
3: logic programming
and Prolog

Declarative
Programming

1

to determine whether a is a logical consequence of the clause,
order of atoms in body is irrelevant

Sentences in definite clause logic:
procedural and declarative meaning

2

declarative meaning realized by model semantics

procedural meaning realized by proof theory

a :- b, c.

to prove a, prove b and then prove c
order of atoms may determine whether a can be derived
a :- b, c.

a :- c, b. to prove a, prove c and then prove b

imagine
c is false

and proof for b
is infinite

Sentences in definite clause logic:
procedural meaning enables programming

3

algorithm = logic + control

declarative knowledge:
the what of the problem

procedural knowledge:
how the inference rules are

applied to solve the problem

definite clause logic

SLD-resolution refutation

the clause obtained from a

resolution step (the resolvent) is

always resolved with a program

clause in the next (and not with

another resolvent)

SLD-resolution refutation:
turns resolution refutation into a proof procedure

SLDselection
rule

linear
resolution

definite
clauses

determines how to
select a literal to

resolve upon

and which clause
is used when
multiple are
applicable

refers to the shape of the
resulting proof trees

left-most

top-down

also: an unwieldy theorem prover in effective programming language

4

SLD-resolution refutation:
refutation proof trees based on SLD-resolution
grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

Logic programming

sld refutation

grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

:−grandfather(a,X)

grandfather(C,D):−father(C,E),parent(E,D).

father(a,b).

:−mother(b,X).

parent(U,V):−mother(U,V).

:−parent(b,X).

:−father(a,E),parent(E,X).

{C/a,D/X}

{E/b}

{U/b,V/X}

{X/c}

goal (query)

derived goal

{X/c,C/a,D/c,E/b,U/b,V/c}

computed substitution

computed answer substitution

mother(b,c).

70 / 259

linear shape!

5

SLD-resolution refutation:
SLD-trees

Logic programming

SLD trees

:−grandfather(a,X)

:−parent(b,X)

:−father(b,X) :−mother(b,X)

blocked

:−father(a,E),parent(E,X)

Every � leaf corresponds to a successful refutation (a success
branch). A blocked leaf corresponds to a failed branch.
Prolog does a depth-first traversal of an SLD tree.
What if an SLD tree has infinite branches?

72 / 259

grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
father(a,b).
mother(b,c).

every path from the query root to the
empty clause corresponds to a proof
tree (a successful refutation proof)

failure
branch

success
branch

alternative
resolution
steps are
shown

program clauses resolved
with are not shown, nor are

the resulting substitutions

Prolog traverses SLD-trees depth-first, backtracking from
a blocked node to the last choice point (also from a

success node when more answers are requested)

not the same as proof trees!

6

Problems with SLD-resolution refutation:
never reaching success branch because of infinite subtrees

sibling(X,Y) :- sibling(Y,X).
sibling(b,a).

Logic programming

infinite sld trees

sibling(X,Y) :- sibling(Y,X).
sibling(b,a).

:−sibling(a,X)

:−sibling(X,a)

...

:−sibling(a,X)

:−sibling(X,a)

sibling(a,b).
sibling(b,c).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).

:−sibling(a,X)

:−sibling(a,Z),sibling(Z,Y)

:−sibling(a,U),sibling(U,Z),
sibling(Z,Y)

:−sibling(a,Z),sibling(Z,Y)

...

...

:−sibling(b,Y)

73 / 259

had we re-ordered the clauses, we
would have reached a success branch

at the second choice point

rule of thumb: non-recursive clauses before recursive ones

 Prolog loops on this query; renders it incomplete!
only because of depth-first traversal and not because of resolution as all

answers are represented by success branches in the SLD-tree

incompleteness of Prolog is a design choice:
breadth-first traversal would require keeping

all resolvents on a level in memory instead of 1

7

Problems with SLD-resolution refutation:
Prolog loops on infinite SLD-trees
when no (more) answers can be found

sibling(a,b).
sibling(b,c).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).

Logic programming

infinite sld trees

sibling(X,Y) :- sibling(Y,X).
sibling(b,a).

:−sibling(a,X)

:−sibling(X,a)

...

:−sibling(a,X)

:−sibling(X,a)

sibling(a,b).
sibling(b,c).
sibling(X,Y) :- sibling(X,Z), sibling(Z,Y).

:−sibling(a,X)

:−sibling(a,Z),sibling(Z,Y)

:−sibling(a,U),sibling(U,Z),
sibling(Z,Y)

:−sibling(a,Z),sibling(Z,Y)

...

...

:−sibling(b,Y)

73 / 259

infinite
tree

resolvents
grow

cannot be helped using
breadth-first traversal: is due

to semi-decidability of full
and definite clausal logic

8

Problems with SLD-resolution refutation:
illustrated on list generation

list([]).
list([H|T]):-list(T).

?-list(L).
L = [];
L = [A];
L = [A,B];
…

benign:
infinitely many lists of
arbitrary length are

generated

?-list(L)!

:-list(T1)!

:-list(T2)!

:-list(T3)!
•!
•!
•!

[]!

L = []!

[]!

L = [A]!

[]!

L = [A,B]!

Prolog would loop without finding

answers if clauses were reversed!

9

Problems with SLD-resolution refutation:
illustrated on list generation

:-plist(T1)!

:-plist(T1)!

[]!

L = [1,2]!
•!
•!
•!

[]!

L = [2]!

:-p(H1),plist(T1)!

:-plist(T1)!:-plist(T1)!

[]!

L = [2,1]!

[]!

L = [2,2]!
•!
•!
•!

•!
•!
•!

plist([]).
plist([H|T]):-p(H),plist(T).
p(1).
p(2).

?-plist(L).
L=[];
L=[1];
L=[1,1];
…

less benign:
only lists containing
1s are generated

?-plist(L)!

[]!
L = []!

:-p(H1),plist(T1)!

:-plist(T1)!

:-p(H1),plist(T1)!

:-plist(T1)!

[]!

L = [1,1]!
•!
•!
•!

explored by Prolog success branches that are never reached
10

SLD-resolution refutation:
implementing backtracking

11

when a failure branch is reached (non-empty resolvent
which cannot be reduced further), next alternative for

the last-chosen program clause has to be tried

amounts to going up one level
in SLD-tree and descending into

the next branch to the right

requires remembering previous resolvents for which not all
alternatives have been explored together with the last
program clause that has been explored at that point

backtracking=
popping resolvent from stack and

exploring next alternative

Pruning the search by means of cut:
cutting choice points

12

need to be remembered for all resolvents for which
not all alternatives have been explored

unnecessary alternatives will eventually be explored

parent(X,Y):-father(X,Y).
parent(X,Y):-mother(X,Y).
father(john,paul).
mother(mary,paul).

?-parent(john,C)!

:-mother(john,C)!:-father(john,C)!

[]!

parent(X,Y):-father(X,Y),!.
parent(X,Y):-mother(X,Y).
father(john,paul).
mother(mary,paul).

?-parent(john,C)!

:-mother(john,C)!:-father(john,C),!!

[]!

:-!!at this point, we know that
exploring the alternative

clause for parent/2 will fail

tells Prolog that this is the
only success branch

choice points on the
stack below and

including ?-parent
(john,C) are pruned

Pruning the search by means of cut:
operational semantics

13

“Once you’ve reached me, stick with all variable
substitutions you’ve found after you entered my clause”

Prolog won’t try alternatives for:

literals left to the cut

nor the clause in which the cut is found

A cut evaluates
to true.

Pruning the search by means of cut:
an example

14

p(X,Y):-q(X,Y).
p(X,Y):-r(X,Y).
q(X,Y):-s(X),!,t(Y).
r(c,d).
s(a).
s(b).
t(a).
t(b).

?-p(X,Y)!

:-r(X,Y)!:-q(X,Y)!

:-s(X),!,t(Y)! []!

:-!,t(Y)!

:-t(Y)!

[]! []!

:-!,t(Y)!

:-t(Y)!

[]! []!

no pruning above the
head of the clause
containing the cut

no pruning for literals
right to the cut

Are not yet on the stack

when cut is r
eached.

Pruning the search by means of cut:
different kinds of cut

15

green cut red cut

does not prune away
success branches

prunes success
branches

some logical
consequences of the

program are not returned

stresses that the conjuncts to
its left are deterministic and

therefore do not have
alternative solutions

has the declarative and
procedural meaning of
the program diverge

and that the clauses below with
the same head won’t result in

alternative solutions either

Pruning the search by means of cut:
red cuts

16

parent(X,Y):-father(X,Y),!.
parent(X,Y):-mother(X,Y).
father(john,paul).
father(john,peter).
mother(mary,paul).
mother(mary,peter).

same query,
 but John has

multiple children
in this program

?-parent(john,C)!

:-father(john,C),!!

[]!

:-!!

:-mother(john,C)!

[]!

:-!!
the cut is now red as a

success branch is pruned

parent(X,Y):-father(X,Y),!.
parent(X,Y):-mother(X,Y).
father(john,paul).
mother(mary,paul). same program,

but query
quantifies over
parents rather
than children

?-parent(P,paul)!

:-father(P,paul),!!

:-!!

[]!

:-mother(P,paul)!

[]!

the cut is only green when the
literal to its left is deterministic

{P/mary}

{C/peter}

Pruning the search by means of cut:
placement of cut

17

likes(peter,Y):-friendly(Y).
likes(T,S):-student_of(S,T).
student_of(maria,peter).
student_of(paul,peter).
friendly(maria).

?-likes(A,B)!

[]!
A=peter  
B=maria!

:-student_of(B,A)!

[]! []!
A=peter  
B=maria!

A=peter  
B=paul!

:-friendly(B)!

:-!,friendly(B)!

?-likes(A,B)!

:-student_of(B,A),!!:-friendly(B)!

[]!
A=peter  
B=maria!

[]!
A=peter  
B=maria!

:-!!

[]!
A=peter  
B=paul!

:-!!

likes(peter,Y):-!,friendly(Y). likes(T,S):-student_of(S,T),!.

Pruning the search by means of cut:
more dangers of cut

18

max(M,N,M) :- M>=N.
max(M,N,N) :- M=<N.

clauses are not mutually exclusive
two ways to solve query ?-max(3,3,5)

max(M,N,M) :- M>=N,!.
max(M,N,N). could use red cut to prune second way

problem:
?-max(5,3,3)

succeeds
only correct when

used in queries with
uninstantiated third

argumentBetter to use
>= and <

Negation as failure:
specific usage pattern of cut

19

p :- q,!,r.
p :- s.

cut is often used to
ensure clauses are
mutually exclusive

only tried when q fails

such uses are equivalent to the higher-level

p :- q,r.
p :- not_q,s.

not_q:-q,!,fail.
not_q.

where

cf. previous example

built-in predicate
always false

Prolog’s not/1 meta-predicate captures such uses:

not(Goal) :- Goal, ! fail.
not(Goal).

not(Goal) is proved by
failing to prove Goal

slight abuse of syntax
equivalent to call(Goal)

?-p!

:-q,!,r! :-s!

[]!

in modern Prologs:use \+ instead of not

Negation as failure:
SLD-tree where not(q) succeeds because q fails

20

p:-q,r.
p:-not(q),s.
s.

not(Goal):-Goal,!,fail.
not(Goal).

?-p!

:-not(q),s!:-q,r!

:-q,!,fail,s! :-s!

[]!

q evaluated
twice

version with ! was more
efficient, but uses of not/1
are easier to understand

Negation as failure:
SLD-tree where not(q) fails because q succeeds

21

p:-not(q),r.
p:-q.
q.
r.

not(Goal):-Goal,!,fail.
not(Goal).

?-p!

:-not(q),r!

:-q,!,fail,r!

[]!

:-r!

:-!,fail,r!

:-fail,r!

:-q!

[]!

branch corresponding to second
clause of not/1 is pruned

Negation as failure:
floundering occurs when argument is not ground

22

bachelor(X):-not(married(X)),
 man(X).
man(fred).
man(peter).
married(fred).

these are the bachelors
we were looking for!

?-bachelor(X)!

:-married(X),!,fail,man(X)!

:-!,fail,man(fred)!

:-fail,man(fred)!

:-not(married(X)),man(X)!

[]!

:-man(X)!

[]!

query has
no answers

unintentionally interpreted as
“X is a bachelor if nobody is

married and X is man”

not(Goal):-Goal,!,fail.
not(Goal).

Negation as failure:
avoiding floundering

23

correct implementation of SLDNF-resolution:
not(Goal) fails only if Goal has a refutation with an empty answer substitution

work-around: if Goal is ground, only
empty answer substitutions are possible

Prolog does not perform this check:
not(married(X)) failed because

married(X) succeeded with {X/fred}

bachelor(X):- man(X),
 not(married(X)).
man(fred).
man(peter).
married(fred).

grounds X

Negation as failure:
avoiding floundering

24

bachelor(X):- man(X),
 not(married(X)).
man(fred).
man(peter).
married(fred).

grounds X

?-bachelor(X)!

:-!,fail!

:-fail!

:-man(X),not(married(X))!

:-not(married(fred))! :-not(married(peter))!

:-married(fred),!,fail! []! :-married(peter),!,fail! []!

