
Relational Clausal Logic - Syntax:
clauses

      constant : single word starting with lower case 
      variable : single word starting with upper case      
          term : constant | variable
     predicate : single word starting with lower case
          atom : predicate[(term[,term]*])]
        clause : head [:- body]
          head : [atom[;atom]*]
          body : atom[,atom]*

likes(peter,S) :- student_of(S,peter).
student_of(maria,peter).

“peter likes anybody who 
is his student. maria is a 

student of peter”

1

statements concern relations 
among objects from a universe 

of discourseadd constants, variables and 
predicates to propositional logic



Relational Clausal Logic - Semantics:
Herbrand universe, base, interpretation 

2

Herbrand base BP of a program P

Herbrand interpretation I of P

set of all ground atoms that can be constructed using predicates in 
P and arguments in the Herbrand universe of P

subset of BP consisting of ground atoms that are true

Herbrand universe of a program P

set of all terms that are ground in P
{ peter, maria } term without variables

{ likes(peter,peter),likes(peter,maria),
  likes(maria,peter),likes(maria,maria),
  student_of(peter,peter), student_of(peter,maria),
  student_of(maria,peter), student_of(maria,maria) }

{ likes(peter,maria), student_of(maria,peter) }
is this a model?
need to consider 

variable substitutions



Relational Clausal Logic - Semantics:
substitutions and ground clause instances

if σ={S/maria} then 
(likes(peter,S):-student_of(S,peter))σ 
=likes(peter,maria):-student_of(maria,peter)

A substitution is a mapping σ : Var → Trm.
For a clause C, the result of σ on C, denoted Cσ 
is obtained by replacing all occurrences of X ∈ Var in C by σ(X).
Cσ is an instance of C.



Relational Clausal Logic - Semantics:
models

interpretation I is a model of a clause C 
⟺ I is a model of every ground instance of C.

interpretation I is a model of a program P 
⟺ I is a model of each clause C ∈ P.

ground instances of 
relational clauses are like 

propositional clauses

likes(peter,S) :- student_of(S,peter).
student_of(maria,peter).

P

{ likes(peter,maria), student_of(maria,peter) }I

I is a model for P 
because it is a model of all ground instances of  clauses in P:
likes(peter,peter) :- student_of(peter,peter).
likes(peter,maria) :- student_of(maria,peter).
student_of(maria,peter).



Relational Clausal Logic - Proof Theory:
naive version

derive the empty clause through propositional resolution from all ground instances of all clauses in P

instead of trying arbitrary substitutions before trying to apply resolution, 
derive the required substitutions from the literal resolved upon 

(positive in one clause and negative in the other)

naive because there are many 
grounding substitutions, most of 
which do not lead to a proof

as atoms can contain variables, do not require exactly the same atom 
in both clauses ... rather a complementary pair of atoms that can be 

made equal by substituting terms for variables



Relational Clausal Logic - Proof Theory:
unifier

A substitution σ is a unifier of two atoms a1 and a2 
⟺ a1σ = a2σ. If such a σ exists, a1 and a2 are called unifiable. 

A substitution σ1 is more general than σ2 if σ2 = σ1θ for some 
substitution θ.

A unifier θ of a1 and a2 is a most general unifier of a1 and a2 
⟺ it is more general than any other unifier of a1 and a2. 

If two atoms are unifiable then they their mgu is unique up to renaming.



Relational Clausal Logic - Proof Theory:
unifier examples

p(X, b) and p(a, Y) are unifiable
with most general unifier {X/a,Y/b}

q(a) and q(b) are not unifiable
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q(X) and q(Y) are unifiable:

{X/Y} (or{Y/X}) is the most general unifier

{X/a, Y/a} is a less general unifier

http://users.informatik.uni-halle.de/~brass/lp03/c3_purep.pdf
http://users.informatik.uni-halle.de/~brass/lp03/c3_purep.pdf


Relational Clausal Logic - Proof Theory:
resolution using most general unifier

apply resolution on many clause-instances at once

if

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j ), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j ), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

then

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j ), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259

Clausal logic

proof theory using mgu

“Do resolution on many clause-instances at once.”

If

C1 = L1
1 ∨ . . . L1

n1

C2 = L2
1 ∨ . . . L2

n2

L1
i θ = ¬L2

j θ for some 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

where θ = mgu(L1
i , L2

j ), then

L1
1θ∨ . . .∨L1

i−1θ∨L1
i+1θ∨ . . .∨L1

n1
θ∨L2

1θ∨ . . .∨L2
j−1θ∨L2

j+1θ∨ . . .∨L2
n2

θ

44 / 259



Relational Clausal Logic - Proof Theory:
example of proof by refutation using resolution with mgu

likes(peter,S) :- student_of(S,peter).
student_of(S,T) :- follows(S,C), teaches(T,C).
teaches(peter,decprog).
follows(maria,decprog).

“is there anyone whom peter likes”? ➠ add “peter likes nobody” to P

:-likes(peter,N) likes(peter,S):-student_of(S,peter).

student_of(S,T) :- follows(S,C), teaches(T,C).

{S/N}

:-student_of(N,peter)

{S/N, T/peter}

:-follows(N,C),teaches(peter,C)
follows(maria,decprog).

teaches(peter,decprog).

{N/maria, C/decprog}

:-teaches(peter,decprog)

☐

:- likes(peter,N)){N/maria} ∪ P ⊢ ☐

P

P ⊧ likes(peter,maria)hence



Relational Clausal Logic - Meta-theory:
soundness and completeness

P⊦C ⇒ P⊧C

so
un

d relational clausal logic is sound

P∪{C} inconsistent ⇒ P ∪ {C} ⊢ ☐

co
m

pl
et
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relational clausal logic is refutation-complete

new formulation because 
:- p(X).≡∀X·¬p(X)

while ¬(p(X).)≡¬(∀X·p(X))≡∃X·¬p(X) 



Relational Clausal Logic - Meta-theory:
decidability

The question “P⊧C?” is decidable for 
relational clausal logic.  

Herbrand universe and base are finite 

therefore also interpretations and models

could in principle enumerate all models of P and 
check whether they are also a model of  C

also for 
propositional 
clausal logic


