H = append([X|Y], Z, [X|U])
B = [append([2], [3, 4], [2, 3, 4]),
 append(Y, Z, U),
 append([], [], []),
 append([a], [], [a]),
 append([1, 2], [3, 4], [1, 2, 3, 4])]

Bottom-up induction:
main algorithm

26

construct rlgg of two positive examples
remove all positive examples that are
extensionally covered by the constructed clause

further generalize the clause by removing literals
as long as no negative
examples are covered

Bottom-up induction:
main algorithm

27

induce_rlgg(Exs,Clauses):-
 pos_neg(Exs,Poss,Negs),
 bg_model(BG),
 append(Poss,BG,Model),
 induce_rlgg(Poss,Negs,Model,Clauses).

induce_rlgg(Poss,Negs,Model,Clauses):-
 covering(Poss,Negs,Model,[],Clauses).

pos_neg([],[],[]).
pos_neg([+E|Exs],[E|Poss],Negs):-
 pos_neg(Exs,Poss,Negs).
pos_neg([-E|Exs],Poss,[E|Negs]):-
 pos_neg(Exs,Poss,Negs).

split positive from
negative examples

include positive examples
in background model

Bottom-up induction:
main algorithm - covering

28

covering(Poss,Negs,Model,Hyp0,NewHyp) :-
 construct_hypothesis(Poss,Negs,Model,Hyp),
 !,
 remove_pos(Poss,Model,Hyp,NewPoss),
 covering(NewPoss,Negs,Model,[Hyp|Hyp0],NewHyp).
covering(P,N,M,H0,H) :-
 append(H0,P,H).

remove covered
positive examples

construct a new
hypothesis clause that

covers all of the
positive examples and
none of the negative

remove_pos([],M,H,[]).
remove_pos([P|Ps],Model,Hyp,NewP) :-
 covers_ex(Hyp,P,Model),
 !,
 write(’Covered example: ’),
 write_ln(P),
 remove_pos(Ps,Model,Hyp,NewP).
remove_pos([P|Ps],Model,Hyp,[P|NewP]):-
 remove_pos(Ps,Model,Hyp,NewP).

covers_ex((Head:- Body),
 Example,Model):-
verify((Head=Example,
 forall(element(L,Body),
 element(L,Model)))).

when no longer possible to construct new hypothesis clauses,
add remaining positive examples to hypothesis

Bottom-up induction:
main algorithm - hypothesis construction

29

construct_hypothesis([E1,E2|Es],Negs,Model,Clause):-
 write(’RLGG of ’), write(E1),
 write(’ and ’), write(E2), write(’ is’),
 rlgg(E1,E2,Model,Cl),
 reduce(Cl,Negs,Model,Clause),
 !,
 nl,tab(5), write_ln(Clause).
construct_hypothesis([E1,E2|Es],Negs,Model,Clause):-
 write_ln(’ too general’),
 construct_hypothesis([E2|Es],Negs,Model,Clause).

remove redundant literals
and ensure that no negative

examples are covered

if no rlgg can be constructed for these
two positive examples or the constructed

one covers a negative example

note that E1 will be considered

again with another example in a

different iteration of covering/5

this is the only step
in the algorithm

that involves
negative examples!

Bottom-up induction:
main algorithm - hypothesis reduction

30

reduce((H:-B0),Negs,M,(H:-B)):-
 setof0(L,
 (element(L,B0), not(var_element(L,M))),
 B1),
 reduce_negs(H,B1,[],B,Negs,M).

remove redundant literals
and ensure that no negative

examples are covered

removes literals from
the body that are

already in the model

setof0(X,G,L):-
 setof(X,G,L),!.
setof0(X,G,[]). succeeds with empty

list of no solutions
can be found

var_element(X,[Y|Ys]):-
 X == Y.
var_element(X,[Y|Ys]):-
 var_element(X,Ys).

element/2 using
syntactic identity rather

than unification

Bottom-up induction:
main algorithm - hypothesis reduction

31

covers_neg(Clause,Negs,Model,N) :-
 element(N,Negs),
 covers_ex(Clause,N,Model).

a negative example is
covered by clause U model

reduce_negs(H,[L|Rest],B0,B,Negs,Model):-
 append(B0,Rest,Body),
 not(covers_neg((H:-Body),Negs,Model,N)),
 !,
 reduce_negs(H,Rest,B0,B,Negs,Model).
reduce_negs(H,[L|Rest],B0,B,Negs,Model):-
 reduce_negs(H,Rest,[L|B0],B,Negs,Model).
reduce_negs(H,[],Body,Body,Negs,Model):-
 not(covers_neg((H:- Body),Negs,Model,N)).

B is the body of the reduced clause: a
subsequence of the body of the original clause

(second argument), such that no negative example
is covered by model U reduced clause (H:-B)

try to remove L from the
original body

L cannot be removed

fail if the resulting clause
covers a negative example

Bottom-up induction:
example

32

?- induce_rlgg([

+append([1,2],[3,4],[1,2,3,4]),

+append([a],[],[a]),

+append([],[],[]),

+append([],[1,2,3],[1,2,3]),

+append([2],[3,4],[2,3,4]),

+append([],[3,4],[3,4]),

-append([a],[b],[b]),

-append([c],[b],[c,a]),

-append([1,2],[],[1,3])

], Clauses).

RLGG of append([1,2],[3,4],[1,2,3,4]) and append([a],[],[a]) is
append([X|Y],Z,[X|U]) :- [append(Y,Z,U)]
Covered example: append([1,2],[3,4],[1,2,3,4])
Covered example: append([a],[],[a])
Covered example: append([2],[3,4],[2,3,4])

RLGG of append([],[],[]) and append([],[1,2,3],[1,2,3]) is
append([],X,X) :- []
Covered example: append([],[],[])
Covered example: append([],[1,2,3],[1,2,3])
Covered example: append([],[3,4],[3,4])

Clauses = [(append([],X,X) :- []),
(append([X|Y],Z,[X|U]) :- [append(Y,Z,U)])]

Bottom-up induction:
example

33

bg_model([num(1,one),num(2,two),
 num(3,three),
 num(4,four),
 num(5,five)]).
?-induce_rlgg([
+listnum([],[]),
+listnum([2,three,4],[two,3,four]),
+listnum([4],[four]),
+listnum([three,4],[3,four]),
+listnum([two],[2]),
-listnum([1,4],[1,four]),
-listnum([2,three,4],[two]),
-listnum([five],[5,5])],
Clauses).

RLGG of listnum([],[]) and
 listnum([2,three,4],[two,3,four]) is too general
RLGG of listnum([2,three,4],[two,3,four]) and
 listnum([4],[four]) is
listnum([X|Xs],[Y|Ys]):-[num(X,Y),listnum(Xs,Ys)]
Covered example: listnum([2,three,4],[two,3,four])
Covered example: listnum([4],[four])
RLGG of listnum([],[]) and listnum([three,4],[3,four]) is too general
RLGG of listnum([three,4],[3,four]) and listnum([two],[2]) is
listnum([V|Vs],[W|Ws]):-[num(W,V),listnum(Vs,Ws)]
Covered example:
listnum([three,4],[3,four])
Covered example: listnum([two],[2])
Clauses =[(listnum([V|Vs],[W|Ws]):-[num(W,V),listnum(Vs,Ws)]),
 (listnum([X|Xs],[Y|Ys]):-[num(X,Y),listnum(Xs,Ys)]),listnum([],[])]

Declarative
Programming

8: interesting loose ends
only to whet your appetite,
will not be asked on exam

programming with quantified truth
programming with qualified truth

implicit parallel evaluation

software engineering applications

programming with constraints on integer domains

2

Logic programming with quantified truth:
reasoning with vague (rather than incomplete) information

characteristic function generalised
to allow gradual membership µA : U → [0, 1]

→

µA(x) =

0↔ x �∈ A
1↔ x ∈ A
0 < α < 1↔ x ∈ A to the extent α

fu
zz

y
se

t [
Za

de
h

19
65

]

3

Logic programming with quantified truth:
operations on fuzzy sets

linguistic hedges

take a fuzzy set (e.g., set of tall people) and modify its membership function

modelling adverbs: very, somewhat, indeed

CHAPTER 3. APPROXIMATE REASONING 45

3.2.3.3 Inference for Approximate Reasoning

Zadeh identified [Zad75b] some inference rules common to human-like approximate

reasoning for the above scheme:

Entailment Choose for A the intensification very as an example.

premise X is A
fact A⊂ B
consequence X is B

Projection Choose R(X ,Y) = equal(7,4) for an example.

premise X ,Y have a relation R(X ,Y)
consequence X is ΠX (R)

premise X ,Y are in a relation R(X ,Y)
consequence Y is ΠY (R)

Compositional Rule of Inference This is the most important rule defined by Zadeh

and can be seen as a generalisation of classical modus ponens which is of prac-

tical use in forward inferencing systems for approximate reasoning:

premise if X is A and Y is B then Z is C
fact X is A� and Y is B�

consequence Z is C�

Herein, the fuzzy rule can be seen as the fuzzy relation A×B→C. Furthermore

C�
is a relation composed of a factual matching and an implication:

C� = A� ×B� ◦ (A×B→C)

Which would give with min as the t-norm of choice in the fuzzy set product and

fuzzy relational composition the following membership function:

µC� = sup min{min(µA� ,µB�),(min(µA,µB)→ µC)}

where we still have to choose an implication operator. As performance is impor-

tant in fuzzy control systems, popular choices are the Mamdani (min) and Larsen

(product) implication:

• General Modus Ponens with Mamdani Implication

µC� = sup min{min(µA� ,µB�),min(min(µA,µB),µC))}= sup min{µA� ,µB� ,µA,µB,µC}

• General Modus Ponens with Larsen Implication

µC� = sup min{min(µA� ,µB�),(min(µA,µB) ·µC)}

3.2.3.4 Combining Individual Rule Results

The overall behaviour of the system is modelled by taking an aggregation of the indi-

vidual rule results. Usually, union interpreted as max is chosen for this task.

compositional rule of inference

classical set-theoretic operations

� Intersection: µA∩B(x) = min(µA(x), µB(x))
� Union: µA∪B(x) = max(µA(x), µB(x))
� Complement: µĀ(x) = 1− µA(x) original ones by Zadeh,

later generalized

4

Logic programming with quantified truth:
killer application: fuzzy process control

5

Logic programming with quantified truth:
killer application: fuzzy process control

easier and smoother operation than classical process control

6

Logic programming with quantified truth:
killer application: fuzzy process control

CHAPTER 3. APPROXIMATE REASONING 44

3.2.3.1 Process Control

Fuzzy process control was the first practical application of fuzzy set theory and refers
to the modelling of mechanical processes as a collection of simple fuzzy if-then rules
with imprecise premises and imprecise conclusions.

It has had many successful commercial applications including air condition regulation,
cruise control and even motion detection in video camera’s where a distinction needs
to be made between moving objects and motion caused by instable cameraman hands.
The above examples all require gradual output changes when their input is altered and
their complexity often hinders a precise statement of the causal connection between
input x and output y values. If it was possible to describe the causal connection between
x and y as a function y = f (x), we could use regular modus ponens to regulate the
process:

premise y = f (x)
fact x = x�

consequence y = f (x�)

When the causal relation between the input and the output is only partially or point-
wise known, fuzzy process control allows the system to be described as a collection of
fuzzy if then-rules with linguistic variables X and Y :

rule1 if X is A1 then Y is B1
rule2 if X is A2 then Y is B2
.
fact X is A
consequence Y is B

A typical example of the use of such fuzzy if-then rules is that of controlling the sway
of a crane transporting large containers: the experience built up by human crane oper-
ators can be translated effortlessly to rules while the it poses many problems from the
classical engineering perspective.

3.2.3.2 Fuzzy Control Reasoning System

Designing a fuzzy control system generally consists of the following steps:

Fuzzification This is the basic step in which one has to determine appropriate fuzzy
membership functions for the input and output fuzzy sets and specify the indi-
vidual rules regulating the system.

Inference This step comprises the calculation of output values for each rule even when
the premises match only partially with the given input.

Composition The output of the individual rules in the rule base can now be combined
into a single conclusion.

Defuzzification The fuzzy conclusion obtained through inference and composition of-
ten has to be converted to a crisp value suited for driving the motor of an air
conditioning system, for example.

CHAPTER 3. APPROXIMATE REASONING 44

3.2.3.1 Process Control

Fuzzy process control was the first practical application of fuzzy set theory and refers
to the modelling of mechanical processes as a collection of simple fuzzy if-then rules
with imprecise premises and imprecise conclusions.

It has had many successful commercial applications including air condition regulation,
cruise control and even motion detection in video camera’s where a distinction needs
to be made between moving objects and motion caused by instable cameraman hands.
The above examples all require gradual output changes when their input is altered and
their complexity often hinders a precise statement of the causal connection between
input x and output y values. If it was possible to describe the causal connection between
x and y as a function y = f (x), we could use regular modus ponens to regulate the
process:

premise y = f (x)
fact x = x�

consequence y = f (x�)

When the causal relation between the input and the output is only partially or point-
wise known, fuzzy process control allows the system to be described as a collection of
fuzzy if then-rules with linguistic variables X and Y :

rule1 if X is A1 then Y is B1
rule2 if X is A2 then Y is B2
.
fact X is A
consequence Y is B

A typical example of the use of such fuzzy if-then rules is that of controlling the sway
of a crane transporting large containers: the experience built up by human crane oper-
ators can be translated effortlessly to rules while the it poses many problems from the
classical engineering perspective.

3.2.3.2 Fuzzy Control Reasoning System

Designing a fuzzy control system generally consists of the following steps:

Fuzzification This is the basic step in which one has to determine appropriate fuzzy
membership functions for the input and output fuzzy sets and specify the indi-
vidual rules regulating the system.

Inference This step comprises the calculation of output values for each rule even when
the premises match only partially with the given input.

Composition The output of the individual rules in the rule base can now be combined
into a single conclusion.

Defuzzification The fuzzy conclusion obtained through inference and composition of-
ten has to be converted to a crisp value suited for driving the motor of an air
conditioning system, for example.

7

Logic programming with quantified truth:
a meta-interpreter for a fuzzy logic programming language

if popular_product(?p) : ?c

?p ?c

flowers 1
chips min(0.9, 0.6)*0.8 = 0.48

similar to
f-Prolog
[1990:liu]

LP with quantified truth

fuzzy resolution procedure

weighted logic rules

τ(q) = c * min(τ(q1),...,τ(qn))

q : c if q1,...,qn where c ∈]0,1]

confidence

in conclusion q given absolute

truth of q1,...,qn

sold(flowers, 15).
attractive_packaging(chips) : 0.9.
well_advertised(chips) : 0.6.

popular_product(?product) if
 sold(?product, ?amount),
 ?amount > 10.

popular_product(?product) : 0.8 if
 attractive_packaging(?product),
 well_advertised(?product).

many
variations
possible

8

Logic programming with quantified truth:
a meta-interpreter for a fuzzy logic programming language

DEMO

9

Logic programming with quantified truth:
a meta-interpreter for a fuzzy logic programming language

DEMO 10

Logic programming with quantified truth:
reifying the characteristic function of a fuzzy set

6. INSTANTIATING THE FUZZY LOGIC AND DOMAIN-SPECIFIC UNIF. CORNERSTONES

Figure 6.3: Illustrating fuzzy isEqualToOrGreaterThanButRelativelyCloseTo:/2.

We will demonstrate both techniques. The first technique illustrates that fuzzy
SOUL supports rules annotated with a variable that gets bound in their body. The
second technique illustrates that fuzzy SOUL supports Smalltalk terms with an ex-
pression that evaluates to a truth degree rather than a boolean.

1/ Implementing Predicates that Reify the Characteristic Function of a Fuzzy Set

Predicate +?x isEqualToOrGreaterThanButRelativelyCloseTo:+?y reifies
the characteristic function of the fuzzy set of numbers that are greater than ?y, but
still relatively close to ?y. Both arguments have to be bound. The following rules
implement the predicate:

1 +?x isEqualToOrGreaterThanButRelativelyCloseTo: +?x.
2 +?x isEqualToOrGreaterThanButRelativelyCloseTo: +?y : ?c if
3 [?x > ?y],
4 ?c equals: [(?y / ?x) max: (9 / 10)]

Note that the second rule is annotated with a variable that gets bound in the body
of the rule (cf. Section 6.1.1). It associates a truth degree ∈ [9

10 ,1[with numbers ?x
that are greater than ?y, but do not deviate more than 10% from ?y. The closer ?x
is to ?y, the higher the computed truth degree. We do not let the truth degree drop
below 9

10 for numbers that lie far from ?y.6

The first column in Figure 6.3 depicts the truth degrees for solutions to a query
that uses the predicate to identify class declarations in the AMBIENTTALK inter-
preter (cf. Section 5.3.2) with more than 20 members. Except for the classes with
21 and 22 members (truth degrees 20

21 and 10
11 respectively), all classes with more

than 20 members have a truth degree of 9
10 .

6The predicate is used in the resolution of template terms where it ensures that lower truth degrees
are associated with solutions that exhibit more characteristics than the ones that are exemplified by a
template (cf. Section 4.5.2). It is, for instance, used to compare the number of modifiers in the template
(?y) to the modifiers in a solution (?x). Whether a reported method has more modifiers than specified
should not affects its likelihood of being a false positive too much.

148

associates a truth degree
[9,1[

with numbers ?x that are
greater than ?y, but do not

deviate more than 10% from ?y

DEMO

11

Logic programming with quantified truth:
quantifying over the elements of a fuzzy set

6.2. Fuzzified Standard Library

2/ Quantifying over Fuzzy Sets implemented in Smalltalk

Predicate contains:/2 quantifies over the elements of a fuzzy set through linguis-

tic symbiosis. Instances of class FuzzySet respond to message membershipDe-

greeOfElement: with the extent to which the argument can be considered an el-

ement of the set. The following rule implements the case in which both arguments

of the predicate are bound:

1 +?c contains: +?e if
2 [?c isKindOf: Soul.FuzzySet],

3 [?c membershipDegreeOfElement: ?e]

Its implementation illustrates that Smalltalk terms are allowed to evaluate to a

truth degree (cf. Section 6.1.2). Solutions to the following query include bindings

<?t → 1,?e → 20>, <?t → 9

10
,?e → 21> and <?t → 4

5
,?e → 22>:

1 if ?about20 equals: [Soul.FuzzySet triangularWithPeak: 20 andMin: 10 andMax: 30],

2 [8 to: 32] contains: ?e,
3 ?about20 contains: ?e : ?t

The first line of the query instantiates a fuzzy set of which the elements are close to

the number 20. Its triangular membership function ∆(x,10,20,30) determines the

membership degree of element x. It linearly models how close x is to β (α<β< γ):

∆(x,α,β,γ) =

0 x <α
(x −α)/(β−α) α≤ x ≤β
(γ−x)/(γ−β) β≤ x ≤ γ
0 x > γ

The membership function of a fuzzy set can also be instantiated with a custom

BlockClosure or by enumerating its elements and their membership degrees.

6.2.2 Classical Negation as Failure

Unlike the regular connective, the fuzzy not/n connective (cf. Section 6.1.2) intro-

duces choice points if the conjunction of its arguments can be proven to different

extents. However, like the regular connective, variable bindings established by re-

solving this conjunction are undone.

Where choice points are undesirable, predicate absolutelyNot/n can be used

as an alias for the regular not/n connective. It succeeds only if the fuzzy not/n

connective succeeds with an absolute truth degree (i.e. if the conjunction of its ar-

guments fails). The predicate is implemented as follows:

1 absolutelyNot@(?goals) if
2 not@(?goals) : 1

6.2.3 Higher-Order Predicates

The implementation of some higher-order standard library predicates is changed

as well. Like the regular forall/2 predicate, the fuzzy version of the predicate fails

when there is a solution to the first argument goal for which the second argument

goal does not succeed. Both versions differ in their quantification.

The fuzzy version of the predicate is quantified by the smallest product of truth

degrees for each solution to its first argument and the corresponding solution to its

second argument. Its implementation relies on linguistic symbiosis:

149

additional contains:/2
clause for fuzzy sets

implemented in Smalltalk

6
.2

.
F
u
zzifi

e
d

S
ta

n
d
a
rd

L
ib

ra
ry

2/ Quantifying over Fuzzy Sets im
plem

ented in Sm
alltalk

P
re

d
ic

a
te
c
o
n
t
a
i
n
s
:
/
2

q
u
a
n
tifi

e
s

o
v
e
r
th

e
e
le

m
e
n
ts

o
f
a

fu
zzy

se
t
th

ro
u
g
h

lin
g
u
is-

tic
sy

m
b
io

sis.
In

sta
n
c
e
s

o
f

c
la

ss
F
u
z
z
y
S
e
t

re
sp

o
n
d

to
m

e
ssa

g
e
m
e
m
b
e
r
s
h
i
p
D
e
-

g
r
e
e
O
f
E
l
e
m
e
n
t
:

w
ith

th
e

e
xte

n
t
to

w
h
ic

h
th

e
a
rg

u
m

e
n
t
c
a
n

b
e

c
o
n
sid

e
re

d
a
n

e
l-

e
m

e
n
t
o
f
th

e
se

t.
T
h
e

fo
llo

w
in

g
ru

le
im

p
le

m
e
n
ts

th
e

c
a
se

in
w

h
ic

h
b
o
th

a
rg

u
m

e
n
ts

o
f
th

e
p
re

d
ic

a
te

a
re

b
o
u
n
d
:

1

+?c
c
o
n
t
a
i
n
s
:
+?e

if

2

[?c
i
s
K
i
n
d
O
f
:
S
o
u
l
.
F
u
z
z
y
S
e
t
]
,

3

[?c
m
e
m
b
e
r
s
h
i
p
D
e
g
r
e
e
O
f
E
l
e
m
e
n
t
:
?e
]

Its
im

p
le

m
e
n
ta

tio
n

illu
stra

te
s

th
a
t

S
m

a
llta

lk
te

rm
s

a
re

a
llo

w
e
d

to
e
v
a
lu

a
te

to
a

tru
th

d
e
g
re

e
(c

f.
S
e
c
tio

n
6
.1

.2
).

S
o
lu

tio
n
s

to
th

e
fo

llo
w

in
g

q
u
e
ry

in
c
lu

d
e

b
in

d
in

g
s

<?t→
1
,?e→

2
0
>
,
<?t→

9
1
0 ,?e→

2
1
>

a
n
d

<?t→
4

5 ,?e→
2
2
>
:

1

if
?about20

e
q
u
a
l
s
:
[
S
o
u
l
.
F
u
z
z
y
S
e
t
t
r
i
a
n
g
u
l
a
r
W
i
t
h
P
e
a
k
:
2
0
a
n
d
M
i
n
:
1
0
a
n
d
M
a
x
:
3
0
]
,

2

[
8
t
o
:
3
2
]
c
o
n
t
a
i
n
s
:
?e
,

3

?about20
c
o
n
t
a
i
n
s
:
?e

:
?t

T
h
e

fi
rst

lin
e

o
f
th

e
q
u
e
ry

in
sta

n
tia

te
s

a
fu

zzy
se

t
o
f
w

h
ic

h
th

e
e
le

m
e
n
ts

a
re

c
lo

se
to

th
e

n
u
m

b
e
r

2
0
.

Its
tria

n
g
u
la

r
m

e
m

b
e
rsh

ip
fu

n
c
tio

n
∆

(x
,1

0
,2

0
,3

0
)
d
e
te

rm
in

e
s

th
e

m
e
m

b
e
rsh

ip
d
e
g
re

e
o
f
e
le

m
e
n
t x

.
It

lin
e
a
rly

m
o
d
e
ls

h
o
w

c
lo

se x
is

to
β

(α<
β<
γ
):

∆
(x

,α
,β

,γ
)=

0

x <
α

(x−
α

)/(β−
α

)

α≤
x ≤
β

(γ−
x
)/(γ−

β
)

β≤
x ≤
γ

0

x >
γ

T
h
e

m
e
m

b
e
rsh

ip
fu

n
c
tio

n
o
f
a

fu
zzy

se
t
c
a
n

a
lso

b
e

in
sta

n
tia

te
d

w
ith

a
c
u
sto

m

B
l
o
c
k
C
l
o
s
u
r
e

o
r
b
y

e
n
u
m

e
ra

tin
g

its
e
le

m
e
n
ts

a
n
d

th
e
ir

m
e
m

b
e
rsh

ip
d
e
g
re

e
s.

6.2.2
Classical Negation as Failure

U
n
lik

e
th

e
re

g
u
la

r
c
o
n
n
e
c
tiv

e
,
th

e
fu

zzy
n
o
t
/
n

c
o
n
n
e
c
tiv

e
(c

f.
S
e
c
tio

n
6
.1

.2
)
in

tro
-

d
u
c
e
s

c
h
o
ic

e
p
o
in

ts
if

th
e

c
o
n
ju

n
c
tio

n
o
f
its

a
rg

u
m

e
n
ts

c
a
n

b
e

p
ro

v
e
n

to
d
iffe

re
n
t

e
xte

n
ts.

H
o
w

e
v
e
r,

lik
e

th
e

re
g
u
la

r
c
o
n
n
e
c
tiv

e
,
v
a
ria

b
le

b
in

d
in

g
s

e
sta

b
lish

e
d

b
y

re
-

so
lv

in
g

th
is

c
o
n
ju

n
c
tio

n
a
re

u
n
d
o
n
e
.

W
h
e
re

c
h
o
ic

e
p
o
in

ts
a
re

u
n
d
e
sira

b
le

, p
re

d
ic

a
te
a
b
s
o
l
u
t
e
l
y
N
o
t
/
n

c
a
n

b
e

u
se

d

a
s

a
n

a
lia

s
fo

r
th

e
re

g
u
la

r
n
o
t
/
n

c
o
n
n
e
c
tiv

e
.

It
su

c
c
e
e
d
s

o
n
ly

if
th

e
fu

zzy
n
o
t
/
n

c
o
n
n
e
c
tiv

e
su

c
c
e
e
d
s

w
ith

a
n

a
b
so

lu
te

tru
th

d
e
g
re

e
(i.e

.
if

th
e

c
o
n
ju

n
c
tio

n
o
f
its

a
r-

g
u
m

e
n
ts

fa
ils).

T
h
e

p
re

d
ic

a
te

is
im

p
le

m
e
n
te

d
a
s

fo
llo

w
s:

1

a
b
s
o
l
u
t
e
l
y
N
o
t
@
(?goals

)
if

2

n
o
t
@
(?goals

)
:
1

6.2.3
Higher-Order Predicates

T
h
e

im
p
le

m
e
n
ta

tio
n

o
f
so

m
e

h
ig

h
e
r-o

rd
e
r

sta
n
d
a
rd

lib
ra

ry
p
re

d
ic

a
te

s
is

c
h
a
n
g
e
d

a
s

w
e
ll.

L
ik

e
th

e
re

g
u
la

r
f
o
r
a
l
l
/
2

p
re

d
ic

a
te

, th
e

fu
zzy

v
e
rsio

n
o
f
th

e
p
re

d
ic

a
te

fa
ils

w
h
e
n

th
e
re

is
a

so
lu

tio
n

to
th

e
fi
rst

a
rg

u
m

e
n
t
g
o
a
l
fo

r
w

h
ic

h
th

e
se

c
o
n
d

a
rg

u
m

e
n
t

g
o
a
l
d
o
e
s

n
o
t
su

c
c
e
e
d
.
B

o
th

v
e
rsio

n
s

d
iffe

r
in

th
e
ir

q
u
a
n
tifi

c
a
tio

n
.

T
h
e

fu
zzy

v
e
rsio

n
o
f
th

e
p
re

d
ic

a
te

is
q
u
a
n
tifi

e
d

b
y

th
e

sm
a
lle

st
p
ro

d
u
c
t
o
f
tru

th

d
e
g
re

e
s

fo
r
e
a
c
h

so
lu

tio
n

to
its

fi
rst

a
rg

u
m

e
n
t
a
n
d

th
e

c
o
rre

sp
o
n
d
in

g
so

lu
tio

n
to

its

se
c
o
n
d

a
rg

u
m

e
n
t.

Its
im

p
le

m
e
n
ta

tio
n

re
lie

s
o
n

lin
g
u
istic

sy
m

b
io

sis:

1
4
9

linearly models
how close an

element is to 20

12

Logic programming with qualified truth:
an executable linear temporal logic (informally)

regular logic formulas qualified
by temporal operators:

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

evaluated against an
implicit temporal context:

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

Figure 1: Source code and corresponding behavioral documentation of a C stack implementation.

We have however already argued in Section 2.2 that pro-
gram models consisting of assertions over such low-level
run-time events do not adhere to our human-readability de-
sirable property nor do they allow the reuse of high-level
events across documentation for applications in the same
domain.

3.2. Documenting Program Behavior

The next step in our recipe comprises documenting a
program’s behavior in a machine-verifiable, but human-
readable model. Our most basic understanding of the be-
havior of a typical stack is that it grows in size whenever
new elements are pushed on it and shrinks whenever an ex-
isting element is removed through the pop operation. The
second perception that springs to mind is that failures might
follow when the stack hasn’t been correctly initialized. We
could also specify assertions about the top of the stack with
regard to the push and pop operation, but we rather opt for
a small model as our objective here is to introduce the plat-
form.

In order to have our insights checked automatically, we
have to specify them in a machine-verifiable language. To
facilitate this task as much as possible, the specification lan-
guage should be highly expressive. An expressive, declar-
ative language additionally ensures that the resulting spec-
ifications are descriptive and convey as much information
as possible. Machine-executable logic languages, whereof
Prolog [9] is the well-known archetypical representant, are
good contenders.

In such programming languages, a program consists of
logic clauses representing a developer’s knowledge about a
particular problem. In our program verification platform,
the logic program consists of a logic representation of the

source code and an execution trace of the C program under
investigation. Our behavioral assertions over the run-time
events from the execution trace, are expressed as logic for-
mulas. To determine whether such a formula is a logical
consequence of the logic program, logic programming lan-
guages rely on a proof procedure. While behavioral pro-
gram models could be expressed in regular Prolog, our BE-
HAVE platform offers an extended Prolog variant which is
especially suited to model the temporal relations between
run-time events.

Formulae in temporal logics comprise the classical logic
formulae possibly qualified by temporal operators such as
✷ (always), � (sometimes), • (previous) and ◦ (next). The
truth value of a formula depends on an implicit temporal
context: a formula can be true at a certain moment in time,
while it might be false at the next moment. While differ-
ent time models are supported in temporal logics, a finite
linear time model suffices for our approach. In this model,
informally, the temporal formula ✷φ is true if φ is true at all
moments in time. Similarly, we have that �φ is true when φ
is true at some moment in time.

Temporal logic programming languages [11] are based
on a subset of a temporal logic such that programs written
in this subset are machine-executable. MTL [4] is a tem-
poral logic programming language based on metric tem-
poral logic. Metric temporal logics incorporate an addi-
tional quantitative aspect into the temporal operators. The
�t (sometimes within t time points) operator is for instance
available. We propose the use of a variant of MTL1 to doc-
ument a program’s behavior in behavioral assertions over

1Regular MTL rules may not contain applications of ✷-operators in
their bodies, or �-operators in their heads. These limitations however do
not apply in our context where the boundaries of time coincide with the
start and end of the execution of a program.

we will assume a finite, non-branching timeline for our example
application: reasoning about execution traces of a program

13

Logic programming with qualified truth:
a meta-interpreter for finite linear temporal logic programming
solve(A) :-
 prove(A, 0).

prove(not(A), T) :-
 not(prove(A, T)).

prove(next(A), T) :-
 NT #= T + 1,
 prove(A, NT).
prove(next(C, A), T) :-
 C #> 0,
 NT #= T + C,
 prove(A, NT).

prove(previous(A), T) :-
 NT #= T - 1,
 prove(A, NT).
prove(previous(C, A), T) :-
 C #> 0,
 NT #= T - C,
 prove(A, NT).

next(A) holds if A holds at
the next moment in time

the initial temporal context for all top-level
formulas is the beginning of the timeline

next(C,A) holds if A holds C steps into the
future (possibly a variable)

#> and friends impose
constraints over integer domain:

use_module(library(clpfd)).

14

Intermezzo:
constraint logic programming over integer domains

?- X #> 3.
X in 4..sup.

?- X #\= 20.
X in inf..19\/21..sup.

?- 2*X #= 10.
X = 5.

?- X*X #= 144.
X in -12\/12.

?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.

?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), X = 1, Y #\= 2.
Vs = [1, 3, 2],
X = 1,
Y = 3,
Z = 2.

X in union of two domains

list of variables on the left is
in the domain on the right

X in integer domain

ensures elements are assigned
different values from domain

15

Intermezzo:
constraint logic programming over integer domains
SEND + MORE = MONEY

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-

 Vars = [S,E,N,D,M,O,R,Y],

 Vars ins 0..9,

 all_different(Vars),

 S*1000 + E*100 + N*10 + D +

 M*1000 + O*100 + R*10 + E #=

 M*10000 + O*1000 + N*100 + E*10 + Y,

 M #\= 0, S #\= 0.

?- puzzle(As+Bs=Cs).

As = [9, _G10107, _G10110, _G10113],

Bs = [1, 0, _G10128, _G10107],

Cs = [1, 0, _G10110, _G10107, _G10152],

_G10107 in 4..7,

1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ -1*_G10152#=0,

all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),

_G10110 in 5..8,

_G10113 in 2..8,

_G10128 in 2..8,

_G10152 in 2..8.

deduced more stringent
constraints for variables

16

Intermezzo:
constraint logic programming over integer domains
SEND + MORE = MONEY

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-

 Vars = [S,E,N,D,M,O,R,Y],

 Vars ins 0..9,

 all_different(Vars),

 S*1000 + E*100 + N*10 + D +

 M*1000 + O*100 + R*10 + E #=

 M*10000 + O*1000 + N*100 + E*10 + Y,

 M #\= 0, S #\= 0.

?- puzzle(As+Bs=Cs).

As = [9, _G10107, _G10110, _G10113],

Bs = [1, 0, _G10128, _G10107],

Cs = [1, 0, _G10110, _G10107, _G10152],

_G10107 in 4..7,

1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ -1*_G10152#=0,

all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),

_G10110 in 5..8,

_G10113 in 2..8,

_G10128 in 2..8,

_G10152 in 2..8.

deduced more stringent
constraints for variables

?- puzzle(As+Bs=Cs), label(As).

As = [9, 5, 6, 7],

Bs = [1, 0, 8, 5],

Cs = [1, 0, 6, 5, 2] ;

false.

labeling a domain variable
systematically tries out values

for it until it is ground

17

Logic programming with qualified truth:
a meta-interpreter for finite linear temporal logic programming
prove(sometime(C, A), T) :-
 C#>=0,
 bot(Bot),
 eot(Tot),
 NT in Bot..Tot,
 NT #>= T,
 NT #=< T+C,
 prove(A, NT).
prove(sometime(C,A), T) :-
 C #=< 0,
 bot(Bot),
 eot(Tot),
 NT in Bot..Tot,
 NT #>= T + C,
 NT #=< T,
 prove(A, NT).
prove(sometime(A), _) :-
 bot(Bot),
 eot(Tot),
 C in Bot..Tot,
 prove(A, C).

A holds
somewhere on the

timeline

A holds sometime between
now and C steps in the future

A holds sometime between now
and C steps in the past

similar for always
18

Logic programming with qualified truth:
example application: reasoning about execution traces

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

Execute

while

intercepting

high-level

events

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(b) source code

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(a) observed behavior

(c) documented behavior

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

7 stackPushOperation(Construct,Path) :-

8 functionCallHasName(Construct, ’push’).

9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).

11 stackInitOperation(Construct,Path) :-

12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

(f) associated run-time values

(d) high-level events specification

verified against

1 int *stack;

2 int top;

3 void init(int size) {

4 top = 0;

5 stack = malloc(size*sizeof(int));

6 }

7 void push(int element) {

8 stack[top++]=element;

9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).

2 keyword(time, ’log("%i", TIME++);’).

3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).

2 event(1,push(10,1)).

3 event(2,push(20,2)).

4 event(3,push(30,3)).

5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,

2 event(time, pop(stackTop, stackSize))).

3 intercept(after, stackPushOperation,

4 event(time, push(stackTop, stackSize))).

5 intercept(before, stackInitOperation,

6 event(time, init)).

1 stackPushOperation(Construct,Path) :-

2 functionCallHasName(Construct, ’push’).

3 stackPopOperation(Construct,Path) :-

4 macroCallHasName(Construct, ’pop’).

5 stackInitOperation(Construct,Path) :-

6 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-

2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1),
4 S is S1 + 1)),

5 ✷(when(pop(S) ∧ •stackOperation(S1),
6 S is S1 - 1)).

7 stackInitialized(S) :- init(S).

8 stackUsed(S) :- push(S).

9 stackUsed(S) :- pop(S).

10 stackOperation(S) :- stackUsed(S).

11 stackOperation(S) :- stackInitialized(S).

12 push(S) :- event(push(_,S)).

13 pop(S) :- event(pop(_,S)).

14 init(0) :- event(init).

(e)

Figure 2: Source code and minimal corresponding behavioral model of a C stack implementation.

tures, the operations pop, push and initialize imme-

diately spring to mind. Independent from a concrete imple-

mentation, the size of the stack and the element on top

are other important stack-related concepts. As the concrete

values of these concepts will vary over time as the stack is

being manipulated, we will consider these as additional in-

formation about a program’s state associated with each of

the stack operations.

Considering the concrete stack implementation as shown

in Figure ??, we could as well have described our program

model in terms of calls to the function push or array manip-

ulations originating from an expansion of the macro pop.

We however argue that such program models, consisting of

low-level application-specific programming language con-

structs, are severely limited in their ability to effectively

document and convey knowledge about a program’s behav-

ior. At the same time, the use of high-level concepts encour-

ages reuse of models among different versions of the same

application or even among various applications in the same

domain.

2.2. Specifying Desired Program Behavior

The next step in our recipe comprises specifying a model

against which the program’s actual behavior is to be ver-

ified. Applied to our running example, this specification

should contain what we consider the defining properties of

the behavior of a stack datastructure. In order to have our

insights checked automatically, we have to specify them in a

machine-verifiable language. To facilitate this task as much

as possible, the specification language should be highly

expressive. A declarative language additionally ensures

that the resulting specifications are descriptive and con-

vey as much information as possible. Machine-executable

logic languages, whereof Prolog [?, ?] is the well-known

archetypical representant, are good contenders. In such pro-

gramming languages, a program consists of logic clauses

representing a developer’s knowledge about a particular

problem. A proof procedure is used to determine whether a

formula is a logical consequence of the logic program. In

our program verification platform, the logic program con-

sists of a logic representation of the source code and the

observed run-time behavior of the C program under inves-

tigation. The formula whose truth value we would like to

determine, refers to the regularities expressed in the pro-

gram model. We however have not selected regular Prolog,

but opted for a variant that is especially suited to express

temporal relations which are abundant in behavioral speci-

fications.

Formulae in temporal logics comprise the classical logic

formulae possibly qualified by temporal operators such as

✷ (always), � (sometimes), • (previous) and ◦ (next). The

specific for this

application

1 int *stack;
2 int top;
3 void init(int size) {
4 top = 0;
5 stack = malloc(size*sizeof(int));
6 }
7 void push(int element) {
8 stack[top++]=element;
9 }

10 #define pop() stack[--top];

(a)

1 keyword(stackSize, ’log("%i", top);’).
2 keyword(time, ’log("%i", TIME++);’).
3 keyword(stackTop,’log("%i",stack[top-1]);’).

(b)

1 event(0,init).
2 event(1,push(10,1)).
3 event(2,push(20,2)).
4 event(3,push(30,3)).
5 event(4,pop(20,2)).

(c)

1 intercept(after, stackPopOperation,
2 event(time, pop(stackTop, stackSize))).
3 intercept(after, stackPushOperation,
4 event(time, push(stackTop, stackSize))).
5 intercept(before, stackInitOperation,
6 event(time, init)).

7 stackPushOperation(Construct,Path) :-
8 functionCallHasName(Construct, ’push’).
9 stackPopOperation(Construct,Path) :-

10 macroCallHasName(Construct, ’pop’).
11 stackInitOperation(Construct,Path) :-
12 functionCallHasName(Construct, ’init’).

(d)

1 behavioralModel :-
2 until(stackInitialized, ¬stackUsed),
3 ✷(when(push(S) ∧ •stackOperation(S1), S is S1 + 1)),
4 ✷(when(pop(S) ∧ •stackOperation(S1), S is S1 - 1)).

5 stackInitialized(S) :- init(S).
6 stackUsed(S) :- push(S).
7 stackUsed(S) :- pop(S).
8 stackOperation(S) :- stackUsed(S).
9 stackOperation(S) :- stackInitialized(S).

10 push(S) :- event(push(_,S)).
11 pop(S) :- event(pop(_,S)).
12 init(0) :- event(init).

(e)

Figure 1: Source code and minimal corresponding behavioral model of a C stack implementation.

(e) application-specific instances

19

Logic programming with qualified truth:
example application: reasoning about execution traces

Execute

source code

while

intercepting

(a) observed behavior

(c) documented behavior

(b) documentation as present in the source code

(d) high-level events specification

(f) associated run-time values(e) application-specific instances

verified against

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

specific for this application

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..
2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).
3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).
4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).
4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..

2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).

3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).

4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

Execute

source code

while

intercepting

(a) observed behavior

(c) documented behavior

(b) documentation as present in the source code

(d) high-level events specification

(f) associated run-time values(e) application-specific instances

verified against

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).

4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

specific for this application

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..
2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).
3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).
4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

Figure 1d, using the keywords stackTop and stackSize we

declared that the size of the stack and the element on top

should be recorded after each pop operation. These run-

time values will have to be obtained by the execution of

application-specific source code. For the stack implemen-

tation of the running example, the C code associated with

each keyword is shown in Figure 1f. For the use case in

Section 4, somewhat more elaborate code will have to be

provided in order to obtain the correct run-time values for

each high-level event.

3.4. Lightweight Consistency Verification

Developers can verify the consistency of a program’s ac-

tual behavior with its documented behavior by launching

logic queries against a recorded execution trace. DynaMode

instruments the source code of the application under inves-

tigation in order to record all occurrences of the high-level

run-time events specified in the meta model of the behavior

program model. To intercept occurrences of the high-level

pop event, the platform relies on the stackPopOperation

logic rule to identify those source code constructs which

give rise to the pop event. The platform also relies on the

definition of the stackTop and stackSize keywords to ob-

tain the run-time values associated with this event.

To verify the behavioral model specified in Figure 1d,

the logic query ?- behavioralModel has to be launched. In

case of a verification failure, our temporal logic interpreter

prints the last event that was used in an attempt to prove

the query. This information can be used to either adapt the

application to the model or the model to the application.

The generated execution traces consist of high-level events

which renders manual inspection in case of verification fail-

ures somewhat more feasible on the one hand, while the

verification itself is often computationally less expensive as

assertions generally need to be checked over fewer events

on the other hand.

4. Case Study: Documenting and Verifying the

Behavior of the Pico Interpreter

Pico [13] is an elegant interpreted programming lan-

guage developed at the Vrije Universiteit Brussel. Origi-

nally conceived to teach programming concepts to students

outside the realm of computer science, its C implementa-

tion is nowadays also heavily used in the computer science

curriculum as a teaching vehicle to introduce interpretation

techniques.

The Pico interpreter relies on the concept of a continua-

tion to represent the subtasks a computation –such as the

evaluation of an expression– comprises. Contrary to the

conventional semantics, a Pico continuation does not de-

note the entire future of the computation at hand, but rather

a piece of this computation. The Pico interpreter stores

these pieces on a stack. The entire stack of continuations,

to which we will refer as the continuation stack, therefore

represents the complete future of the computation. A con-

tinuation may invoke other continuations by placing them

on the continuation stack. Arguments can be passed by

storing them on a separate stack referred to as the expres-

sion stack. The heart of the Pico interpreter is a loop which

continuously executes the continuation located at the top of

the continuation stack. Continuations are implemented as

pointers to C functions which take no arguments nor return

a value.

In order to develop Pico language extensions, computer

science students first have to grasp the dynamics of the Pico

execution model. A well-defined sequence of continuation

and expression stack manipulations determines the opera-

tional semantics of each Pico expression. Students should

therefore have a good idea of how the contents of these

stacks evolves during the evaluation of a program.

4.1. Identify High-Level Run-Time Events

The internals of the Pico interpreter, which comprise

about 16K lines of condense C code, are documented in

a very consistent manner as is required by its educational

purposes. For each continuation, the documentation de-

scribes what the continuation stack and expression stack are

expected to look like before and after the execution of the

continuation. Consider for instance the documentation of

the ASS continuation, which implements the execution of an

assignment expression. Its behavior was documented by the

original developer in terms of expression and continuation

stack transformations:

1 /*--*/

2 /* ASG */

3 /* expr-stack: [... DCT VAL] -> */

4 /* [... VAL] */

5 /* cont-stack: [... ASG] -> */

6 /* [...] */

7 /*--*/

8 static _NIL_TYPE_ ASG(_NIL_TYPE_)

9 { ... }

The expected elements of the continuation and expres-

sion stack are written down between square brackets and

separated by spaces. The top of the stacks are located on

the right side. The dots represent possible elements on the

stack that are of no importance to the assignment continu-

ation as they are left untouched during its execution. The

expected configuration of the stack before the execution of

the continuation is located to the left of each arrow, while

its configuration after the execution is located to the right.

This human-readable schema sufficiently documents the

semantics of the assignment expression as implemented by

the ASS continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASS) from the continuation stack and executes

it. The ASS continuation in turn expects the current envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASS continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level behavioral concepts in terms of which the behav-

ior is documented. The continuation stack and the continu-

ations it contains are excellent candidates.

4.2. Document Program Behavior

Having identified the behavioral concepts to describe

our notion of the Pico interpreter’s internals with, we are

now ready to actually specify these beliefs in a behav-

ioral model. We will start by transforming the docu-

mented continuation schemas from the source code com-

ments into a format readable by our platform. As shown

in the model specification abstract below, we will use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASS’|R] matches any list

starting with the element ’ASS’ while the rest of the list is

bound to the variable R. We use this feature to represent the

ellipses from the source code comments. The model there-

fore specifies that at the start of the ASS continuation’s exe-

cution, there should be an ASS assignment continuation on

top of the stack. After its execution, the continuation has to

be popped from the stack.

1 cntDocumented(’ASG’,[’ASG’|R],R).
2 cntDocumented(’REF’,[’REF’|R],[’REF’,’APL’|R]).
3 ...

4 behavioralModel :-
5 ✷(when(cntExecuted(Name,Before,After),
6 cntDocumented(Name,Before,After))).

7 cntExecuted(Name,StackBefore,StackAfter) :-
8 cntExited(Name,_,StackAfter),
9 •tcntEntered(Name,_,StackBefore).

We also have to specify that every executed continuation

should be documented by the model. We accomplish this

in the behavioralModel rule by expressing a temporal re-

lation between the cntExecuted and cntDocumented pred-

icates. Notice how the variables match in order to enforce

that the observed complete stack configurations agree with

their partial specifications.

Once again, the final 3 lines of the extract link the pred-

icates used in the behavioral model to the high-level events

provided by the dynamic meta model. This time, we are us-

ing the temporal operator •t to express that a continuation

is completely executed once it is exited and was entered t
time points ago in the past.

4.3. Application-Specific Instances of High-

Level Events

The third step in our recipe consisted of a precise specifi-

cation of the program model’s meta model. The model from

the previous section completely relied on just two high-level

behavioral events: the start and conclusion of a continua-

tion’s execution. More importantly, we are interested in the

configuration of the continuation stack at those moments

in time. We will therefore associate these values with the

cntEntered and cntExited events. Our meta model de-

clares this information to be intercepted as follows:

1 intercept(before,continuationEntry,
2 event(time,cntEntered(cntName,cntPtr,cntStack))).

3 intercept(after,continuationExit,
4 event(time,cntExited(cntName,cntPtr,cntStack))).

The definitions of the continuationEntry and

continuationExit predicates, which are among the

logic predicates the meta model’s specification relies

on, are shown below. They are responsible for locating

those constructs in the Pico interpreter’s source code that

represent the entry and exit points of a continuation.

1 continuationEntry(Construct,Path) :-
2 inContinuation(Construct,Path),
3 functionEntry(Construct,Path).
4 continuationExit(Construct,Path) :-
5 inContinuation(Construct,Path),
6 functionExit(Construct,Path).

7 continuation(Construct) :-
8 isFunctionDefinition(Construct),
9 expressionIn(Construct,Expression,_),
10 picoStack(Expression).

The continuationEntry rule states that a construct is

the entry point of a continuation if the construct is part of

a continuation and if it is the entry point of a function as

well. As before, the Path variable represents the path from

the program’s parse tree root to the parse tree node bound to

the Construct variable. It is used by the inContinuation

clause to check whether the programming language con-

struct is part of a continuation. We will discuss how to

positively identify a continuation later on, but for the mo-

ment it suffices to recall that they are implemented as func-

tions. The functionEntry clause therefore checks whether

the construct is the first C statement in a function body.

We could try to base our definition of the

inContinuation predicate on the C signature common to

all Pico continuations which states that continuations are

pointers to functions taking no arguments as well as not

returning anything:

typedef _NIL_TYPE_ (*_CNT_TYPE_)(_NIL_TYPE);

Such a definition would however result in many false pos-

itives. Recalling that continuations invoke other continua-

tions and pass around arguments by respectively manipulat-

ing the continuation and expression stack, we have therefore

opted to identify continuations based on a more semantical

definition:

The above rule states that a Construct is a continuation

if first of all it is a function and at least one expression in the

body of that function manipulates either the continuation

or the expression stack. Such stack manipulations can be

detected in Pico as code resulting from the expansion of

pop, push, zap and peek macro calls.

We have however neglected to mention three important

predicates the intercept declarations of the dynamic meta

model rely on: the cntName, cntPtr and cntStack key-

words. As we mentioned before, keywords are used to de-

clare how the information associated with each behavioral

concept of the general meta model can be retrieved from

an application’s run-time state. The cntStack keyword is

responsible for capturing the run-time configuration of the

continuation stack. This process involves interesting code

to walk over the continuation stack, but since this code is

tightly tied to Pico’s internals, it is out of this paper’s scope.

The keywords cntName and cntPtr, on the other hand, dif-

fer somewhat from the keywords we have seen in the run-

ning example. Instead of simply declaring the code it ex-

pands to as a logic fact, these keywords are actually logic

rules which are allowed to query the application’s parse tree

to obtain information that is to be incorporated in the ex-

panded source code. The cntName keyword, for instance,

obtains the name of a continuation from a program’s parse

tree as a function’s name is very difficult to obtain at run-

time given ANSI C’s limited reflective capabilities:

1 keyword(cntName,C,P,Expansion) :-

2 continuationName(C,P,Name),

3 concat([’log("’,Name,’");’],Expansion).

4.4. Lightweight Consistency Verification

To verify whether the Pico interpreter indeed behaves

as indicated by its documentation, we used the interpreter

to evaluate a program containing most of the allowed Pico

expression types. This way, we obtained high-level execu-

tion traces containing information about the dynamics of the

continuation stack as specified by the dynamic meta model

outlined above:

1 ..

2 event(60,cntEntered(’ASG’,13..1,[’ASG’,’print’, ’exit’])).

3 event(61,cntExited(’ASG’,13..1,[’print’, ’exit’])).

4 ..

We verified whether this execution trace is conform to

our model specification by launching the logic query ?-

behavioralModel. By doing so, we found several inter-

esting conflicts between Pico’s documented behavior and

the behavior we observed. One of them was located in the

documentation of the REA continuation which is executed

when an expression is read. The documentation indicated

that this continuation just pops the top of the continuation

stack during its execution, while in reality the EXT and EXP

continuations were pushed on top of the stack. In addi-

tion, several minor naming inconsistencies were detected.

The eval exp was for instance abbreviated in the docu-

mentation as EXP, but another continuation already had this

name. Such inconsistencies are very likely to confuse pro-

grammers during knowledge transfer. Upon interpretation

of our verification results, we were able to adapt the pro-

gram model to the observed behavior and made sure the

documentation and source code are back in sync.

We would like to conclude this section with a side note.

Although the behavioral model of the Pico interpreter as

presented in this section only expresses desirable behav-

ior, we have also used our verification platform to detect

instances of undesirable behavior. The Pico interpreter in-

cludes an implementation of a garbage collection algorithm

which might be invoked during the execution of a contin-

uation. Continuations should therefore be programmed in

a specific way in order to avoid ending up with dangling

pointers to the Pico object memory. In our program model,

we were able to specify the dynamic conditions leading to

a crash as undesirable properties and by doing so we were

able to locate two crash-inducing oversights which weren’t

immediately clear from the source code.

5. Related Work

Many existing software engineering tools already sup-

port the development process using information about a pro-

gram’s behavior.

5.1. Other Dynamic Analyses

In this section, we will compare some of the existing ap-

plications of dynamic analysis that are closest to our work

according to the following non-exhaustive set of compar-

ison criteria: intended application domain, analysis time,

Figure 2: Source code and corresponding behavioral documentation extracts of the Pico interpreter.

and after the execution of the continuation. Consider for

instance the documentation of the ASG continuation, which

implements the execution of an assignment expression. Its

behavior is documented in terms of expression and contin-

uation stack transformations shown in Figure 2b. The ex-

pected elements of the continuation and expression stack

are written down between square brackets and separated by

spaces. The top of the stacks are located on the right side.

The dots represent possible elements on the stack that are

of no importance to the assignment continuation as they are

left untouched during its execution. The expected configu-

ration of the stack before the execution of the continuation

is located to the left of each arrow, while its configuration

after the execution is located to the right.

This human-readable schema sufficiently documents the

semantics of the assignment expression as implemented by

the ASG continuation. At a certain point during the evalua-

tion of a program, the Pico driver loop pops the assignment

continuation (ASG) from the continuation stack and executes

it. The ASG continuation in turn expects a variable envi-

ronment (represented by the dictionary DCT) and the value

that is to be assigned VAL) to be on the expression stack.

They are both needed to store a variable-value binding in

the current environment. At the end of its execution, the

ASG continuation pushes the assigned valued VAL on the ex-

pression stack, as Pico assignment expressions evaluate to

their right-hand side.

4.2. Documenting Program Behavior

Over the course of some years, several modifications to

the Pico source code have been made. We therefore wanted

to verify whether the actual dynamics of the continuation

stack still matched the documented behavior. Following the

recipe outlined in Section 2, we first have to identify the

high-level events in terms of which we will document the

behavior. Following the original documentation, we chose

to model the execution of a continuation as a high-level

event whose associated run-time values are the configura-

tion of the continuation stack before and after the execution.

In this paper, we will only describe and verify the evolution

of the continuation stack, but our approach can be easily

applied to the expression stack as well.

1 /*--*/
2 /* ASS */
3 /* expr-stack: [... DCT VAL] -> */
4 /* [... VAL] */
5 /* cont-stack: [... ASS] -> */
6 /* [...] */
7 /*--*/
8 static _NIL_TYPE_ ASG(_NIL_TYPE_)
9 { ... }

We are now ready to specify our behavioral model as

assertions over the high-level events we just identified.

We will start by transforming the original documentation

into a format readable by our platform. As the model

specification abstract in Figure 2c shows, we use logic

facts of the form cntDocumented(CntName, StackBefore,

StackAfter). The documented configuration of the contin-

uation stack before and after the continuation’s execution is

represented by a list whose first element is the top of the

stack. In Prolog, the partial list [’ASG’|R] matches any list

starting with the element ’ASG’ while the rest of the list

is bound to the variable R. We use this feature to represent

the ellipses from the source code comments. The first line

of the model therefore specifies that at the start of the ASG

continuation’s execution, there should be an ASG assignment

continuation on top of the stack. After its execution, the

continuation has to be popped from the stack.

20

Non-standard evaluation strategies:
a taste of implicit parallel evaluation

multi-core
revolution

speed up
sequential
programs

should be easier
for declarative

programs

expose inherent
parallelism

formal
foundation

relatively
pure

BUT also complex datastructures with pointers ...
imagine executing these goals in parallel!

Slide 3

Complex Data Structures / Pointers

• Example:
main :- X = f(Y,Z),

X Yf Z

Y = a,
X f Za

W = Z,
X f Za W

W = g(K),
X f Za W g K

X = f(a,g(b)).
X f Za W g b

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

[http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf]

21

Non-standard evaluation strategies:
a taste of implicit parallel evaluation

Knowledge representation, Logic, and Advanced
Programming Laboratory

Models of Parallelism

!"#$% &'(%)*+,-.+%/0.*1+2-
3%$%4.$#.%)5$ 6+7)-/+'(%)*
)%0%5.

3%$%4.4$5(3% &8+9: 6-2*1+7)-/+;)-<)5/

(,.#$ &+(,#7*&8=61++-)+,-+4$5(3%3+$%7.1
#7 &,-+4$5(3%3+$%7.1+."%, >?@A
%$3%+

B+C-3.D%,%)5$E,#7#%)&8=61
'(%)*+B+&&'(%)*+F G6H1+ 6-2*1

%,2#7
%,2!"#$%

New Mexico State University

And-Parallelism

Or-Parallelism

Unification
Parallelism

correctness (same solutions as sequential)
 efficiency (no slowdown, speedup)

not trivial: goals typically depend

on each other

(data and control dependency),

workers need to be synchronized

[http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf] 22

Non-standard evaluation strategies:
a taste of implicit parallel evaluation - or-parallelism

execute different
branches at choice point

simultaneously

relevant for
search problems,
generate-and-test

there is no dependency between
the clauses implementing p/1

p(a).
p(b).
?- p(X).

typical architecture:
set of workers, each a full interpreter

scheduler assigns unexplored branches to idle workers

issue: maintaining a different environment per
branch efficiently(e.g., sharing, copying, ...)

much easier to implement than and-parallelism

[http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf]

23

Non-standard evaluation strategies:
a taste of implicit parallel evaluation - or-parallelism

..., p(X), ...
p(X) :- ..., X=a, ..., !, ...
p(X) :- ..., X=b, ...

Slide 8

Issues in Or-parallelism: Illustration
. . ., p(X), . . .

p1(X) :- . . ., X=a, . . ., !, . . .
p2(X) :- . . ., X=b, . . .

!

p1 p2
x=a x=b

x
main :- l, s.

:- parallel l/0.

l :- large_work_a.

l :- large_work_b.

:- parallel s/0.

s :- small_work_a.

s :- small_work_b.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

speculative work should be avoided to gain speedup

left-based scheduling, immediate killing on cut

avoid incurring an overhead
from fine-grained parallelism

Slide 8

Issues in Or-parallelism: Illustration
. . ., p(X), . . .

p1(X) :- . . ., X=a, . . ., !, . . .
p2(X) :- . . ., X=b, . . .

!

p1 p2
x=a x=b

x
main :- l, s.

:- parallel l/0.

l :- large_work_a.

l :- large_work_b.

:- parallel s/0.

s :- small_work_a.

s :- small_work_b.

M. Hermenegildo – Parallel Execution of Logic Programs Compulog/ALP Summer School – Las Cruces, NM, July 24-27 2008

speculative

a lot of work
from the past is
relevant again,
BUT: distributed

vs shared
memory

architectures,
caching

[http://clip.dia.fi.upm.es/~logalg/slides/PS/A_par.pdf] 24

Logic programming in software engineering:
SOUL - symbiosis

symbiosis with base program languages

changes are immediately reflected

1 if ?c isCompilationUnit,

2 [?c types size > 1]

3 if compilationUnit(packageDeclaration(simpleName([’testapp’])),?,?) isCompilationUnit

4 if ?c isCompilationUnit,

5 ?c hasPackage: ?p,
6 ?p hasName: ?n,
7 ?n isSimpleName,

8 ?n hasIdentifier: [‘testapp’]

Fig. 4. Some queries illustrating quantification over the compilation units in an Eclipse workspace.

by the second query in Figure 4. However, we have deliber-
ately chosen not to reify parse tree nodes as compound logic
terms, which forces us to expand the unification into a quite
elaborate sequence of conjuncted conditions comprising the
figure’s third query.

In order to reconcile the declarative style of the sec-
ond query with the reification of the actual parse tree
node objects, we adapt SOUL’s unification scheme such
that parse tree nodes unify with their logic compound term
representation. Although this extension is much like its
corresponding extension for Smalltalk, the Java grammar’s
sheer size leaves customizing the unification for each in-
dividual org.eclipse.jdt.core.dom.ASTNode sub-
class a laborious undertaking. To unify a node with a
logic term, one would have to invoke the methods re-
sponsible for retrieving the child node (e.g. getName(),
getTypeDeclarations(), etc . . .) corresponding to each
of the compound term’s arguments. Moreover, these hard-
coded invocations leave the implementation brittle with re-
spect to changes to the parser or the language specification.
A reflection-based unification scheme covering the entire
ASTNode-hierarchy is therefore highly desirable.

1) The unification extension: Property descriptors
endow the Eclipse ASTNode-hierarchy with
such a reflective API. Each node has a method
getStructuralProperty(StructuralPropertyDescriptor) which
retrieves the value of the receiver’s property designated by
the given property descriptor. These properties range from an
individual child node over a collection of children to primitive
values. Another method, propertyDescriptors(int),
returns a list of the property descriptors available for the
receiver under the given Java Language Specification. The
order in which descriptors are returned depends on the
location of the designated property in the grammar rule
(e.g. the descriptor for a method’s name comes before the
descriptor for a method’s parameters), rendering the mapping
of a node’s properties to the arguments of its logic term
representation one-to-one.

The reflective capabilities of the ASTNode-hierarchy triv-
ialize the unification between a parse tree node and a logic
term. Similar to its corresponding extension for Smalltalk
code, a parse tree node with property descriptors δ1, . . . , δn

unifies with a logic term f(t1, . . . , tn) if and only if the
term’s functor f unifies with the name of the node’s class, its
multiplicity n agrees with the amount of property descriptors

and each of the term’s arguments ti unifies with the value of
the node’s property designated by property descriptor δi.

The above unification scheme is embod-
ied by the unifyWithCompound:inEnv:

method in the Smalltalk proxy for each
org.eclipse.jdt.core.dom.ASTNode instance.
One can argue that this method could as well have been
part of a closed unification protocol. However, it has already
been overridden for certain subclasses to exclude unimportant
properties from the logic term. Import declarations for
instance omit their boolean static property which can be
accessed more naturally in the logic programming paradigm
through an importDeclarationIsStatic predicate.

2) The extension in practice: As Figure 4 already motivated
the rationale for unifying parse tree nodes with logic terms
have, the following logic queries merely serve to illustrate the
actual unification:

1 if ?c isCompilationUnit

2 if compilationUnit(?p, ?i, ?t) isCompilationUnit

3 if compilationUnit(?, ?i, ?) isCompilationUnit,

4 ?i contains: ?f(?name)
5 if ?c isCompilationUnit,

6 ?c compilationUnitHasPackage: ?p,
7 ?c equals: compilationUnit(?p, [?c imports], ?)

Solutions to the first query comprise bindings of variable ?c
to CompilationUnit instances. The second query ranges
over the same instances, but binds each instance’s package
declaration, import declarations and type declarations to vari-
ables ?p, ?i and ?t respectively. The third query lists the names
of each import in each compilation unit. Its solutions have
variable ?f bound to the symbol importDeclaration,
which is the type of each element in the compilation unit’s
collection of import declarations i. The last query is composed
of three separate logic conditions. Through the predicate
compilationUnitHasPackageDeclaration, the sec-
ond condition binds ?p to the package the compilation unit
?c is declared in. The third condition merely demonstrates
that compilation unit ?c unifies with the logic term given as
second argument to the equals: predicate1. This argument
is a Smalltalk term evaluating to the compilation unit’s im-
port declarations obtained through an invocation of the Java
CompilationUnit.imports() method.

1The logic fact ?x equals: ?x. implements the equals: predicate
which hence serves as a substitute for Prolog’s = operator.

ordinary term

symbiosis term

instance

base program not reified as logic facts

method method

query results easily perused by existing IDE’s

instance

25

Logic programming in software engineering:
SOUL - symbiosis - demo

nice, but true power of logic
programming comes not only from

backtracking, but also from the
ability to unify with a user-

provided compound term to
quickly select objects one is

interested in

if ?m methodDeclarationHasName: simpleName(?identifier)

if ?m methodDeclarationHasName: ?n,
 ?n equals: simpleName(?identifier)

hmm .. strange:
the method’s name (a Java

Object) is unified with a
compound term?

hold that thought

26

Logic programming in software engineering:
SOUL - symbiosis - demo

all subclasses of presentation.Component
 should define a method acceptVisitor(ComponentVisitor)

that invokes System.out.println(String) before
double dispatching to the argument

public class PrototypicalLeaf extends Component {
	 public void acceptVisitor(ComponentVisitor v) {
	 	 System.out.println("Prototypical.");
	 	 v.visitPrototypicalLeaf(this);
	 }
}

27

Logic programming in software engineering:
SOUL - symbiosis - demo

yuk .. not as
declarative as

advertised!

and I have to do this for all
implementation variants?

28

Logic programming in software engineering:
SOUL - code templates

integrate concrete syntax of base program

1 public List list;

2

3 public void initializeContainer() {

4 List l = new LinkedList();

5 list = l;

6 }

7

8 public void insertElement(Object x) {

9 Iterator i = list.iterator();

10

11 while(i.hasNext()) {

12 Object o = i.next();

13 operation(x, (Collection) this.self().list);

14 }

15 }

16

17 public void operation(Object o, Collection c) {

18 c.add(o);

19 }

20

21 public Example self() {

22 return this;

23 }

Figure 14. Modification of a container during iteration.

branch. Obviously, if our matching algorithm would only match
the then-branches that directly contain a single method invocation,
we would not find many bugs using this query. Because of the
behavioral matching of statement sequences using the call-graph
analysis, we can safely restrict the template to those statements that
are essential to the pattern. Finally, although our template uses the
same variable in the condition of the if-statement as well as in the
method invocation, the actual code that will be found does not have
to because we match the variables based on the points-to analysis.
This means that any expression that evaluates to the same value as
the variable x will be matched.

3.3 Detecting Concurrent Modification Exceptions
Another possible bug in Java programs happens when a modifica-
tion is made to a collection that is currently being iterated over. This
bug will appear upon execution of the insertElement method
in the code of Figure 14. This method executes an iteration over
a Linkedlist collection object during which it calls the method
operation that adds the element to the collection. However, a col-
lection that is under iteration may not be modified and therefore,
a ConcurrentModificationException will be thrown and the
program crashes. Obviously, in this small code snippet, the bug is
easily detectable by the human developer but the same observation
does not hold for large programs written by different developers.
Therefore, we want to implement the automated detection of such
concurrent modifications and we can do so by writing and execut-
ing a query in our tool.

The query in Figure 15 shows how we can detect one possi-
ble occurrence of the bug. It searches for all while-statements that
use an iterator ?iterator to loop over a collection ?collection and
that perform an addition on that collection during the execution
of the while-body. On line 3, the query also states that the value
that is bound to the logic variable ?iterator is actually an itera-
tor object that is obtained by invoking iterator() on the collec-
tion object ?collection. This particular query will thus detect the
bug that is present in the code snippet of Figure 14. The template
again requires a matching process that takes both structural as well
as behavioral information into account. For instance, the while-
statement can be found using mere matching on a structural meta
model of the program but the call to the addition operation can oc-
cur anywhere in the control flow of the while-body. Furthermore,
the logic variables ?collection and ?iterator will match with any

1 if jtStatement(?s) {

2 while(?iterator.hasNext()) {

3 ?collection.add(?element);
4 }

5 },

6 jtExpression(?iterator){?collection.iterator()}

Figure 15. Detect additions to a container during iteration.

expression that evaluates to the collection and iterator objects re-
spectively. Once again, because of this matching process, the pro-
totype implementation that is present in the template matches all
actual places in the code where similar behavior and structure is
implemented.

Of course, this template does not detect all possible occurrences
of this bug. For example, we also need to detect removals of
elements and take into account that there are other loop constructs
available in Java. We can detect all these possibilities using multiple
similar templates that each detect a possible case5.

4. Related Work
Several works have been presented on the use of templates for code
base querying. Works that are closely related to our approach are
the LogicAJ2 [27] and Spoon [23] templates that provide a way
of selecting program elements based on whether or not their im-
plementation syntactically matches a given template. Compared to
our approach, matching program elements in a syntactical way re-
quires a template for each of the alternative ways in which a be-
havior can be specified. This renders the templates less expressive
for finding different variations of the same pattern. Behavioral pat-
terns are better supported in the Trace-matches [2] AspectJ exten-
sion. In it, interesting patterns on the call-graph are defined as reg-
ular expressions that are matched during the execution of the pro-
gram. Trace matches are similar in spirit to our interpretation of
statement sequences in source code templates. Their use of regular
expressions even permits to define more complex sequences, for
example allowing repetition of edges as well as optional or alterna-
tive edges. However, trace matches operate on an online dynamic
analysis while our approach uses an offline call-graph analysis in
combination with other representations of the program.

In the domain of program transformation, templates normally
serve as a condition to a rewrite rule. In JaTS [6], a transforma-
tion is specified as a left hand side template, that must match to
the elements which will be transformed, and a right hand side tem-
plate which will be used instantiated to replace the matched ele-
ments. SmPL [24] follows a similar principle, it is specified not as
a LHS - RHS rule, but as a Unix diff file that on a single template
defines the changes that must occur on matching elements. SmPL
allows for more semantic matches than JaTS by relaying on the
function’s control flow to match on sequences of statements, and
on code isomorphisms to cope with the different ways to specify
a behavior (for example, in C, X == null ↔ !X). The analysis
done in SmPL, however, is intraprocedural only, and does not take
into account aliasing between variables on its matching; neverthe-
less, the use of isomorphisms permit a greater, albeit limited, degree
of variability than what our approach offers.

Finally, PQL [20] is a domain specific language that uses
template-like queries to match on context-sensitive traces of the
program. These traces represent, for example, security flaws, vi-
olations to design rules, or possible unsafe behaviors. PQL is the
closest work to ours, although it is not a complete template lan-

5 We are also currently working on an extension of the templates to express
more variability (such as logical ’or’) inside the templates themselves.

9 2006/11/15

resolved by existential queries on control-flow graph

is add(Object) ever invoked in the control-flow of a while-statement?

29

Logic programming in software engineering:
SOUL - code templates - demo

30

Logic programming in software engineering:
SOUL - code templates - demo

vs

public class SuperLogLeaf extends OnlyLoggingLeaf
{
	 public void acceptVisitor(ComponentVisitor v) {
	 	 super.acceptVisitor(v);
	 	 v.visitSuperLogLeaf(this);
	 }
}

31

Logic programming in software engineering:
SOUL - code templates - demo

but still not in query results:

public class MustAliasLeaf extends Component {
	 public void acceptVisitor(ComponentVisitor v) {
	 	 System.out.println("Must alias.");
	 	 Component temp = this;
	 	 v.visitMustAliasLeaf(temp);
	 }
}

public class MayAliasLeaf extends Component {
	 public Object m(Object o) {
	 	 if(getInput() % 2 == 0)
 return o;
	 	 else
 return new MayAliasLeaf();
	 }

	 public void acceptVisitor(ComponentVisitor v) {
	 	 System.out.println("May alias.");
	 	 v.visitMayAliasLeaf((MayAliasLeaf)m(this));
	 }
}

32

Logic programming in software engineering:
SOUL - domain-specific unification

points-to analysis
tolerance for syntactically differing expressions

semantic analysis
correct application of scoping rules, name resolution

incorporates static analyses: ensures query conciseness & correctness

instance vs compound term

instance vs instance

easily identify elements of interest

can the value on which hasNext() is
invoked alias the iterator of the
collection to which add is invoked?

never, in at least one or in all possible executions
-> propagate this knowledge using logic of quantified truth

1 public List list;

2

3 public void initializeContainer() {

4 List l = new LinkedList();

5 list = l;

6 }

7

8 public void insertElement(Object x) {

9 Iterator i = list.iterator();

10

11 while(i.hasNext()) {

12 Object o = i.next();

13 operation(x, (Collection) this.self().list);

14 }

15 }

16

17 public void operation(Object o, Collection c) {

18 c.add(o);

19 }

20

21 public Example self() {

22 return this;

23 }

Figure 14. Modification of a container during iteration.

branch. Obviously, if our matching algorithm would only match
the then-branches that directly contain a single method invocation,
we would not find many bugs using this query. Because of the
behavioral matching of statement sequences using the call-graph
analysis, we can safely restrict the template to those statements that
are essential to the pattern. Finally, although our template uses the
same variable in the condition of the if-statement as well as in the
method invocation, the actual code that will be found does not have
to because we match the variables based on the points-to analysis.
This means that any expression that evaluates to the same value as
the variable x will be matched.

3.3 Detecting Concurrent Modification Exceptions
Another possible bug in Java programs happens when a modifica-
tion is made to a collection that is currently being iterated over. This
bug will appear upon execution of the insertElement method
in the code of Figure 14. This method executes an iteration over
a Linkedlist collection object during which it calls the method
operation that adds the element to the collection. However, a col-
lection that is under iteration may not be modified and therefore,
a ConcurrentModificationException will be thrown and the
program crashes. Obviously, in this small code snippet, the bug is
easily detectable by the human developer but the same observation
does not hold for large programs written by different developers.
Therefore, we want to implement the automated detection of such
concurrent modifications and we can do so by writing and execut-
ing a query in our tool.

The query in Figure 15 shows how we can detect one possi-
ble occurrence of the bug. It searches for all while-statements that
use an iterator ?iterator to loop over a collection ?collection and
that perform an addition on that collection during the execution
of the while-body. On line 3, the query also states that the value
that is bound to the logic variable ?iterator is actually an itera-
tor object that is obtained by invoking iterator() on the collec-
tion object ?collection. This particular query will thus detect the
bug that is present in the code snippet of Figure 14. The template
again requires a matching process that takes both structural as well
as behavioral information into account. For instance, the while-
statement can be found using mere matching on a structural meta
model of the program but the call to the addition operation can oc-
cur anywhere in the control flow of the while-body. Furthermore,
the logic variables ?collection and ?iterator will match with any

1 if jtStatement(?s) {

2 while(?iterator.hasNext()) {

3 ?collection.add(?element);
4 }

5 },

6 jtExpression(?iterator){?collection.iterator()}

Figure 15. Detect additions to a container during iteration.

expression that evaluates to the collection and iterator objects re-
spectively. Once again, because of this matching process, the pro-
totype implementation that is present in the template matches all
actual places in the code where similar behavior and structure is
implemented.

Of course, this template does not detect all possible occurrences
of this bug. For example, we also need to detect removals of
elements and take into account that there are other loop constructs
available in Java. We can detect all these possibilities using multiple
similar templates that each detect a possible case5.

4. Related Work
Several works have been presented on the use of templates for code
base querying. Works that are closely related to our approach are
the LogicAJ2 [27] and Spoon [23] templates that provide a way
of selecting program elements based on whether or not their im-
plementation syntactically matches a given template. Compared to
our approach, matching program elements in a syntactical way re-
quires a template for each of the alternative ways in which a be-
havior can be specified. This renders the templates less expressive
for finding different variations of the same pattern. Behavioral pat-
terns are better supported in the Trace-matches [2] AspectJ exten-
sion. In it, interesting patterns on the call-graph are defined as reg-
ular expressions that are matched during the execution of the pro-
gram. Trace matches are similar in spirit to our interpretation of
statement sequences in source code templates. Their use of regular
expressions even permits to define more complex sequences, for
example allowing repetition of edges as well as optional or alterna-
tive edges. However, trace matches operate on an online dynamic
analysis while our approach uses an offline call-graph analysis in
combination with other representations of the program.

In the domain of program transformation, templates normally
serve as a condition to a rewrite rule. In JaTS [6], a transforma-
tion is specified as a left hand side template, that must match to
the elements which will be transformed, and a right hand side tem-
plate which will be used instantiated to replace the matched ele-
ments. SmPL [24] follows a similar principle, it is specified not as
a LHS - RHS rule, but as a Unix diff file that on a single template
defines the changes that must occur on matching elements. SmPL
allows for more semantic matches than JaTS by relaying on the
function’s control flow to match on sequences of statements, and
on code isomorphisms to cope with the different ways to specify
a behavior (for example, in C, X == null ↔ !X). The analysis
done in SmPL, however, is intraprocedural only, and does not take
into account aliasing between variables on its matching; neverthe-
less, the use of isomorphisms permit a greater, albeit limited, degree
of variability than what our approach offers.

Finally, PQL [20] is a domain specific language that uses
template-like queries to match on context-sensitive traces of the
program. These traces represent, for example, security flaws, vi-
olations to design rules, or possible unsafe behaviors. PQL is the
closest work to ours, although it is not a complete template lan-

5 We are also currently working on an extension of the templates to express
more variability (such as logical ’or’) inside the templates themselves.

9 2006/11/15

33

Logic programming in software engineering:
SOUL - domain-specific unification - demo

34

Logic programming in software engineering:
SOUL - domain-specific unification - demo

