
Relational Clausal Logic - Syntax:
clauses

 constant : single word starting with lower case
 variable : single word starting with upper case
 term : constant | variable
 predicate : single word starting with lower case
 atom : predicate[(term[,term]*])]
 clause : head [:- body]
 head : [atom[;atom]*]
 body : atom[,atom]*

likes(peter,S) :- student_of(S,peter).
student_of(maria,peter).

“peter likes anybody who
is his student. maria is a

student of peter”

1

statements concern relations
among objects from a universe

of discourseadd constants, variables and
predicates to propositional logic

Relational Clausal Logic - Semantics:
Herbrand universe, base, interpretation

2

Herbrand base BP of a program P

Herbrand interpretation I of P

set of all ground atoms that can be constructed using predicates in
P and arguments in the Herbrand universe of P

subset of BP consisting of ground atoms that are true

Herbrand universe of a program P

set of all terms that are ground in P
{ peter, maria } term without variables

{ likes(peter,peter),likes(peter,maria),
 likes(maria,peter),likes(maria,maria),
 student_of(peter,peter), student_of(peter,maria),
 student_of(maria,peter), student_of(maria,maria) }

{ likes(peter,maria), student_of(maria,peter) }
is this a model?
need to consider

variable substitutions

Relational Clausal Logic - Semantics:
substitutions and ground clause instances

if σ={S/maria} then
(likes(peter,S):-student_of(S,peter))σ
=likes(peter,maria):-student_of(maria,peter)

A substitution is a mapping σ : Var → Trm.
For a clause C, the result of σ on C, denoted Cσ
is obtained by replacing all occurrences of X ∈ Var in C by σ(X).
Cσ is an instance of C.

Relational Clausal Logic - Semantics:
models

interpretation I is a model of a clause C
⟺ I is a model of every ground instance of C.

interpretation I is a model of a program P
⟺ I is a model of each clause C ∈ P.

ground instances of
relational clauses are like

propositional clauses

likes(peter,S) :- student_of(S,peter).
student_of(maria,peter).

P

{ likes(peter,maria), student_of(maria,peter) }I

I is a model for P
because it is a model of all ground instances of clauses in P:
likes(peter,peter) :- student_of(peter,peter).
likes(peter,maria) :- student_of(maria,peter).
student_of(maria,peter).

Relational Clausal Logic - Proof Theory:
naive version

derive the empty clause through propositional resolution from all ground instances of all clauses in P

instead of trying arbitrary substitutions before trying to apply resolution,
derive the required substitutions from the literal resolved upon

(positive in one clause and negative in the other)

naive because there are many
grounding substitutions, most of
which do not lead to a proof

as atoms can contain variables, do not require exactly the same atom
in both clauses ... rather a complementary pair of atoms that can be

made equal by substituting terms for variables

Relational Clausal Logic - Proof Theory:
unifier

A substitution σ is a unifier of two atoms a1 and a2
⟺ a1σ = a2σ. If such a σ exists, a1 and a2 are called unifiable.

A substitution σ1 is more general than σ2 if σ2 = σ1θ for some
substitution θ.

A unifier θ of a1 and a2 is a most general unifier of a1 and a2
⟺ it is more general than any other unifier of a1 and a2.

If two atoms are unifiable then they their mgu is unique up to renaming.

Relational Clausal Logic - Proof Theory:
unifier examples

p(X, b) and p(a, Y) are unifiable
with most general unifier {X/a,Y/b}

q(a) and q(b) are not unifiable

[h
ttp

:/
/u

se
rs

.in
fo

rm
at

ik
.u

ni
-h

al
le

.d
e/

~
br

as
s/

lp
03

/c
3_

pu
re

p.
pd

f]

q(X) and q(Y) are unifiable:

{X/Y} (or{Y/X}) is the most general unifier

{X/a, Y/a} is a less general unifier

http://users.informatik.uni-halle.de/~brass/lp03/c3_purep.pdf
http://users.informatik.uni-halle.de/~brass/lp03/c3_purep.pdf

Relational Clausal Logic - Proof Theory:
resolution using most general unifier

apply resolution on many clause-instances at once

if

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

then

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

Relational Clausal Logic - Proof Theory:
example of proof by refutation using resolution with mgu

likes(peter,S) :- student_of(S,peter).
student_of(S,T) :- follows(S,C), teaches(T,C).
teaches(peter,decprog).
follows(maria,decprog).

“is there anyone whom peter likes”? ➠ add “peter likes nobody” to P

:-likes(peter,N) likes(peter,S):-student_of(S,peter).

student_of(S,T) :- follows(S,C), teaches(T,C).

{S/N}

:-student_of(N,peter)

{S/N, T/peter}

:-follows(N,C),teaches(peter,C)
follows(maria,decprog).

teaches(peter,decprog).

{N/maria, C/decprog}

:-teaches(peter,decprog)

☐

:- likes(peter,N)){N/maria} ∪ P ⊢ ☐

P

P ⊧ likes(peter,maria)hence

Relational Clausal Logic - Meta-theory:
soundness and completeness

P⊦C ⇒ P⊧C

so
un

d relational clausal logic is sound

P∪{C} inconsistent ⇒ P ∪ {C} ⊢ ☐

co
m

pl
et

e

relational clausal logic is refutation-complete

new formulation because
:- p(X).≡∀X·¬p(X)

while ¬(p(X).)≡¬(∀X·p(X))≡∃X·¬p(X)

Relational Clausal Logic - Meta-theory:
decidability

The question “P⊧C?” is decidable for
relational clausal logic.

Herbrand universe and base are finite

therefore also interpretations and models

could in principle enumerate all models of P and
check whether they are also a model of C

also for
propositional
clausal logic

